

Memorandum

То:	Brian Renaghan, CIV AFCEE/EXA Mike Dobbs, DES-DDC-EE
From:	Tom Holmes Steven Herrera, P.E.
Date:	8 January 2009
Re:	Fluvial Soil Vapor Extraction (SVE) – Operations Summary #8 Dunn Field Source Areas Remedial Action Defense Depot Memphis, Tennessee FA8903-04-D-8722, TO 0031

This memorandum summarizes operations of the Fluvial SVE system from 1 August 2008 through 31 October 2008 (reporting period) and includes operational data and field and laboratory sampling results.

The Fluvial SVE system consists of two 13.1 hp regenerative blowers connected to seven SVE wells. The SVE wells have screen lengths of 25 to 35 feet with the screened interval ranging from 29 to 73 feet below ground surface. Condensate from the SVE wells is removed via a 140-gallon air/water separator and stored in a 535-gallon tank for analysis prior to discharge to the sewer system. If necessary to control VOC emissions, the extracted air flows through two 2,000-pound granular activated carbon (GAC) vessels prior to discharge. No emission controls are currently being used and extracted vapor is being emitted directly to atmosphere. There are 20 vapor monitoring points (VMPs) located 15 to 80 feet from the SVE wells. Fluvial SVE operations began on 25 July 2007. The Fluvial SVE system lay-out is shown on Figure 1.

FLUVIAL SVE OPERATIONS SUMMARY

System uptime was over 94% for the reporting period with both blowers in operation for 88% of the time. System shutdowns were made to collect photoionization detector (PID) measurements and laboratory samples at VMPs, perform general system maintenance, and replace the uninterruptable power supply (UPS). Blower #2 was offline for a six-day period in late August 2008 while the wiring was replaced to address problems with the wiring overheating. The system UPS malfunctioned in September 2008 and the system was unable to be started for a 2-day period; the UPS was replaced under manufacturer warranty. Quarterly laboratory samples were collected from SVE wells and system influent on 17 October 2008. The GAC treatment system remains offline due to low volatile organic compound (VOC) concentrations which are below Memphis Shelby County Health Department (MSCHD) permit limits.

System flow rates and vacuum measurements are shown on Table 1. Flow rates at individual wells are measured by a vane-type meters at the piping manifold. System flow rates are

January 2009

measured by a mass-flow meter. The system is currently operated with all SVE wells in the 100% open position. Individual well flow rates during the reporting period varied from less than 20 to 180 actual cubic feet per minute (acfm) with both blowers operating and are similar to previous readings. The lower flow rates and higher vacuums at SVE-A and SVE-G are attributed to these wells being screened in tighter formations than other SVE wells. Combined flow from all SVE wells was approximately 750 standard cubic feet per minute (scfm) at 5.8 inches of mercury (in. Hg.) with both blowers operating.

Thermal SVE operations in the overlying loess affected fluvial SVE operations during the reporting period through increased influent air stream temperatures and an increase in condensate generation from approximately 50 gallons per day before TSVE operations to over 500 gallons per day during the reporting period. While most of the extracted water was collected in the system's air/water separator, additional water condensed on the discharge side of the blowers and heat exchangers. An improvised air/water separator was added in September as a temporary measure.

The increase in condensate flow rates resulted in erratic system air flow rates and vacuum as recorded by the system's air/mass meter and pressure transmitter. Measured higher flow rates and vacuums noted on Table 1 are due to slugs of water in the SVE lines being pulled through the system.

Vacuum measurements collected at vapor monitoring points (VMPs) during the reporting period are shown on Table 2. Measurements continue to indicate vacuum influence at distances greater than 80 feet from all SVE wells. Positive pressure was recorded at VMP-2B in September and October, apparently due to steam generation from the thermal SVE system. VMP-2B is a shallow well located in area with increased soil moisture due to standing water on the adjacent railroad property.

PID FIELD MEASUREMENTS

VOC concentrations are estimated through field measurements at individual SVE wells, system influent, and VMPs with a MiniRae 2000 (10.6 eV lamp) PID. PID measurements are made by drawing vapor into a tedlar bag using a sampling pump.

PID measurements from SVE wells and system influent are shown on Table 3. System influent PID measurements ranged from 15.5 to 129 parts per million (ppm) during the reporting period. Increases in PID measurements at several SVE wells (SVE-B, -C, -D, and -G) and the system influent since early June 2008 are attributed to thermal SVE operations; soil heating for the thermal SVE began on 27 May 2008. PID readings showed little variation at SVE-E and -F since the onset of thermal SVE operations. PID measurements at other wells peaked in September and October 2008 and have decreased since. This coincides with the approximate end of thermal SVE operations in selected treatment areas of Dunn Field. The trend in PID measurements at SVE wells are shown on Figure 2.

Quarterly PID measurements at VMPs were collected on 17 October 2008. The SVE system is shutdown for two to four hours prior to the measurements. The VMPs are purged using the sampling pump until three consecutive PID readings are within 10%. The final PID measurements at each VMP are shown on Table 4. PID measurements remain elevated and above pre-thermal SVE operations at several VMPs including VMP-1B, -2A, -3B, -4B, -6B, -7A, -7B, and -8B. At all other VMPs, except VMP-2B and -9B, PID readings are near levels

January 2009

974

3

recorded prior to pre-thermal SVE operations, with most readings below 10 ppm. A PID reading could not be collected from VMP-2B as extracted vapor was too hot and began melting the tedlar bag. PID readings at VMP-9B continue to show a declining trend. Notable PID increases were seen at VMP-1B, -2A, and -8B. PID readings are generally higher at shallow (-B VMPs) wells than at deeper (-A wells) wells. The trend in PID measurements at -A VMPs is shown on Figure 3 and -B VMPs on Figure 4.

LABORATORY ANALYSES

Quarterly SVE Samples

Laboratory samples were collected from all SVE wells and the system influent on 17 October 2008 (4Q08 event). Samples were collected directly into Summa canisters at all sample locations. The field technician noted excess moisture had accumulated in the manifold piping; caused by the thermal SVE system. Attempts were made to remove the excess moisture prior to sampling. However, the laboratory rejected the sample at SVE-A at due to water in the Summa canister. SVE-A was re-sampled on 28 October using a modified collection technique by first drawing the vapor stream into a pipe immersed in an ice bath in an attempt to further condense the excess moisture that had accumulated in the well's manifold piping. The modified sample collection method was also used at SVE-A during the 3Q08 sample event.

Analytical results are shown on Table 5 for the influent system sample and on Table 6 for SVE well samples. Historical sample results for primary chlorinated volatile organic compound (CVOC) constituents at all SVE wells and system influent are on Table 7. Total CVOCs in the 4Q08 treatment system influent were 27,470 parts per billion by volume (ppbv). The primary CVOCs detected in the influent sample are similar to previous samples: trichloroethene (TCE) at 55%; 1,1,2,2-tetachloroethane (TeCA) at 24%; cis-1,2-dichloroethene (cDCE) at 8%, and chloroform at 8%. System influent concentration trends are plotted on Figure 5. The 4Q08 influent sample had higher CVOC concentrations, consistent with the trend in PID measurements.

4Q08 sample results show significant mass being extracted from SVE-C and SVE-D with total CVOC concentrations at these two wells at 60,590 ppbv and 84,280 ppbv, respectively. Each of the other five wells have total CVOC concentrations below 150 ppbv. For the second consecutive quarter, CVOC concentrations remain below 33 ppbv at SVE-A after being consistently above 5,000 ppbv in all events since system start up; this change is attributed to sampling collection methods described above as the majority of the CVOCs are condensing out as water during sample collection.

Additionally, the 4Q08 results showed 1,2,4-trimethylbenzene 1,3,5-trimethylbenzene, and xylene at SVE-C, SVE-D, and system influent at concentrations up to 6,900 ppmv. These compounds had not been detected above laboratory detection limits in previous sampling events. These compounds were detected in smaller concentrations in vapor sample results from the thermal SVE system and may be attributed to migration of these constituents from the loess to the fluvial sands. The primary CVOC in all SVE wells and system influent was TCE.

The trend in total laboratory VOC concentrations at all SVE wells and system influent is shown on Figure 6. Increases in total CVOC concentrations were seen at all sample locations except SVE-G. At SVE-G, total CVOC concentrations decreased to 112.4 ppbv from 3,212 ppbv in 3Q08. The drop in total CVOC concentrations at SVE-G is due to the large decline in chloroform and TCE concentrations.

Δ

FLUVIAL SVE MASS ESTIMATES

VOC concentrations in the influent sample (based on TCE, the primary constituent), system operating hours and flow rates were used to calculate the VOC mass removed from the fluvial soils. VOC concentrations used for mass calculations are shown on Table 8. Mass emission calculations are shown on Table 9.

Influent emission rates are estimated at 0.31 pounds per hour (lb/hr) over the reporting period. The MSCHD Operations Permit 01030-01PC for the Fluvial SVE system has a maximum VOC emission limit of 5.71 lb/hr. The Fluvial SVE system removed approximately 646 pounds of VOCs between the 3Q08 and 4Q08 sample events and 3,515 pounds of VOCs since system startup (Table 9).

CONCLUSIONS AND RECOMMENDATIONS

The fluvial SVE system continues to remove VOC mass from the fluvial subsurface. System uptime during the reporting period was above 94%. Approximately 3,515 pounds of VOCs have been removed from the subsurface since startup. The GAC filters remain offline with discharge directly to atmosphere based on continued emission rates well below permit limits.

4Q08 samples collected from SVE wells and system influent show that thermal SVE operations in the overlying loess formation are contributing to increases in CVOC concentrations at several wells and system influent, although more recent PID readings show that concentrations have begun to decline after peaking in September and October. PID readings also remain above pre-thermal SVE operations at several VMPs. Generally, shallower (-B wells) wells have higher PID readings than their deeper VMP counterparts (-A wells).

System influent total CVOC concentrations increased to 27,470 ppbv and are at levels not seen since August 2007. Similar increases were seen at SVE-C and SVE-D. These increases are considered due to elevated soil temperatures from thermal SVE operations mobilizing CVOCs from the loess into the upper fluvial sands. TCE continues to be the primary CVOC detected in the system influent (comprising 55% of the total concentration).

Based on the quarterly sample results and field measurements, VOC mass remains in the fluvial sands and continued SVE operations are warranted at all SVE wells. Weekly PID readings from the system influent and SVE wells will be used to monitor system emissions. The impact of the thermal SVE operations will diminish following shutdown of all heaters in November 2008. PID readings will be collected from VMPs on a quarterly basis. Laboratory samples will be collected from SVE wells and system influent in January 2009 (1Q09 event).

TABLES

- 1 System Flow Rate and Vacuum Readings
- 2 System Vacuum Readings at VMPs
- 3 PID Measurements at SVE Wells
- 4 PID Measurements at VMPs
- 5 Analytical Results Summary System Influent (4Q08 Event)
- 6 Analytical Results Summary SVE Wells (4Q08 Event)
- 7 Historical Results for Primary CVOCs
- 8 Average VOC Concentrations Used For Mass Calculations
- 9 Mass Emissions Calculations

	Ēġ				L			Τ	T		*		Ī,								<u>ן</u>	Ţ	<u>_</u>	Ţ		Ţ	Ţ	T	Ţ	Ţ											I	L	L					П]]	<u>_</u>				
System	Vacuum (in Ha) ⁽²⁾		4.8							2.3	2.7	2.7	2.8	F	3.5	346	3.5%	3.55	3.80	3.8	<u>.</u>	4	.9.4	₩ ₩							202	2.35	2.4	2.6(5.2	5.35	5,4,	5.3	5.5(20		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.50	5.4	3,76	3.46	5.45	5,45	5,96	6.14	5.9	6.05	6.37		
S	Flow rate (actim)		785	46	140		8	2		802	597	808	ŝ	503	571	56	583 583	550	562	870	8	802	8	810	8	2/0	800	700	824	200	805	615	805	600	¥98	803	794	775	88/	86/	1044		111	282	542	35	667	773	82	200	730	700	644		
Ģ	Vectum ⁽²⁾		6.0	200	2		202	;		2.0	1.5	2.5	30	30	35	35	3.5	3.5	3.5	6 .4	9	4.5	45	4.5	4.5			4.5		205	03	2.0	1.5	3.0	5.5	88	8	88	8	8	88	13	18	83	8	2	82	82	98	100	ð	100	96		
SVE-G	Flow rate (actm)		3	ç	88	34	2	2		8	8	Ş	ŝ	ŝ	R	20	ຊ	20	20	20	ន	ន	ŝ	R	R	ŝ		38			8	00 00	\$	\$0 \$0	ଛ	8	20	8	Ŗ	នុ	88	39	22	2	8	80	ş	8	50	8	33	8	S		
4	Vacuum ⁽²⁾		3.0	0.0				3		Ē	2.0	4. 1.5	50	÷1 ₩	₽. V	€ ••	0	1.0	1.0	3.6	20	3.5	3.5	3.5		200	9.0	3.6			04	2.0	0	2.5	4.0	2	70	2	2	2	25	*	1	72	58	56	74	74	78	•	0	0	٥		
SVE-F	Flow rate /		146	-+	2	2	i i i			110	8	8	ŝ	8	8	8	8	8	06	€÷	ŝ	8		2				39	155	36	18	110	10	8	160	150	160	150	3	₽ E	ž ž	35	160	160	110	110	150	160	180	0	•	0	0		
	Vacuum ^{CB}		3.0	3.6		o e	 8 0 0	-		- ≥ ⊽	2.0	1.5	2.0	<1 (t)	£ ₹	¥۱ ک	2.0	2.0	2.0	3.5	3.5	40	4.0	9.9	Die			0.0			30	2.0	2.5	3.0	4.5	64	88	65	8	89	88	3 2	2	99	52	61	99	98		0	•	0	0		
SVE.£	Flow rate (actm) Ve	X	145	145	39	35	89			9 + 10	100	8	ŝ	8	8	8	8	96	85	130	2 2 2	<u>8</u>	150	<u>8</u>				170	1 RK	38	8	120	110	120	180 1	180	180	2	180				8	190	130	130	180	8	0,6	•	-	•	•		
		lings not n	3.0	35					recorded.	2.0	2.0	5.0	5.0	2.0	2.0	20	0.0	1.5	2.0 T	3.5	3.0	2										2	0.6	2.5	3.5	62	64	2	8		84	3 2	2	88	52	52.	89		2	2	8	2	- 28		
SVE-D	Flow rate (acfm) Vec	Rea	1	<u></u>			i.		102 100	+		_				┞	┞	H	Н		┦		┦	+	+	┦	+	+	╀	+	┞	╞							-	╡	╀		┞				60				-		_	of 2	
H				╉	╉	╀	╉		┢				-		┝	┝	┝	Н			+	+	+	╉	+	+	+	+	╞	┢	┡		ŀ	H	+	_	Η	-	+	╇	╀	╀		L	H	Η	H		_		┥			Page 1 of 2	
SVE-C	e Vacuum ⁽²⁾		2			- -	4 (n)	ĺ		7	₹ 	V	v	v	v	-1 tr	÷	Ť	4	č) 									Ē	Ē	1,0	1 2.1	¥	Ŧ	4.(8				1	1	78 	50	4	2	2	68	2	8	2	99		
	Flow rate (actm)		69	<u></u>			2			Ê	ŝ	5 6	\$	₽	5 8	8	8	8	8	2 7	2	8			3		3	192	i i	202	ŝ	÷	150	011	2 8	1 80	180	6			28	ŝÊ	190	190	150	150	8	ŝ	200	8	8	ŝ	₽		
SVE-B	Vacuum ^{r2}		3.0	0.0	22	2 5	35			20	2.0	2.0	2.0	2.0	2,0	2.0	2,0	2.0	1.0	3,5	00	40	0,5		, , ,		0.0	37	40	40	4	2.0	1.5	2,5	5.0	72	80	2 <u>8</u>	9		0	2	82	6/	80	80	8	62	82	•	•	-	0		
ß	Flow rate (ecfm)		150	1	145	145	34			8	10	100	10	8	1 8	8	95	8	85	130	<u>8</u>	8	8	2	2	2	34	29	140	32	3	9	110	120	160 1	150	160 1	12	2		24	C BI	8	180	130	140	170	8	190	•	•	-	•		
4	Vecuum ⁽²⁾		5.0	5.0	, u	5.4				3.0	3.0	3.0	3.2	3.5	4.0	4	4.0	4.0	4.0	4.6	- -	50	2	0	2	0.0 U	0.0	50		50	5.0	2.5	2.0	3.0	6,0	ž	8	8	3	3	8 8	36	96	81	8	8	92	8	98	96	8	8	r		
8VE-A	Flow rate (ecfm)		8	88	38	36	38			2	0 1	ឧ	ខ	ą	8	8	8	30	94	3	ន	8	8	88	38	24	88	38	202	38	8	8	8	ន	33	2	۶	8	3	8	8 5	2	90	80	70	8	2	8	8	120	睅	8	8		
	Number of Blowers in F Operation	H	2	710		+	<u> </u>			-		+	┝╴	+	F	-	-	+ +		~		2						-	1	+				+	7	7	2	~	~		-	-	2	2	H		2	2	2	2	~	7			
				+		┞	Ļ		╡												4	+	-	┥		╀	╞	1.	Ļ				Ц						┦			ļ					-	_		_					
	Date/Time of Recording	7/25/2007 16:00	07 07 45	07 11 30	07 15 10	07 10 50	17 13 46		00.21 /002/5/9	06 13 00	07 12 30	07 12.00	8/20/2007 07:34	07 07.30	8/22/2007 07:45	07 08.30	07 06:58	00-60-20	07 06:55	02 08:00	08:30	02-80 20	0/ 13.00	0/ 00:10		14.02	12:32 10	07 08:45	07 11 55	07 07 50	12:05	07 15 20	07 12:10	07 07 40	07 08 40	00 00 21	07 07 40	07 07 50				06-70 80	IB 08-45	00:00 90	08 09:00	08 07 15	08 08:15	8 07-15	3/14/2008 09:00	3/20/08 16:15 ⁽⁷⁾	3/27/2008 7:15"	6-100 -2-00	8 15:00 ⁽⁷		
	Rect	7/25/20	7/27/20	1/28/20	10001	701100	8/1/200		0/2/2/0	B/15/20	8/16/20	8/17/20	8/20/20	8/21/20	8/22/20	8/23/20	8/27/20	8/28/20	8/29/20	8/31/20	9/4/200	9/5/200	AV12UT	07/11/8	121111	N12/21/2	12/12/8	10/5/20	1011100	10/18/20	10/26/20	11/1/20	11/8/20	11/15/20	11/21/20	11/28/200	12/8/20	12/21/20	TIRZIZ	1141200	111700	12420	2/1/200	2/8/200	2/15/20	2122/20	2/28/2008 08:15	3/6/200	3/14/20	3/20/08	3/27/200	4/3/2008 7:00 ^{1/3}	4/10/200		

SYSTEM FLOW RATE AND VACUUM READINGS FLUVIAL SOIL VAPOR EXTRACTION SYSTEM - OPERATIONS SUMMARY #8 DUNN FIELD SOURCE AREAS REMEDIAL ACTION Defense Depot Memphia, Tennessoe TABLE 1

	E	8	Π					Π	Π					Π							Π	ľ T	m				Π							
System	Vacuum	(in. Hg.)	4.84	5.16	5.08	5.01	5.00	5.00	5.03	4,82	4.95	5.01	5.22	5.20	5.28	5,32	5.38	5.30	5.27	5.30	5.37	5.34	2.17	3,64	3.53	3.68	5.97	6,05	5.89	6.00	6.09	5.90	6.11	
8ya	Flow rate	(actm)	821	784	800	780	775	775	778	765	765	745	781	744	0+2	724	731	734	719	705	723	711	560	875 ⁽⁹⁾	875 ⁽⁴⁾	875 ⁽⁰⁾	662	846	800	848	1000 ⁽¹⁰⁾	1049 ⁽¹⁰⁾	168	
9		Vacuum ⁽²⁾	82	96	88	88	88	86	88	87	88	88	90	96	82	92	94	92	94	94	98	94	42	62	8	8	>100	>100	>100	>100	~100	>100	×100	
SVE-G	Flow rate	(actm)	9	20	20	ន	20	80	70	8	30	40	20	40	20	20	20	20	20	20	20	30	20	20	20	<20	20	50	60	50	50	50	8	
SVE-F		Vacuum ⁽²⁾	60	98	64	64	2	2	9	65	66	68	70	72	72	74	76	76	76	76	76	76	38	55	56	88	98 98	98	87	88	86	84	8	
5VI	Flow rate		170	160	170	160	160	170	170	160	160	150	150	160	150	160	150	140	140	150	150	160	80	140	110	06	150	150	150	150	150	150	150	
SVE-E		Vacuum ⁽²⁾	26	62	82	62	61	62	62	60	62	84	64	99	98	99	68	66	6 6	68	66	70	32	50	50	52	86 86	76	90	8	88	86	92	
NS	Fiow rata	(actm)	190	190	180	175	170	170	180	\$21	170	180	170	180	120	180	180	180	170	170	180	170	100	140	170	120	140	130	120	120	130	120	120	
SVE-D		Vacuum ⁽²⁾	8	62	64	62	62	62	62	62	62	64	64	84	8	\$	74	6 6	66	68	68	68	32	48	20	52	78	76	74	74	76	74	78	
1/3	Flow rate	(actm)	170	160	160	170	160	170	170	165	140	150	150	160	150	150	150	160	150	150	140	150	80	8	1 0	8	160	160	160	170	170	160	170	
SVE-C		Vacuum ⁽²⁾	58	62	62	62	62	62	62	62	62	64	58	60	62	60	62	62	62	8	70	70	32	52	54	56	06	92	94	92	94	86	63	
5VI	Flow rate	(actm)	190	190	180	100	160	180	190	N/H	180	200	190	200	8	200	200	200	190	140	140	160	120	120	110	110	180	120	120	130	120	150	4	
SVE-B		Vacuum ⁽²⁾	1-0	68	67	68	66	66	8	88	68	66	70	70	72	74	74	74	78	78	80	80	42	58	60	80	08	92	92	94	94	82	85	
INS	Flow rate			200	185	185	180	190	190	170	190	190	180	061	180	180	180	190	180	081	180	170	135	140	140	001	170	170	170	160	170	170	021	
SVE-A		Vecuum ⁽²⁾	82	88 88	98	9 8	84	62	82	83	98	85	68	68	08	08	92	92	92	92	94	92	42	66	64	48	100	×100	>100	>100	>100	>100	×18	
SVI	Flow rate	(actm)	8	8	70	80	60	20	<u>1</u> 00	20	70	70	60	8	<u>م</u>	8	60	90	8	60	04	50	20	20	8	<20	100	60	50	8	70	100	8	
	Number of Riswers in	Operation	2	2	2	2	2	2	2	2	7	0	2	2	2	2	2	2	2	2	2	2	+	2	2	2	2	2	2	2	2	2	2	
	Date/Time of Recording		4/17/2008 18.15	4/18/2009 07:15	4/24/2008 11.30	5/2/2006 07:45	5/8/2008 07:45	5/15/2008 12:30	5/22/2008 08:45	5/30/2008 08:45	6/5/2008 07:30	6/13/2008 09:26	6/19/2008 08:33	6/26/2008 08.09	7/3/2008 07:30	7/11/2008 07 20	7/16/2008 07:05	7/18/2008 09:10	7/24/2008 13:52	8/1/2008 12:16	8/7/2008 07:45	8/14/2008 09:40	B/20/2008 13.30	8/29/2008 08.42	B/4/2008 10:00	8/12/2008 09:20	8/19/2008 10:00 1	9/26/2009 07:20	10/2/2008 13:45	10/10/2008 08/37	10/17/2008 05:30	10/23/2008 09:15	10/31/2008 09:30 1	

Vacum measured at blower manifold.
 For all wells, accept SVE-C, units are in inches of water (in. H₂O) from 11/24/08 to present. For SVE-C, units are in in. H₂O from 12/21/08 to present. Otherwise, readings are in inches of mercury (in. Hg.)
 For all wells, accept SVE-C, units are in inches of water (in. H₂O) from 11/24/08 to present. For SVE-C, units are in inches of water (in. H₂O) from 11/24/08 to present. For SVE-C, units are in in. H₂O from 12/21/08 to present. Otherwise, readings are in inches of mercury (in. Hg.)
 To minimize system operation (in., the SVE system was online for taboratory sampling onto (in a state) in high are not (in. Hg.) from 11/24/08 to present. Otherwise, readings are in inches of mercury (in. Hg.)
 Vacuum gauges with a smaller spin installed on all wells but SVE-C (antipled inoperation of 0.0.30 h. Hg.)
 SVE-E damaged during other onsite remedial action activities and was offline during 314/08 inspection. No reading online (in. H₂O) and have spans of 0.0.1.7.08. SVE-B, and SVE-F, and SVE-F, and SVE-F, wate offline during 314/08 inspection. No reading collected.
 SVE-E damaged during other onsite remedial action activities and was offline during 314/08 inspection. No reading collected.
 Steate ware operated in the other ampleres. Resulting in higher system (fow rates, but lower trate). An eacing the system.
 Steate ware operated bower theorem and suppared.
 Higher examples due to water in SVE lines (from thermal SVE system) causing erratic flow rates as slugs of water are pulled through the system.
 Higher examples due to water in SVE lines (from thermal SVE system) causing erratic flow rates as slugs of water are pulled through the system.

In. Hg. = Inches of mercury in. H₂O - inches of water

0.07353 x in. H₂O = in. Hg.

974

SYSTEM VACUUM READINGS AT VMPs FLUVAL SOIL VAPOR EXTRACTION SYSTEM - OPERATIONS SUMMARY #9 OUNN FIELD SOURCE AREAS REMEDIAL ACTION Defense Depot Memphis, Tennessee TABLE 2

ł

	10/17/08	10.8	10.5	ç. ₽	ę,	8,6 8	8.9	-11.5	8.8	-10.0	8.6	8.6	7.9	-13.0	-10.0	6.7	11-	0.	Ę	8	6.6	~
	9/26/08 10	-10.8	0.17	-13.1	┝─	-10.8	10.2		2.8	-10,1	-10.2	-10.2	-11.2	-12.5	-10.1	1.0		6. 5	6.0	6.9	89	~
	┝─	┝	┝	┝	┝			\vdash	┡			-			-		╞			φ 		-
	3 B/25/08	-11.2	-11.5	-12.5	Ť	9	-11.5	0	-11.6	-10.7	-10.8	-12	-12.2	Ę	-12.9	10.4	-02	1	-7.2	φ	8 4	2
	7/16/06	-12.0	-122	-13.0	-13,2	0	-11.8	9 9	0; 0;	-12.0	-12.2	-12.7	-12.6	-13.4	-13.6	-10.0	8	-7.2	9'	0.7	-7.0	2
	6/26/08	-12.2	-12.2	-13.0	-13.4	-10.2	-11.2	0. 0	8.8	-11.6	-11,8	-12.2	-12.0	9.9	8 .4	-13.4	-13.6	8.8	-7.0	6.2	6.4	2
	5/13/08	+ =	-11.8	-11.8	-13.6	-10.0	-11.2	8.8	8 .4	-11 4	-11.6	-12.0	-12.0	-14.0	-14.4	-8.6	-8.9	ş	6.2	6.0	8.0	2
	4/17/08/41	8.8	9 .9	-6.2	<-15.0 (8)	-8,2	-9.6 9.6	-7.4	-7.2	-7.8	-7.8	-7.2	-7.2	4.2	4,2	-4,2	4	9	4.4	4.2	-4.2	2
	4/01/06/31	8.2	9 .6	97.	-7.8	-10.0	-12.0	0.9-	-8,8	-9,8	-9.4	-8.8	-8.7	6.6	-5.8	-5.6	84	6.9 9	4	5.4	-6.4	2
bebro	3/22/08	13.4	-13.6	-14.2	-15.0	-12.6	-14.6	-12.0	-11.6	-14.8	-14.8	-15.0	-15.0	-17.2	-17,6	-14.2	-12.4	-10.2	-10.2	-10.2	-10.2	2
Vacium Reading Recorded (in: H ₂ O) ⁽¹⁾	36/08	-11.4	-11.8	-12.0	-12.2	-10.8	-12,6	-10.0	8.6	-13.0	-13.0	-13.2	-13.2	-14.8	-15.0	-11.2	4	-7.2	-7.0	-7.0	-70	2
scient Re (in	2722/08	-6.0	6.0	0.7-	-7,0	8.8	0.0	-8.4	9.0 9	-8.6	-8.8 -	0. 0	-9,D	-8.4	8.6	-8.0	9 9	-2.8	3.4	-2.6	-2.4	1
ž	1/24/08	-11,6	-11.8	-12.0	-12.2	-10.8	-12.8	-10.0	- 0 .8	-13,2	-13.3	-11.0	-14,8	<-15.0 ^{^(b)}	<-15.0 ⁽⁶⁾	-11.4	-10.2	£'.2-	-7.2	7.0	-7.0	2
	1/11/08	-11.0	-11.2	-11.5	-12.4	-10.4	-12.3	. 0.8	-9.4	-12.8	-13.0	-13.2	-13.0	14.4	<-15.0 ⁽⁸⁾	-10.8	- 9.2	-9:2	-6,0	-6.3	-6.2	2
	12/8/07	-11.0	-11.0	¥11-	511-	-10.0	-12.0	0.6	-9.0	-12.4	-12.6	-13.0	-12.8	-15.0	<-15.0 ⁽⁶⁾	-11.2	. 9.0	9'2-	9'2-	-7.2	-7.0	2
	11/28/07	-9.6	-9.6	-10.0	-7.6	90	-10.8	-8.2	-7.8	-11.2	-11.4	-11.6	-11.5	-13.6	-14.2	-9.6	3.0	-6.2	-8.2	-6.0	-5.6	2
	12/17/07	-1			-2	\$	8	\$	9	-7	9	9	ę	9	-10	ę	-2	7	4	4	T	2
	8/14/07	٩		φ	7	ę	-7	-5	9	\$	Ŷ	ę	Ŧ	-10	-10	ę	4	4	Ŧ	4	4	2
	10/1/10	-7	~		\$	-5.75	<i>L</i> •	+) -	49	-1	9	4-	2	-1 (4)	-10	(t) 0	4.5	Ŧ	4	N/P	R N	~
	6/31/07	ę	9	97	5	Ŷ	-7	(+) C	٩	-7	-1	Ŷ	۴	(e) (e)	-10	φ	4	4	4	4	4	2
	8/20/07	9	9	Ŷ	0 (*)	4	\$	(+) (4	Ŷ	9	۶	Ŷ	(4) 0	8	ŝ	-2	9	3	?	9	2
	8/20/07	Ŷ	\$	9	(H)	۲	4	6) (1)	4	\$	9	Ŷ	φ	(*) 0	9	9	4	4	4	5	7	-
Distance from Closest SVE	(u) (lev	15.06	21.04	30.68	37,47	30.68	25,52	58,99	59.53	30,99	31.05	46.01	45.04	16.30	15.23	80.41	80.17	45,19	45,18	60.08	60,50	huline
Closest SVE Closest SVE	Well	SVE-A	SVEA	SVE-B	SVE-B	SVE-C	SVE-C	SVE-C	SVE-C	SVED	SVED	SVE-E	SVEE	8VE-F	SVEF	SVEF	8VE-F	SVE-G	SVE-G	SVE-G	SVE-G	Number of Blowers Online
	VMP ID ⁽²⁾	VMP-1A	VMP-1B	VMP-2A	VMP-2B	VMP-3A	VMP-3B	VMP-4A	VMP-4B	VMP-6A	VMP-58	WIP-8A ⁽⁶⁾	VMP-68 ¹⁶⁾	VMP-7A	VMP-7B	VMP-8A	VMP-88	VMP-6A	VMP-9B	VMP-10A	VMP-10B	Number

.

WR = not recorded
(1) = 0.07353 x h, H₂O = in H₂.
(2) = AUWP The wells contain 5-foot acreen lengths VMP "A" wells (e.g., VMP-1A) were constructed with a screen located near the bottom of the screen of the associated SVE well.
(2) = AUWP The wells contain 5-foot acreen lengths VMP "A" wells (e.g., VMP-1A) were constructed with a screen located near the bottom of the screen of the associated SVE well.
(3) = Rabound Event #1 occurred from \$2000 to 0A11708. SVE-B, SVE-E, were of the screen of the streed of the screen of the

in Hg. e Inches of mercury in, Hg0 = inches of weler Shaded Celts indicate SVE welt offline.

TABLE 3 PID MEASUREMENTS AT SVE WELLS FLUVIAL SOIL VAPOR EXTRACTION SYSTEM - OPERATIONS SUMMARY #8 DUNN FIELD SOURCE AREAS REMEDIAL ACTION Defense Depot Memphis, Tennessee

T					Sample	Location			·····	
	SVE-A	SVE-B	SVE-C	SVE-D	SVE-E	SVE-F	SVE-G	SVE-INF	SVE-MID	SVE-EFF
Date					PID Measure	ament (nom)	(1)	h <u>a sha da fash da an 1</u>		
7/26/2007	3863	>10000 (2)	>10000 (2)	2188	>10000 ⁽²⁾	2196	>10000 (2)	>10000 (2)	510	5.7
7/27/2007	105	1230	927	1861	1193	11.4	108	1091	3.6	0
7/28/2007	59.1	575	417	835	741	38.1	262	538	598	0.2
7/29/2007	53	432	445	667	550	31.1	205	486	554	0.1
7/30/2007	27.3	229	290	399	356	27.6	168	279	570	2.7
7/31/2007	22.7	186	246	338	285	24.6	131	242	528	72.4
8/1/2007	19.1	157	224	288	256	24.4	127	187	560	299
8/15/2007	7.5	153	210	271	234	22.6	131	152	18.1	9.4
8/16/2007	10.3	74.8	164	231	134 118	19.7 16.9	108 92.4	116 120	0 4.7	0
8/17/2007 8/20/2007	10.2 7.4	94.4 58.8	<u>140</u> 111	208 128	96.0	12.9	92.4 67.6	89.5	34.7	0.7
8/21/2007	7.4 8.5	38.5	73.8	95	112	12.5	65.1	68.0	37.9	0.6
8/22/2007	7.8	51.2	94.3	105	114	13.5	65.0	78.0	42.6	0.4
8/23/2007	5.6	37.0	84.0	86.8	99.1	12.9	63.8	74.3	74.1	0.1
8/27/2007	4.5	26.2	60.2	92.5	55.9	8.5	33.4	61.1	46.1	1.4
8/28/2007	4.4	28.3	59.8	87.4	61.3	7.4	27.5	59.1	56.1	0.6
8/29/2007	3.9	26.4	57.9	42.3	38.2	6.9	26.1	53.7	53.8	1.4
8/31/2007	5.0	29.7	55.5	67.0	43.3	0.6	32.0	60.9	62.9	11.1
9/4/2007	4.1	28.1	27.9 50.3	68.0 67.7	18.9 38.8	<u>5.8</u> 7.9	24.9 27.6	44.8 39.9	45.2 46.6	<u>19.3</u> 15.1
9/5/2007 9/7/2007	<u>3.8</u> 2.4	24.7 9.6	50.3 16.4	29.1	16.3	3.8	12.7	34.5	40.0	15.3
9/14/2007	3.0	<u>9.0</u> 16.6	23.1	44.5	25.6	<u> </u>	12.7	24.4	31.3	16.3
9/19/2007	2.4	20.4	27.1	8.2	28.8	2.9	14.5	21.3	30.7	27.4
9/28/2007	2.3	19.0	13.1	35.1	18.6	3.5	16.4	12.1	23.3	32.2
10/5/2007	2.2	21.2	30.9	32.4	17.0	3.7	13.8	20.8	27.5	29.5
10/11/2007	2.7	23.0	9.9	18.7	13.2	0.5	12.8	22.6	N/C ⁽³⁾	N/C ⁽³⁾
10/18/2007	1.3	14.0	20.3	14.8	10.3	1.8	3.5	14.3	N/C	N/C
10/25/2007	1.7	15.2	21.2	19.1	10.7	1.5	12.4	17.4	N/C	N/C
11/1/2007	2.0	14.5	24.0	21.2	1.7	4.2	15.6	17.4	N/C	N/C
11/9/2007	1.2	21.9	22.3	21.3 21.1	8.2 12.7	1.5 1.7	10.7 10.0	16 9.3	N/C N/C	N/C N/C
11/15/2007 11/21/2007	<u>1.8</u> 2.6	23.8 27.6	21.5 23.4	21.1	9.6	2.7	10.0	9.3 17.9	N/C	N/C
11/29/2007	2.0	31.1	34.1	18.7	10.9	1.7	16.2	25.7	N/C	N/C
12/6/2007	1.7	24.9	18.5	8.4	6.1	3.5	6.8	20.2	N/C	N/C
12/21/2007	5.4	46.1	31.4	14.5	6.4	0.7	12.3	28.1	N/C	N/C
12/28/2007	1.2	65.9	33.8	9.8	4.3	1.1	15.4	23.4	N/C	N/C
1/4/2008	0.9	41.6	19.1	1.5	3.2	0.3	20	22.5	N/C	N/C
1/11/2008	1.2	61.0	37.5	24.4	5.3	2.3	9.8	20	N/C	N/C
1/17/2008	7.6	27.6	3.7	6.7	1.9	8.0	7.5	18.8	N/C N/C	N/C N/C
1/24/2008 2/1/2008	1.8 0.8	67.8 48.9	10.9 13.3	2.2 4.6	2.8 2.1	0.4 1.0	7.6	26.1 20.9	N/C	N/C
2/8/2008	0.8	31.8	18.4	<u>4.0</u> 5.8	1.7	2.4	17.5	6.6	N/C	N/C
2/15/2008	0.9	17.7	5.3	3.9	1.4	0.6	12.4	15.5	N/C	N/C
2/22/2008	0.7	48.6	8.3	4.8	2.3	1.0	13.0	15.8	N/C	N/C
2/29/2008	27.3	39.2	21.5	14.4	5.6	3.1	5.4	17.9	N/C	N/C
3/6/2008	0.3	28.5	13.8	4.2	7.3	0.3	13.2	12.1	N/C	N/C
3/14/2008	13.8	37.3	22.4	16.8	N/C ⁽⁴⁾	17.1	17.5	25.8	N/C	N/C
3/20/2008 ⁽⁵⁾	0.7	N/C	26.1	0.7	N/C	N/C	0.4	10.4	N/C	N/C
3/27/2008 ⁽⁵⁾	0.0	N/C	21.6	4.0	N/C	N/C	0.0	6.2	N/C	N/C
4/3/2008 ⁽⁵⁾	9.3	N/C	15.4	5.2	N/C	N/C	8.1	10.6	N/C	N/C
4/10/2008 ⁽⁵⁾	3.1	N/C	5.7	0.9	N/C	N/C	8.2	6.2	N/C	N/C
4/18/2008	5.1	103	12.7	4.0	0.4	0.5	5.2	34.5	N/C	N/C
4/24/2008	0.4	31.7	7.2	4.8	2.5	0.6	8.7	13.5	N/C	N/C
5/2/2008	0.3	22.0	18.6	2.7	1.6	0.3	8.9	10.3	N/C	N/C
5/8/2008	0.7	27.2	9.5	3.8	1.6	0.6	11.1	9.8	N/C	N/C
5/13/2008	0.6	24.4	14	3.8	7.3	0.6	20.3 5.4	16.4 8.6	N/C N/C	N/C N/C
5/15/2008	0.5	17.8	5.1	2.4	T 1'A	1	1 0.4	0.0		

TABLE 3 PID MEASUREMENTS AT SVE WELLS FLUVIAL SOIL VAPOR EXTRACTION SYSTEM - OPERATIONS SUMMARY #8 DUNN FIELD SOURCE AREAS REMEDIAL ACTION Defense Depot Memphis, Tennessee

			÷		Sample	Location				
	SVE-A	SVE-B	SVE-C	SVE-D	SVE-E	SVE-F	SVE-G	SVE-INF	SVE-MID	SVE-EFF
Date					PID Measur	ement (ppm)	(1)			
5/22/2008	0.4	7.7	7.3	3.9	1.6	0.5	7.3	8.1	N/C	N/C
5/30/2008	0.3	7.0	7.1	1.5	1.1	0.3	1.2	3.7	N/C	N/C
6/5/2008	1.4	4.7	3.8	2.6	1.4	1.3	1.7	2.9	N/C	N/C
6/13/2008	0.6	5.6	5.6	6.5	2.3	0.7	1.3	3.6	N/C	N/C
6/19/2008	0.5	6.9	0.4	11	0.9	0.4	1.2	5.6	N/C	N/C
6/26/2008(6)	0.0	0.0	0.0	14.1	1.8	0.6	0.9	4.2	N/C	N/C
6/30/2008	0.6	9.2	14.4	22.8	5.4	0.9	1.9	11.4	N/C	N/C
7/3/2008	0.3	8.7	10.7	6.8	1.1	0.3	1.0	10.0	N/C	N/C
7/11/2008	0.3	13.9	16.5	39.9	0.9	0.7	1.8	13.7	N/C	N/C
7/16/2008	0.4	22.7	15.6	54.5	0.9	1.6	2.6	17.6	N/C	N/C
7/18/2008	0.8	25. 9	22.3	76.8	2.1	2.9	4.9	23.8	N/C	N/C
7/24/2008	1.5	29.1	15.8	70.3	5.0	1.8	7.5	22.8	N/C	N/C
8/1/2008	0.6	40.4	10.0	48.4	2.5	1.4	8.8	21.8	N/C	N/C
8/7/2008	1.5	34.0	13.4	53.5	1.8	1.3	10.0	23.9	N/C	N/C
8/14/2008	1.0	38.1	15.3	110	1.5	1.8	21.9	29.0	N/C	N/C
8/20/2008(7)	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/C	N/C
8/29/2008	56.5	88.4	16.3	111	2.8	6.7	58.9	20.6	N/C	N/C
9/4/2008	73.7	92.9	24.1	179	0.6	1.4	69.5	34.9	N/C	N/C
9/12/2008	N/R ⁽⁸⁾	80.3	33.2	114	3.3	4.6	N/R ⁽⁸⁾	23.4	N/C	N/C
9/19/2008	2.4	70.6	31.3	106	5.5	2.6	53.2	52.2	N/C	N/C
9/26/2008	2.3	93.8	26.4	159	3.4	1.9	129	76.7	N/C	N/C
10/2/2008	2.0	27.2	36.1	312	1.8	1.7	74.3	95.3	N/C	N/C
10/10/2008	1.9	21.0	34.7	54.8	3.0	2.1	25.2	33.9	N/C	N/C
10/17/2008	1.3	32.9	60.0	81.5	6.2	4.8	24.2	44.3	N/C	N/C
10/23/2008	2.1	33.7	60.6	56.4	4.7	3.4	12.2	33.6	N/C	N/C
10/31/2008	4.0	18.1	37.5	17.0	1.4	4.0	38.1	15.5	N/C	N/C

(1) = Photo Ionization Detector (PID) manufactured by RAE System (Model: MiniRAE 2000) with a 10.6 eV lamp.

(2) = Influent stream exceeded maximum range of PID meter (10,000 ppm).

(3) = PID reading not collected as treatment system was taken offline following 5 October 2007 readings.

(4) = SVE-E damaged during other onsite remedial action activities and was offline during 3/14/08 inspection. No reading collected.

(5) = Rebound Event #1 occurred from 3/20/08 to 04/17/08. SVE-B, SVE-E, and SVE-F were offline during this period.

(6) = PID readings believed to be in error due to malfunctioning PID. Readings recollected on 6/30/08.

(7) = PID readings not recorded on 08/20/08 due to inoperable meter.

(8) = Field PID reading not able to be recorded due to excess water in manifold piping.

ppm: parts per million

TABLE 4 PID MEASUREMENTS AT VMPs	FLUVIAL SOIL VAPOR EXTRACTION SYSTEM - OPERATIONS SUMMARY #8	DUNN FIELD SOURCE AREAS REMEDIAL ACTION	Defense Depot Memphis, Tennessee
-------------------------------------	--	---	----------------------------------

	1		[]																		
	10/17/2008 ⁽⁴	0.0	1123	227	́с,	6.5	793	0.5	73.9	1.1	58.8	4.1	1,429	55,3	15.5	3.7	80.5	6.1	5.8	2.8	2.7
	07/16/08 ⁽⁴⁾	1.3	2.0	0.6	713	1.8	>10,000 ⁽⁸⁾	2.3	6.0	5.0	909	2.3	2,990	3.7	55.B	4.6	16.8	4,1	2.6	3.2	2.3
	04/17/08(4)	1.3	16.0	0.5	318	0.8	43.4	1.4	6.9	8.9	7.0	0.2	112	3.6	3.8	0.7	4.4	2.7	23.1	0.7	2.2
	04/10/08 ¹⁴⁾	N/C	NC	0.5	135	N/C	NC	N/C	N/C	N/C	U/U	0.0	85,5	0.3	0.0	0.0	1.2	N/C	N/C	N/C	N/C
	04/03/08 ⁽⁴⁾	N/C	N/C	0.0	217	N/C	N/C	N/C	N/C	N/C	NC	0.0	302	0.0	0.0	0.0	19.7	N/C	N/C	N/C	N/C
PID ⁽¹⁾ Measurement (ppm)	03/20/08 ^{(4) (5)}	0.0	0.0	0.0	42.2	0.0	1.47	0.0	0.0	0.5	12.6	0.0	408	0.0	1.1	0.0	0.5	0,0	11.3	0.0	3.73
PID ⁽¹⁾ Measuri	02/22/08 ⁽⁴⁾	0.0	0.2	0.0	0.0	0.4	50.0	0.7	37.7	2,63	28.9	7.4	1,277	1.7	3.9	1.6	5.1	1.9	51.3	0.7	27.4
	01/24/08(4)	0.0	1.3	0.6	143	0.7	845	0.0	23.2	2	56.3	3,8	470	0,2	2.1	0.2	5.0	0.7	49.4	0.1	18.8
	01/11/08(4)	0.0	0.9	0.2	316	0.5	386	0.2	23.1	1.7	54.2	4.17	999	0.1	3.0	0,0	7.2	1.3	54.3	0.1	11.1
	12/8/2007 ⁽⁴⁾	1.7	0,3	0.8	22.7	1.8	619	1.4	62.2	3.5	79.2	11.5	459	1,8	3.1	0.4	33.3	1.2	126	0.3	3.8
	11/28/2007 ⁽⁴⁾	0.1	4.3	1.2	34.5	1.2	847	1.7	68.6	4.4	94.1	15.4	482	2.2	3.9	0.3	28.8	1.2	119	0.4	2.8
	8/20/2007 ⁽³⁾	4,783	3,194	1,078	>10,000 ⁽⁸⁾	103	4,508	98.2	386	1,484	82.3	989	3,320	14.6	11.7	450	80.6	2.3	84.3	2.1	27.2
Distance from Closest SVE Well	E	15.08	21.04	30,68	37.47	30.68	25.52	59.99	59.53	30.99	31.05	45.01	45.04	15.30	15.23	80.41	80.17	45.19	45.18	60.08	60.50
Closest SVE		SVE-A	SVE-A	SVE-B	SVE-B	SVE-C	SVE-C	SVE-C	SVE-C	SVE-D	SVE-D	SVE-E	SVE-E	SVE-F	SVE-F	SVE-F	SVE-F	SVE-G	SVE-G	SVE-G	SVE-G
	VMP ID ⁽²⁾	VMP-1A	VMP-1B	VMP-2A	VMP-2B	VMP-3A	VMP-3B	VMP-4A	VMP-4B	VMP-5A	VMP-5B	VMP-6A	VMP-6B	VMP-7A	VMP-7B	VMP-8A	VMP-88	VMP-9A	VMP-9B	VMP-10A	VMP-10B

(1) Photo tonization Detector (PID) manufactured by RAE Systems (Model: MiniRAE 2000) with a 10.6 eV lamp.

(2) All VMP wells contain 5-foot screen lengths. VMP "A" wells (e.g., VMP-1A) were constructed with a screen located near the bottom of the screen

of the assocated SVE well. With "B" wells (e.g., VMP-1B) were constructed with a screen located near the top of the screen of the assocated SVE well. (3) Measurements collected prior to system startup.

(4) Measurements collected while system offline. System offline for two hours prior to collection of PID readings.
(5) Measurements collected prior to shut down of SVE wells as part of rebound study.
(6) Influent stream exceeded maxium range of PID meter (10,000 ppm).
(7) PID readings unable to be collected as extract vepor was too hot and began melting the tediar bag.
N/C - Rebound Event #1 occurred from 3/20/08 to 04/17/08. PID readings only collected on VMPs assolcated with those offline weeks. No PID readings collected from N/C - Rebound Event #1 occurred from 3/20/08 to 04/17/08. PID readings only collected on VMPs assolcated with those offline weeks. No PID readings collected from the tedings only collected on VMPs assolcated with those offline weeks. VMP-1A/B, VMP-3A/B, VMP-4A/B, VMP-5A/B, VMP-9A/B, and VMP-10A/B.

ppm: parts per million

TABLE 5 ANALYTICAL RESULTS SUMMARY - SYSTEM INFLUENT (4Q08 EVENT) FLUVIAL SOIL VAPOR EXTRACTION SYSTEM - OPERATIONS SUMMARY #8 DUNN FIELD SOURCE AREAS REMEDIAL ACTION Defense Depot Memphis, Tennessee

	······································
Location	SYSTEM-SVE-INF
Sample ID	FSVE-SVEINF-4Q08
Date	10/17/2008
Event	4Q08
Analyte	ppb(v/v)
1,1,2,2-Tetrachloroethane	6500
1,1,2-Trichloroethane	66 F
1,1-Dichloroethene	63 F
1,2,4-Trimethylbenzene	540
1,3,5-Trimethylbenzene	220
Benzene	100 F
Carbon tetrachloride	24 F
Chloroform	2000
Chloromethane	100 F
cis-1,2-Dichloroethene	2200
Ethylbenzene	140
Methylene chloride	320 F B
m-Xylene & p-Xylene	520
o-Xylene	150
Tetrachloroethene	200
Toluene	57 F
Trichloroethene	15000
Trichlorofluoromethane	14 F
Total VOCs	27470

Notes:

.

Bold: Detected above RL

B: Method Blank Contamination

F: Estimate -result >MDL and <RL

<: Result is less than laboratory detection limit.

* Sum of detected analytes above reporting limit.

Units: ppb v/v: parts per billion volume per volume

TABLE 6 ANALYTICAL RESULTS SUMMARY - SVE WELLS (4008 EVENT) FLUVIAL SOIL VAPOR EXTRACTION SYSTEM - OPERATIONS SUMMARY #8 DUNN FIELD SOURCE AREAS REMEDIAL ACTION Defense Depot Memphis, Tennessee

	Т	1	1	1				٦															
SVE-G	10/17/2008	4008	ppb(v/v)		26	ç	0.77 F	2	<2	0.69 F	9.8	<5	8.6	<2	<2	8 B	<2	<2	0.91 F	0.79 F	63	ų	112
SVE-F	10/17/2008	4008	ppb(v/v)		38	\$	2	2	<2	1.1 F	8.7	<5	11	0.7 F	<2	8.2 B	2	2	1.1 F	1.1 F	70	0.27 F	136
SVE-E	10/17/2008	4008	ppb(v/v)		20	<2	<2	-2	<2	0.67 F	6.7	3.8 F	7.8	<2	<2	18 8	<2 <2	\$	0.88 F	0.67 F	66	<2	108
SVE-D	10/17/2008	4008	ppb(v/v)		29000	76 F	<250	4500	1700	110 F	70 F	<640	320 F	<250	1800	900 B	6900	1800	680	100 F	37000	<250	84280
SVE-C	10/17/2008	4008	ppb(v/v)		9400	140 F	120 F	1900	760	<260	160 F	<650	3600	140 F	1200	670 F B	4300	1200	330	79 F	38000	<260	60590
SVE-B	10/17/2008	4008	(v/v)ddq		2.8	2	2	\$	\$	0.72 F	6.9	\$	7.1	\$	8	2.5 F B	8	\$	\$	0.65 F	45	Q	60.8
SVE-A	10/28/2008	4008	(V/V) dd		6.2	<1.8	<1.8	<1.8	<1.8	0.77 F	9	<4.6	6.8	<1.8	<1.8	1.8 F B	<1.8	<1.8	3.8	0.81 F	12	0.24 F	32.8
Location	Date	Event	Units	Analyte	1,1,2,2-Tetrachioroethane	1.1.2-Trichtoroethane	11.1-Dichloroethene	1.2.4-Trimethylbenzene	1.3.5-Trimethylbenzene	Benzane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	Dichloromethane	Ethvibenzene	Methylene chloride	m-Xvlene & p-Xvlene	o-Xviene	Tetrachioroethene	Toluene	Trichloroethene	Trichloroftuoromethane	Total VOCs⁺

Notes:

Bold: Detected above RL

B: Method Blank Contamination

F: Estimate -result >MDL and <RL

<: Result is less than laboratory detection limit.

* Sum of detected analytes above reporting limit.

Units: ppb v/v: parts per billion volume per volume

TABLE 7 HISTORICAL RESULTS FOR PRIMARY CVOCs FLUVIAL SOIL VAPOR EXTRACTION SYSTEM - OPERATIONS SUMMARY #8 DUNN FIELD SOURCE AREAS REMEDIAL ACTION Defense Depot Memphis, Tennessee

		SVE-A	SVE-B	SVE-C	SVE-D	SVE-E	SVE-F	SVE-G	SVE-INF
Sample Date	Алајуте				ppl	b(v/v)			
7/25/2007	1,1,2,2-Tetrachloroethane	410	230	110000	140000	<3800	150	2600F	290000
Base 1	Chloroform	850	52	4400F	530F	<3800	32	610000	53000
	cis-1,2-Dichloroethene	10000	210	450000	10000	5500F	130	5500	220000
	Tetrachloroethene	590	16	10000	18000	5700	10	13000	19000
	Trichloroethene	38000	960B	1300000B	740000B	320000	670	260000	670000B D
	Total VOCs*	50570	1503	1876600	908000	330300	1003	925500	1261100
8/23/2007	1,1,2,2-Tetrachioroethane	13	14	23000	26000	35	12	13000	8500
Base 4	Chloroform	1600D	4.7	330F	110F	6.8F	4.2	94000	4000
	cis-1,2-Dichloroethene	210	4.1	17000	1600	28	3.8	1400	3500
	Tetrachloroethene	120	0.72	1000	1500	4.8F	0.62	2800	530
	Trichloroethene	700	17	37000	37000	540	15	27000	14000
	Total VOCs*	3400	48	80020	66920	628	41	149440	31560
9/19/2007	1,1,2,2-Tetrachloroethane	4.4F	2	1900	81	740	0.95	4000	70F
Base 5	Chloroform	7200	3.8	76F	6.3	30	4.6	22000	3100
	cis-1,2-Dichloroethene	240	4.7	2700	26	340	5.8	260	3200
	Tetrachloroethene	420	0.21	190	9.7	63	0.2	1300	<170
	Trichloroethene	1600	15	7300	370	5200	19	5900	12000
	Total VOCs*	11130	28	12340	493	6406	33	37860	19090
10/18/2007	1,1,2,2-Tetrachloroethane	14	3.3	3200	3700	3.1	2.8	1100	3100
4Q07	Chloroform	4200D	1.6	110F	35F	1.4	1.5	6200	2000
	cis-1,2-Dichloroethene	120	1.2	3300	210	1.1	1	73	1600
	Tetrachloroethene	260	0.78	340	450	0.73	0.86	390	470
· · · · ·	Trichloroethene	1100D	6	16000	4600	5.5	5.3	1500	8100
	Total VOCs*	6507	18	22840	8960	17	17	10663	15930
1/17/2008	1,1,2,2-Tetrachloroethane	730	10	410	4500	14	9.9	450	1000
1008	Chloroform	5300	16	60	38F	17	21	32000	3100
	cis-1,2-Dichloroethene	140	17	2100	140	18	22	210F	3500
	Tetrachioroethene	190	2.5	170	300	3.5	860	1100	330
	Trichloroethene	720	51	13000	3100	68	68	5500	11000
	Total VOCs*	7985	101	15680	8040	127	981	40550	19830
4/24/2008	1,1,2,2-Tetrachloroethane	76	1.5	500	4300	2.7	<0.2	9.5	1800
2Q08	Chloroform	4800	0.48	170	7 F	5.1	0.47	6.3	2200
	cis-1,2-Dichloroethene	21	1.3	2500	110	11	0.64	0.72	3100
	Tetrachloroethene	22	0.062F	180	190	2	<0.2	0.29	170
	Trichloroethene	94	2	13000	2600	120	1.1	3.5	7400
	Total VOCs*	5095.3	9.99	16350	7200	147.16	5.15	25.38	15204
7/16/2008	1,1,2,2-Tetrachloroethane	4.4	9.8	20000	14000	7.2	9.4	420	2700
3Q08	Chloroform	6.7	1.9 F	160	<240	1.6 F	1.6 F	2000	420
	cis-1,2-Dichloroethene	1.2 F	6	4000	880	5.2	5.7	47	1400
	Tetrachloroethene	1.9 F	0.55 F	59	670	0.49 F	0.46 F	27	140
	Trichloroethene	13	24	13000	28000	24	24	600	6800
	Total VOCs*	24.1	39.8	37429	43550	36.4	39.1	3212.3	11557
10/17/2008	1,1,2,2-Tetrachloroethane	5.2	2.8	9400	29000	20	38	25	6500
4Q08	Chioroform	5	5.9	160 F	70 F	6.7	8.7	9.8	2000
	cis-1,2-Dichloroethene	6.8	7.1	3500	320 F	7.8	11	8.6	2200
	Tetrachioroethene	3.8	<2	330	680	0.88 F	1.1 F	0.91 F	200
	Trichloroethene	12	45	38000	37000	55	70	63	15000
	Total VOCs*	32.8	60.8	60590	84280	107.5	135.9	112.4	27470

Notes

B: Method Blank Contamination

D: Result obtained form analysis of dilution

F: Estimate -result >MDL and <RL

N/C: Sample not collected.

<: Result is less than laboratory detection limit.

* Sum of detected analytes above reporting limit.

ppb v/v: parts per billion volume per volume

VOC: volatile organic compound

TABLE 8 AVERAGE VOC CONCENTRATIONS USED FOR MASS CALCULATIONS FLUVIAL SOIL VAPOR EXTRACTION SYSTEM - OPERATIONS SUMMARY #8 DUNN FIELD SOURCE AREAS REMEDIAL ACTION Defense Depot Memphis, Tennessee

i

PID Reading (DPDm) VOC Concentration (DPDm) VOC Effluent (Laboratory Total Emission (DPDm) VOC Effluent (DPDm) Laboratory Total (DPDw) VOC Effluent (DPDw) VOC Effluent (DPDw) <thvoc effluent<br="">(DPDw) VOC Effluent (DPDw)</thvoc>			System Influent			System Effluent	
Laboratory Total VOC Enfluent Laboratory Total Used for Mass VOC Enfluent Laboratory Total Laboratory Total VOC Enfluent Laboratory Total Laboratory Total VOC Effluent Laboratory Total (OPDW) Laboratory Total (OPDW) <thlaboratory total<br="">(OPDW) Laboratory Total (OPDW)<!--</th--><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thlaboratory>							
PID Reading (ppm) Concentration (ppm) PID Reading (ppm) VUC Entrem (ppm) NR 1,261,000 1,261,000 NR 5,82 NR 1,261,000 1,261,000 NR 5,82 >-10,000 NS 545,500 0 NS 5,82 -10,000 NS 545,500 0 0 NS 538 NS 243,000 0,1 NS 5,83 538 NS 243,000 0,1 NS 5,83 748 NS 243,000 0,1 NS 207,000 NR ⁽ⁿ⁾ 119,700 119,700 NR ⁽ⁿ⁾ 207,000 NS 74.3 31,560 31,560 0,1 42,31 NS 74.3 31,560 0,1 42,31 NS NS 74.3 31,560 0,1 42,31 NS NS 74.3 31,560 0,1 14,800 27,4 19,090 17.5 15,830 NC NC			Laboratory Total	VUC Concentration Used for Mass Emission		Laboratory Total	. VUC Concentration Used for Mass Emission
(ppm) (ppbv) (ppbv) (ppbv) NR 1,261,000 1,261,000 NR 5,82 >1091 NS 903,250 ° 5.7 NS 5,82 >1091 NS 545,500 0.7 NS 5,82 336 NS 545,500 0.7 NS 5,82 336 NS 269,000 0.2 NS 5,82 336 NS 233,000 0.1 NS 5,82 279 NR ⁽ⁿ⁾ 119,700 119,700 NR ⁽ⁿ⁾ 207,000 NR ⁽ⁿ⁾ 119,700 119,700 NR ⁽ⁿ⁾ 207,000 NR NS 109,745 ⁽ⁿ⁾ NR NS 74.3 31,560 31,560 0.1 42,31 74.3 31,560 0.1 42,31 19,090 17.5 14,800 27,4 19,090 NC 10.4 NS 31,560 0.1 42,31 21.3 14,800 27,4 19,090		PtD Reading	Concentration	Catculations ⁽¹⁾	PiD Reading	Concentration	Calculations ⁽¹⁾
NR 1,261,000 1,261,000 NS 5.82 5.82 >10,000 NS 903,250 °G 5.7 NS NS 538 NS 545,500 0 NS NS NS 538 NS 269,000 0.1 NS NS NS 279 NS 139,500 0.1 NS NS NS NR ^(h) 119,700 119,700 NR ^(h) 207,000 NS NR ^(h) 119,700 119,700 NR ^(h) 207,000 NS NR NS 134,600 2,7 NS NS 116 99,780 96,780 0,1 42,31 NS 74.3 31,560 0,1 0,1 42,31 NC 74.3 31,560 0,1 0,1 42,31 1 74.3 31,560 0,1 0,1 42,31 1 21,4 116,00 14,800 27,4 19,090 1	Sample Date	(mqq)	(ppbv)	(vdqq)	(mqq)	(nqdd)	(vdqq)
>10,000 NS 903,250 (a) 5.7 NS 545,500 0 NS NS 545,500 0 NS NS 545,500 0 NS	7/25/2007	NR	1,261,000	1,261,000	RN	5.82	5.82
1091 NS 545,500 0 NS 545,500 0.2 NS 559 NS NS 550 0.1 NS NS <th< td=""><td>7/26/2007</td><td>>10,000</td><td>SN</td><td>903,250 ⁽²⁾</td><td>5.7</td><td>NS</td><td>2.81 (2)</td></th<>	7/26/2007	>10,000	SN	903,250 ⁽²⁾	5.7	NS	2.81 (2)
538 NS 269,000 0.2 NS AS NS 486 NS 243,000 0.1 NS 243,000 NS NS 279 NS 139,500 2.7 NS NS NS NR ⁽ⁿ⁾ 119,700 NR ⁽ⁿ⁾ 119,700 NR ⁽ⁿ⁾ 207,000 NS NR NS 109,745 ⁽ⁿ⁾ NR NS 207,000 NS NR NS 109,745 ⁽ⁿ⁾ NR NS 207,000 NS 116 99,790 99,746 NR NS 30.59 NS 74.3 31,560 31,560 0.1 42.31 19,090 NS 74.3 31,560 14,800 27.4 19,090 NC NC 17.5 15,930 NS NC NC NC NC 10.4 NS 19,076 ^(N) NC NC NC NC 34.5 NS 34,500 ^(N) NC NC	7127/2007	1091	NS	545,500	0	SN	0
486 NS 243,000 0.1 NS NS 279 NS 139,500 2.7 NS NS NR ⁽⁰⁾ 119,700 119,700 NR ⁽⁰⁾ 207,000 NS NR NS 119,700 NR ⁽⁰⁾ 207,000 NS 207,000 NR NS 108,745 ⁽⁴⁾ NR NS 207,000 NS 116 99,790 99,790 99,790 0.1 42.31 NS 74.3 31,560 31,560 31,560 0.1 42.31 NS 21.3 14,800 27.4 19,090 NC NC NC 21.3 15,930 15,830 NC NC NC NC 10.4 NS 19,076 ⁽¹⁷⁾ NC NC NC NC 34.5 10,4 NS 34,500 ⁽¹⁸⁾ NC NC NC NC 34.5 15,204 15,204 NC NC NC NC NC	7/28/2007	538	NS	269,000	0.2	SN	100
278 NS 139,500 2.7 NS NS NR ⁽³⁾ 119,700 119,700 NR ⁽³⁾ 207,000 NS NR NS 008,745 ⁽⁴⁾ NR ⁽³⁾ 207,000 NS NR NS 119,700 119,700 NR ⁽³⁾ 207,000 NS NR NS 108,745 ⁽⁴⁾ NR NS 207,000 NS 116 99,790 99,790 91,600 0.1 42.31 NS 74.3 31,560 31,560 31,560 0.1 42.31 YS 74.3 31,560 31,560 0.1 42.31 YS YS 17.5 15,930 N/C N/C N/C N/C N/C 18.8 NS 19,076 ⁽⁷⁾ N/C N/C N/C N/C 10.4 NS 34,500 ⁽⁸⁾ N/C N/C N/C N/C 34.5 15,204 N/C N/C N/C N/C N/C	7/28/2007	485	NS	243,000	0.1	NS	50
NR ^(h) 119,700 119,700 119,700 119,700 NR ^(h) 207,000 NS NR NS 108,745 ^(h) NR NS NS <td< td=""><td>7/30/2007</td><td>279</td><td>SN</td><td>139,500</td><td>2.7</td><td>NS</td><td>1,350</td></td<>	7/30/2007	279	SN	139,500	2.7	NS	1,350
NR NS 108,745 ⁽⁴⁾ NR NS NS 116 99,790 99,790 0 30.59 30.59 74.3 31,560 31,560 0.1 42.31 21.3 14,800 14,800 0.1 42.31 74.3 31,560 0.1 42.31 1 71.5 15,930 15,830 N/C N/C 17.5 15,930 15,800 N/C N/C 18.8 NS 19,830 N/C N/C N/C 18.8 NS 19,076 ⁽⁷⁾ N/C N/C N/C N/C 10.4 NS 34,500 ⁽⁸⁾ N/C N/C N/C N/C N/C N/C 13.5 15,204 15,204 15,204 N/C	8/3/2007	NR ⁽³⁾	119,700	119,700	NR ⁽³⁾	207,000	207,000
116 99,780 99,780 0 30.58 74.3 31,560 31,560 0.1 42.31 21.3 14,800 14,800 27.4 19,090 17.5 15,930 15,830 N/C N/C 17.5 15,930 15,830 N/C N/C 18.8 NS 19,076 ⁽⁷⁾ N/C N/C 10.4 NS 19,076 ⁽⁷⁾ N/C N/C 34.5 NS 34,500 ⁽⁸⁾ N/C N/C 13.5 15,204 15,204 N/C N/C 13.5 15,204 15,204 N/C N/C 43.3 27,470 27,470 ⁽⁸⁾ N/C N/C	8/13/2007	NR	NS	109,745 ⁽⁴⁾	NR	NS	0(3)
74.3 31,560 31,560 0.1 42.31 21.3 14,800 14,800 27.4 19,090 17.5 15,930 15,930 15,930 N/C N/C 17.5 15,930 19,076 ⁽⁷⁾ N/C N/C N/C 18.8 NS 19,076 ⁽⁷⁾ N/C N/C N/C 10.4 NS 34,500 ⁽⁸⁾ N/C N/C N/C 34.5 NS 34,500 ⁽⁸⁾ N/C N/C N/C 13.5 15,204 15,204 N/C N/C N/C 13.5 11,557 11,557 N/C N/C N/C 15.2 NS 27,470 ⁽⁹⁾ N/C N/C N/C	8/16/2007	116	99,790	06/180	0	30.59	30.59
21.3 14,800 14,800 27.4 19,090 17.5 15,930 15,930 N/C N/C N/C 17.5 15,930 15,830 N/C N/C N/C N/C 18.8 NS 19,076(¹⁷) N/C N/C N/C N/C 10.4 NS 19,076(¹⁷) N/C N/C N/C N/C 34.5 NS 34,500 ¹⁸ N/C N/C N/C N/C 13.5 15,204 15,204 N/C N/C N/C N/C 17.6 11,557 11,557 N/C N/C N/C N/C 15.2 NS 27,470 27,470 ¹⁰ N/C N/C N/C N/C	8/23/2007	74.3	31,560	31,560	0.1	42.31	42.31
17.5 15,930 15,930 15,930 N/C <	9/19/2007	21.3	14,800	14,800	27.4	19,090	19,090
18.8 NS 19,830 NC NC NC 10.4 NS 19,076 ⁽⁷⁾ NC NC NC 34.5 NS 34,500 ⁽⁶⁾ NC NC NC 13.5 15,204 15,204 NC NC NC 13.5 11,557 11,557 NC NC NC 43.3 27,470 27,470 NC NC NC 15.2 NS 27,470 NC NC NC	10/18/2007	17.5	15,930	15,930	NC	NC	15,930 ⁽⁶⁾
10.4 NS 19,076 ⁽⁷⁾ N/C N/C N/C 34.5 NS 34,500 ⁽⁸⁾ N/C N/C N/C 13.5 15,204 15,204 N/C N/C N/C 17.6 11,557 11,557 N/C N/C N/C 44.3 27,470 27,470 N/C N/C N/C 15.2 NS 27,470 N/C N/C N/C	1/17/2008	18.8	NS	19,830	NC	NC	18,830 ⁽⁶⁾
34.5 NS 34.500 ⁽⁸⁾ N/C N/C N/C 13.5 15,204 15,204 N/C N/C N/C 17.6 11,557 11,557 N/C N/C N/C 44.3 27,470 27,470 N/C N/C N/C 15.2 NS 27,470 ⁽⁹⁾ N/C N/C N/C	3/20/2008	10.4	SN	19,076 ⁽⁷⁾	N/C	NC	19,076 ⁽⁶⁾
13.5 15.204 15.204 15.204 N/C N/C N/C 17.6 11,557 11,557 11,557 N/C N/C N/C 44.3 27,470 27,470 N/C N/C N/C N/C 15.2 NS 27,470 ⁽⁰⁾ N/C N/C N/C N/C	4/17/2005	34.5	SN	34,500 ⁽⁸⁾	NC	N/C	34,500 ⁽⁶⁾
17.6 11,557 11,557 N/C N/C N/C 44.3 27,470 27,470 N/C N/C N/C N/C 15.2 NS 27,470 ⁽⁰⁾ N/C N/C N/C N/C	4/24/2008	13.5	15,204	15,204	NC	N/C	15,204 ⁽⁶⁾
44.3 27,470 27,470 N/C N/C 15.2 NS 27,470 ⁽⁶⁾ N/C N/C	7/16/2008	17.6	11,557	11,557	NC	N/C	11,557 ⁽⁵⁾
15.2 NS 27,470 ⁽⁹⁾ NC NC	10/17/2008	44.3	27,470	27,470	N/C	N/C	27,470 ⁽⁶⁾
	10/31/2008	15.2	NS	27,470 ⁽⁹⁾	NC	NC	27,470 ⁽⁶⁾

Notes:

(1) Leboratory sample total VOC concentration used for catculation. If not sample was collected or results are not available, then concentration is half of the PID reading unless otherwise noted. PID readings more accurately reflect declining concentrations trends.

(2) Concentration is average of concentrations from 07/25/07 and 07/27/07.

(3) To minimize system operation time, the SVE system was online for laboratory sampting only.

(4) Concentration is average of concentrations from 08/03/07 and 08/16/07.

(5) Concentration estimated to be 0 ppb following carbon change out.

(6) Treatment system offline. VOC influent concentration used for mass emission calculation.

(7) Start of Rebound Event #1. No sample collected. Concentration is 96.2% of concentration from 1/17/08 and is based on mass rates from four online SVE wells prior to shutdown.

(3) End of Rebound Event #1. No sample collected. Concentration from PID readings.

(9) No laboratory sample collected. Used laboratory VOC concentration from 10/17/08.

NR: PID reading not collected

NS: Sample not collected.

N/C: Not sample collected. Treatment system offline.

N/A Not applicable.

TABLE 9 MASS EMISSIONS CALCULATIONS FLUVIAL SOIL VAPOR EXTRACTION SYSTEM - OPERATIONS SUMMARY #8 DUNN FIELD SOURCE AREAS REMEDIAL ACTION Defense Depot Memphis, Tennessee

Start Date Ford Date									101100011	
						Cumulative				;
				•	Estimated	Mass		1	VOC Mass	Cumulative
	Hours		Average	Influent	VOC Mass	Removed	Average	Effluent	Captured by	VOC Mass
	Operating	Average	Influent VOC	Emission	Removal	From Fluvial	Effluent VOC	Emission	Treatment	Captured by
	Between	Flow rate	Concentration	Rate ⁽¹⁾	During	Subsurface	Concentration	Rate ⁽²⁾	System	Treatment
	Dates	(scfm)	(vddd)	(lb/hr)	Period (lbs)	(sql)	(vddd)	(lb/hr)	(lbs)	System (lbs)
7/25/2007 7/25/2007	4	755	1,082,125	16.995	68.0	68.0	4'4	0.000	68.0	68.0
7/26/2007 7/26/2007	4	755	724,375	11.377	45.5	113.5	1.5	0.000	45.5	113.5
7/27/2007 7/27/2007	24	785	407,250	6.650	159.6	273.1	20	0.001	159.6	273.1
7/28/2007 7/28/2007	24	746	256,000	3.973	95.3	368.4	52	0.001	95.3	368.4
7/29/2007 7/29/2007	24	741	191,250	2.948	70.8	439.2	004	0.009	70.5	438.9
7/30/2007 8/2/2007	66	739	129,600	1.992	131.5	570.7	104,175	1.294	46.1	485.0
8/3/2007 8/12/2007	20	240	114,723	1.766	35.3	606.0	207,000	2.351	(11.7)	473.3 ⁽³⁾
8/13/2007 8/15/2007	39	209	104,768	1.312	51.2	657.2	15.3	0.000	51.2	51.2
8/16/2007 8/22/2007	167	596	65,675	0.814	136.0	793.1	36.5	0.000	135.9	187.1
8/23/2007 9/19/2007	640	758	23,180	0.366	233.9	1,027.1	9,566	0.111	162.7	349.8
9/19/2007 10/18/2007	669	795	15,365	0.254	177.6	1,204.7	17,510	0.290	59.5	409.3 ⁽⁴⁾
10/18/2007 1/17/2008	2,077	748	17,880	0.278	577.6	1,782.3	N/C	0.278	N/A	N/A
1/17/2008 3/20/2008	1413	738	17,517	0,269	380.0	2,162.3	NC	0.269	N/A	A/N
3/20/2008 4/17/2008	626	385 ⁽⁵⁾	19,076	0.153	95.6	2,257.9	N/C	0.153	N/A	N/A
4/17/2008 4/24/2008	145	784	24,852	0.405	58.8	2,316.7	N/C	0.405	N/A	N/A
4/24/2008 7/16/2008	1981	141	13,381	0.206	408.8	2,725.5	NC	0.206	N/A	N/A
7/16/2008 10/17/2008	2118	752	19,514	0.305	646.2	3,371.7	N/C	0.305	N/A	N/A
10/17/2008 10/31/2008	327	766	27,470	0.438	143.1	3,514.9	NC	0.438	N/A	N/A

Notes:

(1) Calculation based on TCE which is the primary constituent.

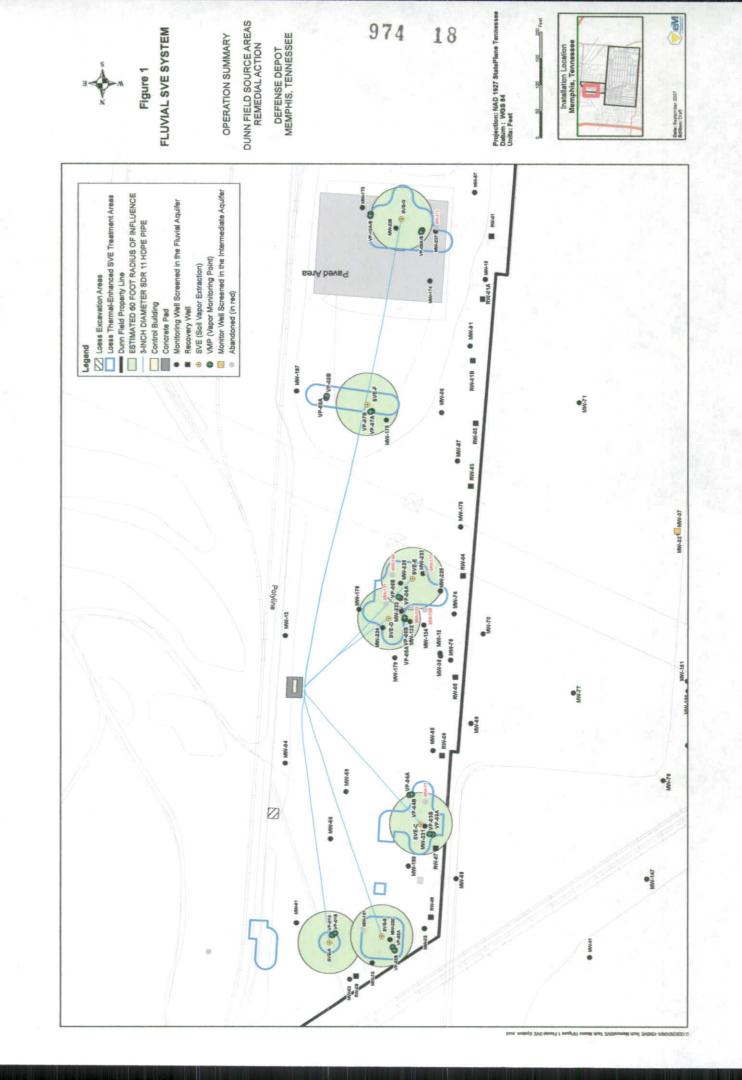
(2) Calculation based on xylene (primary constituent from sample collected 07/25), cis-1,2-DCE (primary constituent from sample collected on 8/03/07),

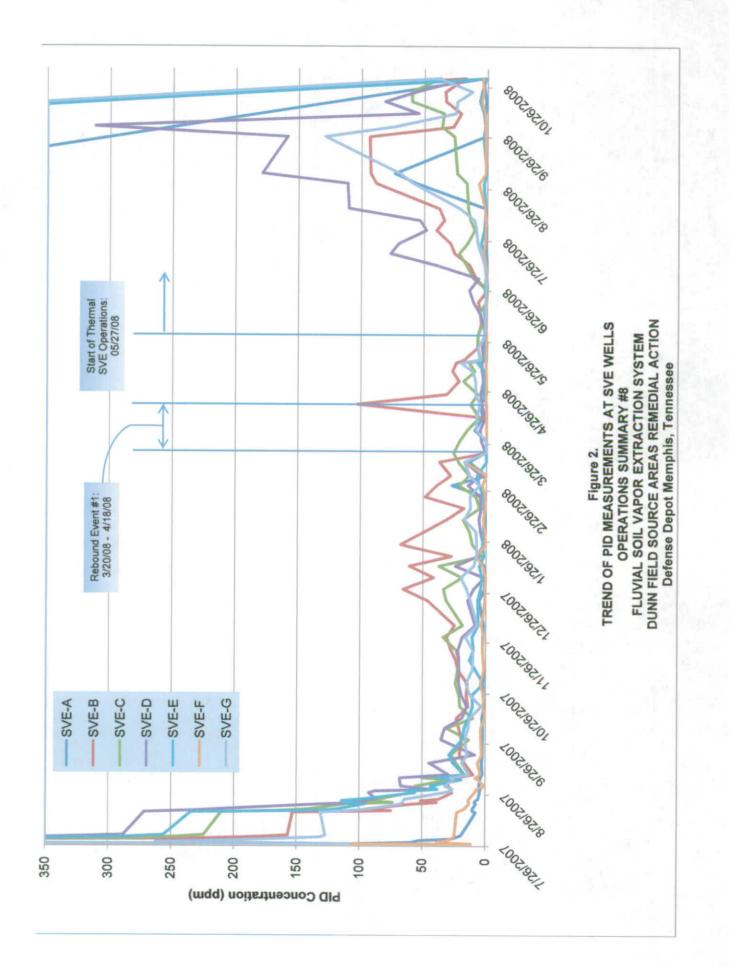
vinyl chloride (primary constituent from samples collected on 8/16 and 8/23), or TCE (primary constituent from sample collected on 9/19/07 and 10/18/07). (3) GAC replaced on 13 August 2007.

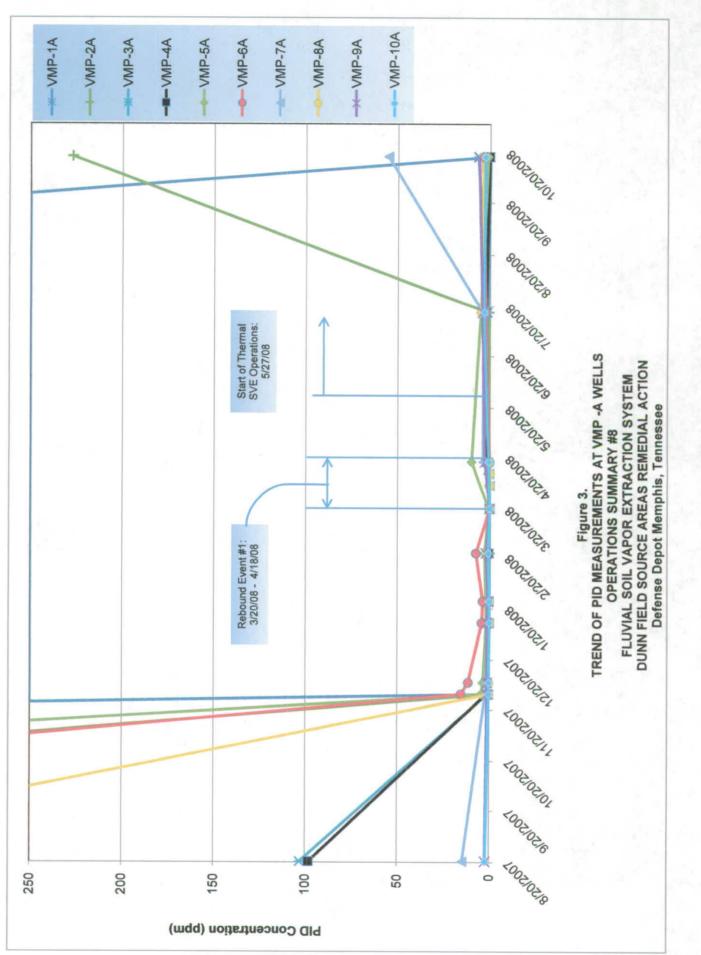
(4) GAC replaced on 26 December 2007.

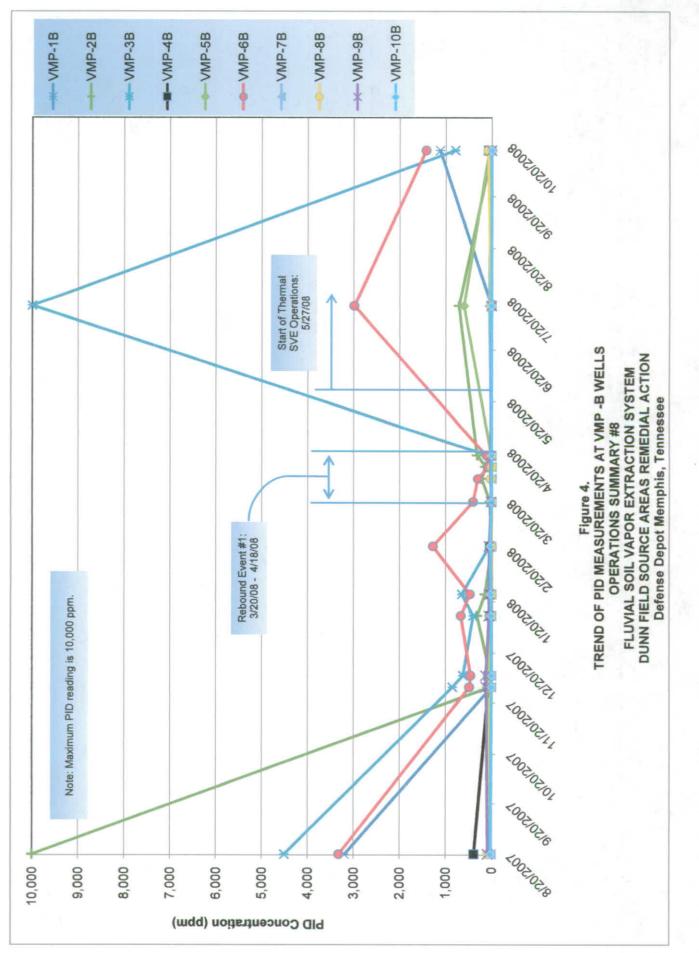
(5) Rebound Event #1 occurred between 03/20/08 and 04/17/08. SVE-B, SVE-E, and SVE-F were offline.

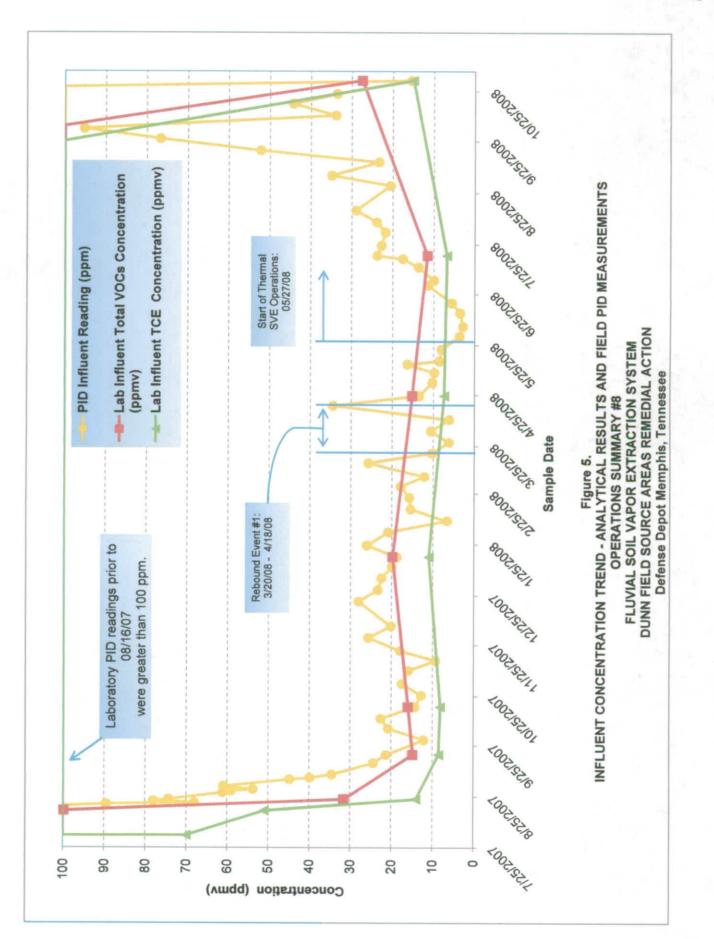
N/A: Not applicable. Treatment sytem taken offline on 10/05/07.


N/C: No sample collected. Treatment system offline. Influent emissions rates used for effluent emission rates.


FIGURES


1 Fluvial SVE System


I


- 2 Trend of PID Measurements at SVE Wells
- 3 Trend of PID Measurements at VMPs A Wells
- 4 Trend of PID Measurements at VMPs B Weils
- 5 Influent Concentration Trend Analytical Results and Field PID Measurements
- 6 Trend of Total VOC Concentrations at SVE Wells and Influent

