

È.

FINAL

Former Defense Distribution Depot Memphis, Tennessee Engineering Evaluation/Cost Analysis (EE/CA) Old Paint Shop and Maintenance Area Parcels 35 and 28

August 1999

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Contract No. DACA 87-94-D-0009, D.O. 3

Prepared by CH2M HILL

Foreword

This Engineering Evaluation/Cost Analysis (EE/CA) evaluates alternatives and selects a recommended alternative for removing chemical contamination from a former paint shop and maintenance area (Parcels 35 and 28) at the southwestern corner of former Defense Distribution Depot Memphis, Tennessee (Memphis Depot or Depot), so that the area can be turned over to the Depot Redevelopment Corporation as part of Base Realignment and Closure (BRAC) activities at the Depot.

This EE/CA is a focused feasibility study containing only the amount of information, alternatives development, and evaluation necessary to define the most suitable remedial action for Parcels 35 and 28. It has been developed and organized in general accordance with U.S. Environmental Protection Agency (EPA) 540-R-93-057, *Guidance on Conducting Non-Time-Critical Removal Actions Under CERCLA*, August 1993.

Contents

ļ

Sect	ion			Page
Abt	orevia	ations ar	nd Acronyms	v
Exe	cutiv	e Summ	ary	ES-1
1.0	Site	Site Characterization		
	1.1	Descrip	ption and Background	1-1
		1.1.1	Site Location	1-1
		1.1.2	Type of Facility and Operational Status	1-1
		1.1.3	Structures and Topography	
		1.1.4	Geology and Soil Information	1-4
		1.1.5	Surrounding Land Use and Populations	1-9
		1.1.6	Sensitive Ecosystems	
		1.1.7	Meteorology	
	1.2		, Nature, and Extent of Contamination	
		1.2.1	Sources of Contaminants	
		1.2.2	Nature of Contaminants	
		1.2.3	Extent and Magnitude of Contamination	
		1.2.4	Targets Potentially Affected by the Site	
		1.2.5	Applicable or Relevant or Appropriate Requirements	1-14
	1.3 Removal Action Potential			
		1.3.1	Previous Removal Actions	
		1.3.2	Treatability of Compounds	
		1.3.3	Equipment and Utilities at Site	
	1.4		ased Cleanup Requirements	
		1.4.1	Industrial and Residential Screening Criteria	
		1.4.2	Soil Samples Exceeding the Industrial Screening Criteria	
		1.4.3	Soil Samples Exceeding the Residential Screening Criteria	
		1.4.4	Proposed Removal Action Limits for Shallow Soil Excavations	
		1.4.5	Removal Action Limits for Other Work	1-21
2.0	Idei	ntificatio	on of Removal Action Objectives	2-1
	2.1		val Action Goal and Objectives	
	2.2	Statuto	ory Limits on Removal Actions	2-1
	2.3	Detern	nination of Removal Scope	2-1
	2.4		nination of Removal Schedule	
	2.5	Planne	ed Removal Actions	2-2
3.0	Ide		on and Analysis of Removal Action Alternatives	
	3.1		val Action Alternatives	
		3.1.1	Alternative 1: Decontaminate Existing Metal and Masonry Buildi and Associated Equipment for In-Place BRAC Transfer; Remove	<u> </u>
			Dispose of Wooden Structures, Contaminated Soil, and Debris	

Contents (continued)

Section

773

4

		3.1.2	Alternative 2: Decontaminate Existing Metal and Masonry Buildings			
			for In-Place BRAC Transfer; Decontaminate, Remove, and Dispose of			
			Associated Equipment; and Remove and Dispose of Wooden			
			Structures, Contaminated Soil, and Debris	. 3-3		
		3.1.3	Alternative 3: Decontaminate, Remove, and Dispose of All Above-			
			Grade Buildings and Associated Equipment and Remove and			
			Dispose of Contaminated Soil and Debris	. 3-4		
	3.2	Evaluat	tion Criteria	. 3-5		
		3.2.1	Effectiveness			
		3.2.2	Implementatibility			
		3.2.3	Cost	. 3-7		
4.0	Com	parative	e Analysis of Removal Action Alternatives	. 4-1		
	4.1		l of Comparison			
	4.2	4.2 Comparison of Alternatives4.3 Summary				
	4.3					
5.0	Recommended Removal Alternative5-1					
6.0	References6-1					

Appendix:	Cost	Estimate
-----------	------	----------

Alternative 1 Estimate Alternative 2 Estimate Alternative 3 Estimate

Tables (Tables are at the end of each section.)

- 1-1 Detected Concentrations at Surface Soil Sampling Locations in Parcels 35 and 28
- 1-2 Underground Storage Tank Cleanup Standards for Soil
- 1-3 Detected RCRA TCLP Concentrations
- 1-4 Industrial and Residential Screening Criteria
- 1-5 Sample Locations Exceeding Industrial Screening Criteria
- 1-6 Sample Locations Exceeding Residential Screening Criteria
- 3-1 Initial Evaluation of Alternatives with Effectiveness Criterion
- 3-2 Initial Evaluation of Alternatives with Implementability Criterion
- 3-3 Initial Evaluation of Alternatives with Cost Criterion
- 4-1 Final Comparison of Alternatives

Figures (Figures are at the end of each section.)

- 1-1 Depot Location in Memphis Metropolitan Area
- 1-2 Development Around Memphis Depot
- 1-3 Operable Unit Locations
- 1-4 OU-2 Site Locations
- 1-5 Site Configuration
- 1-6 General Geologic Cross Section of the Memphis Area
- 1-7 Cross Section E-E', West to East
- 1-8 Potentiometric Surface Map of the Fluvial Aquifer
- 1-9 Potentiometric Elevation of the Fluvial Aquifer, November 1998
- 1-10 Sampling Locations
- 1-11 Groundwater Contamination
- 1-12 Sampling Locations Exceeding Industrial Screening Criteria
- 1-13 Sampling Locations Exceeding Residential Screening Criteria
- 1-14 Excavation Limits Shallow Soil Removal

Abbreviations and Acronyms

ACM	asbestos-containing material
ARAR	applicable or relevant or appropriate requirement
BCT	BRAC Cleanup Team
bls	below land surface
BRAC	Base Realignment and Closure
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act of 1980
DRMO	Defense Reutilization and Marketing Office
EE/CA	Engineering Evaluation/Cost Analysis
EPA	U.S. Environmental Protection Agency
HI	Hazard Index
MCACES Gold	Micro-Computer Aided Cost Estimating Software – Gold Software Copyright
MCL	maximum contaminant level
msl	mean sea level
μg/L	micrograms per liter
mg/kg	milligrams per kilogram
OSHA	Occupational Safety and Health Administration
OU	operable unit
РАН	polycyclic aromatic hydrocarbon
РСВ	polychlorinated biphenyl
POTW	publicly owned treatment works
PPE	personal protective equipment
QC	quality control
RBC	risk-based criteria
RCRA	Resource Conservation and Recovery Act
RI	remedial investigation
RI/FS	remedial investigation/feasibility study
TAL	target analyte list
TCLP	toxicity characteristics leaching procedure
TDEC	Tennessee Department of Environment and Conservation
TSCA	Toxic Substances Control Act
UST	underground storage tank
VOC	volatile organic compound

7

This Engineering Evaluation/Cost Analysis (EE/CA) evaluates alternatives and selects a recommended alternative for removing chemical contamination from a former paint shop and maintenance area at the southwestern corner of the former Defense Distribution Depot Memphis, Tennessee (Memphis Depot or Depot), so that the area can be turned over to the Depot Redevelopment Corporation as part of Base Realignment and Closure (BRAC) activities at the Depot.

The Memphis Depot is a former Defense Department supply depot located in a mixed residential, commercial, and industrial area in central Memphis approximately 1 mile northwest of the Memphis International Airport. (See Figure 1-1 that shows the location of the Depot within Memphis.) The depot received, warehoused, and distributed supplies to all U.S. military services and some civil agencies located primarily in the southeastern United States, Puerto Rico, and Panama. The facility operated from its construction during World War II until its closure in 1997.

The Depot Redevelopment Corporation has expressed interest in acquiring the former paint shop and maintenance area, referred to as Parcels 35 and 28, under BRAC. (See Figure 1-5 that shows Parcels 35 and 28 with the location of associated facilities, surfacing, and security fence.) Memphis Depot personnel indicate that the Depot Redevelopment Corporation currently plans to develop the area for industrial purposes. Parcels 35 and 28 consist of the following facilities:

- Building 1084 A former maintenance shop, which was also used over time as a wood shop and pesticide storage area;
- Building 1085 A concrete slab from a former grease rack;
- Building 1086 An industrial building formerly used as a preparation area, paint shop, and storage area;
- Building 1087 An industrial building formerly used as a large-vehicle paint shop;

EXECUTIVE SUMMARY

8

- Building 1089 A partially enclosed warehouse where some sandblasting occurred; and
- Buildings 1090 and 1091 Small Quonset huts formerly used to store paint and other supplies for paint shop operations.

These facilities are located within the fenced industrial area of the Memphis Depot. With the exception of some concrete driveways in the vicinity of Buildings 1086, 1087, and 1088, most of the surface area in Parcels 35 and 28 are gravel. Outside the facility fence is a grassed utility corridor bounded by city streets. (See Figure 1-10 for sampling locations.)

Surface soil samples indicate that surface soil (zero to 12 inches in depth) within the fenced industrial part of Parcels 35 and 28 contains a variety of contaminants associated with the former functions of the area. The detected concentrations were distributed throughout the parcels and were not concentrated in any particular area. In general, the most frequently detected constituents were metals, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), phthalates, and pesticides.

Concentrations of PAHs and lead were detected in samples along Perry Road, within the grassed utility corridor outside the perimeter fence. The locations of the detected PAHs and lead suggest that they may be associated with traffic along Perry Road, and not the industrial operations within the industrial area. PAHs and lead are common constituents of exhaust gases from motor vehicles and are often found in significant concentrations along public roads. It is possible, however, that the elevated concentrations of PAHs and lead along the road may still be associated with industrial activities at the Depot because concentrations of these constituents from near-road samples adjacent to paint spraying and sandblasting operations are elevated relative to other samples near the road, but farther away from these operations. Additional sampling is needed with the utility corridor to determine the source of the elevated concentrations of PAHs and lead.

Surface soil concentrations of detected constituents were evaluated relative to the industrial and residential screening criteria based on background concentrations, BRAC Cleanup Team (BCT) screening values, and the most recent (October 1998) EPA Region III risk-based criteria (RBC) corresponding to a Hazard Index (HI) of 1.0. Areas with surface soil sample

EXECUTIVE SUMMARY

9

On the basis of these evaluations, and consideration of land use and accessibility, the following actions were deemed appropriate in Parcels 35 and 28:

- Removal of contaminated surface soil with the fenced industrial area to the industrial screening criteria discussed in Subsection 1.4.1 of this report. (See Figure 1-14 for estimated limits of excavation.)
- Additional surface soil sampling at locations between the perimeter fence and Perry Road to determine if elevated concentrations of PAHs and lead are the result of paint spraying and sandblasting activities within the industrial portion of Parcels 35 and 28.
- No further action in the utility corridor if it is confirmed that elevated concentrations of PAHs and lead along Perry Road are not related to past activities within the industrial part of Parcels 35 and 28.
- Removal of surface soil within utility corridor to the residential screening criteria if it is confirmed that elevated concentrations of PAHs and lead are related to past industrial activities within the industrial part of Parcels 35 and 28.

All of the industrial buildings within the fenced industrial area contain dust and residues from their past use. Although no sampling has been done in these areas, it is anticipated that constituents will be similar to those detected in the adjacent graveled areas. Since these buildings are within a secured area with a proposed industrial use in the future, it is proposed that removals of contaminants within the buildings be done in accordance with industrial screening criteria.

Two special areas of potential contamination were also noted during the study. These include:

 Unsampled backfill from an underground storage tank removal at Building 1085 in 1989. The tank formerly contained waste oil, but also reportedly had been the possible receptor of various liquids containing petroleum hydrocarbons, pesticides, polychlorinated biphenyls, and metals. • A former gravel-filled drainage sump beneath the slab at Building 1084, which drained a former maintenance pit area. This sump is covered by the concrete slab.

It is proposed that these areas be sampled and that contaminated soil, if any, be removed using the industrial screening criteria discussed in Subsection 1.4.1 of this report.

Three removal scenarios were developed on the basis of the removal criteria discussed above. These included:

- Alternative 1 Decontaminate Existing Metal and Masonry Buildings and Associated Equipment for In-Place BRAC Transfer; Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris;
- Alternative 2 Decontaminate Existing Metal and Masonry Buildings for In-Place BRAC Transfer; Decontaminate, Remove, and Dispose of Associated Equipment; and Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris; and
- Alternative 3 Decontaminate, Remove, and Dispose of All Above-Grade Buildings and Associated Equipment and Remove and Dispose of Contaminated Soil and Debris.

Alternatives were evaluated in terms of effectiveness, implementability, cost, and the following removal action goals and objectives:

- Reduce the potential risk to long-term site users to a level deemed acceptable to U.S. Environmental Protection Agency (EPA) and Tennessee Department of Environment and Conservation (TDEC);
- Be technically appropriate and feasible to accomplish using commonly accepted construction practices;
- Minimize, to the extent possible, the volumes of materials that must be removed and landfilled offsite;
- Have a reasonable and acceptable cost;
- Be implemented in an expedited manner to meet BRAC parcel transfer and leasing schedules; and
- Involve minimal post-removal operational, maintenance, or monitoring requirements.

Table 4-1 summarizes the results of the evaluation process. All removal action alternatives can be implemented and all can meet the stated removal action goals. There is a potential for slightly greater effectiveness with Alternatives 2 and 3, but this potential requires progressively increased work scope, disposal requirements, and cost. Final selection, therefore, is essentially a function of intended use requirements of the facilities and cost.

On the basis of these evaluations, the following recommendations were made:

- Alternative 2 is recommended as the primary alternative for remediating Parcels 35 and 28. This alternative provides, at a reasonable cost, open and fully decontaminated buildings that could be used for a variety of purposes. By removing the sandblast and paint equipment, the potential for recontaminating the area by similar future operations is minimized.
- Alternative 1 should be considered if the proposed future use is similar to the past use and requires the equipment to remain in place. If Alternative 1 is selected, it is recommended that the future tenant be required to accept any future risk and costs associated with inaccessible contamination that might be located during any future equipment removals and/or any contamination associated with this future use of the area.
- Alternative 3 is not recommended. Added benefits of removing the buildings do not appear to justify the high cost of such work.

1.1 Description and Background

1.1.1 Site Location

The former Defense Distribution Depot Memphis, Tennessee (Memphis Depot or Depot) covers 642 acres of land in Memphis, Shelby County, Tennessee. Approximately 5 miles east of the Mississippi River and just northeast of the Interstate 240-Interstate 55 junction, the Depot is in the central section of Memphis approximately 4 miles from the central business district and 1 mile northwest of Memphis International Airport. Airways Boulevard borders the Depot on the east and provides primary access to the installation. Dunn Road, Ball Road, and Perry Road serve as northern, southern, and western boundaries, respectively, of the Main Installation. Figures 1-1 and 1-2 show the location of the Memphis Depot within Memphis. Figure 1-3 shows the boundaries of the Depot in relation to surrounding roads and the location of operable units within the facility.

1.1.2 Type of Facility and Operational Status

The Memphis Depot is a former Defense Department supply depot that received, warehoused, and distributed supplies common to all U.S. military services and some civil agencies located primarily in the southeastern United States, Puerto Rico, and Panama. The facility was constructed during World War II and was operated from that time until its closure in 1997.

Parcels 35 and 28 are located at the southwestern corner of Operable Unit 2 (OU-2), an industrial area of the Depot where maintenance and repair activities were undertaken. Figure 1-4 shows the configuration of OU-2, including the location of Parcels 35 and 28 and the location of suspected sites of potential contamination based on past use. Figure 1-5 shows a larger view of Parcels 35 and 28 with the location of associated facilities, surfacing, and perimeter fence.

Approximately 7.5 acres of the 12-acre area contained in Parcels 35 and 28 are located within the perimeter fence surrounding the Main Installation. This area is industrial where maintenance and repair activities were undertaken. Except for the grassed area as its southern end, this part of Parcels 35 and 28 consists of industrial building, concrete and asphalt pavements, and gravel surfacing.

The part of Parcel 35 within the Main Installation perimeter fence was primarily used as a maintenance area. Specific facilities in this parcel included:

- Building 1084 (Early Removal Site 87) This building is a former maintenance shop, which was also used over time as a wood shop and a pesticide storage area. It consists of wood-frame structure with metal and fiberglass siding on a 40-foot by 30-foot concrete slab. Its total height is about 20 feet. Drawings indicate that the building had a 3-foot-deep pit area, which drained to the subsurface by a pipe and gravel sump. The pit area has since been filled in or covered with concrete. The building has a grated inlet, which drains to the facility stormwater drainage system by a 300-foot tile drain.
- Building 1085 (Early Removal Sites 29 and 88) This building is the former location of a covered grease rack. All that remains of the structure is a 37-foot by 12-foot concrete slab and a concrete retaining wall. A 1,000-gallon underground storage tank (UST), which was used for collection and storage of waste oil, was removed in 1989. A second UST, which was part of the former hydraulic lift system in the building, was closed in-place in 1989 by filling it with sand. It contained hydraulic fluid and is reported to have had a capacity of 100 gallons.
- Building 1086 (No Further Action Site 30) This building was used as a preparation area, paint shop, and storage area. The southern end is a 120-foot by 40-foot fully enclosed masonry and metal-sided building with a paint booth, racks, and other equipment associated with its former use. The northern end is a 120-foot by 40-foot partially enclosed storage area with metal siding and roof. The entire structure is constructed over a 240-foot by 40-foot concrete slab. The total height of the building is about 29 feet.
- Building 1087 This building is the former paint shop. It consists of a metal-sided building with concrete stem walls constructed on a 144-foot by 35-foot concrete slab.
 Within the building are two large paint booths and ventilation systems associated with the painting operations. The total height of the building is about 30 feet.

- Building 1088 This building is the former sandblast facility. It consists of a 62-foot by 21-foot steel sandblast chamber and a 20-foot by 40-foot enclosed equipment room with pumps, tanks, and other equipment associated with sandblasting operations, and a covered staging area. The total height of the building is about 20 feet.
- Buildings 1090 and 1091 These buildings are small Quonset huts that were used as storage areas for paint and other supplies for paint shop operations. Each Quonset hut is located on a 40-foot by 20-foot concrete slab to store paint for painting operations. Each Quonset hut is about 10 feet high.

The portion of Parcel 28 within the industrial area was used primarily as a storage area. However, some maintenance activities may have occurred in that area.

The primary facility on Parcel 28 is Building 1089 (Remedial Investigation Site 89), a partially enclosed storage building used for material storage and a small-object sandblasting operation (two northern bays only). The building consists of a 660-foot by 60-foot concrete slab covered by a metal frame building with a sheet metal roof and sheet metal siding on the two ends and one side. The total height of the building is about 25 feet.

With the exception of some concrete driveways in the vicinity of Buildings 1086, 1087, and 1088, most of the surface area within the industrial parts of Parcels 35 and 28 is gravel. Parts of the gravel surface in the vicinity of Buildings 1087 and 1088 included Remedial Investigation Site 32 and Screening Sites 31 and 33 due to the presence of dust and sandblast debris in the gravel from sandblast and paint operations.

The remaining 4.5 acres of Parcels 35 and 28 are located outside the perimeter fence. This area is a grassed utility corridor, which provides a buffer zone between the Main Installation perimeter fence and Perry Road.

The Depot is currently under the ownership and control of the Department of Defense, Defense Logistics Agency. Parcels 35 and 25 will be transferred to the ownership of the Depot Redevelopment Corporation for reuse as an industrial area.

1.1.3 Structures and Topography

About 60 percent of the Main Installation is developed land. Most of the Main Installation's land area has been graded, paved, and built up. Some of the few remaining unpaved areas

were used for open storage of various materials and equipment. The only significant grassed and treed area is the golf course, located in OU-3.

The topography in the Main Installation is generally level. Surface elevations range from approximately 316 feet above mean sea level (msl) in the Defense Reutilization and Marketing Office (DRMO) storage yard next to Dunn Avenue to 267 feet above msl in the low area below Lake Danielson's earthen dam. The location of the DRMO Yard and Lake Danielson are shown in Figure 1-3. The topography across OU-2 is essentially level, with a geographic high in the southwestern corner. Contours on Figure 1-4 show the topography of OU-2.

1.1.4 Geology and Soil Information

1.1.4.1 Regional Geology

The area of Memphis, Tennessee, straddles two major subdivisions of the Atlantic Coastal Plain Physiographic Province. Figure 1-6 shows a general geologic cross section of the Memphis area. The Memphis Depot is situated within a major structural feature termed the Mississippi Embayment. This area is described as a youthful to mature belted coastal plain (ref. 1).

Information describing major regional geologic units has been obtained from Wells (ref. 2), Moore (ref. 3), Nyman (ref. 4), and Graham and Parks (ref. 1). The Quaternary and Tertiary strata in the Memphis area are composed of loosely consolidated deposit of marine, fluvial, fluvioglacial, and deltaic sediments. In Tennessee, unconsolidated sediments (Cretaceous through Quaternary) reach their maximum thickness at Memphis, where they range from 2,700 to 3,000 feet.

1.1.4.2 Geology at the Memphis Depot

The geology at the Memphis Depot was investigated by reviewing the existing published geologic information (ref. 5 and ref. 6) and work performed during 1990 Remedial Investigation (RI) activities by Law Environmental (ref. 7). CH2M HILL conducted additional groundwater well installations in March 1996 and again in October 1998. On the basis of the soil borings and monitoring wells installed during the 1990 RI, cross sections were developed that illustrate the postulated occurrence, attitude, and relationships of the geologic units encountered. The cross sections are generalizations, and local variations in

subsurface conditions should be expected. The strata encountered during 1990 RI activities (ref. 7) included loess, fluvial deposits, Jackson Formation/Upper Claiborne Group clays (based on interpretation by Law Engineering), and what has been interpreted to be the Memphis Sand Formation. Figure 1-7 illustrates a geologic cross section of the Depot that includes the area in this EE/CA. Monitoring wells installed in this area did not extend into the Memphis Sand Formation.

The uppermost geologic unit at or near ground surface in the area included in this EE/CA is loess (eolian deposits consisting of brown silty clay, clayey silt, and fine sandy clayey silt). Loess was encountered at all drilling locations. Its maximum thickness is reported to be about 65 feet; it thins considerably toward the east. This unit is described as a brown to yellowish low-plasticity silt or low-plasticity clay. Locally, it may contain thin, discontinuous, fine sandy layers enclosed within silts and silty clays.

Fluvial (terrace) deposits of Quaternary and possibly Pliocene age underlie the loess and were encountered at all drilling locations during the 1990 RI activities by Law Environmental (ref. 7). The unit is composed of three generalized members that can be traced through the area included in this EE/CA:

- Silty clay, silty sandy clay, or clayey sand (upper layer);
- Poorly graded (less than 5 percent silt or clay), fine- to medium-grained sand, and
- Gravelly sand.

Beneath the silty clay/sandy clay/clayey sand are layers of sand and sandy gravel. These layers may alternate. The sand layers range from poorly graded to well graded, fine- to coarse-grained, very well sorted to poorly sorted quartz grains. The lower sand layers are poorly graded and are tan to white. The sand layers show a coarsening downwards into a gravelly sand, with chert being the primary gravel constituent. These fluvial deposits range from zero to 100 feet in thickness. The thickness is highly variable because of erosional surfaces at both top and base. Locally, in the Memphis area, the fluvial deposits may be absent (ref. 1).

The Late Ecocene Jackson Formation and upper part of the Claiborne Group lie beneath the fluvial (terrace) deposits. The upper Claiborne consists of the Jackson, Cockfield, and the Cook Mountain Formations. Because of lithologic similarities, the Jackson Formation and

the Cockfield Formation cannot be reliably subdivided in the subsurface of the Memphis area. The Jackson/Cockfield Formations consist of sand, silt, clay, and lignite beds. The preserved sequence is predominantly Cockfield. The Cockfield Formation is typically composed of clay and silt in the upper part and sand in the lower part, although locally this may be reversed (ref. 6). Lignite beds, up to 10 feet in thickness, occur in the clays, silts, and sands. The base of the Cockfield Formation is faulted, and dips to the west at a rate of 10 to 40 feet per mile.

The thickness of the Jackson Formation is reported to range from zero to 150 feet (ref. 5 and ref. 6). Where the Jackson Formation is present, the Cockfield may be from 235 to 270 feet in thickness. In other places, extensive erosion caused the thickness to be highly variable.

The Cook Mountain Formation consists of clay, silt, and sand. Kingsbury and Parks (ref. 5) report a range of zero to 50 feet in the Memphis area, while Parks and Carmichael (ref. 6) report a thickness ranging from zero to 150 feet over the West Tennessee area.

Clayey soil that has been interpreted as the Jackson Formation/Upper Claiborne Group was penetrated in three soil borings and three monitoring wells. This unit is represented in the area included in this EE/CA by a distinctive stiff gray or orange low- to high-plasticity lignitic clay. This member underlies the fluvial deposits and is a regionally significant confining unit for the Memphis Sand Aquifer, which serves as the regional drinking water supply.

The Jackson Formation/Upper Claiborne Group has been observed to be continuous across the Main Installation with the possible exception of the northwest area near Dunn Field where the confining unit thins. Investigations to determine the nature of groundwater flow and quality in this area are ongoing. All wells and boreholes near Parcels 35 and 28 indicate that the clay is continuous in the southwest portion of the Main Installation.

Underlying the Jackson Formation/Upper Claiborne Group are the widespread terrace deposits of the Memphis Sand ("500-foot sand"). The Memphis Sand was deposited during the Middle Eocene when streams carried extensive quantities of sand and gravel into the Mississippi embayment area. The Memphis Sand unit is composed primarily of thick bedded, white to brown or gray, very fine-grained to gravelly, partly argillaceous, and micaceous sand. Lignitic clay beds constitute only a small percentage of total thickness. The Memphis Sand ranges from 500 to 890 feet in thickness, and the depth to the top of the Memphis Sand Aquifer in the area ranges from approximately 120 to 300 feet below land surface (bls). It is thinnest in the northeastern part of the Memphis area in northwestern Fayette County, Tennessee, and thickest near the Mississippi River in southwestern Shelby County, Tennessee. The City of Memphis obtains its drinking water from this aquifer. The base of the Memphis Sand dips to the west at a rate of 20 to 50 feet per mile.

1.1.4.3 Regional Hydrogeology

The Memphis area is located within a region that has several aquifers of local and regional importance. These aquifers are identified in descending order by their geologic names:

- Alluvial Aquifer
- Fluvial (Terrace) Aquifer
- Memphis ("500-foot") Sand Aquifer
- Fort Pillow ("1,400-foot") Sand Aquifer

The Alluvial Aquifer's distribution is limited to the channels of primary streams; therefore, it does not occur at the Depot. The Fluvial, Memphis Sand, and Fort Pillow Sand aquifers underlie the Main Installation.

1.1.4.4 The Memphis Depot Hydrogeology

Site-specific hydrogeologic conditions were investigated by physical inspection, test borings, monitoring well installation, groundwater quality monitoring, and direct measurement of *in situ* hydraulic properties during the 1990 RI activities by Law Environmental (ref. 7).

The uppermost hydrogeologic unit encountered at the Memphis Depot is the loess. While not usually a water-bearing unit, this material is of interest because it tends to limit precipitation infiltration (recharge) to significant underlying aquifers where the loess remains intact or undisturbed. Sandy zones occurring within the loess may become seasonal "perched" water-bearing zones that contain water for short periods after rainfall events. Typically, the perched zones consisted of a fine sandy layer enclosed within the loess, approximately 20 feet bls. These perched water zones are temporal and are not considered part of the Fluvial Aquifer.

19

Fluvial (terrace) deposits underlie the loess within the Main Installation. The fluvial deposits form the Depot area's shallow (water table) aquifer. The base of the fluvial deposits range in depth from 40 to 131 feet bls at the Depot. The saturated thickness within the Fluvial Aquifer varies from a few feet to about 20 feet. Recharge to this unit is primarily from the infiltration of rainfall (ref. 1). According to the water levels measured in the monitoring wells during the 1990 RI activities (ref. 7), only the base of the unit is saturated. On the basis of water level measurements taken by CH2M HILL since 1996, seasonal water levels indicate that the groundwater levels fluctuate up to several feet. The Fluvial Aquifer is not used as a drinking water source within the City of Memphis. The Memphis Sand Aquifer underlies the Fluvial Aquifer and is the primary source of drinking water for the City of Memphis.

Water level data from Memphis Depot wells were used to prepare a water table surface map (ref. 8) of the Fluvial Aquifer underlying the Depot (Figure 1-8). This figure represents an interpolation of the water level information obtained from widely spaced monitoring wells and is an interpretation of natural conditions on the date of measurement. Figure 1-9 presents the interpretation of the Fluvial Aquifer water table surface within OU-2 during November 1998.

The Jackson Formation/Upper Claiborne Group was encountered at more than half the monitoring well and soil boring locations. The unit is significant because it is a regionally important confining bed separating shallow water-bearing zones from underlying major aquifers (ref. 4). Where encountered, the elevation of the confining unit's upper surface ranges from 223 to 118 feet above msl. An investigation to evaluate the presence of the confining unit and hydraulic communication (if any) between the Fluvial Aquifer and the Memphis Sand Aquifer is planned for other RI activities (RI for OU-4). The continuity and thickness of the confining unit can be only estimated from available information.

The Memphis Sand Aquifer (also called the "500-foot sand") represents the region's most important source of water resources. The aquifer is reported to underlie the entire Memphis area. At the Memphis Depot, the elevation of the top of the Memphis Sand Aquifer is approximately 125 to 150 feet above msl. In the monitoring wells, completed in the aquifer at the Depot, the potentiometric level ranges from 143 to 146 feet above msl. Flow in the unit is directed generally westward toward the Allen Well Field, a major local pumping zone.

The Fort Pillow Sand Aquifer (also called the "1,400-foot sand") underlies the Memphis Depot and the Memphis region at great depth, on the order of 1,400 feet bls, and is reported to average some 200 feet in thickness in the vicinity of the Depot. The unit contains groundwater under strong artesian (confined) conditions. The Fort Pillow Sand Aquifer potentiometric level in the Depot area was interpolated to be on the order of 180 feet above msl in the fall of 1985 (ref. 1).

1.1.5 Surrounding Land Use and Populations

The Memphis Depot is located in south-central Memphis in an area of widely varying uses. Most of the land surrounding the Depot is intensely developed. To the north of the Depot are the rail lines of Frisco Railroad and Illinois Central Gulf Railroad. Large industrial and warehousing operations are located along the rail lines in this area. A triangular area immediately to the north of the Depot along Dunn Road also contains several industrial firms. Formerly a residential neighborhood, the area is characterized by small commercial and manufacturing uses with a few single-family residences remaining.

Airways Boulevard is the most heavily traveled thoroughfare in the vicinity and is developed with numerous small commercial establishments. Businesses along Airways Boulevard are typical of highway commercial districts. Other commercial establishments are located to the north, south, and west of the Depot. Most are small groceries or convenience stores that serve their immediate neighborhoods.

The Depot is surrounded by residential development, including single- and multiple-family residences. Numerous small church buildings and schools are located throughout the area.

1.1.6 Sensitive Ecosystems

There is no undisturbed natural habitat within the site. The land use is highly developed and industrial in nature. Little vegetation is present.

CH2M HILL has not conducted a site-specific investigation of potentially occurring protected plant or animal species; however, the disturbed land-use conditions at this site are likely to preclude the incident of protected species. A more in-depth study will be done as part of the upcoming RI at the Main Installation.

1.1.7 Meteorology

This area of Tennessee experiences a continental climate with humid, warm summers and cold winters. The Memphis area receives an annual average of 50 inches of precipitation (30-year period of record) (ref. 9). Normally, precipitation is heaviest during the winter and early spring. The net annual precipitation (derived from gross annual precipitation less evaporation and runoff), as estimated for the Memphis area, is 9 inches (ref. 9).

1.2 Source, Nature, and Extent of Contamination

1.2.1 Sources of Contaminants

The primary source of contamination in Parcels 35 and 28 is the former industrial use of the area as a maintenance and storage area. This section summarizes the uses of the various facilities and the potential sources of contamination from each.

- Building 1084 This building is reported to have been used as a maintenance shop, a wood shop, and a pesticide storage area in the past. Potential contaminants associated with these operations may include various pesticides, petroleum hydrocarbons, solvents, and metals. The Asbestos Identification Survey for the Depot (ref. 10) identified the roof flashing for Building 1084 as being asbestos-containing materials (ACMs).
- Building 1085 This building was a former grease rack with a waste oil underground storage tank (UST) and a hydraulic oil UST. The waste oil UST, which was removed in 1989, is reported to have been the possible receptor of various liquids containing petroleum hydrocarbons, pesticides, polychlorinated biphenyls (PCBs), and metals. The hydraulic oil UST, which was closed in place, contained hydraulic oil for the hydraulic lift. No records exist concerning the condition of the USTs or the presence of subsurface contamination at the time of closure.
- Buildings 1086 and 1087 These buildings were both used as spray painting facilities. Potential residues include organic constituents and metals associated with the equipment being painted. The Asbestos Identification Survey (ref. 10) identified duct insulation for the thermal system on top of Building 1087 as containing ACM. In addition, sediment sampling in the sump in Building 1086 revealed the presence of paint product remnants.

- Building 1088 This building was the sandblast facility. Possible contaminants
 associated with this operation would be expected to include metals, paint residues, and
 solvent residues from equipment being sandblasted.
- Building 1089 This building was used for the storage of various products. One product
 reported to have been stored in the past was acid materials. However, there is no record
 of the type or nature of these acid-containing materials and no evidence of acid residues
 or concrete etching from spills were noted. The two northern bays of this building
 contain the remnants of a sandblast area for small objects. Potential contaminants
 include residue from previously stored materials and metals, paint residues, or solvent
 residues from the sandblast operations.
- Buildings 1090 and 1091 These buildings were used for storing paints and other supplies for the painting operation. Potential contaminants include metals, paint residues, and solvents from spills within the area.
- Gravel Driveways Gravel driveways within the industrial area may have been
 potentially contaminated by metals, petroleum and solvent residues, or pesticide
 residues that may have been tracked, swept, or carried by drainage from the various
 operations discussed above; or, spilled from vehicles or containers being operated,
 stored, or transported in the area.

1.2.2 Nature of Contaminants

Various shallow soil-sampling activities have been performed in the gravel and grassed areas within, or adjacent to, Parcels 35 and 28. Results of the sampling indicate that the primary contaminants in the shallow soil (e.g., those up to 12 inches deep) are metals and polycyclic aromatic hydrocarbon (PAH) compounds. Specific information relative to these contaminants is discussed in the following section.

Except for sediment sampling in the sump in Building 1086, no sampling activities have been reported inside the various buildings. Visual observations within the buildings, however, indicate the presence of a heavy layer of dust and other residue on floor, wall, and equipment surfaces. This dust and residue can reasonably be expected to contain contaminants represented by the former use of the building and contaminants found in the nearby gravel areas. Since these buildings are constructed of concrete, metal, and similar materials, most contaminants should be contained in the past spill areas, dust (which is significant) in all buildings, debris, and drainage system sediment.

There is a potential that contaminated subsurface soil may be present in the vicinity of a previously covered area in Building 1084 and in the former and UST locations adjacent to the remaining slab for Building 1085. Contaminants in these areas, if present, are expected to be associated with constituents used or stored in the area.

1.2.3 Extent and Magnitude of Contamination

Approximately 60 surface soil samples have been collected at a depth of 12 inches in Parcels 35 and 28 within the fenced industrial area. Approximately 10 additional samples have been taken in the utility corridor outside the fence. Sampling locations are shown in Figure 1-10. Table 1-1 presents a list of sampling points where constituents were noted above analytical detection limits. Sixty-seven samples collected in Parcels 35 and 28 contained contaminant concentrations above their respective analytical detection limit (Table 1-1).

Surface soil samples indicate that surface soil (zero to 12 inches in depth) within the fenced industrial portion of Parcels 35 and 28 contains a variety of contaminants associated with the former functions of the area. The detected concentrations were distributed throughout the parcels and were not concentrated in any one particular area. In general, the most frequently detected constituents were metals (copper, cadmium, lead, mercury, nickel, and zinc). PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and phenanthrene) were also detected in significant quantities. In addition, the samples contained sparse detected concentrations of volatile organic compounds (VOCs) (acetone, methylene chloride, methyl ethyl ketone, toluene); phthalates (bis(2-ethylhexyl)phthalate and di-n-butylphthalate); and pesticides (p,p'-DDE, p,p'-DDT, and dieldrin).

Concentrations of PAHs and lead were detected in samples along Perry Road, within the grassed utility corridor outside the perimeter fence. The locations of the detected PAHs and lead concentrations suggest that they may be associated with traffic along Perry Road, and not the industrial operations within the industrial area. PAHs and lead are common constituents of exhaust gases from motor vehicles and are often found in significant concentrations along public roads. It is possible, however, that the elevated concentrations

of PAHs and lead along the road may still be associated with industrial activities at the Depot because concentrations of these constituents from near-road samples adjacent to paint spraying and sandblasting operations are elevated relative to other samples near the road, but farther away from these operations. Additional sampling is needed within the utility corridor to determine the source of the elevated concentrations of PAHs and lead.

Figure 1-11 shows the extent of groundwater contamination and groundwater flow directions within Parcels 35 and 28. Analytical data and flow directions are taken from the October 1998 sampling effort. The extent of contamination is determined by the distribution of total volatile organic constituents presented in the figure. VOC concentrations in groundwater exceed EPA maximum contaminant levels (MCLs) of 5 micrograms per liter $(\mu g/L)$ at offsite location PZ-04 (tetrachloroethylene at 110 $\mu g/L$) and MW-21 (tetrachloroethylene at 120 μ g/L and trichloroethylene at 31 μ g/L). Lead does not have an MCL; however, it has an action limit of 15 μ g /L at the tap. This value is exceeded at MW-22 $(22.8 \,\mu g/L)$. Flow directions have consistently been from the west and southwest towards the Main Installation as reported in 1990, 1997, and 1998 (ref. 7, 8, 11, 12). Therefore, transport of contamination to offsite receptors is limited due to the onsite flow directions of groundwater. Furthermore, there are no known uses of groundwater from the Fluvial Aquifer. Remediation of groundwater will not be considered in this Engineering Evaluation/Cost Analysis (EE/CA). Evaluation of the risks from groundwater at the Depot and the need for remedial actions, however, will be included in a remedial investigation/ feasibility study (RI/FS) report expected to be completed in January 2000.

1.2.4 Targets Potentially Affected by the Site

The expected future land use of the existing industrial areas of Parcels 35 and 28, including the grassed areas to the south and west within the perimeter fence, is industrial. Employees working within the industrial area of Parcels 35 and 28 will be the primary individuals encountering contamination within the area.

The utility corridor located outside the perimeter fence is uncontrolled and along a public road. As a result, the general public, including children, may encounter contamination located within that area.

1.2.5 Applicable or Relevant or Appropriate Requirements

The following list of applicable or relevant or appropriate requirements (ARARs) was developed based on the scope of work to be performed during the removal action:

- Contaminated soil and debris will be screened to determine if the material is characterized as a hazardous waste. Wastes will be characterized as hazardous if the appropriate analysis that determines the wastes are reactive, ignitable, corrosive, or toxic as described in the 40 CFR 261 Subpart D.
- Applicable Occupational Safety and Health Administration (OSHA) health and safety
 regulations will be followed during removal operations. Workers performing the
 removal actions will be properly trained and under appropriate medical supervision.
 Appropriate personal protective equipment (PPE) will be used and appropriate safe
 work practices will be followed.
- Asbestos-containing material will be packaged in leak-tight containers and disposed of in accordance with appropriate OSHA (40 CFR 61), EPA, state, and Memphis/Shelby County Health Department/Pollution Control Division requirements.
- Lead-based paint will be managed in accordance with appropriate OSHA, EPA, state, and Memphis/Shelby County Health Department/Pollution Control Division requirements.
- PCB-contaminated materials, if any, will be managed in accordance with the Toxic Substances Control Act (TSCA). PCB-contaminated materials that contain a PCB concentration of 50 parts per million or greater will be disposed of at a TSCA-permitted incinerator or a TSCA-permitted chemical waste landfill.
- The soil surrounding the present and former USTs will be removed to achieve the cleanup standards of the Tennessee Department of Environment and Conservation (TDEC). The TDEC cleanup levels for petroleum contamination are presented in Table 1-2. In addition, the soil will be subjected to a full scan of chemical analyses to identify other constituents that may be present. These constituents will be removed, as necessary, to achieve the cleanup standards outlined in Subsection 1.4.5.

- Water pollution control requirements of the federal Clean Water Act and National Pollutant Discharge Elimination System (NPDES), and applicable state and county requirements, will be followed.
- Applicable National Contingency Plan (NCP) requirements, including public comment period provisions, will be included as applicable.

1.3 Removal Action Potential

1.3.1 Previous Removal Actions

Known removal actions in the vicinity of Parcels 35 and 28 were limited to actions at Building 1085, the former grease rack:

- Removal of the above-grade structure hydraulic lift;
- Removal of a 1,000-gallon underground waste oil storage tank; and
- In-place closure of the underground hydraulic fluid tank for the hydraulic lift.

No information is available concerning who removed the structure or hydraulic lift at Building 1085. The exact date of removal is also unknown.

Underground storage tank records indicate that removal of the underground waste oil tank and in-place closure of the hydraulic fluid tank were done in 1989 by Memphis District, U.S. Army Corps of Engineers. No records of how the tanks were removed or closed are available. Inspection of the hydraulic tank, however, suggests that it was closed by filling it with sand, a common practice at that time. However, this has not been confirmed.

Outside of Parcels 35 and 28, the Depot recently completed a shallow soil removal action in the former base housing and the former cafeteria areas in Parcel 3 located on the Main Installation. Removal actions in the base housing area included the removal of up to 12 inches of surface soil containing the pesticide dieldrin, disposal of contaminated soil at a local industrial waste landfill, and backfill and restoration of the excavated areas. Because the restored area is to be used as a residential area, cleanup limits were based on risk-based residential screening criteria.

Removal actions at the former cafeteria area included the removal of 12 inches of PCBcontaminated soil, disposal of the soil at a local industrial waste landfill, and backfill and restoration of the excavated areas. Since the restored site is in a controlled-access area and will have a commercial application, cleanup limits were based on risk-based industrial screening criteria.

1.3.2 Treatability of Compounds

The preferred method of disposal of contaminated soil and debris from projects at the Memphis Depot has been at a local industrial waste landfill. The local industrial waste landfill, located approximately 10 miles from the Depot, is permitted to accept contaminated soil and debris that are not found to be hazardous when tested by the toxicity characteristics leaching procedure (TCLP). Use of the local industrial landfill provides significant (order of magnitude) savings on transportation and disposal costs and facilitates a more timely completion of the remediations.

On-site and off-site treatment options to landfilling may be potentially viable from a technical perspective, but the relatively small volume of soil and low-cost landfill available for removal projects at the Depot suggest that treatment options would not be a cost-effective solution. As a result, no treatment options were considered.

Several samples from Parcels 35 and 28 were collected and analyzed by the TCLP. Results of the TCLP were compared with Resource Conservation and Recovery Act (RCRA) regulatory limits for hazardous wastes. Results of detected TCLP concentrations are shown in Table 1-3. Nine locations contained detectable concentrations of RCRA TCLP contaminates, including arsenic, chromium, lead, and mercury (see Figure 1-10). None of the concentrations exceeded their respective RCRA regulatory limits for hazardous waste. This suggests that most residues from removal actions in Parcels 35 and 28 can likely be disposed of at the local industrial waste landfill.

There is a potential that small volumes of materials could be found to have characteristics of hazardous waste as defined by 40 CFR 261 Subpart C. These materials would be properly containerized, manifested, and shipped to a licensed hazardous waste landfill for disposal.

Removal actions are likely to generate contaminated water that must be appropriately treated. The local sewer authority has accepted contaminated water from past projects, provided that this water has been tested and found to be nonhazardous. Should the water be found to be hazardous, there are two possible alternatives that could be considered:

- Shipment to a RCRA treatment facility licensed to treat and dispose of water exhibiting hazardous waste characteristics;
- Pretreatment (carbon adsorption, etc.) so that it can meet the disposal requirements of the local sewer authority.

Selection of the appropriate alternative will depend on economics and acceptability of pretreatment by regulatory agencies and the local sewage authority.

1.3.3 Equipment and Utilities at Site

The Memphis Depot is currently a federal facility that is in the process of being closed and turned over to civilian agencies and companies for alternative uses. The facility has welldeveloped utilities (gas, water, and electric) within, or near, the areas being remediated. Adequate covered and uncovered space is available for staging and storing remediation equipment and materials. Work areas are within a fenced area with security provided by government-supplied security guards.

The recent removal actions, such as the surface soil removal projects at the base housing area and the cafeteria area, have been done on a task-order basis with a service contractor contracted through the Mobile District, U.S. Army Corps of Engineers. It is assumed that future removal actions will be done under a similar contracting arrangement.

1.4 Risk-Based Cleanup Requirements

Areas requiring shallow soil removal within Parcels 28 and 35 were selected on the basis of risk-based screening criteria, future use, and potential access to areas of contamination. This section describes risk-based industrial and residential screening criteria, delineation of potential remediation areas represented by each, and the use of these delineations along with other factors to select areas requiring shallow soil remediation.

1.4.1 Industrial and Residential Screening Criteria

Industrial and residential screening criteria were developed for selected constituents based on background concentrations, BRAC Cleanup Team (BCT) screening values, and the most

29

recent (October 1998) U.S. Environmental Protection Agency (EPA) Region III risk-based criteria (RBC) corresponding to a Hazard Index (HI) of 1.0. The industrial and residential screening criteria are shown in Table 1-4. If available, existing BCT screening values were used as both the industrial and residential screening criteria, except for chromium and lead, which are discussed below. If no BCT screening value existed, then the industrial screening criteria for a given contaminant equaled the greater of the EPA Region III Industrial RBC or the established background concentration. Likewise, the residential screening criteria for a given contaminant equaled the greater of the EPA Region III Residential RBC or the established background concentration. If no BCT screening value or EPA Region III RBC existed for a contaminant, then no industrial or residential screening criteria were developed for that contaminant.

The BCT screening value for chromium of 39 milligrams per kilogram (mg/kg) was significantly less than the EPA Region III RBC of 6,100 mg/kg for industrial sites and 230 mg/kg for residential sites. On the basis of this difference and the significant impact that the 39 mg/kg chromium standard would have on the volume of soil to be removed, the industrial and residential screening criteria for chromium were set to the EPA Region III RBC for industrial and residential sites, respectively.

The BCT screening value for lead was 400 mg/kg, based on the Region III residential exposure RBC. The EPA Region III RBC for lead is 1,000 mg/kg for industrial sites exposure. Therefore, evaluation of proposed soil removal quantities assuming industrial land use were based on a criteria of 1,000 mg/kg rather than the BCT criteria of 400 mg/kg.

1.4.2 Soil Samples Exceeding the Industrial Screening Criteria

Concentrations of previously collected surficial soil samples (zero to 1-foot interval) were compared to the industrial screening criteria described above. The sample locations that exceeded the industrial screening criteria are presented in Table 1-5 and shown in Figure 1-12. As shown in the table and figure, 16 sampling locations contained a contaminant concentration that exceeded the industrial screening criteria. Contaminants that exceeded the industrial screening criteria were aluminum, antimony, arsenic, benzo(a)pyrene, iron, lead, and phenanthrene. The ratio of the analytical concentration and the industrial screening criteria was calculated for each these contaminants. The analytical concentration/industrial screening criteria ratios varied from 1.03 to 6.93. The highest ratio (6.93) was observed for the benzo(a)pyrene concentration in the sample collected from SS32B. Furthermore, three of the four highest ratios (6.93, 4.32, and 3.75) were observed for benzo(a)pyrene concentrations (SS32B, SS32E, and SS31A, respectively). The sample collected from SB32A contained high ratios for antimony and lead (3.19 and 4.15, respectively), and the sample collected from C (35.2) contained a high ratio for arsenic (3.58).

Most of the sample locations that exceeded the industrial screening criteria were dispersed throughout the parcels except for the small clusters immediately east and west of Building 1087.

1.4.3 Soil Samples Exceeding the Residential Screening Criteria

The concentrations of the previously collected surficial soil samples were also compared to the residential screening criteria. The sampling locations that exceeded the residential screening criteria are presented in Table 1-6 and shown in Figure 1-13. As shown in the table and figure, 23 sampling locations contained a contaminant concentration that exceeded the residential screening criteria. Contaminants that exceeded the residential screening criteria were aluminum, antimony, arsenic, benzo(a)pyrene, total chromium, iron, lead, and phenanthrene. The ratio of the analytical concentration and the residential screening criteria was calculated for each these contaminants. The analytical concentration/residential screening criteria screening criteria ratios varied from 1.03 to 10.38. The highest ratio (10.38) was observed for the lead concentration in the sample collected from SS32A. Furthermore, six of the nine highest ratios (5.58, 10.38, 3.95, 4.58, 6.18, and 5.63) were calculated for lead concentrations (FS33C, SB32A, SS32G, SS33K, SS89H, and SS89J, respectively). High ratios (6.93, 4.32, and 3.75) were also calculated for benzo(a)pyrene concentrations (SS32B, SS32E, and SS31A, respectively). In addition, SB32A contained high ratios for antimony and total chromium (3.19 and 3.98, respectively) and C (35.3) contained a high ratio for arsenic (3.58).

The sample locations that exceeded the residential screening criteria were fairly dispersed with small clusters located immediately east, southeast, and west of Building 1087, east and west of Building 1089, and south of Building 1084. As shown in Figures 1-12 and 1-13, the estimated areas where surface soil samples exceeded the residential screening criteria generally resembled the areas where industrial screening criteria were also exceeded.

It should be noted, however, that the horizontal limits of excavation described in this section are primarily for initial design and cost estimating purposes, because the contouring around the elevated concentrations assumed a homogeneous distribution of contamination. The actual horizontal extent of surface soil excavation will be determined by confirmation sampling.

1.4.4 Proposed Removal Action Limits for Shallow Soil Excavations

Contaminants in shallow surface soil within the fenced industrial portion of Parcels 35 and 28 are consistent with industrial activities that occurred within the area, and removal of contaminated surface soil is deemed appropriate. Because the area within the perimeter fence has a proposed future use as an industrial area, and access will be limited to the general public, it is proposed that contaminated surface soil exceeding the industrial screening criteria be removed within the industrial portion of Parcels 35 and 28. Figure 1-14 shows the estimated horizontal limits of excavation based on locations of samples exceeding industrial screening criteria in Figure 1-12.

On the basis of an excavation depth of zero to 1 foot and the estimated horizontal limits shown in Figure 1-14, the volume of soil that would be removed to achieve the industrial screening criteria is estimated to be approximately 600 cubic yards. This estimate did not include soil surrounding sample location B (28.1) because aluminum and iron were the only contaminants exceeding the industrial screening criteria at this location.

It should be noted, however, that the horizontal limits of excavation described in this section are primarily for initial design and cost estimating purposes, because the contouring around the elevated concentrations assumed a homogeneous distribution of contamination. The actual extent of surface soil excavation will be determined by confirmatory sampling.

As noted in Subsection 1.2.3, elevated concentrations of lead and PAHs within the grassed utility corridor outside the perimeter fence are suspected of being from traffic fumes along Perry Road, and not from activities within Parcels 35 and 28. However, insufficient information is available to confirm that the contamination is not also related to past paint spraying and sandblasting activities in Parcels 35 and 28.

It is recommended that the following activities be taken in the utility corridor:

- Additional surface soil sampling at locations between the perimeter fence and Perry Road determine if elevated concentrations of PAHs and lead are the result of paint spraying and sandblasting activities within the industrial portion of Parcels 35 and 28.
- No further action in the utility corridor if it is confirmed that elevated concentrations of PAI Is and lead along Perry Road are not related to past activities within the industrial portion of Parcels 35 and 28.
- Removal of surface soil within the utility corridor to the residential screening criteria if it is confirmed that elevated concentrations of PAHs and lead are related to past activities within the industrial portion of Parcels 35 and 28.

1.4.5 Removal Action Limits for Other Work

Although shallow soil excavation is a primary component of the removal action, there are other components that also must be considered. These include:

- Decontamination of buildings, equipment, and slabs that will remain in-place; and
- Excavation of contaminated soil deeper than 12 inches in specific areas where past practices have led to zones of contamination (e.g., old UST at Building 1085 and old sump area at Building 1084).

Once buildings, equipment, and slabs have been decontaminated, wipe samples will be taken and analyzed to verify decontamination. Wipe sample results will be compared with the industrial screening criteria (Table 1-5) for constituents common to that building. Industrial screening criteria for surface soil is considered to be appropriate since the buildings are in a secured industrial area and the exposure pathway is similar to contact with soil in the area.

Limits of removal for excavations at Buildings 1085 and 1084 will be based on the UST Cleanup Standards for Soil (Table 1-2) and the industrial screening criteria (Table 1-5), as applicable.

773 33

Tables

WDC990270004.DOC/1/KTM/DRAFT


Table 1-1 Detected Concentrations at Surface Soil Sampling Locations in Parcels 35 and 28

StationID	SampleID	DateCollected	ParamName	AnaVolue	ProjQuar	Umic
A(28.1)	A106	10/18/96 10:17 AM	CALCIUM	104000		MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	CALCIUM	86400	Į	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	MAGNESIUM	4700		MG/KG
A(28.1)	A106	10/18/96 10:17 AM	ALUMINUM	3690		MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	ALUMINUM	2820	ļ -	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	ARSENIC	6.2		MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	ARSENIC	3.4		MG/KG
A(28.1)	A106	10/18/96 10:17 AM	BARIUM	63.1		MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	BARIUM	39.3		MG/KG
A(28.1)	A106	10/18/96 10:17 AM	BENZO(a)ANTHRACENE	0.056	ļ	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	BENZO(a)ANTHRACENE	0.053	1	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	BENZO(a)PYRENE	0.065	1	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	BENZO(a)PYRENE	0.053	_	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	BENZO(b)FLUORANTHENE	0.083		MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	BENZO(b)FLUORANTHENE	0.063		MG/KG
A(28.1)	A106	10/18/96 10:17 AM	BENZO(g,h,i)PERYLENE	0.002	L	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	BENZO(g,h,i)PERYLENE	0.072	ļ	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	BENZO(k)FLUORANTHENE	0.034		MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	BENZO(k)FLUORANTHENE	0.066		
A(28.1)	A106	10/18/96 10:17 AM	BERYLLIUM			MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM		0.16	<u> </u>	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	BERYLLIUM	0.11		MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	CADMIUM	0.7		MG/KG
A(28.1)	A106	10/18/96 10:17 AM		0.54	ļ	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	CHROMIUM, TOTAL	19.9		MG/KG
A(28.1)	A106			18.7	<u> </u>	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	CHRYSENE	0.088		MG/KG
A(28.1)	A106	10/18/96 10:17 AM	CHRYSENE	0.073		MG/KG
<u> </u>	<u> </u>	10/18/96 10:17 AM	COBALT	2.6	<u> </u>	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	COBALT	1.9		MG/KG
A(28.1)	A106	10/18/96 10:17 AM	COPPER	15.5	{	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	COPPER	13.8		MG/KG
A(28.1)	A106	10/18/96 10:17 AM	DI-n-BUTYL PHTHALATE	0.21	1	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	DI-n-BUTYL PHTHALATE	0.28	ł	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	FLUORANTHENE	0.14		MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	FLUORANTHENE	0.13	J	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	INDENO(1,2,3-c,d)PYRENE	0.068		MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	INDENO(1,2,3-c,d)PYRENE	0.048	J	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	IRON	9180	J	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	IRON	7800		MG/KG
A(28.1)	A106	10/18/96 10:17 AM	LEAD	58.8	J	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	LEAD	48.1	J	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	MAGNESIUM	3350	J	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	MANGANESE	186	J	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	MANGANESE	131	J	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	MERCURY	0.02	J	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	NICKEL	13.2	=	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	NICKEL	7.2	=	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	PHENANTHRENE	0.07	J	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	PHENANTHRENE	0.054	J	MG/KG

Detected Concentrations at Surface Soil Sampling Locations in Parcels 35 and 28

StationID	SampleiD	DateCollected	ParamName	AnaValue	Rolauan	.Umiter
A(28.1)	A106	10/18/96 10:17 AM	POTASSIUM	496	J	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	POTASSIUM	294	J	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	PYRENE	0.13	J	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	PYRENE	0.11	J	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	TOLUENE	0.001	J	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	VANADIUM	9.4	J	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	VANADIUM	7.3	J	MG/KG
A(28.1)	A106	10/18/96 10:17 AM	ZINC	185	J	MG/KG
A(28.1)	DUP9	10/18/96 10:17 AM	ZINC	184	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	CALCIUM	8940	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	ALUMINUM	2840	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	ALUMINUM	2830	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	ANTIMONY	2.5	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	ARSENIC	8.3	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	ARSENIC	7.2		MG/KG
A(35.2)	A129	10/18/96 1:41 PM	BARIUM	31.5	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	BARIUM	33.5	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	bis(2-ETHYLHEXYL) PHTHALATE	16		MG/KG
A(35.2)	A129	10/18/96 1:41 PM	CADMIUM	1.1	=	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	CADMIUM	0.95	=	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	CALCIUM	5700	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	CHROMIUM, TOTAL	27.3	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	CHROMIUM, TOTAL	27	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	COBALT	2.7	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	COBALT	2.5	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	COPPER	55.8	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	COPPER	45.9	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	DI-n-BUTYL PHTHALATE	0.17	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	IRON	7730	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	IRON	7630	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	LEAD	201	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	LEAD	144	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	MAGNESIUM	1420	<u></u>	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	MAGNESIUM	3910	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	MANGANESE	86	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	MANGANESE	81.8	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	MERCURY	0.03	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	MERCURY	0.06	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	NICKEL	4.2	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	NICKEL	3.9	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	POTASSIUM	302	J	MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	POTASSIUM	265	J	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	VANADIUM	11.1		MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	VANADIUM	10.8	<u> </u>	MG/KG
A(35.2)	A129	10/18/96 1:41 PM	ZINC	212		MG/KG
A(35.2)	DUP11	10/18/96 1:41 PM	ZINC	263		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	ANTIMONY	56.7	1	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	BENZO(a)ANTHRACENE	1.2	J J	MG/KG

i

StationID	SampleID	Datecollected	ParamNamer as a s		LUCOCOS	្រាំង នេះ
A(35.3)	A130	10/18/96 1:21 PM	BENZO(a)PYRENE	0.84	J	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	BENZO(b)FLUORANTHENE	1.4	J	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	CADMIUM	168	=	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	CALCIUM	31800	J	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	CHROMIUM, TOTAL	3400	J	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	IRON	49300	J	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	LEAD	7640	J	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	PHENANTHRENE	3.1	=	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	2,4-DIMETHYLPHENOL	16	=	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	2-METHYLNAPHTHALENE	8.2	=	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	ACENAPHTHENE	0.39		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	ALUMINUM	7090	J	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	ANTHRACENE	0.51	j	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	ARSENIC	11.7	J	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	BARIUM	2240	-	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	BENZO(k)FLUORANTHENE	1.1	J	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	bis(2-ETHYLHEXYL)	12		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	CARBAZOLE	0.4		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	CHRYSENE	1.6		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	COBALT	88.7		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	COPPER	305		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	DI-n-BUTYL PHTHALATE	0.3	L	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	FLUORANTHENE	2.4		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	FLUORENE	0.7	<u> </u>	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	ISOPHORONE	0.4		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	MAGNESIUM	3180		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	MANGANESE	448		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	NAPHTHALENE	5.5	-	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	NICKEL	59.5		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	PYRENE	2.2	<u></u>	MG/KG
A(35.3)	A130	10/18/96 1:21 PM	SODIUM	2660		MG/KG
A(35.3)	A130	10/18/96 1:21 PM	ZINC	5100	ļ	
B(28.1)	B106	10/18/96 1:02 PM	ALUMINUM		ļ <u> </u>	MG/KG
B(28.1)	B106	10/18/96 1:02 PM	CALCIUM	24700	ļ	MG/KG
B(28.1)	B106	10/18/96 1:02 PM	IRON	24600	<u></u>	MG/KG
B(28.1)	B106	10/18/96 1:02 PM		38400		MG/KG
B(28.1)	B106	10/18/96 1:02 PM	MAGNESIUM	7200	Į	MG/KG
B(28.1)	B106	10/18/96 1:02 PM		2650		MG/KG
B(28.1)	B106	10/18/96 1:02 PM	ARSENIC	17.6		MG/KG
B(28.1)	B106		BARIUM BERYLLIUM	246		MG/KG
B(28.1)	B106	10/18/96 1:02 PM 10/18/96 1:02 PM		0.95		MG/KG
B(28.1)		+	CHROMIUM, TOTAL	26.1	1	MG/KG
B(28.1)	B106 B106	10/18/96 1:02 PM	COBALT	13.7	<u>}</u>	MG/KG
		10/18/96 1:02 PM	COPPER	34.5		MG/KG
B(28.1)	B106	10/18/96 1:02 PM	DI-n-BUTYL PHTHALATE	0.099		MG/KG
B(28.1)	B106	10/18/96 1:02 PM	LEAD	28.7		MG/KG
B(28.1)	B106	10/18/96 1:02 PM	MANGANESE	1100		MG/KG
3(28.1) 2(28.1)	B106	10/18/96 1:02 PM	MERCURY	2.13		MG/KG
3(28.1)	B106	10/18/96 1:02 PM	NICKEL	37.4	=	MG/KG

Table 1-1

StationD	SampleiD	DateCollected	A ParamName	- Chevenese	ROCO	Units
B(28.1)	B106	10/18/96 1:02 PM	ZINC	128		MG/KG
B(35.2)	B129	10/18/96 1:55 PM	LEAD	744	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	ALUMINUM	8650	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	ARSENIC	6.6	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	BARIUM	479	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	BENZO(b)FLUORANTHENE	0.042	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	CADMIUM	4.9	æ	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	CALCIUM	5470	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	CHROMIUM, TOTAL	98	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	COBALT	5.3	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	COPPER	95.2	J	MG/KG
B(35.2)	8129	10/18/96 1:55 PM	DI-n-BUTYL PHTHALATE	0.13	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	IRON	20200	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	MAGNESIUM	1350	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	MANGANESE	228	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	MERCURY	0.28	=	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	NICKEL	13.6	=	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	PHENANTHRENE	0.043	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	POTASSIUM	754	=	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	VANADIUM	27.1	J	MG/KG
B(35.2)	B129	10/18/96 1:55 PM	ZINC	311	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	ARSENIC	71.6	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	CALCIUM	60200	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	LEAD	550	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	ALUMINUM	13600	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	BARIUM	115	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	BENZO(a)PYRENE	0.04	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	BENZO(b)FLUORANTHENE	0.058	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	BENZO(k)FLUORANTHENE	0.043	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	CADMIUM	1.8	=	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	CHROMIUM, TOTAL	122	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	CHRYSENE	0.044	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	COBALT	5.6	1	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	COPPER	83.3		MG/KG
C(35.2)	C129	10/18/96 2:03 PM	DI-n-BUTYL PHTHALATE	0.18		MG/KG
C(35.2)	C129	10/18/96 2:03 PM	FLUORANTHENE	0.056	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	IRON	24500	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	MAGNESIUM	2400	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	MANGANESE	534	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	NICKEL	21.3		MG/KG
C(35.2)	C129	10/18/96 2:03 PM	POTASSIUM	1090		MG/KG
C(35.2)	C129	10/18/96 2:03 PM	PYRENE	0.05	J	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	VANADIUM	25.2	1	MG/KG
C(35.2)	C129	10/18/96 2:03 PM	ZINC	463		MG/KG
FS33A	MIA337	10/8/98 10:50 AM	ANTIMONY	0.25		MG/KG
FS33A	MIA338	10/8/98 11:00 AM	ANTIMONY	0.21		MG/KG
FS33A	MIA337	10/8/98 10:50 AM	ARSENIC	3.2	· · · · · · · · · · · · · · · · · · ·	MG/KG
FS33A	MIA337	10/8/98 10:50 AM	ARSENIC	4.8	÷	MG/KG
FS33A	MIA337	10/8/98 10:50 AM	BERYLLIUM	0.25		MG/KG

773 37

WDC990270005.XLS

÷

StationD	Samplelo	DateCollected	ParamName	Anavalues	ProlQual	Units
FS33A	MIA338	10/8/98 11:00 AM	BERYLLIUM	0.31	J	MG/KG
FS33A	MIA337	10/8/98 10:50 AM	CADMIUM	0.27	J	MG/KG
FS33A	MIA338	10/8/98 11:00 AM	CADMIUM	3.1	J	MG/KG
FS33A	MIA337	10/8/98 10:50 AM	CHROMIUM, TOTAL	33.3	#	MG/KG
FS33A	MIA338	10/8/98 11:00 AM	CHROMIUM, TOTAL	23.2	=	MG/KG
FS33A	MIA337	10/8/98 10:50 AM	COPPER	18	=	MG/KG
FS33A	MIA338	10/8/98 11:00 AM	COPPER	15.1	=	MG/KG
FS33A	MIA337	10/8/98 10:50 AM	LEAD	141	=	MG/KG
FS33A	MIA338	10/8/98 11:00 AM	LEAD	86.8	2	MG/KG
FS33A	MIA337	10/8/98 10:50 AM	MERCURY	0.04	=	MG/KG
FS33A	MIA338	10/8/98 11:00 AM	MERCURY	0.04	=	MG/KG
FS33A	MIA337	10/8/98 10:50 AM	NICKEL	6.3	J	MG/KG
FS33A	MIA338	10/8/98 11:00 AM	NICKEL	6.6	J	MG/KG
FS33A	MIA338	10/8/98 11:00 AM	SELENIUM	1.2	=	MG/KG
FS33A	MIA337	10/8/98 10:50 AM	ZINC	61.4	J	MG/KG
FS33A	MIA338	10/8/98 11:00 AM	ZINC	300		MG/KG
FS33B	MIA340	10/6/98 2:40 PM	ARSENIC		=	MG/KG
FS33B	MIA341	10/6/98 2:45 PM	ARSENIC	4.5		MG/KG
FS33B	MIA340	10/6/98 2:40 PM	BERYLLIUM	0.26		MG/KG
FS33B	MIA341	10/6/98 2:45 PM	BERYLLIUM	0.16		MG/KG
FS33B	MIA340	10/6/98 2:40 PM	CADMIUM	0.75		MG/KG
FS33B	MIA341	10/6/98 2:45 PM	CADMIUM	0.03		MG/KG
FS33B	MIA340	10/6/98 2:40 PM	CHROMIUM, TOTAL	112		MG/KG
FS33B	MIA341	10/6/98 2:45 PM	CHROMIUM, TOTAL	15.3		MG/KG
FS33B	MIA340	10/6/98 2:40 PM	COPPER	33.8		MG/KG
FS33B	MIA341	10/6/98 2:45 PM	COPPER	7.4		MG/KG
FS33B	MIA340	10/6/98 2:40 PM	LEAD	368		MG/KG
FS33B	MIA341	10/6/98 2:45 PM	LEAD	54.3		MG/KG
FS33B	MIA341	10/6/98 2:45 PM	MERCURY	0.1		MG/KG
FS33B	MIA340	10/6/98 2:40 PM	NICKEL	12.9		MG/KG
FS33B	MIA341	10/6/98 2:45 PM	NICKEL	2.8		MG/KG
FS33B	MIA341	10/6/98 2:45 PM	SELENIUM	0.58	-	MG/KG
FS33B	MIA340	10/6/98 2:40 PM	ZINC	236		MG/KG
FS33B	MIA341	10/6/98 2:45 PM	ZINC	200		MG/KG
FS33C	MIA343	10/6/98 3:05 PM	CHROMIUM, TOTAL	522		MG/KG
FS33C	MIA343	10/6/98 3:05 PM	LEAD	2230		MG/KG
FS33C	MIA343	10/6/98 3:05 PM	ARSENIC	13.1		MG/KG
FS33C	MIA344	10/6/98 3:20 PM	ARSENIC	8.4		MG/KG
FS33C	MIA343	10/6/98 3:05 PM	BERYLLIUM	0.4		MG/KG
FS33C	MIA344	10/6/98 3:20 PM	BERYLLIUM	0.56		······
FS33C	MIA343	10/6/98 3:05 PM	CADMIUM			MG/KG
FS33C	MIA344	10/6/98 3:20 PM		4.1		MG/KG
FS33C	MIA343	10/6/98 3:05 PM	CHROMIUM, TOTAL	15.4	****	MG/KG
FS33C	MIA343 MIA344	10/6/98 3:20 PM	COPPER	62.6		MG/KG
FS33C	MIA344	10/6/98 3:20 PM		14.9		MG/KG
FS33C	MIA344 MIA343	10/6/98 3:20 PM		32		MG/KG
FS33C	MIA343 MIA344	10/6/98 3:05 PM	MERCURY	0.12		MG/KG
	MIA344 MIA343	10/6/98 3:05 PM	NICKEL	0.02		MG/KG MG/KG
FS33C			ONGATE			ININA

WDC990270005.XLS

StationID	2	DateCollected	ParamName	AnaVava	POCUL	winit .
FS33C	MIA344	10/6/98 3:20 PM	SELENIUM	0.69	=	MG/KG
FS33C	MIA343	10/6/98 3:05 PM	ZINC	1100	=	MG/KG
FS33C	MIA344	10/6/98 3:20 PM	ZINC	75.2	=	MG/KG
FS33D	MIA347	10/5/98 4:15 PM	LEAD	667	=	MG/KG
FS33D	MIA346	10/5/98 4:05 PM	ARSENIC	8.9	=	MG/KG
FS33D	MIA347	10/5/98 4:15 PM	ARSENIC	18.1	=	MG/KG
FS33D	MIA346	10/5/98 4:05 PM	BERYLLIUM	0.73	=	MG/KG
FS33D	MIA347	10/5/98 4:15 PM	BERYLLIUM	0.79	=	MG/KG
FS33D	MIA346	10/5/98 4:05 PM	CADMIUM	0.28	J	MG/KG
FS33D	MIA347	10/5/98 4:15 PM	CADMIUM	0.49	J	MG/KG
FS33D	MIA346	10/5/98 4:05 PM	CHROMIUM, TOTAL	211	=	MG/KG
FS33D	MIA347	10/5/98 4:15 PM	CHROMIUM, TOTAL	221	=	MG/KG
FS33D	MIA346	10/5/98 4:05 PM	COPPER	54.1	=	MG/KG
FS33D	MIA347	10/5/98 4:15 PM	COPPER	70.5	L	MG/KG
FS33D	MIA346	10/5/98 4:05 PM	LEAD	338	ļ	MG/KG
FS33D	MIA346	10/5/98 4:05 PM	MERCURY	0.04		MG/KG
FS33D	MIA347	10/5/98 4:15 PM	MERCURY	0.07		MG/KG
FS33D	MIA346	10/5/98 4:05 PM	NICKEL	21		MG/KG
FS33D	MIA347	10/5/98 4:15 PM	NICKEL	24		MG/KG
FS33D	MIA347	10/5/98 4:15 PM	SELENIUM	1.5		MG/KG
FS33D	MIA346	10/5/98 4:05 PM	ZINC	562		MG/KG
FS33D	MIA347	10/5/98 4:15 PM	ZINC	502		MG/KG
FS33E	MIA349	10/8/98 10:00 AM	ANTIMONY		Į	ļ
FS33E	MIA349	10/8/98 10:15 AM	ANTIMONY	0.48		MG/KG
FS33E	MIA349	10/8/98 10:00 AM	ARSENIC	0.42	=	MG/KG
FS33E	MIA350	10/8/98 10:15 AM	ARSENIC		=	
FS33E	MIA349	10/8/98 10:00 AM	BERYLLIUM			MG/KG
FS33E	MIA349 MIA350	10/8/98 10:15 AM		0.42	<u> </u>	MG/KG
FS33E	MIA349		BERYLLIUM	0.47		MG/KG
FS33E		10/8/98 10:00 AM		0.14		MG/KG
FS33E	MIA350	10/8/98 10:15 AM		0.11		MG/KG
	MIA349	10/8/98 10:00 AM	CHROMIUM, TOTAL	13.8	k	MG/KG
FS33E	MIA350	10/8/98 10:15 AM	CHROMIUM, TOTAL	13.9	<u>.</u>	MG/KG
FS33E	MIA349	10/8/98 10:00 AM	COPPER	<u> </u>	=	MG/KG
FS33E	MIA350	10/8/98 10:15 AM	COPPER	14.4		MG/KG
FS33E	MIA349	10/8/98 10:00 AM	LEAD	27.9		MG/KG
FS33E	MIA350	10/8/98 10:15 AM	LEAD	15.8	<u> </u>	MG/KG
FS33E	MIA350	10/8/98 10:15 AM	MERCURY	0.03		MG/KG
FS33E	MIA350	10/8/98 10:15 AM	NICKEL	13.6	i =	MG/KG
FS33E	MIA349	10/8/98 10:00 AM	NICKEL	12.6	J	MG/KG
FS33E	MIA349	10/8/98 10:00 AM	SELENIUM	1	=	MG/KG
FS33E	MIA350	10/8/98 10:15 AM	SELENIUM	0.97	1=	MG/KG
FS33E	M1A349	10/8/98 10:00 AM	ZINC	57.4	J	MG/KG
FS33E	MIA350	10/8/98 10:15 AM	ZINC	44.3	J	MG/KG
FS33F	M1A352	10/5/98 5:00 PM	ARSENIC	8.6	š=	MG/KG
FS33F	MIA353	10/5/98 5:30 PM	ARSENIC	5.9	=	MG/KG
FS33F	MIA352	10/5/98 5:00 PM	BERYLLIUM	0.43	3 J	MG/KG
FS33F	MIA353	10/5/98 5:30 PM	BERYLLIUM	0.4	J	MG/KG
FS33F	MIA352	10/5/98 5:00 PM	CHROMIUM, TOTAL	116	5 =	MG/KG
FS33F	MIA353	10/5/98 5:30 PM	CHROMIUM, TOTAL	48.6	5 =	MG/KG

FS33F MI/ FS33F MI FS87A MI FS87A MI FS87A MI FS87A MI FS87B MI FS87B MI FS89P MI	IA353 IA352 IA353 IA353 IA352 IA352 IA352 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA353 IA352 IA353 IA352 IA353 IA353 IA352 IA353 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA353 IA352 IA353 IA355 IA353 IA355	10/5/98 5:00 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:00 PM 10/5/98 5:00 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM	COPPER COPPER LEAD LEAD MERCURY MERCURY NICKEL NICKEL SELENIUM SELENIUM ZINC ZINC	83.7 74.8 156 120 0.04 0.02 38 18.8 0.65 1.1 175	= =] =] = = = =	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG
FS33F MI/ FS33F MI FS87A MI FS87A MI FS87B MI FS87B MI FS89P MI	IA352 IA353 IA353 IA352 IA352 IA352 IA352 IA353 IA352 IA353 IA352 IA353 IA104 IA104 IA105 IA104	10/5/98 5:00 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:00 PM 10/5/98 5:00 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM	LEAD LEAD MERCURY MERCURY NICKEL NICKEL SELENIUM SELENIUM ZINC ZINC	156 120 0.04 0.02 38 18.8 0.65 1.1	= = J = = =	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG
FS33F ML FS87A ML FS87A ML FS87B ML FS87B ML FS87B ML FS89P ML	IA353 IA353 IA352 IA352 IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA104 IA104 IA105	10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:00 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 1:15 PM	LEAD MERCURY MERCURY NICKEL NICKEL SELENIUM SELENIUM ZINC ZINC	120 0.04 0.02 38 18.8 0.65 1.1	=]] = = =	MG/KG MG/KG MG/KG MG/KG MG/KG
FS33F ML FS87A ML FS87A ML FS87A ML FS87B ML FS87B ML FS89P ML	IA353 IA352 IA352 IA353 IA353 IA353 IA353 IA353 IA353 IA353 IA353 IA353 IA104 IA105 IA104 IA105	10/5/98 5:30 PM 10/5/98 5:00 PM 10/5/98 5:00 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 1:15 PM	MERCURY MERCURY NICKEL NICKEL SELENIUM SELENIUM ZINC ZINC	0.04 0.02 38 18.8 0.65 1.1	= J = = =	MG/KG MG/KG MG/KG MG/KG MG/KG
FS33F MI, FS87A MI, FS87A MI, FS87A MI, FS87A MI, FS87B MI, FS87B MI, FS87B MI, FS89P MI,	IA352 IA352 IA353 IA353 IA353 IA353 IA353 IA353 IA353 IA104 IA105 IA104 IA105	10/5/98 5:00 PM 10/5/98 5:00 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 1:15 PM	MERCURY NICKEL NICKEL SELENIUM SELENIUM ZINC ZINC	0.02 38 18.8 0.65 1.1	J = = =	MG/KG MG/KG MG/KG MG/KG
FS33F MI. FS87A MI. FS87A MI. FS87A MI. FS87B MI. FS87B MI. FS87B MI. FS89P MI.	IA352 IA353 IA352 IA353 IA352 IA353 IA352 IA353 IA104 IA105 IA104 IA105	10/5/98 5:00 PM 10/5/98 5:30 PM 10/5/98 5:00 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 1:15 PM	NICKEL NICKEL SELENIUM SELENIUM ZINC ZINC	38 18.8 0.65 1.1	= = =	MG/KG MG/KG MG/KG
FS33F MI. FS87A MI. FS87A MI. FS87A MI. FS87B MI. FS87B MI. FS89P MI.	IA353 IA352 IA352 IA353 IA353 IA353 IA104 IA105 IA104 IA105	10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 1:15 PM	NICKEL SELENIUM SELENIUM ZINC ZINC	18.8 0.65 1.1	= = =	MG/KG MG/KG
FS33F MI FS37A MI FS87A MI FS87A MI FS87B MI FS87B MI FS89P MI	IA352 IA353 IA353 IA353 IA104 IA104 IA105 IA104 IA105	10/5/98 5:00 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/5/98 5:30 PM 10/6/98 1:15 PM	SELENIUM SELENIUM ZINC ZINC	0.65 1.1	=	MG/KG
FS33F MI FS33F MI FS33F MI FS33F MI FS33F MI FS87A MI FS87A MI FS87A MI FS87A MI FS87A MI FS87B MI FS87B MI FS89P MI	IA353 IA352 IA353 IA104 IA105 IA104 IA105	10/5/98 5:30 PM 10/5/98 5:00 PM 10/5/98 5:30 PM 10/6/98 1:15 PM	SELENIUM ZINC ZINC	1.1	=	
FS33F MI FS33F MI FS33F MI FS87A MI FS87A MI FS87A MI FS87A MI FS87A MI FS87B MI FS87B MI FS87B MI FS89P MI	IA352 IA353 IA104 IA105 IA104 IA105	10/5/98 5:00 PM 10/5/98 5:30 PM 10/6/98 1:15 PM	ZINC ZINC			MGMC
FS33F MI. FS87A MI. FS87A MI. FS87A MI. FS87A MI. FS87B MI. FS87B MI. FS87B MI. FS87B MI. FS87B MI. FS89P MI.	IA353 IA104 IA105 IA104 IA105	10/5/98 5:30 PM 10/6/98 1:15 PM	ZINC	175		unica/ACI
FS87A MI FS87A MI FS87A MI FS87A MI FS87A MI FS87B MI FS87B MI FS87B MI FS87B MI FS89P MI	IA104 IA105 IA104 IA105	10/6/98 1:15 PM			=	MG/KG
FS87A MI FS87A MI FS87A MI FS87B MI FS87B MI FS87B MI FS89P MI	IA105 IA104 IA105			86.3	=	MG/KG
FS87A MI. FS87A MI. FS87B MI. FS87B MI. FS87B MI. FS89P MI.	IIA104 IIA105	10/6/98 1:25 PM	p,p'-DDE	0.021	=	MG/KG
FS87A MI FS87B MI FS87B MI FS89P MI	IA105		p.p'-DDE	0.0018	J	MG/KG
FS87B MI FS87B MI FS89P MI		10/6/98 1:15 PM	p,p'-DDT	0.054	=	MG/KG
FS87B MI FS89P MI FS89P MI FS89P MI FS89P MI FS89P MI FS89P MI FS89P MI	14107	10/6/98 1:25 PM	p,p'-DDT	0.0027	J	MG/KG
FS87B MI FS89P MI	uesuv/ 1	10/6/98 1:50 PM	p,p'-DDE	0.0044	-	MG/KG
FS89P MI FS89P MI FS89P MI FS89P MI FS89P MI FS89P MI FS89P MI		10/6/98 1:50 PM	p,p'-DDT	0.015	-	MG/KG
FS89P MI FS89P M1 FS89P M1 FS89P M1 FS89P M1 FS89P M1		10/8/98 9:00 AM	CHROMIUM, TOTAL	233	-	MG/KG
FS89P M1 FS89P M1 FS89P M1 FS89P M1 FS89P M1 FS89P M1		10/8/98 9:00 AM	LEAD	828		MG/KG
FS89P MI FS89P MI FS89P MI FS89P MI		10/8/98 9:00 AM	LEAD	798	·····	MG/KG
FS89P MI FS89P MI FS89P MI		10/8/98 9:00 AM	ANTIMONY		J	MG/KG
FS89P MI FS89P MI		10/8/98 9:00 AM	ANTIMONY	4.5	-	MG/KG
FS89P MI	IA162	10/8/98 9:30 AM	ANTIMONY	0.58		MG/KG
	A159	10/8/98 9:00 AM	ARSENIC	19		MG/KG
FS89P MI	IA160FD	10/8/98 9:00 AM	ARSENIC	13		MG/KG
		10/8/98 9:30 AM	ARSENIC	<u> </u>	=	MG/KG
	A162	10/8/98 9:00 AM	BERYLLIUM	0.26		MG/KG
	A162	10/8/98 9:30 AM	BERYLLIUM	0.4	<u> </u>	MG/KG
		10/8/98 9:00 AM		0.4		MG/KG
		10/8/98 9:00 AM				MG/KG
				1.3	<u> </u>	
	A162	10/8/98 9:30 AM		0.12		MG/KG
		10/8/98 9:00 AM	CHROMIUM, TOTAL	187		MG/KG
	IA162	10/8/98 9:30 AM	CHROMIUM, TOTAL	19.8		MG/KG
		10/8/98 9:00 AM	COPPER	208		MG/KG
		10/8/98 9:00 AM	COPPER	153		MG/KG
		10/8/98 9:30 AM	COPPER	15.5		MG/KG
	IIA162	10/8/98 9:30 AM	LEAD	44.1	_	MG/KG
		10/8/98 9:00 AM	NICKEL	59.9	£	MG/KG
	IIA160FD	10/8/98 9:00 AM	NICKEL	38.6	<u>}</u>	MG/KG
	IIA162	10/8/98 9:30 AM	NICKEL	15.4	<u> </u>	MG/KG
		10/8/98 9:30 AM	SELENIUM	1.2		MG/KG
	IIA159	10/8/98 9:00 AM	SELENIUM	1.6	<u> </u>	MG/KG
	IA160FD	10/8/98 9:00 AM	SELENIUM	1.1		MG/KG
	IA160FD	10/8/98 9:00 AM	SILVER	0.91		MG/KG
		10/8/98 9:00 AM	ZINC	340	· · · · · · · · · · · · · · · · · · ·	MG/KG
		10/8/98 9:00 AM	ZINC	251	·	MG/KG
FS89P MI	A162	10/8/98 9:30 AM	ZINC	49.8	I J	MG/KG

773 40

Table 1-1

Detected Concentrations at Surface Soil Sampling Locations in Parcels 35 and 28

StationID	Sampleid	Datecolocieo	StrainWarne	AnaValue	1970 (AM	
FS890	MIA165	10/8/98 2:00 PM	ANTIMONY	0.23		MG/KG
FS89Q	MIA164	10/8/98 1:45 PM	ARSENIC	7.2	=	MG/KG
FS89Q	MIA165	10/8/98 2:00 PM	ARSENIC	5.8	=	MG/KG
FS89Q	MIA164	10/8/98 1:45 PM	BERYLLIUM	0.3	J	MG/KG
FS89Q	MIA165	10/8/98 2:00 PM	BERYLLIUM	0.34	J	MG/KG
FS89Q	MIA164	10/8/98 1:45 PM	CADMIUM	1.1	J	MG/KG
FS89Q	MIA165	10/8/98 2:00 PM	CADMIUM	0.11	J	MG/KG
FS89Q	MIA164	10/8/98 1:45 PM	CHROMIUM, TOTAL	159	=	MG/KG
FS89Q	MIA165	10/8/98 2:00 PM	CHROMIUM, TOTAL	18.7		MG/KG
FS89Q	MIA164	10/8/98 1:45 PM	COPPER	16.8		MG/KG
FS89Q	MIA165	10/8/98 2:00 PM	COPPER	11.3	······	MG/KG
FS89Q	MIA165	10/8/98 2:00 PM	LEAD	71,1		MG/KG
FS89Q	MIA164	10/8/98 1:45 PM	NICKEL	9,4	·····	MG/KG
FS89Q	MIA165	10/8/98 2:00 PM	NICKEL	10.8		MG/KG
FS89Q	MIA164	10/8/98 1:45 PM	SELENIUM	1.3		MG/KG
FS89Q	MIA165	10/8/98 2:00 PM	SELENIUM	1.1		MG/KG
FS89Q	MIA164	10/8/98 1:45 PM	ZINC	1010		MG/KG
FS89Q	MIA165	10/8/98 2:00 PM	ZINC	59.4		MG/KG
FS89R	MIA167	10/8/98 11:35 AM		1 0.49		MG/KG
FS89R	MIA167	10/8/98 11:35 AM	ARSENIC	7.1	-	MG/KG
FS89R	MIA168	10/8/98 11:45 AM	ARSENIC	6.1		MG/KG
FS89R	MIA167	10/8/98 11:35 AM	BERYLLIUM	0.1		MG/KG
FS89R	MIA168	10/8/98 11:45 AM	BERYLLIUM	0.41		·····
FS89R	MIA167	10/8/98 11:35 AM	CADMIUM	0.42	·····	MG/KG
FS89R	MIA168	10/8/98 11:45 AM		0.37		
FS89R	MIA167	10/8/98 11:35 AM	CHROMIUM, TOTAL	23		MG/KG
FS89R	MIA168	10/8/98 11:45 AM	CHROMIUM, TOTAL	12.5	Į	MG/KG
FS89R	MIA167	10/8/98 11:35 AM	COPPER	12.5		MG/KG
FS89R	MIA168	10/8/98 11:45 AM	COPPER			MG/KG
FS89R	MIA167	10/8/98 11:35 AM	LEAD	13.8		MG/KG
FS89R	MIA168	10/8/98 11:45 AM	LEAD	64.1	·····	MG/KG
FS89R	MIA167	10/8/98 11:35 AM		9.1		MG/KG
FS89R	MIA167	10/8/98 11:45 AM	NICKEL	14.5		MG/KG
FS89R				·•	J	MG/KG
FS89R	MIA167	10/8/98 11:35 AM	SELENIUM	1.1		MG/KG
FS89R	MIA168	10/8/98 11:45 AM	SELENIUM	0.6		MG/KG
FS89R	MIA167	10/8/98 11:35 AM	ZINC	204		MG/KG
	MIA168 MIA171FD	10/8/98 11:45 AM		48.9		MG/KG
FS89S		10/8/98 4:10 PM		0.46		MG/KG
FS89S	MIA172	10/8/98 4:30 PM	ANTIMONY	0.32		MG/KG
FS89S	MIA170	10/8/98 4:10 PM	ARSENIC	6.4		MG/KG
FS89S	MIA171FD	10/8/98 4:10 PM	ARSENIC	7.1	ļ	MG/KG
FS89S	MIA172	10/8/98 4:30 PM	ARSENIC	6.1	}	MG/KG
FS89S	MIA170	10/8/98 4:10 PM	BERYLLIUM	0.37		MG/KG
FS89S	MIA171FD	10/8/98 4:10 PM	BERYLLIUM	0.33	J	MG/KG
FS89S	MIA172	10/8/98 4:30 PM	BERYLLIUM	0.37	<u> </u>	MG/KG
FS89S	MIA170	10/8/98 4:10 PM	CADMIUM	0.49	<u></u>	MG/KG
FS89S	MIA171FD	10/8/98 4:10 PM	CADMIUM	0.7		MG/KG
FS89S	MIA172	10/8/98 4:30 PM	CADMIUM	0.12		MG/KG
FS89S	MIA170	10/8/98 4:10 PM	CHROMIUM, TOTAL	17.9	=	MG/KG

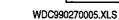
StationID	Samploid		Contraction Contraction	AnaValue	Projettal	Unit
S89S	MIA171FD	10/8/98 4:10 PM	CHROMIUM, TOTAL	17.6	=	MG/KG
-S89S	MIA172	10/8/98 4:30 PM	CHROMIUM, TOTAL	25.5	=	MG/KG
-S89S	MIA170	10/8/98 4:10 PM	COPPER	12.9	J	MG/KG
-S89S	MIA171FD	10/8/98 4:10 PM	COPPER	15.6	J	MG/KG
S89S	MIA172	10/8/98 4:30 PM	COPPER	14	J	MG/KG
FS89S	MIA170	10/8/98 4:10 PM	LEAD	34.1	=	MG/KG
FS89S	MIA171FD	10/8/98 4:10 PM	LEAD	44.9	=	MG/KG
FS89S	MIA172	10/8/98 4:30 PM	LEAD	88.4	=	MG/KG
FS89S	MIA170	10/8/98 4:10 PM	NICKEL	14.5	J	MG/KG
FS89S	MIA171FD	10/8/98 4:10 PM	NICKEL	13.2	J	MG/KG
FS89S	MIA172	10/8/98 4:30 PM	NICKEL	10.9	J	MG/KG
FS89S	MIA172	10/8/98 4:30 PM	SELENIUM	1.2	=	MG/KG
FS89S	MIA170	10/8/98 4:10 PM	ZINC	235	J	MG/KG
FS89S	MIA171FD	10/8/98 4:10 PM	ZINC	329	J	MG/KG
FS89S	MIA172	10/8/98 4:30 PM	ZINC	52	J	MG/KG
SB31A	SGA015	12/18/96 8:40 AM	ARSENIC	20.6	=	MG/KG
SB31A	SGA487FD1	12/18/96 8:40 AM	ACETONE	0.007	J	MG/KG
SB31A	SGA487FD1	12/18/96 8:40 AM	ARSENIC	8.5	2	MG/KG
SB31A	SGA015	12/18/96 8:40 AM	CHROMIUM, TOTAL	38.7	=	MG/KG
SB31A	SGA487FD1	12/18/96 8:40 AM	CHROMIUM, TOTAL	34.7	=	MG/KG
SB31A	SGA015	12/18/96 8:40 AM	COPPER	32	=	MG/KG
SB31A	SGA487FD1	12/18/96 8:40 AM	COPPER	23.7		MG/KG
SB31A	SGA015	12/18/96 8:40 AM	LEAD	51.4	}	MG/KG
SB31A	SGA487FD1	12/18/96 8:40 AM	LEAD	57.2		MG/KG
SB31A	SGA015	12/18/96 8:40 AM	NICKEL	34		MG/KG
SB31A	SGA487FD1	12/18/96 8:40 AM	NICKEL	33.8		MG/KG
SB31A	SGA015	12/18/96 8:40 AM	ZINC	118		MG/KG
SB31A	SGA487FD1	12/18/96 8:40 AM	ZINC	97.1		MG/KG
SB31B	SGA020	12/18/96 9:45 AM	ARSENIC	14.9		MG/KG
SB31B	SGA020	12/18/96 9:45 AM	CHROMIUM, TOTAL	29.8	ļ	MG/KG
SB31B	SGA020	12/18/96 9:45 AM	COPPER	26.7		MG/KG
SB31B	SGA020	12/18/96 9:45 AM	LEAD	37.3		MG/KG
SB31B	SGA020	12/18/96 9:45 AM	NICKEL	26.9		MG/KG
SB31B	SGA020	12/18/96 9:45 AM	ZINC	104	·	MG/KG
SB32A	RHA012	1/18/97 2:40 PM		22.3	<u> </u>	MG/KG
SB32A	RHA012	1/18/97 2:40 PM	ARSENIC	42.5		MG/KG
SB32A	RHA012	1/18/97 2:40 PM	BENZO(a)PYRENE	0.16		MG/KG
SB32A	RHA012	1/18/97 2:40 PM	CHROMIUM, TOTAL	915	·	MG/KG
SB32A	RHA012	1/18/97 2:40 PM	LEAD	4150		MG/KG
SB32A	RHA012	1/18/97 2:40 PM	ACENAPHTHENE	0.068	<u> </u>	MG/KG
SB32A	RHA012	1/18/97 2:40 PM	ANTHRACENE	0.00		MG/KG
SB32A			BENZO(a)ANTHRACENE	0.07	<u> </u>	MG/KG
SB32A	RHA012 RHA012	1/18/97 2:40 PM 1/18/97 2:40 PM	BENZO(a)ANTHRACENE BENZO(b)FLUORANTHENE	0.13	· · · · · · · · · · · · · · · · · · ·	MG/KG
	1					1
SB32A	RHA012	1/18/97 2:40 PM	BENZO(g,h,i)PERYLENE	0.14	<u> </u>	MG/KG
SB32A	RHA012	1/18/97 2:40 PM	BENZO(k)FLUORANTHENE	0.13		MG/KG
SB32A	RHA012	1/18/97 2:40 PM		<u> </u>	<u>} =</u>	MG/KG
SB32A	RHA012	1/18/97 2:40 PM	CHRYSENE	0.17		MG/KG
SB32A	RHA012	1/18/97 2:40 PM	COPPER	235	7=	MG/KG

StationD	SampielD	DateCollected	ParamName	AnaValue	Projoual	Units
SB32A	RHA012	1/18/97 2:40 PM	FLUORENE	0.094	=	MG/KG
SB32A	RHA012	1/18/97 2:40 PM	INDENO(1,2,3-c,d)PYRENE	0.15	=	MG/KG
SB32A	RHA012	1/18/97 2:40 PM	NAPHTHALENE	0.16	=	MG/KG
SB32A	RHA012	1/18/97 2:40 PM	NICKEL	76.3	8	MG/KG
SB32A	RHA012	1/18/97 2:40 PM	PHENANTHRENE	0.38	=	MG/KG
SB32A	RHA012	1/18/97 2:40 PM	PYRENE	0.26	=	MG/KG
SB32A	RHA012	1/18/97 2:40 PM	SILVER	2.5	=	MG/KG
SB32A	RHA012	1/18/97 2:40 PM	ZINC	1460	=	MG/KG
SB33A	SGA031	12/18/96 1:20 PM	ARSENIC	10.2	a	MG/KG
SB33A	SGA031	12/18/96 1:20 PM	CHROMIUM, TOTAL	32.2	=	MG/KG
SB33A	SGA031	12/18/96 1:20 PM	COPPER	26.1	=	MG/KG
SB33A	SGA031	12/18/96 1:20 PM	LEAD	46.9	=	MG/KG
SB33A	SGA031	12/18/96 1:20 PM	NICKEL	27.5	=	MG/KG
SB33A	SGA031	12/18/96 1:20 PM	ZINC	93.3	=	MG/KG
SB33B	SGA488FD1	12/18/96 2:40 PM	ACETONE	0.012	=	MG/KG
SB33B	SGA036	12/18/96 2:40 PM	ARSENIC	9.9	=	MG/KG
SB33B	SGA488FD1	12/18/96 2:40 PM	ARSENIC	13.9	ļ	MG/KG
SB33B	SGA036	12/18/96 2:40 PM	BERYLLIUM	0.95	=	MG/KG
SB33B	SGA488FD1	12/18/96 2:40 PM	BERYLLIUM	1.1	ļ	MG/KG
SB33B	SGA036	12/18/96 2:40 PM	CHROMIUM, TOTAL	28.3		MG/KG
SB33B	SGA488FD1	12/18/96 2:40 PM	CHROMIUM, TOTAL	40.5	ļ	MG/KG
SB33B	SGA036	12/18/96 2:40 PM	COPPER	22	ļ	MG/KG
SB33B	SGA488FD1	12/18/96 2:40 PM	COPPER	39		MG/KG
SB33B	SGA036	12/18/96 2:40 PM	LEAD	20.1		MG/KG
SB33B	SGA488FD1	12/18/96 2:40 PM	LEAD	119	ļ	MG/KG
SB33B	SGA036	12/18/96 2:40 PM	METHYLENE CHLORIDE	0.003		MG/KG
SB33B	SGA488FD1	12/18/96 2:40 PM	METHYLENE CHLORIDE	0.006	-	MG/KG
SB33B	SGA036	12/18/96 2:40 PM	NICKEL	30.5		MG/KG
SB33B	SGA488FD1	12/18/96 2:40 PM	NICKEL	26.2		MG/KG
SB33B	SGA488FD1	12/18/96 2:40 PM	SELENIUM	1.3	L	MG/KG
SB33B	SGA036	12/18/96 2:40 PM	TOLUENE	0.001		MG/KG
SB33B	SGA036				-	
SB33B		12/18/96 2:40 PM	ZINC	79.7		MG/KG
-	SGA488FD1	12/18/96 2:40 PM		124	· · · · · · · · · · · · · · · · · · ·	MG/KG
SB33C	SGA041	12/19/96 2:35 PM	ACETONE	0.003		MG/KG
SB33C	SGA041	12/19/96 2:35 PM	ARSENIC	8.7	İ	MG/KG
SB33C	SGA041	12/19/96 2:35 PM	BERYLLIUM	0.99		MG/KG
SB33C	SGA041	12/19/96 2:35 PM		1.2	<u> </u>	MG/KG
SB33C	SGA041	12/19/96 2:35 PM	CHROMIUM, TOTAL	37.6	ļ	MG/KG
SB33C	SGA041	12/19/96 2:35 PM	COPPER	17.1		MG/KG
SB33C	SGA041	12/19/96 2:35 PM	LEAD	16.1		MG/KG
SB33C	SGA041	12/19/96 2:35 PM	METHYLENE CHLORIDE	0.002		MG/KG
SB33C	SGA041	12/19/96 2:35 PM	NICKEL	26.6		MG/KG
SB33C	SGA041	12/19/96 2:35 PM	ZINC	68.1		MG/KG
SS31A	SGA011	12/7/96 1:35 PM	BENZO(a)PYRENE	0.33		MG/KG
SS31A	SGA011	12/7/96 1:35 PM	CHROMIUM, TOTAL	530		MG/KG
SS31A	SGA011	12/7/96 1:35 PM	LEAD	664	<u> </u>	MG/KG
SS31A	SGA011	12/7/96 1:35 PM	ARSENIC	10.7		MG/KG
SS31A	SGA011	12/7/96 1:35 PM	BENZO(a)ANTHRACENE	0.34	=	MG/KG
SS31A	SGA011	12/7/96 1:35 PM	BENZO(b)FLUORANTHENE	0.29	=	MG/KG

StationID	SempleD	DateCollected	ParamName	AnaValue	Projous	ហាក
SS31A	SGA011	12/7/96 1:35 PM	BENZO(g,h,i)PERYLENE	0.25		MG/KG
SS31A	SGA011	12/7/96 1:35 PM	BENZO(k)FLUORANTHENE	0.26	=	MG/KG
SS31A	SGA011	12/7/96 1:35 PM	CADMIUM	8.1	=	MG/KG
SS31A	SGA011	12/7/96 1:35 PM	CHRYSENE	0.34	=	MG/KG
SS31A	SGA011	12/7/96 1:35 PM	COPPER	33.5	=	MG/KG
SS31A	SGA011	12/7/96 1:35 PM	FLUORANTHENE	0.52	=	MG/KG
SS31A	SGA011	12/7/96 1:35 PM	INDENO(1,2,3-c,d)PYRENE	0.21	=	MG/KG
SS31A	SGA011	12/7/96 1:35 PM	METHYLENE CHLORIDE	0.004	J	MG/KG
SS31A	SGA011	12/7/96 1:35 PM	NICKEL	26.4	Ξ	MG/KG
SS31A	SGA011	12/7/96 1:35 PM	PHENANTHRENE	0.37	=	MG/KG
SS31A	SGA011	12/7/96 1:35 PM	PYRENE	0.43	=	MG/KG
SS31A	SGA011	12/7/96 1:35 PM	ZINC	1560	=	MG/KG
SS31B	SGA012	12/7/96 2:57 PM	ARSENIC	4.2	a	MG/KG
SS31B	SGA012	12/7/96 2:57 PM	BENZO(a)ANTHRACENE	0.067	=	MG/KG
SS31B	SGA012	12/7/96 2:57 PM	CADMIUM	1.7		MG/KG
SS31B	ISGA012	12/7/96 2:57 PM	CHROMIUM, TOTAL	66.1		MG/KG
SS31B	SGA012	12/7/96 2:57 PM	CHRYSENE	0.058		MG/KG
SS31B	SGA012	12/7/96 2:57 PM	COPPER	11.6		MG/KG
SS31B	SGA012	12/7/96 2:57 PM	FLUORANTHENE	0.095		MG/KG
SS31B	SGA012	12/7/96 2:57 PM	LEAD	85.5		MG/KG
				0.002		MG/KG
SS31B	SGA012	12/7/96 2:57 PM	METHYLENE CHLORIDE			
SS31B	SGA012	12/7/96 2:57 PM	NICKEL	20	ļ	MG/KG
SS31B	SGA012	12/7/96 2:57 PM	PHENANTHRENE	0.071		MG/KG
SS31B	SGA012	12/7/96 2:57 PM	PYRENE	0.053		MG/KG
SS31B	SGA012	12/7/96 2:57 PM		221		MG/KG
SS31C	SGA013	12/7/96 3:15 PM	ARSENIC	12.6		MG/KG
SS31C	SGA300FD1	12/7/96 3:15 PM	ARSENIC	16.2		MG/KG
SS31C	SGA300FD1	12/7/96 3:15 PM	BENZO(a)ANTHRACENE	0.068	ļ	MG/KG
SS31C	SGA300FD1	12/7/96 3:15 PM	BROMOMETHANE	0.002	<u> </u>	MG/KG
SS31C	SGA013	12/7/96 3:15 PM	CHROMIUM, TOTAL	39.4	ļ	MG/KG
SS31C	SGA300FD1	12/7/96 3:15 PM	CHROMIUM, TOTAL	32.2	=	MG/KG
SS31C	SGA013	12/7/96 3:15 PM	COPPER	25.5	<u></u>	MG/KG
SS31C	SGA300FD1	12/7/96 3:15 PM	COPPER	33	=	MG/KG
SS31C	SGA300FD1	12/7/96 3:15 PM	FLUORANTHENE	0.082	=	MG/KG
SS31C	SGA013	12/7/96 3:15 PM	LEAD	84.6	=	MG/KG
SS31C	SGA300FD1	12/7/96 3:15 PM	LEAD	71.2	=	MG/KG
SS31C	SGA013	12/7/96 3:15 PM	METHYLENE CHLORIDE	0.004	J	MG/KG
SS31C	SGA300FD1	12/7/96 3:15 PM	METHYLENE CHLORIDE	0.007	J	MG/KG
SS31C	SGA013	12/7/96 3:15 PM	NICKEL	27	=	MG/KG
SS31C	SGA300FD1	12/7/96 3:15 PM	NICKEL	36.9	=	MG/KG
SS31C	SGA013	12/7/96 3:15 PM	ZINC	275	=	MG/KG
SS31C	SGA300FD1	12/7/96 3:15 PM	ZINC	168	=	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	CALCIUM	7100		MG/KG
SS31D	SGB058	12/7/96 1:53 PM	2-METHYLNAPHTHALENE	0.084		MG/KG
SS31D	SGB058	12/7/96 1:53 PM	ALUMINUM	6600		MG/KG
SS31D	SGB058	12/7/96 1:53 PM	ARSENIC		1	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	BARIUM)=	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	BENZO(a)ANTHRACENE	0.084		MG/KG
SS31D	SGB058	12/7/96 1:53 PM	BENZO(a)PYRENE	0.07	<u> </u>	MG/KG

StationID	SampleiD	DateCollected	ParamName	AnaValue	32 6 12 22 3 23	-Units
SS31D	SGB058	12/7/96 1:53 PM	BENZO(b)FLUORANTHENE	0.1	J	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	BENZO(k)FLUORANTHENE	0.049	J	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	BERYLLIUM	0.72	=	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	CADMIUM	0.51	J	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	CHROMIUM, TOTAL	37.4	J	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	CHRYSENE	0.13	J	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	COBALT	6.8	=	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	COPPER	24.3	=	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	FLUORANTHENE	0.16	J	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	INDENO(1,2,3-c,d)PYRENE	0.054	J	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	IRON	14900	=	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	LEAD	205	z	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	MAGNESIUM	885	=	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	MANGANESE	410	=	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	NAPHTHALENE	0.1	J	MG/KG
SS31D	SGB058	12/7/96 1:53 PM	NICKEL	16.3		MG/KG
SS31D	SGB058	12/7/96 1:53 PM	PHENANTHRENE	0.23		MG/KG
SS31D	SGB058	12/7/96 1:53 PM	POTASSIUM	651		MG/KG
SS31D	SGB058	12/7/96 1:53 PM	PYRENE	0.19		MG/KG
SS31D	SGB058	12/7/96 1:53 PM	SILVER	0.31		MG/KG
SS31D	SGB058	12/7/96 1:53 PM	SODIUM	336		MG/KG
SS31D	SGB058	12/7/96 1:53 PM	VANADIUM	17.6		MG/KG
SS31D	SGB058	12/7/96 1:53 PM	ZINC	99.2		MG/KG
SS32B	RHA015	1/18/97 2:55 PM	BENZO(a)PYRENE	0.61		MG/KG
SS32B	RHA015	1/18/97 2:55 PM	LEAD	678		MG/KG
SS32B	RHA015	1/18/97 2:55 PM	ACENAPHTHYLENE	0,14	<u> </u>	MG/KG
SS32B	RHA015	1/18/97 2:55 PM	ARSENIC	14.9		MG/KG
SS32B	RHA015	1/18/97 2:55 PM	BENZO(a)ANTHRACENE	0.73		MG/KG
SS32B	RHA015	1/18/97 2:55 PM	BENZO(b)FLUORANTHENE	0.73	h	MG/KG
SS32B	RHA015	1/18/97 2:55 PM	BENZO(g,h,i)PERYLENE	0.73		MG/KG
SS328	RHA015	1/18/97 2:55 PM	BENZO(k)FLUORANTHENE	0.57		
SS32B SS32B	RHA015	1/18/97 2:55 PM		L		MG/KG
SS32B	RHA015	1/18/97 2:55 PM		1.9	<u>+</u>	MG/KG
SS32B SS32B	+	1	CHROMIUM, TOTAL	138		MG/KG
SS32B	RHA015 RHA015	1/18/97 2:55 PM 1/18/97 2:55 PM	CHRYSENE	0.8		MG/KG
	+		COPPER		=	MG/KG
SS32B SS32B	RHA015 RHA015	1/18/97 2:55 PM 1/18/97 2:55 PM		1.2	<u> </u>	MG/KG
			INDENO(1,2,3-c,d)PYRENE	0.46	<u> </u>	MG/KG
SS32B	RHA015	1/18/97 2:55 PM	NICKEL	38.7	<u> </u>	MG/KG
SS32B	RHA015	1/18/97 2:55 PM	PHENANTHRENE	0.32	<u> </u>	MG/KG
SS32B	RHA015	1/18/97 2:55 PM	PYRENE	1.1	<u> </u>	MG/KG
SS32B	RHA015	1/18/97 2:55 PM	ZINC	519	1	MG/KG
SS32C	RHA016	1/18/97 3:10 PM	CHROMIUM, TOTAL	275		MG/KG
SS32C	RHA016	1/18/97 3:10 PM	LEAD	693		MG/KG
SS32C	RHA016	1/18/97 3:10 PM	ARSENIC	····	=	MG/KG
SS32C	RHA016	1/18/97 3:10 PM	BENZO(a)ANTHRACENE	0.073	=	MG/KG
SS32C	RHA016	1/18/97 3:10 PM	BENZO(a)PYRENE	0.07]=	MG/KG
SS32C	RHA016	1/18/97 3:10 PM	BENZO(b)FLUORANTHENE	0.057	1=	MG/KG
SS32C	RHA016	1/18/97 3:10 PM	BENZO(k)FLUORANTHENE	0.057	=	MG/KG
SS32C	RHA016	1/18/97 3:10 PM	COPPER	49.8	=	MG/KG

Table 1-1


Detected Concentrations at Surface Soil Sampling Locations in Parcels 35 and 28

StationID	SampleiD	Datecollected	ParamNemer	A MARCH	୷୶ଡ଼ଡ଼୶୲ୢ	្រះព្រះ
SS32C	RHA016	1/18/97 3:10 PM	FLUORANTHENE	0.11		MG/KG
SS32C	RHA016	1/18/97 3:10 PM	NICKEL	27.2	=	MG/KG
SS32C	RHA016	1/18/97 3:10 PM	PHENANTHRENE	0.093	=	MG/KG
SS32C	RHA016	1/18/97 3:10 PM	PYRENE	0.087	=	MG/KG
SS32C	RHA016	1/18/97 3:10 PM	ZINC	507	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	BENZO(a)PYRENE	0.13	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	LEAD	766	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	ARSENIC	14.6	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	BENZO(a)ANTHRACENE	0.12	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	BENZO(b)FLUORANTHENE	0.1	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	BENZO(g,h,i)PERYLENE	0.089	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	BENZO(k)FLUORANTHENE	0.11	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	CHROMIUM, TOTAL	207	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	CHRYSENE	0.12	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	COPPER	103	<u>}</u>	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	FLUORANTHENE	0.23	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	INDENO(1,2,3-c,d)PYRENE	0.11	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	NICKEL	30.3	=	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	PHENANTHRENE	0.16	1	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	PYRENE	0.16	į	MG/KG
SS32D	RHA017	1/18/97 3:30 PM	ZINC	416	=	MG/KG
SS32E	RHA018	1/18/97 4:45 PM	BENZO(a)PYRENE	0.38		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	CALCIUM	11100		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	PHENANTHRENE	0.88	=	MG/KG
SS32E	RHA018	1/18/97 4:45 PM	ACENAPHTHENE	0.089		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	ALUMINUM	6390	=	MG/KG
SS32E	RHA018	1/18/97 4:45 PM	ANTHRACENE	0.2	····	MG/KG
SS32E	RHA018	1/18/97 4:45 PM	ARSENIC	7.7		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	BARIUM	128		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	BENZO(a)ANTHRACENE	0.5		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	BENZO(b)FLUORANTHENE	0.39		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	BENZO(g,h,i)PERYLENE	0.24		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	BENZO(k)FLUORANTHENE	0.39		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	CADMIUM	0.43	L	MG/KG
SS32E	RHA018	1/18/97 4:45 PM	CARBAZOLE	0.16	·····	MG/KG
SS32E	RHA018	1/18/97 4:45 PM	CHROMIUM, TOTAL	26.6		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	CHRYSENE	0.5		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	COBALT	5.7		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	COPPER	20.3	ļ	MG/KG
SS32E	RHA018	1/18/97 4:45 PM	FLUORANTHENE	1.3		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	FLUORENE	0.086		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	INDENO(1,2,3-c,d)PYRENE	0.24	ļ	MG/KG
SS32E	RHA018	1/18/97 4:45 PM	IRON	12800		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	LEAD	119	·	MG/KG
SS32E	RHA018	1/18/97 4:45 PM	MAGNESIUM	1530		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	MANGANESE	475	1	MG/KG
SS32E	RHA018	1/18/97 4:45 PM	NICKEL	10.8		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	POTASSIUM	1230		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	PYRENE	0.89	<u>}</u>	MG/KG

StationID	Sampulo	Datecollected	PáramNainem III S			Unic
SS32E	RHA018	1/18/97 4:45 PM	VANADIUM	17.9		MG/KG
SS32E	RHA018	1/18/97 4:45 PM	ZINC	72.1	=	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	BENZO(a)PYRENE	0.15	=	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	ARSENIC	8.2	=	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	BENZO(a)ANTHRACENE	0.14	=	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	BENZO(b)FLUORANTHENE	0.14	=	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	BENZO(g,h,i)PERYLENE	0.13	=	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	BENZO(K)FLUORANTHENE	0.18	=	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	CADMIUM	2.5	=	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	CHROMIUM, TOTAL	45.2	=	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	CHRYSENE	0.15	=	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	COPPER	24	=	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	FLUORANTHENE	0.29		MG/KG
SS32F	RHA019	1/18/97 5:00 PM	INDENO(1,2,3-c,d)PYRENE	0.14	=	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	LEAD	105		MG/KG
SS32F	RHA019	1/18/97 5:00 PM	NICKEL	18.2		MG/KG
SS32F	RHA019	1/18/97 5:00 PM	PHENANTHRENE	0.17	}	MG/KG
SS32F	RHA019	1/18/97 5:00 PM	PYRENE	0.24		MG/KG
SS32F	RHA019	1/18/97 5:00 PM	ZINC	4000	Ļ.,	MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	BENZO(a)PYRENE	0.12	ļ	MG/KG
SS32G	RHA020	1/18/97 4:30 PM	CHROMIUM, TOTAL	336		MG/KG
SS32G	RHA020	1/18/97 4:30 PM		1580	ļ	MG/KG
SS32G	BHA021FD1	1/18/97 4:30 PM	LEAD	563		MG/KG
SS32G	RHA020	1/18/97 4:30 PM	ANTIMONY		=	MG/KG
SS32G	BHA020	1/18/97 4:30 PM	ARSENIC	17.1		MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	ARSENIC	15.6		MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	BENZO(a)ANTHRACENE	0.13		MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	BENZO(b)FLUORANTHENE	0.13		MG/KG
SS32G	RHA020	1/18/97 4:30 PM		0.12	ļ	MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	BENZO(g,h,i)PERYLENE BENZO(g,h,i)PERYLENE			
SS32G	RHA021FD1	1/18/97 4:30 PM	BENZO(g,II,I)FERTLENE	0.1		MG/KG
			· · · ·	0.11	<u> </u>	MG/KG
SS32G	RHA020	1/18/97 4:30 PM	CADMIUM		=	MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM		1.3		MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	CHROMIUM, TOTAL	164	}	MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	CHRYSENE	0.11	}	MG/KG
SS32G	RHA020	1/18/97 4:30 PM	COPPER	48.9	ļ	MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	COPPER	67.9		MG/KG
SS32G	RHA020	1/18/97 4:30 PM	FLUORANTHENE	0.1		MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	FLUORANTHENE	0.24		MG/KG
SS32G	RHA020	1/18/97 4:30 PM	INDENO(1,2,3-c,d)PYRENE	0.088	2	MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	INDENO(1,2,3-c,d)PYRENE	0.12	=	MG/KG
SS32G	RHA020	1/18/97 4:30 PM	NICKEL	16.4	a	MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	NICKEL	32	=	MG/KG
SS32G	RHA020	1/18/97 4:30 PM	PHENANTHRENE	0.089	=	MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	PHENANTHRENE	0.16	3	MG/KG
SS32G	RHA020	1/18/97 4:30 PM	PYRENE	0.076	=	MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	PYRENE	0.17	=	MG/KG
SS32G	RHA020	1/18/97 4:30 PM	ZINC	693	=	MG/KG
SS32G	RHA021FD1	1/18/97 4:30 PM	ZINC	369	Ξ	MG/KG

StationID	SampleiD	DateCollected	ParamName	Sec. 25	Projoual	Units
SS33A	SGA025	12/8/96 7:58 AM	ACETONE	0.005		MG/KG
SS33A	SGA025	12/8/96 7:58 AM	ARSENIC	8.1	a	MG/KG
SS33A	SGA025	12/8/96 7:58 AM	CHROMIUM, TOTAL	44.9	=	MG/KG
SS33A	SGA025	12/8/96 7:58 AM	COPPER	39.8	=	MG/KG
SS33A	SGA025	12/8/96 7:58 AM	LEAD	129	z	MG/KG
SS33A	SGA025	12/8/96 7:58 AM	NICKEL	16.7	8	MG/KG
SS33A	SGA025	12/8/96 7:58 AM	ZINC	91.6	=	MG/KG
SS33C	SGA027	12/8/96 8:50 AM	ARSENIC	11.8	=	MG/KG
SS33C	SGA027	12/8/96 8:50 AM	CHROMIUM, TOTAL	53.8	=	MG/KG
SS33C	SGA027	12/8/96 8:50 AM	COPPER	62.8		MG/KG
SS33C	SGA027	12/8/96 8:50 AM	LEAD	200		MG/KG
SS33C	SGA027	12/8/96 8:50 AM	NICKEL	29.1		MG/KG
SS33C	SGA027	12/8/96 8:50 AM	ZINC	187		MG/KG
SS33D	SGA028	12/8/96 10:15 AM	LEAD	751	<u> </u>	MG/KG
SS33D	SGA028	12/8/96 10:15 AM	ACETONE	0.004		MG/KG
SS33D	SGA028	12/8/96 10:15 AM	ARSENIC	19.6	-	MG/KG
SS33D	SGA028	12/8/96 10:15 AM	CADMIUM	<u> </u>	=	MG/KG
SS33D	SGA028	12/8/96 10:15 AM	CHROMIUM, TOTAL	158		MG/KG
SS33D	SGA028	12/8/96 10:15 AM	COPPER	41.5		MG/KG
SS33D	SGA028	12/8/96 10:15 AM	NICKEL	27.6		MG/KG
SS33D	SGA028	12/8/96 10:15 AM	ZINC			
SS33E	SGB068	12/8/96 9:30 AM		1090		MG/KG
SS33E	SGB068	12/8/96 9:30 AM	BENZO(a)PYRENE	0.13	ļ	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	CALCIUM	7360		MG/KG
SS33E	SGB068		ALUMINUM	7410		MG/KG
SS33E		12/8/96 9:30 AM	ANTIMONY		J	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	ARSENIC	13.8	ļ	MG/KG
	SGB068	12/8/96 9:30 AM	BARIUM	432		MG/KG
SS33E	SGB068	12/8/96 9:30 AM	BENZO(a)ANTHRACENE	0.11	ļ-	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	BENZO(b)FLUORANTHENE	0.14		MG/KG
SS33E	SGB068	12/8/96 9:30 AM	BENZO(g,h,i)PERYLENE	0.082	ļ	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	BENZO(k)FLUORANTHENE	0.14	J	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	BERYLLIUM	0.45		MG/KG
SS33E	SGB068	12/8/96 9:30 AM	bis(2-ETHYLHEXYL)	0.041	Ļ	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	CHROMIUM, TOTAL	22.5	J	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	CHRYSENE	0.16	J	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	COBALT	3.8	J	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	COPPER	14.7	=	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	FLUORANTHENE	0.21	3	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	INDENO(1,2,3-c,d)PYRENE	0.064	J	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	IRON	9280	=	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	LEAD	140	=	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	MAGNESIUM	1380	=	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	MANGANESE	291	=	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	NICKEL	7.5	=	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	PHENANTHRENE	0.15	J	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	POTASSIUM	582		MG/KG
SS33E	SGB068	12/8/96 9:30 AM	PYRENE	0.32	<u> </u>	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	SODIUM	261	+	MG/KG
SS33E	SGB068	12/8/96 9:30 AM	VANADIUM	15.1	<u> </u>	MG/KG

StationID	SampleID	DateCollected	ParamName	ANAVAUE	ProjOual	Dints.
SS33E	SGB068	12/8/96 9:30 AM	ZINC	551	2	MG/KG
SS33F	SGA030	12/8/96 9:20 AM	ACETONE	0.004	J	MG/KG
SS33F	SGA030	12/8/96 9:20 AM	ARSENIC	18.4	=	MG/KG
SS33F	SGA030	12/8/96 9:20 AM	CHROMIUM, TOTAL	40.8	=	MG/KG
SS33F	SGA030	12/8/96 9:20 AM	COPPER	30.7	=	MG/KG
SS33F	SGA030	12/8/96 9:20 AM	LEAD	79.3	=	MG/KG
SS33F	SGA030	12/8/96 9:20 AM	NICKEL	26.5	=	MG/KG
SS33F	SGA030	12/8/96 9:20 AM	ZINC	211		MG/KG
SS33G	MIA333	10/8/98 11:45 AM	ANTIMONY	0.24	J	MG/KG
SS33G	MIA333	10/8/98 11:45 AM	ARSENIC	8.2		MG/KG
SS33G	MIA333	10/8/98 11:45 AM	BERYLLIUM	0.44		MG/KG
SS33G	MIA333	10/8/98 11:45 AM	CADMIUM	0.19		MG/KG
SS33G	MIA333	10/8/98 11:45 AM	CHROMIUM III	17.2	<u> </u>	MG/KG
SS33G	MIA333	10/8/98 11:45 AM	CHROMIUM, TOTAL	17.1		MG/KG
SS33G	MIA333	10/8/98 11:45 AM	COPPER	16.1	[MG/KG
SS33G	MIA333	10/8/98 11:45 AM	LEAD	34.6		MG/KG
SS33G	MIA333	10/8/98 11:45 AM	MERCURY	0.02		MG/KG
SS33G	MIA333	10/8/98 11:45 AM	NICKEL	14.6		MG/KG
SS33G	MIA333	10/8/98 11:45 AM	p,p'-DDE	0.0019		MG/KG
SS33G	MIA333	10/8/98 11:45 AM	p,p'-DDT	0.0019		MG/KG
SS33G	MIA333	10/8/98 11:45 AM	SELENIUM	0.0050	<u> </u>	MG/KG
SS33G	MIA333	10/8/98 11:45 AM	ZINC	57.8		MG/KG
SS33H	MIA334	10/8/98 12:00 PM	CHROMIUM, TOTAL	265	ļ	MG/KG
SS33H	MIA334	10/8/98 12:00 PM	LEAD	900		MG/KG
SS33H	MIA334	10/8/98 12:00 PM	ARSENIC	7.2	ļ	MG/KG
SS33H	MIA334	10/8/98 12:00 PM	BERYLLIUM	0.42	<u> </u>	MG/KG
SS33H	MIA334	10/8/98 12:00 PM	CADMIUM		J	MG/KG
SS33H	MIA334	10/8/98 12:00 PM	COPPER	35.5	ļ	MG/KG
SS33H	MIA334	10/8/98 12:00 PM	MERCURY	0.05	ļ	MG/KG
SS33H	MIA334			ļ	ļ	
SS33H	MIA334	10/8/98 12:00 PM			J	MG/KG
		10/8/98 12:00 PM	p,p'-DDE	0.17		MG/KG
SS33H	MIA334	10/8/98 12:00 PM	p,p'-DDT	0.41	l .	MG/KG
SS33H	MIA334	10/8/98 12:00 PM	SELENIUM	0.54	<u> </u>	MG/KG
SS33H	MIA334	10/8/98 12:00 PM	ZINC	653		MG/KG
SS33I	MIA335	10/8/98 3:55 PM	ARSENIC	12.1		MG/KG
SS33I	MIA335	10/8/98 3:55 PM	BERYLLIUM	0.42		MG/KG
SS33I	MIA335	10/8/98 3:55 PM	CADMIUM	0.24		MG/KG
SS33I	MIA335	10/8/98 3:55 PM		13.1	↓	MG/KG
SS33I	MIA335	10/8/98 3:55 PM	CHROMIUM, TOTAL	<u> </u>	=	MG/KG
SS33I	MIA335	10/8/98 3:55 PM	COPPER	13.4		MG/KG
SS33I	MIA335	10/8/98 3:55 PM	DIELDRIN	0.0064		MG/KG
SS33I	MIA335	10/8/98 3:55 PM	LEAD	22.8	.	MG/KG
SS33I	MIA335	10/8/98 3:55 PM	MERCURY	0.03		MG/KG
SS33I	MIA335	10/8/98 3:55 PM	NICKEL	14.1	J	MG/KG
SS33I	MIA335	10/8/98 3:55 PM	SELENIUM	1.6	{	MG/KG
SS331	MIA335	10/8/98 3:55 PM	ZINC	37.4		MG/KG
SS33J	MIA336	10/8/98 4:10 PM	ANTIMONY	0.24	J	MG/KG
SS33J	MIA336	10/8/98 4:10 PM	ARSENIC	9.3	3 =	MG/KG
SS33J	MIA336	10/8/98 4:10 PM	BERYLLIUM	0.43	3 J	MG/KG

StationID	Samplei0	DateCollected	ParamName	AnaVsice	ProjOual	Units
SS33J	MIA336	10/8/98 4:10 PM	CADMIUM	0.16	J	MG/KG
SS33J	MIA336	10/8/98 4:10 PM	CHROMIUM, TOTAL	11	=	MG/KG
SS33J	MIA336	10/8/98 4:10 PM	COPPER	11.2		MG/KG
รรรม	MIA336	10/8/98 4:10 PM	DIELDRIN	0.0012	J	MG/KG
SS33J	MIA336	10/8/98 4:10 PM	LEAD	10	=	MG/KG
SS33J	MIA336	10/8/98 4:10 PM	NICKEL	11.7	J	MG/KG
SS33J	MIA336	10/8/98 4:10 PM	p,p'-DDE	0.0014	J	MG/KG
SS33J	MIA336	10/8/98 4:10 PM	p,p'-DDT	0.0027	J	MG/KG
SS33J	MIA336	10/8/98 4:10 PM	SELENIUM	1.6	±	MG/KG
SS33J	MIA336	10/8/98 4:10 PM	ZINC	30.7	J	MG/KG
SS33K	MIA325	10/8/98 4:30 PM	ANTIMONY	10.1	J	MG/KG
SS33K	MIA325	10/8/98 4:30 PM	ARSENIC	22		MG/KG
SS33K	MIA325	10/8/98 4:30 PM	CHROMIUM, TOTAL	403		MG/KG
SS33K	MIA325	10/8/98 4:30 PM	LEAD	1830		MG/KG
SS33K	MIA325	10/8/98 4:30 PM	BERYLLIUM	0.34		MG/KG
SS33K	MIA325	10/8/98 4:30 PM	CADMIUM	2.7	-	MG/KG
SS33K	MIA325	10/8/98 4:30 PM	CHROMIUM III	403	_	MG/KG
SS33K	MIA325	10/8/98 4:30 PM				
SS33K		+	CHROMIUM, HEXAVALENT	0.12		MG/KG
	MIA325	10/8/98 4:30 PM	COPPER	163	-	MG/KG
SS33K	MIA325	10/8/98 4:30 PM		0.035		MG/KG
SS33K	MIA325	10/8/98 4:30 PM	MERCURY	0.07		MG/KG
SS33K	MIA325	10/8/98 4:30 PM		56	-	MG/KG
SS33K	MIA325	10/8/98 4:30 PM	p,p'-DDE	0.098		MG/KG
SS33K	MIA325	10/8/98 4:30 PM	p,p'-DDT	0.28		MG/KG
SS33K	MIA325	10/8/98 4:30 PM	SELENIUM	1.6	ļ	MG/KG
SS33K	MIA325	10/8/98 4:30 PM	SILVER	1.6		MG/KG
SS33K	MIA325	10/8/98 4:30 PM	ZINC	856	J	MG/KG
SS33L	MIA326	10/8/98 4:40 PM	ARSENIC	6	=	MG/KG
SS33L	MIA326	10/8/98 4:40 PM	BERYLLIUM	0.37	J	MG/KG
SS33L	MIA326	10/8/98 4:40 PM	CADMIUM	0.29	J	MG/KG
SS33L	MIA326	10/8/98 4:40 PM	CHROMIUM, TOTAL	47.9	=	MG/KG
SS33L	MIA326	10/8/98 4:40 PM	COPPER	23.6	J	MG/KG
SS33L	MIA326	10/8/98 4:40 PM	LEAD	114	=	MG/KG
SS33L	MIA326	10/8/98 4:40 PM	NICKEL	11.3	J	MG/KG
SS33L	MIA326	10/8/98 4:40 PM	p,p'-DDE	0.0044	J	MG/KG
SS33L	MIA326	10/8/98 4:40 PM	p,p'-DDT	0.013	=	MG/KG
SS33L	MIA326	10/8/98 4:40 PM	SELENIUM	0.91	=	MG/KG
SS33L	MIA326	10/8/98 4:40 PM	ZINC	Į	J	MG/KG
SS33M	MIA327	10/8/98 2:30 PM	CALCIUM	46100	}	MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	CALCIUM	37400	ļ	MG/KG
SS33M	MIA327	10/8/98 2:30 PM	2-HEXANONE	0.001		MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	2-HEXANONE	0.001		MG/KG
SS33M	MIA327	10/8/98 2:30 PM	ALUMINUM	4740	Į	MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	ALUMINUM	5700	}	MG/KG
SS33M	MIA328FD MIA327	10/8/98 2:30 PM	ARSENIC	5/00	ļ	
SS33M	MIA327 MIA328FD	10/8/98 2:30 PM	ARSENIC	5.5		MG/KG
SS33M	MIA326FD MIA327	10/8/98 2:30 PM			<u> </u>	MG/KG
SS33M	MIA327 MIA328FD	10/8/98 2:30 PM	BARIUM	76.2		MG/KG
	MUNOZOF'U	10/8/98 2:30 PM	BARIUM	88.6	, ¹²	MG/KG

and the second second	Samplelu	DateCollected	ParamName	AnaValue	ProjQual	Units
SS33M	MIA328FD	10/8/98 2:30 PM	BENZENE	0.007	J	MG/KG
SS33M	MIA327	10/8/98 2:30 PM	BERYLLIUM	0.37	J	MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	BERYLLIUM	0.38	J	MG/KG
SS33M	MIA327	10/8/98 2:30 PM	CADMIUM	0.51	J	MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	CADMIUM	1.5	J	MG/KG
SS33M	MIA327	10/8/98 2:30 PM	CARBON DISULFIDE	0.002	J	MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	CARBON DISULFIDE	0.002	J	MG/KG
SS33M	MIA327	10/8/98 2:30 PM	CHROMIUM III	133	=	MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	CHROMIUM III	143	=	MG/KG
SS33M	MIA327	10/8/98 2:30 PM	CHROMIUM, TOTAL	133	=	MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	CHROMIUM, TOTAL	143		MG/KG
SS33M	MIA327	10/8/98 2:30 PM	COBALT	4.7	J	MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	COBALT		J	MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	COPPER	60	=	MG/KG
SS33M	MIA327	10/8/98 2:30 PM	COPPER	38.9	J	MG/KG
SS33M	MIA327	10/8/98 2:30 PM	DIELDRIN	0.012		MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	DIELDRIN	0.014		MG/KG
SS33M	MIA327	10/8/98 2:30 PM	IRON	19900		MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	IRON	24800		MG/KG
SS33M	MIA327	10/8/98 2:30 PM	LEAD	332		MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	LEAD	373		MG/KG
SS33M	MIA327	10/8/98 2:30 PM	MAGNESIUM	3050		MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	MAGNESIUM	2890		MG/KG
SS33M	MIA327	10/8/98 2:30 PM	MANGANESE	311		MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	MANGANESE	315		MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	MERCURY	0.04		MG/KG
SS33M	MIA327	10/8/98 2:30 PM	METHYL ETHYL KETONE (2-	0.008		MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	METHYL ETHYL KETONE (2-	0.009		MG/KG
SS33M	MIA327	10/8/98 2:30 PM	NICKEL	16.2	[MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	NICKEL		3	MG/KG
SS33M	MIA327	10/8/98 2:30 PM	p,p'-DDD	0.032		MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	p,p'-DDD	0.029		MG/KG
SS33M	MIA327	10/8/98 2:30 PM	p,p'-DDE	0.023	<u> </u>	MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	p,p'-DDE	0.058	1	MG/KG
SS33M	MIA327	10/8/98 2:30 PM	p,p'-DDT	0.030		MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	p,p'-DDT	0.12		MG/KG
SS33M	MIA327	10/8/98 2:30 PM	POTASSIUM	1050	Į	MG/KG
SS33M	MIA328FD	10/8/98 2:30 PM	POTASSIUM	1290		MG/KG
SS33M	MIA327	10/8/98 2:30 PM	SODIUM	62.1	Į	MG/KG
SS33M	MIA327	10/8/98 2:30 PM	TOLUENE	•	<u> </u>	
SS33M	MIA328FD	10/8/98 2:30 PM	TOLUENE	0.001	Į	MG/KG
SS33M	MIA320FU MIA327	10/8/98 2:30 PM		0.004	<u> </u>	MG/KG
SS33M	MIA327 MIA328FD		Total Xylenes	0.001	<u></u>	MG/KG
SS33M	MIA320FU	10/8/98 2:30 PM	Total Xylenes	0.003		MG/KG
		10/8/98 2:30 PM			=	MG/KG
SS33M SS33M	MIA328FD	10/8/98 2:30 PM		15.9	Į	MG/KG
SS33M SS33M	MIA327	10/8/98 2:30 PM		282	ļ	MG/KG
SS33N	MIA328FD	10/8/98 2:30 PM		299	1	MG/KG
NICCCC	MIA330	10/8/98 2:05 PM	ANTIMONY	0.6	j	MG/KG

StationID	STATES AND AND A STATES	UN(OCORected)	ParamName	AnaValue	ProjOual	الم الفينية الم
SS33N	MIA330	10/8/98 2:05 PM	BERYLLIUM	0.37	J	MG/KG
SS33N	MIA330	10/8/98 2:05 PM	CADMIUM	0.24	J	MG/KG
SS33N	MIA330	10/8/98 2:05 PM	CHROMIUM, TOTAL	23.8	=	MG/KG
SS33N	MIA330	10/8/98 2:05 PM	COPPER	24.6	=	MG/KG
SS33N	MIA330	10/8/98 2:05 PM	LEAD	62.3	=	MG/KG
SS33N	MIA330	10/8/98 2:05 PM	MERCURY	0.04	=	MG/KG
SS33N	MIA330	10/8/98 2:05 PM	NICKEL	10.5	J	MG/KG
SS33N	MIA330	10/8/98 2:05 PM	SELENIUM	1.3	=	MG/KG
SS33N	MIA330	10/8/98 2:05 PM	ZINC	60.6	J	MG/KG
SS330	MIA331	10/8/98 1:40 PM	ANTIMONY	0.34	J	MG/KG
SS330	MIA331	10/8/98 1:40 PM	ARSENIC 6.3		=	MG/KG
SS330	MIA331	10/8/98 1:40 PM	BERYLLIUM	0.35	J	MG/KG
SS330	MIA331	10/8/98 1:40 PM	CADMIUM	0.14	J	MG/KG
SS330	MIA331	10/8/98 1:40 PM	CHROMIUM, TOTAL	10.8	=	MG/KG
SS330	MIA331	10/8/98 1:40 PM	COPPER	14.8	=	MG/KG
SS330	MIA331	10/8/98 1:40 PM	DIELORIN	0.011	=	MG/KG
SS330	MIA331	10/8/98 1:40 PM	LEAD	13.2	=	MG/KG
SS330	MIA331	10/8/98 1:40 PM	MERCURY	0.03	J	MG/KG
SS330	MIA331	10/8/98 1:40 PM	NICKEL	14	J	MG/KG
SS330	MIA331	10/8/98 1:40 PM	SELENIUM	1.4		MG/KG
SS330	MIA331	10/8/98 1:40 PM	ZINC	36.9		MG/KG
SS45	LAWSS45		BENZO(a)PYRENE	0.14		MG/KG
SS45	LAWSS45		BARIUM	85.2		MG/KG
SS45	LAWSS45		BENZO(a)ANTHRACENE	0.16		MG/KG
SS45	LAWSS45	<u> </u>	BENZO(b)FLUORANTHENE	0.16		MG/KG
SS45	LAWSS45		bis(2-ETHYLHEXYL)	1.2		MG/KG
SS45	LAWSS45		CHROMIUM, TOTAL	138	L	MG/KG
SS45	LAWSS45		CHRYSENE	0.22		MG/KG
SS45	LAWSS45		COPPER	116		MG/KG
SS45	LAWSS45		DIMETHYL PHTHALATE	0.18	L	MG/KG
SS45	LAWSS45		FLUORANTHENE	0.34	į	MG/KG
SS45	LAWSS45		INDENO(1,2,3-c,d)PYRENE	0.12		MG/KG
SS45	LAWSS45	[LEAD	312	L	MG/KG
SS45	LAWSS45		NICKEL	<u><u></u></u>	=	MG/KG
SS45	LAWSS45		PHENANTHRENE	0.21		MG/KG
SS45	LAWSS45		PYRENE	0.21		MG/KG
SS45	LAWSS45		ZINC	202		MG/KG
		10/07/20 10:00 414	BARIUM		Į	
SS46 SS46	LAWSS46	10/27/89 12:00 AM 10/27/89 12:00 AM	BENZO(a)ANTHRACENE	91.8		MG/KG
SS46	LAWSS46	10/27/89 12:00 AM	BENZO(a)PYRENE	0.09		MG/KG MG/KG
*****	LAWSS46	10/27/89 12:00 AM		ł		ŧ
SS46	LAWSS46		BENZO(b)FLUORANTHENE bis(2-ETHYLHEXYL)	0.16		MG/KG
SS46	LAWSS46	10/27/89 12:00 AM		1.4		MG/KG
SS46	LAWSS46	10/27/89 12:00 AM	CHROMIUM, TOTAL		=	MG/KG
SS46	LAWSS46	10/27/89 12:00 AM	CHRYSENE	0.13		MG/KG
SS46	LAWSS46	10/27/89 12:00 AM	COPPER		=	MG/KG
SS46	LAWSS46	10/27/89 12:00 AM		0.21	<u> </u>	MG/KG
SS46	LAWSS46	10/27/89 12:00 AM		166		MG/KG
SS46	LAWSS46	10/27/89 12:00 AM	NICKEL	<u> </u>	=	MG/KG
SS46	LAWSS46	10/27/89 12:00 AM	PHENANTHRENE	0.12	J <u> </u>	MG/KG

WDC990270005.XLS

ī

|

!

:

StationID	SampleiD	DateCollected	ParamNeine	Anavalor	Projetial	Units
SS46	LAWSS46	10/27/89 12:00 AM	PYRENE	0.25		MG/KG
SS46	LAWSS46	10/27/89 12:00 AM	ZINC	146	=	MG/KG
SS87A	MIA100	10/6/98 12:00 PM	p,p'-DDE	0.0027	J	MG/KG
SS87A	MIA100	10/6/98 12:00 PM	p,p'-DDT	0.016	=	MG/KG
SS87B	MIA102	10/6/98 1:25 PM	p,p'-DDE	0.014	J	MG/KG
SS87B	MIA102	10/6/98 1:25 PM	p,p'-DDT	0.037	=	MG/KG
SS87C	MIA103	10/6/98 1:55 PM	p,p'-DDE	0.0052	J	MG/KG
SS87C	MIA103	10/6/98 1:55 PM	p,p'-DDT	0.019	=	MG/KG
SS89A	SGB044	12/6/96 3:00 PM	CALCIUM	164000	=	MG/KG
SS89A	SGB044	12/6/96 3:00 PM	MAGNESIUM	4760	2	MG/KG
SS89A	SGB044	12/6/96 3:00 PM	ALUMINUM	3240	=	MG/KG
SS89A	SGB044	12/6/96 3:00 PM	BARIUM	30.5		MG/KG
SS89A	SGB044	12/6/96 3:00 PM	BERYLLIUM	0.13		MG/KG
SS89A	SGB044	12/6/96 3:00 PM	CADMIUM	0.41		MG/KG
SS89A	SGB044	12/6/96 3:00 PM	CHROMIUM, TOTAL	14.5		MG/KG
SS89A	SGB044	12/6/96 3:00 PM	COBALT	2.7		MG/KG
SS89A	SGB044	12/6/96 3:00 PM	IRON	8140		MG/KG
SS89A	SGB044	12/6/96 3:00 PM	LEAD	24.6	<u> </u>	MG/KG
SS89A	SGB044	12/6/96 3:00 PM	MANGANESE	154		MG/KG
SS89A	SGB044	12/6/96 3:00 PM	NICKEL	9.3		MG/KG
SS89A	SGB044	12/6/96 3:00 PM	SELENIUM	3.8		MG/KG
SS89A	SGB044	12/6/96 3:00 PM	VANADIUM	11.2		MG/KG
SS89A	SGB044	12/6/96 3:00 PM	ZINC	293	<u> </u>	MG/KG
SS89B	SGB039	12/6/96 3:35 PM	ARSENIC	5.7		MG/KG
SS89B	SGB039	12/6/96 3:35 PM	BERYLLIUM	0.21		<u> </u>
SS89B	SGB039	12/6/96 3:35 PM	CADMIUM	1.1		MG/KG
SS89B	SGB039	12/6/96 3:35 PM	CHROMIUM, TOTAL	43.8		MG/KG
SS89B	SGB039	12/6/96 3:35 PM	COPPER	23.1		MG/KG MG/KG
SS89B	SGB039	12/6/96 3:35 PM	LEAD			
SS89B	SGB039	12/6/96 3:35 PM	NICKEL	139		MG/KG
SS89B	SGB039	12/6/96 3:35 PM	ZINC	12.9		MG/KG
SS89C	SGA250	12/6/96 8:45 AM		1500		MG/KG
SS89C	SGA250	12/6/96 8:45 AM	ARSENIC	4.6		MG/KG
SS89C			CHROMIUM, TOTAL	56.1		MG/KG
SS89C	SGA250	12/6/96 8:45 AM	COPPER	16.2		MG/KG
SS89C	SGA250	12/6/96 8:45 AM		227		MG/KG
	SGA250	12/6/96 8:45 AM	NICKEL	19.1		MG/KG
SS89C	SGA250	12/6/96 8:45 AM	ZINC	226	÷	MG/KG
SS89D	SGA251	12/6/96 8:00 AM	ARSENIC	2.7		MG/KG
SS89D	SGA251	12/6/96 8:00 AM		1.2		MG/KG
SS89D	SGA251	12/6/96 8:00 AM	CHROMIUM, TOTAL	15.5		MG/KG
SS89D	SGA251	12/6/96 8:00 AM	COPPER	8.1		MG/KG
SS89D	SGA251	12/6/96 8:00 AM	LEAD	14.9		MG/KG
SS89D	SGA251	12/6/96 8:00 AM	METHYLENE CHLORIDE	0.001	J	MG/KG
SS89D	SGA251	12/6/96 8:00 AM	NICKEL	9.4	=	MG/KG
SS89D	SGA251	12/6/96 8:00 AM	ZINC	527	=	MG/KG
SS89F	SGA253	12/6/96 3:55 PM	ARSENIC	10.5	=	MG/KG
SS89F	SGA253	12/6/96 3:55 PM	CHROMIUM, TOTAL	67.5	=	MG/KG
SS89F	SGA253	12/6/96 3:55 PM	COPPER	34.2	=	MG/KG
SS89F	SGA253	12/6/96 3:55 PM	LEAD	237	=	MG/KG

GA253 GA253 GA257	12/6/96 3:55 PM 12/6/96 3:55 PM 12/6/96 3:55 PM 12/6/96 4:20 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	METHYLENE CHLORIDE NICKEL ZINC ARSENIC CHROMIUM, TOTAL LEAD CADMIUM COPPER METHYLENE CHLORIDE NICKEL ZINC ARSENIC CHROMIUM, TOTAL COPPER LEAD	0.002 27.9 388 23.9 443 2470 1.4 73.2 0.002 38.6 666 12.5 29 29.9	= # = = = = J] = = ; ; ; ; ; ;	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG
GA253 GA257 GA257 GA257 GA257 GA257 GA257 GA257 GA257 GA257 GA257 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258	12/6/96 3:55 PM 12/6/96 4:20 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	ZINC ARSENIC CHROMIUM, TOTAL LEAD CADMIUM COPPER METHYLENE CHLORIDE NICKEL ZINC ARSENIC CHROMIUM, TOTAL COPPER	388 23.9 443 2470 1.4 73.2 0.002 38.6 666 12.5 29	ц = = = = =]] = =]] = = =]] = = =]] = =]	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG
GA257 GA257 GA257 GA257 GA257 GA257 GA257 GA257 GA257 GA257 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258	12/6/96 4:20 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	ARSENIC CHROMIUM, TOTAL LEAD CADMIUM COPPER METHYLENE CHLORIDE NICKEL ZINC ARSENIC CHROMIUM, TOTAL COPPER	23.9 443 2470 1.4 73.2 0.002 38.6 6666 12.5 29	= = = = J = = = = = = =	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG
GA257 GA257 GA257 GA257 GA257 GA257 GA257 GA257 GA257 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258	12/6/96 4:20 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	CHROMIUM, TOTAL LEAD CADMIUM COPPER METHYLENE CHLORIDE NICKEL ZINC ARSENIC CHROMIUM, TOTAL COPPER	443 2470 1.4 73.2 0.002 38.6 666 12.5 29	= = J = = J = =	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG
GA257 GA257 GA257 GA257 GA257 GA257 GA257 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258	12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	LEAD CADMIUM COPPER METHYLENE CHLORIDE NICKEL ZINC ARSENIC CHROMIUM, TOTAL COPPER	2470 1.4 73.2 0.002 38.6 666 12.5 29	= = J = = =	MG/KG MG/KG MG/KG MG/KG MG/KG
GA257 GA257 GA257 GA257 GA257 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258	12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	CADMIUM COPPER METHYLENE CHLORIDE NICKEL ZINC ARSENIC CHROMIUM, TOTAL COPPER	1.4 73.2 0.002 38.6 666 12.5 29	= J = =	MG/KG MG/KG MG/KG MG/KG MG/KG
GA257 GA257 GA257 GA257 GA257 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258	12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	COPPER METHYLENE CHLORIDE NICKEL ZINC ARSENIC CHROMIUM, TOTAL COPPER	73.2 0.002 38.6 666 12.5 29	= J = =	MG/KG MG/KG MG/KG MG/KG
GA257 GA257 GA257 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258	12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	METHYLENE CHLORIDE NICKEL ZINC ARSENIC CHROMIUM, TOTAL COPPER	0.002 38.6 666 12.5 29	J = = =	MG/KG MG/KG MG/KG MG/KG
GA257 GA257 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GGA258	12/6/96 4:20 PM 12/6/96 4:20 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	NICKEL ZINC ARSENIC CHROMIUM, TOTAL COPPER	38.6 666 12.5 29	-	MG/KG MG/KG MG/KG
GA257 GGA258 GGA258 GGA258 GGA258 GGA258 GGA258 GGA258 GGA258 GGA258	12/6/96 4:20 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	ZINC ARSENIC CHROMIUM, TOTAL COPPER	666 12.5 29	=	MG/KG MG/KG
GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258 GA258	12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	ARSENIC CHROMIUM, TOTAL COPPER	12.5 29	=	MG/KG
GA258 GA258 GGA258 GGA258 GGA258 GGA258 GGA258	12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	CHROMIUM, TOTAL COPPER	29		
6GA258 6GA258 6GA258 6GA258 6GA258 6GA258	12/6/96 4:50 PM 12/6/96 4:50 PM 12/6/96 4:50 PM	COPPER		÷	MONO
6GA258 6GA258 6GA258 6GA258	12/6/96 4:50 PM 12/6/96 4:50 PM		29.9		MG/KG
GA258 GA258 GA258	12/6/96 4:50 PM	LEAD	1	=	MG/KG
GA258 GA258			30.2	=	MG/KG
GA258		METHYLENE CHLORIDE	0.003		MG/KG
	12/6/96 4:50 PM	NICKEL	35.4	=	MG/KG
GA259	12/6/96 4:50 PM	ZINC	147	· · · ·	MG/KG
NAREJU 1	12/6/96 5:05 PM	CHROMIUM. TOTAL	539		MG/KG
GA260FD1			 		MG/KG
GA259		·	ļ	ļ	MG/KG
GA260FD1					MG/KG
GA259			<u> </u>		MG/KG
			1		MG/KG
					MG/KG
				<u> </u>	MG/KG
					MG/KG
			<u> </u>		MG/KG
			<u> </u>		MG/KG
					MG/KG
					MG/KG
			<u> </u>		
			<u> </u>	<u> </u>	MG/KG
				<u> </u>	MG/KG
					MG/KG
			÷		MG/KG
			{		MG/KG
		· · · · · · · · · · · · · · · · · · ·	<u> </u>		MG/KG
			<u> </u>	ļ	MG/KG
		•	.		MG/KG
			£		MG/KG
					MG/KG
					MG/KG
			+		MG/KG
			ļ		MG/KG
	10/8/98 2:50 PM		<u> </u>		MG/KG
/IA155	10/8/98 2:50 PM	COPPER	ļ	ļ	MG/KG
AIA155	10/8/98 2:50 PM	LEAD	<u> </u>		MG/KG
AIA155	10/8/98 2:50 PM	NICKEL	÷		MG/KG MG/KG
	GA259 GA260FD1 GA260FD1 GA259 GA260FD1 GA259 GA260FD1 GA259 GA260FD1 GA259 GA260FD1 GA259 GA260FD1 GA259 GA260FD1 IA153 IIA153 IIA153 IIA153 IIA153 IIA153 IIA155 IIA155 IIA155 IIA155 IIA155 IIA155	GA259 12/6/96 5:05 PM GA260FD1 12/6/96 5:05 PM GA259 12/6/96 5:05 PM GA250FD1 12/6/96 5:05 PM GA260FD1 12/6/96 5:05 PM GA259 12/6/96 5:05 PM GA260FD1 12/6/96 5:05 PM GA259 12/6/96 5:05 PM GA260FD1 12/6/96 5:05 PM GA260FD1 12/6/96 5:05 PM GA260FD1 12/6/96 5:05 PM GA259 12/6/96 5:05 PM GA260FD1 12/6/96 5:05 PM IA153 10/8/98 3:20 PM IIA153 10/8/98 3:20 PM IIA153	GA259 12/6/96 5:05 PM LEAD GA260FD1 12/6/96 5:05 PM LEAD GA259 12/6/96 5:05 PM ARSENIC GA260FD1 12/6/96 5:05 PM ARSENIC GA260FD1 12/6/96 5:05 PM CADMIUM GA260FD1 12/6/96 5:05 PM CADMIUM GA260FD1 12/6/96 5:05 PM COPPER GA260FD1 12/6/96 5:05 PM COPPER GA260FD1 12/6/96 5:05 PM COPPER GA260FD1 12/6/96 5:05 PM NICKEL GA260FD1 12/6/96 5:05 PM NICKEL GA260FD1 12/6/96 5:05 PM NICKEL GA260FD1 12/6/96 5:05 PM ZINC GA260FD1 12/6/96 5:05 PM ZINC GA260FD1 12/6/96 3:20 PM ANTIMONY IIA153 10/8/98 3:20 PM CADMIUM IIA153 10/8/98 3:20 PM CADMIUM IIA153 10/8/98 3:20 PM COPPER IIA153 10/8/98 3:20 PM COPPER IIA153 10/8/98 3:20 PM LEAD I	GA259 12/6/96 5:05 PM LEAD 2250 GA260FD1 12/6/96 5:05 PM LEAD 1310 GA259 12/6/96 5:05 PM ARSENIC 10.2 GA260FD1 12/6/96 5:05 PM ARSENIC 10.4 GA259 12/6/96 5:05 PM CADMIUM 2.2 GA260FD1 12/6/96 5:05 PM CADMIUM 1.4 GA259 12/6/96 5:05 PM COPPER 88.6 GA260FD1 12/6/96 5:05 PM COPPER 88.6 GA259 12/6/96 5:05 PM COPPER 58 GA259 12/6/96 5:05 PM NICKEL 45.6 GA259 12/6/96 5:05 PM NICKEL 32.2 GA259 12/6/96 5:05 PM NICKEL 32.2 GA259 12/6/96 5:05 PM ZINC 1460 GA260FD1 12/6/96 5:05 PM ZINC 1600 IA153 10/8/98 3:20 PM ANTIMONY 0.42 IA153 10/8/98 3:20 PM CADMIUM 0.55 IA153 10/8/98 3:20 PM CADMIUM, TOTAL	GA259 12/6/96 5:05 PM LEAD 2250 = GA260FD1 12/6/96 5:05 PM LEAD 1310 = GA259 12/6/96 5:05 PM ARSENIC 10.2 = GA259 12/6/96 5:05 PM ARSENIC 10.4 = GA260FD1 12/6/96 5:05 PM CADMIUM 2.2 = GA260FD1 12/6/96 5:05 PM CADMIUM 1.4 = GA259 12/6/96 5:05 PM COPPER 88.6 = GA259 12/6/96 5:05 PM COPPER 58 = GA259 12/6/96 5:05 PM COPPER 58 = GA260FD1 12/6/96 5:05 PM NICKEL 45.6 = GA259 12/6/96 5:05 PM NICKEL 32.2 = GA260FD1 12/6/96 5:05 PM ZINC 1460 = GA259 12/6/96 5:05 PM ZINC 1600 = IA153 10/8/98 3:20 PM ANTIMONY 0.42 J IA153 10/8/98 3:20 PM

StationID	SampleiD	Datacollected	Paramiyaina	AnaValue	ProjQual	Gill C
SS89L	MIA155	10/8/98 2:50 PM	ZINC	141	J	MG/KG
SS89M	MIA156	10/8/98 1:10 PM	ARSENIC	10.8	=	MG/KG
SS89M	MIA156	10/8/98 1:10 PM	CADMIUM	0.5	J	MG/KG
SS89M	MIA156	10/8/98 1:10 PM	CHROMIUM, TOTAL	63.5	=	MG/KG
SS89M	MIA156	10/8/98 1:10 PM	COPPER	21.3	J	MG/KG
SS89M	MIA156	10/8/98 1:10 PM	LEAD	256	=	MG/KG
SS89M	MIA156	10/8/98 1:10 PM	NICKEL	12.8	J	MG/KG
SS89M	MIA156	10/8/98 1:10 PM	SELENIUM	1	=	MG/KG
SS89M	MIA156	10/8/98 1:10 PM	ZINC	170	J	MG/KG
SS89N	MIA157	10/8/98 10:15 AM	ANTIMONY	0.26	J	MG/KG
SS89N	MIA157	10/8/98 10:15 AM	ARSENIC	6.8	=	MG/KG
SS89N	MIA157	10/8/98 10:15 AM	CADMIUM	0.46	J	MG/KG
SS89N	MIA157	10/8/98 10:15 AM	CHROMIUM, TOTAL	67.9	=	MG/KG
SS89N	MIA157	10/8/98 10:15 AM	COPPER	26.9	J	MG/KG
SS89N	MIA157	10/8/98 10:15 AM	LEAD	232	=	MG/KG
SS89N	MIA157	10/8/98 10:15 AM	NICKEL	15.4	J	MG/KG
SS89N	MIA157	10/8/98 10:15 AM	SELENIUM	0.87	/=	MG/KG
SS89N	MIA157	10/8/98 10:15 AM	ZINC	111	J	MG/KG
SS89O	MIA158	10/8/98 10:45 AM	ANTIMONY	0.37	J	MG/KG
SS890	MIA158	10/8/98 10:45 AM	ARSENIC	7.1	=	MG/KG
SS89O	MIA158	10/8/98 10:45 AM	BERYLLIUM	0.87	′ J	MG/KG
SS890	MIA158	10/8/98 10:45 AM	CADMIUM	0.25	J	MG/KG
SS89O	MIA158	10/8/98 10:45 AM	CHROMIUM, TOTAL	42	2=	MG/KG
SS89O	MIA158	10/8/98 10:45 AM	COPPER	55.1	J	MG/KG
SS89O	MIA158	10/8/98 10:45 AM	LEAD	53	=	MG/KG
SS890	MIA158	10/8/98 10:45 AM	NICKEL	20	J	MG/KG
SS890	MIA158	10/8/98 10:45 AM	ZINC	53.9	J	MG/KG
TEC93A	MIA332	10/8/98 1:25 PM	ANTIMONY	0.41	J	MG/KG
TEC93A	MIA332	10/8/98 1:25 PM	ARSENIC	10.6	=	MG/KG
TEC93A	MIA332	10/8/98 1:25 PM	BERYLLIUM	0.5	J	MG/KG
TEC93A	MIA332	10/8/98 1:25 PM	CADMIUM	0.15	i J	MG/KG
TEC93A	MIA332	10/8/98 1:25 PM	CHROMIUM, TOTAL	12.4	1	MG/KG
TEC93A	MIA332	10/8/98 1:25 PM	COPPER	18.9	=	MG/KG
TEC93A	MIA332	10/8/98 1:25 PM	DIELDRIN	0.084	=	MG/KG
TEC93A	MIA332	10/8/98 1:25 PM	LEAD	15.4	=	MG/KG
TEC93A	MIA332	10/8/98 1:25 PM	MERCURY	0.04	J	MG/KG
TEC93A	MIA332	10/8/98 1:25 PM	NICKEL	16.3	J	MG/KG
TEC93A	MIA332	10/8/98 1:25 PM	SELENIUM	1.1	=	MG/KG
TEC93A	MIA332	10/8/98 1:25 PM	ZINC	57.3	J	MG/KG

Table 1-2 Underground Storage Tank Cleanup Standards for Soil								
Soil Permeability $< 10^4$ cm/sec 10^4 to 10^6 cm/sec $> 10^6$ cm/sec								
Benzene-Drinking Water	5 ppm	25 ppm	50 ppm					
Benzene-Non-Drinking Water	25 ppm	50 ppm	100 ppm					
TPH-Drinking Water	100 ppm	250 ppm	500 ppm					
TPH-Non-Drinking Water	250 ppm	500 ppm	1000 ppm					

Table 1-3 Detected RCRA TCLP Concentrations

2	:					1833	RCRA Regulatory
StationID	SampleID	DateCollected	ParamName	AnaValue	ProjQual	Units	🐴 Limit
FS33A	MIA338	10/8/98 11:00 AM	Lead, TCLP	0.133	J	MG/L	5
FS33A	MIA338	10/8/98 11:00 AM	Mercury, TCLP	0.00013	J	MG/L	0.2
FS33B	MIA340	10/6/98 2:40 PM	Lead, TCLP	0.0676	J	MG/L	5
FS33C	MIA343	10/6/98 3:05 PM	Chromium, TCLP	0.0086	1	MG/L	5
FS33C	MIA343	10/6/98 3:05 PM	Lead, TCLP	0.0748	J	MG/L	5
FS33D	M1A347	10/5/98 4:15 PM	Mercury, TCLP	0.00013	J	MG/L	0.2
FS33E	MIA349	10/8/98 10:00 AM	Mercury, TCLP	0.00013	J	MG/L	0.2
FS33F	MIA352	10/5/98 5:00 PM	Mercury, TCLP	0.00013	J	MG/L	0.2
FS89P	MIA160FD	10/8/98 9:00 AM	Arsenic, TCLP	0.0742	J	MG/L	5
FS89P	MIA159	10/8/98 9:00 AM	Chromium, TCLP	0.0771	=	MG/L	5
FS89P	MIA160FD	10/8/98 9:00 AM	Chromium, TCLP	0.0621	=	MG/L	5
FS89P	MIA159	10/8/98 9:00 AM	Lead, TCLP	1.18	=	MG/L	5
FS89P	MIA160FD	10/8/98 9:00 AM	Lead, TCLP	1.04	=	MG/L	5
FS89Q	MIA165	10/8/98 2:00 PM	Chromium, TCLP	0.025	J	MG/L	5
FS89Q	MIA165	10/8/98 2:00 PM	Lead, TCLP	0.0622	J	MG/L	5
FS89R	MIA167	10/8/98 11:35 AM	Lead, TCLP	0.0667	J	MG/L	5

Table 1-4Industrial and Residential Screening Criteria

11	A		EPA III		BCT Screening	Industrial Screening	Residential Screening
Units	Name	Ind	Res	ground	Values	Criteria	Criteria
mg/kg	ACETONE	200000	7800			200000	
mg/kg	ACENAPHTHENE	120000	4700			120000	
mg/kg	ACENAPHTHYLENE	NA	NA			NA	
mg/kg	ALUMINUM	1000000	78000		24000	24000	
mg/kg	ALDRIN	. 0.34	0.038			0.34	
mg/kg	ANTHRACENE	610000	23000)	610000	2300
mg/kg	ANTIMONY	820			7	7	<u>'</u>
mg/kg	ARSENIC	3.8				20	
mg/kg	BARIUM	140000		234		140000	
mg/kg	BENZYL BUTYL PHTHALATE	410000	16000	NA		410000	
mg/kg	BROMODICHLOROMETHANE	92	10	NA		92	1
mg/kg	BERYLLIUM	4100	16	1.1	1.1	1.1	1
mg/kg	bis(2-CHLOROETHOXY) METHANE	NA	NA	NA NA		NA	N
mg/kg	ALPHA BHC (ALPHA	0.91	0.1	NA		0.91	0
mg/kg	BETA BHC (BETA	3.2	0.35	NA		3.2	2 0.3
mg/kg	DELTA BHC (DELTA	NA	N/	NA		. NA	N
mg/kg	GAMMA BHC (LINDANE)	4.4	0.49	NA NA		4.4	0.4
mg/kg	bis(2-CHLOROETHYL) ETHER (2-	5.2	0.58	NA NA	1	5.2	2 0.5
mg/kg	bis(2-ETHYLHEXYL) PHTHALATE	410	46	N/		410) 4
mg/kg	4-BROMOPHENYL PHENYL ETHER	120000	4500	N/		120000	450
mg/kg	BROMOFORM	720	81	N/		720	ε Ι ε
mg/kg	BROMOMETHANE	2900	110	NA NA	l	2900	1
mg/kg	BENZENE	200	22	2 NA		200	
mg/kg	BENZO(a)ANTHRACENE	7.8			l	7.8	3 0.8
mg/kg	BENZO(a)PYRENE	0.78	0.087	0.96	0.088	0.088	3 0.08
mg/kg	BENZO(b)FLUORANTHENE	7.8	0.8	7 0.9)	7.8	3 0
mg/kg	BENZO(g,h,i)PERYLENE	N/	NA	0.82	2	N/	N N
rng/kg	BENZO(k)FLUORANTHENE	78	8.	0.78	3	78	8 8
mg/kg	4-CHLORO-3-METHYLPHENOL	N/	N/	NA		N/	N N
mg/kg	CALCIUM	N/	N/	5840		N/	N N
mg/kg	CARBAZOLE	290	32	0.067	7	290	
mg/kg	CADMIUM	2000	78	3 1.4	4	2000	
mg/kg	CARBON DISULFIDE	200000	7800	0.002	2	200000	780
mg/kg	ALPHA-CHLORDANE	N/	N/	0.029	9	N/	N N
mg/kg	GAMMA-CHLORDANE	N/	N/	0.026	3	N/	N N
.mg/kg	CHRYSENE	780	8	7 0.94	4	780	
mg/kg	4-CHLOROANILINE	8200	310	N/	1	8200) 3'
mg/kg	CHLOROBENZENE	4100	1600) N/		41000	160
mg/kg	CHLOROETHANE	2000				2000	
mg/kg	CHLOROFORM	940				940	
mg/kg	CHLOROMETHANE	440				44(
mg/kg	2-CHLOROPHENOL	10000				10000	
ma/ka	2-CHLORONAPHTHALENE	160000				160000	
mg/kg	COBALT	12000				120000	
mg/kg	4-CHLOROPHENYL PHENYL ETHER					N/	
mg/kg	CHROMIUM, TOTAL	N/					
mg/kg	CHROMIUM III	3100000				310000	
mg/kg	CHROMIUM, HEXAVALENT	610		1		6100	
mg/kg	CARBON TETRACHLORIDE	4				44	
mg/kg	COPPER	8200	1			82000	
mg/kg	DIBENZ(a,h)ANTHRACENE	0.7				0.76	
mg/kg	DIBROMOCHLOROMETHANE	6				64	
_							
mg/kg mg/kg	DIBENZOFURAN 3,3'-DICHLOROBENZIDINE	820				820 1	

T T

Table 1-4Industrial and Residential Screening Criteria

			EPA III	Back-	BCT. Screening	Industrial Screening	Residential Screening
Units	Name	Ind	Res	ground	Values	Criteria	Criteria
mg/kg	1,1-DICHLOROETHANE	200000	7800			200000	
mg/kg	1,2-DICHLOROETHANE	63	7	NA NA		63	L
mg/kg	1,2-DICHLOROBENZENE	180000	7000	NA		180000	
mg/kg	1,3-DICHLOROBENZENE	61000	2300	NA		61000	
mg/kg	1,4-DICHLOROBENZENE	240	27	NA		240	
mg/kg	1,1-DICHLOROETHENE	9.5	j <u>1.1</u>	NA		9.5	
mg/kg	TOTAL 1,2-DICHLOROETHENE	18000	700	NA		18000	700
mg/kg	cis-1,3-DICHLOROPROPENE	NA	NA	NA		NA	N/
mg/kg	trans-1,3-DICHLOROPROPENE	NA	NA	NA		NA	
mg/kg	2,4-DICHLOROPHENOL	6100	230	NA		6100	230
mg/kg	1,2-DICHLOROPROPANE	84	9.4	NA	V	84	9.
mg/kg	p,p'-DDD	24	2.7	0.0067	·	24	2.3
mg/kg	p,p'-DDE	17	1.9	0.16	8	17	' 1.9
ma/ka	p,p'-DDT	17	1.9	0.074		17	1.9
mg/kg	DIETHYL PHTHALATE	1600000	63000	NA		1600000	6300
mg/kg	DIELDRIN	0.36	0.04	0.086	5	0.36	0.08
mg/kg	2,4-DIMETHYLPHENOL	41000		NA NA	1	41000	1600
ma/ka	DIMETHYL PHTHALATE	20000000		NA		2000000	78000
ma/kg	4,6-DINITRO-2-METHYLPHENOL	200	7.8	NA	j –	200	7.8
mg/kg	DI-n-BUTYL PHTHALATE	200000	1			200000	780
mg/kg	DI-n-OCTYLPHTHALATE	41000	1600	NA NA	J	41000	1600
mg/kg	2,4-DINITROPHENOL	4100	·		1	4100	160
mg/kg	2,4-DINITROTOLUENE	N/				NA	N/
mg/kg	2,6-DINITROTOLUENE	2000				2000	70
ma/kg	ETHYLBENZENE	200000	1			200000	7800
ma/kg	ALPHA ENDOSULFAN	N/	+			NA	N/
mg/kg	BETA ENDOSULFAN	N/		t		NA	N/
mg/kg	ENDOSULFAN SULFATE	N/		÷		NA	N/
mg/kg	ENDRIN	61(610	2
mg/kg	ENDRIN ALDEHYDE	N/				NA	N/
ma/kg	ENDRIN KETONE	NA	÷	·		NA	N/
mg/kg	FLUORENE	82000				82000	310
mg/kg	FLUORANTHENE	82000	+			82000	310
mg/kg	HEXACHLOROBUTADIENE	7	+			73	
mg/kg	HEXACHLOROCYCLOPENTADIENE	14000				14000	
mg/kg	HEXACHLOROBENZENE	N	· · · · · · · · · · · · · · · · · · ·	+	· · · · · · · · · · · · · · · · · · ·	NA	
mg/kg	HEXACHLOROETHANE	N/			· · · · · · · · · · · · · · · · · · ·	NA	
mg/kg	HEPTACHLOR	1.		<u> </u>		1.3	
mg/kg	HEPTACHLOR EPOXIDE	0.6				0.63	
mg/kg	2-HEXANONE	8200				82000	
mg/kg	IRON	61000					
mg/kg	INDENO(1,2,3-c,d)PYRENE	7.				7.8	
	ISOPHORONE				4	6000	
mg/kg		600					
mg/kg	LEAD	100	-	÷		U 400	
mg/kg	MAGNESIUM	N/	+	· · · · · · · · · · · · · · · · · · ·			
mg/kg	MANGANESE	29000					
mg/kg	MERCURY	61				610	
mg/kg	METHYL ETHYL KETONE (2-	120000				120000	÷ .
mg/kg	2-METHYLPHENOL (o-CRESOL)	10000				100000	
mg/kg	4-METHYLPHENOL (p-CRESOL)	1000				10000	
mg/kg	METHYL ISOBUTYL KETONE (4-	16000				160000	
mg/kg	METHYLENE CHLORIDE	76				760	
mg/kg	1-METHYLNAPHTHALENE	N/				Ň/	
mg/kg	2-METHYLNAPHTHALENE	4100	0 1600) N/	4	41000	0 16

 Table 1-4

 Industrial and Residential Screening Criteria

Units	Name	EPA III		Back-	BCT Screening Values	1 d do da	Residential Screening Criteria
mg/kg	METHOXYCHLOR	10000	390	1×		10000	390
ma/ka	NAPHTHALENE	41000		NA		41000	
mg/kg	NICKEL	41000	1600	30		41000	1600
mg/kg	N-NITROSODIPHENYLAMINE	1200				1200	130
ma/kg	N-NITROSODI-n-PROPYLAMINE	0.82	0.091	NA		0.82	0.091
ma/ka	NITROBENZENE	1000	39			1000	39
mg/kg	2-NITROPHENOL	NA	NA	NA		NA	N/
ma/ka	4-NITROPHENOL	16000		NA		16000	
mg/kg	POTASSIUM	NA	• · · · · · · · · · · · · · · · · · · ·			NA	
ma/ka	PCB-1016 (AROCHLOR 1016)	82	5.5	NA		82	5.5
ma/ka	PCB-1221 (AROCHLOR 1221)	2.9		NA		2.9	
ma/ka	PCB-1232 (AROCHLOR 1232)	2.9				2.9	0.32
mg/kg	PCB-1242 (AROCHLOR 1242)	2.9		NA		2.9	
mg/kg	PCB-1248 (AROCHLOR 1248)	2.9		NA		2.9	
ma/ka	PCB-1254 (AROCHLOR 1254)	2.9		NA		2.9	
mg/kg	PCB-1260 (AROCHLOR 1260)	2.9				2.9	
mg/kg	PENTACHLOROPHENOL	48		NA		48	
ma/ka	PHENANTHRENE	NA		0.61	· · · · · · · · · · · · · · · · · · ·	NA	N/
ma/kg	PHENOL	1200000				1200000	
mg/kg	PYRENE	61000		1.5		61000	
mg/kg	SILVER	10000		2		10000	
ma/kg	SELENIUM	10000		0.8		10000	
mg/kg	SODIUM	NA				NA	N/
mg/kg	STYRENE	410000				410000	16000
ma/ka	1,1,2,2-TETRACHLOROETHANE	29				29	
mg/kg	TETRACHLOROETHYLENE(PCE)	110				110	
mg/kg	1,1,1-TRICHLOROETHANE	41000				41000	
ma/ka	1,1,2-TRICHLOROETHANE	100				100	
ma/ka	1,2,4-TRICHLOROBENZENE	20000				20000	
mg/kg	TRICHLOROETHYLENE (TCE)	520				520	
ma/ka	2,4,5-TRICHLOROPHENOL	200000	· · · · · · · · · · · · · · · · · · ·	***		200000	
mg/kg	2,4,6-TRICHLOROPHENOL	520		· · · · · ·		520	
ma/ka	THALLIUM	140				140	
ma/ka	TOLUENE	410000				410000	16000
mg/kg	TOXAPHENE	5.2	î			5.2	
mg/kg	VANADIUM	14000				14000	
ma/ka		3				3	
ma/ka	Total Xylenes	4100000			· · · · · · · · · · · · · · · · · · ·	4100000	0.0
ma/ka	ZINC	610000					

 Table 1-5

 Sample Locations Exceeding Industrial Screening Criteria

StationID	SampleID	DateCollected	ParamName	AnaValue ProjQu	al Units	Industrial Screening Criteria	AnaValue:
B(28.1)	B106	10/18/96 1:02 PM	ALUMINUM	24700 J	MG/KG	24000	1.03
B(28.1)	B106	10/18/96 1:02 PM	IRON	38400 J	MG/KG	37000	1.04
C(35.2)	C129	10/18/96 2:03 PM	ARSENIC	71.6 J	MG/KG	20	3.58
FS33C	MIA343	10/6/98 3:05 PM	LEAD	2230 =	MG/KG	1000	2.23
SB31A	SGA015	12/18/96 8:40 AM	ARSENIC	20.6 =	MG/KG	20	1.03
SB32A	RHA012	1/18/97 2:40 PM	ANTIMONY	22.3 =	MG/KG	7	3,19
SB32A	RHA012	1/18/97 2:40 PM	ARSENIC	42.5 =	MG/KG	20	2.13
SB32A	RHA012	1/18/97 2:40 PM	BENZO(a)PYRENE	0.16 =	MG/KG	0.088	1.82
SB32A	RHA012	1/18/97 2:40 PM	LEAD	4150 =	MG/KG	1000	4.15
SS31A	SGA011	12/7/96 1:35 PM	BENZO(a)PYRENE	0.33 =	MG/KG	0.088	3.75
SS32B	RHA015	1/18/97 2:55 PM	BENZO(a)PYRENE	0.61 =	MG/KG	0.088	6.93
SS32D	RHA017	1/18/97 3:30 PM	BENZO(a)PYRENE	0.13 =	MG/KG	0.088	1.48
SS32E	RHA018	1/18/97 4:45 PM	BENZO(a)PYRENE	0.38 J	MG/KG	0.088	4.32
SS32E	RHA018	1/18/97 4:45 PM	PHENANTHRENE	0.88 =	MG/KG	0.61	1.44
SS32F	RHA019	1/18/97 5:00 PM	BENZO(a)PYRENE	0.15 =	MG/KG	0.088	1.70
SS32G	RHA021FD1	1/18/97 4:30 PM	BENZO(a)PYRENE	0.12 =	MG/KG	0.088	1.36
SS32G	RHA020	1/18/97 4:30 PM	LEAD	1580 =	MG/KG	1000	1.58
SS33E	SGB068	12/8/96 9:30 AM	BENZO(a)PYRENE	0.13 J	MG/KG	0.088	1.48
SS33K	MIA325	10/8/98 4:30 PM	ANTIMONY	10.1 J	MG/KG	7	1.44
SS33K	MIA325	10/8/98 4:30 PM	ARSENIC	22 =	MG/KG	20	1.10
SS33K	MIA325	10/8/98 4:30 PM	LEAD	1830 =	MG/KG	1000	1.83
SS45	LAWSS45		BENZO(a)PYRENE	0.14 J	MG/KG	0.088	1.59
SS89H	SGA257	12/6/96 4:20 PM	ARSENIC	23.9 =	MG/KG	20	1.20
SS89H	SGA257	12/6/96 4:20 PM	LEAD	2470 =	MG/KG	1000	2.47
SS89J	SGA259	12/6/96 5:05 PM	LEAD	2250 =	MG/KG	1000	2.25
SS89J	SGA260FD1	12/6/96 5:05 PM	LEAD	1310 =	MG/KG	1000	1.31

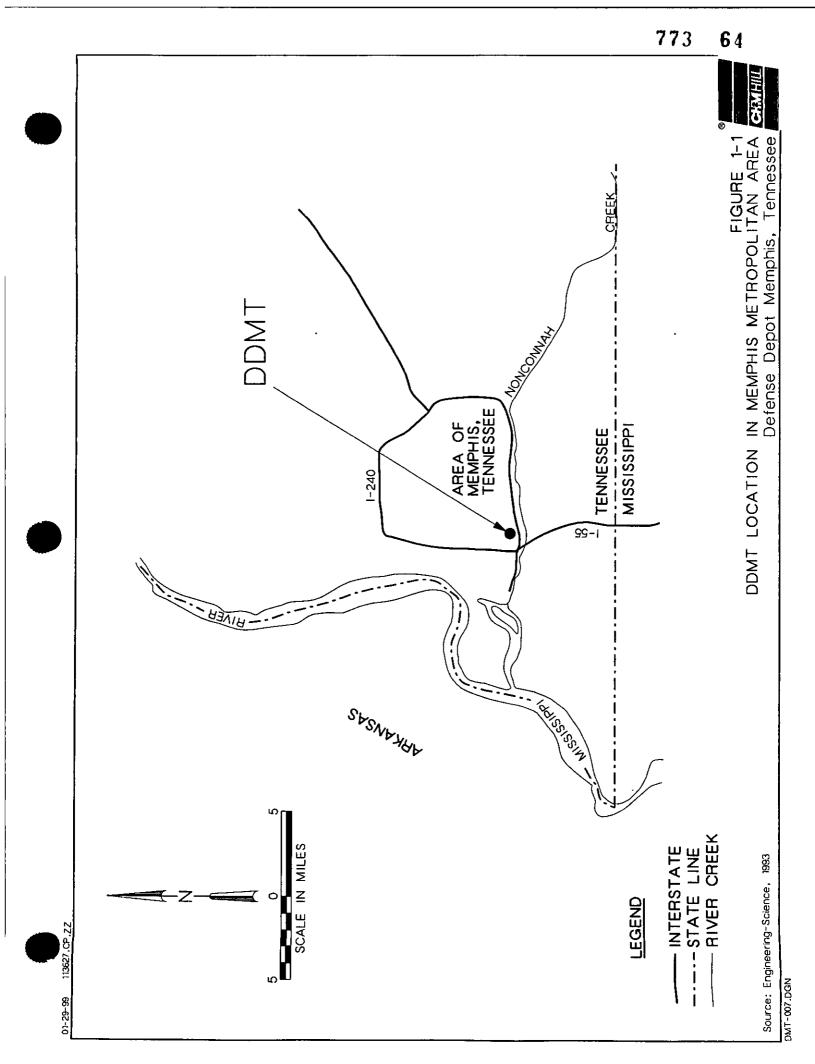
 Table 1-6

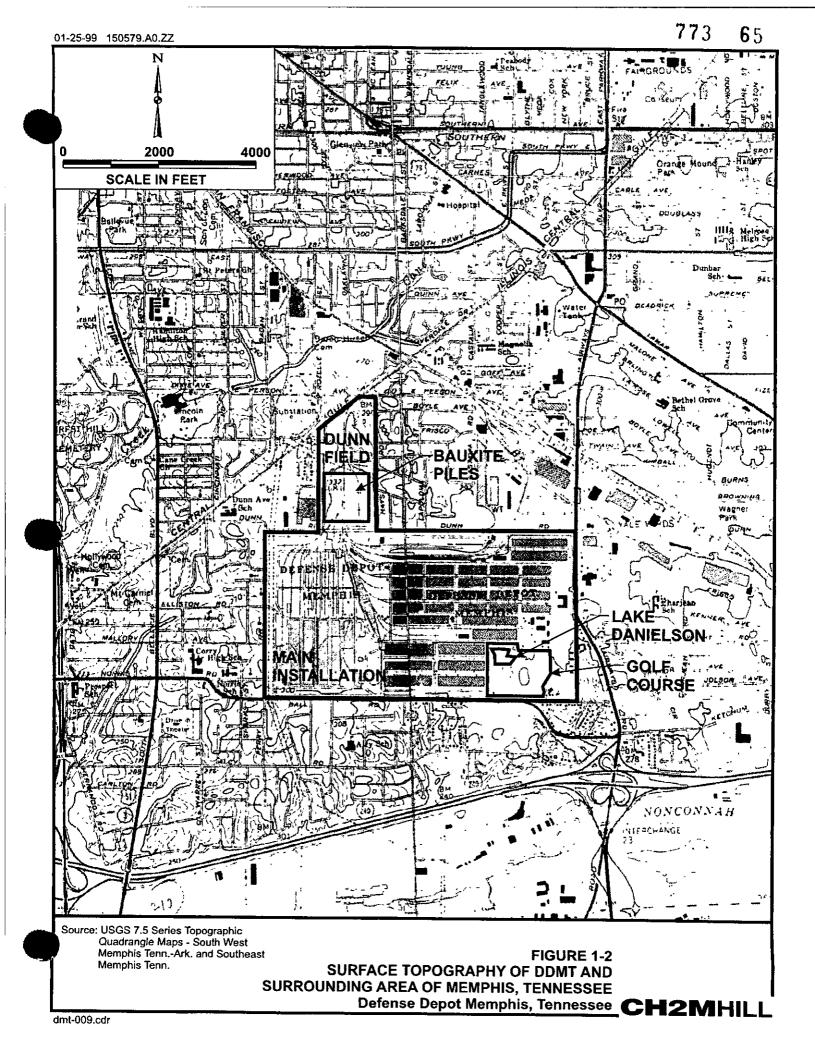
 Sample Locations Exceeding Residential Screening Criteria

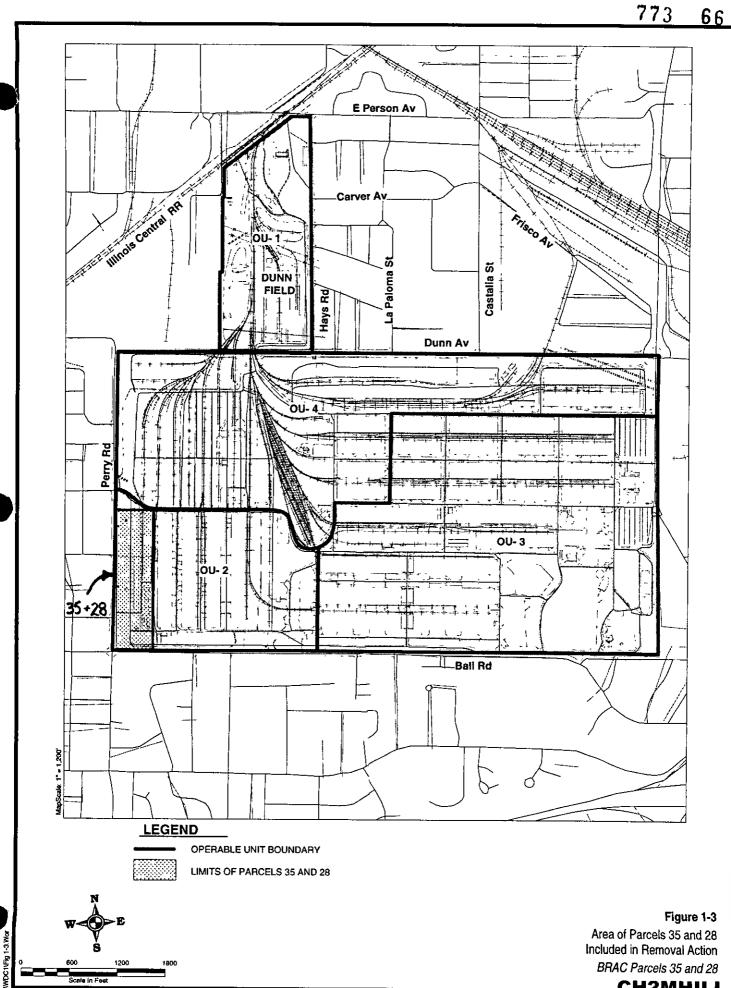
StationID	SampletD	DateCollected	- ParamName	AnaValue	ProjQual Units	Residential Screening Criteria	AnaValue: RSC Ratio
B(28.1)	B106	10/18/96 1:02 PM	ALUMINUM	24700	<u> </u>	24000	1.0
B(28.1)	B106	10/18/96 1:02 PM	IRON	38400		37000	1.0
B(35.2)	B129	10/18/96 1:55 PM	LEAD	744		400	1.8
C(35.2)	C129	10/18/96 2:03 PM	ARSENIC	71.6		20	3.5
C(35.2)	C129	10/18/96 2:03 PM	LEAD	550		400	1.3
FS33C	MIA343	10/6/98 3:05 PM	CHROMIUM, TOTAL	522		230	2.2
FS33C	MIA343	10/6/98 3:05 PM	LEAD	2230		400	5.5
FS33D	M1A347	10/5/98 4:15 PM	LEAD	667		400	
FS89P	MIA159	10/8/98 9:00 AM	CHROMIUM, TOTAL	233	· · · · · · · · · · · · · · · · · · ·	230	1.0
FS89P	MIA159	10/8/98 9:00 AM	LEAD	828		400	2.0
FS89P	MIA160FD	10/8/98 9:00 AM	LEAD	798		400	2.0
FS89Q	MIA164	10/8/98 1:45 PM	LEAD	897		400	2.2
SB31A	SGA015	12/18/96 8:40 AM	ARSENIC	20.6		20	1.0
SB32A	RHA012	1/18/97 2:40 PM	ANTIMONY	22.3		2	3.1
SB32A	RHA012	1/18/97 2:40 PM	ARSENIC	42.5		, 20	2.1
SB32A	RHA012	1/18/97 2:40 PM	BENZO(a)PYRENE	0.16		0.088	1.8
SB32A	RHA012	1/18/97 2:40 PM	CHROMIUM, TOTAL	915		230	3.9
SB32A	RHA012	1/18/97 2:40 PM	LEAD	4150		230 400	3.e 10.3
SS31A	SGA011	12/7/96 1:35 PM	BENZO(a)PYRENE	0.33		0.088	3.7
SS31A	SGA011	12/7/96 1:35 PM	CHROMIUM, TOTAL	530		230	2.3
SS31A	SGA011	12/7/96 1:35 PM	LEAD	664		230 400	
SS32B	RHA015	1/18/97 2:55 PM	BENZO(a)PYRENE	0.61	-		
SS32B	RHA015	1/18/97 2:55 PM	LEAD	678		0.088 400	6.9
SS32C	RHA016	1/18/97 3:10 PM	CHROMIUM, TOTAL	275		230	<u> </u>
SS32C	RHA016	1/18/97 3:10 PM	LEAD	693		230 400	1.2
SS32D	RHA017	1/18/97 3:30 PM	BENZO(a)PYRENE	0.13		0.088	
SS32D	RHA017	1/18/97 3:30 PM	LEAD	766		400	1.9
SS32E	RHA018	1/18/97 4:45 PM	BENZO(a)PYRENE	0.38		0.088	
SS32E	RHA018	1/18/97 4:45 PM	PHENANTHRENE	0.88		0.083	4. 1.4
SS32F	RHA019	1/18/97 5:00 PM	BENZO(a)PYRENE	0.15		0.088	1.3
SS32G	RHA021FD	1/18/97 4:30 PM	BENZO(a)PYRENE	0.12		0.088	1.3
SS32G	RHA020	1/18/97 4:30 PM	CHROMIUM, TOTAL	336		230	1,4
SS32G	RHA020	1/18/97 4:30 PM	LEAD	1580		400	3.9
SS32G	RHA021FD	1/18/97 4:30 PM	LEAD	563		400	
SS33D	SGA028	12/8/96 10:15 AM	LEAD	751		400	1.4
SS33E	SGB068	12/8/96 9:30 AM	BENZO(a)PYRENE	0.13		0.088	1.
SS33H	MIA334	10/8/98 12:00 PM	CHROMIUM, TOTAL	265		230	1.4
SS33H	MIA334	10/8/98 12:00 PM	LEAD	900		400	1. 2.1
SS33K	MIA325	10/8/98 4:30 PM	ANTIMONY	10.1			
SS33K	MIA325	10/8/98 4:30 PM	ARSENIC	22			1.4
SS33K	M1A325	10/8/98 4:30 PM	CHROMIUM, TOTAL	403		20	1.
SS33K	MIA325	10/8/98 4:30 PM	LEAD	1830		230	1.
SS45	LAWSS45		BENZO(a)PYRENE	0.14		400	4.
SS89H	SGA257	12/6/96 4:20 PM	ARSENIC	23.9		0.088	1.
SS89H	SGA257	12/6/96 4:20 PM	CHROMIUM, TOTAL	443		20	1.
SS89H	SGA257	12/6/96 4:20 PM	LEAD	2470		230	1.
SS89J	SGA259	12/6/96 5:05 PM	CHROMIUM, TOTAL	539		400	6.
SS89J		12/6/96 5:05 PM	CHROMIUM, TOTAL	273		230	2.
SS89J	SGA259	12/6/96 5:05 PM	LEAD	273		230	1.
5569J 5589J		12/6/96 5:05 PM	LEAD	2250		400 400	5. 3.

a a secondaria de la compansión de la compa

Figures

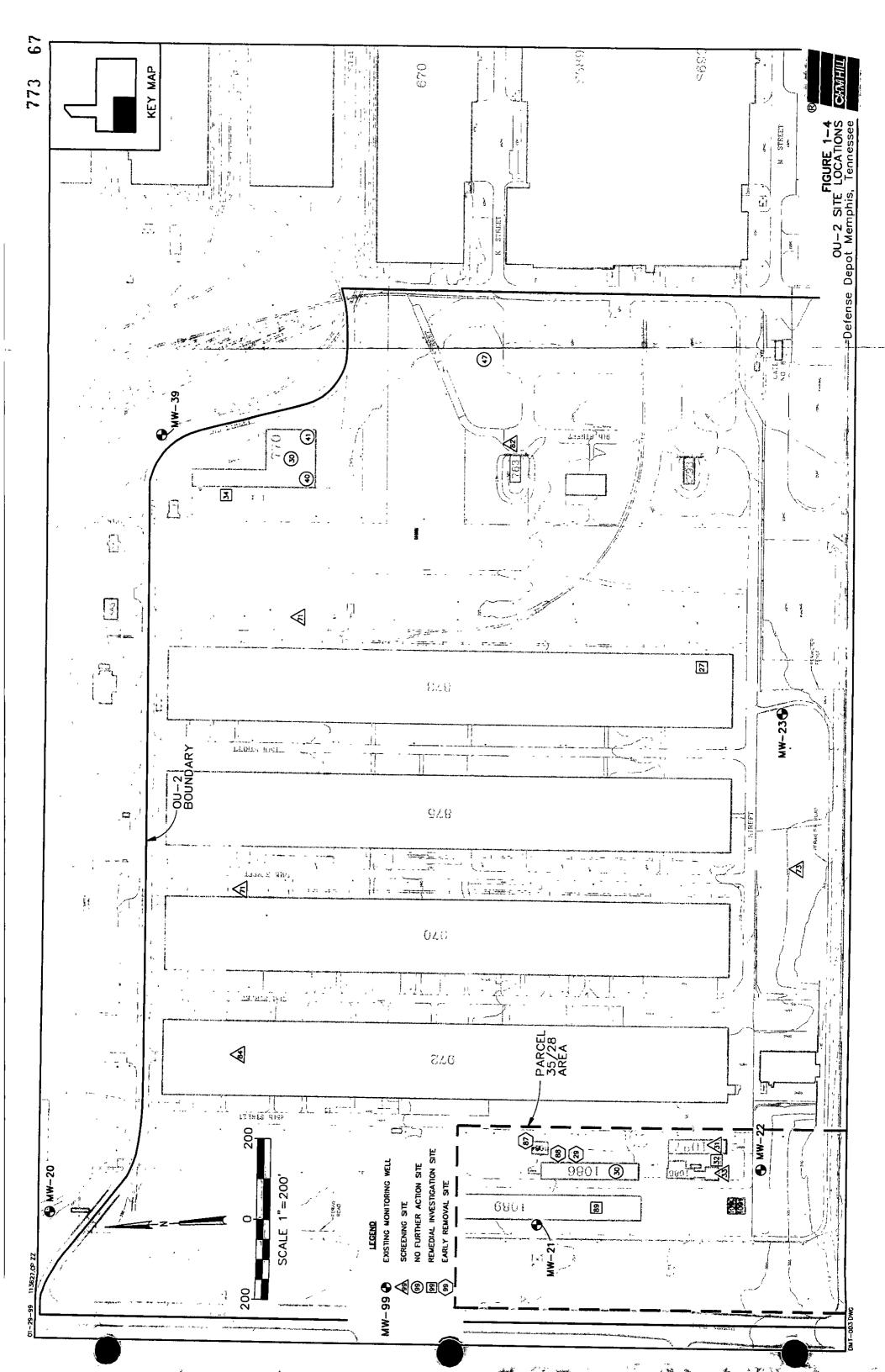

.

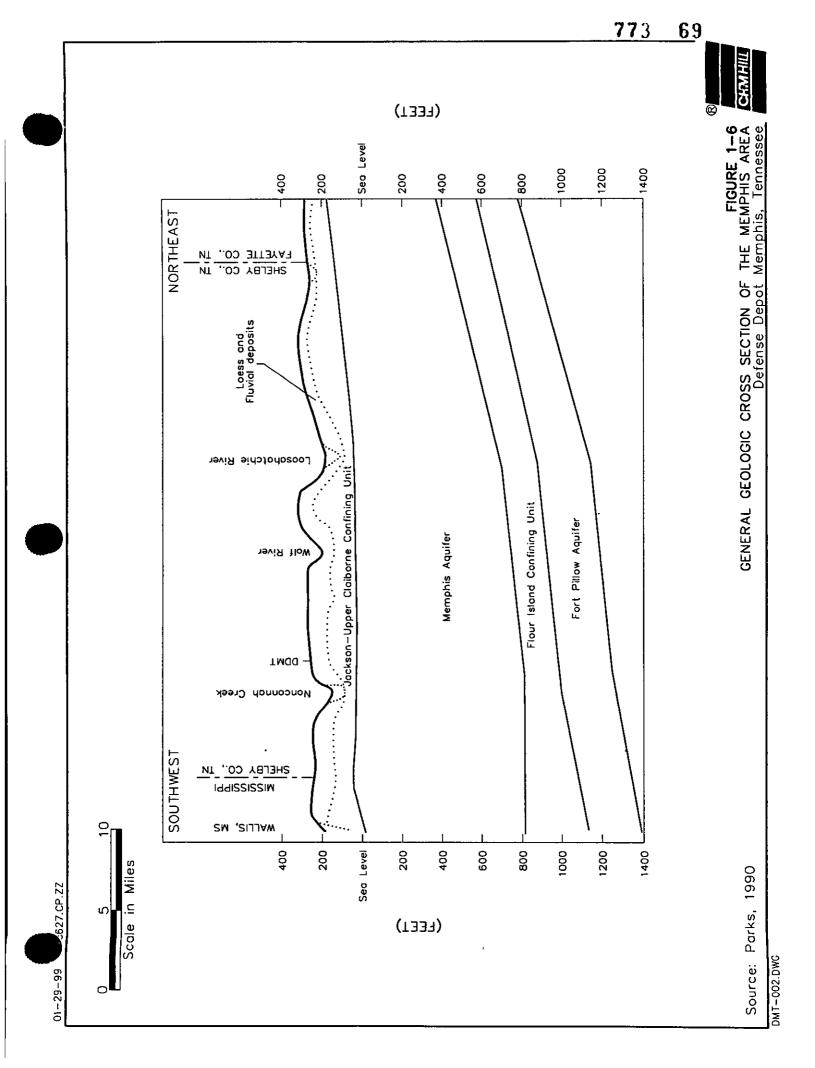

WDC990270004 DOC/1/KTM/DRAFT

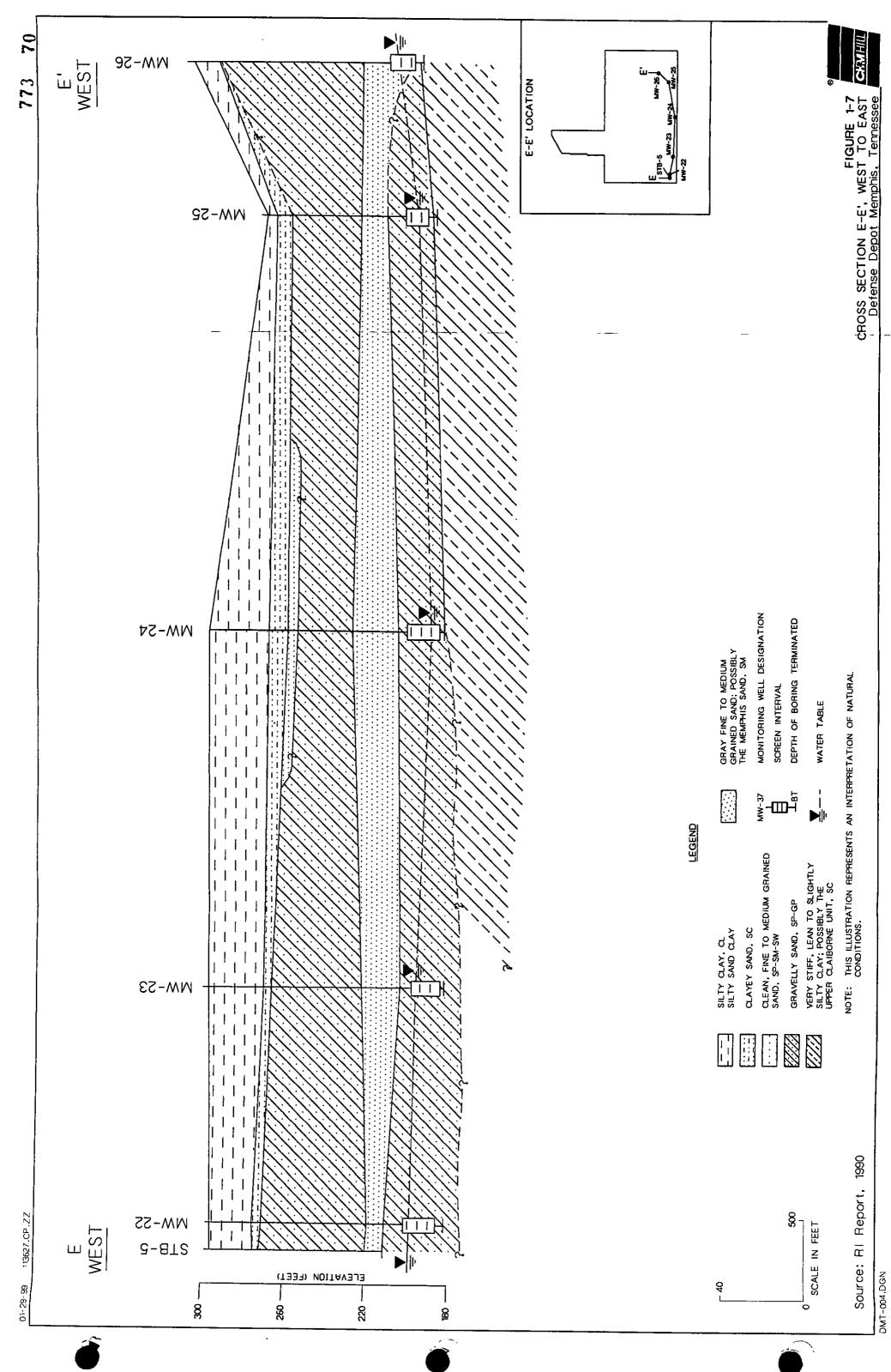

•

I

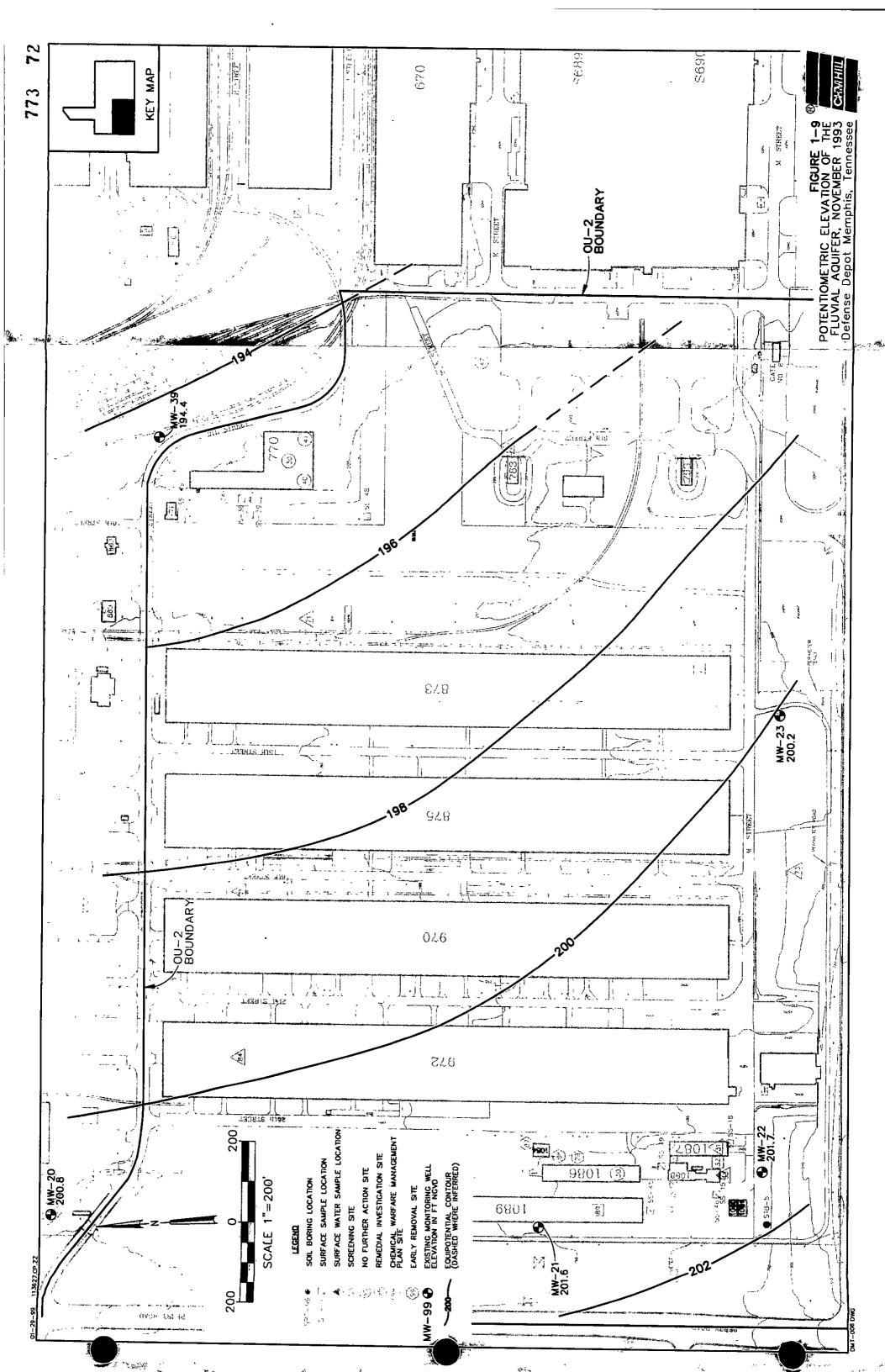
ķ

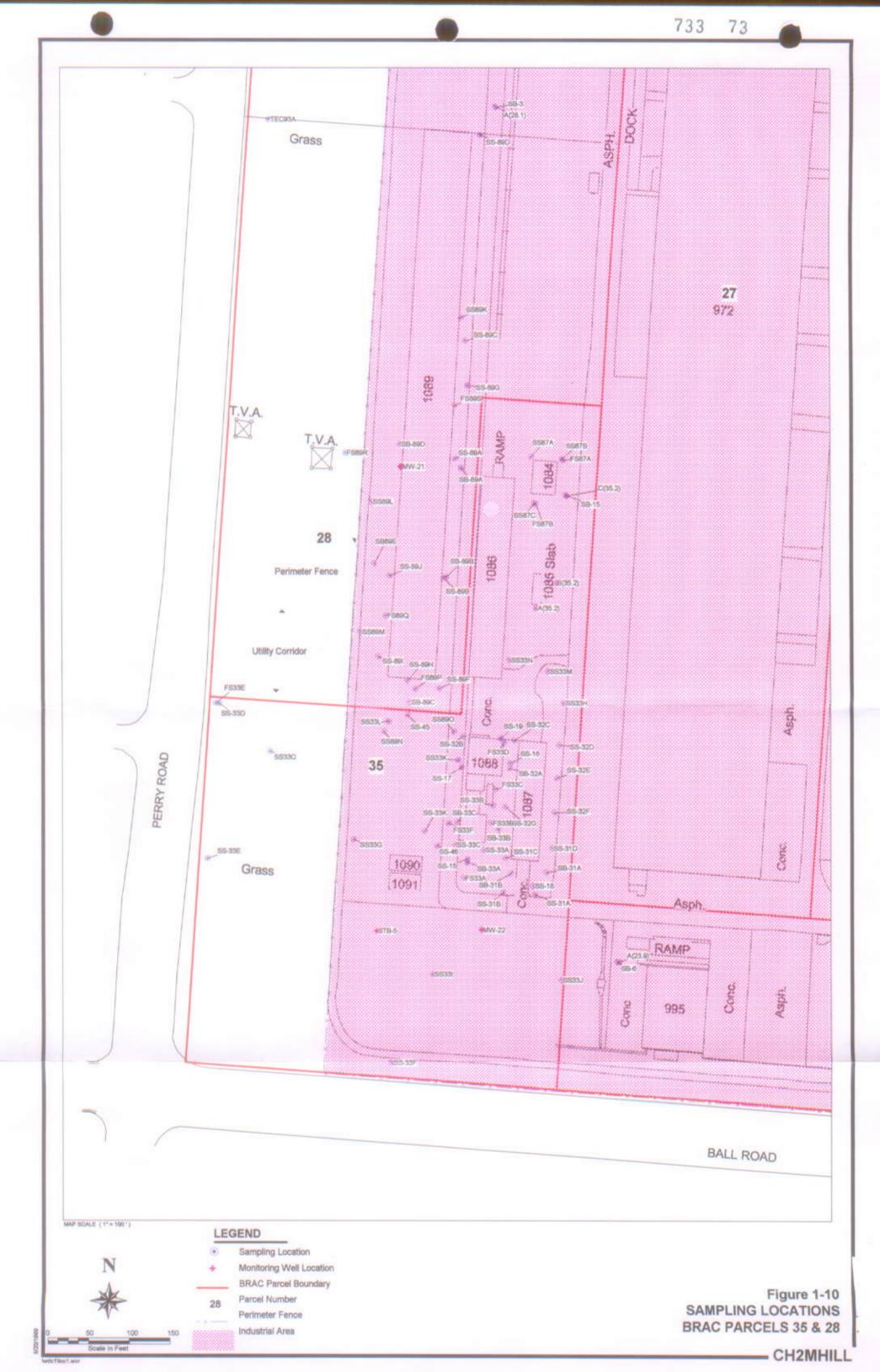


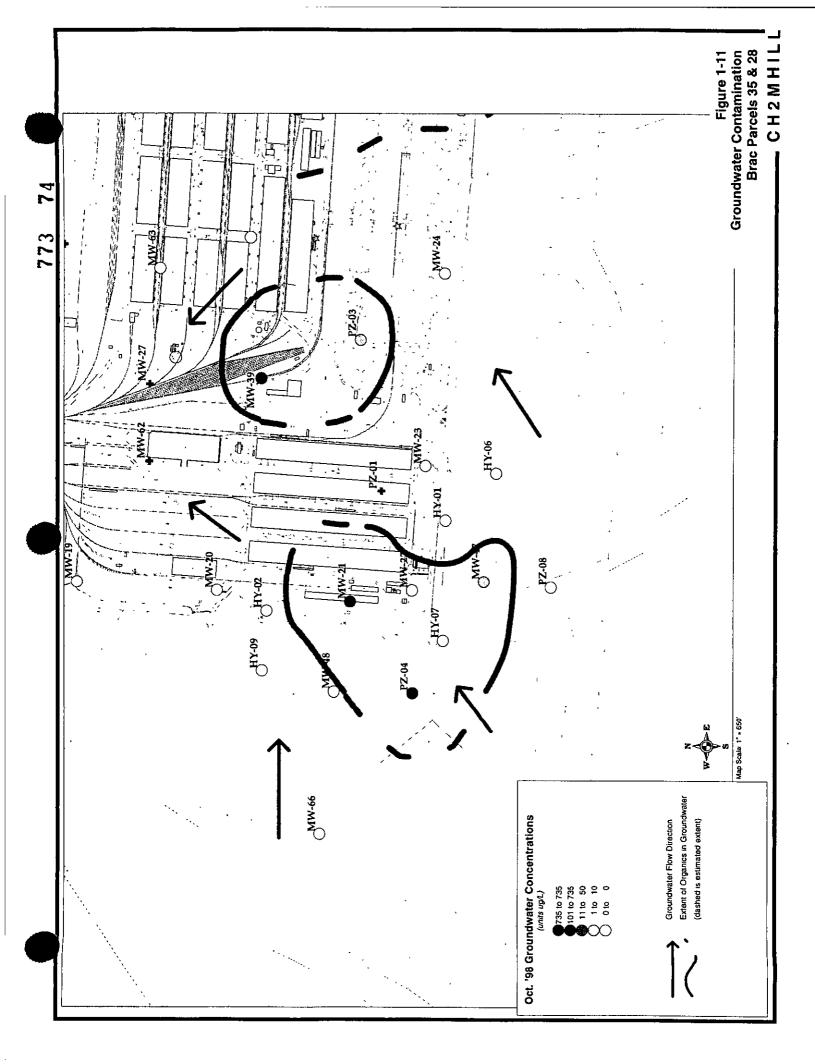



B/19/1999

CH2MHILL







2.0 Identification of Removal Action Objectives

2.1 Removal Action Goal and Objectives

The goal of the removal action is to provide technically sound, cost-effective, and timely measures that will result in an acceptable risk to human health from contaminants located in the vicinity of Parcels 35 and 28. Specific objectives of the removal action include the following:

- Reduce the potential risk to long-term site users to a level deemed acceptable to EPA and TDEC;
- Be technically appropriate and feasible to accomplish using commonly accepted construction practices;
- Minimize, to the extent possible, the volumes of materials that must be removed and landfilled offsite;
- Have a reasonable and acceptable cost;
- Be implemented in an expedited manner to meet Base Realignment and Closure (BRAC) parcel transfer and leasing schedules; and
- Involve minimal post-removal operational, maintenance, or monitoring requirements.

2.2 Statutory Limits on Removal Actions

Non-time-critical removal actions funded by EPA have a \$2 million and a 12-month statutory limit pursuant to Section 104(c)(1) of Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Because removal actions at the Memphis Depot are not being funded by EPA, these statutory limits do not apply.

2.3 Determination of Removal Scope

Removal actions are defined in EPA 540-R-93-057, *Guidance on Conducting Non-Time-Critical Removal Actions Under CERCLA*, EPA, August 1993, as: "The cleanup or removal of released hazardous substances from the environment, such actions as may necessarily be taken in the event of the threat or release of hazardous substances into the environment, such actions as may be necessary to monitor, assess, and evaluate the release or threat of release of hazardous substances, the disposal of removed materials, or the taking of other actions as may be necessary to prevent, minimize, or mitigate damage to the public health or welfare, or to the environment, which may otherwise result from a release or threat of release."

2.4 Determination of Removal Schedule

Although the 12-month statutory limit on EPA-led removal actions does not apply, the areas in Parcels 35 and 28 are high-priority sites for turnover as part of the BRAC process. Therefore, it is assumed that the work must be completed within 12 months after approval of selected removal actions.

2.5 Planned Removal Actions

Planned removal actions should be capable of being developed and implemented using current removal action contracting mechanisms at the Memphis Depot. During previous removal action activities at the Depot, it has been demonstrated that the use of the existing service contractor, equipment, procedures, and subcontract/vendor arrangements provide for expedited and cost-effective work.

All removal actions must conform with appropriate federal, state, local, and facility environmental protection, health and safety, and security requirements. It should be assumed that these requirements will be met using measures similar to those used for previous removal actions at the Depot.

3.0 Identification and Analysis of Removal Action Alternatives

3.1 Removal Action Alternatives

The selection of removal action alternatives included the identification of a few alternatives that appear to be appropriate at the site, that can be done with existing contracting mechanisms, and that appear to meet the removal action objectives and requirements stated in the previous section. The following three alternatives were identified:

Alternative 1: Decontaminate Existing Metal and Masonry Buildings and Associated Equipment for In-Place BRAC Transfer; Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris;

Alternative 2: Decontaminate Existing Metal and Masonry Buildings for In-Place BRAC Transfer; Decontaminate, Remove, and Dispose of Associated Equipment; and Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris; and

Alternative 3: Decontaminate, Remove, and Dispose of All Above-Grade Buildings and Associated Equipment and Remove and Dispose of Contaminated Soil and Debris.

3.1.1 Alternative 1: Decontaminate Existing Metal and Masonry Buildings and Associated Equipment for In-Place BRAC Transfer; Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris

Alternative 1 represents the minimum level of effort required to facilitate the safe turnover of existing Parcels 35 and 28 facilities for reuse. It includes the removal of environmental contamination and leaves all metal and masonry structures, including existing equipment, intact for a future use that is similar to the past use of the area. The only building to be removed is Building 1084, a wooden structure that would be less expensive to fully decontaminate and leave in place.

Specific elements of Alternative 1 include:

- Full decontamination and confirmatory sampling of Buildings 1086, 1087, 1088, 1089, 1090, and 1091, including slabs and equipment, for future industrial use.
- Decontamination (removal of gross contamination) and removal of the wooden shed structure for Building 1084, and full decontamination of the floor slab for in-place closure. (Gross contamination refers to loose dust, debris, and surface residue that can be easily removed by vacuuming or mild washing. If not removed, this gross contamination is susceptible to spreading and contaminating workers or equipment.)
- Inspection and removal of contaminated soil, concrete, and drainage system sediment, as necessary, at selected locations at Buildings 1084, 1086, 1087, 1088, and 1089, where possible contamination is suspected.
- Sampling and removal of the hydraulic tank, concrete, and contaminated soil, as necessary, to the industrial screening criteria at the former grease rack/UST location at Building 1085.
- Removal of up to 12 inches of contaminated surface soil within the fenced industrial portion of Parcels 35 and 28 where previous sampling suggests the presence of surface soil contamination in excess of the industrial screening criteria.
- Additional sampling of the upper 12 inches of surface soil in the grassed utility corridor portion of Parcels 35 and 28 for lead and PAHs.
- Removal of up to 12 inches of contaminated surface soil within the utility corridor to the
 residential screening criteria if additional sampling in the area suggests that elevated
 lead and PAH levels are related to past activities in the industrial portion of Parcels 35
 and 28. Otherwise, no further action in the utility corridor.
- Replacement of excavated areas with clean soil.

The industrial and residential screening criteria referred to above are presented in Table 1-4.

3.1.2 Alternative 2: Decontaminate Existing Metal and Masonry Buildings for In-Place BRAC Transfer; Decontaminate, Remove, and Dispose of Associated Equipment; and Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris

Alternative 2 is similar to Alternative 1, except that it is assumed that all government equipment will also be removed from the buildings once decontaminated. In essence, all masonry and metal buildings in Parcels 35 and 28 would be turned over intact, but empty and ready for industrial reuse.

Specific elements of Alternative 2 include:

- Decontamination (removal of gross contamination), removal, and disposal of paint booths, racks, and sandblast equipment in Buildings 1086, 1087, 1088, 1089, 1090, and 1091.
- Full decontamination and confirmatory sampling of Buildings 1086, 1087, 1088, 1089, 1090, and 1091, including slabs, for future industrial use.
- Decontamination (removal of gross contamination) and removal of the wooden shed structure for Building 1084, and full decontamination of the floor slab for in-place closure.
- Inspection and removal of contaminated soil, concrete, and drainage system sediment, as necessary, at selected locations at Buildings 1084, 1086, 1087, 1088, 1089, 1090, and 1091 where possible contamination is suspected.
- Sampling and removal of the hydraulic tank, concrete, and contaminated soil, as necessary, to the industrial screening criteria at the former grease rack/UST location at Building 1085.
- Removal of up to 12 inches of contaminated surface soil within the fenced industrial portion of Parcels 35 and 28 where previous sampling suggests the presence of surface soil contamination in excess of the industrial screening criteria.
- Additional sampling of the upper 12 inches of surface soil in the grassed utility corridor portion of Parcels 35 and 28 for lead and PAHs.

- Removal of up to 12 inches of contaminated surface soil within the utility corridor to the
 residential screening criteria if additional sampling in the area suggests that elevated
 lead and PAH levels are related to past activities in the industrial portion of Parcels 35
 and 28. Otherwise, no further action in the utility corridor.
- Replacement of excavated areas with clean soil.

The industrial and residential screening criteria referred to above are presented in Table 1-4.

3.1.3 Alternative 3: Decontaminate, Remove, and Dispose of All Above-Grade Buildings and Associated Equipment and Remove and Dispose of Contaminated Soil and Debris

Alternative 3 is similar to Alternatives 1 and 2, except that all buildings would be decontaminated and removed, leaving only their decontaminated slabs in place. Slabs would only be removed to the extent necessary to remediate specific areas of known or suspected contamination (e.g., at cracks and drains).

Specific elements of Alternative 3 would include:

- Decontamination (removal of gross contamination), removal, and disposal of paint booths, racks, and sandblast equipment in Buildings 1086, 1087, 1088, 1089, 1090, and 1091.
- Decontamination (removal of gross contamination), removal, and off-site disposal of Buildings 1084, 1086, 1087, 1088, 1089, 1090, and 1091, full decontamination of at-grade slabs.
- Inspection and removal of contaminated soil, concrete, and drainage system sediment, as necessary, at selected locations at Buildings 1084, 1086, 1087, 1088, 1089, 1090, and 1091 where possible contamination is suspected.
- Sampling and removal of the hydraulic tank, concrete, and contaminated soil, as necessary, to the industrial screening criteria at the former grease rack/UST location at Building 1085.
- Removal of up to 12 inches of contaminated surface soil within the fenced industrial portion of Parcels 35 and 28 where previous sampling suggests the presence of surface soil contamination in excess of the industrial screening criteria.

- Additional sampling of the upper 12 inches of surface soil in the grassed utility corridor portion of Parcels 35 and 28 for lead and PAHs.
- Removal of up to 12 inches of contaminated surface soil within the utility corridor to the
 residential screening criteria if additional sampling in the area suggests that elevated
 lead and PAH levels are related to past activities in the industrial portion of Parcels 35
 and 28. Otherwise, no further action in the utility corridor.
- Replacement of excavated areas with clean soil.

The industrial and residential screening criteria referred to above are presented in Table 1-4.

3.2 Evaluation Criteria

Evaluation criteria for evaluating and comparing alternatives conform with evaluation criteria used by EPA for all removal actions under CERCLA. They include effectiveness, implementability, and cost. The components of each are described below.

3.2.1 Effectiveness

The effectiveness criterion addresses the expected results of the removal alternatives. It includes two major subcategories: protectiveness and ability to achieve the removal objectives.

Protectiveness

To be protective, the removal alternative must be:

- Protective of public health and the community;
- Protective of workers during implementation;
- Protective of the environment; and
- Compliant with ARARs.

Ability to Achieve Removal Objectives

To successfully achieve the removal objectives, the removal alternative must:

- Meet the expected level of treatment or containment;
- Have no residual effect concerns; and
- Will maintain control over the long-term.

Table 3-1 summarizes the initial evaluation of each of the alternatives in relation to the effectiveness criterion. Results of this evaluation indicate that all of the alternatives can be effective and can meet the removal objectives.

3.2.2 Implementatibility

The implementability criterion encompasses the technical and administrative feasibility of the removal action. It includes three subcategories: technical feasibility, availability of resources, and administrative feasibility.

Technical Feasibility

Technical feasibility includes:

- Construction and operational considerations;
- Demonstrated performance and useful life;
- Adaptability to environmental conditions;
- Contribution to performance of long-term removal actions; and
- Implementation within the allotted time.

Availability of Resources

Availability of resources includes:

- Availability of equipment;
- Availability of personnel and services;
- Laboratory testing capacity;
- Off-site treatment and disposal capacity; and
- Post-removal site control.

Administrative Feasibility

Administrative feasibility includes:

- Required permits;
- Required easements or rights-of-way;
- Impacts on adjoining property;
- Ability to impose institutional controls; and
- Likelihood of obtaining exemptions from statutory limits (if needed).

Table 3-2 summarizes the initial evaluation of each of the alternatives in relation to the implementability criterion. Results indicate that all can be implemented.

3.2.3 Cost

The cost criterion typically encompasses the life-cycle costs of a project, including the projected implementation costs and the long-term operational and maintenance costs of the remedial action. Because alternatives with no long-term operational and maintenance requirements have been considered, only implementation costs are used for the comparison of alternatives.

Implementation costs include three subcategories of cost: capital costs, post-remediation site control costs, and present-worth costs. Of these, only capital costs, including direct capital costs and indirect costs, are applicable because contamination will be removed and no post-removal operational or maintenance activities will be required. Present-worth costs do not apply because the project can be accomplished within a single year and there are no long-term costs thereafter.

Direct capital costs include actual costs of the removal action, such as:

- Construction costs;
- Equipment and material costs;
- Buildings and service costs;
- Transport and disposal costs;
- Analytical costs; and
- Contingency allowances.

Other commonly encountered direct capital costs, such as land and site acquisition costs, relocation expenses, and treatability costs are not applicable to this project.

Indirect capital costs typically include nonconstruction costs of the removal action, such as:

- Engineering and design expenses;
- Legal fees and license or permit fees; and
- Startup and shakedown costs for processes and equipment.

Of these, only engineering and design expenses, and potentially some local permit fees, are applicable to removal activities in Parcels 35 and 28. For estimating purposes, these expenses are estimated to be about 10 percent of the construction cost, a value typical of projects of this size and scope.

Table 3-3 summarizes the comparative costs for each of the alternatives, including direct costs, indirect costs, and total cost. These comparative costs, which were prepared for evaluating and comparing alternatives, are order-of-magnitude capital costs. Order-of-magnitude estimates are made without detailed engineering data and included estimates of major cost components and quantities, typical costs for similar work, cost curves, and scale-up or scale-down factors or ratios. It is normally expected that estimates of this type would be accurate to within plus 50 percent to minus 30 percent.

All direct capital costs were developed using the U.S. Army Corps of Engineers' Micro-Computer Aided Cost Estimating System—Gold Software Copyright (MCACES Gold) estimating system. MCACES Gold estimates for each alternative may be found in the Appendix at the end of the document. The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final costs of the project will depend on actual labor and material costs, competitive market conditions, final project costs, implementation schedule, and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. The following assumptions were used in these estimates:

- The scope of work for each alternative will be as described above.
- The following contingencies were included to account for unknown variables:
 - Design Contingency 5 percent;
 - Construction Contingency 15 percent; and
 - ·· Other Government Costs 8 percent.

- Direct cost data are based on unit costs for similar items from similar work in the housing and cafeteria areas, vendor quotes, and current MCACES Gold cost data for the Memphis area.
- Indirect costs for engineering and design are based on MCACES Gold data.
- The work area is within or adjacent to a secured government site and is of sufficient size and configuration to support all work. No additional site security, land acquisition, or relocation costs will be incurred, except for some temporary security fencing and a gate should further sampling in the utility corridor indicate that removal actions in that area are necessary.
- Although the intent of applicable regulatory and permit requirements will be included in the removal actions, the work area is within a CERCLA site and no special licenses or permits will be necessary to conduct the work.
- Waste materials are predominately nonhazardous and can be disposed of at a local nonhazardous industrial waste landfill.
- Up to 1,150 cubic yards (1,800 tons) of contaminated soil will require removal and disposal. This includes removal of contaminated surface soil from areas shown in Figure 1-14, removal of contaminated soil associated with activities at Buildings 1084 and 1085, and a contingency of up to 550 cubic yards for potential surface soil removal requirements in identified areas of elevated lead and PAH concentrations near Perry Road. This contingency, however, will only be exercised if further sampling in the utility corridor indicates that these elevated concentrations are in fact associated with previous industrial activities in Parcels 35 and 28.
- Up to 15 tons of RCRA hazardous waste may be present and will require transportation and disposal at a hazardous waste landfill at Emelle, Alabama.
- Wastewater will be collected, sampled, and disposed of at the local publicly owned treatment works (POTW) in a manner similar to that which was done during previous removals at the Memphis Depot.

- Asbestos-containing materials (ACM) removed as part of the work can be packaged and disposed of at a local landfill licensed to accept asbestos waste. This will result in about 1 cubic yard of asbestos waste.
- Scrap metal structural members, sheeting, and equipment parts will be decontaminated and transported to a local scrap metal yard for disposal as recyclable metal. A credit of \$40 per ton of recycled metal is assumed on the basis of the current purchase price of steel by a local scrap yard.
- All initial decontamination and asbestos removal will require Level C protective measures. Once dust has been removed, all other work will be done with Level D protective measures.
- Decontamination and sampling requirements will depend on final disposition of materials and the following criteria:
 - Decontamination of materials to be left in place will include vacuuming of dust, washdown, and confirmation sampling.
 - Decontamination of materials to be removed to a metals recycling facility will require vacuuming and washdown to remove surface contamination, but no sampling.
 - Decontamination of materials to be disposed of in a landfill will be limited to vacuuming or washdown to the extent necessary to prevent dust generation or spread of contaminants.
 - All concrete slabs will be decontaminated and left in place. Drain traps and pipes will be cleaned, flushed, and left in place.
- Strategic trench excavations will be required at Buildings 1084 and 1085 to investigate, remove, and sample a former buried gravel drain and UST locations noted on the drawings. All other soil excavations will be shallow excavations to a depth of 12 inches.
- Sampling and analysis requirements during construction will include the following general criteria:

- Level-2 wipe samples will be taken at all building components to be decontaminated and left in place. This will average 12 samples per building for Alternative 1, and 8 samples per building for Alternative 2. No samples will be taken for materials decontaminated and removed for disposal. Samples will be analyzed for priority pollutant metals.
- Level-2 soil samples will be taken at an average of three samples per excavation areas, plus two quality control (QC) samples. Samples will be analyzed for priority pollutant metals and PAH constituents.
- Level-3 decontamination wipe samples and Level-3 soil samples will be taken at an average or one sample for every five Level-2 samples, plus two QC samples.
- A composite confirmation sample will be taken at the completion of strategic excavations of Buildings 1084 and 1085. These samples are assumed to have Level-3 full-scan analyses (volatiles, acid-base neutrals, pesticides/PCB, target analyte list (TAL) metals, cyanide, phenols, dioxin) to confirm remaining constituents.
- Approximately four TCLP analyses will be required to confirm disposal requirements.

Note: Level-2 samples are screening-level analytical samples used for evaluating the presence of contaminants exceeding a specified concentration and for determining apparent achievement of removal action levels. The data package for Level-2 samples is limited to the analytical results of the samples and analytical results of associated QC samples. Level-3 samples are confirmatory-level analytical samples used for evaluating and confirming Level-2 data and for determining if additional actions are required. Level-3 analytical results require a data package documenting the QC and data quality evaluation process used to validate the accuracy of the analytical data. QC samples include additional field and laboratory samples used to verify the accuracy of analytical results and the potential effects of laboratory and field procedures and reagents on the analytical results.

- Site restoration will include the following:
 - Granular soil backfill and seeding in all excavated grassed areas.

- Gravel surfacing in all gravel area excavations to 12 inches in depth.
- Granular soil backfill and 12 inches of gravel surfacing in all gravel area excavations in excess of 12 inches.
- Granular soil backfill and an average of 6 inches of concrete in all areas where concrete and soil were removed.
- All granular soil and gravel backfill will be sampled and subjected to a Level 3 full-scan analysis (volatiles, acid-base neutrals, pesticides/PCB, TAL metals, cyanide, phenols, and dioxins) at a rate of one sample for every 1,000 cubic yards to confirm that they are clean.

Tables 3-1, 3-2, 3-3

İ

I

NOC190 70011 OCC 2 KIMEINAC

.

Table 3-1 Initial Evaluation of Alternatives with Effectiveness Criterion						
Alternative	Protectiveness	Ability to Achieve Removal Objectives				
Alternative 1 – Decontaminate Existing Metal and Masonry Buildings and Associated Equipment; Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris	Removes contamination within reasonable access to the public, onsite workers, or environmental targets. Worker contact during implementation is minimized. Required cleanup requirements will be met.	Capable of meeting risk-based cleanup criteria for proposed site use. Provides minimal residual effect concerns. Removal of accessible contaminants provides long-term protection and control.				
Alternative 2 Decontaminate Existing Metal and Masonry Buildings; Decontaminate, Remove, and Dispose of Associated Equipment; and Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris	Removes contamination within reasonable access to the public, onsite workers, or environmental targets. Reasonable worker contact during equipment removal. Required cleanup requirements will be met.	Capable of meeting risk-based cleanup criteria for proposed site use. Provides minimal residual effect concerns. Removal of accessible contaminants provides long-term protection and control.				
Alternative 3 – Decontaminate, Remove and Dispose of All Above- Grade Buildings, Associated Equipment, Contaminated Soil, and Debris	Removes potential above-grade contamination. Removes other contamination within reasonable access. Increased, but reasonable worker contact during equipment and building removal. Required cleanup requirements will be met.	Capable of meeting risk-based cleanup criteria for proposed site use. Provides minimal residual effect concerns. Removal of accessible contaminants provides long-term protection and control.				

.

Table 3-2 Initial Evaluation of Alternatives with Implementability Criterion					
Alternative	Technical Feasibility	Availability of Resources	Administrative Feasibility		
Alternative 1 – Decontaminate Existing Metal and Masonry Buildings and Associated Equipment; Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris	Common practices similar to those already used at the Memphis Depot. Capable of meeting cleanup objectives in a reasonable time.	Existing contractors and laboratories have needed expertise. Local disposal facilities have capacity for accepting waste. Within existing controlled access area.	Within existing government property. Can be done without off- site impacts, except traffic. Institutional controls possible, but not required. No exemptions expected.		
Alternative 2 – Decontaminate Existing Metal and Masonry Buildings; Decontaminate, Remove, and Dispose of Associated Equipment; and Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris	Common practices similar to those already used at the Memphis Depot. Capable of meeting cleanup objectives in a reasonable time.	Existing contractors and laboratories have needed expertise. Local disposal facilities have capacity for accepting waste/debris. Within existing controlled access area.	Within existing government property. Can be done without off- site impacts, except traffic. Institutional controls possible, but not required. No exemptions expected.		
Alternative 3 – Decontaminate, Remove and Dispose of All Above-Grade Buildings, Associated Equipment, Contaminated Soil, and Debris	Common practices similar to those already used at the Memphis Depot. Capable of meeting cleanup objectives in a reasonable time.	Existing contractors and laboratories have needed expertise. Local disposal facilities have capacity for accepting waste. Within existing controlled access area.	Within existing government property. Can be done without off- site impacts, except traffic. Institutional controls possible, but not required. No exemptions expected.		

.

Table 3-3 Initial Evaluation of Alternatives with Cost Criterion					
Alternative	Direct Capital Cost	Indirect Cost*	Total Cost		
Alternative 1 – Decontaminate Existing Metal and Masonry Buildings and Associated Equipment; Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris	\$858,000	\$86,000	\$944,000		
Alternative 2 – Decontaminate Existing Metal and Masonry Buildings; Decontaminate, Remove, and Dispose of Associated Equipment; and Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris	\$867,000	\$87,000	\$954,000		
Alternative 3 – Decontaminate, Remove and Dispose of All Above-Grade Buildings, Associated Equipment, Contaminated Soil, and Debris	\$1,104,000	\$110,000	\$1,214,000		
* Ten percent of direct cost.					

.

Section 4

(Table divider sheet and Table 4-1)

4.0 Comparative Analysis of Removal Action Alternatives

4.1 Method of Comparison

The three removal action alternatives were compared to the following criteria: effectiveness, implementability, and total cost. In making these comparisons, conformance of each of the criteria was evaluated with respect to the following removal action objectives discussed in Subsection 2.1:

- Reduce the potential risk to long-term site users to a level deemed acceptable to EPA and TDEC;
- Be technically appropriate and feasible to accomplish using commonly accepted construction practices;
- Minimize, to the extent possible, the volumes of materials that must be removed and landfilled offsite;
- Have a reasonable and acceptable cost;
- Be implemented in an expedited manner to meet BRAC parcel transfer and leasing schedules; and
- Involve minimal post-removal operational, maintenance, and monitoring requirements.

4.2 Comparison of Alternatives

Table 4-1 summarizes the final comparison of alternatives described above. A review of the results of these comparisons provides the following conclusions:

• All alternatives are capable of meeting the risk-based cleanup criteria for the industrial use of the facility.

- All alternatives are capable of removing reasonably accessible contamination from previous industrial activities in Parcels 35 and 28 and for providing acceptable long-term risk to potential receptors. All are capable of leaving minimal residual effects.
- There is a slight decrease in risk and potential for residual effects with Alternatives 2
 and 3 because there is a greater potential for removing less-accessible contaminants
 beneath and within equipment and building components. These decreases, however, are
 expected to be small if decontamination is adequately done.
- All alternatives are reasonably protective of workers during removal, provided that appropriate levels of protective measures are in place.
- All alternatives are technically appropriate and feasible. Alternatives 2 and 3 represent an incremental level of difficulty with increased scope of work. This added difficulty, however, is well within the limits of normal construction practice.
- All alternatives will generate materials requiring offsite transportation and disposal requirements. Alternative 2 will generate a slightly greater volume of materials requiring transportation and offsite disposal than will Alternative 1. Alternative 3 will generate a significantly greater volume.
- A substantial portion of the additional disposal requirements for Alternative 2 may be mitigated by a potential for recycling metal materials at a local scrap yard. Similar disposition of metal materials in Alternative 3 is also possible; however, the volume of additional waste materials represented by recycling is substantially smaller due to the construction of the buildings.
- All alternatives can be implemented in less than a 6-month period. The progressively
 increased scopes from Alternatives 1 through 3 would suggest progressively longer
 implementation times. However, there may not be a major difference, depending upon
 the methods and sequencing of the particular contractor.
- None of the alternatives contain treatment, containment, or other components that depend upon controls or maintenance requirements for long-term effectiveness.

• Alternative 1 is the least cost option. Alternative 2 has a slightly greater cost due to requirements for removing and disposing of equipment in the buildings. Alternative 3 has a significantly greater cost.

4.3 Summary

All removal action alternatives can be implemented and all can meet the stated removal action goals. There is a potential for slightly increased effectiveness with Alternatives 2 and 3, but this potential requires progressively increased work scope, disposal requirements, and cost. Final selection, therefore, is essentially a function of intended use requirements of the facilities and cost.

Tables

WDC990270004.DOC/1/KTM/DRAFT

Table 4-1 Final Comparison of Alternatives					
Alternative	Effectiveness	Implementability	Total Cost		
Alternative 1 – Decontaminate Existing Metal and Masonry Buildings and Associated Equipment; Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris	Meets risk-based cleanup criteria. Minimum short-term risk and reasonable long-term risk by removing accessible contaminants. Minimal residual effects.	Is technically appropriate and feasible. Short duration, moderate difficulty. Minimal offsite effects, mainly traffic. Minimum waste generation. Local disposal capacity available. No controls or maintenance	Lowest cost alternative. Estimated comparative cost of: \$944,000		
Alternative 2 – Decontaminate Existing Metal and Masonry Buildings, Decontaminate, Remove, and Dispose of Associated Equipment; and Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris	Meets risk-based cleanup criteria. Slightly increased short- term risk and slightly decreased long-term risk by removing less- accessible contaminants beneath equipment. Minimal residual effects.	Is technically appropriate and feasible. Slightly greater duration, difficulty, and offsite traffic. Greater waste volume Local disposal capacity available. No controls or maintenance.	Greater cost due to equipment removal and disposal requirements. Estimated comparative cost of: \$954,000		
Alternative 3 – Decontaminate, Remove and Dispose of All Above-Grade Buildings, Associated Equipment, Contaminated Soil, and Debris	Meets risk-based cleanup criteria. Slightly increased short- term risk and least long- term risk by removing potential above-grade contaminants. Minimal residual effects.	Is technically appropriate and feasible. Greater duration, difficulty, and offsite traffic. High waste volume. Local disposal capacity available. No controls or maintenance.	Highest cost due to extensive structural removal. Estimated comparative cost of: \$1,214,000		

-

5.0 Recommended Removal Alternative

On the basis of final evaluations discussed in the previous section and information derived throughout this EE/CA document, we make the following recommendations:

- Alternative 2 is recommended as the primary alternative for removal actions in Parcels 35 and 28. This alternative would provide, at a reasonable cost, open and fully decontaminated buildings that could be used for a variety of purposes. By removing the sandblast and paint booth equipment, the potential for recontaminating the area by similar future operations is minimized.
- Alternative 1 should be considered if the proposed future use is similar to the past use and requires the equipment to remain in place. If Alternative 1 is selected, it is recommended that the future tenant be required to accept any future risk and costs associated with inaccessible contamination that might be located during any future equipment removals and/or any contamination associated with future of the area.
- Alternative 3 is not recommended. Added benefits of removing the buildings do not appear to justify the high cost for such work.

6.0 References

- Graham, D.D., and Parks, W.S. Potential for Leakage Among Principal Aquifers in the Memphis Area, Tennessee. U.S. Geological Survey Water-Resources Investigations Report 85-4295. 1986.
- Wells, F.G. Groundwater Resources of Western Tennessee, with a discussion of the chemical character of the water, by F.G. Wells and M.D. Foster. U.S. Geological Survey Water-Supply Paper 656. 1933.
- Moore, G.K. Geology and Hydrology of the Claiborne Group in Western Tennessee.
 U.S. Geological Survey Water-Supply Paper 1809-F. 1965.
- Nyman, D.J. Predicted Hydrologic Effects of Pumping from the Lichterman Well Field in the Memphis Area, Tennessee. U.S. Geological Survey Water-Supply Paper 1819-B. 1985.
- Kingsburg, J.A., and W.S. Parks. Hydrogeology of the Principal Aquifers and Relation of Faults to Interaquifer Leakage in the Memphis Area, Tennessee. U.S. Geological Survey Water-Resources Investigations Report 93-4075. 1993.
- Parks, W.S., and J.K. Carmichael. Geology and Ground-Water Resources of the Cockfield Formation in Western Tennessee. U.S. Geological Survey Water-Resources Investigations Report 88-4181. 1988.
- Law Environmental. Remedial Investigation at Defense Depot Memphis, Tennessee: Final Report. August 1990.
- 8. CH2M HILL. Groundwater Monitoring Report. March 1998.
- 9. National Oceanographic and Atmospheric Administration (NOAA). *Climatic Atlas of the United States*. Asheville, North Carolina. 1983.
- Pickering Firm, Inc. Asbestos Identification Survey. Defense Distribution Depot Memphis, Tennessee. March 1994.

- 11. CH2M HILL. Final Groundwater Characterization Data Report. August 1997.
- 12. CH2M HILL. Quarterly Groundwater Monitoring Report. September 1997.

ł

Appendix Cost Estimate

*

÷

Supporting Data

.

WDC99027CD01.BOC/1/KTM DRAIT/

Summary of Quantities

Parcel 35 and 28 Remediation

Defense Depot Memphis, Tennessee

Alternative 1 – Decontaminate Existing Metal and Masonry Buildings and Associated Equipment for In-Place BRAC Transfer, Remove and Disp; ose of Wooden Structures, Contaminated Soil, and Debris.

Mobilize and Preparatory Work

- Mobilize Construction Equipment
 - Assume 3 month duration of work
 - Assume trailer and portable toilets for duration.
 - Project within DDMT No security guard required.
- Pre-Construction Submittals (assume similar to those for Housing Area Soil Removal)
 - Assume level is 1.5 times that of the Housing Area Soil Removal

Monitoring, Sampling, and Testing

- TCLP Analyses 4 each
- Random Swipe Samples for metals only (Level 2) 84 ea. (assume avg. 12 per building)
- Confirmatory Swipe Samples for metals only (Level 3) 20 (assume 20% of level 2, plus QC)
- Level 2 Metals and PAH Scan for Soils 35 each (avg three composite for each current excavation area, plus 2QC samples)
- Level 3 Metals and PAH Confirmation Samples for Soils 9 each (1 for each 5 Level 2 samples, plus 2 QC samples)
- Level 3 Full Scan (confirm) 2 each (one at 1084 and 1 at 1085)

Site Work

- Fencing
 - Install and Remove Temporary Chain Link Security Fence (Rent 1 mo.) 760 linear feet.
 - Install Permanent Double Vehicle Gate with Lock in Existing Fence 1 each

Building and Equipment Decontamination

- Metal/Fiberglass Sheeting (Vacuum and Wash) 112,000 square feet
- Metal/Fiberglass Sheeting (Vacuum Only) 2,000 square feet

- Concrete and Masonry Surfaces 67,400 square feet (Vacuum and Wash)
- Steel Structural Surfaces ~ 65,000 (Vacuum and Wash)
- Timber Surfaces 2,600 square feet (Vacuum Only)
- Metal Piping and Equipment 2500 square feet (Vacuum and Wash Interior and Exterior Decon)
- 6" Drain Tile (Interior Flush) 700 linear feet

Assume that vacuuming in dusty areas will be done in Level C protection. All other work will be level D, including washing down areas.

Building and Equipment Demolition

- Remove Corrugated Metal 50 cubic feet
- Remove Timber Frame 310 cubic feet
- Remove Fiberglass Sheeting 29 cubic feet
- Remove Drain Tile 39 cubic feet
- Remove Asphalt Roof Shingles 41.7 cubic feet
- Chip and Remove Concrete 150 cubic feet
- Remove Asbestos Gaskets from Paint Booths 25 cubic feet
- Remove 500-gallon sand-filled underground storage tank 1 each

Water Collect and Control

- Silt Fences 1,500 linear feet
- Collect/Dispose of Contaminated Water 20,000 gallons (Assuming 1 gallon per 25 sf + additional volume similar to housing area project)

Solids Collect and Contain

- Excavate and Load Contaminated Surface Soil 1,100 cubic yards
- Excavate and Load Excavations (trench/pit excavation) 50 cubic yards

Disposal (Commercial)

- Structural Debris (timber, siding, roofing) to Local Industrial Landfill 20 tons
- Contam Soil to Local Industrial Landfill 1,150 cubic yards (1,800 tons)
- Concrete/Masonry Debris to Local Landfill 15 tons
- Contaminated Sweepings to Haz Wste Landfill (w/stab) 12 cubic yards (15 tons) assuming 6 cy Bldg 1088 and 1 cy other buildings

÷

Asbestos Disposal to Approved Landfill – 1 cubic yard

Site Restoration

- Granular Backfill 600 cubic yards
- Gravel Surfacing Material 500 cubic yards
- Concrete Repairs 10 cubic yards
- Seeding and Mulching 20,000 square feet

Demobilization - Use Similar Assumptions as those for Housing Area Remediation

Alternative 2 – Decontaminate Existing Metal and Masonry Buildings for In-Place BRAC Transfer, Decontaminate, Remove, and Dispose of Associated Equipment, and Remove and Dispose of Wooden Structures, Contaminated Soil, and Debris.

Note: All changes from Alternative 1 are Italicized and underlined.

Mobilize and Preparatory Work

- Mobilize Construction Equipment
 - Assume 3 month duration of work
 - Assume trailer and portable toilets for duration.
 - Project within DDMT No security guard required.
- Pre-Construction Submittals (assume similar to those for Housing Area Soil Removal)
 - Assume level is 1.5 times that of the Housing Area Soil Removal

Monitoring, Sampling, and Testing

- TCLP Analyses 4 each
- Random Swipe Samples for metals only (Level 2) 56 ea. (assume avg. 8 per building)
- Confirmatory Swipe Samples for metals only (Level 3) 14 (assume 20% of level 2, plus QC)
- Level 2 Metals and PAH Scan for Soils 35 each (two composite for each current excavation area, plus 5 additional samples)
- Level 3 Metals and PAH Confirmation Samples for Soils 9 each (1 for each 5 Level 2 samples, plus 2 QC samples)
- Level 3 Full Scan (confirm) 2 each (one at 1084 and 1 at 1085)

<u>Site Work</u>

- Fencing
 - Install and Remove Temporary Chain Link Security Fence (Rent 1 mo.) 760 linear feet
 - Install Permanent Double Vehicle Gate with Lock in Existing Fence 1 each

Building and Equipment Decontamination

- Metal/Fiberglass Sheeting (Vacuum and Wash) 112,000 square feet
- Metal/Fiberglass Sheeting (Vacuum Only) 2,000 square feet
- Concrete and Masonry Surfaces 67,400 square feet (Vacuum and Wash)
- Steel Structural Surfaces 65,000 (Vacuum and Wash)
- Timber Surfaces 2,600 square feet (Vacuum Only)

- Metal Piping and Equipment 2500 square feet (Vacuum and Wash Interior and Exterior Decon)
- 6" Drain Tile (Interior Flush) 700 linear feet

Assume that vacuuming in dusty areas will be done in Level C protection. All other work will be level D, including washing down areas.

Building and Equipment Demolition

- Remove Corrugated Metal 50 cubic feet
- Remove Timber Frame 310 cubic feet
- Remove Fiberglass Sheeting 29 cubic feet
- Remove Drain Tile 39 cubic feet
- Remove Asphalt Roof Shingles 41.7 cubic feet
- Chip and Remove Concrete 150 cubic feet
- Remove Asbestos Gaskets from Paint Booths 25 cubic feet
- Remove 500-gallon sand-filled underground storage tank 1 each
- <u>Remove Steel Paint Booths 3,200 cubic feet (420 tons)</u>
- <u>Remove Misc. Equipment and Piping 200 cubic feet (20 tons)</u>

Water Collect and Control

- Silt Fences 1,500 linear feet
- Collect/Dispose of Contaminated Water 20,000 gallons (Assuming 1 gallon per 25 sf + additional volume similar to housing area project.

Solids Collect and Contain

- Excavate and Load Contaminated Surface Soil 1,100 cubic yards
- Excavate and Load Excavations (trench/pit excavation) 50 cubic yards

Disposal (Commercial)

- Structural Debris to Local Industrial Landfill 20 tons
- Contaminated Soil to Local Industrial Landfill 1,150 cubic yards (1,800 tons)
- Concrete/Masonry Debris to Local Landfill 15 tons
- Contaminated Sweepings to Haz Wste Landfill (w/stab) 12 cubic yards, or 15 tons (assuming 6 cy Bldg 1088, 1 cy avg other buildings)
- Asbestos Disposal to Approved Landfill 1 cubic yard

Ł

• Dispose of Steel Scrap to Local Scrap Yard - 440 tons

Site Restoration

- Granular Backfill 600 cubic yards
- Gravel Surfacing Material 500 cubic yards
- Concrete Repairs 10 cubic yards
- Seeding and Mulching 20,000 square feet

Demobilization- Use Similar Assumptions as those for Housing Area Remediation

Alternative 3 – Decontaminate, Remove, and Dispose of All Above-Grade Buildings and Associated Equipment and Remove and Dispose of Contaminated Soil and Debris.

Note: All changes from Alternative 1 are Italicized and underlined.

Mobilize and Preparatory Work

- Mobilize Construction Equipment
 - Assume 4 month duration of work
 - Assume trailer and portable toilets for duration.
 - Project within DDMT No security guard required.
- Pre-Construction Submittals (assume similar to those for Housing Area Soil Removal)
 - Assume level is 1.5 times that of the Housing Area Soil Removal

Monitoring, Sampling, and Testing

- TCLP Analyses 4 each
- Random Swipe Samples for metals only (Level 2) 14 ea. (assume avg. 2 per building)
- Confirmatory Swipe Samples for metals only (Level 3) 4 (assume 20% of level 2, plus OC)
- Level 2 Metals Scan for Soils 35 each (three composite for each current excavation area, plus 2 QC samples)
- Level 3 Metals Confirm for Soils 9 each (1 for each 5 Level 2 samples, plus 2 QC samples)
- Level 3 Full Scan (confirm) 2 each (one at 1084 and 1 at 1085)

<u>Site Work</u>

- Fencing
 - Install and Remove Temporary Chain Link Security Fence (Rent 1 mo.) 760 linear feet.
 - Install Permanent Double Vehicle Gate with Lock in Existing Fence 1 each

Building and Equipment Decontamination

- Metal/Fiberglass Sheeting (Vacuum and Wash) 112,000 square feet
- Metal/Fiberglass Sheeting (Vacuum Only) 2,000 square feet
- <u>Concrete and Masonry Surfaces 10,000 square feet (Vacuum Only)</u>
- Concrete Surfaces 58,000 square feet (Vacuum and Wash)
- Steel Structural Surfaces 65,000 (Vacuum and Wash)
- Timber Surfaces 2,600 square feet (Vacuum Only)

- Metal Piping and Equipment 2500 square feet (Vacuum and Wash Interior and Exterior Decon)
- 6" Drain Tile (Interior Flush) 700 linear feet

Assume that vacuuming in dusty areas will be done in Level C protection. All other work will be level D, including washing down areas.

Building and Equipment Demolition

- <u>Remove Corrugated Metal 3,500 cubic feet</u>
- Remove Steel Roof/Column Structures 12,300 cubic feet
- Remove Timber Frame 310 cubic feet
- Remove Fiberglass Sheeting 29 cubic feet
- Remove Drain Tile 39 cubic feet
- Remove Asphalt Roof Shingles 41.7 cubic feet
- <u>Remove Concrete and Masonry Walls 11,300 cubic feet (415 cy)</u>
- Chip and Remove Concrete 150 cubic feet
- Remove 500-gallon sand-filled underground storage tank 1 each
- Remove Asbestos Gaskets from Paint Booths 25 cubic feet
- <u>Remove Steel Paint Booths 3,200 cubic feet (420 tons)</u>
- <u>Remove Misc. Equipment and Piping 200 cubic feet (20 tons)</u>

Water Collect and Control

- Silt Fences 1,500 linear feet
- Collect/Dispose of Contaminated Water 20,000 gallons (Assuming 1 gallon per 25 sf + additional volume similar to housing area project.

Solids Collect and Contain

- Excavate and Load Contaminated Surface Soil 1,100 cubic yards
- Excavate and Load Excavations (trench/pit excavation) 50 cubic yards

Disposal (Commercial)

- Structural Debris to Local Industrial Landfill 20 tons
- Contaminated Soil to Local Industrial Landfill 1,150 cubic yards (1,800 tons)

Ł

<u>Contam Concrete and Masonry Rubble to Local Industrial Landfill</u> – 840 tons

- Contaminated Sweepings to Haz Wste Landfill (w/stab) 12 cubic yards, or 15 tons (assuming 6 cy Bldg 1088, 1 cy avg other buildings)
- Asbestos Disposal to Approved Landfill 1 cubic yard
- Dispose of Steel Scrap to Local Scrap Yard 440 tons

Site Restoration

- Granular Backfill 600 cubic yards
- Gravel Surfacing Material 500 cubic yards
- Concrete Repairs 10 cubic yards
- Seeding and Mulching 20,000 square feet

Demobilization - Use Similar Assumptions as those for Housing Area Remediation

SUBJECT LE LE LA MARTINE LA MARTE 1:20-93 PROJECTINE //3622.15.22

TURPOSEI MIEASURE ONING THES TO VALIDUS 773 116 MEDIECT CONTROLEMUS FOR INTRUT INTO PROJECT COST ESTIMATE.

MICROSTATION 95" LINEAR & AREA MERSURING UTILITIES.

ASSUNTATION'S! ALL WIEASUREMENTS FIRE RAFLL ON MAPPING PROVIDED BY DDATT & DIGITIZED BY JUDIT 4122.

> QUANTITIES FOR QUEARING ARE ALSO EASED ON ADDITIONIAL INFORMATION CONTAINED IN THE VIDEO THEE PROVIDED BY DEAYT.

Summailt in A = 57,210 SF(1,31 AC)AREA B = 15,420 SF(0,25 AC)AREA C = 41,860 SF(0.96 AC)CHAINILINK FEALLE = 980 LF SECURITY FEALLE = 1750 LF SILT FEACE = 1750 LF HREA OF WLARIAG - 10,960 SF (0.25 AC) SOL AREA = 68,950 SF (7,700 ST) SOL CONTUITIONING = 72,630 SF (1.67 MC); MULCH HELEA = 3,660 SF

DIELDRIN

SUBJECT <u>ESTIMATE OTY OF CONTAM WATER</u> BY E.<u>R. (MOEPLWADO DATE</u> FOR ESTIMATE SHEET <u>I</u> OF <u>L</u> <u>EST. COST / GAL</u> <u>PROJECT NO</u> 773 117 AREA 1 ' 57,210 S.F. AREA 2 ' <u>15,420</u> 72,630 S.F. ¹2 ANEN OPEN AT ONE TIME : 36,315 SF. ASSUME 2" RAIN DURING EXCAVATION ; 10 % POUDS IN EXCAVATION (36,315) (²/12) (7.48 GAL/C.F.) (0.10) = 4,527 GAL.

DECON WATER (ASSUME SOO GAL.)

WELL WORK BY CHIM HILL IN 1995 REQUIRED CONTAINERIZATION, TESTING, AND DISPOSAL OF WATER AT MOFF-SITE TREATMONT PAILITY. FOR 600 GAL, THE COST WAS #450 FER G. UNDERBERG/SND.

UNIT COST FOR OFF-SITE DISPOSAL = 600 GAL = 0.75/6A.

SUBJECT ESTIMATE ANALYTICAL REGIMTS COSTS BY E.R. UNDERWOOD DATE 1/21/18
CHMHU DOMI SOIL REMOVAL SHEET 1_ OF 2
PROJECT NO 113627. CE 22
AREA A: (1) EXCAVATE 6", DO LEVEL 2 SAMPLING @ / SAMPLE PER 2,500 S.F.
AREA = 57210 DO 10% LEVEL 3 DIELDRW CONFIRMS
LEVEL 2 SAMPLES = 57210 2500 = 23 SAMPLES
LEVEL 3 CONFIRMS = 23(0.1) = 2.3
(2) EXCANATE 6", DO LEVEL 3 SCAN @ 1 SAMPLE / 10,000 SF
57,210 10,000 = 5.72 SAMPLES \$ 6 SAMPLES
AREA B (1) DO LEVEL 2 SAMPLES @ SURFACE @ 1 SAMPLE PER 2,500 S.F.
AREA = 15,420 sf
LEVEL 2 SAMPLES = $\frac{15,420}{2,500}$ 6.16 \Rightarrow 7 SAMPLES
*LEVEL 3 CONFIRMS = 10% = 7(.1)=0.7 D 1 SAMPLE
2) EXCAVATE 6" DO LEVEL 2 SAMPLING
LEVEL SAMPLES (SAME AS (S) = 7 SAMPLES # LEVEL 3 CONFIRMS (SAME AS ()) SAMPLE
(3) DO LEVEL 3 FULL SCAN @ 1/10,000 SF.
15,420 SF = 1.54 = 2 SAMPLES
<u>AREAC</u> : (1) DO LEVEL Z SAMPLES O SUPFACE O / SAMPLE/Z SUDSF AREA = 41,860 SF
#LEVEL Z = 41,860 = 16.74 => 17 SAMPLES
ULEVEL 3 CONFIRMS = 1070 = 17(1) = 1.7 = 2 SAMPLES
(2) DO FULL-SCAN LEVEL # 3 SAMPLES 1@ 10,000 SE
41, 860 10,000 = 4,19 => 5 SAMPLES
LEVEL 2 (DIELDRIN) 23 14 17 54 LEVEL 2 (DIELDRIN) 3 2 2 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
LEVEL 3 (JUL SCAN) 6 2 5 12

SUBJECT <u>ESTIMATE ANALYTICAL REG'MIS COSTS</u> BY <u>E R (INDERMODIDATE 1/21/98</u> <u>DDMT SOIL REMOVAL</u> SHEET <u>2 OF</u> PROJECT NO <u>113627, CP. 22</u>
LEVEL 3 REQUIRES 20% ADDITIONAL NUMBER FOR DUPLICATES, LAB BLANKS, ETC. REQ'D FOR VALIDATION
$\frac{REVISED SUMMARY P QTYS}{LEVEL 2 (DIELORIA): 54 Ca}$ $LEVEL 3 (DIELORIA): 7(1.2) = 8.4 \Rightarrow 9 EA.$ $LEVEL 3 (FULL SCAN): 12(1.2) = 14.4 \Rightarrow 15 EA.$
LAB COSTS (CH2M HILL LAB QUOTES)
LEVEL 2 (DIELDRIN): # 90.00 (#75 + 15 FOR DATA MENTI)
LEVEL 3 (DIELDRIN): \$ 170.53 SEE ATTACHED
LEVEL 3 (FULL SCAN) ! \$ 1,060.76 SEE ATTACHED
LEVEL 3 DATA MOMT : \$3084 SEC ATTACHED LEVEL 3 DATA REPT. : <u>2.163</u> \$5.247
TOTAL #LEVEL 3 SAMPLES : 24
DATA MGMT/RPT COST = $\frac{5247}{24}$ = $\frac{8}{218.62}$ SAMPLE
SUMMARY OF ANALYTICAL COSTS
(LEVEL 2 (DIELDRIN) \$ 90.00 EA
LEVEL 3 (DIELORIN) \$ 170,53+ \$ 218.62= \$389,15
LEVEL 3 (FULL SCAN) \$1060.75 + \$218.02=\$1279.38

SUBJECT BACKEJU / TOPSOL UNIT COST ADD. ON BY E. R. WIDERWOODATE /21/98 FOR ANALYTICAL TEST NG______ SHEET_ __ OF ____ СКМНІЦ _____ PROJECT NO 113627. CP. 22

WE SPECIFY I LEVEL 3 FULL-SCAN ANALYSIS PER 1000 CY OF IMPORTED MITLS, OF PART THEREOF. PER ESTIMATIVE ASSUMPTION. WE WILL HAVE 1050 CY OF GENERAL BACKFILL AND 1350 CY OF TOPSOIL. SINCE BOTH ARE ABOVE 1000 CY, 2 TESTS ARE REQUIRED. AT \$1200/TEST (PER ENSITE ANALYTICAL COST FOR FULL-SCAN LEVEL 3 ANALYSIS), THE FOLLOWING ANALYTICAL COST ADD-ON'S TO THE INSTALLED UNIT COSTS INCLUDE:

 $GENERAL BACKFILL = \frac{\# 1280(2)}{1050c4} = \frac{\# 2.43/c4}{1050c4} = \frac{\# 1280(2)}{1350c4} = \frac{\# 1.89/c4}{1350c4} = \frac$

Underwood, Edward/WDC

From:	Underberg, Greg/ORO
Sent:	Wednesday, January 21, 1998 10:40 AM
To:	Underwood, Edward/WDC
Subject:	FW: Costs

High

Importance:

Randy,

I filled this out. Look at the whole thing, some of it is updated and not in "blue" font.

Greg Underberg (423) 483-9005 x543 (423) 481-3541 fax gunderbe@ch2m.com

Original Me	ssage
From:	Underberg, Greg/ORO
Sent:	Tuesday, January 20, 1998 5:08 PM
To:	Underwood, Edward/WDC
Subject:	Costs

Level III analyses:

Pesticides for Dieldrin confi	irmation (8080)-	144.32
Electronic deliverable	7.21	
Data Validation	19.00	
Sample Total	170.53	

Full list for composite samp	ling:	
Pesticides/PCBs (8080) -	•	166.87
PNA (8100 mod - SVOA) -		180.40
Volatiles (8260)-		202.95
TAL Metals	273.11	
ICP Metals	72.16	
Cyanide	45.	23
Per Sample Subtotal		940.720
Electronic deliverable		47.04
Data Validation		73.00
Per Sample Total	1,0	60.76

Other Lump Sum cost --

- 1) Data Management: 35 hrs x \$52/hr ES02 = 1,820 16 hrs x \$79.hr ES06 = 1,264 Total Data Manage. 3,084
- 2) Data Quality Evaluation Report 8 hrs x \$52/hr ES02 = 416 4 hrs x \$12/hr temp labor = 48 24 hrs x \$72.80 = 1,747.20 DQE Total = \$2,163.20

Waste Water Management: Assumes that the water is nonhazardous and can be trucked via sewer hauler to the City of Memphis Sewer.

Line items -

.

Cost of 1 TCL/TAL Sample = 1,060.76 Poly Tank Rental - \$270/month based on 1995 work. Transport to sewer and tank cleanout: \$450 based on subcontractor estimate in 1995.

I'll send analytical charges and TCLP tomorrow. This isn't complete yet.

Greg Underberg (423) 483-9005 x543 (423) 481-3541 fax gunderbe@ch2m.com

ړ پ

CHANHILL TELEPHONE CONVERSATION RECORD

CALL TO: Spencer Hamill CH2M HILL Analytical Laboratory, Montgomery, AL

PHONE NO.: 334-271-1444

CALL FROM: Randy Underwood

MESSAGE TAKEN BY: Edward R. Underwood/WDC

TIME: 12:00PM

DATE: 01/21/98

PROJECT NO .: 113627.CP.ZZ

SUBJECT: Quotes for TCLP analysis of soil

I indicated that we specify the contractor to run a minimum of two TLCP analyses to determine if the excavated soil is hazardous. This is will determine the disposal requirements. Mr. Hamill indicated that the current rate for a full TCLP analysis for soil (VOA, SVOA, metals, pesticides, and herbicides) is \$1130.

CHANHILL TELEPHONE CONVERSATION RECORD

CALL TO: Shana Smiley Shana Smiley BFI

Shana Smiley BFI, 5497 Malone Road, Memphis, TN

PHONE NO.: (901) 872-7200

DATE: 01/19/98

CALL FROM: Randy Underwood / WDC

MESSAGE TAKEN BY: Edward R. Underwood/WDC

SUBJECT: Costs for Disposal of Contaminated Soil at the BFI Special Waste Landfill

I explained that we would be excavating about 2,300 cubic yards of soil contaminated with dieldrin and would like to landfill it locally if possible. Ms. Smiley indicated that the BFI landfill can accept the waste, provided that the concentrations of pesticides are below regulatory limits as established by the TCLP test.

The current charge of disposing of contaminated soil at their landfill is:

- \$20 per ton for volumes up to 2,000 cubic yards;
- \$19 per ton for volumes above 2,000 cubic yards; and
- potential further decreases with additional volume (generally in increments of 2,000 cubic yards)

The quoted figures include all state taxes and surcharges.

I asked if the facility could also accept debris from clearing (e.g. shrubs, vegetation, etc.). Ms. Smiley indicated that they could and that the current charge for disposing of these wastes is \$6 per cubic yard, plus a state surcharge of \$0.80 per ton.

The landfill facility is approximately 10 miles from the DDMT facility.

PROJECT NO.: 113627.CP.ZZ

CHANHILL TELEPHONE CONVERSATION RECORD

CALL TO: Roger Green Giaroli Nursery & Landscaping, Memphis, TN

PHONE NO.: (901) 382-5402

DATE: 01/19/98

CALL FROM: Randy Underwood/WDC

TIME: 3:30PM

PROJECT NO .: 113627.CP.ZZ

MESSAGE TAKEN BY: Edward R. Underwood/WDC

SUBJECT: Landscaping Materials Costs

Mr. Green indicated that they sell topsoil, sod, mulch, and the plants we are looking for. Current material prices are as follows:

- Topsoil \$15 per cubic yard; however there could be some discount with the quantities (e.g. over 1,000 cy) for this project.
- Sod Typical sod used in the area for athletic fields, etc., is a Hybrid Bermuda Grass mix. It sells for \$100 per 50 square yard pallet. A heavier duty sod, which is used in really high traffic areas is the Zoyia Sod which sells for \$140 per 40 square yard pallet.
- Mulch They do not carry Cyprus bark mulch. Their mulch is shredded hardwood mulch and sells for \$15 per cubic yard.
- Plants are as follows:
 - Red Tip Photena (5-gallon size): \$23.98 ea.
 - American Holly (5-gallon size): \$23.98 ea.
 - Azalea (5-gallon size): \$24.98 ea.
 - Variegated Monkey Grass (4-inch pot): \$25.00 per 18-pot flat.

He indicated that they do landscaping work and can install the materials for a contractor. However, he did not have the current installation rates for the installation side of the business.

		T	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Metal Piping (sqft)	N/A	V/N	V/N	242	V N	1 27
Asbestos (sqft)	N/A	N/A	N/A	N/A	V/N	11 ~1
Equip (sqft)	N/A	774	648	812	N/A	<u>5</u> ≓ 2234
Steel Tendons (ft)	N/A	N/A	624	N/A	5180	<u>5</u> = 5804
Drain Tile (ft)	296	390	~	N/A	V/N	Σ= 686
Steel Blast Booth (sqft)	N/A	N/A	N/A	5032	N/A	Σ= 5032
Steel Paint Booth (sqft)	N/A	8400	17120	N/A	N/A	Σ= 25520
Steel Column (sqft)	N/A	2080	1105	185	13360	Σ= 16730
Steel Roof Purli ns (sqft)	N/A	7230	3444	570	11880	Σ= 23124
Steel Roof Trusses (sqft)	N/A	3190	1530	256	14(108	Σ= 18984
Fiberglass Sheeting (sqft)	700	N/A	N/A	N/A	N/A	Σ= 700
Lumber (sqft)	2523	N/A	N/A	N/A	N/N	Σ= 2523
Corr. Metal (sqft)	1000	14187	11627	2102	52440	Σ= 81356
Masonry (sqft)	N/A	5449	N/A	N/A	A/N	Σ= 5449
Concrete (sqft)	1220	10081	6721	860	42990	Σ= 61872
Bidg.#	1084	1086	1087	1088	1089	

Total area for decontamination = <u>184686 sqft</u>

+ 20546 ft of metal truss/purlin/column material = <u>58838 sqft</u>

+ 186 ft of metal piping = 242 sqft

+ 5804 ft of metal tendons

٤

+ 686 ft of drain tile

773 126

Alter a 1 Quantities for Marial Disposal (Only includes above ground structure components)

Metal Piping (ft)	N/A	N/A	N/A	N/A	V/V	~1
Asbestos (ft ³)	N/A	N/A	N/A	N/A	N/A	7
Equip	N/A	N/A	N/A	N/A	N/A	ц.
Steel Tendons (ft')	N/A	N/A	N/A	N/A	N/A	Σ=
Drain Tile (ft [*])	39	N/A	N/A	N/A	N/A	Σ=39
Steel Blast Booth (ft [*])	N/A	A/N	N/A	N/A	N/A	Σ=
Steel Paint Booth (ft')	N/A	N/A	N/A	N/A	N/A	Σ=
Steel Column (ft)	N/A	N/A	N/A	N/A	N/A	Σ=
Steel Roof Purlins (ft)	N/A	N/A	N/A	N/A	N/A	5
Steel Roof Trusses (ft)	N/A	N/A	N/A	N/A	N/N	2=
Fiberglass Sheeting (ft [*])	29	N/A	N/A	N/A	N/A	Σ=29
Lumber (ft [*])	310	N/A	N/A	N/A	N/A	Σ=310
Corr. Metal (ft ³)	42	N/A	N/A	N/A	N/A	Σ=42
Masonry (ft [*])	N/A	N/A	N/A	N/A	N/A	ک ۲=
Concrete (ft [*])	100	N/A	N/A	N/N	N/A	Σ=100
#	1084	1086	1087	1088	1089	

Total volume for disposal = 520 ft^3

+ 8+ ft³ of potentially contaminated sand and gravel in sump pit in Bldg 1084

+ 41.7 ft³ of asphalt roof shingles on Bldg 1084

Alter Alter 1 Tonnages for Material Disposal (Only includes above ground structure components)

		· - · · · · · · ·				
Metal Piping (tons)	N/A	N/A	N/A	N/A	N/A	॥ ४।
Asbestos (tons)	N/A	N/A	N/A	N/N	N/N	Z=
Equip (tons)	N/A	N/A	A/N	V/N	N/A	Σ=
Steel Tendons (tons)	N/A	N/A	N/A	A/N	N/A	Σ=
Drain Tile (tons)	2.9	N/A	N/A	N/A	N/A	Σ=2.9
Steel Blast Booth (tons)	N/A	N/A	N/A	N/A	N/A	Σ=
Steel Paint Booth (tons)	N/A	N/A	N/A	N/A	N/A	Σ=
Steel Column (tons)	N/A	N/A	N/A	N/A	N/A	Σ=
Steel Roof Purlins (tons)	N/A	N/A	N/A	N/A	N/A	Σ=
Steel Roof Trusses (tons)	N/A	N/A	N/A	N/A	N/A	Σ=
Fiberglass Sheeting (tons)	0.4	N/A	N/A	N/A	N/A	Σ=0.4
Lumber (tons)	4.7	N/A	N/N	N/A	N/N	Σ=4.7
Согт. Metal (tons)	10.3	N/N	N/A	N/A	N/A	Σ=10.3
Masonry (tons)	N/A	N/N	N/A	N/A	N/A	Σ=
Concrete (tons)	7.5	N/A	N/A	N/A	N/A	Σ=7.5
Bldg.#	1084	1086	1087	1088	1089	

Total tonnage for disposal = 25.8 tons

+ 8+ ft³ of potentially contaminated sand and gravel in sump pit in Bldg 1084

+ 1.9 tons of asphalt roofing shingles on Bldg 1084

4

(2) M (0)	Quantities
Alternatiy	Decontamina

		- <u> </u>	-]			
Metal Piping (sqft)	N/A	N/A	N/A	242	V · V	212
Asbestos (sqft)	N/A	N/A	N/A	N/A	V/N	الا 1
(sqft)	N/A	774	648	812	N/A	<u>5=</u> 2234
Steel Tendons (ft)	N/A	N/A	624	N/A	5180	Σ= 5804
Drain Tile (ft)	296	068	~	N/A	V/N	Σ= 686
Steel Blast Booth (sqft)	N/A	N/A	N/A	5032	A/N	Σ= 5032
Steel Paint Booth (sqft)	N/A	8400	17120	N/A	N/A	Σ= 25520
Steel Column (sqft)	N/A	2080	1105	185	13360	Σ= 16730
Steel Roof Purlins (sqft)	N/A	7230	3444	570	11880	Σ= 23124
Steel Roof Trusses (sqft)	N/A	3190	1530	256	140/08	Σ= 18984
Fiberglass Sheeting (sqft)	700	N/A	N/A	N/A	N/A	Σ= 700
Lumber (sqft)	2523	N/A	N/A	N/A	A/N	Σ= 2523
Corr. Metal (sqft)	1000	14187	11627	2102	52440	Σ= 81356
Masonry (sqft)	N/A	5449	N/A	N/A	N/A	Σ= 5449
Concrete (sqft)	1220	10081	6721	860	42990	Σ= 61872
Bidg.#	1084	1086	1087	1088	1089	

Total area for decontamination = <u>184686 sqft</u>

+ 20546 ft of metal truss/purlin/column material = <u>58838 sqft</u>

+ 186 ft of metal piping = 242 sqft

+ 5804 ft of metal tendons

+ 686 ft of drain tile

Altern 2 Quantities for Material Disposal (Only includes above ground structure components)

				·····		
Metal Piping (ft)	A/A	Y N	A/N	A/A	N/A	11 121
Asbestos (ft [*])	N/A	5.1	13.3	N/A	N/A	∑=18.4
Equip (ft³)	N/A	N/A	N/A	25	N/A	Σ= X
Steeł Tendons (ft')	N/A	N/A	N/A	N/A	N/A	Σ=
Drain Tile (ft [*])	39	N/A	N/A	N/A	N/A	Σ=39
Steel Blast Booth (ft [*])	N/A	N/A	N/A	tic	N/A	²⁼ <i>K</i> 7
Steel Paint Booth (ft ³)	N/A	1050	2140	N/A	N/A	Σ=3190
Steel Column (ft)	N/A	N/A	N/A	N/A	N/A	Σ=
Steel Roof Purlins (ft)	N/A	N/A	N/A	N/A	N/A	∑⊨
Steel Roof Trusses (ft)	N/A	N/A	N/A	N/A	N/A	Σ=
· · · · · · · · · · · ·	29	N/A	N/A	N/A	N/A	Σ=29
Lumber Fiberglass (ft ³) Sheeting (ft ³)	310	N/A	N/A	N/A	N/A	Σ=310
Corr. Metal (ff)	42	N/A	N/A	N/A	N/A	Σ=42
Masonry Corr. Metal (ft') (ft')	N/A	N/A	N/A	N/A	N/A	Σ=
Concrete (ft)	100	N/A	N/A	N/A	N/A	Σ=100
Bidg 8	1084	1086	1087	1088	1089	

Total volume for disposal = 3710 ft³

+ 8+ ft³ of potentially contaminated sand and gravel in sump pit in Bldg 1084

+ 41.7 ft³ of asphalt roof shingles on Bldg 1084

+ 18.4 ft³ of asbestos from door seals

4

Alterne 2 Tonnages for Material Disposal (Only includes above ground structure components)

Metal Piping (tons)	N/A	N/A	V/N	N/A	N/A	-1
Asbestos (tons)	N/A	ć	ż	N/A	N/A	۲=2
Equip (tons)	N/A	N/A	N/A	ALA A	N/A	<i>۲</i> =۲ م
Steel Tendons (tons)	N/A	N/A	N/A	N/A	N/N	Σ=
Drain Tile (tons)	2.9	N/A	N/A	N/A	N/A	Σ=2.9
Steel Blast Booth (tons)	N/N	N/A	N/A	33 4/N	N/A	Σ= //. 6
Steel Paint Booth (tons)	N/A	257	161	N/A	N/A	Σ=418
Steel Column (tons)	N/A	N/A	N/A	N/A	N/A	Σ=
Steel Roof Purlins (tons)	N/A	N/A	N/A	N/A	N/A	Σ=
Steel Roof Trusses (tons)	N/A	N/A	N/A	N/A	N/A	Σ=
Fiberglass Sheeting (tons)	0.4	N/A	N/A	N/A	N/A	Σ=0.4
Lumber (tons)	4.7	N/A	N/A	N/A	A/N	Σ=4.7
Солт. Metal (tons)	10.3	N/A	N/A	N/A	N/A	Σ=10.3
Masonry Corr. (tons) (tons) (tons)	A/N	N/A	N/N	N/A	N/A	Σ=
Bldg. # Concrete (tons)	7.5	N/A	N/A	N/A	N/A	2=7.5
₿ldg #	1084	1086	1087	1088	1089	

Total tonnage for disposal = <u>443.8 tons</u>

+ 8+ ft³ of potentially contaminated sand and gravel in sump pit in Bldg 1084

+ 1.9 tons of asphalt roofing shingles on Bldg 1084

,

Bldg.#	Concrete	Masonry	Corr.	Lumber	Fiberglass	Steel	Steel	Steel	Steel	Steel	Drain	Steul	Forrin	Achector	Metal
	(coff)		Metal	(eoft)	(soft) Sheeting	Roof	Roof	Column	Paint	Blast	Tile	Tendons			Piping
		():h=)	(sqft)	(Infact)	(tjbs)	Trusses	Purlins	(saft)	Booth	Booth	(H)	(H)	(sqft)	(1) (the second se	(soft)
						(sqft)	(sqft)		(sqft)	(ith)	E	£			
1084	1220	N/A	1000	2523	700	N/A	N/A	N/A	N/A	N/A	296	N/A	N/A	N/A	N/A
1086	10081	5449	14187	N/A	N/A	3190	7230	2080	8400	N/A	390	N/A	774	N/A	N/N
1087	6721	N/A	11627	N/A	N/A	1530	3444	1105	17120	N/A	č	624	648	N/A	N/A
1088	860	N/A	2102	N/A	N/A	256	570	185	N/A	5032	N/A	N/A	812	V/N	242
1089	42990	N/A	52440	N/A	N/A	14008	11880	13360	N/N	N/A	N/A	5180	N/A	V, N	
						-									
	£=	Σ=	Σ=	Ω=	Σ=	Σ=	Σ=	Σ=	Σ=	Σ=	5=	2= 7	-1 -1		
	61872	5449	81356	2523	200	18984	23124	16730	25520	5032	686	5804	2234		

Total area for decontamination = 184686 sqft

+ 20546 ft of metal truss/purlin/column material = 58838 sqft

+ 186 ft of metal piping = 242 sqft

+ 5804 ft of metal tendons

÷

-

+ 686 ft of drain tile

Altern 3 Quantities for Marerial Disposal (Only includes above ground structure components)

	· · · · · · · · · · · · · · · · · · ·					
Metal Pipung (ft)	N/A	N/A	N/A	-ISG	N/A	<u>∆</u> =186
Asbestos (ft ³)	N/A	5.1	13.3	5.8	R/N	<u>5</u> =24 2
Equip (ft [*])	N/A	N/A	N/A	25	N/A	<u> </u>
Steel Tendons (ft³)	N/A	N/A	4	N/A	16	Σ=20
Drain Tile (ft [*])	39	51	N/A	N/A	N/A	Σ=90
Steel Blast Booth (ft [*])	N/A	N/A	N/A	157	N/A	Σ=157
Steel Paint Booth (ft [*])	N/A	1050	2140	N/A	N/A	Σ=3190
Steel Column (ft)-	N/A	416	221	74	2672	Σ=3383
Steel Roof Purlins (ft)	N/A	2410	1148	382	3960	Σ=7900
Steel Roof Trusses (ft)	N/A	1595	1626	255	7004	Σ=10480
Fiberglass Sheeting (ft ³)	29	N/N	N/A	N/A	N/A	Σ=29
Lumber (ft [*])	310	N/A	N/A	N/A	N/A	Σ=310
Corr. Metal (ft')	42	591	484	154	2185	Σ=3456
Masonry (ft [*])	N/A	5449	N/A	N/A	N/A	Σ=5449
Concrete (ft [*])	100	N/A	3588	N/A	2069	Σ=5757
Bidg.#	1084	1086	1087	1088	1089	

Total volume for disposal = 18483 ft³

+ 8+ ft³ of potentially contaminated sand and gravel in sump pit in Bldg 1084

+ 186 ft of steel 5" dia. piping

+ 10480 ft of steel roof truss mat'l

+ 7900 ft of steel roof purlin mat'l

+ 3383 ft of steel column mat'l

+ 41.7 ft³ of asphalt roof shingles on Bldg 1084

+ 24.2 ft³ of asbestos from door seals

Alter Alter Oldson Alter

	r			•··· • —	· ··· · · · · · · · · · · · · · · · ·	
Metal Piping (tons)	V/N	N/A	N/A	t 0	N/A	V=().4
Asbestos (tuns)	A/N	c	6	ż	N/A	Σ=?
Equip (tons)	N/A	A/N	N/A	1.9	N/A	S=1.9
Steel Tendons (tons)	N/A	N/A	0.3	N/A	1.2	Σ=1.5
Drain Tile (tons)	2.9	3.8	N/A	N/A	N/A	Σ=6.7
Steel Blast Booth (tons)	N/A	N/A	N/A	11.8	N/A	Σ=11.8
Steel Paint Booth (tons)	N/N	257	161	N/A	N/A	E=418
Steel Column (tons)	N/A	0	4.6	1.6	80.5	Σ=95.7
Steel Roof Purlins (tons)	N/A	80	8.6	2.9	29.7	Σ ≕59. 2
Steel Roof Trusses (tons)	N/N	10	4.9	1.7	45.5	Σ=62.1
Fiberglass Sheeting (tons)	0.4	N/N	N/A	N/N	N/A	Σ=0.4
Lumber (tons)	4.7	N/A	N/N	N/N	A/N	Σ=4.7
Corr. Metai (tons)	10.3	145	36.3	11.6	535	Σ=1065
Masonry (tons)	N/A	409	N/A	N/A	N/A	Σ=409
Concrete (tons)	7.5	N/A	269	N/A	155	Σ=431.5
Bidg.#	1084	1086	1087	1088	1089	

Total tonnage for disposal = 2568 tons

+ 8+ ft³ of potentially contaminated sand and gravel in sump pit in Bldg 1084

+ 1.9 tons of asphalt roofing shingles on Bldg 1084

Ł

CH2MHILL SUBJECT EXCAUATION BACKER QUANTINES BY SHEET NO _____ of ____ DATE PROJECT NO 773 135 BUICDING 1084 EXCAU 4'x \$ x6':27 = \$14 GRAN BACKFILL 4 x 4 x 5 - 27 = 524 CONCK BACKFM 4×6×1 +27 = 104 BUILDING 1085 6'x6'x8' = 27 = 1104 6 × 6 × 0 /2' × 10' × 8' : 27 = 3569 46 - 1 Grand Backfill : [(6x 6 ×1) + (12 × 10 ×1)]: 27 = 6 c7. Granulan Backfill = 40 c7. SURFACE SOLL EXCAN OUTSIDE FOUCE (TO RESIDENTIAL STDS) A: 70×130×1 = 337 cy $A_2 = 50 \times 120 \times 1 \div 27 = \frac{222 \ eY}{560 \ eY}$ BACKFILL > SLOCY CLEAN'SOL AREA = 15,100 SF OF SEEDING (1.25)= (TO FUDUSTAIAL STDS) @ 60×20×1 72 45 ct @ 30× 15×1 = 27 17 64 2 Exan (D) 50×30 \$ 27 56 cr 560-50×35 = 21 Ø 65.04 () 40×20 = 27 + 502 30 24 \bigcirc 60×30 ± 37 1062 (Say 1100 67 64 Ø 35x30 ≠27 3904 Gran Backfill 8 85x25 = 17 7904 501 70×40 + 27 D 104 04 40 cr 502ct SUCCI

CH2MHILL TELEPHONE CONVERSATION RECORD

Call To:	Scott Vozza/NJO		
Phone No.:	NJO Office	Date:	January 20, 1999
Call From:	R. Underwood/WDC	Time:	10:13 PM

Message

Taken By:Randy Underwood/WDC

Subject: Current Analytical Costs

I contacted Scott about the current costs of chemical analysis for various tests we anticipate at Parcels 35 and 28. He provided cost information from a price list of Lancaster Laboratories, Lancaster, PA, a reputable full-service laboratory.

TCLP Analysis - \$1,363 each

Priority Pollutant Metals and PAH (EPA 846, Meth 8310) - \$225 + \$236 = \$461 each

Priority Pollutant Metals - \$ 236 each

Full Scan (Volatiles, acid base neutrals, pest/PCB, TAL Metals, Cyanide, Phenols, Diox) - \$1,596 each

Individual metals about \$18 each.

According to Lancaster, a Level 3 data package is an additional 8%.

Summary -

- -TCLP \$1,363 each SAT \$1, 4000
- Level 2 Priority Pollutant Metals Swipe \$236 each 547 4250
- Level 3 Priority Pollutant Metals Swipe \$255 each 6107 6275
- Level 2 Priority Pollutant Metals and PAH \$461 each SAY + 475

Level 3 Priority Pollutant Metals and PAH - \$498 each 547 * 500

1

、Level 3 Full Scan (Confirm) - \$1,723 each らルゴーもうめのの

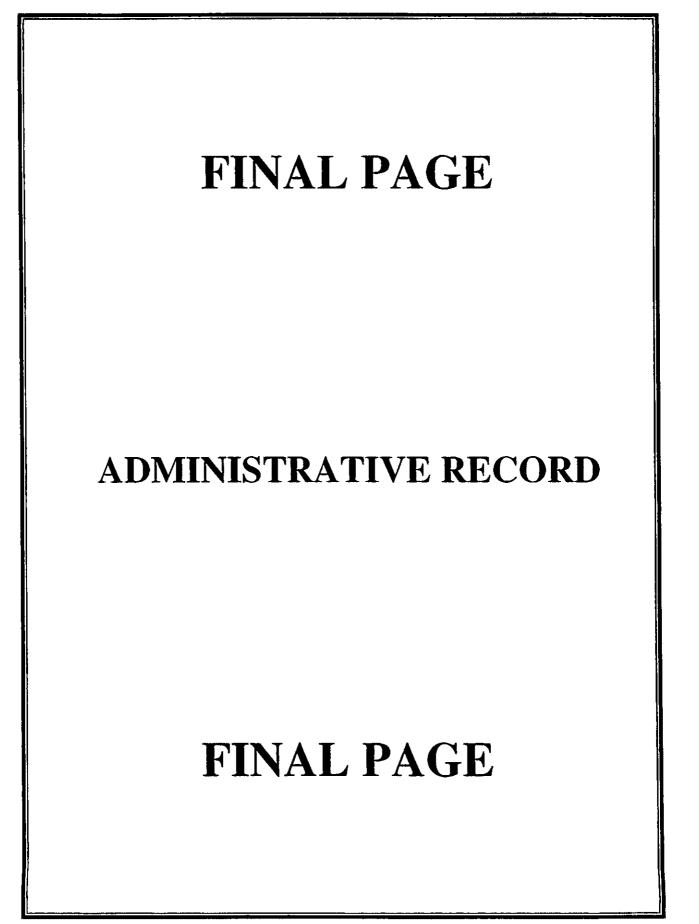
ľ

CH2MHILL TELEPHONE CONVERSATION RECORD

Call To:	Waste Management Dave Kraus		
Phone No.:	(877) 989-2783	Date:	January 26, 1999
Call From:	Mike Robey/GNV	Time:	03:53 PM
Message Taken By:	Mike Robey/GNV		
Subject:	Hazardous Waste Disposal		

I talked to Dave Kraus regarding the hauling and disposal of hazardous waste material for the Parcel 35 & 28 Remediation Project. The following are the costs quoted for this work.

Hauling:	\$650.00 per 20 ton load from Memphis, TN to facility at Emelle, AL in
	closed roll-off type container.


1

Disposal: \$195.00 per ton

Taxes: \$113.00 per ton

Application Fees: \$100.00 flat fee for Alabama state application

\$150.00 flat fee for Emelle application

此可告告书后,就是你不要是你有你是你是你是我们是我了,你,你就是你你你就是你们你?你?你不能要了你<mark>你的你……你</mark>你你你们你的你……你不是你?"你的道道,你说你说,你们你你们不是是……你你说,你们你不不能不能不