

ACT Basin Project Overview Map

Allatoona Dam and Lake

- Reservoir with full summer conservation pool at elevation 840 feet msl
- 82.2 megawatt (MW) power plant

Alabama Power Company Proposed Changes

Weiss Proposal

- 1. Raise Winter Level from 558 to 561
- 2. Lower Top of Flood Control from 574 to 572
- 3. Results in 30% reduction in Winter Flood Control Storage
- 4. Results in 24% reduction in Summer Flood Control Storage
- 5. During Surcharge Operation, Increase releases at same reservoir elevations

Logan Martin Proposal

- 1. Raise Winter Level from 460 to 462
- 2. Lower Top of Flood Control from 477 to 473.5
- 3. Results in 35% reduction in Winter Flood Control Storage
- 4. Results in 35% reduction in Summer Flood Control Storage
- 5. During Surcharge Operation, Increase releases at same reservoir elevations

Reservoir System Simulation (HEC-ResSim) Software Developed by the U.S. Army Corps of Engineers

Reservoir Allatoona	 Description Allatoona Res 	ervoir	
Physical Operations Observe	d Data		
Operation Set Burkett D + With	drawals ~ Descript	ion Burkett D with diverted out	ets for CCMWA &
Zone-Rules Rel. Alloc. Outa	ges Stor. Credit Dec. Sched. P	rojected Elev	
Top of Dam	Operates Release From: Allatoon	na-Power Plant	
CCMWA_Qo	Hydropower - Power Guide Curve	Rule: PowerGC Z1_4hrs_Sea	isonal
Cartersville_Qo_wR	Description: Generate power for	4 hours while in Con (weekday	s only)
MaxCC_9500	Zone at Top of Power Pool:	Conservation v	,
Flood Control	Zone at Bottom of Power Pool:		
CCMWA_Qo		.une2 ~	1 120
Cartersville_Qo_wR	% Power Storage	Plant Factor (%)	120
MaxCC_9500	100.0	16.67	
Max@Cartersville_1:			- 10 - 10 - 10
Max@RomeCoosa_			ပ 60- ခွဲ
PowerGC FC_4hrs_			
MinQ_SmallUnit_21			୫ 20
CCMWA_Qo] L
MaxCC_9500			16
Max@Cartersville_1:			1
Max@Ringston_997 Max@RomeCoosa_			Powe
PowerGC Z1_4hrs_			
Fishspawning •			

Y	Release Decision Report: Allatoona	

Alternative: HRPlanG---0:HRPlanG

– 🗆 X

Run: HRPlanG---0 Lookback: 06 Jan 1939, 0000

Start Time: 20 Jan 1939, 0000 End Time: 31 Dec 2012, 0000

Date-Time

Rule Key: GC=Guide Curve, RO=Release Override, EO=Elevation Override, ZB=Zone Boundary

	Active Zone	Net Inflow (cfs)	Allatoona	-Dam	-Dam L&O
	Elev (ft)		Active Rule	Active Rule	Uncontrolled
			Flow (cfs)	Flow (cfs)	Flow (cfs)
					Unc 🔨
19Jan1939, 24:00	823.80	1,809.33	1,727.94	1,657.15	C
	Zone3		MinRelease	MinRelease	Unc
20Jan1939, 24:00	823.88	1,466.06	1,174.87	1,104.07	75
	Zone3		MinRelease	MinRelease	Unc
21Jan1939, 24:00	824.12	1,306.57	360.79	290.00	75
	Zone3		GC	GC	Unc
22Jan1939, 24:00	824.28	1,193.11	517.13	446.34	75
	Zone3		MinRelease	MinRelease	Unc
23Jan1939, 24:00	824.27	1,115.16	1,176.56	1,105.77	75
	Zone3		MinRelease	MinRelease	Unc
24Jan1939, 24:00	824.27	1,203.56	1,176.54	1,105.75	75
	Zone3		MinRelease	MinRelease	Unc
25Jan1939, 24:00	824.38	1,617.00	1,176.77	1,105.98	75
	Zone3		MinRelease	MinRelease	Unc 🗸
	<				>

Sample Output Variables				
Pool Elevation	Streamflow			
Inflow	Stage			
Discharge	Storage			
Hydropower	Net Withdrawal			
Evaporation	State Variable			

Water Supply Storage Agreements

Proposal for Storage Accounting and the second second

Storage Accounting Example

Formula: End Storage = Beginning Storage + Inflow Share – Loss Share – User's Usage

ACT River Basin

and the second second

ACT River Basin

and the second second

ACT River Basin Profiles

and the second second

The **river profile** shows how a river's gradient (or slope) changes as it flows from its source to its mouth. The river profile is created by plotting the elevation of the river above sea level at various points over its entire course. These river profiles also depict key locations and features along the length of the river, such as

reservoirs, dams, cities, state lines, and confluences with other major tributaries and rivers.

station Mail comments to: P.O. Box 2288

Submit Comments

Submit your scoping comments on the Allatoona Lake Water Supply Storage Reallocation Study and the Updates to the Weiss and Logan Martin Reservoirs Project WCMs by August 15, 2018, in one of the following ways:

Submit comments on comment forms

Provide verbal comments at the court reporter

Email comments to ACT-ACR@usace.army.mil

USACE Mobile District Commander ATTN: PD-EI (ACT-ACR)

Mobile, AL 36628-0001

If you would like your verbal comments to become part of the public record, please make your statement to the court reporter. If you prepared a written statement, please leave it with the court reporter.

Court Reporter

