File: 541.460.000n C.H.

THE MEMPHIS DEPOT **TENNESSEE**

ADMINISTRATIVE RECORD COVER SHEET

AR File Number 658

STL Pittsburgh 450 William Pitt Way Pittsburgh, PA 15238

Tel 412 820 8380 Fax 412 820 2080 www.stl-inc.com

ANALYTICAL REPORT

PROJECT NO. UXB 7512-060

Dunn Field, Def Depot Memphis

Lot #: C0E230195

Randy Reed

UXB International

SEVERN TRENT LABORATORIES, INC.

June 7, 2000

Dave Dunlap
Project Manager

CASE NARRATIVE UXB International Inc. Dunn Field

LOT # C0E230195

Sample Receiving:

Samples were received on May 23, 2000. The COC did not have analysis listed. As per Randy Reed on May 24, 2000, volatiles, semivolatiles, pesticides, PCBs, herbicides, metals, cyanide, sulfide, pH, and flashpoint were to be analyzed. Notation of this was made on the COC.

Both of the volatiles sample bottles had air bubbles

Volatiles:

There were no problems associated with the analyses.

Semivolatiles:

There were no problems associated with the analyses.

Pesticides:

Several of the calibration verification standards had compounds outside of the $\pm 15\%$ difference criteria. The average % difference of all compounds in the calibration verification standards were within the $\pm 15\%$ difference criteria. Compounds exceeding these criteria were not detected in the samples. The following table lists the calibration verifications and compounds outside of the $\pm 15\%$ difference criteria.

Column: RTX4CLP	-		
Calibration Verification Date & Times	Affected Compound	% Différence	Average % Difference of All Compounds in Standard
5/27/00 @ 00:18/00:44	heptachlor	15.2	10
· ·	endosulfan I	16.1	
	dieldrin	15.7	
	4,4-DDT	16.7	
	methoxychlor	15.9	
	decachlorobiphenyl	16.7	
5/27/00 @ 06:44/07:10	heptachlor	16.8	14
	endosulfan I	28.0	
	dieldrin	24.0	
	4,4-DDT	41.7	
	methoxychlor	22.8	
	decachlorobiphenyl	22.6	

PCBs:

There were no problems associated with the analyses.

CASE NARRATIVE UXB International Inc. Dunn Field

LOT # C0E230195

Herbicides:

Two of the calibration verification standards had compounds outside of the $\pm 15\%$ difference criteria. The average % difference of all compounds in the calibration verification standards were within the $\pm 15\%$ difference criteria. Compounds exceeding these criteria that were not detected in the samples The following table lists the calibration verifications and compounds outside of the $\pm 15\%$ difference criteria.

Column: DB1701	Aller and States As			
Calibration Verification	-Affected Compoun	d -% Differen		
Date & Times			///X/// K///GAX-CADAX-	mpoundsan
5/26/00 @ 11:39	2.4-DB	-19.68	Star	leard
3.20,00 (6) 11.55	2,700	17,00	ľ	
5/26/00 @ 19:53	2,4-DB	-21.2	6	

Metals:

The matrix spike and matrix spike duplicate were outside control limits for aluminum All associated results were flagged with an "N" qualifier.

For the matrix spike and matrix spike duplicate, iron recoveries were not calculated due to the concentration of analyte in the sample being >4 times the concentration of spike added.

General Chemistry:

There were no problems associated with the analyses.

METHODS SUMMARY

C0B230195

PARAMETER	ANALYTICA METHOD	L PREPA	RATION D
nu Amioona	SW846 904	n SW846	9040
pH Aqueous Chlorinated Herbicides by GC	SW846 815		8151A
Cyanide, Total	SW846 901	2A SW846	9012A
Inductively Coupled Plasma (ICP) Metals	SW846 601	OB SW846	3010A
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 747	OA SW846	7470A
Organochlorine Pesticides	SW846 808	1A SW846	3510C
Pensky-Martens Method for Determining Ignitability	SW846 101	.0 SW846	1010
PCBs by SW-846 8082	SW846 808	2 SW846	3510C
Semivolatile Organic Compounds by GC/MS	SW846 827	OC SW846	3520C
Sulfide	MCAWW 376	.1 MCAW	7 376.1
Trace Inductively Coupled Plasma (ICP) Metals	SW846 601	.OB SW846	3010A
Volatile Organics by GC/MS	SW846 826	OB SW846	5 5030

References:

MCAWW	"Methods for Chemical Analysis of Water	and Wastes",
	EPA-600/4-79-020, March 1983 and subsec	quent revisions.

"Test Methods for Evaluating Solid Waste, Physical/Chemical SW846 Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

C0B230195

 WO # SAMPLE# CLIENT SAMPLE ID
 DATE TIME

 DDK90 001 DF/S1/0137/WA/001
 05/22/00 13:11

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages
- All calculations are performed before rounding to avoid round-off errors in calculated results
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

,

Quanterra, Inc. - Pittsburgh PA Lab 450 William Pitt Way Pittsburgh PA 15238

3 Relinquished By © DISTRIBUTION: WHITE - Stays with Sample; CANARY - Returned to Client with Report, PINK - Field Copy CHEMIC WXB INTL., 2NC Memonis DF/S1/0137 Address 41 OLD POPLAR PIRC Contract/Purchase Order/Quote No Comments Possible Hazard Identification

Non-Hazard

F Special Instructions tolect Name Normal urn Around Time Required Relinquished By Belinquished By und tiers Sample I D No and Description 2. IWA 100 Flammable Skın tritant ণ 123/00/13/1 Date į Poison B Time 5/22/00/1430 Date FRANK JOHNSON Sample Type Carrier/Waybill Number WATER 5 Linknown 310802 91153 ше 750mc & PLASTIC 80 mc VOAVIAH O Total Volume Done | | |# Туре Sample Disposal Containers 3 Received By 2. Received By Project Specific (Specify) Received By Return To Client ⋛ 2000 Preservative Condition on Receipt Disposal By Lab as mayer Lab Number appendantal Road Strates TOLBUSTING the Holder Archive For 1400 Chain Of Custody Number 57176 Page ___ Date Analysis of Time Pilttsburgh

Cooler Receipt Form STL Pittsburgh

ient:	UKB	Project:	Quote:	- 11	-/
	Rec'd & Opened for Temp. Check on:			#/k	·
oolers	S Opened and Unpacked on:	1 5/23/10	By: <u></u>	(Signat	ture)
n·	I Tat Number	35 230195		(Cagaa)	
FL Pi	ttsburgh Lot Number:			Yes	No
		.1. 0		./	110
1.	Were custody seals on the outside of the	cooler?			
	If YES, how many and where? Quantity	Location////C		,	
	Were signatures and date correct?				
2.	Were custody papers included inside the				
3.	Were custody papers properly filled out				
4.	Did you sign the custody papers in the a				
5.	Was shippers packing slip attached to the	nis form?			
6.	Were packing materials used?		"		
	If YES, what type?	Jull Fil		. '	
7.	Were the samples chilled? (Record ten	nperatures on reverse side.)		. ∠	/
8.	Were the samples appropriately preserv	/ed?		- —	,
9.	Were all bottles sealed in separate plas	tic bags?			
10.	Did all bottles arrive in good condition	(unbroken)?/ MM	ve		·
11.	Were all bottle labels complete (sample	e ID, preservatives, etc.)?			
12.					·
13.	1 for trata indi	,		-\-	.
14.			R Dulle	_]	- V
15.			Varance	_ 	<u> </u>
16.	Samples received by. FEDEX UF		OTHER AIRBO	ORNE	
					<u> </u>
Exp	plain any discrepancies:				
T es	vel 2 Review				
Wa	as contacted on by		to resolve	discrep	ancies.
					

Cooler R ceipt Form

STL Pittsburgh

P: Preserved UP: Unpreserved

 	4 7	PH<2	NUT(1) PH<2	CN PH ≥12	TPHC PH<2	PHEN PH<2	SULF PH ≥12	TOC PH<2	TOX PH<2	VOA P/UP	hrdnss PH<2			
. /				12			12							L
┼╌									<u> </u>			<u> </u>	<u> </u>	┖
1										<u> </u>				_
												ļ	<u> </u>	L
+										<u> </u>		<u> </u>	ļ	L
+									<u> </u>	<u> </u>	ļ	Ь—	<u> </u>	Ļ
 		1			<u> </u>		<u> </u>		<u> </u>	 		—	<u> </u>	╀
+								<u> </u>	<u> </u>			 	 	╀-
+	1							<u> </u>	ļ	ļ <u> </u>	ļ	 	 	┼
1	1			<u> </u>	<u> </u>				ļ	 	 	 	₩	╀
1						<u> </u>	<u> </u>	<u> </u>	ļ		ļ	 	 	╀
						<u> </u>	ļ	 	 	 -	ļ	₩-	 	╁
1				<u> </u>		<u> </u>		<u> </u>	<u> </u>	ļ. <u> </u>	 	┼	┼──	+
						 	 	 	↓	 	 	 	┼──	╀
						 		 	-	 	 	 	+-	+
			<u> </u>			 	 	 	 	 	 	┼─	┼──	+
								-	<u> </u>	+-	+	┼─	┼	+
			<u> </u>				 	<u> </u>	 	 	-	+	+	+
T	T							 	<u> </u>	 	+	+	 	╁
													Id include sample bottles for ammonia, chemical oxygen demand, nitrate/nitnte, TKN, or total phosphorus	

(1) "NUT" could include sample bottles for ammonia, chemical oxygen demand, nitrate/nitnte, TKN, or total phosp

Comments:

ooler Number	Temperature	Bottle Type	Lot Number*
	4		
	Ĭ.		

BEST	AVAILABLE
	COPY

1		COLL	
	ngany Se V ngany 450 mara debara to Pil Zen	Sender's Jan Jan Jan Manne UXB Incompany UXB	
0095 28E 2128	Vicione Private	No RIV	The state of the s
	May 112 820:8380	Phone 921745-4999 Phone 921745-4999 R-07124 R	1096549E2T29
	S. S	4999 4999	600
Tor taking is been to \$100 unterly plelease Signature Some author by spring you authorist is in defect, and you to independy and hadren hard Care strions? Call 1-800-G Visit our Was size at waren'tee for har 1/20 was 100-100 unterly	Sanutary Delivery Analysis of hear front Does their Alignment contain it swint 20 codes No Yes much be the No Apper Statement Dargesus Good spring to their see Payment 'Bill to: Sender 'Bill t	Fedix Day's Second borbest ary 4b Express Freight Service Ab Express Freight Control of the Co	farm. DZDD
Si you declare a higher house desirery sections to the charge of the cha	edifferiy	FedEx Express Saver numbers saver saver saver saver saver numbers nu	
	HOLD Weekday Art Feder, Location Asternation and artificial control of the state of the feder to cation and artificial feder to cation and federate of the state of the stat	Fedica Trist Over Internation may be used to the control of the co	
	the state of the s	gill by the control of the control o	1500s

CLEARANCE REPORT

May-15, 2000

Dunn Field, Memphis Defense Depot

Results for CWM Soil Sample Analysis

Analyst: Wyatt McNutt

Sample#	1,4- Thioxane	1,4- Dithiane	TDG	Mustard	Lewisite
DF/S1/01 37/WA/ 001	ND	ND	N/A	ND	ND
DF/S1/01 37/WA/ 001 MS	99	97	N/A	102	97
DF/S1/01 37/WA 001 MSD	97%	95	NA	99	122
DF/S1/01 37/B4B12 0020	ND	ND	N/A	ND	ND
DF/S1/01 37/B4B12 0021	ND	ND	N/A	ND	ND
DF/S1/01 37/B4B12 0022	ND	ND	NA	ND	ND
DF/S1/01 37/B4B12 0023	ND	ND	NA	ND	ND
DF/S1/01 37/B4B12 0024	ND	ND	NA	МD	ND

ND= Not detected at or above the method detection limit (MDL)

MDL= 200 ppb

BDL= Below detection limit, results > 100ppb, but < 200 ppb

MS= matrix spike

MSD= matrix spike duplicate

DUP= duplicate

DATA SUMMARY PACKAGE

GC/MS VOLATILE SUMMARY

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix. (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Date Received: 05/23/00 Work Order: DDK90101 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/24/00

Moisture %:NA

QC Batch: 0145157

Client Sample Id: DF/S1/0137/WA/001

CAS NO.		g/kg) ug/L	Q
67-64-1	Acetone	2.1	J
71-43-2	Benzene	5.0	<u>U</u>
75-27-4	Bromodichloromethane	5.0	ט
75-25-2	Bromoform	5.0	U
74-83-9	Bromomethane	10	<u> </u>
78-93-3	2-Butanone	20	<u> </u>
75-15-0	Carbon disulfide	5.0	<u></u> U
56-23-5	Carbon tetrachloride	5.0	<u></u>
108-90-7	Chlorobenzene	5.0	ן ט יי
124-48-1	Dibromochloromethane	5.0	<u> </u>
75-00-3	Chloroethane	10	<u> </u>
67-66-3	Chloroform	5.0	U
74-87-3	Chloromethane	10	U
75-34-3	1,1-Dichloroethane	5.0	iu
107-06-2	1,2-Dichloroethane	5.0	<u> </u>
75-35-4	1,1-Dichloroethene	5.0	<u> </u>
540-59-0	1,2-Dichloroethene (total)	5.0	ט
78-87-5	1,2-Dichloropropane	5.0	ַ ַ ַ
10061-01-5	cis-1,3-Dichloropropene	5.0	ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ
10061-02-6	trans-1,3-Dichloropropene	5.0	<u> </u>
100-41-4	Ethylbenzene	5.0	<u>"</u> ט
591-78-6	2-Hexanone	20	<u> </u>
75-09-2	Methylene chloride	5.0	ַ ע ַ ַ ַ ַ ַ ַ ַ
108-10-1	4-Methyl-2-pentanone	20	U
100-42-5	Styrene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
127-18-4	Tetrachloroethene	5.0	IU
108-88-3	Toluene	5.0	U

658 14

UXB INTERNATIONAL

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Date Received: 05/23/00 Work Order: DDK90101 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/24/00

Moisture %:NA

QC Batch: 0145157

Client Sample Id: DF/S1/0137/WA/001

	CAS NO.	COMPOUND	(ug/L or ug/	kg) ug/L	Q
1 7	1-55-6	1,1,1-Trichloroet	hane	5.0	<u> </u>
17	9-00-5	1,1,2-Trichloroet	hane	5.0	<u> U</u>
7	9-01-6	Trichloroethene		5.0	<u> </u>
7	5-01-4	Vinyl chloride		10	<u>U</u>
1	330-20-7	Xylenes (total)		5.0	<u>U</u>

UXB INTERNATIONAL MATRIX SPIKE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WATER

Lab Sample ID:C0E230195 001

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Work Order: DDK90113 Dilution factor: 1

Date Received: 05/23/00
Date Extracted:05/24/00
Date Analyzed: 05/24/00

Moisture %:NA

QC Batch: 0145157

Client Sample Id: DF/S1/0137/WA/001

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
71-43-2	Benzene	51.2	
108-90-7	Chlorobenzene	49.3	
75-35-4	1,1-Dichloroethene	53.5	
108-88-3	Toluene	50.2	
79-01-6	Trichloroethene	49.9	i

UXB INTERNATIONAL MATRIX SPIKE DUPLICATE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Date Received: 05/23/00 Work Order: DDK90114 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/24/00

Moisture %:NA

QC Batch: 0145157

Client Sample Id: DF/S1/0137/WA/001

CAS NO.	COMPOUND (ug/L	or ug/kg) ug/L Q
71-43-2	Benzene	50.1
108-90-7	Chlorobenzene	48.9
75-35-4	1,1-Dichloroethene	55.9
108-88-3	Toluene	50.2
79-01-6	Trichloroethene	49.0

UXB INTERNATIONAL CHECK SAMPLE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 157

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Date Received: 05/23/00 Work Order: DDL68102 Date Extracted: 05/24/00 Dilution factor: 1 Date Analyzed: 05/24/00

Moisture %:NA

QC Batch: 0145157

Client Sample Id: CHECK SAMPLE

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
71-43-2	Benzene	49.2	
108-90-7	Chlorobenzene	49.2	i
75-35-4	1,1-Dichloroethene	54.4	
108-88-3	Toluene	50.0	
79-01-6	Trichloroethene	47.7	

SW846 8260B SURROGATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT QESSDG:

Lot #: C0E230195

CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
=======================================	======	======	======	======	======
01 DF/S1/0137/WA/001	98	103	99	98	00
02 METHOD BLK. DDL68101	103	103	100	100	00
03 LCS DDL68102	103	101	100	102	_00
04 DF/S1/0137/WA/001 D	105	101	102	104	00
05 DF/S1/0137/WA/001 S	104	101	102	102	00

SURROGATE	SS.	QC LIMITS
SRG01	= 1,2-Dichloroethane-d4	(77-120)
SRG02	= Toluene-d8	(78-111)
SRG03	= 4-Bromofluorobenzene	(80-114)
SRG04	= Dibromofluoromethane	(78-110)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot #: C0E240000

WO #: DDL68102 BATCH: 0145157

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	QUAL
022222222222222222	===============	=======================================	=====		========
1,1-Dichloroethene	50.0	54.4	109	65- 119	
Trichloroethene	50.0	47.7	95	80- 122	l
Benzene	50.0	49.2	98	79- 116	1
Toluene	50.0	50.0	100	76- 119	
Chlorobenzene	50.0	49.2	98	81- 115	l

NOTES(S):	

* Values outside of QC limits

Spike	Recovery:	0	out	of	5	outside	limits
COMMEN	TS.						
<u></u>							

SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Matrix Spike ID: DF/S1/0137/WA/001

Lot #: C0E230195

WO #: DDK90113 BATCH: 0145157

	SPIKE ADDED	SAMPLE CONCENT.	MS CONCENT.	MS %	LIMITS	
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	QUAL
======================================	=======	=======	=======	=====	========	======
1,1-Dichloroethene	50.0	ND	53.5	107	<u>57- 138</u>	ļ
Trichloroethene		ND	49.9	100	58- 141	
	50.0	ND	51.2	102	73 - 123	<u> </u>
Benzene	50.0	ND	50.2	100	67- 129	
Toluene Chlorobenzene	50.0	ND	49.3	99	70- 122	1

NOTES (S):	

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 5 outside limits COMMENTS:

FORM III

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Matrix Spike ID: DF/S1/0137/WA/001

Lot #: C0E230195

WO #: DDK90114 BATCH: 0145157

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENT. (ug/L)	MSD % REC	% RPD	QC I	LIMITS REC	 QUAL
	=======	=======	====	======	====	=======	========
1,1-Dichloroethene	50.0	55.9	112_	4.5	20	57- 138	
Trichloroethene	50.0	49.0	98	1.8	20	58- 141	
Benzene	50.0	50.1	100	2.0	20	73 - 123	l
Toluene	50.0	50.2	100	0.17	20	67- 129	
Chlorobenzene	50.0	48.9	98	0.81	20	70- 122	.

Notes (s) :		

* Values outside of QC limits

RPD:	0	out	of	5	outsid	e li	mits	
Spike	Recov	ery:		0 out	of	5	outside	limits
COMMEN	ITS:							

FORM III

[#] Column to be used to flag recovery and RPD values with an asterisk

SW846 8260B METHOD BLANK SUMMARY

BLANK WORKORDER NO.

Lab Name: Severn Trent Laboratories, Inc.

Lab Code: QESPIT SDG Number:

Lab File ID: wb50524.d Lot Number: C0E230195

Date Analyzed: 05/24/00 Time Analyzed: 07:25

Matrix: WATER Date Extracted:05/24/00

GC Column: HP624 ID: .20 Extraction Method: 5030

Instrument ID: HP5 Level:(low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS, MSD:

7	SAMPLE			LAB	DATE	TIME
1	CLIENT ID.	WORK ORDER #		FILE ID	ANALYZED	ANALYZED
ļ				===========	=======	=========
01	DF/S1/0137/WA/001	DDK90101		5052404.d	05/24/00	09:03
	DF/S1/0137/WA/001	DDK90113	s	5052406.d	05/24/00	09:53
	DF/S1/0137/WA/001	DDK90114	D	5052407.d	05/24/00	10:18
04	CHECK SAMPLE	DDL68102	C	5052402.d	05/24/00	08:14
05						
06						
07					<u> </u>	
08						
09						
10						
11						
12						
13					l <u></u>	
14						
15					<u> </u>	
16					<u> </u>	
17						
18					ļ	
19					ļ	
20					ļ	<u> </u>
21]				!	ļ
22					ļ	!
23					ļ	ļ
24					ļ	l
25	1				<u> </u>	ļ
26					ļ	
27					<u> </u>	ļ [
28	l	ļ <u></u>			ļ	ļ
29	l			.		<u> </u>
30		l		.	l	

COMMENTS:	
	FORM IV

UXB INTERNATIONAL METHOD BLANK COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 157

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Date Received: 05/23/00 Work Order: DDL68101 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/24/00

Moisture %:NA

QC Batch: 0145157

Client Sample Id: INTRA-LAB BLANK

COMPOUND (ug/L or u	ıg/kg) ug/L ()
Acetone	20	ַ ַ ַ ַ ַ ַ ַ
Benzene	5.0	ן ט
Bromodichloromethane	_ 5.0	<u> </u>
Bromoform	5.0	ן ַ
Bromomethane	10	U
2-Butanone	20	ע ע
Carbon disulfide	5.0	<u> </u>
Carbon tetrachloride	5.0	U
Chlorobenzene]5.0	<u> </u>
Dibromochloromethane	5.0	ַ "ט
Chloroethane	10	U
Chloroform	5.0	<u> </u>
Chloromethane	10	U
1,1-Dichloroethane	5.0	ַ
1,2-Dichloroethane	5.0	ן ט
1,1-Dichloroethene	5.0	ע
1,2-Dichloroethene (total)	5.0	<u> </u>
1,2-Dichloropropane	5.0	<u> </u>
cis-1,3-Dichloropropene	5.0	<u> </u>
trans-1,3-Dichloropropene	5.0	<u></u> <u>U</u>
Ethylbenzene	[5.0	<u> </u>
2-Hexanone	20	<u> </u>
Methylene chloride		<u>U</u>
4-Methyl-2-pentanone	_ 20	ا <u>ت </u>
Styrene	<u> [5.0</u>	ا <u>ت </u>
1,1,2,2-Tetrachloroethane	5.0	<u> </u>
Tetrachloroethene	<u> 5.0</u>	ן ַ <u></u>
Toluene	_ <u>5.0</u>	ן <u>ש</u>
	Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroform Chloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropane cis-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene	Acetone

UXB INTERNATIONAL METHOD BLANK COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 157

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Date Received: 05/23/00 Work Order: DDL68101 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/24/00

Moisture %:NA

QC Batch: 0145157

Client Sample Id: INTRA-LAB BLANK

CAS NO.	COMPOUND (ug/L or	ug/kg) ug/L	Q
71-55-6	1,1,1-Trichloroethane	5.0	<u> </u>
79-00-5	1,1,2-Trichloroethane	5.0	<u> </u>
79-01-6	Trichloroethene	5.0	<u> </u>
75-01-4	Vinyl chloride	10	<u> </u>
1330-20-7	Xylenes (total)	5.0	<u> </u>

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: STL-PITTSBURGH Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: C0E230195

Lab File ID (Standard): CC50524 Date Analyzed: 05/24/00

Instrument ID: HP5 Time Analyzed: 0646

GC Column: DB 624 ID: 0.20 (mm) Heated Purge: (Y/N) N

	IS1(CBZ)		IS2 (DCB)		IS3	
}	AREA #	RT #	AREA #	RT #	AREA #	RT #
=======================================	========	======	=========	======	=======	======
12 HOUR STD	152760	9.97	233429	12.28	655063	6.87
UPPER LIMIT	305520	10.17	466858	12.48	1310126	7.07
LOWER LIMIT	76380	9.77	116714	12.08	327532	6.67
	========		=======			
EPA SAMPLE			18			
NO.		; '				[
01 INTRA-LAB BL	149766	9.97	215588	12.27	638649	6.88
02 INTRA-LAB CH	145182	9.97	213388	12.28	618603	6.89
03 DF/S1/0137/W	143289	9.97	199650	12.28	622463	6.89
04 DF/S1/0137/W	141881	9.97	219399	12.28	620339	6.88
05 DF/S1/0137/W	144401	9.97	218281	12.28	618101	6.89
06						
07						
08						
09						
10			4			
11						i
12						
13	····			·		
14						
15 16			·		<u> </u>	
17						
18				l	}- 	
19		ļ ————]		
20						
21						
22						

IS1 (CBZ) = Chlorobenzene-d5

IS2 (DCB) = 1,4-Dichlorobenzene-d4

IS3 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.20 minutes of internal standard RT RT LOWER LIMIT = - 0.20 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII VOA

OLM03.0

GC/MS SEMIVOLATILE SUMMARY

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDK90102 Date Extracted:05/24/00 Dilution factor· 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0146202

Client Sample Id: DF/S1/0137/WA/001

CAS NO.	COMPOUND (ug/L or ug	J/kg) ug/L (2
110-86-1	Pyridine	20	ן
83-32-9	Acenaphthene	10	ן ט
208-96-8	Acenaphthylene	10	ן ט
120-12-7	Anthracene	10	י ד
56-55-3	Benzo(a) anthracene	10	U
50-32-8	Benzo(a)pyrene	10	U
205-99-2	Benzo(b) fluoranthene	10	ן ש
207-08-9	Benzo(k) fluoranthene	10	וֹט
191-24-2	Benzo(ghi)perylene	10	ן ט
111-91-1	bis(2-Chloroethoxy)methane	10	ן ט
111-44-4	bis(2-Chloroethyl) ether	10	יט
117-81-7	bis(2-Ethylhexyl) phthalate	10	וֹט
101-55-3	4-Bromophenyl phenyl ether	10	וט
85-68-7	Butyl benzyl phthalate	10	וט
86-74-8	Carbazole	10	j
106-47-8	4-Chloroaniline	10	ן ט
59-50-7	4-Chloro-3-methylphenol	10	ן ט
91-58-7	2-Chloronaphthalene	10	ט
95-57-8	2-Chlorophenol	10	ט ו
7005-72-3	4-Chlorophenyl phenyl ether	10	ן די
218-01-9	Chrysene	10	ן ט
53-70-3	Dibenz(a,h)anthracene	10	ן ט
132-64-9	Dibenzofuran	10	ַ ַ ַ ַ ַ ַ ַ
95-50-1	1,2-Dichlorobenzene	10	ַ
541-73-1	1,3-Dichlorobenzene	10	ט
106-46-7	1,4-Dichlorobenzene	10	ַ ט
91-94-1	3,3'-Dichlorobenzidine	50	U
120-83-2	2,4-Dichlorophenol	10	ַ

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDK90102 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0146202

Client Sample Id: DF/S1/0137/WA/001

CAS NO	COMPOUND (ug/L or u	g/kg) ug/L	Q
84-66-2	Diethyl phthalate	10	<u></u> U
105-67-9	2,4-Dimethylphenol	10	U
131-11-3	Dimethyl phthalate	10	<u></u>
84-74-2	Dı-n-butyl phthalate	10	<u></u>
117-84-0	Di-n-octyl phthalate	10	<u>U</u>
51-28-5	2,4-Dinitrophenol	50	U
534-52-1	4,6-Dinitro-2-methylphenol	50	ע
121-14-2	2,4-Dinitrotoluene	10	U
606-20-2	2,6-Dinitrotoluene	10 ·	ט ו
206-44-0	Fluoranthene	10	U
86-73-7	Fluorene	10	<u>ַ</u> ט
118-74-1	Hexachlorobenzene	10	ט
87-68-3	Hexachlorobutadiene	10	ע
77-47-4	Hexachlorocyclopentadiene	50	ט
67-72-1	Hexachloroethane	10	ן די
193-39-5	Indeno(1,2,3-cd)pyrene	10	<u> </u> <u> </u>
78-59-1	Isophorone	_ 10	<u></u>
91-57-6	2-Methylnaphthalene	10	ן
95-48-7	2-Methylphenol	10	<u></u> U
106-44-5	4-Methylphenol	10	<u> </u>
91-20-3	Naphthalene	10	<u></u>
88-74-4	2-Nitroaniline	50	<u></u>
99-09-2	3-Nitroaniline	50	<u></u>
100-01-6	4-Nitroaniline	50	U
98-95-3	Nitrobenzene	10	<u> </u>
88-75-5	2-Nitrophenol	10	ן
100-02-7	4-Nitrophenol	50	ן ט
621-64-7	N-Nitrosodi-n-propylamine	10	<u>_</u>

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDK90102 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0146202

Client Sample Id: DF/S1/0137/WA/001

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L Q	
86-30-6	N-Nitrosodiphenylamine	10 1	<u>u</u>
108-60-1	2,2'-oxybis(1-Chloropropane)	10	<u> </u>
87-86-5	Pentachlorophenol	50	<u>U</u>
85-01-8	Phenanthrene	10	ן <u>ש</u>
108-95-2	Phenol	10	<u>U</u>
129-00-0	Pyrene	10	ַ ַ ַ ַ
120-82-1	1,2,4-Trichlorobenzene	10	U
95-95-4	2,4,5-Trichlorophenol	10	U
88-06-2	2,4,6-Trichlorophenol	10	<u> </u>

UXB INTERNATIONAL CHECK SAMPLE COMPOUNDS

Lab Name Severn Trent Laboratories, Inc. SDG Number

Matrix: (soil/water) WATER Lab Sample ID:C0E250000 202

Method: SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol: 1000 / mL Date Received: 05/20/00 Work Order: DDNQC102 Date Extracted: 05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0146202

Client Sample Id: CHECK SAMPLE

CAS NO	COMPOUND (ug/L or)	ıg/kg) ug/L Q
83-32-9	Acenaphthene	40.2
59-50-7	4-Chloro-3-methylphenol	59.5
95-57-8	2-Chlorophenol	53.7
106-46-7	1,4-Dichlorobenzene	36.0
121-14-2	2,4-Dinitrotoluene	41.6
100-02-7	4-Nitrophenol	56.5
621-64-7	N-Nitrosodi-n-propylamine	44.5
87-86-5	Pentachlorophenol	67.8
108-95-2	Phenol	49.9
129-00-0	Pyrene	42.7
120-82-1	1,2,4-Trichlorobenzene	37.2

UXB INTERNATIONAL CHECK SAMPLE DUPLICATE COMPOUNDS

Lab Name · Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E250000 202

Method: SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol: 1000 / mL Date Received 05/20/00 Work Order: DDNQC103 Date Extracted 05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0146202

Client Sample Id: DUPLICATE CHECK

CAS NO.	COMPOUND (ug/L or u	ıg/kg) ug/L Q
83-32-9	Acenaphthene	39.3
59-50-7	4-Chloro-3-methylphenol	57.9
95-57-8	2-Chlorophenol	51.8
106-46-7	1,4-Dichlorobenzene	34.6
121-14-2	2,4-Dinitrotoluene	40.6
100-02-7	4-Nitrophenol	54.9
621-64-7	N-Nitrosodi-n-propylamine	42 7
87-86-5	Pentachlorophenol	66.0
108-95-2	Phenol	48.4
129-00-0	Pyrene	41 7
120-82-1	1,2,4-Trichlorobenzene	36.4

SW846 8270C SURROGATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT QESSDG:

Lot #. C0E230195

-	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	SRG05	SRG06	TOT OUT
		======	=====		======	======	======	
01	DF/S1/0137/WA/001	59	60	68	47	56	_69	00
02	METHOD BLK. DDNQC101	71	_63	_69	83	_66	72	00
03	LCS DDNQC102	75	_71	73	82	69	_80	00
04	LCSD DDNQC103	71	68	69	78	66	_76	00

SURROGAT	<u>es</u>	QC LIMITS
SRG01	= Phenol-d5	(10-113)
SRG02	≈ 2-Fluorobiphenyl	(30-110)
SRG03	= Nitrobenzene-d5	(32-112)
SRG04	= Terphenyl-d14	(10-144)
SRG05	= 2-Fluorophenol	(13-110)
SRG06	= 2,4,6-Tribromophenol	(21-122)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

FORM II

SW846 8270C CHECK SAMPLE RECOVERY

Lab Name · Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot # · C0E250000

WO # · DDNQC102 BATCH: 0146202

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	QUAL
Phenol	75.0	49.9	67	10- 131	
2-Chlorophenol	75.0	53.7	72	19- 124	1
1,4-Dichlorobenzene	50.0	36.0	72	28- 110	
N-Nitrosodi-n-propylamine	50.0	44.5	89	30- 115	
1,2,4-Trichlorobenzene	50.0	37.2	74	31- 110	
4-Chloro-3-methylphenol	75.0	59.5	79	29- 124	
Acenaphthene	50.0	40.2	80	39- 118	
4-Nitrophenol	75 0	56.5	75	19- 144	
2,4-Dinitrotoluene	50.0	41.6	83	47- 131	l <u></u>
Pentachlorophenol	75.0	67.8	90	10- 140	
Pyrene	50.0	42.7	85	46- 130	

Notes (s) :			
	 	 	

* Values outside of QC limits Spike Recovery. 0 out of 11 outside limits COMMENTS:

SW846 8270C CHECK SAMPLE DUPLICATE RECOVERY

Lab Name · Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code QESPIT

SDG No:

Lot #: C0E250000

WO #: DDNQC103 BATCH: 0146202

 COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	QUAL
Phenol	75.0	48.4	65	10- 131	
2-Chlorophenol	75.0	51.8	69	19- 124	ĺ
1,4-Dichlorobenzene	50.0	34.6	69	28- 110	ĺ
N-Nitrosodi-n-propylamine	50.0	42.7	85	30- 115	
1,2,4-Trichlorobenzene	50.0	36.4	73	31- 110	İ
4-Chloro-3-methylphenol	75.0	57.9	77	29~ 124	<u> </u>
Acenaphthene	50.0	39.3	79	39- 118	
4-Nitrophenol	75 0	54.9	73	19- 144	1
2,4-Dinitrotoluene	50.0	40.6	81	47- 131	l
Pentachlorophenol	75.0	66.0	88	10- 140	1
Pyrene	50.0	41.7	83	46- 130	l

NOTES(S):				

* Values outside of QC limits Spike Recovery: ___0 out of ___11 outside limits COMMENTS:

SW846 8270C METHOD BLANK SUMMARY

BLANK WORKORDER NO.

DDNQC101

Lab Name. Severn Trent Laboratories, Inc

Lab Code: QESPIT

SDG Number:

Lab File ID F0526003.

Lot Number COE230195

Date Analyzed · 05/26/00

Time Analyzed: 10:46

Matrix: WATER

Date Extracted:05/24/00

GC Column: HP5MS ID: .25

Extraction Method. 3520C

Instrument ID. 722

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS, MSD:

CLIENT ID. WORK ORDER # FILE ID ANALYZED ANALYZED	Ī		SAMPLE	LAB	DATE	TIME
DF/S1/0137/WA/001 DDK90102 F0526012 D5/26/00 16·28	ĺ	CLIENT ID.				•
01 DF/S1/0137/WA/001 DDK90102 F0526012 05/26/00 16·28 02 CHECK SAMPLE DDNQC102 C F0526004 05/26/00 11:20 03 DUPLICATE CHECK DDNQC103 L F0526005 05/26/00 11:54 04	j	'		1		J
O2 CHECK SAMPLE DDNQC102 C F0526004. 05/26/00 11:20 03 DUPLICATE CHECK DDNQC103 L F0526005. 05/26/00 11:54 05 06 07 08 <td>01</td> <td>DF/S1/0137/WA/001</td> <td></td> <td>•</td> <td>•</td> <td></td>	01	DF/S1/0137/WA/001		•	•	
03 DUPLICATE CHECK DDNQC103 L F0526005. 05/26/00 11:54 04						
04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27						
05 06 07 08 09 09 10 09 11 09 12 09 13 09 14 09 15 09 16 09 17 09 18 09 20 09 21 09 22 09 23 09 24 09 25 09 26 09 27 09				1	03/20/00	1
06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27				[<u></u>	
07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27				·	<u></u>	
08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27					<u></u>	
09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	1					
10 11 12 13 13 14 15 16 17 18 19 19 20 21 22 23 23 24 25 26 27 10			***************************************	<u> </u>	<u></u>	
11 12 13 14 15 15 16 17 18 19 20 21 21 22 23 24 25 26 27 27	•					
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27		1475-146				
13) 		
14 15 16 17 18 19 20 21 22 23 24 25 26 27						
15						
16 17 18 19 20 21 22 23 24 25 26 27						
17 18 19 20 21 22 23 24 25 26 27	,					
19 20 21 22 23 24 25 26 27						
20 21 22 23 24 25 26 27	18					
20 21 22 23 24 25 26 27	19					
21 22 23 24 25 26 27						
22 23 24 25 26 27					· · · · · · · · · · · · · · · · · · ·	
24 25 26 27	!					
24 25 26 27	23					! \ !
25	•					
26 <u> </u>						
\						
28	27					
	28			1		
29	•					!
30						<u></u>

COMMENTS ·				
	· · · · · · · · · · · · · · · · · ·			
			FORM IV	

Lab Name · Severn Trent Laboratories, Inc. SDG Number:

Matrix. (soil/water) WATER Lab Sample ID.C0E250000 202

Method: SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol. 1000 / mL Date Received: 05/20/00 Work Order DDNQC101 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch 0146202

Client Sample Id: INTRA-LAB BLANK

CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/L	Q
110-86-1	Pyridine	20	ט
83-32-9	Acenaphthene	10	<u>"</u>
208-96-8	Acenaphthylene	10	ט
120-12-7	Anthracene	10	ַ
56-55-3	Benzo(a) anthracene	10	ט
50-32-8	Benzo(a)pyrene	10	ש
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	Ū
191-24-2	Benzo(ghi)perylene	10	U
111-91-1	bis(2-Chloroethoxy)methane	10	ט
111-44-4	bis(2-Chloroethyl) ether	10	ש
117-81-7	bis(2-Ethylhexyl) phthalate	10	וט
101-55-3	4-Bromophenyl phenyl ether	10	ַ
85-68-7	Butyl benzyl phthalate	10	บ
86-74-8	Carbazole	10	U
106-47-8	4-Chloroaniline	10	ַ ט
59-50 - 7	4-Chloro-3-methylphenol	10	U
91-58-7	2-Chloronaphthalene	10	ט
95-57-8	2-Chlorophenol	10	ט
7005-72-3	4-Chlorophenyl phenyl ether	10	บ
218-01-9	Chrysene	10	ט
53-70-3	Dibenz(a,h)anthracene	10	ַ
132-64-9	Dibenzofuran	10	ט
95-50-1	1,2-Dichlorobenzene	10	Ū
541-73-1	1,3-Dichlorobenzene	10	ָט
106-46-7	1,4-Dichlorobenzene	10	Ū
91-94-1	3,3'-Dichlorobenzidine	50	ט
120-83-2	2,4-Dichlorophenol	10	Ü

Lab Name Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID·C0E250000 202

Method: SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol 1000 / mL Date Received 05/20/00 Work Order: DDNQC101 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0146202

Client Sample Id. INTRA-LAB BLANK

CAS NO.	COMPOUND (ug/L or u	ıg/kg) ug/L	Q
84-66-2	Diethyl phthalate	10	<u> </u>
105-67-9	2,4-Dimethylphenol	10	ָ <u>.</u>
131-11-3	Dimethyl phthalate	10	יט
84-74-2	Di-n-butyl phthalate	10	U
117-84-0	Di-n-octyl phthalate	10	ט
51-28-5	2,4-Dinitrophenol	50	ט
534-52-1	4,6-Dinitro-2-methylphenol	50	Ü
121-14-2	2,4-Dinitrotoluene	10	U
606-20-2	2,6-Dinitrotoluene	10	U
206-44-0	Fluoranthene	10	וֹש
86-73-7	Fluorene	10	Ü
118-74-1	Hexachlorobenzene	10	U
87-68-3	Hexachlorobutadiene	10	j uj
77-47-4	Hexachlorocyclopentadiene	50	Ü
67-72-1	Hexachloroethane	10	_ii
193-39-5	Indeno(1,2,3-cd)pyrene	10	וֹט
78-59-1	Isophorone	10	ט
91-57-6	2-Methylnaphthalene	10	וֹט
95-48-7	2-Methylphenol	10	ָן די
106-44-5	4-Methylphenol	10	וֹט
91-20-3	Naphthalene	10	ן ט
88-74-4	2-Nitroaniline	50	וֹט
99-09-2	3-Nitroaniline	50	ָ <u>"</u>
100-01-6	4-Nitroaniline	50	וט
98-95-3	Nitrobenzene	10	יט ו
88-75-5	2-Nitrophenol	10	ָּ <u></u>
100-02-7	4-Nitrophenol	50	ן ט
621-64-7	N-Nitrosodi-n-propylamine	10	ן ט

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix (soil/water) WATER Lab Sample ID:C0E250000 202

Method SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol: 1000 / mL Date Received. 05/20/00 Work Order: DDNQC101 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed. 05/26/00

Moisture %:NA

QC Batch: 0146202

Client Sample Id: INTRA-LAB BLANK

CAS NO.	COMPOUND (ug/L or uc	g/kg) ug/L (2
86-30-6	N-Nitrosodiphenylamine	10	ן ט
108-60-1	2,2'-oxybis(1-Chloropropane)	10	ט
87-86-5	Pentachlorophenol	50	וֹט
85-01-8	Phenanthrene	10	וט
108-95-2	Phenol	10	ן ט
129-00-0	Pyrene	10	ט
120-82-1	1,2,4-Trichlorobenzene	10	יט ו
95-95-4	2,4,5-Trichlorophenol	10	ן ט
88-06-2	2,4,6-Trichlorophenol	10	ָט

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: STL PITTSBURGH Contract:

Lab Code: Case No.: SAS No.: SDG No.: C0E230195

Lab File ID (Standard): F05260C5 Date Analyzed: 05/26/00

Instrument ID: 722 Time Analyzed: 0904

			· · · · · · · · · · · · · · · · · · ·				
:		IS1 (DCB)		IS2 (NPT)		IS3 (ANT)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	========	======	========	======	=======	
	12 HOUR STD	35904	4.99	134042	6.51	77370	9.52
	UPPER LIMIT	71808	5.49	268084	7.01	154740	10.02
	LOWER LIMIT	17952	4.49	67021	6.01	38685	9.02
		#.752	2.42	07021	0.01	30003	9.02
	CLIENT						
	SAMPLE NO.						1
	SAMPLE NO.						
01	INTRA-LAB BL	26720	4 00		======		_==== =
		36738	4.98	148095	6.50	92291	9.50
02	INTRA-LAB CH	37216	4.98	147725	6.50	89356	9.50
03	INTRA-LAB CH	40299	4.98	158308	6.50	95449	9.51
04	DF/S1/0137/W	40683	4.99	162702	6.51	95633	9.51
05							}
06							
07							
08							
09							
10							
11							
12			i	·			
13							
14							
15							
16							
17							
18							
19							
20							
21							
22		 				· · · · · · · · · · · · · · · · · · ·	
					 '	 1	

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8
IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: STL PITTSBURGH Contract:

Lab Code: Case No.: SAS No.: SDG No.: C0E230195

Lab File ID (Standard): F05260C5 Date Analyzed: 05/26/00

Instrument ID: 722 Time Analyzed: 0904

			_				
		IS4 (PHN)		IS5(CRY)		IS6 (PRY)	1
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		=======	=======	========	======	========	======
	12 HOUR STD	143810	12.81	142226	19.44	128115	22.79
	UPPER LIMIT	287620	13.31	284452	19.94	256230	23.29
		1		71113	18.94	64058	22.29
	LOWER LIMIT	71905	12.31	\TTT2	10.94	04000	
	=======================================	======================================	=======	55	======	========	<u>-</u>
	CLIENT						i
	SAMPLE NO.						
	==========	=======	======	========	======	========	======
01	INTRA-LAB BL	170285	12.79	147827	19.40	157444	22.76
02	INTRA-LAB CH	168059	12.79	159317	19.40	158489	22.76
03	INTRA-LAB CH	179564	12.79	169325	19.40	171252	22.77
04	DF/S1/0137/W	172516	12.80	157786	19.42	186995	22.78
05	DE / 27 / 072 / / M	1/2310	12.00	1.57700	17.12		
06]
07							
80							
09							
10							
11							l
12							l
13							
14							
15							
16							
17							ļ ————————————————————————————————————
							
18						ļ	
19			.]	[
20					<u> </u>		\ <u> </u>
21	}						{
22				l	l		l
		· — — · · · · · · · · · · · · · · · · ·					

IS4 (PHN) = Phenanthrene-d10
IS5 (CRY) = Chrysene-d12
IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.50 minutes of internal standard RT
RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV

•

PESTICIDE SUMMARY

UXB INTERNATIONAL

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8081A

Pesticides (8081A)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDK90103 Date Extracted:05/24/00 Dulution factor: 1 Date Analyzed: 05/27/00

Moisture %:NA

QC Batch: 0145492

Client Sample Id: DF/S1/0137/WA/001

CAS NO.	COMPOUND (ug/L o	r ug/kg) ug/L	Q
309-00-2	Aldrin	0.050	_ <u></u>
319-84-6	alpha-BHC	0.050	_ [
319-85-7	beta-BHC	0.050	<u></u> U
319-86-8	delta-BHC	0.050	_ U
58-89-9	gamma-BHC (Lindane)	0.050	ט ט
5103-71-9	alpha-Chlordane	0.050	U
5103-74-2	gamma-Chlordane	0.050	_ <u> </u>
72-54-8	4,4'-DDD	0.050	_ <u>U</u>
72-55-9	4,4'-DDE	0.050	_ U
50-29-3	4,4'-DDT	0.050	ןו
60-57-1	Dieldrin	0.050	ן
959-98-8	Endosulfan I	0.050	_ <u> </u>
33213-65-9	Endosulfan II	0.050	_ <u> </u>
1031-07-8	Endosulfan sulfate	0.050	ע
72-20-8	Endrin	0.050	ַ ַ ַ ַ ַ
7421-93-4	Endrın aldehyde	0.050	ַן
53494-70-5	Endrin ketone	0.050	_
76-44-8	Heptachlor	0.050	ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ
1024-57-3	Heptachlor epoxide	0.050	_ <u></u>
72-43-5	Methoxychlor	0.10	ן
8001-35-2	Toxaphene	2.0	U

UXB INTERNATIONAL CHECK SAMPLE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 492

Method: SW846 8081A

Pesticides (8081A)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDN21102 Date Extracted: 05/24/00 Dilution factor 1 Date Analyzed: 05/27/00

Moisture %:NA

QC Batch: 0145492

Client Sample Id · CHECK SAMPLE

CAS NO.	COMPOUND (ug/L	or ug/kg) ug/L O
309-00-2	Aldrin	0.202
58-89-9	gamma-BHC (Lindane)	0.193
50-29-3	4,4'-DDT	0.319
60-57-1	Dieldrin	0.426
72-20-8	Endrin	0.351
76-44-8	Heptachlor	0.190

UXB INTERNATIONAL CHECK SAMPLE DUPLICATE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number.

Matrix: (soil/water) WATER

Method: SW846 8081A

Lab Sample ID: C0E240000 492

Pesticides (8081A)

Sample WT/Vol: 1000 / mL Work Order: DDN21103 Dilution factor: 1

Date Received: 05/23/00 Date Extracted.05/24/00 Date Analyzed: 05/27/00

Moisture %:NA

QC Batch: 0145492

Client Sample Id: DUPLICATE CHECK

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L Q
309-00-2	Aldrin	0.246
58-89-9	gamma-BHC (Linda	ane) 0.230
50-29-3	4,4'-DDT	0 392
60-57-1	Dieldrin	0.384
72-20-8	Endrin	0 425
76-44-8	Heptachlor	0.229

2E WATER PESTICIDE SURROGATE RECOVERY

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: C0E230195

GC Column(1): RTX-CLP ID: 0.53 (mm)

	EPA	TCX	DOD	(1)		0.0		 ,
			DCB	S3	S4	S5	S6	TOT
	SAMPLE NO.	%REC #	%REC #	%REC #	%REC #	%REC #	%REC #	OUT
		=====	=== ===	======	======	======	======	===
01	DF/S1/0137/W	73	65					
02	PBLK				·			0
02		82	68					0
03	LCS	85	74					0
04	LCSD	100	89					o
05	LCS	90	103		~~~			ő
06		,	100					V
06 07]
07								i. i
08								
08 09								
10								
11								
12								}
12								l
13								
14 15 16								
15								
16								
17								
(
18								
19	·							
20								<u> </u>
21								i
22					•			
22								
23								
24		1						
25 26								
26								
27								
2.								
28								
29								
30								
'		, '			·1		I	

ADVISORY

QC LIMITS

S1 (TCX) = Tetrachloro-m-xylene (30-150) 36-130 S2 (DCB) = Decachlorobiphenyl (30-150) 10-14-1

(30-150) 10-147

Column to be used to flag recovery values

* Values outside of QC limits

D Surrogate diluted out

658 46 SW846 8081A CHECK SAMPLE RECOVERY

Lab Name Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code QESPIT

SDG No:

Lot # C0E240000

WO # · DDN21102 BATCH: 0145492

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT (ug/L)	% REC	QC LIMITS REC	QUAL	
gamma-BHC (Lindane)	0.250	0.193	===== 77	49- 137	== == 	
Heptachlor	0.250	0.190	76	57- 124		
Aldrin	0.250	0.202	81	62 - 120		
Dieldrın	0.500	0.426	85	68- 130		
Endrin	0.500	0.351	70	46- 137	1	
4,4'-DDT	0.500	0.319	64	60- 140		

NOTES(S):		

COMME	NTS:									
Spike	Rec	covery:		0	out of	6	outside	limits		
* Val	ues	outside	of	QC	limits					

SW846 8081A CHECK SAMPLE DUPLICATE RECOVERY

Lab Name · Severn Trent Laboratories, Inc Client: UXB INTERNATIONAL

Lab Code · QESPIT

SDG No

Lot # · COE240000

WO #: DDN21103 BATCH: 0145492

 COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	 QUAL
	=======================================	========	====	==========	=======
gamma-BHC (Lindane)	0.250	0.230	92	49- 137	ĺ
Heptachlor	0.250	0.229	91	57- 124	
Aldrin	0.250	0.246	98	62 - 120	
Dieldrin	0.500	0.384	77	68- 130	
Endrin	0.500	0.425	85	46- 137	
4,4'-DDT	0.500	0.392	78	60- 140	

* Values outside	of QC	limits					
Spike Recovery:	0	out of	6	outside	limits		
COMMENTS.							
COMMENTS.						 · · · · · · · · · · · · · · · · · · ·	

NOTES (S):

PESTICIDE METHOD BLANK SUMMARY

PBLK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.: 40325 SI

SDG No.: C0E230195

Lab Sample ID: DDN21101

Lab File ID: C-A2565

Matrix (soil/water) WATER

Extraction: (SepF/Cont/Sonc) SW3510

Sulfur Cleanup (Y/N) N

Date Extracted: 05/24/00

Date Analyzed (1): 05/27/00

Date Analyzed (2):

Time Analyzed (1): 0435

Time Analyzed (2):

Instrument ID (1): GC3

Instrument ID (2):

GC Column (1): RTX-CLP

ID: 0.53 (mm) GC Column (2):

ID:

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	T 7.15	T>3 (1111)	T 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
	========		========	========
01	DF/S1/0137/W		05/27/00	
02	LCS	DDN21102	05/27/00	
03	LCSD	DDN21103	05/27/00	
04	LCS	DDN21102	05/31/00	
05			,,	
06			·	
07				
08				
09				
10			•	 -
11				
12				
13		 ;		
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				

COMMENTS:		· · · · · · · · · · · · · · · · · · ·	 		···
			 <u>-</u>	/	

page 1 of 1

FORM IV PEST

OLM03.0

Lab Name: Severn Trent Laboratories, Inc. SDG Number

Matrix. (soil/water) WATER

Lab Sample ID COE240000 492

Method: SW846 8081A

Pesticides (8081A)

Sample WT/Vol· 1000 / mL Work Order: DDN21101 Dilution factor: 1 , ,

Date Received: 05/23/00 Date Extracted:05/24/00 Date Analyzed: 05/27/00

Moisture %:NA

QC Batch: 0145492

Client Sample Id: INTRA-LAB BLANK

210 04 6	0.050 U
210 04 6	0 050 U
319-84-6 alpha-BHC	'''''''''''''' !
340 57 7	0.050 U
310 00 0	0.050 U
50 00 0	0.050 U
5103-71-9 alpha-Chlordane	0.050 U
_5103-74-2 gamma-Chlordane	0.050 U
70 64 0	0.050 U
72-55-9 4,4'-DDE	0.050 U
1 50 20 2	0.050 U
1 60 57 1	0.050 U
050 00 0	0.050 U
22212 65 0	0.050 U
1031 00 0	0.050 U
ED 20 0	0.050
7424 02 4	0.050 U
1 23464 36 3	0.050 U
1 26 44 0	0.050 U
1 2004 577 2	0.050 U
1	0.10 U
1 0004 05 0	2.0 U

PCB SUMMARY

STL Pittsburgh

UXB INTERNATIONAL

Lab Name · Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8082 PCBs (8082)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDK90104 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/31/00

Moisture %:NA

QC Batch: 0145495

Client Sample Id: DF/S1/0137/WA/001

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
12674-11-2	Aroclor 1016	1.0	U
11104-28-2	Aroclor 1221	1.0	ן די
11141-16-5	Aroclor 1232	1.0	ן ט
53469-21-9	Aroclor 1242	1.0	וט
12672-29-6	Aroclor 1248	1.0	ן די די
11097-69-1	Aroclor 1254	1.0	ן ט
11096-82-5	Aroclor 1260	1.0	<u> U</u>

658 52

UXB INTERNATIONAL CHECK SAMPLE COMPOUNDS

Lab Name · Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 495

Method: SW846 8082 PCBs (8082)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDN23102 Date Extracted: 05/24/00 Date Analyzed: 05/31/00

Moisture %:NA

QC Batch: 0145495

Client Sample Id: CHECK SAMPLE

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L Q
12674-11-2	Aroclor 1016	8.49
11096-82-5	Aroclor 1260	9.09

UXB INTERNATIONAL CHECK SAMPLE DUPLICATE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc SDG Number:

Matrix: (soil/water) WATER . Lab Sample ID:C0E240000 495

Method: SW846 8082 PCBs (8082)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDN23103 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/31/00

Moisture %:NA

QC Batch: 0145495

Client Sample Id: DUPLICATE CHECK

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L Q
12674-11-2	Aroclor 1016	8.74
11096-82-5	Aroclor 1260	9.12

SW846 8082 SURROGATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT QESSDG:

Lot #: C0E230195

_				
	CLIENT ID.	SRG01	SRG02	TOT OUT
		me n====	======	======
01	DF/S1/0137/WA/001	77	84	00
02	METHOD BLK. DDN23101	86	92	00
03	LCS DDN23102	95	100	00
04	LCSD DDN23103	96	101	00

SURROGA'	<u>'ES</u>	QC LIMITS
SRG01	= Tetrachloro-m-xyle	ne (45-120)
SRG02	= Decachlorobiphenyl	(24-128)

[#] Column to be used to flag recovery values

^{*} Values outside of required QC Limits

D System monitoring Compound diluted out

SW846 8082 CHECK SAMPLE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot # · C0E240000

WO #: DDN23102 , BATCH: 0145495

 COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	QUAL
		22222===	====	=========	========
Aroclor 1016	10.0	8.49	85	61- 118	Ì
Aroclor 1260	10.0	9.09	91	61- 124	

Values outside	of QC	limits					
pike Recovery:	٥	out of	2	outaido i	limita		
pike Recovery.		out or		outside .	THITCS		
OMMENTS:							

NOTES(S):

SW846 8082 CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot #: C0E240000

WO #: DDN23103 BATCH: 0145495

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	QUAL
	=======================================	===========	=====	= ===================================	======================================
Aroclor 1016	10.0	8.74	87	61- 118	
Aroclor 1260	10.0	9.12	91	61- 124	

* Values outside	of QC	limits		
Spike Recovery:	0	out of	2	outside limits
COMMENTS:				

NOTES(S):

Lab Name: Severn Trent Laboratories, Inc.

Lab Code: QESPIT

SDG Number:

Lab File ID: h-a20691.

Lot Number: C0E230195

Matrix: WATER (

Extraction Method:

Date Extracted: 05/24/00

Date Analyzed(1): 05/31/00

Date Analyzed(2): N/A

Time Analyzed(1): 02:57

Time Analyzed(2): N/A

Instrument ID(1): M/N

Instrument ID(2): N/A

GC Column(1): N/A ID: N/A

GC Column(2): N/A ID: N/A

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, AND MSD:

_				
		SAMPLE	DATE	DATE
	CLIENT ID.	WORK ORDER #	ANALYZED(1)	ANALYZED(2)
				=========
01	DF/S1/0137/WA/001	DDK90104	05/31/00	N/A
02	CHECK SAMPLE	DDN23102 C	05/31/00	N/A
03	DUPLICATE CHECK	DDN23103 L	05/31/00	N/A
04				
05			<u> </u>	
06				
07				
80				
09				
10				
11			¦	
12			· · · · · · · · · · · · · · · · · · ·	
13			!	
14				
15]			
16		<u> </u>		
17				
!		· · · · · · · · · · · · · · · · · · ·		<u></u>
18			<u> </u>	
19				
20			<u> </u>	

COMMENTS:	
	

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 495

Method: SW846 8082 PCBs (8082)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDN23101 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/31/00

Moisture %:NA

QC Batch: 0145495

Client Sample Id: INTRA-LAB BLANK

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
12674-11-2	Aroclor 1016	1.0	<u> </u>
11104-28-2	Aroclor 1221	1.0	<u>U</u>
11141-16-5	Aroclor 1232	1.0	<u>U</u>
53469-21-9	Aroclor 1242	1.0	<u>u</u>
12672-29-6	Aroclor 1248	1.0	<u> U</u>
11097-69-1	Aroclor 1254	1.0	<u> </u>
11096-82-5	Aroclor 1260	1.0	U

HERBICIDE SUMMARY

658 60

UXB INTERNATIONAL

Lab Name: Severn Trent Laboratories, Inc SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8151A

Herbicides (8151A)

Sample WT/Vol: 1000 / mL

Date Received: 05/23/00
Date Extracted: 05/24/00

Work Order: DDK90112 Dilution factor: 1

Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0145491

Client Sample Id: DF/S1/0137/WA/001

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
94-75-7	2,4-D	4.0	U
93-72-1	2,4,5-TP (Silvex)	1.0	ַ

UXB INTERNATIONAL CHECK SAMPLE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number.

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 491

Method: SW846 8151A

Herbicides (8151A)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDN20102 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0145491

Client Sample Id: CHECK SAMPLE

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L Q
94-75-7	2,4-D	17.6
93-72-1	2,4,5-TP (Silvex)	4.16
93-76-5	2,4,5-T	4.47

658 62

UXB INTERNATIONAL CHECK SAMPLE DUPLICATE COMPOUNDS

Lab Name.Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 491

Method: SW846 8151A

Herbicides (8151A)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDN20103 Date Extracted: 05/24/00 Dulution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0145491

Client Sample Id: DUPLICATE CHECK

	CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
-	94-75-7	2,4-D	17.8	
	93-72-1	2,4,5-TP (Silvex)	4.33	
	93-76-5	2,4,5-T	4.57	

SW846 8151A SURROGATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

QESSDG:

Lot #: C0E230195

7	CLIENT ID	SRG01	TOT OUT
	======================================	======	======
01	DF/S1/0137/WA/001	97	00
02	METHOD BLK. DDN20101	101	00
03	LCS DDN20102	104	00
04	LCSD DDN20103	108	00

SURROGATES SRG01 = DCAA QC LIMITS (53-119)

[#] Column to be used to flag recovery values

^{*} Values outside of required QC Limits

D System monitoring Compound diluted out

SW846 8151A CHECK SAMPLE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client. UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot #: C0E240000

WO #: DDN20102 BATCH: 0145491

	`				
	SPIKE	SAMPLE		QC	
	ADDED	CONCENT.	ે	LIMITS	1
COMPOUND	(ug/L)	(ug/L)	REC	REC	QUAL
		= ===================================	= =====	=======================================	========
2,4-D	16.0	17.6	110	46- 124	<u> </u>
2,4,5-TP (Silvex)	4.00	4.16	104	53 - 127	_
2,4,5-T	4.00	4.47	112	40- 126	, l

* Values	outside	of (QC]	limits					
Spike Rec	covery:	() (out of	3	outside	limits		
COMMENTS:			_						
COMMENTS:	· 							 	

NOTES(S):

SW846 8151A CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code · QESPIT

SDG No.

Lot #: C0E240000

WO #: DDN20103 BATCH: 0145491

COMPOUND	, SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	 QUAL	
	======================================		=====		=========	
2,4-D	16.0	17.8	111	46- 124	<u> </u>	
2,4,5-TP (Silvex)	4.00	4.33	108	53- 127	1	
2,4,5-T	4.00	4.57	114	40- 126		

NOTES	(S)	

* Values outside of QC limits

Spike Recovery: 0 out of 3 outside limits COMMENTS:

FORM III

SW846 8151A METHOD BLANK SUMMARY

BLANK WORKOR	DER NO.
DDN20101	.
1	ļ

Lab Name: Severn Trent Laboratories, Inc.

Lab Code · QESPIT

SDG Number:

Lab File ID: a-b30063.

Lot Number: C0E230195

Matrix: WATER

Extraction Method: 8151A

Date Extracted: 05/24/00

Date Analyzed(1): 05/26/00

Date Analyzed(2): N/A

Time Analyzed(1): 18:25

Time Analyzed(2): N/A

Instrument ID(1): A/B

Instrument ID(2): N/A

GC Column(1): DB5/DB1701 ID: 053 GC Column(2): N/A ID:

N/A

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, AND MSD:

-		SAMPLE	DATE	DATE
	CLIENT ID.	WORK ORDER #	ANALYZED(1)	ANALYZED(2)
		=======================================	======================================	
01	DF/S1/0137/WA/001	DDK90112	05/26/00	N/A
02	CHECK SAMPLE	DDN20102 C	05/26/00	N/A
03	DUPLICATE CHECK	DDN20103 L	05/26/00	N/A
04				
05				
06		<u> </u>		<u> </u>
07				
80				
09			l	
10		l	<u> </u>	
11			1	
12				
13				ļ
14				
15			<u></u>	
16		l	<u></u>	
17		<u> </u>		
18			1	
19				
20				l

COMMENTS:					
					<u></u>
	·-	 -			<u> </u>
			<u> </u>	FORM IV	

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WATER

Lab Sample ID: C0E240000 491

Method: SW846 8151A

Herbicides (8151A)

Sample WT/Vol: 1000 / mL

Work Order: DDN20101

Dilution factor: 1

Date Received: 05/23/00 Date Extracted: 05/24/00

Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0145491

Client Sample Id: INTRA-LAB BLANK

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L (2
94-75-7	2,4-D	4.0	וט
93-72-1	2,4,5-TP (Silvex)	1.0	ן ט

METALS SUMMARY

STL-Pittsburgh

Metals Data Reporting Form

Sample Results

Lab Sample ID: DDK90 Client ID: DF/S1/0137/WA/001

Matrix: Water Units: ug/L Prep Date: 5/24/00 Prep Batch: 0145186

Weight: NA Volume: 50 Percent Moisture: NA

	WL/		Report		Anal		Anal	Anal	
Element	Mass	MDL	Limit	Conc	Q	DF	Instr	Date	Time
Aluminum	308.22	12.7	200	7010	N	1	ICP	5/25/00	9:00
Antimony	220.35	1.5	60 0	1.5	В	1	ICPST	5/26/00	8:52
Arsenic	189.04	2.6	10.0	6.4	В	1	ICPST	5/26/00	8:52
Barium	493.41	0.41	200	208		1	ICP	5/25/00	9:00
Beryllium	313.04	0.071	5.0	0.20	В	1	ICP	5/25/00	9:00
Cadmium	226.50	0.49	5.0	0.49	ט	1	ICPST	5/26/00	8:52
Calcium	317.93	37.9	5000	38100		1	ICP	5/25/00	9:00
Chromium	267.72	1.0	10.0	10.1		1	ICPST	5/26/00	8:52
Cobalt	228.62	3.2	50.0	3.2	U	1	ICP	5/25/00	9:00
Copper	324.75	2.2	25.0	16.6	В	1	ICP	5/25/00	9:00
Iron	259.94	8.8	100	6870		1	ICP	5/25/00	9:00
Lead	220.35	1.9	3.0	22.5	Ì	1	ICPST	5/26/00	8:52
Magnesium	279.08	19.9	5000	5500	ļ	1	ICP	5/25/00	9:00
Manganese	257.61	0.87	15.0	79.8		1	ICP	5/25/00	9:00
Nickel	231.60	6.1	40.0	11.7	В	1	ICP	5/25/00	9:00
Potassium	766.49	496	5000	4140	В	1	ICP	5/25/00	9:00
Selenium	220.35	2.1	5.0	2.1	U	ı	ICPST	5/26/00	8:52
Silver	328.07	0.94	10.0	0.94	บ	1	ICPST	5/26/00	8:52
Sodium	589	14.5	5000	1200	В	1	ICP	5/25/00	9:00
Thallium	190.86	3.9	10.0	3.9	บ	1	ICPST	5/26/00	8:52
Vanadium	292.40	1.8	50.0	13.0	В	1	ICP	5/25/00	9:00
Zinc	213.86	3.1	20.0	49.1		1	ICP	5/25/00	9:00

Comments: Lot #: C0E230195 Sample #: 1

U Result is less than the MDL

STL-Pittsburgh

Metals Data Reporting Form

Sample Results

Lab Sample ID:

DDK90

Client ID:

DF/S1/0137/WA/001

Matrix:

Water

Units: ug/L

Prep Date:

5/25/00

Prep Batch:

0145297

Weight:

NA

Volume: 100

Percent Moisture:

or M

NA

Element	WL/ Mass	MDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.045	0.20	0.045	U	1	CVAA	5/25/00	11:46

STL-Pittsburgh

Metals Data Reporting Form

Initial Calib	ration B	lank R	esults											
Instrument: CVAA								Units: ug/L						
Chart Numb	er: <u>0525</u>	HGA.P	RN											
Standard So	urce:						Standar	d ID:						
	WL/	Report												
Element	Mass	Limit	Found	_Q_	Found	Q	Found	_Q_	Found	Q	Found	Q		
Mercury	253.7	0.2	0.0	υ										

Metals Data Reporting Form

Initial Calibration Blank Results	
Instrument: ICP	Units: ug/L
Chart Number: J00525A.ARC	
Standard Source:	Standard ID:

			ICB1 5/25/00 7:57 AM									
Element	WL/ Mass	Report Limit	Found_	Q	Found	Q	Found	Q	Found	Q	Found	Q
Aluminum	308.215	200	12.7	บ								
Barium	493.409	200	0.4	U								
Beryllium	313.042	5	0 1	U								
Calcium	317.933	5000	37.9	U								
Cobalt	228.616	50	3.2	U								
Соррег	324.754	25	2.2	U								
Iron	259.94	100	8.8	U								
Magnesium	279 079	5000	19.9	Ŭ								
Manganese	257 61	15	0.9	U							:	
Nickel	231.604	40	6.1	U								
Potassium	766.491	5000	496.0	U	i i							
Sodium	588.995	5000	14 5	U								
Vanadium	292.402	50	-2.5	В					1			
Zinc	213.856	20	3.1	U								

U Result is less than the MDL

Form 3 Equivalent B Result is between MDL and RL

Metals Data Reporting Form

Initial Calibrati	on Blank Results	
Instrument:	ICPST	Units: ug/L
Chart Number:	T00526A.ARC	
Standard Source	•	Standard ID:

			ICB1 5/26/00 7:48 AN									_
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found	Q	Found	Q	Found	Q
Antimony	220.353	60	1.5	U								
Arsenic	189.042	10	2.6	U								
Cadmium	226.502	5	0.5	U								
Chromium	267.716	10	1.0	U								
Lead	220.353	3	1.9	U								
Selenium	220.353	5	2.1	U								
Silver	328.068	10	0.9	U								
Thallium	190.864	10	-3.9	В								

Mercury

STL-Pittsburgh

Metals Data Reporting Form

Continuing Calibration Blank Results ug/L Units: **CVAA** Instrument: Chart Number: 0525HGA.PRN Standard ID: Standard Source: CCB4 CCB5 CCB3 CCB2 CCB1 5/25/00 5/25/00 5/25/00 5/25/00 5/25/00 11 36 AM 11:09 AM 10:44 AM 9.55 AM 10:20 AM WL/ Report Found Q **Found** Found Found Q Mass Limit Found Element

U

0.0

00 U

0.2

253.7

0.0

0.0 U

0.0

U

U

Metals Data Reporting Form

Continuing	g Calibra	tion B	lank Resi	ults								
Instrument:	C	/AA					Units:		ug/L			
Chart Numl	ber: <u>052</u>	25HGA.	PRN									
Standard So	ource:				<u></u> .	_	Standa	ard II):			
Element	WL/ Mass	Report Limit	CCB6 5/25/00 11·54 A	C	Found	Q	Found	Q	Found	Q	Found	Q
Mercury	253.7	0.2	0.1	В								

Metals Data Reporting Form

Continuing Calibration Blank Results

Units: ug/L Instrument: ICP

Chart Number: J00525A.ARC

Standard ID: Standard Source:

			CCB1 5/25/00 8:37 AM	1	CCB2 5/25/00 8:51 AM		CCB3 5/25/00 9·16 AM					
Element	WL/ Mass	Report Limit	Found	Q	Found	Q_	Found	Q	Found	Q	Found	Q
Aluminum	308.215	200	12.7	υ	12.7	υ	12.7	U	l:			
Barium	493.409	200	0.4	U	0.4	U	0.4	Ŭ				
Beryllium	313.042	5	0.3	В	0.1	В	0.4	В				
Calcium	317.933	5000	37 9	U	37.9	U	37.9	U				
Cobalt	228.616	50	3 2	U	3.2	U	3.2	U				
Copper	324.754	25	2.2	U	2.2	U	2.2	U				
Iron	259.94	100	8.8	U	8.8	υ	8.8	U				
Magnesium	279 079	5000	19.9	Ŭ	19.9	U	19.9	U				
Manganese	257 61	15	0.9	U	09	U	0.9	U				
Nickel	231.604	40	6.1	U	6.1	U	6.1	U				
Potassium	766.491	5000	496.0	U	496.0	U	496.0	U				
Sodium	588.995	5000	14.5	U	14.5	U	14.5	U				
Vanadium	292.402	50	1.8	U	-2.3	В	1.8	U				
Zinc	213.856	20	3.1	U	3.1	U	3.1	U				

U Result is less than the MDL

Metals Data Reporting Form

Continuing Cali	bration Blank Results		
Instrument:	ICPST	Units: ug/L	
Chart Number: _	T00526A.ARC		
Standard Source:		Standard ID:	

			CCB1 5/26/00 8:40 AM		CCB2 5/26/00 9:13 AN)						
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found	Q	Found	Q	Found	Q
Antimony	220.353	60	1.5	U	1.5	U						
Arsenic	189.042	10	2.6	U	2.6	U	}					
Cadmium	226 502	5	0.5	U	0.5	U						
Chromium	267 716	10	1.0	U	1.0	U			<u> </u>			
Lead	220.353	3	1.9	U	1.9	Ū			i			
Selenium	220.353	5	2.1	U	2.1	\mathbf{U}						
Silver	328.068	10	0.9	U	0.9	U						
Thallium	190.864	10	3.9	U	3.9	U						

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: DDLA7B

Matrix: Water Units: ug/L Prep Date: 5/24/00 Prep Batch: 0145186

Weight: NA Volume: 50 Percent Moisture: NA

Element	WL/ Mass	MDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Aluminum	308.215	12.7	200	12.7	U	l	ICP	5/25/00	8:54
Antimony	220.353	15	60.0	1.5	U	1	ICPST	5/26/00	8.44
Arsenic	189.042	2.6	10.0	2.6	U	i	ICPST	5/26/00	8:44
Barium	493.409	0.41	200	041	U	1	ICP	5/25/00	8:54
Beryllium	313.042	0.071	5.0	-0.090	В	1	ICP	5/25/00	8:54
Cadmium	226.502	0 49	5.0	0.49	U	1	ICPST	5/26/00	8:44
Calcium	317 933	37.9	5000	37.9	U	1	ICP	5/25/00	8:54
Chromium	267,716	1.0	10.0	1.0	U	1	ICPST	5/26/00	8:44
Cobalt	228.616	3.2	50.0	3 2	U	1	ICP	5/25/00	8:54
Copper	324.754	2.2	25 0	2.2	υ	1	ICP	5/25/00	8:54
Iron	259.94	8.8	100	8.8	U	1	ICP	5/25/00	8:54
Lead	220.353	1.9	3.0	1.9	U	1	ICPST	5/26/00	8:44
Magnesium	279.079	19.9	5000	19.9	U	1	ICP	5/25/00	8:54
Manganese	257 61	0.87	15.0	0.87	U	1	ICP	5/25/00	8:54
Nickel	231.604	61	40 .0	61	υ	1	ICP	5/25/00	8 54
Potassium	766.491	496	5000	496	U	1	ICP	5/25/00	8.54
Selenium	220.353	2.1	5.0	2.1	U	j i	ICPST	5/26/00	8:44
Silver	328.068	0.94	10.0	0.94	υ	1	ICPST	5/26/00	8:44
Sodium	588 995	14 5	5000	14.5	υ	1	ICP	5/25/00	8:54
Thallium	190.864	3.9	10.0	3.9	U	1	ICPST	5/26/00	8:44
Vanadium	292.402	18	50.0	-2.50	В	1	ICP	5/25/00	8:54
Zinc	213.856	3.1	20.0	3.1	U	1	ICP	5/25/00	8:54

Comments: Lot #. C0E230195

U Result is less than the MDL

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: DDLR3B

Matrix: Water Units: ug/L Prep Date: 5/25/00 Prep Batch: 0145297

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	MDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	. 253.7	0.045	0.20	0.045	Ū	1	CVAA	5/25/00	11:42

Metals Data Reporting Form

Matrix Spike Sample Results

Spike Sample ID: DDK90S

Original Sample ID: DDK90 Client ID: DF/S1/0137/WA/001S

Matrix: Water Units: ug/L Prep Date: 5/24/00 Prep Batch: 0145186

Weight: NA Volume: 50 Percent Moisture: NA

									7.40		OS Anal	OS Anal	MS Anal	MS Anal
Element	WL/ Mass	OS Conc	Q	MS Conc	Q	Spike Level	% Rec	OS DF	MS DF	Instr	Date	Time	Date	Time
Aluminum	308.2	7010		9940	N	2000	146.1	1	1	ICP	5/25/00	9:00	5/25/00	9.07
	220.4	1.5	В	477		500	95.0	1	1	ICPST	5/26/00	8:52	5/26/00	9:00
Antimony	189 0	6.4	В	1930		2000	96.4	1	1	ICPST	5/26/00	8:52	5/26/00	9:00
Arsenic	493.4	208	_	2070		2000	93.1	1	1	ICP	5/25/00	9:00	5/25/00	9:07
Barium	313.0	0.20	В	47.1		50	93.9	1	ı	ICP	5/25/00	9:00	5/25/00	9:07
Beryllium Cadmium	226.5	0.49	·	46.9		50	93.7	1	1	ICPST	5/26/00	8:52	5/26/00	9.00
Cadinum	317.9	38100		84300		50000	92.4	1	1	ICP	5/25/00	9:00	5/25/00	9.07
Chromium	267.7	10.1		205		200	97.5	1	1	ICPST	5/26/00	8.52	5/26/00	9.00
	228.6	3.2	U	468	ŀ	500	93.6	1	1	ICP	5/25/00	9 00	5/25/00	9:07
Cobalt	324.8	16.6		256		250	95.9	1	1	ICP	5/25/00	9.00	5/25/00	9:07
Copper	259.9	6870		7520		1000		l 1	1	ICP	5/25/00	9:00	5/25/00	9:07
Iron		22.5	1	516	1	500	98.6	1	1 1	ICPST	5/26/00	8:52	5/26/00	9 00
Lead	220 4	5500		53200		50000		1	1	ICP	5/25/00	9:00	5/25/00	9.07
Magnesium	279.1	79.8	1	549		500		1	1	ICP	5/25/00	9:00	5/25/00	9.07
Manganese	257.6	ŀ		481	1	500		;	1	ICP	5/25/00	9:00	5/25/00	9:07
Nickel	231.6	11.7	I	51800		50000		l i	1	ICP	5/25/00	9:00	5/25/00	9:07
Potassium	766.5	4140	i	1950	,	2000	ĺ	1		ICPST	5/26/00	8:52	5/26/00	9:00
Selenium	220.4	2.1	U	49.5	1	50	• • • •	1	li	ICPST	5/26/00	8:52	5/26/00	9:00
Silver	328.1	0.94	ł.	48800	1	50000		1	1	ICP	5/25/00	9:00	5/25/00	9:07
Sodium	589	1200	1	2080	1	2000			li	ICPST	5/26/00	8:52	5/26/00	9:00
Thallium	190.9	3.9	1	1		500	1	1	1	ICP	5/25/00	9.00	5/25/00	9:07
Vanadium	292.4	13.0	1	482	1	500		1 1	;	ICP	5/25/00	9:00	5/25/00	9:07
Zinc	213.9	49.1	<u> </u>	52:	<u>'</u>	300	74.8	1	1 1	1,01	3,23,30	1		<u>.L</u>

Comments. Lot #: C0E230195 Sample #: 1

Version 3.63.4

U Result is less than the MDL

B Result is between MDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

^{*} Duplicate analysis RPD was not within limits

Metals Data Reporting Form

Matrix Spike Sample Results

Spike Sample ID: DDK90S

Original Sample ID: DDK90 Client ID: DF/S1/0137/WA/001S

Matrix: Water Units: ug/L Prep Date: 5/25/00 Prep Batch: 0145297

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	OS Conc	Q	MS Conc	Q	Spike Level	% Rec	OS DF	MS DF	Instr	OS Anal Date	OS Anal Time	MS Anal Date	MS Anal Time
Mercury	253.7	0.045	υ	1.2		1	120.0	1	1	CVAA	5/25/00	11:46	5/25/00	11.48

Comments. Lot #: C0E230195 Sample #: 1

U Result is less than the MDL

Form 5A Equivalent

B Result is between MDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

Metals Data Reporting Form

Matrix Spike Duplicate Sample Results

Spike Sample ID: DDK90D

Original Sample ID: DDK90 Client ID: DF/S1/0137/WA/001D

Matrix: Water Units: ug/L Prep Date: 5/24/00 Prep Batch: 0145186

Weight: NA Volume: 50 Percent Moisture: NA

											os	os	MSD	MSD
	WL/	OS Conc	Q	MSD Conc	0	Spike Level	% Rec	OS DF	MSD DF	Instr	Anal Date	Anal Time	Anal Date	Anal Time
Element	Mass		_==							ICP	5/25/00	9:00	5/25/00	9:10
Aluminum	308.2	7010	N	10400	N	2000	171.2	1	1		5/26/00	8·52	5/26/00	9:05
Antimony	220.4	1.5	В	500		500	99.7	ı	1	ICPST			5/26/00	9 05
Arsenic	189.0	6.4	В	2010		2000	100.0	1		ICPST	5/26/00	8:52		9:10
Barium	493.4	208		2120		2000	95.7	1	1	ICP	5/25/00	9:00	5/25/00	i I
Beryllium	313 0	0.20	В	48.7		50	97.0	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Cadmium	226.5	0.49	U	48.7		50	97.4	1	i	ICPST	5/26/00	8:52	5/26/00	9:05
Calcium	317.9	38100		87500		50000	98 7	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Chromium	267.7	10.1		216	:	200	102.8	1	1	ICPST	5/26/00	8:52	5/26/00	9:05
Cobalt	228.6	3.2	U	484		500	96.7	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Copper	324.8	16.6	В	266		250	99.6	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Iron	259.9	6870		7840	NC	1000		1	I	ICP	5/25/00	9:00	5/25/00	9:10
Lead	220.4	22.5		537		500	103.0	1	1	ICPST	5/26/00	8:52	5/26/00	9:05
Magnesium	279.1	5500		54400		50000	97.8	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Manganese	257.6	79.8		566		500	97.3	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Nickel	231.6	11.7	В	486		500	94 8	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Potassium	766.5	4140	В	52500	,	50000	96.7	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Selenium	220.4	2.1	บ	2030		2000	101.4	1	1	ICPST	5/26/00	8:52	5/26/00	9:05
Silver	328.1	0.94	U	51.4	ļ	50	102.7	1] 1	ICPST	5/26/00	8:52	5/26/00	9:05
Sodium	589	1200		49300		50000	96.3	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Thallium	190.9	3.9	4	2160		2000	107.9	1	1	ICPST	5/26/00	8:52	5/26/00	9:05
Vanadium	292.4	13.0		498	1	500	97.0	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Zinc	213.9	49.1	ı	529	i i	500	96.1	1	1_1_	ICP	5/25/00	9:00	5/25/00	9:10

Comments: Lot # C0E230195 Sample #: 1

Version 3.63.4

U Result is less than the MDL

B Result is between MDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

Duplicate analysis RPD was not within limits

Metals Data Reporting Form

Matrix Spike Duplicate Sample Results

Spike Sample ID: DDK90D

Original Sample ID: DDK90

DDK90 Client ID: DF/S1/0137/WA/001D

Matrix: Water Units: ug/L Prep Date: 5/25/00 Prep Batch: 0145297

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	OS Conc	Q	MSD Conc	Q	Spike Level	% Rec	OS DF	MSD DF	Instr	OS Anal Date	OS Anal Time	MSD Anal Date	MSD Anal Time
Mercury	253 7	0.045	U	1.1		1	112.0	1	1	CVAA	5/25/00	11:46	5/25/00	11:50

Comments: Lot # C0E230195 Sample #: 1

Version 3.63 4

U Result is less than the MDL

Form 5A Equivalent

B Result is between MDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

Metals Data Reporting Form

Matrix Spike Duplicate RPD Report

Matrix Spike Duplicate Sample ID: DDK90D

Matrix Spike Sample ID: DDK90S Client ID: DF/S1/0137/WA/001D

Matrix: Water Units: ug/L Prep Date: 5/24/00 Prep Batch: 0145186

Weight: NA Volume: 50 Percent Moisture: NA

	WL/	MS		MSD		מתמ	MS DF	MSD DF	Instr	MS Anal Date	MS Anal Time	MSD Anal Date	MSD Anal Time
Element	Mass	Conc	Q	Conc	Q.	RPD	Dr.	Dr					
Aluminum	308.215	9940	N	10400	N	15.8 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Antimony	220.353	477	1	500		4.8 %	1	1	ICPST	5/26/00	9:00	5/26/00	9:05
Arsenic	189.042	1930		2010		3. 7 %	1	l	ICPST	5/26/00	9:00	5/26/00	9:05
Barium	493.409	2070		2120		2.7 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Beryllium	313.042	47.1		48.7		3.2 %	ì	1	ICP	5/25/00	9:07	5/25/00	9:10
Cadmium	226.502	46.9		48.7		3.8 %	1	1	ICPST	5/26/00	9:00	5/26/00	9:05
Calcium	317.933	84300		87500		6.6 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Chromium	267.716	205		216		5.3 %	1	1	ICPST	5/26/00	9.00	5/26/00	9:05
Cobalt	228.616	468		484		3.3 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Copper	324.754	256		266		3.7 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Iron	259.94	7520	NC	7840	NC		1	1	ICP	5/25/00	9:07	5/25/00	9:10
Lead	220.353	516		537		4.3 %	1	1	ICPST	5/26/00	9:00	5/26/00	9:05
Magnesium	279.079	53200		54400		2.5 %	1	1	ICP	5/25/00	9.07	5/25/00	9:10
Manganese	257.61	549		566	Ì	3.6 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Nickel	231.604	481	ļ	486	l	1.0%	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Potassium	766.491	51800		52500		1.5 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Selenium	220.353	1950	ı	2030		4.0 %	1	1	ICPST	5/26/00	9:00	5/26/00	9:05
Silver	328 068	49.5		51.4		3.7 %	1	1	ICPST	5/26/00	9:00	5/26/00	9:05
Sodium	588.995			49300		1.2 %	1	1	ICP	5/25/00	9:07	5/25/00	9.10
Thallium	190.864		,	2160		3.5 %	1	1	ICPST	5/26/00	9:00	5/26/00	9:05
Vanadium	292.402			498	:	3.4 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Zinc	213.856		1	529)	1.3 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10

Comments: Lot #: C0E230195 Sample #. 1

Version 3.63.4

Form 6 Equivalent

U Result is less than the MDL

B Result is between MDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

^{*} Duplicate analysis RPD was not within limits

Metals Data Reporting Form

Matrix Spike Duplicate RPD Report

Matrix Spike Duplicate Sample ID: DDK90D

Matrix Spike Sample ID: DDK90S Client ID: DF/S1/0137/WA/001D

Matrix: Water Units: ug/L Prep Date: 5/25/00 Prep Batch: 0145297

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	MS Conc	Q	MSD Conc	Q	RPD	MS DF	MSD DF	Instr	MS Anal Date	MS Anal Time	MSD Anal Date	MSD Anal Time
Mercury	253.7	1.2		1.1		6.9 %	1	1	CVAA	5/25/00	11:48	5/25/00	11:50

Comments: Lot #: C0E230195 Sample #: 1

Version 3.63.4

U Result is less than the MDL

Form 6 Equivalent

B Result is between MDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

* Duplicate analysis RPD was not within limits

Metals Data Reporting Form

Laboratory Control Sample Results

Lab Sample ID: DDLA7C

Matrix: Water Units: ug/L Prep Date: 5/24/00 Prep Batch: 0145186

Weight: NA Volume: 50 Percent Moisture: NA

	WL/	Spike		Percent					Anal	Anal
Element	Mass	Level	Conc	Recovery	Q	Range	DF	Instr	Date	Time
Aluminum	308.215	2000	1930	96.5		80-120	1	ICP	5/25/00	8:57
Antimony	220.353	500	496	99.3		80-120	1	ICPST	5/26/00	8:48
Arsenic	189.042	2000	1990	99.6		80-120	1	ICPST	5/26/00	8:48
Barium	493.409	2000	1930	96.6		80-120	1	ICP	5/25/00	8:57
Beryllium	313.042	50.0	48.6	97.2		80-120	1	ICP	5/25/00	8:57
Cadmium	226.502	50.0	48.8	97.6		80-120	1	ICPST	5/26/00	8:48
Calcium	317.933	50000	49100	98.3		80-120	1	ICP	5/25/00	8:57
Chromium	267.716	200	204	101.8		80-120	1	ICPST	5/26/00	8:48
Cobalt	228.616	500	482	96.4		80-120	1	ICP	5/25/00	8:57
Copper	324.754	250	242	96 7		80-120	1	ICP	5/25/00	8:57
Iron	259.94	1000	1040	103.8		80-120	1	ICP	5/25/00	8:57
Lead	220.353	500	514	102.8		80-120	1	ICPST	5/26/00	8:48
Magnesium	279.079	50000	49300	98.7		80-120	1	ICP	5/25/00	8:57
Manganese	257.61	500	490	98.1		80-120	1	ICP	5/25/00	8:57
Nickel	231.604	500	483	96.5	 	80-120	1	ICP	5/25/00	8:57
Potassium	766.491	50000	48500	97.0		80-120	1	ICP	5/25/00	8:57
Selenium	220.353	2000	2030	101.7		80-120	1	ICPST	5/26/00	8:48
 Silver	328.068	50.0	50.9	101.9		80-120	1	ICPST	5/26/00	8:48
Sodium	588.995	50000	48900	97.9		80-120	1	ICP	5/25/00	8:57
Thallium	190.864	2000	2150	107.5		80-120	i	ICPST	5/26/00	8:48
Vanadium	292.402	500	485	97.0		80-120	1	ICP	5/25/00	8:57
Zinc	213.856	500	494	98.7		80-120	1	ICP	5/25/00	8:57

Comments: Lot #: C0E230195

Metals Data Reporting Form

Laboratory Control Sample Results

Lab Sample ID: DDLR3C

Matrix: Water Units: ug/L Prep Date: 5/25/00 Prep Batch: 0145297

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	Spike Level	Conc	Percent Recovery	Q	Range	DF	Instr	Anal Date	Anal Time
Mercury	253 7	2 5	2.6	104.0		80-120	1	CVAA	5/25/00	11-44

GENERAL CHEMISTRY SUMMARY

UXB INTERNATIONAL

Client Sample ID: DF/S1/0137/WA/001

General Chemistry

Lot-Sample #...: C0E230195-001 Work Order #...: DDK90

Matrix....: WATER

Date Sampled...: 05/22/00

Date Received..: 05/23/00

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
рН	8.3	Factor: 1	No Units MS Run	SW846 9040 #: 0144116	05/23/00	0144271
Cyanide, Total	ND Dilution	10.0 Factor: 1	ug/L MS Run	SW846 9012A #: 0147046	05/26-05/27/00	0147147
Flashpoint	>200 Dilution	Factor: 1	đeg F MS Run	SW846 1010 #: 0148031	05/27/00	0148128
Total Sulfide	183 Dilution	1.0 n Factor: 1	mg/L MS Run	MCAWW 376.1 #: 0147031	05/26/00	0147129

NOTE(S):

METHOD BLANK REPORT

General Chemistry

Client Lot #...: C0E230195

Matrix..... WATER

		REPORTING	_		PREPARATION-	PREP
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	BATCH #
Cyanide, Total		Work Order	#: DDR65101	MB Lot-Sample #:	C0E260000-147	
	ND	10.0	ug/L	SW846 9012A	05/26-05/27/00	0147147
	Di	lution Factor: 1				
Total Sulfide	ND Di	Work Order 1.0 Lution Factor: 1	#: DDR42101 mg/L	MB Lot-Sample #: MCAWW 376.1	C0E260000-129 05/26/00	0147129

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #:	: C0E23019	95		Matrix	: WATER
PARAMETER PH	PERCENT RECOVERY			ANALYSIS DATE Lot-Sample#: C0E230000-	PREP BATCH # 271 0144271
Cyanide, Total	100	Work Order #: Di (85 - 145) SW8		Lot-Sample#: C0E260000- 05/26-05/27/00	147 0147147
Flashpoint	99	Work Order #: D (85 - 115) SW8 Dilution Factor: 1		Lot-Sample#: C0E270000- 05/27/00	128 0148128
Total Sulfide	105		DR42102 LCS WW 376.1	Lot-Sample#: C0E260000- 05/26/00	·129 01 47129

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: C0E230195

Date Sampled...: 05/22/00 Date Received..: 05/24/00

Matrix..... WATER

	PERCENT	RECOV	ERY		RPD		PREPARATION- PREP
PARAMETER	RECOVERY	LIMIT	's	RPD	<u>LIMITS</u>	METHOD	ANALYSIS DATE BATCH #
Cyanide, Tota	al		WO#:	DDM1.	1105-MS/	DDM11106-MSD	MS Lot-Sample #: C0E240195-001
•	102	(75 -	125)			SW846 9012A	05/26-05/27/00 0147147
	101	175 -	125)	0 95	(0-20)	SW846 9012A	05/26-05/27/00 0147147

Dilution Factor: 1
MS Run #....: 0147046

Dilution Factor: 1
MS Run #.....: 0147031

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: C0E230195 Work Order #...: DDK1J-SMP Matrix.....: WATER

DDK1J-DUP

RPD PREPARATION-PREP DUPLICATE <u>LIMIT</u> ANALYSIS DATE BATCH # PARAM RESULT METHOD RESULT UNITS RPD SD Lot-Sample #: C0E230164-001 нф 05/23/00 0144271 No Units 0.28 SW846 9040 7.2 7.2 (0-20)

Dilution Factor: 1

Prep Date....: 0144116 Analysis Date..: Prep Batch #...:

General Chemistry

Client Lot #...: C0E230195

Work Order #...: DDK90-SMP

Matrix....: WATER

DDK90-DUP

Date Sampled...: 05/22/00 Date Received..: 05/23/00

PREP PREPARATION-RPD DUPLICATE ANALYSIS DATE BATCH # LIMIT METHOD RESULT UNITS RPD PARAM RESULT SD Lot-Sample #: C0E230195-001 Flashpoint 05/27/00 0148128 (0-20) SW846 1010 >200 deq F 0.0 >200

Dilution Factor: 1

Prep Date....: 0148031 Analysis Date..: Prep Batch #...:

GC/MS VOLATILE DATA

GC/MS VOLATILE QC SUMMARY

SW846 8260B SURROGATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT QESSDG:

Lot #: C0E230195

•	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
	=======================================	======		======	======	======
01	DF/S1/0137/WA/001	98	103	99	98	_00
	METHOD BLK. DDL68101	103	103	100	100	00
	LCS DDL68102	103	101	100	102	00
	DF/S1/0137/WA/001 D	105	101	102	104	00
	DF/S1/0137/WA/001 S	104	101	102	102	00

SURROGA	TES	3	<u>QC LIMITS</u>
SRG01	=	: 1,2-Dichloroethane-d4	(77-120)
SRG02	=	= Toluene-d8	(78-111)
SRG03		4-Bromofluorobenzene	(80-114)
SRG04		= Dibromofluoromethane	(78-110)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

658 98

SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot #: C0E240000

WO #: DDL68102 BATCH: 0145157

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	QUAL
	=======================================	: ===== == ==	=====	=======	=============
1,1-Dichloroethene	50.0	54.4	109	65- 119	
Trichloroethene	50.0	47.7	95	80- 122	.l <u></u>
Benzene	50.0	49.2	98	79- 116	
Toluene	50.0	50.0	100	76- 119	.
Chlorobenzene	50.0	49.2	98	81- 115	.l <u></u>

notes (s) :		
	 	 ·····

* Values outside of QC limits

Spike Recovery:	0	out of	5	outside limits	
COMMENTS:					

SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Matrix Spike ID: DF/S1/0137/WA/001

Lot #: C0E230195

WO #: DDK90113 BATCH: 0145157

	SPIKE	SAMPLE	MS	MS		
	ADDED	CONCENT.	CONCENT.	*	LIMITS	
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	QUAL
	= =======	========	========	=====	========	========
1,1-Dichloroethene	50.0	ND	53.5	107	57- 138	<u> </u>
Trichloroethene	50.0	ND	49.9	100	58- 141	l
Benzene	50.0	ND	51.2	102	73 - 123	
Toluene	50.0	ND	50.2	100	67- 129	1
Chlorobenzene	50.0	ND	49.3	99	70- 122	

NOTE	c (G)	

* Values outside of QC limits

RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 5 outside limits

COMMENTS:

[#] Column to be used to flag recovery and RPD values with an asterisk

 $658\ 100$ sw846 8260B matrix spike/matrix spike duplicate recovery

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code. QESPIT

SDG No:

Matrix Spike ID: DF/S1/0137/WA/001

Lot #: C0E230195

WO #: DDK90114 BATCH: 0145157

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENT. (ug/L)	MSD % REC	% RPD	QC I	LIMITS REC	QUAL
=======================================	=======		=====	======	====	========	=======
1,1-Dichloroethene	50.0	55.9	112	4.5	20	<u> 57- 138</u>	
Trichloroethene	50.0	49.0	98	1.8	20	<u> 58- 141</u>	
Benzene	50.0	50.1	100	2.0	20	73- 123	
Toluene	50.0	50.2	100	0.17	20	67- 129	
Chlorobenzene	50.0	48.9	98	0.81	20	70- 122	

and non-selective with an agranish
Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits
RPD: 0 out of 5 outside limits Spike Recovery: 0 out of 5 outside limits

FORM III

COMMENTS:

NOTES (S):

BLANK WORKORDER NO.

SW846 8260B METHOD BLANK SUMMARY

DDL68101
Lab Name: Severn Trent Laboratories, Inc.

Lab Code: QESPIT SDG Number:

Lab File ID: wb50524.d Lot Number: C0E230195

Date Analyzed: 05/24/00 Time Analyzed: 07:25

Matrix: WATER Date Extracted:05/24/00

GC Column: HP624 ID: .20 Extraction Method: 5030

Instrument ID: HP5 Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

-				72 72 60 67	
		SAMPLE	LAB	DATE	TIME
	CLIENT ID.	WORK ORDER #	FILE ID	ANALYZED	ANALYZED
	=======================================	=======================================		,	
	DF/S1/0137/WA/001	DDK90101	5052404.d	05/24/00	09:03
	DF/S1/0137/WA/001	DDK90113 S	5052406.d	05/24/00	09:53
03	DF/S1/0137/WA/001	DDK90114 D	5052407.d	05/24/00	10:18
04	CHECK SAMPLE	DDL68102 C	5052402.d	05/24/00	08:14
05			_	l	<u></u>
06			<u> </u>		
07				l	
80					
09					
10			- i]
11				1	
12					1
1.3					
14			-		
15			-		<u> </u>
16			_	! 	
17			-		i ———
18	{	1	-		¦
19			_		<u> </u>
20					
21		l	-¦		
			-		<u> </u>
22 23			<u> </u>	<u> </u>	\
	1	ļ	- 		
24	!	<u> </u>	-{		
25		!		ļ	ļ
26		ļ		ļ	I
27			_		
28		ļ	_		ļ
29	1		_]
30]		_	.	<u> </u>

COMMENTS:					
	· · · · · · · · · · · · · · · · · · ·				
		 ····	FORM TV		

658 102 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

> Lab Name: STL-PITTSBURGH Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: 50515D

Lab File ID: BF50515 BFB Injection Date: 05/15/00

Instrument ID: HP5 BFB Injection Time: 0523

GC Column: DB624 20M ID: 0.20 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 95.0 - 9.0% of mass 176	20.3 48.7 100.0 6.9 0.5 (0.6)1 70.0 4.9 (7.0)1 67.0 (95.7)1 4.4 (6.6)2
'	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	============	=======================================	=======================================		~~~~~
01	VSTD50	VSTD50	3C50515	05/15/00	0809
02	VSTD5	VSTD5	1A50515	05/15/00	0845
03	VSTD20	VSTD20	1B50515	05/15/00	0909
04	VSTD100	VSTD100	1D50515	05/15/00	0934
05	VSTD200	VSTD200	1E50515	05/15/00	0959
06					
07					
08					
09					
10 11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1.

FORM V VOA OLMO3.0

1008 STL Pittsburgh

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: STL-PITTSBURGH Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: C0E230195

Lab File ID: BF50524 BFB Injection Date: 05/24/00

Instrument ID: HP5 BFB Injection Time: 0625

GC Column: DB624 20M ID: 0.20 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
		==========
50	15.0 - 40.0% of mass 95	19.0
75	30.0 - 60.0% of mass 95	47.1
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.5 (0.6)1
174	50.0 - 100.0% of mass 95	80.8
175	5.0 - 9.0% of mass 174	5.8 (7.2)1
176	95.0 - 101.0% of mass 174	77.2 (95.6)1
177	5.0 - 9.0% of mass 176	5.1 (6.6)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

					F777 F77
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	==========		==========	=======	
01	VSTD50	VSTD50	CC50524	05/24/00	0646
02	INTRA-LAB BL		WB50524	05/24/00	0725
03	INTRA-LAB CH		5052402	05/24/00	0814
04	DF/S1/0137/W	DDE00102	5052404	05/24/00	0903
		DDK90101	5052406	05/24/00	0953
05	DE (01 (01 37 /M)	DDK90113	5052407	05/24/00	1018
06	DF/S1/0137/W	DDK90114	5052407	05/24/00	1070
07					
80					
09					
10					
11					
12					
13					
14					
15		<u> </u>			
16					ļ
17				·	
	[
18		<u> </u>			
19					
20					
21	<u></u>			ļ	
22					

page 1 of 1

FORM V VOA

OLMO3.0

Lab Name: STL-PITTSBURGH Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: C0E230195

Lab File ID (Standard): CC50524 Date Analyzed: 05/24/00

Instrument ID: HP5 Time Analyzed: 0646

GC Column: DB 624 ID: 0.20 (mm) Heated Purge: (Y/N) N

		IS1 (CBZ)		IS2 (DCB)		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
			======		======		======
	=======================================	150760	9.97	233429	12.28	655063	6.87
	12 HOUR STD	152760				1310126	7.07
	UPPER LIMIT	305520	10.17	466858	12.48		
	LOWER LIMIT	76380	9.77	116714	12.08	327532	6.67
	=======================================	=========	======	=======	======	=========	======
	EPA SAMPLE						
	NO.						
	========	=========	0 00	015500	12.27	638649	6.88
01	INTRA-LAB BL	149766	9.97	215588			
02	INTRA-LAB CH	145182	9.97	214121	12.28	618603	6.89
03	DF/S1/0137/W	143289	9.97	199650	12.28	622463	6.89
04	DF/S1/0137/W	141881	9.97	219399	12.28	620339	6.88
		144401	9.97	218281	12.28	618101	6.89
05	DF/S1/0137/W	144401	9.97	210201	12.20	V	
06							
07							
08							
09	·····			-			·
10							
			i — — —				
11					ļ 		
12					·		
13		<u></u>					
14			l				
15			_				
16							i
17							
1/							
18		[
19		<u> </u>			<u> </u>	<u> </u>	
20							
21		1					
22							l
ىك ميە	!	I	· ——	1		**	

IS1 (CBZ) = Chlorobenzene-d5

IS2 (DCB) = 1,4-Dichlorobenzene-d4

IS3 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.20 minutes of internal standard RT RT LOWER LIMIT = - 0.20 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII VOA

OLM03.0

GC/MS VOLATILE SAMPLE DATA

STL Pittsburgh 1011

UXB INTERNATIONAL

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WATER

Lab Sample ID: C0E230195 001

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Work Order: DDK90101 Date Received: 05/23/00 Date Extracted: 05/24/00

Dilution factor: 1

Date Analyzed: 05/24/00

Moisture %:NA

QC Batch: 0145157

Client Sample Id: DF/S1/0137/WA/001

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/L	<u>Q</u>
67-64-1	Acetone	2.1	J
71-43-2	Benzene	5.0	<u>U</u>
75-27-4	Bromodichloromethane	5.0	U
75-25-2	Bromoform	_ 5.0	U
74-83-9	Bromomethane	_ 10	
78-93-3	2-Butanone	20	<u>ט</u>
75-15-0	Carbon disulfide	5.0	<u> </u>
56-23-5	Carbon tetrachloride	<u> 5.0</u>	UU
108-90-7	Chlorobenzene	5.0	U
124-48-1	Dibromochloromethane	5.0	U
75-00-3	Chloroethane	10	IU
67-66-3	Chloroform	5.0	U
74-87-3	Chloromethane	10	<u> </u>
75-34-3	1,1-Dichloroethane	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
540-59-0	1,2-Dichloroethene (total)		\ <u>U</u>
78-87-5	1,2-Dichloropropane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
10061-02-6	trans-1,3-Dichloropropene		<u>U</u>
100-41-4	Ethylbenzene	5.0	U
591-78-6	2-Hexanone	20	<u>U</u>
75-09-2	Methylene chloride	5.0	<u></u>
108-10-1	4-Methyl-2-pentanone	20	<u>U</u>
100-42-5	Styrene	5.0	<u> </u>
79-34-5	1,1,2,2-Tetrachloroethane	5.0	<u> </u> <u>U</u>
127-18-4	Tetrachloroethene	5.0	U
108-88-3	Toluene	5.0	U

UXB INTERNATIONAL

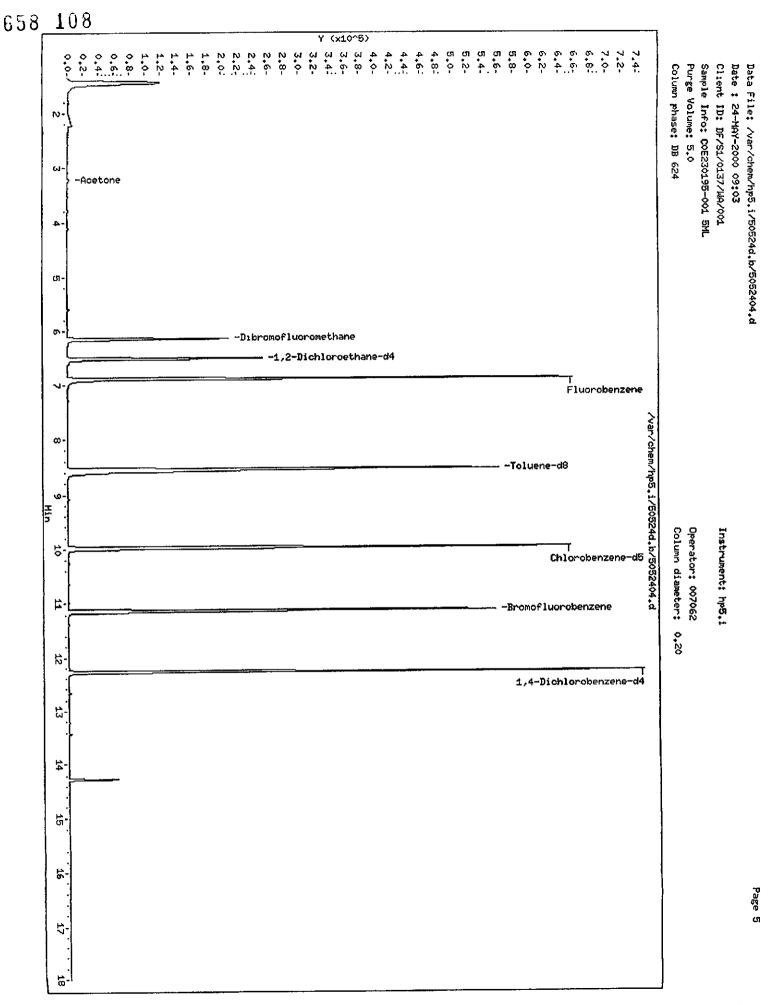
Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Date Received: 05/23/00 Work Order: DDK90101 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/24/00


Moisture %:NA

QC Batch: 0145157

Client Sample Id: DF/S1/0137/WA/001

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or	c ug/kg) ug/L	Q
71-55-6	1,1,1-Trichloroethane	5.0	_ <u> </u>
79-00-5	1,1,2-Trichloroethane	5.0	ַן ַ
79-01-6	Trichloroethene	5.0	ן <u>ש</u> ן
75-01-4	Vinyl chloride	10	U
1330-20-7	Xylenes (total)	5.0	<u> </u>

Data File: /var/chem/hp5.i/50524d.b/5052404.d

Report Date: 24-May-2000 09:43

Page 1

STL-PITTSBURGH

VOLATILE REPORT SW-846 Method

Data file : /var/chem/hp5.i/50524d.b/5052404.d

Client Smp ID: DF/S1/0137/WA/001 Lab Smp Id: DDK90101

Inj Date : 24-MAY-2000 09:03

Inst ID: hp5.i Operator: 007062

Smp Info : C0E230195-001 5ML

Misc Info : ddk90101,50524d.b,8260bh2o.m,tcl.sub

Comment

Method : /var/chem/hp5.i/50524d.b/8260bh2o.m Meth Date : 24-May-2000 07:05 h Quant 7 Quant Type: ISTD Cal File: 1a50515.d Cal Date : 15-MAY-2000 08:45

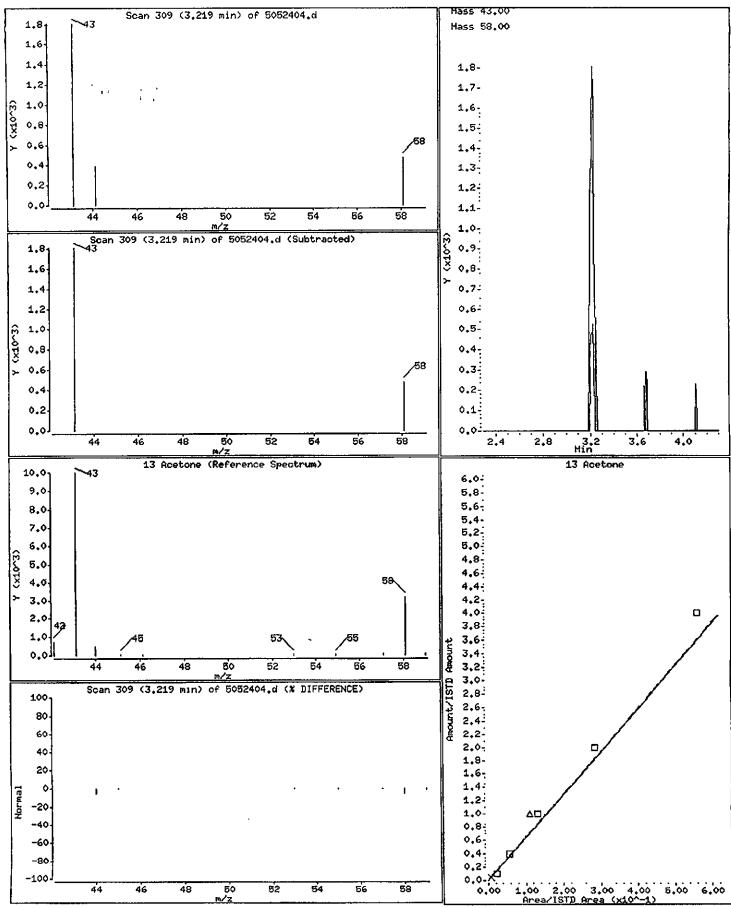
Als bottle: 1

Dil Factor: 1.00000 Integrator: HP RTE

Target Version: 3.40 Processing Host: hpuxcs21

Compound Sublist: tcl.sub

Concentration Formula: Amt * DF * 1/Vo*Vt


Name	Value	Description	
DF Vo Vt	5.000	Dilution Factor Sample Volume mg/L conversion (1.0 if no conve	rsion)

								ÇO	NCENTRA	TIONS
			QUANT SIG					ON-C	OLUMN	FINAL
C	ompounds		MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(UG/L)
=:		医毒气物多色蛋白蛋白 蛋白	중도관점	-	*****	220##B	******	***	D 04 4 4	220000
4	46 Flu	orobenzene	96	6 894	6.868	(1 000)	622463			
•	69 Chl	orobenzene-d5	119	9.972	9.971	(1.000)	143289			
٠	92 1,4	-Dichlorobenzene-d4	152	12.278	12.282	(1.000)	199650			
\$	39 Dib	romofluoromethane	113	6 139	6 132	(0.891)	132563	244	.428	48 88
\$	43 1,2	-Dichloroethane-d4	65	6.498	6.491	(0.943)	178113	246	.239	49.25
\$	S9 Tol	uene-d8	98	8.542	8.529	(0.857)	596131	256	619	51 32
\$	80 Bro	mofluorobenzene	95	11 134	11 145	(1.117)	217121	248	.498	49.70
	1 Dic	hlorodifluoromethane	85 00	Cor	mpound No	t Detect	ed.			
	22 Acr	ylonitrile	53.00	Cor	apound No	t Detect	eđ.			
	44 Isc	butanol	41.00	Cor	mpound No	t Detect	ed.			
	2 Chl	oromethane	50.00	Cor	mpound No	t Detect	ed.			
	3 Vin	yl Chloride	62.00	Cor	mpound No	t Detect	ed.			
	4 Bro	momethane	94 00	Cor	mpound No	t Detect	ed.			
	5 Chl	oroethane	64 00	Cor	mpound No	t Detect	ed.			
	6 Tra	chlorofluoromethane	101.00	Co	mpound No	t Detect	ed.			
	12 1,1	Dichloroethene	96.00	Cor	mpound No	t Detect	ed			

Data File: /var/chem/hp5.i/50524d.b/5052404.d Report Date: 24-May-2000 09:43

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ng) (UG/L)
	2222		2
15 Carbon Disulfide	76.00	Compound Not Detected	
13 Acetone	43	3 219 3.303 (0.467) 4063	10 4161 2.083
14 Iodomethane	142.00	Compound Not Detected.	
18 Methylene Chloride	84.00	Compound Not Detected	
19 trans-1,2-Dichloroethene	96.00	Compound Not Detected	
20 Methyl tert-butyl ether	73.00	Compound Not Detected.	
23 Hexane	57.00	Compound Not Detected.	
24 1,1-Dichloroethane	63.00	Compound Not Detected.	
28 cis-1,2-dichloroethene	96.00	Compound Not Detected.	
M 29 1,2-Dichloroethene (total)	96.00	Compound Not Detected.	
31 2-Butanone	43.00	Compound Not Detected.	
35 Tetrahydrofuran	42.00	Compound Not Detected.	
37 Chloroform	83.00	Compound Not Detected.	
38 1,1,1-Trichloroethane	97.00	Compound Not Detected.	
41 Carbon Tetrachloride	117.00	Compound Not Detected.	
42 Benzene	78 00	Compound Not Detected.	
45 1,2-Dichloroethane	62 00	Compound Not Detected.	
47 Trichloroethene	130.00	Compound Not Detected.	
49 1,2-Dichloropropane	63 00	Compound Not Detected.	
50 Dibromomethane	93.00	Compound Not Detected.	
53 Bromodichloromethane	83 00	Compound Not Detected	
57 cis-1,3-Dichloropropene	75.00	Compound Not Detected.	
58 4-Methyl-2-Pentanone	43.00	Compound Not Detected	
60 Toluene	91.00	Compound Not Detected.	
61 trans-1,3-Dichloropropene	75.00	Compound Not Detected	
62 Ethyl methacrylate	69.00	Compound Not Detected.	
64 1,1,2-Trichloroethane	97 00	Compound Not Detected.	
65 Tetrachloroethene	164.00	Compound Not Detected.	
66 2-Hexanone	43.00	Compound Not Detected	
67 Dibromochloromethane	129 00	Compound Not Detected.	
68 1,2-Dibromoethane	107.00	Compound Not Detected.	
70 Chlorobenzene	112.00	Compound Not Detected.	
72 Ethylbenzene	106.00	Compound Not Detected.	
73 m + p-Xylene	106.00	Compound Not Detected.	
74 Xylene-o	106 00	Compound Not Detected.	
M 75 Xylenes (total)	106.00	Compound Not Detected.	
76 Styrene	104 00	Compound Not Detected.	
77 Bromoform	173.00	Compound Not Detected.	
83 1,1,2,2-Tetrachloroethane	83.00	Compound Not Detected	
84 1,2,3-Trichloropropane	110.00	Compound Not Detected	
91 1,3-Dichlorobenzene	146 00	Compound Not Detected.	
93 1,4-Dichlorobenzene	146.00	Compound Not Detected.	
95 1,2-Dichlorobenzene	146.00	Compound Not Detected.	
78 Isopropylbenzene	105.00	Compound Not Detected.	
99 Naphthalene	128.00	Compound Not Detected.	

GC/MS VOLATILE CALIBRATION DATA

Lab Name: STL-PITTSBURGH Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: 50515D

Instrument ID: HP5 Calibration Date(s): 05/15/00 05/15/00

Heated Purge: (Y/N) N Calibration Time(s): 0809 0959

GC Column: DB 624 ID: 0.18 (mm)

LAB FILE ID: RRF5 RRF50 =3C50515 RRF10	=1A505 00=1D505			0 =1B50 00=1E50			
COMPOUND	RRF5	RRF20	RRF50		RRF200		% RSD
Dichlorodifluoromethane	0.163			1		1	11.6
Chloromethane	* 0.210						
Vinyl Chloride	0.207						
Bromomethane	0.039	0.033					
Chloroethane	0.023	0.038	0.034				
Trichlorofluoromethane	0.057		0.058				
1,1-Dichloroethene	0.219						
Methylene Chloride	0.260					0.256	
trans-1,2-Dichloroethene	0.224						
1,1-Dichloroethane	* 0.373			0.472			10.8
cis-1,2-dichloroethene	0.227		0.232	0.291		0.252	12.1
Chloroform	0.353		0.366				
Bromochloromethane	0.115		0.107				
1,1,1-Trichloroethane	0.328		0.341	0.436			9.8
Carbon Tetrachloride	0.257		0.288	0.373		0.374	14.1
1,2-Dichloroethane	0.305		0.318			0.313	17.0
Benzene	0.893		0.908			0.347	12.7
Trichloroethene	0.226		0.233	0.286		0.972	9.9
1,2-Dichloropropane	0.210		0.215	0.262	0.272	0.249	11.1
Bromodichloromethane	0.223					0.232	11.3
cis-1,3-Dichloropropene	0.312	0.356	0.364	0.448	0.334	0.283	17.6
Toluene	4.245	4.358	4.244		5.056	0.384	15.1
trans-1,3-Dichloropropene	1.261	1.458	1.480	1.847		4.614	9.9
1,1,2-Trichloroethane	0.861	0.858	0.848		1.848	1.579	16.4
Tetrachloroethene	0.802	0.810	0.817	1.034	1.019	0.924	10.2
Dibromochloromethane	0.680	0.782	0.840		0.974	0.880	11.0
	* 2.756	2.768	2.760	1.085	1.088	0.895	20.5
Ethylbenzene	1.675		1.584		3.225	2.968	9.6
Styrene	2.751	2.822	2.944	3.603	1.862	1.725	8.6
	* 0.396	0.475	0.537	0.721	3.694	3.163	14.2
	* 0.738	0.829	0.537		0.722	0.570	25.8
1,3-Dichlorobenzene	1.313	1.372	1.342	0.958	0.912	0.842	10.9
1,4-Dichlorobenzene	1.379	1.369	1.342		1.539	1.434	9.0
1,2-Dichlorobenzene	1.273	1.295	1.280	1.604	1.561	1.451	8.4
Dibromomethane	0.125	0.128	0.129		1.485	1.372	9.0
1,2-Dibromoethane	0.830	0.128		0.160	0.156	0.140	12.2
1,1,1,2-Tetrachloroethane	0.808	0.874	0.871 0.892	1.075	1.061 1.081	0.942	12.3 14.3
Compounds with required min	imum DDL			DCD]			

* Compounds with required minimum RRF and maximim %RSD values.

All other compounds must meet a minimim RRF of 0.010.

page 1 of 2

FORM VI VOA

OLM03.0

658 114

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: 50515D

Instrument ID: HP5

Calibration Date(s): 05/15/00 05/15/00

Heated Purge: (Y/N) N Calibration Time(s): 0809

0959

GC Column: DB 624 ID: 0.18 (mm)

LAB FILE ID: RRF5 RRF50 =3C50515 RRF10	=1A505 0=1D505			0 =1B50 00=1E50			
COMPOUND	RRF5	RRF20	RRF50	I .	RRF200	1	RSD
1,2,3-Trichloropropane	0.248	0.278	0.264	0.320	0.296	0.281	10.0
1,2-Dibromo-3-chloropropane_	0.093	0.113					
2,2-Dichloropropane	0.324	0.340					
1,1-Dichloropropene	0.299						11.8
1,3-Dichloropropane	1.495	1.558					11.2
n-Propylbenzene	0.815	0.841					9.0
Bromobenzene	0.732	0.787					8.6
1,3,5-Trimethylbenzene	2.132	2.251	2.186	2.754	2.678	2.400	12.2
2-Chlorotoluene	0.671	0.725	0.690	0.838	0.789	0.743	9.4
4-Chlorotoluene	0.708	0.722	0.687	0.842	0.824	0.757	9.4
tert-Butylbenzene	2.106	2.112	2.067	2.451	2.357	2.219	7.8
1,2,4-Trimethylbenzene	2.129	2.176		2.626	2.578	2.320	11.2
sec-Butvlbenzene	3.126	3.125	3.036	3.603	3.471		7.6
4-Isopropyltoluene	2.349	2.328	2.306		2.752		9.6
n-Butylbenzene	2.227	2.185			2.718		12.1
1,2,4-Trichlorobenzene	0.750	0.541			0.730		14.1
Hexachlorobutadiene	0.664	0.462	0.483	0.558	0.574		14.6
Naphthalene	1.490	1.136			1.458		12.1
1,2,3-Trichlorobenzene	0.816	0.414			0.542		30.0
Acetone	0.223	0.146		0.142	0.141		23.9
Carbon Disulfide	0.470	0.625	0.792	0.798	0.804		21.2
2-Butanone	0.450	0.230		0.201	0.198		43.3
4-Methyl-2-Pentanone	1.307	1.240	1.211	1.408	1.429		7.4
2-Hexanone	0.900	0.890		1.004	0.982	0.926	7.0
Methyl tert-butyl ether	0.435	0.641	0.691	0.815	0.814		23.0
Isopropylbenzene	4.579	4.517		5.493	5.369		9.9
1,2-Dichloroethene (total)	0.226	0.230			0.275		11.7
Xylenes (total)	1.774	1.716	1.765	2.126	2.199	1.916	11.9
	======	======	======	=====	=====	======	=====
Dibromofluoromethane	0.213	0.217	0.217	0.218	0.223		1.6
1,2-Dichloroethane-d4	0.304	0.288		0.287	0.295		3.2
Toluene-d8	4.193	4.068		3.940	4.093		2.5
Bromofluorobenzene	1.609	1.479	1.494	1.498	1.541	1.524	3.5

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

page 2 of 2

FORM VI VOA

OLM03.0

Data File: /var/chem/hp5.i/50515d.b/1e50515.d Report Date: 05/15/2000

INITIAL CALIBRATION REPORT

Instrument ID: hp5.i Lab File ID: 1e50515.d Analysis Type: WATER

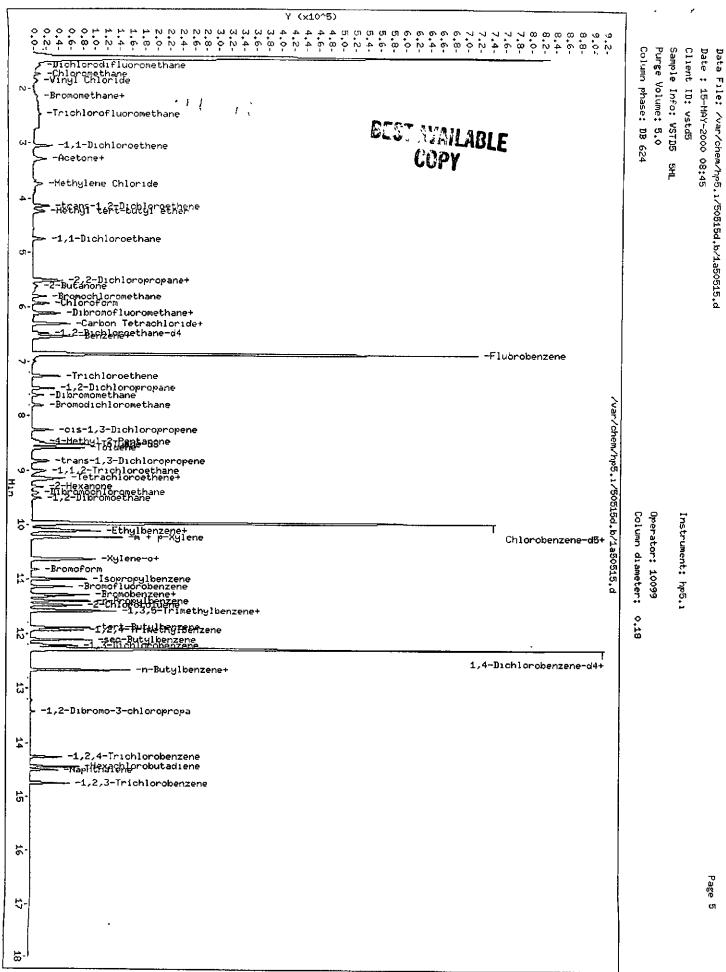
Injection Date: 15-MAY-2000 09:59
 Lab Sample ID: vstd200
Method File: /var/chem/hp5.i/50515d.b/8260bh2

 COMPOUND		FRSD
, , , , , , , , , , , , , , , , , , , ,	' ===== =	.======
(Xylenes (total)		11 9
[1,2-Dichloroethene (total)	i	11 7
Dichlorodifluoromethane	i	21 6
Chloromethane	i	10 3
Vinyl Chloride	í	11 9,
Bromomethane	i	16 9
Chloroethane	1	21 2
Trichlorofluoromethane	į	13 6
1,1-Dichloroethene	í	10 9
Acetone	1	23 9;
Carbon Disulfide	i	21 21
Methylene Chloride	i	84
trans-1,2-Dichloroethene		11 4
Methyl tert-butyl ether	1	23.0
1,1-Dichloroethane	ì	10 8
2,2-Dichloropropane	i	14 9
cis-1,2-dichloroethene	i	12 1
2-Butanone	i	43 3
Bromochloromethane	!	9 8
Chloroform		12 0
1,1,1-Trichloroethane	i i	14 1
Dibromofluoromethane	i	16
Carbon Tetrachloride	1	17 0
1,1 Dichloropropene	1	11 8
1,2-Dichloroethane d4		3 2
Benzene	I	9.9
1,2-Dichloroethane	I	12 7!
Trichloroethene	1	11 1
1,2-Dichloropropane	ł	11 3
Dibromomethane		12 2
Bromodichloromethane	1	17.6
cis-1,3 Dichloropropene	}	15 1
4-Methyl-2-Pentanone	1	7 4
Toluene-d8	1	2 5¦
Toluene	1	9 9
trans-1,3-Dichloropropene	1	16.4
1,1,2-Trichloroethane	4	10 2
Tetrachloroethene		11 0
1,3-Dichloropropane	ì	11.2

Data File: /var/chem/hp5.i/50515d.b/1e50515.d

Report Date: 05/15/2000

INITIAL CALIBRATION REPORT


Instrument ID: hp5.1 Injection Date: 15-MAY-2000 09:59

Lab File ID: 1e50515.d

Lab Sample ID: vstd200
Method File: /var/chem/hp5.1/50515d.b/8260bh2 Analysis Type: WATER

1		. ,
COMPOUND	1	%RSD
	=== =	****
2-Hexanone	- 1	70,
Dibromochloromethane	Į.	20 5
1.2 Dibromoethane		12 3
Chlorobenzene	1	9 6
:Ethylbenzene	1	B 6
1,1,1,2-Tetrachloroethane	- 1	14 3
m + p-Xylene		10 4
Xylene-o	ŧ	11 9
Styrene	į	14 2
Bromoform	1	25 8,
Isopropylbenzene	ļ	9 9
Bromofluorobenzene	i	3.5
Bromobenzene	J	8 6
[1,1,2,2-Tetrachloroethane	J	10 9,
,1,2,3-Trichloropropane		10 0
π-Propylbenzene	t	9 0
2-Chlorotoluene	1	9.4
1,3,5-Trimethylbenzene	ł	12.2
4-Chlorotoluene	1	9 4
tert-Butylbenzene	1	78
1,2,4-Trimethylbenzene	;	11.2
sec Butylbenzene	t	7.6
1,3-Dichlorobenzene	1	9.01
4-Isopropyltoluene	1	96
11,4-Dichlorobenzene	!	8 4
n-Butylbenzene	i	12 1
1,2-Dichlorobenzene	1	9.01
1,2-Dibromo-3-chloropropane		22 7
1,2,4-Trichlorobenzene	ŀ	14.1
Hexachlorobutadiene	1	14 6
Naphthalene	ŧ	12 1
1,2,3-Trichlorobenzene	\$	30 0
<u> </u>		1

The average of all %RSD's in the initial calibration is 12 7

Data File: /var/chem/hp5.1/50515d.b/1a50515.d

Report Date: 15-May-2000 09:52

STL-PITTSBURGH

Page 1

VOLATILE REPORT SW-846 Method

Data file : /var/chem/hp5.i/50515d.b/1a50515.d

Lab Smp Id: vstd5 Client Smp ID: vstd5

Inj Date : 15-MAY-2000 08:45

Operator: 10099 Inst ID: hp5.i

Smp Info : VSTD5 5ML

Misc Info: vstd5,50515d.b,8260bh2o.m,3-dwl1st.sub

Comment

Method : /var/chem/hp5.i/50515d.b/8260bh2o.m

Meth Date : 15-May-2000 09:51 h Quant Type: ISTD Cal Date : 15-MAY-2000 08:45 Cal File: 1a50515.d

Als bottle: 6 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: HP RTE //./_ Compound Sublist: 3-dwlist.sub

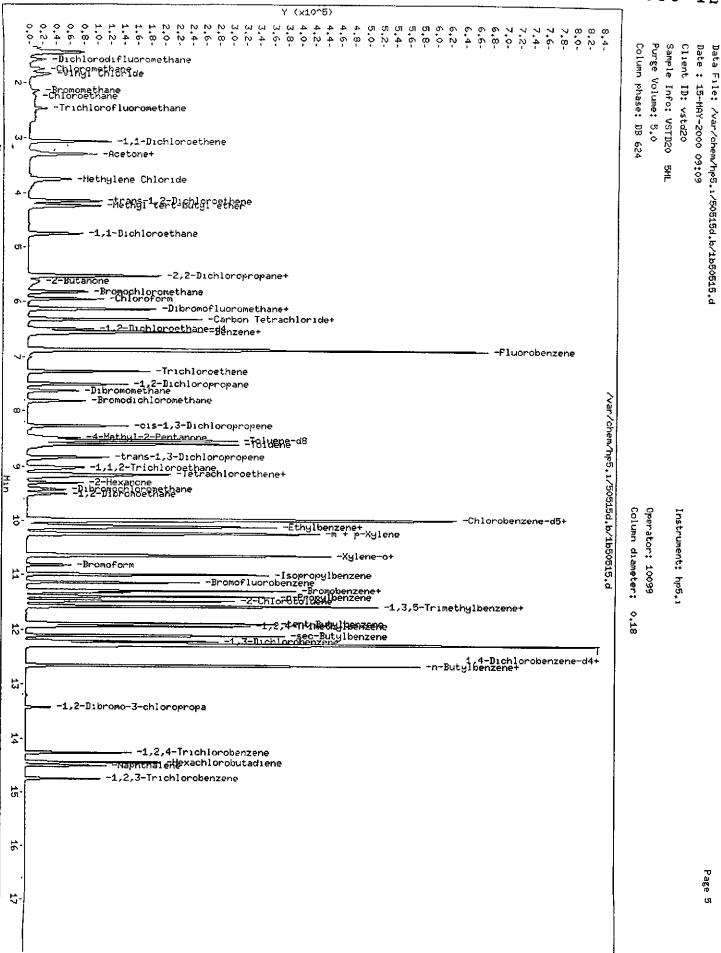
Target Version: 3.40

Processing Host: hpuxcs21

Concentration Formula: Amt * DF * 1/Vo*Vt

Name	Value	Description
DF	1.000	Dilution Factor
Vo	5.000	Sample Volume
۷t	1.000	mg/L conversion (1.0 if no conversion)

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
==:		====	± ₽	*****		======	======
*	46 Fluorobenzene	96	6 B61	6 861 (1 000)	650562		
*	69 Chlorobenzene-d5	119	9 963	9.963 (1 000)	151194		
*	92 1,4-Dichlorobenzene-d4	152	12 275	12 275 (1 000)	228984		
\$	39 Dibromofluoromethane	113	6 119	6 119 (0 892)	13879	25 0000	24 77
\$	43 1,2-Dichloroethane-d4	65	6 478	6 478 (0 944)	19749	25 0000	26 04
\$	59 Toluene-d8	98	8 522	8 522 (0 855)	63398	25 0000	25 68
\$	80 Bromofluorobenzene	95	11 138	11.138 (1 118)	24332	25 0000	25 92
	1 Dichlorodifluoromethane	85	1 580	1.580 (0 230)	10583	25 0000	24 48
	2 Chloromethane	50	1 733	1 733 (0 253)	13690	25 0000	24 72
	3 Vinyl Chloride	62	1 860	1.860 (0 271)	13481	25 0000	24 12
	4 Bromomethane	94	2 140	2 140 (0 312)	2534	25 0000	29 48
	5 Chloroethane	64	2 274	2.274 (0 331)	1478	25.0000	19 94
	6 Trichlorofluoromethane	101	2 469	2 469 (0 360)	3693	25 0000	24 72
	12 1,1-Dichloroethene	96	3 047	3 047 (0 444)	14236	25 0000	24 94
	13 Acetone	43	3 266	3 266 (0 476)	14501	25 0000	31 47
	15 Carbon Disulfide	76	3 284	3 284 (0 479)	30578	25 0000	18 61


Data File: /var/chem/hp5.i/50515d.b/1a50515.d Report Date: 15-May-2000 09:52

					AMOUL	ITS
	QUANT SIG				CAL-AMT	ON COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	****	72 14	===== =====	4	2224424	======
18 Methylene Chloride	84	3 740	3 740 (0 545)	16946	25 0000	26.02
19 trans-1,2-Dichloroethene	96	4 142	4 142 (0 604)	14599	25 0000	25 04
20 Methyl tert-butyl ether	73	4 233	4 233 (0 617)	28297	25 0000	19 32
24 1,1-Dichloroethane	63	4 750	4 750 (0 692)	24258	25 0000	24 66
27 2,2-Dichloropropane	77	5 504	5 504 (0 802)	21114	25 0000	24 20
28 cis 1,2-dichloroethene	96	5 516	5 516 (0 804)	14754	25 0000	24.71
31 2-Butanone	43	5 626	5 626 (0 820)	29243	25 0000	34 96
30 Bromochloromethane	128	5 80B	5 808 (0 847)	7479	25 0000	25 87
37 Chloroform	83	5 936	5 936 (0 865)	22993	25,0000	24 56
38 1,1,1-Trichloroethane	97	6 107	6 107 (0 890)	21371	25 0000	24 52
41 Carbon Tetrachloride	117	6 301	б 301 (0 918)	16745	25 0000	23 58
40 1,1-Dichloropropene	75	6 307	6 307 (0 919)	19482	25 0000	24 98
42 Benzene	78	6 532	6 532 (0.952)	58126	25 0000	24 80
45 1,2-Dichloroethane	62	6 569	6 569 (0 957)	19874	25 0000	24 51
47 Trichloroethene	130	7 262	7 262 (1 059)	14733	25 0000	24 65
49 1,2-Dichloropropane	63	7 494	7 494 (1 092)	13689	25 0000	24 74
50 Dibromomethane	93	7.609	7 609 (1 109)	8163	25 0000	24 69
53 Bromodichloromethane	83	7 798	7 798 (1 137)	14519	25.0000	22.76
57 cis-1,3-Dichloropropene	75	8 260	8 260 (1 204)	20305	25.0000	23 08
58 4-Methyl 2 Pentanone	43	8 479	8 479 (0 851)	19766	25 0000	25 96
60 Toluene	91	8 589	8 589 (0 862)	64189	25 0000	25 00
61 trans 1,3-Dichloropropene	75	B.826	8 826 (0 886)	19071	25 0000	23.01
64 1,1,2-Trichloroethane	97	9 014	9 014 (0 905)	13018	25.0000	25 20
65 Tetrachloroethene	164	9.136	9 136 (0 917)	12130	25.0000	24 78
67 Dibromochloromethane	129	9 404	9 404 (0 944)	10287	25 0000	22.38
63 1.3 Dichloropropane	76	9 167	9 167 (0 920)	22608	25 0000	24.73
66 2-Hexanone	43	9 294	9 294 (0 933)	13605	25.0000	25.68
68 1,2-Dibromoethane	107	9 495	9 495 (0 953)	12551	25.0000	24 40
70 Chlorobenzene	112	9 986	9 988 (1 002)	41673	25 0000	24 98
72 Ethylbenzene	106	10 103	10 103 (1.014)	25325	25 0000	25 69
71 1,1,1,2-Tetrachloroethane	131	10 085	10 085 (1 012)	12209	25 0000	23 76
73 m + p-Xylene 74 Xylene-o	106	10 219	10 219 (1 026)	57697	50 0000	51 43
76 Styrene	106	10 614	10.614 (1.065)	26824	25 0000	25 06
77 Bromoform	104	10 633	10 633 (1 067;	41599	25 0000	24 16
78 Isopropylbenzene	173	10 815		5982	25 0000	21 21
79 Bromobenzene	105	10 985	10 985 (1 103)	69238	25 0000	25 09
83 1,1,2,2-Tetrachloroethane	156	11.277	11 277 (0.919)	16756	25 0000	24 53
84 1,2,3-Trichloropropane	83	11 277	11 277 (0 919)	16908	25 0000	24 40
81 n-Propylbenzene	110	11 314	11 314 (0 922)	5674	25 0000	24 20
82 2-Chlorotoluene	120	11 393	11 393 (0 928)	18663	25 0000	24 99
86 1,3,5-Trimethylbenzene	126	11 472	11 472 (0 935)	15364	25.0000	24 65
85 4-Chlorotoluene	105 126	11 569	11 569 (0.943)	48814	25 0000	24 68
87 tert-Butylbenzene	119	11 582	11 582 (0 944)	16224	25 0000	25 38
88 1,2,4-Trimethylbenzene	105	11 892 11 934	11.892 (0 969)	48217	25 0000	25 23
89 sec-Butylbenzene	105	11 934	11 934 (0 972) 12 111 (0 987)	48760	25 0000	25 22
91 1,3-Dichlorobenzene	146	12 111	12 111 (0 987)	71587	25 0000	25 37
,	740	12 200	12 400 (0 333)	30073	25.0000	24 73

658 120
Data File: /var/chem/hp5.1/50515d.b/la50515.d
Report Date: 15-May-2000 09:52

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
# # = = = = = = = = = = = = = = = = = =	===#	= =	## ###			======
90 4-Isopropyltoluene	119	12 251	12 251 (0 998)	53790	25 0000	25 23
93 1,4-Dichlorobenzene	146	12 300	12 300 (1 002)	31579	25 0000	25 36
94 n-Butylbenzene	91	12 658	12 658 (1 031)	51000	25 0000	25 27
95 1,2-Dichlorobenzene	146	12 665	12 665 (1 032)	29151	25 0000	24 93
96 1 2-Dibromo-3-chloropropane	157	13 431	13 431 (1 094)	2122	25 0000	21 78
97 1,2,4-Trichlorobenzene	180	14 264	14 264 (1 162)	17165	25 0000	28 28
98 Hexachlorobutadiens	225	14 441	14 441 (1 176)	15197	25 0000	28 93
99 Naphthalene	128	14 502	14 502 (1 181)	34108	25 0000	27 92
100 1,2,3-Trichlorobenzene	180	14.745	14 745 (1 201)	18692	25.0000	32.24
M 29 1,2-Dichloroethene (total)	96			29353	50.0000	49 75
M 75 Xylenes (total)	106			B4521	25 0000	78 97

Page 3

Data File: /var/chem/hp5.i/50515d.b/1b50515.d

Report Date: 15-May-2000 09:52

Page 1

STL-PITTSBURGH

VOLATILE REPORT SW-846 Method

Data file : /var/chem/hp5.i/50515d.b/1b50515.d

Lab Smp Id: vstd20 Client Smp ID: vstd20

Inj Date : 15-MAY-2000 09:09

Operator : 10099 Inst ID: hp5.i

Smp Info : VSTD20 5ML

Misc Info: vstd20,50515d.b,8260bh2o.m,3-dwl1st.sub

Comment

: /var/chem/hp5.i/50515d.b/8260bh2o.m Method

Meth Date: 15-May-2000 09:52 h Quant Type: ISTD Cal Date : 15-MAY-2000 09:09:
Als bottle: 7
Dil Factor: 1.00000 Cal File: 1b50515.d

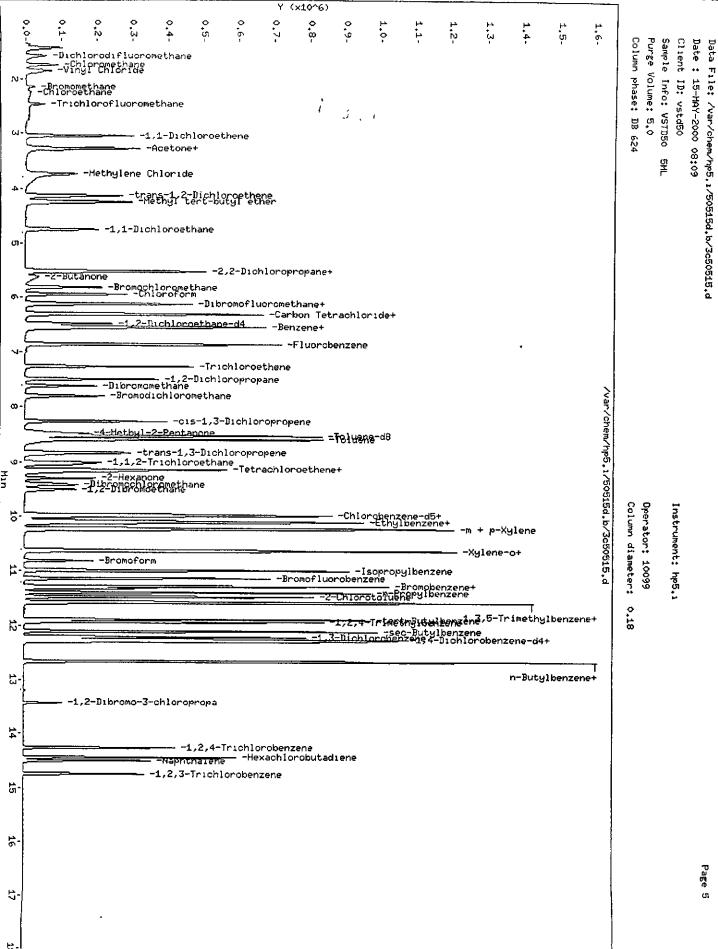
Calibration Sample, Level: 2

Compound Sublist: 3-dwlist.sub Integrator: HP RTE

Target Version: 3.40 Processing Host: hpuxcs21

Concentration Formula: Amt * DF * 1/Vo*Vt

Name	Value	Description		_	
DF Vo	5.000	Dilution Factor Sample Volume		_	
Vt	1.000	mg/L conversion	(1.0	if no	conversion)


					AMOUNTS		
QUANT S		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
=====	=======================================	====	==	=======	5 35555		*====
* 46	Fluorobenzene	96	6.870	6 870 (1.000)	634680		
* 69	Chlorobenzene-d5	119	9 973	9 973 (1.000)	149941		
* 92	1,4-Dichlorobenzene-d4	152	12 279	12 279 (1 000)	205692		
\$ 39	Dibromofluoromethane	113	6 128	6 128 (0 892)	55106	100 000	100.5
\$ 43	1,2-Dichloroethane-d4	65	6 487	6.487 (0 944)	73063	100.000	99 16
\$ 59	Toluene-d8	98	8 525	8.525 (0 855)	243981	100.000	99 77
\$ 80	Bromofluorobenzene	95	11.135	11 135 (1 117)	88711	100 000	96 82
1	Dichlorodifluoromethane	85	1.566	1 566 (0 228,	43165	100 000	101 5
2	Chloromethane	50	1 748	1 748 (0 254)	52924	100 000	98.64
3	Vinyl Chloride	62	1 845	1 845 (0 269)	55301	100 000	100.9
4	Bromomethane	94	2 138	2 138 (0 311)	8399	100 000	100 1
5	Chloroethane	64	2 241	2 241 (0 326)	9627	100 000	119 9
6	Trichlorofluoromethane	101	2 472	2 472 (0.360)	16280	100.000	107 5
12	1,1-Dichloroethene	96	3 062	3 062 (0 446)	54490	100 000	98 56
13	Acetone	43	3 257	3.257 (0 474)	37001	100 000	87.46
15	Carbon Disulfide	76	3 299	3 299 (0 480)	158762	100.000	99.37

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
环境环岛 经基础 医二甲基乙基 化氯化 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	*****	==	23382E #FFFFF	**======	*======	*=====
18 Methylene Chloride	84	3 744	3 744 (0 545)	58243	100 000	94 30
<pre>19 trans-1,2-Dichloroethene</pre>	96	4 151	4 151 (0 604)	57729	100 000	101 0
20 Methyl tert-butyl ether	73	4 248	4 248 (0 618)	162656	100 000	108 8
24 1,1-Dichloroethane	63	4 753	4 753 (0 692)	96258	100 000	100 2
27 2,2-Dichloropropane	77	5 508	5 508 (0 802)	86414	100 000	101.0
28 cis-1,2-dichloroethene	96	5 526	5 526 (0.804)	58940	100 000	100 B
31 2-Butanone	43	5 617	5-617 (0 818)	58274	100 000	78 94
30 Bromochloromethane	128	5 812	5 812 (0 846)	27483	100 000	98 27
37 Chloroform	83	5 946	5 946 (0 865)	93977	100 000	101 9
38 1,1,1-Trichloroethane	97	6 116	6 116 (0 890)	86010	100 000	100 8
41 Carbon Tetrachloride	117	6 311	6 311 (0 919)	70988	100.000	101 6
40 1,1-Dichloropropene	75	6 317	6 317 (0 919)	77169	100 000	101 0
42 Benzene	78	6 542	6 542 (0 952)	231221	100 000	100 7
45 1,2-Dichloroethane	62	6 572	6 572 (0 957)	81644	100 000	102 1
47 Trichloroethene	130	7 266	7 266 (1 058)	58041	100 000	99 69
49 1,2-Dichloropropane	63	7 497	7 497 (1.091)	54176	100 000	100 2
50 Dibromomethane	93	7 619	7 619 (1 109)	32413	100 000	100 3
53 Bromodichloromethane	83	7 807	7 807 (1 136)	6510B	100 000	103.0
57 cis-1,3-Dichloropropene	75	8 264	8 264 (1 203)	90526	100 000	103 6
58 4-Methyl-2-Pentanone	43	8.483	8 483 (0 851)	74361	100.000	98 97
60 Toluene	91	B 592	8 592 (0 862)	261386	100.000	101 8
61 trans 1,3-Dichloropropene	75	8 835	8.835 (0 886)	87453	100 000	104 2
64 1,1,2-Trichloroethane	97	9 012	9 012 (0 904)	51474	100 000	100 3
65 Tetrachloroethene	164	9 140	9 140 (0 916)	48600	100 000	100 1
67 Dibromochloromethane	129	9 419	9 419 (0 944)	46922	100.000	101 9
63 1,3-Dichloropropane	76	9 170	9 170 (0 919)	93438	100 000	102 0
66 2-Hexanone	43	9 298	9 298 (0 932)	53403	100 000	101 1
68 1,2-Dibromoethane	107	9 498	9 498 (0 952,	52404	100 000	101 8
70 Chlorobenzene	112	9 997	9 997 (1 002)	166005	100 000	100 2
72 Ethylbenzene	106	10 107	10 107 (1 013)	95986	100 000	98.79
71 1,1,1,2-Tetrachloroethane	131	10 089	10 089 (1.012)	52449	100 000	101 9
73 m + p-Xylene	106	10.229	10 229 (1.026)	211353	200 000	193 2
74 Xylene-o	106	10 624	10.624 (1 065)	102943	100 000	97 97
76 Styrene	104	10 642	10 642 (1 067)	169285	100 000	99 41
77 Bromoform	173	10 819	10 819 (1 085)	28475	100.000	101 2
78 Isopropylbenzene	105	10.989	10 989 (1 102)	270922	100.000	99 32
79 Bromobenzene	156	11 281	11.281 (0 919)	64721	100.000	103 6
83 1,1,2,2-Tetrachloroethane	83	11 281	11 281 (0 919)	68223	100 000	106 2
84 1,2,3-Trichloropropane	110	11 317	11 317 (0 922)	22853	100 000	105 5
81 n Propylbenzene	120	11 397	11 397 (0 928)	69215	100.000	102 1
82 2-Chlorotoluene	126	11 476	11 476 (0.935)	59648	100 000	104.2
86 1,3,5-Trimethylbenzene	105	11 573	11.573 (0 943)	185182	100 000	102.8
85 4-Chlorotoluene	126	11 585	11 585 (0 944)	59439	100 000	102 3
87 tert-Butylbenzene	119	11 889	11 889 (0 968)	173738	100 000	100.8
88 1,2,4-Trimethylbenzene	105	11 938	11 938 (0 972)	179083	100.000	102 1
89 sec Butylbenzene	105	12 108	12 108 (0 986)	257143	100 000	101 0
91 1,3-Dichlorobenzene	146	12 212	12 212 (0 995)	112931	100 000	102 2

Data File: /var/chem/hp5.1/50515d.b/1b50515.d Report Date: 15-May-2000 09:52

					AMOUN	TS
	QUANT SIG				CAL AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
372555555555555555555555555	====	==	33xx== = =====	100==074	== t 9 = ==	
90 4-Isopropyltoluene	119	12 254	12.254 (0 998)	191579	100 000	100 0
93 1,4 Dichlorobenzene	146	12 303	12 303 (1 002)	112673	100 000	100 5
94 n-Butylbenzene	91	12 662	12 662 (1 031)	179780	100 000	99 45
95 1,2-Dichlorobenzene	146	12 668	12 668 (1 032)	106538	100 000	100 9
96 1,2-Dibromo 3-chloropropane	157	13 434	13 434 (1 094)	9316	100 000	104 2
97 1,2,4-Trichlorobenzene	180	14 262	14 262 '1 162'	44550	100 000	87 02
98 Hexachlorobutadiene	225	14 444	14 444 (1 176)	3801 9	100 000	86 14
99 Naphthalene	128	14 505	14 505 (1 181)	93485	100.000	89 62
100 1,2,3-Trichlorobenzene	180	14 749	14.749 (1 201)	34032	100.000	73 B9
M 29 1,2-Dichloroethene (total)	96			116669	200 000	201 8
M 75 Xylenes (total)	106			314296	100 000	299 1

Page 3

Data File: /var/chem/hp5.i/50515d.b/3c50515.d Page 1

Report Date: 15-May-2000 08:27

STL-PITTSBURGH

VOLATILE REPORT SW-846 Method

Data file : /var/chem/hp5.i/50515d.b/3c50515.d

Lab Smp Id: vstd50 Inj Date : 15-MAY-2000 08:09 Client Smp ID: vstd50

Operator : 10099 Inst ID: hp5.i

Smp Info : VSTD50 5ML

Misc Info: vstd50,50515d.b,8260bh2o.m,3-dwlist.sub

Comment

Method : /var/chem/hp5.1/50515d.b/8260bh2o.m

Meth Date: 15-May-2000 08:27 h Quant Type: ISTD Cal Date : 24-APR-2000 15:00 Cal File: 1a50424n.d

KibsIIS/W Als bottle: 5 Continuing Calibration Sample

Dil Factor: 1.00000

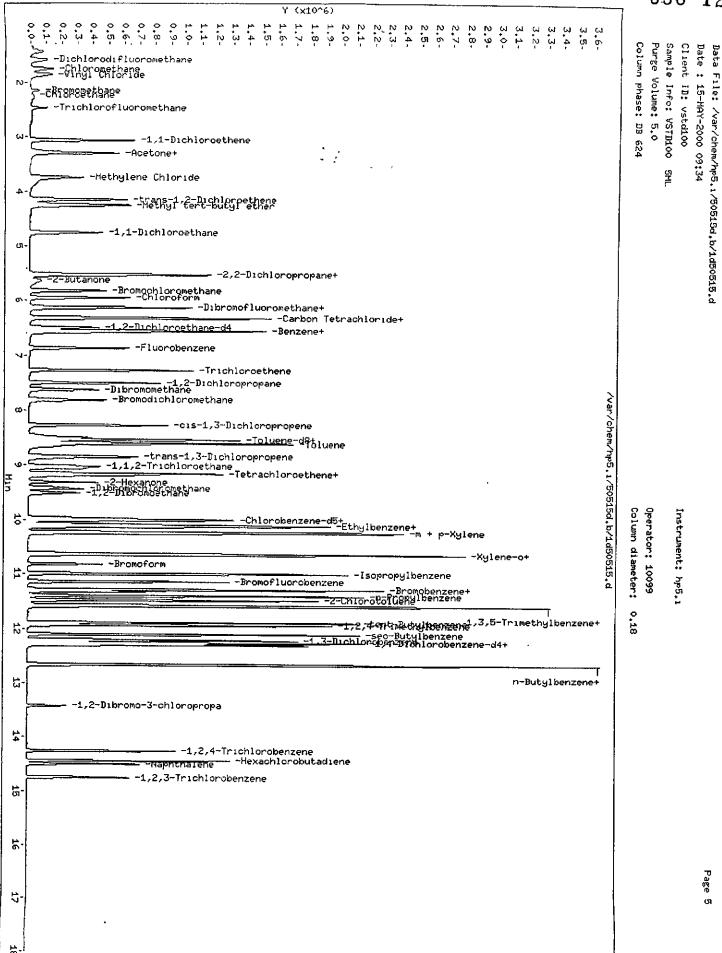
Integrator: HP RTE Compound Sublist: 3-dwlist.sub

Target Version: 3.40 Processing Host: hpuxcs21

Concentration Formula: Amt * DF * 1/Vo*Vt

Name	Value	Description	
DF Vo		Dilution Factor Sample Volume	
Vt	1.000	mg/L conversion (1.0 if no conversion)

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Cd	ompounds	MASS	RŤ	EXP RT REL RT	RESPONSE	(ng)	(ng)
=:		***			======	38### = =	======
*	46 Fluorobenzene	96	6 862	6 862 (1 000)	656862		
*	59 Chlorobenzene-d5	119	9 971	9 971 (1.000)	155636	-	
*	92 1,4-Dichlorobenzene-d4	152	12 276	12 276 (1.000)	226296		
\$	39 Dibromofluoromethane	113	6 120	6 120 (0 892)	142778	250 000	219.0
\$	43 1,2-Dichloroethane-d4	65	6.485	6 485 (0 945)	183495	250 000	205 5
\$	59 Toluene-d8	98	8.523	8.523 (0 855)	618043	250 000	222 2
\$	80 Bromofluorobenzene	95	11 139	11.139 (1 117)	232609	250 000	212 5
	1 Dichlorodifluoromethane	85	1 581	1 581 (0 230)	111433	250 000	335.5
	2 Chloromethane	50	1 734	1 734 (0 253)	141315	250 000	258 3
	3 Vinyl Chloride	62	1.855	1 855 (0 270)	146017	250 000	239 2
	4 Bromomethane	94	2.135	2 135 (0 311)	17814	250 000	161.3
	5 Chloroethane	64	2 257	2.257 (0 329)	22506	250 000	243 9
	6 Trichlorofluoromethane	101	2 464	2 464 (0 359)	38118	250 000	54 03
	12 1,1-Dichloroethene	96	3 048	3 048 (0 444)	144418	250.000	214 6
	13 Acetone	43	3 260	3 260 (0 475)	86229	250.000	244 6
	15 Carbon Disulfide	76	3.279	3 279 (0 478)	520567	250 000	264 4


Data File: /var/chem/hp5.1/50515d.b/3c50515.d Report Date: 15-May-2000 08:27

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
化化性抗抗 经基本股票 医甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	====	==			电动电动电台	
18 Methylene Chloride	84	3.741	3 741 (0 545)	157612	250 000	208 0
19 trans-1,2-Dichloroethene	96	4 136	4 136 (0 603)	146920	250 000	201 D
20 Methyl tert-butyl ether	73	4 246	4 246 (0 619)	453706	250 000	200 5
24 1,1 Dichloroethane	63	4 745	4 745 (0 691)	251573	250 000	202 6
27 2,2 Dichloropropane	77	5 499	5 499 (0 801)	227228	250 000	209 5
28 cis-1,2-dichloroethene	96	5 524	5 524 (0 805)	152478	250.000	191 1
31 2-Butanone	43	5 621	5 621 (0 819)	126985	250 000	228 4
30 Bromochloromethane	128	5 809	5 809 (0 847)	70454	250 000	175 5
37 Chloroform	83	5 937	5 937 (0 865)	240374	250 000	192 9
38 1,1,1-Trichloroethane	97	6 108	6 108 (0 890)	224214	250 000	206 8
41 Carbon Tetrachloride	117	6 302	6 302 (0 918)	189418	250 000	211 6
40 l,1-Dichloropropene	75	6 308	6 308 (0 919)	196960	250 000	209 5
42 Benzene	78	6 \$39	6 539 (0 953)	596350	250 000	193 4
45 1,2-Dichloroethane	62	6 570	6 570 (0 957)	208667	250 000	189 4
47 Trichloroethene	130	7 263	7 263 (1 058)	152988	250 000	197 9
49 1,2-Dichloropropane	63	7 495	7 495 (1 092)	141176	250 000	193 2
50 Dibromomethane	93	7 616	7 616 (1 110)	84483	250.000	187 0
53 Bromodichloromethane	83	7 805	7 805 (1.137)	175399	250 000	191 1
57 cis-1,3-Dichloropropene	75	8 261	8 261 (1 204)	239133	250.000	192 4
58 4-Methyl-2-Pentanone	43	8.486	8 486 (0.851)	188490	250.000	224 7
60 Toluene	91	8 590	8 590 (0 861)	660544 、	250 000	196 4
61 trans-1,3-Dichloropropene	75	8 827	8 827 (0.885)	230335	250 000	200 0
64 1 1,2-Trichloroethane	97	9 015	9 015 (0 904)	131912	250 000	193 8
65 Tetrachloroethene	164	9 137	9 137 (0 916)	127115	250.000	216 1
67 Dibromochloromethane	129	9 423	9 423 (0 945)	130710	250 000	194.0
63 1,3-Dichloropropane	76	9 168	9 168 (0 919)	237743	250.000	198 4
66 2-Hexanone	43	9 295	9.295 (0 932)	132636	250.000	227 9
68 1,2-Dibromoethane	107	9 496	9 496 (0 952)	135555	250 000	198 8
70 Chlorobenzene	112	9 995	9 995 (1 002)	429532	250 000	194 0
72 Ethylbenzene	106	10 110	10 110 (1 014)	246620	250 000	210 8
71 1,1,1,2-Tetrachloroethane	131	10 092	10 092 (1 012)	138755	250 000	199.5
73 m + p-Xylene	106	10 226	10 226 (1 026)	560869	500 000	417 6
74 Xylene-o	106	10.621	10 621 (1 065)	274769	250 000	203 5
76 Styrene 77 Bromoform	104	10 640	10.640 (1 067)	458150	2 5 0 000	199 1
78 Isopropylbenzene	173	10 816		83591	250 000	202 7
79 Bromobenzene	105	10 986	10.986 (1 102)	707653	250 000	216 1
83 1,1,2,2-Tetrachloroethane	156 83	11 278 11 278	11 278 (0 919) 11 278 (0 919)	171878	250 000 250 000	203 2
84 1,2,3-Trichloropropane	110	11 321	11 321 (0.922)	175243 59779		212 8
81 n-Propylbenzene	120	11.394	11 394 (0.922)		250.000	210 0
82 2-Chlorotoluene	126	11 473	11 473 (0 935)	184606 156193	250 000 250 000	215 1 204 0
86 1,3,5-Trimethylbenzene	105	11 570	11 570 (0 943)	494791	250.000	213.7
85 4-Chlorotoluene	126	11 583	11 583 (0 944)	155575	250.000	201 7
87 terz Butylbenzene	119	11 893	11 893 (0 969)	467712	250 000	201 7
88 1,2,4-Trimethylbenzene	105	11 935	11.935 (0 972)	473359	250 000	212 3
89 sec-Butylbenzene	105	12 106	12 106 (0 986)	686995	250 000	231 9
91 1,3-Dichlorobenzene	146	12 209	12.209 (0 995)	303607	250 000	208.2
				= =		

Page 3

Data File: /var/chem/hp5.i/50515d.b/3c50515.d Report Date: 15-May-2000 08:27

					AMOUN	TS
	QUANT SIG				CAL AMT	ON- COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
======================================	5===	= =	====== =====	*****		
90 4-Isopropyltoluene	119	12 252	12 252 (0 998)	521926	250 000	231 2
93 1,4-Dichlorobenzene	146	12 300	12 300 (1 002)	303193	250 000	206 7
94 n-Butylbenzene	91	12 659	12 659 (1 031)	493131	250 000	247 8
95 1,2-Dichlorobenzene	146	12 665	12 665 (1.032)	289716	250 000	207 8
96 1,2-Dibromo-3-chloropropane	157	13 432	13 432 (1 094)	27179	250 000	232 7
97 1,2,4 Trichlorobenzene	180	14 265	14 265 (1 162)	130242	250 000	242 0
98 Hexachlorobutadiene	225	14 442	14 442 (1 176)	109401	250.000	290.1
99 Naphthalene	128	14.503	14 503 (1.181)	266486	250 000	221 4
100 1,2,3-Trichlorobenzene	180	14 746	14 746 (1 201)	101711	250 000	228 5
M 29 1,2-Dichloroethene (total)	96			299398	500 000	391 7
M 75 Xylenes (total)	106			835638	250.000	619.0

Data File: /var/chem/hp5.1/50515d.b/1d50515.d

Report Date: 15-May-2000 09:52

Page 1

STL-PITTSBURGH

VOLATILE REPORT SW-846 Method

Data file: /var/chem/hp5.1/50515d.b/1d50515.d

Lab Smp Id: vstd100 Client Smp ID: vstd100

Ing Date : 15-MAY-2000 09:34

Operator : 10099 Inst ID: hp5.1

Smp Info : VSTD100 5ML Misc Info : vstd100,50515d.b,8260bh2o.m,3-dwlist.sub

Comment

Method : /var/chem/hp5.i/50515d.b/8260bh2o.m

Meth Date: 15-May-2000 09:52 h Quant Type: ISTD Cal Date : 15-MAY-2000 09:34 Cal File: 1d50515.d

Als bottle: 8 Calibration Sample, Level: 4

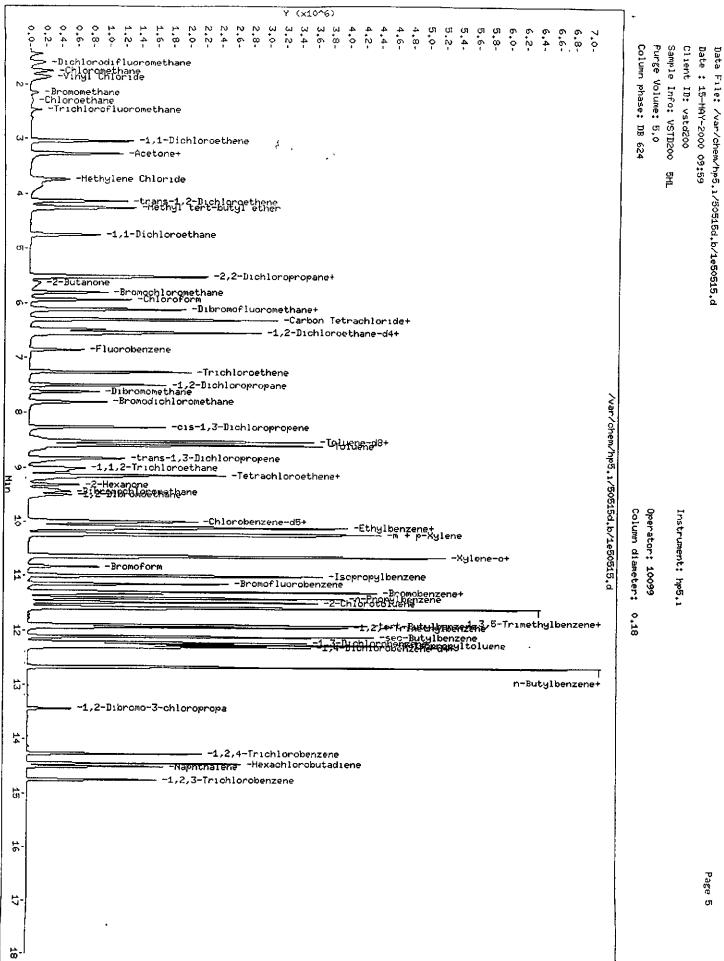
Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 3-dwl1st.sub

Target Version: 3.40 Processing Host: hpuxcs21

Concentration Formula: Amt * DF * 1/Vo*Vt

Name	Value	Description			
DF Vo		Dilution Factor Sample Volume		_	
V6 Vt		mg/L conversion	(1.0	if no	conversion)


							AMOUN	TS
			QUANT SIG				CAL-AMT	ON-COL
C	oqmo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
=:			# ###	in in	===== ====		338 5===	==#***=
*	46	Fluorobenzene	96	6.870	6 870 (1 000)	598557		
*	69	Chlorobenzene-d5	119	9 985	9.985 (1 000)	142167		
*	92	1,4-Dichlorobenzene-d4	152	12 278	12.278 (1 000)	208871		
\$	39	Dibromofluoromethane	113	6 128	6 128 '0 892)	261065	500.000	503 7
\$	43	1,2-Dichloroethane-d4	65	6.487	6 487 (0 944)	343350	500 000	495 6
\$	59	Toluene d8	98	8 531	8.531 (0 854)	1120300	500 000	487.3
\$	80	Bromofluorobenzene	95	11 140	11.140 (1 116)	426056	500 000	492 8
	1	Dichlorodifluoromethane	85	1 571	1 571 (0 229)	249210	500 000	586 0
	2	Chloromethane	50	1 748	1 748 (0 254)	305254	500 000	573 6
	3	Vinyl Chloride	62	1 857	1 857 (0 270)	322329	500 000	587 5
	4	Bromomethane	94	2 143	2.143 (0 312)	49217	500 000	586 2
	5	Chloroethane	64	2 234	2 234 (0 325)	50736	500 000	617 4
	6	Trichlorofluoromethane	101	2 471	2 471 (0 360)	88576	500 000	585 1
	12	1,1-Dichloroethene	96	3 062	3 062 (0 446)	321202	500 000	582 2
	13	Acetone	43	3 256	3 256 (0 474)	170574	500 000	443 6
	15	Carbon Disulfide	76	3 299	3 299 (0 480)	955033	500 000	594 1

Data File: /var/chem/hp5.i/50515d.b/1d50515.d Report Date: 15-May-2000 09:52

					AUOMA	ITS
	QUANT SIG				CAL - AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
	= < ≠ ±	# #	二五五二五年 李女子之二二	========	======	#
18 Mathylene Chloride	84	3 749	3 749 (0 546)	321896	500 000	538 5
19 trans-1,2-Dichloroethene	96	4 150	4 150 (0 604)	336689	500 000	587 9
20 Methyl tert-butyl etner	73	4 248	4 248 (0 618)	976036	500 000	631 6
24 1,1-Dichloroetname	63	4 759	4 759 (0 693)	564809	500 000	587 2
27 2,2-Dichloropropane	77	5 513	5 513 (0 803)	528131	500 000	607 6
28 cis-1,2-dichloroethene	96	5 531	5 531 (0 805)	348816	500 000	593 2
31 2-Butanone	43	5 629	5 629 (0 819)	241097	500 000	375 1
30 Bromochloromethane	128	5 811	5 811 (0 846)	158950	500 000	573 2
37 Chloroform	83	5 945	5.945 (0 865)	541844	500 000	587 0
38 1,1,1-Trichloroethane	97	6 122	6 122 (0 891)	522322	500 000	603.9
41 Carbon Tetrachloride	117	6 310	6 310 (0 919)	446757	500 000	622 7
40 1,1 Dichloropropene	75	6 316	6 316 (0.919)	451956	500 000	589 5
42 Benzene	78	6 547	- 6 547 (0.953)	1324240	500 000	579 4
45 1,2-Dichloroethane	62	6 578	6 578 (0 957)	474228	500 000	590 9
47 Trichloroethene	130	7 271	7 271 (1 058)	341897	500.000	586 7
49 1,2-Dichloropropane	63	7 496	7.496 (1 091)	313445	500 000	581 5
50 Dibromomethane	93	7 618	7 618 (1 109)	191358	500 000	590 3
53 Bromodichloromethane	83	7 807	7 807 (1 136)	402454	500.000	620 9
57 cis-1,3-Dichloropropene	75	8 263	8 263 (1.203)	536432	500 000	605 2
58 4-Methyl-2-Pentanone	43	8 488	8 488 (0 850)	400404	500 000	545 1
60 Toluene	91	8 598	8 598 (0.861)	1469165	500 000	573 6
61 trans-1,3-Dichloropropene	75	8 835	8 835 (0 885)	525148	500 000	610 9
64 1,1,2-Trichloroethane	97	9 017	9 017 (0 903)	293999	500 000	574 3
65 Tetrachloroethene	164	9 145	9.145 (0 916)	283638	500 000	582 2
67 Dibromochloromethane	129	9 431	9.431 (0 945)	308416	500 000	640 4
63 1,3-Dichloropropane	76	9 175	9 175 (0 919)	535848	500.000	583 0
66 2 Hexanone	43	9 303	9 303 (0 932)	285485	500 000	550 7
68 1,2-Dibromoethane	107	9 498	9 498 (0 951)	305751	500 000	589 2
70 Chlorobenzene	112	10 009	10 009 (1 002)	947324	500 000	573 7
72 Ethylbenzene	106	10 112	10 112 (1 013)	540792	500 000	562 5
71 1,1,1,2-Tetrachloroethane	131	10.094	10 094 (1.011)	317697	500 000	605 4
73 m + p-Xylene	106	10.234	10 234 (1 025)	1240401	1000.00	1140
74 Xylene-o	106	10 629	10 629 (1 065)	604625	500 000	576 1
76 Styrene	104	10 642	10 642 (1 066)	1024547	500.000	594 6
77 Bromoform	173	10 818	10 818 (1 083)	204982	500 000	677 4
78 Isopropylbenzene	105	10.994	10 994 (1 101)	1561822	500 000	574 1
79 Bromobenzene	156	11 286	11 286 (0 919)	379178	500 000	569 9
83 1,1,2,2-Tetrachloroethane	83	11 280	11 280 (0 919)	400206	500.000	580 6
64 1,2,3 Trichloropropane	110	11 323	11 323 (0 922)	133667	500 000	576 7
81 n-Propylbenzene	120	11 396	11 396 (0 928)	412539	500 000	570 9
82 2-Chlorotoluene	126	11 481	11 481 (0 935)	350254	500 000	573.4
86 1,3,5-Trimethylbenzene	105	11 572	11.572 (0 943)	1150272	500 000	590.7
85 4-Chlorotoluene	126	11 584	11.584 (0.944)	351861	500 000	569.0
87 tert Butylbenzene	119	11 895	11 895 (0 969)	1023921	500 000	561 2
88 1,2,4-Trimethylbenzene	105	11 937	11 937 (0.972)	1097232	500 000	582 1
89 sec-Butylbenzene	105	12 114	12 114 (0.987)	1505235	500 000	559.0
91 1,3-Dichlorobenzene	146	12 211	12 211 (0 995)	670258	500 000	569 8

Data File: /var/chem/hp5.1/50515d b/1d50515.d Report Date: 15-May-2000 09:52

					AMOUN	ris
	QUANT SIG				CAL-AMT	ON COL
Compounds	MASS	ЯT	EXP RT REL RT	RESPONSE	(ng)	(ng)
	===	==	## ##== ===#=	=======	======	=======
90 4-Isopropylcoluene	119	12.254	12 254 (0 998)	1159767	500 000	568 9
93 1,4-Dichlorobenzene	146	12 302	12 302 (1 002)	669870	500 000	563 4
94 n-Butylbenzene	91	12 661	12 661 (1 031)	1144016	500 000	587 0
95 1,2-Dichlorobenzene	146	12 667	12 667 (1 032)	637132	500 000	567 7
96 1,2-D.bromo-3-chloropropane	157	13 434	13 434 (1 094)	65217	500 000	647 6
97 1,2,4-Trichlorobenzene	180	14 261	14 261 (1.162)	278515	500 000	526 4
98 Hexachlorobutagiene	225	14 444	14 444 (1 176)	233212	500 000	515 1
99 Naphthalene	128	14 505	14 505 (1 181)	544974	500 000	510 8
100 1,2 3-Trichlorobenzene	180	14 748	14 748 (1 201)	198001	500 000	440.2
M 29 1,2-Dichloroethene (total)	96			685505	1000 00	1181
M 75 Xylenes (total)	106			1845026	500 000	1758

Data File: /var/chem/hp5.i/50515d.b/le50515.d

Report Date: 15-May-2000 10:17

STL-PITTSBURGH

Page 1

VOLATILE REPORT SW-846 Method

Data file : /var/chem/hp5.i/50515d.b/1e50515.d

Lab Smp Id: vstd200 Client Smp ID: vstd200

Inj Date : 15-MAY-2000 09:59

Operator: 10099 Inst ID: hp5.i

Smp Info : VSTD200 5ML

Misc Info: vstd200,50515d.b,8260bh2o.m,3-dwlist.sub

Comment

Method : /var/chem/hp5.1/50515d.b/8260bh2o.m

Meth Date : 15-May-2000 10:17 h Quant Type: ISTD Cal Date : 15-MAY-2000 09:59 Cal File: 1e50515.d

Als bottle: 9 Calibration Sample, Level: 5

Dil Factor: 1.00000

Target Version: 3.40 Processing Host: hpuxcs21

Concentration Formula: Amt * DF * 1/Vo*Vt

Name	Value	Description				
DF		Dilution Factor				
Vo		Sample Volume				
Vt	1.000	mg/L conversion	(1.0)	if	no	conversion)

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
anpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
*************	故寺寺建		=======================================	******		*****
46 Fluorobenzene	96	6 867	6 867 (1 000)	616507		
69 Chlorobenzene-d5	119	9 970	9.970 (1 000)	143792		
92 1,4 Dichlorobenzene-d4	152	12 282	12 282 (1 000)	219331		
39 Dibromofluoromethane	113	6.131	6 131 (0 893)	550556	1000.00	1025
43 1,2-Dichloroethane-d4	65	6.490	6 490 (0 945)	727558	1000 00	1016
59 Toluene-d8	98	8 528	8.528 (0 855)	2354095	1000.00	1010
80 Bromofluorobenzene	95	11 144	11.144 (1 118)	886152	1000 00	1011
1 Dichlorodifluoromethane	85	1 587	1 587 (0 231)	500203	1000 00	1110
2 Chloromethane	50	1.745	1 745 (0.254)	623348	1000 00	1107
3 Vinyl Chloride	62	1 861	1 961 (0.271)	645907	1000.00	1111
4 Bromomethane	94	2 140	2 140 (0 312)	102219	1000 00	1140
5 Chloroethane	64	2 299	2 299 (0 335)	92306	1000 00	1071
6 Trichlorofluoromethane	101	2 469	2 469 (0 360)	129699	1000 00	8.038
12 1,1 Dichloroethene	96	3.035	3 035 (C 442)	643699	1000.00	1104
13 Acetone	43	3 272	3 272 (0.476)	347479	1000 00	899 4
15 Carbon Disulfide	76	3 272	3.272 (0.476)	1982676	1000 00	1152
	46 Fluorobenzene 69 Chlorobenzene-d5 92 1,4 Dichlorobenzene-d4 39 Dibromofluoromethane 43 1,2-Dichloroethane-d4 59 Toluene-d8 80 Bromofluorobenzene 1 Dichlorodifluoromethane 2 Chloromethane 3 Vinyl Chloride 4 Bromomethane 5 Chloroethane 6 Trichlorofluoromethane 12 1,1 Dichloroethene 13 Acetone	### ### ### ### ### ### ### ### ### ##	### MASS RT ####################################	mpounds MASS RT EXP RT REL RT 46 Fluorobenzene 96 6 867 6 867 (1 000) 69 Chlorobenzene-d5 119 9 970 9.970 (1 000) 92 1.4 Dichlorobenzene-d4 152 12 282 12 282 (1 000) 39 Dibromofluoromethane 113 6.131 6 131 (0 893) 43 1,2-Dichloroethane-d4 65 6.490 6 490 (0 945) 59 Toluene-d8 98 8 528 8.528 (0 855) 80 Bromofluorobenzene 95 11 144 11.144 (1 118) 1 Dichlorodifluoromethane 85 1 587 1 587 (0 231) 2 Chloromethane 50 1.745 1 745 (0.254) 3 Vinyl Chloride 62 1 861 1 961 (0.271) 4 Bromomethane 94 2 140 2 140 (0 312) 5 Chloroethane 64 2 299 2 299 (0 335) 6 Trichlorofluoromethane 101 2 469 2 469 (0 360) 12 1.1 Dichloroethene 96 3.035 3 035 (C 442) 13 Acetone 43 3 272 3 272 (0.476)	MASS RT EXP RT REL RT RESPONSE RELECT RELECT RESPONSE RELECT RESPONSE RELECT RESPONSE RELECT RELECT RESPONSE RELECT RELECT RESPONSE RELECT RELECT RESPONSE RELECT RESPONSE RELECT RELECT RELECT RESPONSE RELECT RELECT RESPONSE RELECT RESPONSE RELECT RELECT RESPONSE RELECT RESPONSE RELECT RELECT RESPONSE RELECT RELECT RESPONSE RELECT RESPONSE RELECT RESPONSE RELECT RESPONSE RELECT RESPONSE RELECT RELECT RESPONSE RELECT R	MASS RT EXP RT REL RT RESPONSE (ng) MASS RT EXP RT REL RT RESPONSE (ng) MASS RT EXP RT REL RT RESPONSE (ng) MASS RT EXP RT REL RT RESPONSE (ng) MASS RT EXP RT REL RT RESPONSE (ng) MASS RT EXP RT REL RT RESPONSE (ng) MASS RT EXP RT REL RT RESPONSE RT RT RT RT RT RT RT R

Data File: /var/chem/hp5.i/50515d.b/1e50515.d Report Date: 15-May-2000 10:17

					AMOUA	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
		খা ক		E2=====	=====	*****
18 Methylene Chloride	84	3 740	3 740 (0 545)	696870	1000 00	1103
19 trans-1,2-Dichloroethene	96	4 142	4 142 (0.603)	665252	1000 00	1100
20 Methyl tert-butyl ether	73	4 258	4 258 (0 620)	2007762	1000 00	1199
24 1,1-Dichloroethane	63	4 756	4 756 (0 693)	1087929	1000 00	1077
27 2,2-Dichloropropane	77	5 511	5 511 (0 802)	1077092	1000 00	1156
28 CIS-1,2-dichloroethene	96	5 529	5 529 (0 805)	689232	1000 00	1107
31 2-Butanone	43	5 638	5 638 (0 821)	487618	1000 00	777 6
30 Bromochloromethane	128	5 815	5 815 (0 847)	315522	1000 00	1082
37 Chloroform	83	5 943	5 943 (0 865)	1100507	1000.00	1122
38 1,1,1-Trichloroethane	97	6.113	6 113 (0 890)	1056296	1000 00	1143
41 Carbon Tetrachloride	117	6 308	6 308 (0 918)	903950	1000 00	1171
40 1,1-Dichloropropene	75	6 314	6 314 (0 919)	900865	1000.00	1110
42 Benzene	78	6 545	6.545 (0 953)	2573689	1000 00	1073
45 1,2 Dichloroethane	62	6 575	6.575 (0 957)	970100	1000 00	1134
47 Trichloroethene	130	7 269	7.269 (1.058)	670348	1000 00	1091
49 1,2-Dichloropropane	63	7 500	7 500 (1 092)	640758	1000 00	1120
50 Dibromomethane	93	7 622	7 622 '1 110}	385659	1000 00	1120
53 Bromodichloromethane	83	7.810	7 810 (1 137)	823706	1000 00	1179
57 cis-1,3-Dichloropropene	75	8 260	8 260 (1 203)	1083881	1000 00	1144
58 4-Methyl-2-Pentanone	43	8 516	8 516 (0 854,	821956	1000 00	1083
60 Toluene	91	8 595	8 595 (0 862)	2908272	1000 00	1096
61 trans 1,3-Dichloropropene	75	8 832	8 832 (0 886)	1062835	1000 00	1170
64 1,1,2-Trichloroethane	97	9 015	9 015 (0 904)	586330	1000 00	1103
65 Tetrachloroethene	164	9.143	9 143 (0 917)	560323	1000 00	1107
67 Dibromochloromethane	129	9 447	9 447 (0.948)	625553	1000 00	1215
63 1,3-Dichloropropane	76	9 173	9 173 (0 920)	1059831	1000 00	1109
66 2-Hexanone	43	9 319	9 319 (0.935)	564915	1000 00	1061
68 1,2-Dibromoethane	107	9.502	9 502 (0 953)	610243	1000 00	1126
70 Chlorobenzene	112	10 000	10 000 (1 003)	1854731	1000 00	1086
72 Ethylbenzene	106	10 110	10 110 (1 014)	1070870	1000.00	1079
71 1,1,1,2-Tetrachloroethane	131	10 110	10.110 (1 014)	621534	1000 00	1132
73 m + p-Xylene	106	10 232	10 232 (1 026)	2516383	2000 00	2223
74 Xylene-o	106	10.633	10 633 (1.067)	1264733	1000 00	1147
76 Styrene	104	10 651	10 651 (1 068)	2124828	1000 00	1168
77 Bromoform	173	10 828	10.828 (1 086)	414984	1000 00	1266
78 Isopropylbenzene	105	10 998	10 998 (1 103)	3088349	1000 00	1096
79 Bromobenzene	156	11 290	11 290 (0 919)	732268	1000 00	1038
83 1,1,2,2-Tetrachloroethane	83	11 290	11 290 (0 919)	800538	1000 00	1083
84 1,2,3-Trichloropropane	110	11 327	11.327 (0 922)	259538	1000.00	1052
81 n Propylbenzene	120	11 406	11.406 (0 929)	823600	1000 00	1067
82 2-Chlorotoluene	126	11 485	11 485 (0 935)	692491	1000 00	1063
86 1,3,5-Trimethylbenzene	105	11 576	11 576 (0.943)	2349656	1000 00	1116
85 4-Chlorotoluene	126	11 588	11 588 (0 944)	722494	1000.00	1088
87 tert-Butylbenzene	119	11.898	11 898 (0 969)	2067690	1000 00	1062
88 1,2,4-Trimethylbenzene	105	11 941	11.941 (0 972)	2262072	1000 00	1111
89 sec Butylbenzene	105	12 111	12 111 (0 986)	3045485	1000 00	1061
91 1.3-Dichlorobenzene	146	12 215	12 215 (0 995)	1350625	1000 00	1073

Data File: /var/chem/hp5.i/50515d b/1e50515.d Report Date: 15-May-2000 10:17

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
=====		3252		=======================================	=======	======	======
90	4-Isopropyltoluene	119	12 257	12 257 (0 998)	2414169	1000 00	1100
93	1,4 Dichlorobenzene	146	12 306	12 306 (1 002)	1369535	1000 00	1076
94	n-Butylbenzene	91	12 665	12 565 (1 031)	2384352	1000 00	1128
95	1,2-Dichlorobenzene	146	12 671	12.671 (1 032)	1302667	1000 00	1082
96	1.2 Dibromo 3-chloropropane	157	13 438	13 438 (1 094)	141543	1000 00	1254
97	1,2,4-Trichlorobenzene	180	14 265	14 265 (1 161)	640013	1000 00	1118
98	Hexachlorooutadiene	225	14 447	14 447 (1 176)	503417	1000 00	1047
99	Naphthalene	128	14 502	14 502 (1 181)	1278732	1000 00	1110
100	1,2,3 Trichlorobenzene	180	14 745	14 745 (1 201)	475528	1000.00	1005
M 29	1,2-Dichloroethene (total)	96			1354484	2000 00	2207
M 75	Xylenes (total)	106			3781116	1000 00	3430
							-

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: 50524D

Instrument ID: HP5 Calibration Date: 05/24/00 Time: 0646

Lab File ID: CC50524 Init. Calib. Date(s): 05/15/00 05/15/00

Heated Purge: (Y/N) N Init. Calib. Times: 0809 0959

GC Column: DB 624 ID: 0.20 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
	0.183	0.143	0.01	21.8	
Dichlorodifluoromethane	1 1	0.143	0.1	13.6	
Chloromethane	0.228		1	11.0	
Vinyl Chloride	0.236	0.210	0.01		
Bromomethane	0.036	0.030	0.01	16.7 11.4	
Chloroethane	0.035	0.031	0.01		
Trichlorofluoromethane	0.061	0.047	0.01	23.0	
1,1-Dichloroethene	0.237	0.222	0.01		20.0
Methylene Chloride	0.256	0.224	0.01	12.5	
trans-1,2-Dichloroethene	0.245	0.231	0.01		50.0
1,1-Dichloroethane	0.410	0.400	0.1		50.0
cis-1,2-dichloroethene	0.252	0.240	0.01		50.0
Chloroform	0.398	0.384	0.01		20.0
Bromochloromethane	0.118	0.108	0.01		50.0
1,1,1-Trichloroethane	0.374	0.363			50.0
Carbon Tetrachloride	0.313	0.298	0.01		50.0
1,2-Dichloroethane	0.347	0.337	0.01		50.0
Benzene	0.972	0.946	0.01		50.0
Trichloroethene	0.249	0.241	0.01	3.2	50.0
1,2-Dichloropropane	0.232	0.228		1.7	20.0
Bromodichloromethane	0.283	0.278	0.01	1.8	50.0
cis-1,3-Dichloropropene	0.384	0.376	0.01	2.1	50.0
Toluene	4.614	4.568	0.01	1.0	20.0
trans-1,3-Dichloropropene	1.579		0.01	0.7	50.0
1,1,2-Trichloroethane	0.924	0.886	0.01	4.1	50.0
Tetrachloroethene	0.880	0.859	0.01	2.4	50.0
Dibromochloromethane	0.895			2.1	50.0
Chlorobenzene	2.968				50.0
Ethylbenzene	1.725	1.687			20.0
Styrene	3.163	3.398			50.0
Bromoform	0.570				50.0
1,1,2,2-Tetrachloroethane	0.842	0.771	1		50.0
1,3-Dichlorobenzene	1.434				50.0
1,4-Dichlorobenzene	1.451				50.0
	1.372	1.285	1		50.0
1,2-Dichlorobenzene	0.140				50.0
Dibromomethane	0.140	0.886	1	1	50.0
1,2-Dibromoethane	0.954				50.0
1,1,1,2-Tetrachloroethane_	- 0.954	0.931	1 0.01	1 0.3	150.0

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: 50524D

Instrument ID: HP5 Calibration Date: 05/24/00 Time: 0646

Lab File ID: CC50524 Init. Calib. Date(s): 05/15/00 05/15/00

Heated Purge: (Y/N) N Init. Calib. Times: 0809 0959

GC Column: DB 624 ID: 0.20 (mm)

	RRF	RRF50	MIN RRF	%D	MAX %D
COMPOUND	RRF	RRF50	=======	======	====
1,2,3-Trichloropropane	0.281	0.256	0.01	8.9	50.0
1,2-Dibromo-3-chloropropane_	0.129	0.100	0.01	22.5	50.0
1,2-Diplomb-3-chiolopropare_	0.378	0.366	0.01	3.2	50.0
2,2-Dichloropropane 1,1-Dichloropropene	0.329	0.321	0.01	2.4	50.0
1,3-Dichloropropane	1.662	1.615	0.01	2.8	50.0
·	0.880	0.876			50.0
n-Propylbenzene Bromobenzene	0.804	0.781	0.01		50.0
1,3,5-Trimethylbenzene	2.400				50.0
	0.743	0.721			50.0
2-Chlorotoluene4-Chlorotoluene	0.757				50.0
	2.219	2.250			50.0
tert-Butylbenzene	2.320				50.0
1,2,4-Trimethylbenzene	3.272				50.0
sec-Butylbenzene	2.502				50.0
4-Isopropyltoluene	2.409				50.0
n-Butylbenzene	0.653				50.0
1,2,4-Trichlorobenzene	0.548				50.0
Hexachlorobutadiene	1.313				50.0
Naphthalene	0.539	•	1		50.0
1,2,3-Trichlorobenzene	0.559				50.0
Acetone	0.698			L	50.0
Carbon Disulfide	0.058	B		i	50.0
2-Butanone	1.319	i e			50.0
4-Methyl-2-Pentanone	0.926	ľ			50.0
2-Hexanone Methyl tert-butyl ether	0.679				50.0
Terrentalbangana	4.901		1	ž.	50.0
Isopropylbenzene			1		50.0
1,2-Dichloroethene (total)	1.916	1.959	1		50.0
Xylenes (total)	-				
	0.218				50.0
Dibromofluoromethane d4	0.291	į.	Į.		50.0
1,2-Dichloroethane-d4	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,	1		50.0
Toluene-d8	1.524				50.0
Bromofluorobenzene	- 1.524	1 2.0/1	1	1	[]

page 2 of 2

FORM VII VOA

Data File: /var/chem/hp5.i/50524d.b/cc50524.d Page Report Date: 05/24/2000 May 24 07:08 2000 hpuxcs21:/var/chem/hp5.i/50524d.b/cc50524.d/custom.rp Page 1

CONTINUING CALIBRATION COMPOUNDS PERCENT DRIFT REPORT

Instrument ID: hp5.i Lab File ID: cc50524.d Analysis Type: WATER

Injection Date: 24-MAY-2000 06:46

Lab Sample ID: vstd50

Method File: /var/chem/hp5.i/50524d.b/8260bh2o.m

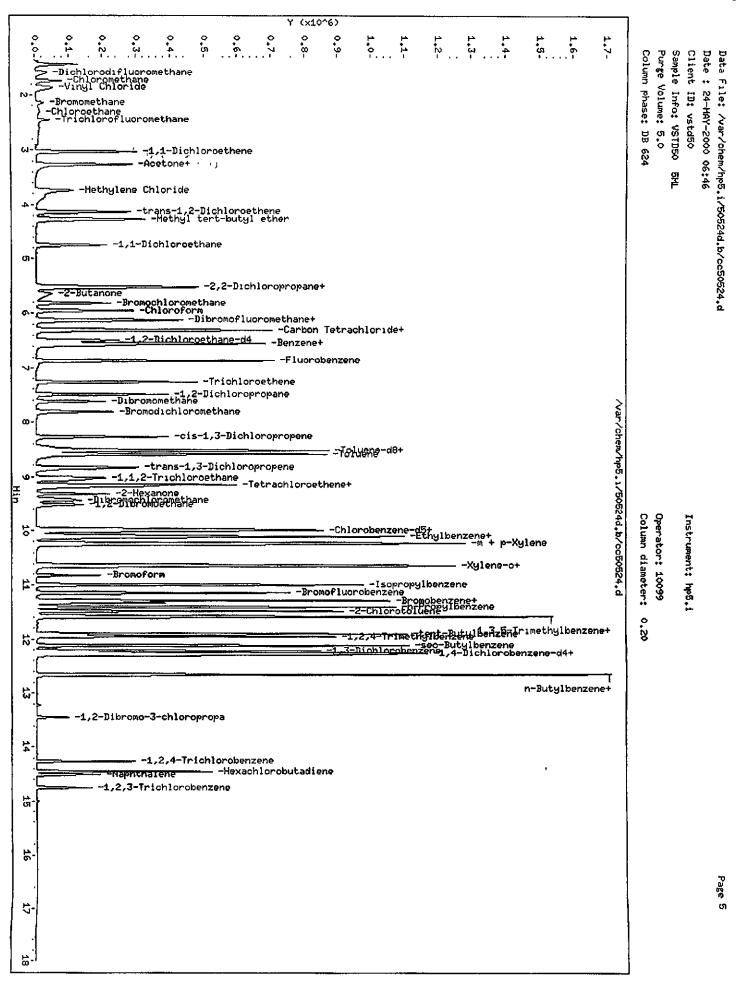
		EXPECTED	MEASURED		MAX
¢	OMPOUND	CONC.	CONC	₩ D	% D
==		=========			
	0 Xylene-o	250 0000	255.6346	2.3	50.0
	0 m + p-Xylene	[500.0000]	503.1564	0.6	50.0
	1 Dichlorodifluoromethane	250.0000	196 0049	21.6	50.0
	2 Chloromethane	250 0000	215 8191	13.7	50.
	3 Vinyl Chloride	250 0000	222.6503	10.9	20.
	4 Bromomethane	250.0000	210.3864	15 8	50.
	5 Chloroethane	250 0000	219 4416	12.2	50
	6 Trichlorofluoromethane	250.0000	194 0261	22.4	50.
	9 1,1-Dichloroethene	250.0000	234 9498	6.0	20
1	.0 Methylene Chloride	250.0000	218.8192	12.5	50
1	3 trans-1,2-Dichloroethene	250.0000	235.5973	5.8	50.
1	5 1,1-Dichloroethane	[250.0000]	243 9312	2 4	50.
3	.7 cis-1,2-dichloroethene	250.0000	238.3083	4.7	50.
1	18 Chloroform	250.0000	241.1020	3.6	20.
1	9 Bromochloromethane	250.0000	227.4069	9.0	50.
2	0 1,1,1-Trichloroethane	250.0000	242.1985	3.1	50.
2	1 Carbon Tetrachloride	250.0000	238.1094	4.8	50.
2	3 1,2-Dichloroethane	250.0000	242.8225	2.9	50.
2	84 Benzene	250.0000	243.1196	2.8	50.
2	6 Trichloroethene	[250.0000]	241 7246	3 3	50.
2	7 1,2-Dichloropropane	250.0000	245.2159	1 9	20.
:	88 Bromodichloromethane	[250.0000]	244 8717	2.1	50.
	31 cis-1,3-Dichloropropene	250 00001	244 5400	2.2	50.
2	33 Toluene	250.0000	247.5196	1.0	20.
3	34 trans-1,3-Dichloropropene	250.0000	251.7339	0.7	50.
2	6 1,1,2-Trichloroethane	250.0000	239.8024	4 1	50.
:	37 Tetrachloroethene	250 0000	243.8830	2.4	50.
:	38 Dibromochloromethane	250.0000	244.7371	2.1	50.
4	10 Chlorobenzene	250.0000	247.6105	1.0	50.
	11 Ethylbenzene	250.0000	244.5042	2.2	20.
	44 Styrene	250 0000	268.6173	7.4	50.
	45 Bromoform	250.0000	246.5626	1.4	50.
	46 1,1,2,2-Tetrachloroethane	250.0000	228.6832	8.5	50.
	48 1,3-Dichlorobenzene	250.00001	239.5978	4.2	50.
	49 1,4-Dichlorobenzene	250.0000	236.4729	5.4	50
	50 1,2-Dichlorobenzene	250 0000	234.1958	•	50.
	60 Dibromomethane	250.0000		•	:
	63 1,2-Dibromoethane	250.0000			:
	64 1,1,1,2-Tetrachloroethane	1 250.00001	249.1984	0.3	50.

Pag

Data File: /var/chem/hp5.i/50524d.b/cc50524.d

Report Date: 05/24/2000

May 24 07-08 2000 hpuxcs21 /var/chem/hp5 1/50524d b/cc50524 d/custom rp Page 2


CONTINUING CALIBRATION COMPOUNDS PERCENT DRIFT REPORT

Instrument ID: hp5.i Lab File ID: cc50524.d Analysis Type: WATER Injection Date: 24-MAY-2000 06:46

Lab Sample ID: vstd50

Method File: /var/chem/hp5.i/50524d.b/8260bh2

1	EXPECTED	MEASURED	1	MAX
COMPOUND	CONC.	CONC	%D	∜ D
- 表表自智用的 - 医内容 - 医皮肤 - Explored -	******		-	=====
65 1,2,3-Trichloropropane	250 0000	227 8429	8.9	50 0
69 1,2-Dibromo-3-chloropropane	250.0000	194 5894	22.2	50.0
74 2,2-Dichloropropane	250.0000	242 0528	3.2	50.0
75 1,1-Dichloropropene	250.0000	243 5504	2.6	50.0
77 1,3-Dichloropropane	250.0000	243.0586	2.8	50.0
83 n-Propylbenzene	250.0000	248.9237	0.4	50.0
84 Bromobenzene	250.0000	242.8916	2.8	50.0
85 1,3,5-Trimethylbenzene	250.0000	234.4234	6.2	50.0
86 2-Chlorotoluene	250.0000	242.8339	2.9	50 0
87 4-Chlorotoluene	250.0000	246 8550	1.3	50.0
88 tert-Butylbenzene	250.0000	253 5307	1.4	50.0
89 1,2,4-Trimethylbenzene	250.0000	233 7251	6.5	50.0
90 sec-Butylbenzene	250.0000	255.7662	2.3	50.0
91 4-Isopropyltoluene	250.0000	246.6111	1.4	50.0
94 n-Butylbenzene	250.0000	243.1154	2.8	50.0
95 1,2,4-Trichlorobenzene	250 0000	142 5901	43.0	50.0
96 Hexachlorobutadiene	250.0000	190.3695	23.9	50.0
97 Naphthalene	250.0000	118.6079	52.6	50.0
98 1,2,3-Trichlorobenzene	250.0000	93.8619	62.5	50.0
101 Chlorobenzene-d5	250.0000	250.0000]	0.0	50 0
102 1,4-Dichlorobenzene-d4	250.0000	250.0000	0.0	50 0
106 Acetone	250.0000	178.5229	28.6	50 0
107 Carbon Disulfide	250.0000	272.3378	8.9	50.0
108 2-Butanone	250.0000	247.4633	1.0	50.0
110 4-Methyl-2-Pentanone	250.0000	258.8171	3.5	50.0
111 2-Hexanone	250.0000	258.7908	3.5	50.0
134 Methyl tert-butyl ether	250.0000	279.9807	12.0	50.0
137 Fluorobenzene	250.0000	250.0000	0.0	50.0
144 Isopropylbenzene	250.0000	262.7080	5.1	50 (
153 1,2-Dichloroethene (total)	500.0000	473.9442	5.2	50
154 Xylenes (total)	750.0000	772.4071	3.0	50.
149 Dibromofluoromethane	250.0000	252.5796	1.0	50.
150 1,2-Dichloroethane-d4	250.0000	252.9062	1.2	50.
151 Toluene-d8	250.0000	255.4091	2.2	50.
152 Bromofluorobenzene	250.0000	274 0147	9.6	50.

Data File: /var/chem/hp5.i/50524d.b/cc50524.d

Report Date: 24-May-2000 07:05

Page 1

STL-PITTSBURGH

VOLATILE REPORT SW-846 Method

Data file: /var/chem/hp5.i/50524d.b/cc50524.d

Client Smp ID: vstd50 Lab Smp Id: vstd50

Inj Date : 24-MAY-2000 06:46 Operator : 10099 Inst ID: hp5.i

Smp Info : VSTD50 5ML

Misc Info: vstd50,50524d.b,8260bh2o.m,3-dwlist.sub

Comment

Method : /var/chem/hp5.i/50524d.b/8260bh2o.m Meth Date : 24-May-2000 07:05 h Quant To Cal Date : 15-MAY-2000 08:45 Cal Fil Quant Type: ISTD Cal File: la50515.d

Continuing Calibration Sample Als bottle: 2

Dil Factor: 1.00000 Integrator: HP RTE Target Version: 3.40

Processing Host: hpuxcs21

Compound Sublist: 3-dwlist.sub

Concentration Formula: Amt * DF * 1/Vo*Vt

Name	Value	Description	 -		
DF Vo Vt	E 000	Dilution Factor Sample Volume mg/L conversion	(1.0	if n	no conversion)

						AMOUNTS		
		QUANT SIG				CAL-AMT	ON-COL	
Co	ompounds	MASS	RŤ	EXP RT REL RT	RESPONSE	(ng)	(ng)	
==		====		*****	********	8662222		
	46 Fluorobenzene	96	6 868	6 868 (1.000)	655063			
ŧ	69 Chlorobenzene-d5	119	9 971	9.971 (1.000)	152760			
*	92 1,4-Dichlorobenzene-d4	152	12.282	12.282 (1.000)	233429			
s	39 Dibromofluoromethane	113	6.132	6.132 (0.893)	144158	250.000	252.6	
Ś	43 1,2-Dichloroethane-d4	65	6.491	6 491 (0.945)	192516	250.000	252.9	
\$		98	8 529	8.529 (0.855)	632537	250 000	255.4	
Ś	80 Bromofluorobenzene	95	11.145	11 145 (1.118)	255240	250.000	274.0	
•	1 Dichlorodifluoromethane	85	1.588	1.588 (0 231)	93817	250 000	196.0	
	2 Chloromethane	50	1.740	1.740 (0.253)	129138	250 000	215.8	
	3 Vinyl Chloride	62	1.867	1.867 (0.272)	137510	250.000	222.6	
	4 Bromomethane	94	2.141	2.141 (0.312)	20035	250.000	210 4	
	5 Chloroethane	64	2.305	2 305 (0.336)	20092	250.000	219.4	
	6 Trichlorofluoromethane	101	2.470	2.470 (0.360)	31064	250.000	194.0	
	12 1,1-Dichloroethene	96	3.029	3 029 (0.441)	145616	250.000	234.9	
	13 Acetone	43	3.303	3.303 (0.481)	73283	250.000	178.5	
	15 Carbon Disulfide	76	3.267	3.267 (0 476)	498041	250.000	272.3	

Page 2

Data File: /var/chem/hp5.i/50524d.b/cc50524.d Report Date: 24-May-2000 07:05

					NUOMA	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
艾森森 医医医氏性 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基		-	计数型型电路 医角膜性坏疽	****	*****	C#00000
18 Methylene Chloride	84	3.741	3.741 (0 545)	146933	250 000	218 8
19 trans-1,2-Dichloroethene	96	4 136	4.136 (0.602)	151428	250 000	235.6
20 Methyl tert-butyl ether	73	4.264	4 264 (0 621)	498256	250.000	280 0
24 1,1-Dichloroethane	63	4.751	4 751 (0.692)	261801	250.000	243.9
27 2,2-Dichloropropane	77	5.505	5.505 (0 802)	239591	250.000	242.0
28 cis-1,2-dichloroethene	96	5 530	5 530 (0.805)	157600	250.000	238 3
31 2-Butanone	43	5.639	5 639 (0 821)	164892	250 000	247.5
30 Bromochloromethane	128	5.816	5.816 (0 847)	70455	250.000	227.4
37 Chloroform	83	5.949	5 949 (0 866)	251239	250.000	241.1
38 1,1,1-Trichloroethane	97	6.114	6.114 (0.890)	237766	250.000	242 2
41 Carbon Tetrachloride	117	6 302	6.302 (0.918)	195300	250.000	238 1
40 1,1-Dichloropropene	75	6.308	6 308 (0 918)	210100	250 000	243 6
42 Benzene	78	6.539	6 539 (0 952)	619450	250 000	243.1
45 1,2-Dichloroethane	62	6.576	6.576 (0.957)	220690	250.000	242.8
47 Trichloroethene	130	7 269	7 269 (1.058)	157766	250.000	241.7
49 1,2-Dichloropropane	63	7.501	7 501 (1.092)	149119	250 00 0	245.2
50 Dibromomethane	93	7.622	7 622 (1.110)	87926	250 000	240.4
53 Bromodichloromethane	83	7.811	7.811 (1 137)	181820	250.000	244.9
57 cis-1,3-Dichloropropene	75	8 267	8 267 (1.204)	246099	250 000	244.5
58 4-Methyl-2-Pentanone	43	8.504	8 504 (0 853)	208614	250 000	258 8
60 Toluene	91	8 596	8 596 (0.862)	697878	250.000	247 5
61 trans-1,3-Dichloropropene	75	8 833	8 833 (0.886)	242858	250.000	251.7
64 1,1,2-Trichloroethane	97	9.022	9 022 (0.905)	135399	250 000	239.8
65 Tetrachloroethene	164	9.143	9 143 (0.917)	131172	250.000	243.9
67 Dibromochloromethane	129	9 435	9.435 (0.946)	133838	250.000	244.7
63 1,3-Dichloropropane	76	9 174	9.174 (0.920)	246778	250.000	243.0
66 2-Hexanone	43	9.307	9 307 (0.933)	146388	250.000	258 8
68 1,2-Dibromoethane	107	9.502	9.502 (0.953)	135423	250 000	235.2
70 Chlorobenzene	112	10 001	10.001 (1.003)	449069	250.000	247 6
72 Ethylbenzene	106	10.110	10 110 (1.014)	257682	250.000	244.5
71 1,1,1,2-Tetrachloroethane	131	10 098	10 098 (1 013)	145311	250.000	249.2
73 m + p-Xylene	106	10.232	10.232 (1 026)	605098	500.000	503.2
74 Xylene-o	106	10.628	10.628 (1.066)	299327	250.000	255 6
76 Styrene	104	10 646	10 646 (1.068)	519169	250.000	268.6
77 Bromoform	173	10.822	10.822 (1.085)	85874	250.000	246.6
78 Isopropylbenzene	105	10.993	10.993 (1.103)	786759	250.000	262.7
79 Bromobenzene	156	11.291	11.291 (0.919)	182352	250.000	242.9
83 1,1,2,2-Tetrachloroethane	83	11.291	11 291 (0.919)	179894	250.000	228 7
84 1,2,3-Trichloropropane	110	11 327	11 327 (0.922)	59802	250.000	227 8
81 n-Propylbenzene	120	11.400	· ·	204457	250.000	248.9
82 2-Chlorotoluene	126	11.485		168417	250.000	242 8
86 1,3,5-Trimethylbenzene	105	11.577		525355	250.000	234.4
85 4-Chlorotoluene	126	11 589	11.589 (0.944)	174448	250.000	246.8
87 tert-Butylbenzene	119	11.899		525154	250.000	253.5
88 1,2,4-Trimethylbenzene	105	11 948		506419	250 000	233.7
89 sec-Butylbenzene	105	12.112		781494	250.000	255 8
91 1,3-Dichlorobenzene	146	12.215	12.215 (0.995)	320876	250.000	239.6

658 144

Data File: /var/chem/hp5.i/50524d.b/cc50524.d
Report Date: 24-May-2000 07:05

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)
	====	==	*****	프레프라무무프		*****
90 4-Isopropyltoluene	119	12 258	12 258 (0.998)	576212	250.000	246.6
93 1,4-Dichlorobenzene	146	12 307	12.307 (1.002)	320287	250 000	236 5
94 n-Butylbenzene	91	12 666	12.666 (1 031)	546970	250 000	243.1
95 1,2-Dichlorobenzene	146	12.672	12.672 (1.032)	299939	250.000	234.2
96 1,2-Dibromo-3-chloropropane	157	13.438	13.438 (1.094)	23382	250.000	194.6
97 1,2,4-Trichlorobenzene	180	14 272	14 272 (1.162)	86882	250.000	142.6
98 Hexachlorobutadiene	225	14.448	14 448 (1.176)	97453	250.000	190.4
99 Naphthalene	128	14 509	14.509 (1.181)	145420	250.000	118.6
100 1,2,3-Trichlorobenzene	180	14 752	14 752 (1 201)	47245	250.000	93.86
M 29 1,2-Dichloroethene (total)	96			309028	500.000	473.9
M 75 Xylenes (total)	106			904425	250.000	772.4

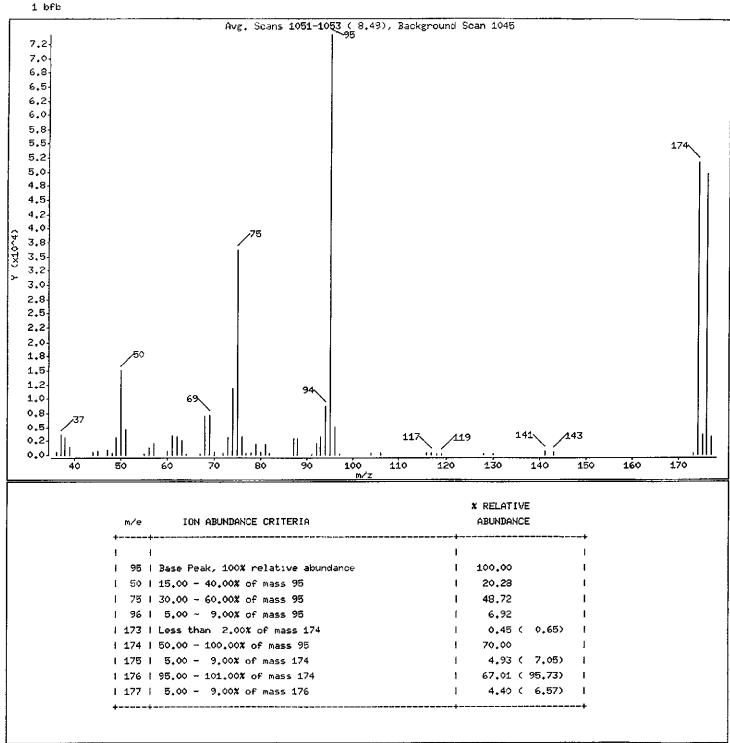
Page 3

GC/MS VOLATILE QC DATA

Data File: /var/chem/hp5.i/50515d.b/bf50515.d

Date : 15-MAY-2000 05:23

Client ID: 50NGBFB


Instrument: hp5.1

Sample Info: BFB 192-180-11 50NG

Volume Injected (uL): 1.0

Operator: 10099

Column phase: DB624 20m Column diameter: 0.20

Data File: /var/chem/hp5.1/50515d.b/bf50515.d

Date: 15-MAY-2000 05:23

Client IB: 50NGBFB

Instrument: hp5.1

Sample Info: BFB 192-180-11 50NG

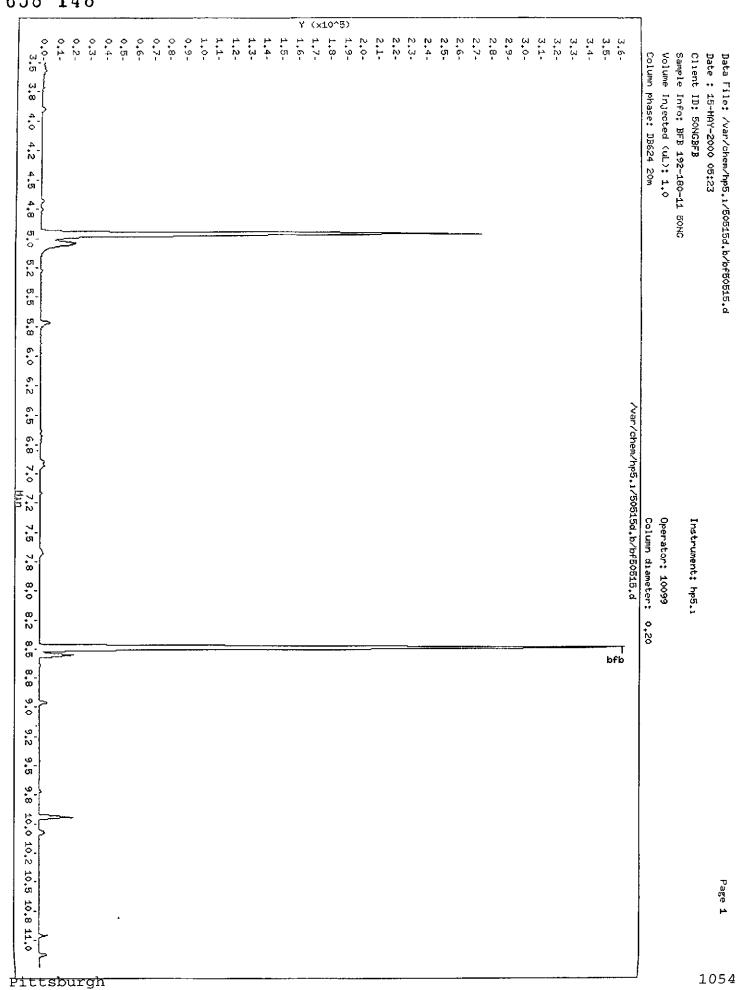
Volume Injected (uL): 1.0

Operator: 10099

Column phase: DB624 20m

Column diameter: 0.20

Data File: bf50515.d


Spectrum: Avg. Scans 1051-1053 (8.49), Background Scan 1045

171

Location of Maximum: 95.00

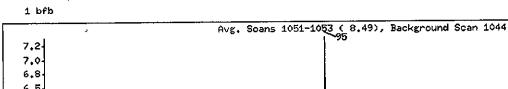
Number of points: 59

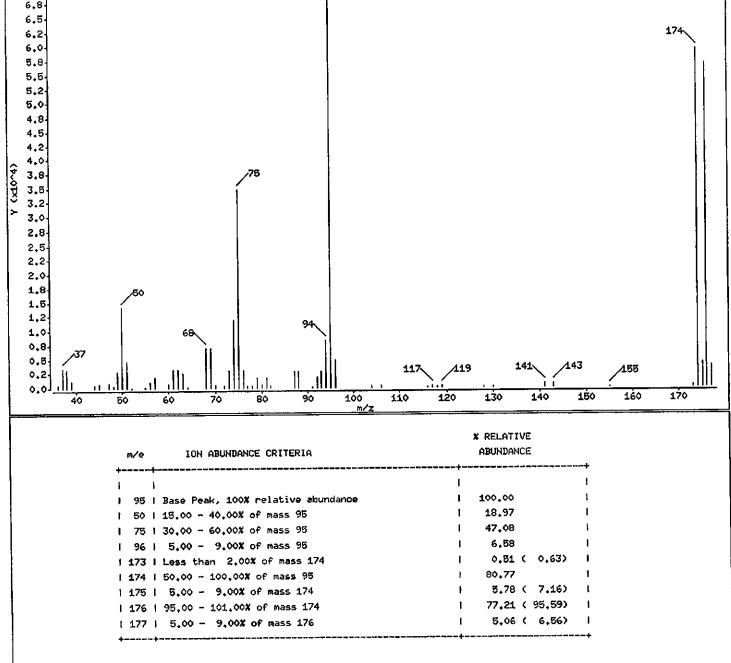
Y		Y		Υ .	_		Υ	m/z	
277	106.00			629 i	60.00		594	36.00	i -
301	116,00	1877	79.00	3 360 I	61.00	f	3589	37,00	I
377	117.00	479 1	80,00	3231	62.00	1	3098	38.00	i
146	118.00	1884	81.00	2624 1	63.00	ı	1289	39,00	i
254	•	392		247 1		-	493	44.00	l
224	128.00			144 I			662	45,00	
233	130.00		•	6984 I	68.00		894		
610	141.00	240 1	91.00	7201 I	69.00	1	368	48.00	1
538	143.00	1996 I	92,00	537 I	70.00	1	3085	49,00	1
336	173.00			390 1	•		15046	50,00	ı
	174.00			3047 I	73,00		4568	51,00	-
3659	175.00			11940	74.00	ı	67	52,00	
49712	176,00		96.00	36144 1	75.00	ı	157	55,00	l
3264	177.00			3272	76.00	1	1228	56,00	ı
	•	275 I	104.00	330	77.00	ŀ	2055	57.00	ı

Data File: /var/chem/hp5.1/50524d.b/bf50524.d

Date: 24-MAY-2000 06:25

Client ID: 50NGBFB


Instrument: hp5.1


Sample Info: BFB 192-180-11 50NG

Operator: 10099

Column phase: DB624 20m

Column diameter: 0.20

Data File: /var/chem/hp5.1/50524d.b/bf50524.d

Date : 24-MAY-2000 06:25

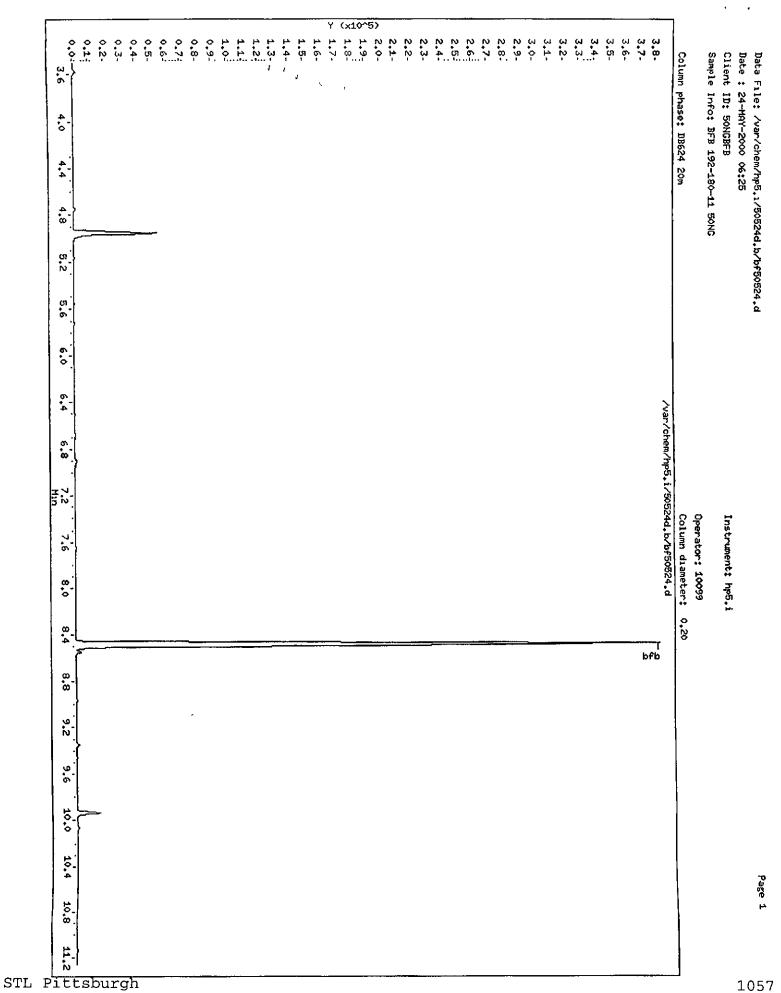
Client ID: 50NGBFB

Instrument: hp5.i

Sample Info: BFB 192-180-11 50NG

Operator: 10099

Column phase: DB624 20m


Column diameter: 0.20

Data File: bf50524,d

Spectrum: Avg. Scans 1051-1053 (8,49), Background Scan 1044

Location of Haximum: 95,00 Number of points: 58

	m/z	Y		m/z	Υ .	かって	Y		m/z	Y
+ I	36,00	536		60.00	672 I				117,00	404 1
ı	37,00	3457	l	61.00	3207 1	80.00	479	I	118.00	155 I
ı	38,00	3287	ı	62,00	3293 1	81,00	1739	I	119,00	350 1
ı	39,00	1241	ļ	63,00	2512 1	82,00	367	I	128,00	152 i
1	44.00	489	1	64,00	148 1	87,00	2937	ì	130.00	154
+-			+-		+			-+		+
1	45.00	647	1	68,00	6980 I	88,00	2893	ŀ	141.00	692
ı	47,00	810	ı	69.00	6880 i	91.00	149	Į	143,00	622 I
ı	48,00	389	ļ	70.00	553 1	92.00	1943	ı	155,00	79 I
T	49.00	2963	ŧ	72.00	340 l	93.00	2968	ı	173,00	375 l
ι	50,00	14008		73,00	3099 1				174,00	59632 I
+-			-+-							
1	51.00	4568	ı	74.00	11 879	95,00			175,00	4270 I
ı	52,00	68	1	75,00	34760	96,00			176,00	57000 i
t	55,00	143	1	76.00	3105 i	104.00	305	١	177,00	3739 1
1	56,00	1089	1	77.00	399 I	106.00	295	Ī		ı
ŀ	57.00	1930	1	78,00	290 I	116.00	96	ł		I
+-			-+-					-+		

UXB INTERNATIONAL METHOD BLANK COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 157

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Date Received: 05/23/00 Work Order: DDL68101 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/24/00

Moisture %:NA

QC Batch: 0145157

Client Sample Id: INTRA-LAB BLANK

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/L (2
67-64-1	Acetone	20	ט
71-43-2	Benzene	5.0	<u>U</u>
75-27-4	Bromodichloromethane	5.0	U
75-25-2	Bromoform	5.0	<u> </u>
74-83-9	Bromomethane	10	ן <u>ש</u> ו
78-93-3	2-Butanone	20	<u> </u>
75-15-0	Carbon disulfide	5.0	<u> </u>
56-23-5	Carbon tetrachloride	5.0	<u> </u>
108-90-7	Chlorobenzene	5.0	ַ <u>"</u>
124-48-1	Dibromochloromethane	5.0	<u> </u>
75-00-3	Chloroethane	10	<u> </u>
67-66-3	Chloroform		[ט
74-87-3	Chloromethane	10	<u> U</u>
75-34-3	1,1-Dichloroethane	5.0	<u>U</u>
107-06-2	1,2-Dichloroethane	5.0	<u>U</u>
75-35-4	1,1-Dichloroethene	5.0	<u> </u>
540-59-0	1,2-Dichloroethene (total)	5.0	<u> </u>
78-87-5	1,2-Dichloropropane	5.0	<u> </u>
10061-01-5	cis-1,3-Dichloropropene	5.0	<u> </u>
10061-02-6	trans-1,3-Dichloropropene	5.0	<u> </u>
100-41-4	Ethylbenzene	5.0	<u> </u>
591-78-6	2-Hexanone		<u>U</u>
75-09-2	Methylene chloride	5.0	<u> </u>
108-10-1	4-Methyl-2-pentanone		<u>u</u>
100-42-5	Styrene	5.0	<u>U</u>
79-34-5	1,1,2,2-Tetrachloroethane	5.0	<u>U</u>
127-18-4	Tetrachloroethene	5.0	<u> </u>
108-88-3	Toluene	5.0	<u> </u>

UXB INTERNATIONAL METHOD BLANK COMPOUNDS

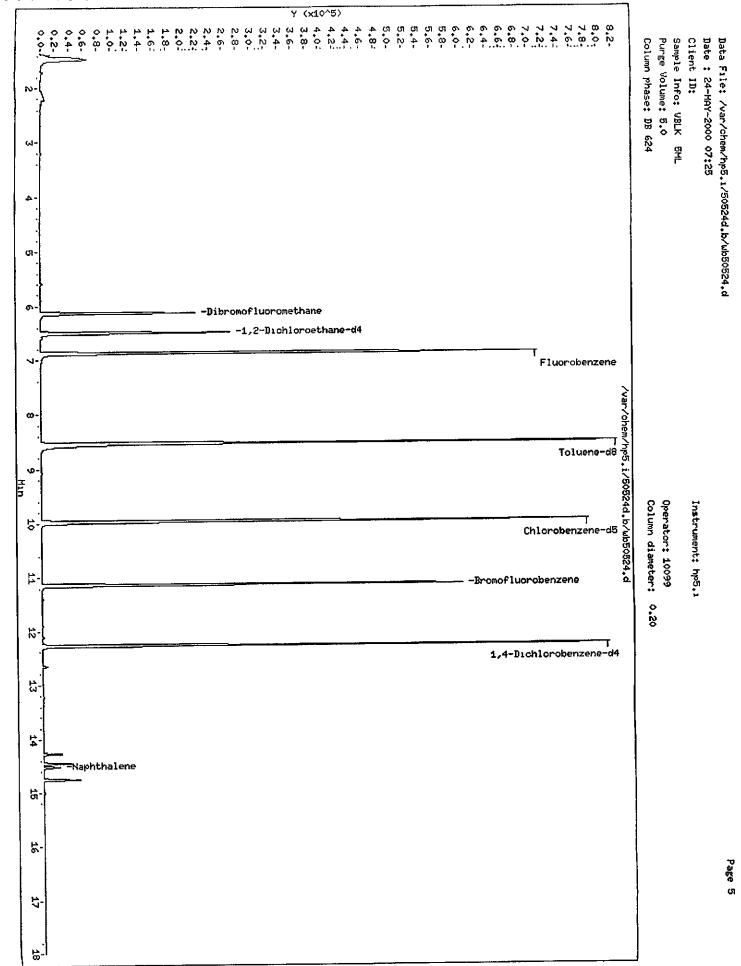
Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 157

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Date Received: 05/23/00 Work Order: DDL68101 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/24/00


Moisture %:NA

QC Batch: 0145157

Client Sample Id: INTRA-LAB BLANK

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/I	or ug/kg) ug/L	Q
71-55-6	1,1,1-Trichloroethane	5.0	<u></u> _
79-00-5	1,1,2-Trichloroethane	5.0	<u> </u>
79-01-6	Trichloroethene	5.0	<u>U</u>
75-01-4	Vinyl chloride	10	<u> </u>
1330-20-7	Xylenes (total)	5.0	\U

Data File: /var/chem/hp5.1/50524d.b/wb50524.d

Report Date: 24-May-2000 07:45

Page 1

STL-PITTSBURGH

VOLATILE REPORT SW-846 Method

Data file: /var/chem/hp5.i/50524d.b/wb50524.d Lab Smp Id: vblk Inj Date: 24-MAY-2000 07:25

Operator: 10099 Inst Smp Info: VBLK 5ML Misc Info: vblk,50524d.b,8260bh2o.m,tcl.sub Inst ID: hp5.i

Data File: /var/chem/hp5.i/50524d.b/wb50524.d Report Date: 24-May-2000 07:45

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RE	SPONSE (ng) (UG/L)
	====		
15 Carbon Disulfide	76 00	Compound Not Detected	
13 Acetone	43 00	Compound Not Detected.	
14 Iodomethane	142 00	Compound Not Detected.	
18 Methylene Chloride	84 00	Compound Not Detected.	
19 trans-1,2-Dichloroethene	96.00	Compound Not Detected.	
20 Methyl tert-butyl ether	73 00	Compound Not Detected	
23 Hexane	57 00	Compound Not Detected.	
24 1,1-Dichloroethane	63 00	Compound Not Detected.	
28 cis-1,2-dichloroethene	96 00	Compound Not Detected.	
M 29 1,2-Dichloroethene (total)	96 00	Compound Not Detected.	
31 2-Butanone	43.00	Compound Not Detected	
35 Tetrahydrofuran	42 00	Compound Not Detected.	
37 Chloroform	83 00	Compound Not Detected.	
38 1,1,1-Trichloroethane	97.00	Compound Not Detected.	
41 Carbon Tetrachloride	117.00	Compound Not Detected.	
42 Benzene	78.00	Compound Not Detected.	
45 1,2-Dichloroethane	62 00	Compound Not Detected	
47 Trichloroethene	130 00	Compound Not Detected.	
49 1,2-Dichloropropane	63.00	Compound Not Detected.	
50 Dibromomethane	93.00	Compound Not Detected.	
53 Bromodichloromethane	83.00	Compound Not Detected.	
57 cls-1,3-Dichloropropene	75 00	Compound Not Detected.	
58 4-Methyl-2-Pentanone	43 00	Compound Not Detected	
60 Toluene	91 00	Compound Not Detected.	
61 trans-1,3-Dichloropropene	75 00	Compound Not Detected.	
62 Ethyl methacrylate	69 00	Compound Not Detected.	
64 1,1,2-Trichloroethane	97.00	Compound Not Detected.	
65 Tetrachloroethene	164.00	Compound Not Detected.	
66 2-Hexanone	43.00	Compound Not Detected	
67 Dibromochloromethane	129.00	Compound Not Detected.	
68 1,2-Dibromoethane	107 00	Compound Not Detected.	
70 Chlorobenzene	112 00	Compound Not Detected.	
72 Ethylbenzene	106.00	Compound Not Detected.	
73 m + p-Xylene	106.00	Compound Not Detected.	
74 Xylene-o	106.00	Compound Not Detected	
M 75 Xylenes (total)	106 00	Compound Not Detected.	
76 Styrene	104 00	Compound Not Detected.	
77 Bromoform	173.00	Compound Not Detected.	
83 1,1,2,2-Tetrachloroethane	83 00	Compound Not Detected.	
84 1,2,3-Trichloropropane	110 00	Compound Not Detected Compound Not Detected.	
91 1,3-Dichlorobenzene	146 00	Compound Not Detected.	
93 1,4-Dichlorobenzene	146 00	Compound Not Detected.	
95 1,2-Dichlorobenzene	146 00	-	
78 Isopropylbenzene	105.00	Compound Not Detected.	17767 15.6904 3.138
99 Naphthalene	128	14 507 14.509 (1.182)	2.,5, 25.050% 5.250

UXB INTERNATIONAL CHECK SAMPLE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

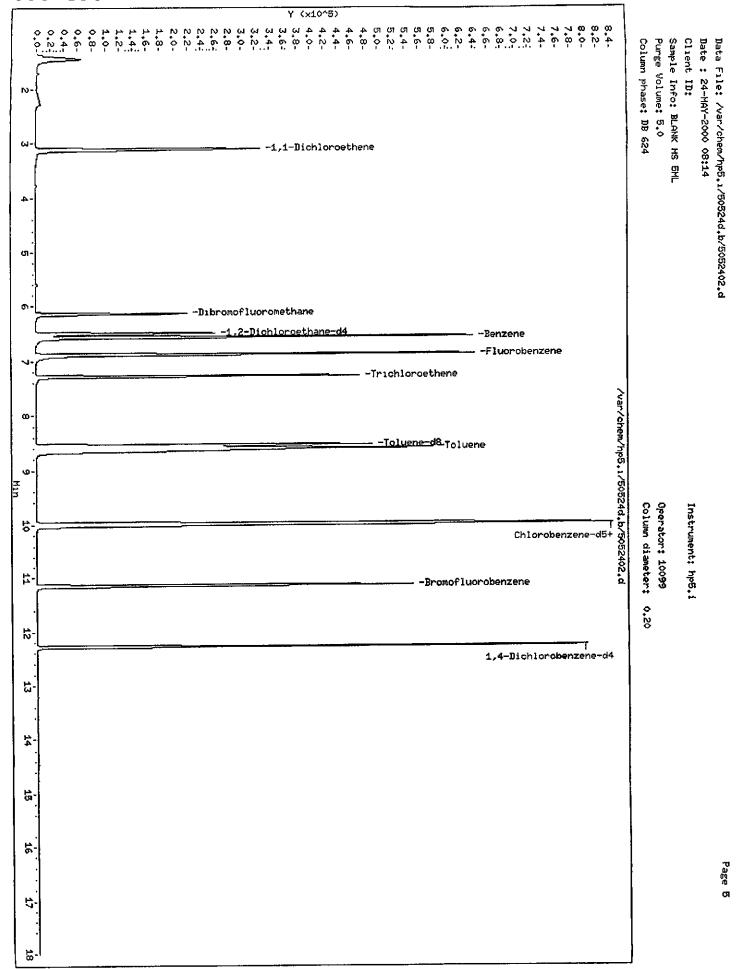
Matrix: (soil/water) WATER Lab, Sample ID:C0E240000 157

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Date Received: 05/23/00 Work Order: DDL68102 Date Extracted: 05/24/00 Dilution factor: 1 Date Analyzed: 05/24/00

Moisture %:NA


QC Batch: 0145157

100

Client Sample Id: CHECK SAMPLE

CONCENTRATION UNITS:

CAS NO	COMPOUND (ug/L	or ug/kg) ug/L Q
71-43-2	Benzene	49.2
108-90-7	Chlorobenzene	49.2
75-35-4	1,1-Dichloroethene	54.4
108-88-3	Toluene	50.0
79-01-6	Trichloroethene	47.7

Data File: /var/chem/hp5.i/50524d.b/5052402.d

Report Date: 24-May-2000 08:35

STL-PITTSBURGH

VOLATILE REPORT SW-846 Method

Data file: /var/chem/hp5.i/50524d.b/5052402.d Lab Smp Id: lcs

Inj Date : 24-MAY-2000 08:14

Operator: 10099 Inst ID: hp5.i

Smp Info : BLANK MS 5ML Misc Info : lcs,50524d.b,8260bh2o.m,tcl.sub

Comment

: /var/chem/hp5.i/50524d.b/8260bh2o.m Method

Meth Date : 24-May-2000 07:05 h Quant Type: ISTD Cal Date : 15-MAY-2000 08:45 Cal File: 1a50515.d

Als bottle: 5 Dil Factor: 1.00000 Integrator: HP RTE Target Version: 3.40

Processing Host: hpuxcs21

Compound Sublist: tcl.sub

Concentration Formula: Amt * DF * 1/Vo*Vt

Name	Value	Description
DF Vo	5.000	Dilution Factor Sample Volume
Vt	1.000	mg/L conversion (1.0 if no conversion)

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(UG/L)
==	*************	3884 3884		****** ***		22222	
*	46 Fluorobenzene	96	6.892	6 868 (1.000)	618603		
*	69 Chlorobenzene-d5	119	9 970	9.971 (1 000)	145182		
*	92 1,4-Dichlorobenze	ene-d4 152	12.282	12.282 (1 000)	214121		
\$	39 Dibromofluorometh	nane 113	6.138	6 132 (0.891)	137066	254.308	50.86
\$	43 1,2-Dichloroethar	ne-d4 65	6.503	6.491 (0.944)	184673	256 902	51.38
\$	59 Toluene-d8	98	8.541	8.529 (0.857)	591610	251.352	50.27
\$	80 Bromofluorobenzer	ne 95	11 132	11.145 (1.117)	222219	251.017	50.20
	l Dichlorodifluoron	nethane 85.00	Сот	mpound Not Detect	ed.		
	22 Acrylonitrile	53 00	Cor	npound Not Detect	ed.		
	44 Isobutanol	41.00	Cor	mpound Not Detect	ed.		
	2 Chloromethane	50.00	Cor	mpound Not Detect	ed.		
	3 Vinyl Chloride	62.00	Cor	mpound Not Detect	ed		
	4 Bromomethane	94.00	Cor	mpound Not Detect	ed.		
	5 Chloroethane	64.00	Cor	mpound Not Detect	ed		
	6 Trichlorofluorome	ethane 101.00	Cor	mpound Not Detect	ed.		
	12 1,1-Dichloroether	ne 96	3 120	3.029 (0 453)	159073	271.790	54.36
	15 Carbon Disulfide	76.00	Cor	mpound Not Detect	ed.		

Data File: /var/chem/hp5.i/50524d.b/5052402.d Report Date: 24-May-2000 08:35

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ng) (UG/L)
	====	والمستموم والمستماع والمستمون والمستمون والمستمون
13 Acetone	43 00	Compound Not Detected
14 Iodomethane	142 00	Compound Not Detected
18 Methylene Chloride	84 00	Compound Not Detected.
19 trans-1,2-Dichloroethene	96 00	Compound Not Detected
20 Methyl tert-butyl ether	73 00	Compound Not Detected.
23 Hexane	57.00	Compound Not Detected.
24 1,1-Dichloroethane	63 00	Compound Not Detected
28 cis-1,2-dichloroethene	96.00	Compound Not Detected.
M 29 1,2-Dichloroethene (total)	96.00	Compound Not Detected.
31 2-Butanone	43.00	Compound Not Detected
35 Tetrahydrofuran	42 00	Compound Not Detected.
37 Chloroform	83.00	Compound Not Detected.
38 1,1,1-Trichloroethane	97 00	Compound Not Detected
41 Carbon Tetrachloride	117 00	Compound Not Detected.
42 Benzene	78	6 570 6.539 (0.953) 591431 245.804 49.16
45 1,2-Dichloroethane	62 00	Compound Not Detected
47 Trichloroethene	130	7 281 7.269 (1 056) 146962 238.442 47 69
49 1,2-Dichloropropane	63 00	Compound Not Detected.
50 Dibromomethane	93.00	Compound Not Detected
53 Bromodichloromethane	83.00	Compound Not Detected.
57 cis-1,3-Dichloropropene	75 00	Compound Not Detected
58 4-Methyl-2-Pentanone	43.00	Compound Not Detected
60 Toluene	91	8.608 8.596 (0.863) 669900 249.998 50.00
61 trans-1,3-Dichloropropene	75.00	Compound Not Detected
62 Ethyl methacrylate	69 00	Compound Not Detected.
64 1,1,2-Trichloroethane	97.00	Compound Not Detected
65 Tetrachloroethene	164.00	Compound Not Detected
66 2-Hexanone	43 00	Compound Not Detected.
67 Dibromochloromethane	129 00	Compound Not Detected
68 1,2-Dibromoethane	107.00	Compound Not Detected.
70 Chlorobenzene	112	10.001 10 001 (1.003) 424043 246.016 49.20
72 Ethylbenzene	106 00	Compound Not Detected.
73 m + p-Xylene	106.00	Compound Not Detected
74 Xylene-o	106 00	Compound Not Detected.
M 75 Xylenes (total)	106.00	Compound Not Detected.
76 Styrene	104.00	Compound Not Detected
77 Bromoform	173.00	Compound Not Detected.
83 1,1,2,2-Tetrachloroethane	83 00	Compound Not Detected.
84 1,2,3-Trichloropropane	110.00	Compound Not Detected.
91 1,3-Dichlorobenzene	146.00	Compound Not Detected.
93 1,4-Dichlorobenzene	146.00	Compound Not Detected.
95 1,2-Dichlorobenzene	146 00	Compound Not Detected.
78 Isopropylbenzene	105.00	Compound Not Detected.
99 Naphthalene	128 00	Compound Not Detected.

UXB INTERNATIONAL MATRIX SPIKE COMPOUNDS

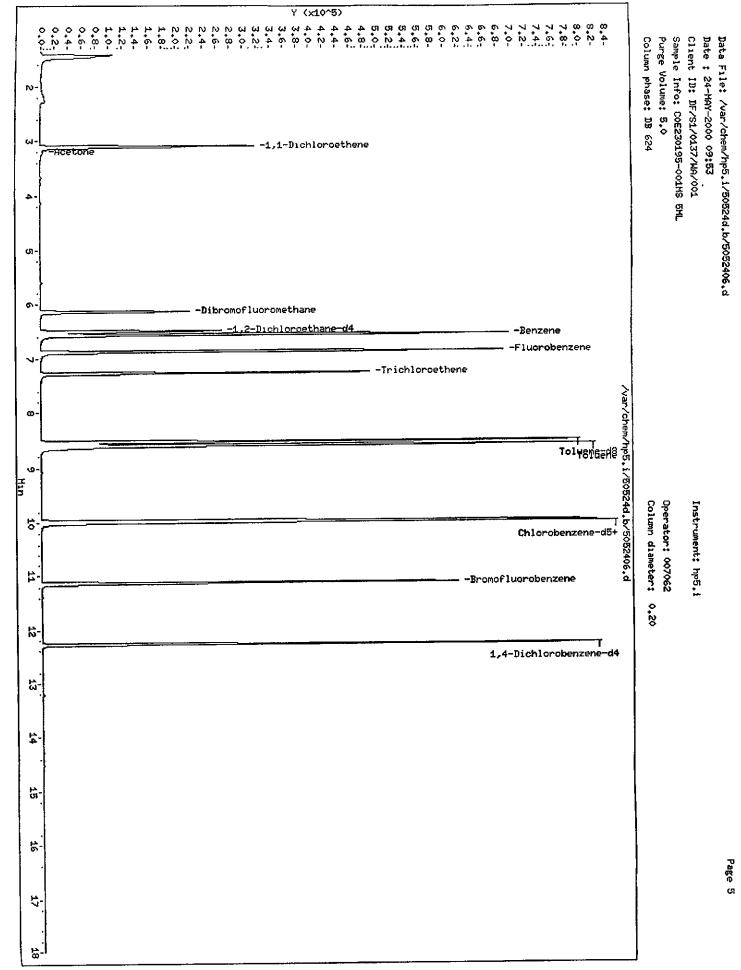
Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Date Received: 05/23/00 Work Order: DDK90113 Date Extracted: 05/24/00 Dilution factor: 1 Date Analyzed: 05/24/00


Moisture %:NA

QC Batch: 0145157

Client Sample Id: DF/S1/0137/WA/001

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/I	or ug/kg) ug/L Q	
71-43-2	Benzene	51.2	
108-90-7	Chlorobenzene	49.3	i
75-35-4	1,1-Dichloroethene	53.5	
108-88-3	Toluene	50.2	
79-01-6	Trichloroethene	49.9	

Data File: /var/chem/hp5.i/50524d.b/5052406.d

Report Date: 24-May-2000 10:10

Page 1

STL-PITTSBURGH

VOLATILE REPORT SW-846 Method

Data file: /var/chem/hp5.i/50524d.b/5052406.d

Lab Smp Id: DDK90113 Client Smp ID: DF/S1/0137/WA/001

Inj Date : 24-MAY-2000 09:53

Operator : 007062 Inst ID: hp5.i

Smp Info : C0E230195-001MS 5ML
Misc Info : ddk90113,50524d.b,8260bh2o.m,tcl.sub

Comment

: /var/chem/hp5.i/50524d.b/8260bh2o.m Method

Meth Date: 24-May-2000 07:05 h Quant Type: ISTD Cal Date : 15-MAY-2000 08:45 Cal File: 1a50515.d

Als bottle: 9 QC Sample: MS

Dil Factor: 1.00000 Integrator: HP RTE

Target Version: 3.40 Processing Host: hpuxcs21 Compound Sublist: tcl.sub

Concentration Formula: Amt * DF * 1/Vo*Vt

Name	Value	Description		_	
DF		Dilution Factor Sample Volume			
Vo Vt		mg/L conversion	(1.0	if no	conversion)

			CONCENTR	ations
		QUANT SIG	ON-COLUMN	Pinal
Co	ompounds	MASS	RT EXP RT REL RT RESPONSE (ng)	(UG/L)
40	3.000000000000000000000000000000000000	共中央市	海市 医马尔氏氏 医多种异戊醇 计自然设计设置 医血管抗性血管	
*	46 Fluorobenzene	96	6.880 6.868 (1 000) 620339	
*	69 Chlorobenzene-d5	119	9.970 9.971 (1.000) 141881	
*	92 1,4-Dichlorobenzene-d4	152	12.276 12 282 (1.000) 219399	
\$	39 Dibromofluoromethane	113	6 132 6.132 (0.891) 138439 256.137	51.23
\$	43 1,2-Dichloroethane-d4	65	6.497 6.491 (0.944) 187286 259 808	51.96
\$	59 Toluene-d8	98	8.535 8.529 (0.856) 583533 253.689	50.74
\$	80 Bromofluorobenzene	95	11.132 11.145 (1.117) 221135 255.604	51 12
	1 Dichlorodifluoromethane	85.00	Compound Not Detected	
	22 Acrylonitrile	53 00	Compound Not Detected	
	44 Isobutanol	41.00	Compound Not Detected.	
	2 Chloromethane	50.00	Compound Not Detected.	
	3 Vinyl Chloride	62.00	Compound Not Detected.	
	4 Bromomethane	94 00	Compound Not Detected	
	5 Chloroethane	64.00	Compound Not Detected.	
	6 Trichlorofluoromethane	101 00	Compound Not Detected.	
	12 1,1-Dichloroethene	96	3.114 3.029 (0.453) 156975 267.455	53.49
	15 Carbon Disulfide	76.00	Compound Not Detected.	

658 164

Data File: /var/chem/hp5.1/50524d.b/5052406.d

Report Date: 24-May-2000 10:10

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ng) (UG/L)
	2022		
13 Acetone	43	3.218 3 303 (0.468) 4163	10.7091 2.142
14 Iodomethane	142 00	Compound Not Detected.	
18 Methylene Chloride	84 00	Compound Not Detected	
19 trans-1,2-Dichloroethene	96 00	Compound Not Detected.	
20 Methyl tert-butyl ether	73 00	Compound Not Detected.	
23 Hexane	57 00	Compound Not Detected.	
24 1,1-Dichloroethane	63 00	Compound Not Detected.	
28 C18-1,2-dichloroethene	96 00	Compound Not Detected	
M 29 1,2-Dichloroethene (total)	96 00	Compound Not Detected.	
31 2-Butanone	43 00	Compound Not Detected.	
35 Tetrahydrofuran	42.00	Compound Not Detected.	
37 Chloroform	83 00	Compound Not Detected.	
38 1,1,1-Trichloroethane	97 00	Compound Not Detected.	
41 Carbon Tetrachloride	117 00	Compound Not Detected.	
42 Benzene	78	6 558 6.539 (0.953) 617188	255.791 51 16
45 1,2-Dichloroethane	62 00	Compound Not Detected.	
47 Trichloroethene	130	7.275 7.269 (1.057) 154286	249.625 49 92
49 1,2-Dichloropropane	63.00	Compound Not Detected.	
50 Dibromomethane	93.00	Compound Not Detected	
53 Bromodichloromethane	83 00	Compound Not Detected.	
57 cis-1,3-Dichloropropene	75.00	Compound Not Detected.	
58 4-Methyl-2-Pentanone	43.00	Compound Not Detected.	251.184 50.24
60 Toluene	91	8.602 8.596 (0.863) 657774	251.184 50.24
61 trans-1,3-Dichloropropene	75 00	Compound Not Detected.	
62 Ethyl methacrylate	69 00	Compound Not Detected	
64 1,1,2-Trichloroethane	97 00	Compound Not Detected.	
65 Tetrachloroethene	164.00	Compound Not Detected.	
66 2-Hexanone	43.00	Compound Not Detected.	
67 Dibromochloromethane	129.00	Compound Not Detected.	
68 1,2-Dibromoethane	107.00	Compound Not Detected.	246.413 49.28
70 Chlorobenzene	112	31333 201002 (27102)	240.413 47.20
72 Ethylbenzene	106.00	Compound Not Detected.	
73 m + p-Xylene	106 00	Compound Not Detected.	
74 Xylene-0	106.00	Compound Not Detected.	
M 75 Xylenes (total)	106.00	Compound Not Detected. Compound Not Detected.	
76 Styrene	104.00	Compound Not Detected.	
77 Bromoform	173.00	-	
83 1,1,2,2-Tetrachloroethane	83.00	Compound Not Detected	
84 1,2,3-Trichloropropane	110 00	Compound Not Detected. Compound Not Detected.	
91 1,3-Dichlorobenzene	146.00	Compound Not Detected.	
93 1,4-Dichlorobenzene	146.00	Compound Not Detected.	
95 1,2-Dichlorobenzene	146.00	Compound Not Detected	
78 Isopropylbenzene	105.00	Compound Not Detected.	
99 Naphthalene	128.00	compound not becover.	

UXB INTERNATIONAL MATRIX SPIKE DUPLICATE COMPOUNDS

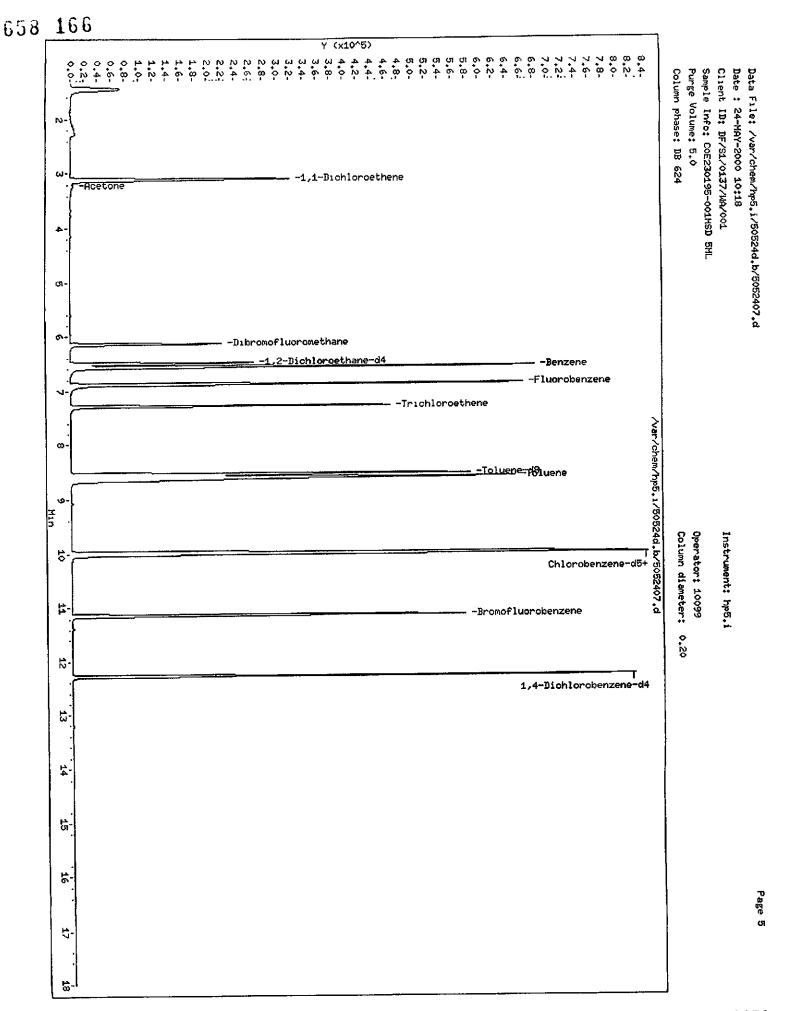
Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8260B

Volatile Organics, GC/MS (8260B)

Sample WT/Vol: 5 / mL Date Received: 05/23/00 Work Order: DDK90114 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/24/00


Moisture %:NA

QC Batch: 0145157

Client Sample Id: DF/S1/0137/WA/001

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
71-43-2	Benzene	50.1	
108-90-7	Chlorobenzene	48.9	
75-35-4	1,1-Dichloroethene	55.9	[
108-88-3	Toluene	50.2	
79-01-6	Trichloroethene	49.0	

Data File: /var/chem/hp5.i/50524d.b/5052407.d

Report Date: 24-May-2000 10:35

Page 1

: STL-PITTSBURGH

VOLATILE REPORT SW-846 Method

Data file : /var/chem/hp5.i/50524d.b/5052407.d

Client Smp ID: DF/S1/0137/WA/001 Lab Smp Id: DDK90114

Inj Date : 24-MAY-2000 10:18

Inst ID: hp5.i Operator : 10099

Smp Info : C0E230195-001MSD 5ML
Misc Info : ddk90114,50524d.b,8260bh2o.m,tcl.sub

Comment

: /var/chem/hp5.i/50524d.b/8260bh2o.m Method

Quant Type: ISTD Meth Date: 24-May-2000 07:05 h Cal File: 1a50515.d Cal Date : 15-MAY-2000 08:45 QC Sample: MSD Als bottle: 10

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: tcl.sub

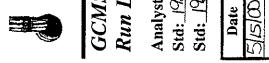
Target Version: 3.40 Processing Host: hpuxcs21

Concentration Formula: Amt * DF * 1/Vo*Vt

Name	Value	Description
DF Vo		Dilution Factor Sample Volume
Vt	1.000	mg/L conversion (1.0 if no conversion)

			CONCE	NTRATIONS
		QUANT SIG	ON-COLU	MN FINAL
Co	ompounds	MASS	RT EXP RT REL RT RESPONSE (ng) (UG/L)
		====	电位 医多类性性 地名英格兰 医动物性 医电影性	B 40=4555
*	46 Fluorobenzene	96	6.886 6.868 (1.000) 618101	
	69 Chlorobenzene-d5	119	9.970 9.971 (1.000) 144401	
*	92 1,4-Dichlorobenzene-d4	152	12.276 12.282 (1 000) 218281	
\$	39 Dibromofluoromethane	113	6.138 6 132 (0 891) 140189 260.31	4 52.06
\$	43 1,2-Dichloroethane-d4	65	6.497 6.491 (0.943) 188009 261.75	5 52.35
\$	59 Toluene-d8	98	8.541 8.529 (0.857) 593656 253.58	6 50.72
\$	80 Bromofluorobenzene	95	11.132 11 145 (1.117) 223628 253.97	5 50.79
	1 Dichlorodifluoromethane	85 00	Compound Not Detected.	
	22 Acrylonitrile	53 00	Compound Not Detected.	
	44 Isobutanol	41 00	Compound Not Detected.	
	2 Chloromethane	50.00	Compound Not Detected	
	3 Vinyl Chloride	62.00	Compound Not Detected.	
	4 Bromomethane	94 00	Compound Not Detected.	
	5 Chloroethane	64 00	Compound Not Detected.	
	6 Trichlorofluoromethane	101.00	Compound Not Detected.	
	12 1,1-Dichloroethene	96	3.120 3.029 (0 453) 163558 279.68	0 55 94
	15 Carbon Disulfide	76.00	Compound Not Detected	

Data File: /var/chem/hp5.i/50524d.b/5052407.d Report Date: 24-May-2000 10:35


			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ng) (UG/L)
	====	# # #################################	
13 Acetone	43	3.224 3 303 (0 468) 4126	10.6523 2 130
14 Iodomethane	142 00	Compound Not Detected	
18 Methylene Chloride	84.00	Compound Not Detected.	
19 trans-1,2-Dichloroethene	96 00	Compound Not Detected	
20 Methyl tert-butyl ether	73.00	Compound Not Detected	
23 Hexane	57 00	Compound Not Detected	
24 1,1-Dichloroethane	63 00	Compound Not Detected.	
28 cis-1,2-dichloroethene	96 00	Compound Not Detected.	
M 29 1.2-Dichloroethene (total)	96 00	Compound Not Detected.	
31 2-Butanone	43 00	Compound Not Detected.	
35 Tetrahydrofuran	42.00	Compound Not Detected	
37 Chloroform	83.00	Compound Not Detected.	
38 1,1,1-Trichloroethane	97.00	Compound Not Detected	
41 Carbon Tetrachloride	117.00	Compound Not Detected.	
42 Benzene	78	6 563 6 539 (0.953) 602425	250 577 50.12
45 1,2-Dichloroethane	62.00	Compound Not Detected.	
47 Trichloroethene	130	7.281 7.269 (1.057) 150999	245 191 49.04
49 1,2-Dichloropropane	63.00	Compound Not Detected.	
50 Dibromomethane	93 00	Compound Not Detected.	
53 Bromodichloromethane	83 00	Compound Not Detected.	
57 cis-1,3-Dichloropropene	75 00	Compound Not Detected	
58 4-Methyl-2-Pentanone	43.00	Compound Not Detected	
60 Toluene	91	8.607 8.596 (0 863) 668329	250.761 50.15
61 trans-1,3-Dichloropropene	75.00	Compound Not Detected.	
62 Ethyl methacrylate	69.00	Compound Not Detected	
64 1,1,2-Trichloroethane	97.00	Compound Not Detected.	
65 Tetrachloroethene	164.00	Compound Not Detected	
66 2-Hexanone	43 00	Compound Not Detected.	
67 Dibromochloromethane	129.00	Compound Not Detected	
68 1,2-Dibromoethane	107.00	Compound Not Detected.	
70 Chlorobenzene	112	10.001 10.001 (1.003) 419011	244.411 48.88
72 Ethylbenzene	106.00	Compound Not Detected.	
73 m + p-Xylene	106.00	Compound Not Detected	
74 Xylene-o	106.00	Compound Not Detected	
M 75 Xylenes (total)	106.00	Compound Not Detected	
76 Styrene	104.00	Compound Not Detected.	
77 Bromoform	173.00	Compound Not Detected.	
83 1,1,2,2-Tetrachloroethane	83.00	Compound Not Detected.	
84 1,2,3-Trichloropropane	110.00	Compound Not Detected	
91 1,3-Dichlorobenzene	146.00	Compound Not Detected.	
93 1,4-Dichlorobenzene	146.00	Compound Not Detected.	
95 1,2-Dichlorobenzene	146.00	Compound Not Detected	
78 Isopropylbenzene	105.00	Compound Not Detected.	
99 Naphthalene	128.00	Compound Not Detected	

C. ()

GC/MS VOLATILE MISCELLANEOUS

1	70		326	, [Τ	1	<u> </u>			-				_	ī	$\overline{}$	1	<u> </u>	<u> </u>	 -
	STL Pittsburgh 450 William Pitt Way Pittsburgh, PA 15238	412-020-0380 Date:	Std: 192-180-7004 Std: 192-180-8 Katones	Comments	0523						656												
	Nucous.		V. C.	Port#																			†
	Committee To Your States		192.1	Hd																	1		1
			١,																			-	+
	Ê	bv:	Std: 92/78-98um	Vol. /Wt.	50005	500	Spol	100 100	1000	Sml	-a8										***************************************		
	Inst. ID #5	Reviewed by:	Std: P.2.	mple No.		Bons				0	0												
	Method: 8260B		Std: 192-178-8104 Std: 192-178-8104	Lot No./Sample No.	78-78	SWOST TENUS	CSPS/	VSHiS	OZDISA.	VSKICO	764020C												
	Metho		Std:	- E																			
	MS Volatile n Log	97	192-1759 MS	File ID	1. BFS0515	2. K505/5	3. 303051S	4. 1/130515	5. 173205B	6. ID30515	7. 1E30515	8	6	10.	<u> </u>	12.	13.	14.	15.	16	17	18	19
	MS Vo n Log	lyst 766	8 3	ate	8												-						

n:\qpitpa01\qa\logbooks\msvoalog.doc

20 21 22 22 22

Analyst 1/16 Std: 192-180-11BFB

Std: 192.182-11 MTBL/C52

Std: Std:_

192-BI-76A 7506-C61

	•
	Canadined to Your Success
,	**

	Sur	
Std	Std:	
	1997	
	S).3	
	3	

Į	l Gi
[1-
	S
	(N
	اچ
ŀ	NS
•	1 2

Std: P2 180-8 Katones	ASO William Pitt;Way Pittsburgh, PA 15238
-----------------------	---

	ı	
	- 1	
	- 1	
	- 1	
b (1	1	5
(l _m)		5
6		ı
(UEA30PS-CDIMS 5001		,
(Im.l.10m1) 5m1		IJ
		_
Black MS TOP (Imiliani)/5ml	: 1	5
TCLO PROBLEM Slesko (Imilioni) Smi		Ŋ
5m/		
5m/		
50na		
Lot No. /Sample No. Vol. /Wt.		pH

Page 31 of 80

PSR024

5/24/00 4:05.08 MT

SAMPLE CUSTODIAN REMOVAL REQUEST

PAGE 001

REQUESTED BY. GORDONK

METHOD: QK Volatile Organics, GC/MS (8260B)

STORAGE LOCATION WOR	K ORDER #	PICKED CNTR#	CONTROL #	CLIENT #	ANALYSIS	LOTID	SMP#	SFX	MATRIX DESCRIPTION	_		QTY REQD
4F DDK	90-1-01		236258	399411	I-15-QK C	:0E230195	001	¥	NATER	O	9	1

RELINQUISHED BY	Lathy Gordon-	5/24/00 0700
Young Godon	- Mp1	5/24/00 0700 5/24/00 1045

GC/MS SEMIVOLATILE DATA

GC/MS SEMIVOLATILE QC SUMMARY

SW846 8270C SURROGATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

QESSDG:

Lot #: C0E230195

-	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	SRG05	SRG06	TOT OUT
	=======================================				======		======	======
01	DF/S1/0137/WA/001	59	60	68	47	56	69	00
02	METHOD BLK. DDNQC101	71	63	69	83	66	72	00
03	LCS DDNQC102	75	71	73	82	_69	_80	00
04	LCSD DDNQC103	71	68	69	78	_66	76	00

SURROGA	TES	QC LIMITS
SRG01	= Phenol-d5	(10-113)
SRG02	= 2-Fluorobiphenyl	(30-110)
SRG03	= Nitrobenzene-d5	(32-112)
SRG04	= Terphenyl-d14	(10-144)
SRG05	= 2-Fluorophenol	(13-110)
SRG06	= 2,4,6-Tribromophenol	(21-122)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

658 176 SW846 8270C CHECK SAMPLE RECOVERY

Lab Name. Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot #: C0E250000

WO #: DDNQC102 BATCH: 0146202

	SPIKE ADDED	SAMPLE CONCENT.	8	QC LIMITS	
COMPOUND	(ug/L)	(ug/L)	REC	REC	QUAL
	=======================================	=======================================	====	===========	=======
Phenol	75.0	49.9	67	10- 13 <u>1</u>	ļ
2-Chlorophenol	75.0	53.7	72	19- 124	
1,4-Dichlorobenzene	50.0	36.0	72	28- 110	l
N-Nitrosodi-n-propylamine	50.0	44.5	89	30- 115	<u></u>
1,2,4-Trichlorobenzene	50.0	37.2	74	31- 110	
4-Chloro-3-methylphenol	75.0	59.5	79	29- 124	<u> </u>
Acenaphthene	50.0	40.2	80	39- 118	.
4-Nitrophenol	75.0	56.5	75	19- 144	·
2,4-Dinitrotoluene	50.0	41.6	83	47- 131	.l <u></u>
Pentachlorophenol	75.0	67.8	90	10- 140	
Pyrene	50.0	42.7	85	46- 130	.1

NOTES (S):	

* Values outside	of QC	limits					
Spike Recovery:	0	out of	11	outside	limits		
COMMENTS:						 	

SW846 8270C CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot #: C0E250000

WO #: DDNQC103 BATCH: 0146202

	SPIKE	SAMPLE		QC	1
	ADDED	CONCENT.	용	LIMITS	ĺ
COMPOUND	(ug/L)	(ug/L)	REC	REC	QUAL
=======================================		========	25255		========
Phenol	75.0	48.4	65	10- 131	İ
2-Chlorophenol	75.0	51.8	69	19- 124	
1,4-Dichlorobenzene	50.0	34.6	69	28- 110	
N-Nitrosodi-n-propylamine	50.0	42.7	85	30- 115	
1,2,4-Trichlorobenzene	50.0	36.4	73	31- 110	
4-Chloro-3-methylphenol	75.0	57.9	77	29- 124	
Acenaphthene	50.0	39.3	79	39- 118	
4-Nitrophenol	75.0	54.9	73	19- 144	
2,4-Dinitrotoluene	50.0	40.6	81	47- 131	
Pentachlorophenol	75.0	66.0	88	10- 140	
Pyrene	50.0	41.7	83	46- 130	

* Values outside	of QC	limits					
Spike Recovery:	0	out of	11	outside	limits		
COMMENTS:							
					 	 	

NOTES (S):

BLANK WORKORDER NO.

DDNQC10:

Tab	Name:	Severn	Trent	Laboratories,	Inc.
цак.	manic.	~~~~~			

Lab Code: QESPIT

SDG Number:

Lab File ID: F0526003.

Lot Number: C0E230195

Date Analyzed: 05/26/00

Time Analyzed: 10:46

Matrix: WATER

Date Extracted:05/24/00

GC Column: HP5MS ID: .25

Extraction Method: 3520C

Instrument ID· 722

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

ī		SAMPLE	LAB	DATE	TIME
i	CLIENT ID.	WORK ORDER #	FILE ID	ANALYZED	ANALYZED
i	*******	=======================================	=======================================		
01	DF/S1/0137/WA/001	DDK90102	F0526012.	05/26/00	16:28
	CHECK SAMPLE	DDNQC102 C	F0526004.	05/26/00	11:20
03		DDNQC103 L	F0526005.	05/26/00	11:54
04		<u> </u>			
05		İ	<u> </u>		
06					
07			<u> </u>		
08		<u> </u>	l		
09			ļ		
10					<u> </u>
11					
12				<u></u>	
13				<u> </u>	ļ
14	1			ļ	
15		ļ	ļ	<u> </u>	
16			<u> </u>	<u> </u>	}!
17	1			<u> </u>]!
1.8			.		! :
19	· ————		.	!]
20	1	.	.	!	¦
21	1		.		
22	· ————		.	!	
23			.		
24	\		.	1	
25		.	_	1	¦
26		_	·	ļ	·
27	1	.			1
28	1	_ [_ {	\	¦i
29		_ [i	.
30) <u></u>

COMMENTS:	
	FORM IV

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: STL PITTSBURGH

Contract:

Lab Code:

Case No.: SAS No.:

SDG No.: C0E230195

Lab File ID: F0526DF1

DFTPP Injection Date: 05/26/00

Instrument ID: 722

DFTPP Injection Time: 0629

	· · · ·	
m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
====	======================================	=====================================
51	30.0 - 60.0% of mass 198	51.1
68	Less than 2.0% of mass 69	0.0 (0.0)1
69	Mass 69 relative abundance	49.2
70	Less than 2.0% of mass 69	0.0 (0.0)1
127	40.0 - 60.0% of mass 198	57.4
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	6.7
275	10.0 - 30.0% of mass 198	25.8
365	Greater than 1.0% of mass 198	3.94
441	Present, but less than mass 443	10.9
442	40.0 - 100.0% of mass 198	72.5
443	17.0 - 23.0% of mass 442	14.1 (19.5)2
}		
'	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	Sample No.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=========	==========	=======================================		
01	SSTD050	SSTD050	F05260C1	05/26/00	0646
02	SSTD020	SSTD020	F05260C2	05/26/00	0721
03	SSTD080	SSTD080	F05260C3	05/26/00	0755
04	SSTD120	SSTD120	F05260C4	05/26/00	0829
05	SSTD160	SSTD160	F05260C5	05/26/00	0904
06			F0526003	05/26/00	1046
07	INTRA-LAB CH		F0526004	05/26/00	1120
08	INTRA-LAB CH		F0526005	05/26/00	1154
09	DF/S1/0137/W	DDK90102	F0526012	05/26/00	1628
10					
11					
12					
13					
14					
15	<u></u>				
16					
17					
18		<u> </u>			
19	}				
20					[
21				<u> </u>	
22	\	l		I	11

page 1 of 1

FORM V SV

658 180

Lab Name: STL PITTSBURGH Contract:

Lab Code: Case No.: SAS No.: SDG No.: C0E230195

Lab File ID (Standard): F05260C5 Date Analyzed: 05/26/00

Instrument ID: 722 Time Analyzed: 0904

		· ,	# 6.5 (**********		TO2 / NAME)	
	IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
12 HOUR STD UPPER LIMIT LOWER LIMIT	35904 71808 17952	4.99 5.49 4.49	134042 268084 67021	6.51 7.01 6.01	77370 154740 38685	9.52 10.02 9.02
CLIENT SAMPLE NO.			p=======	======	========	=======
INTRA-LAB BL INTRA-LAB CH INTRA-LAB CH O4 DF/S1/0137/W	36738 37216 40299 40683	4.98 4.98 4.98 4.99	148095 147725 158308 162702	6.50 6.50 6.51	92291 89356 95449 95633	9.50 9.50 9.51 9.51
05 06 07						
08 09 L0						
12 L3 L4 L5						
16 17 18						
19 20 21 22						

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8
IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk. * Values outside of QC limits.

page 1 of 1

FORM VIII SV

Lab Name: STL PITTSBURGH Contract:

Lab Code: Case No.: SAS No.: SDG No.: C0E230195

Lab File ID (Standard): F05260C5 Date Analyzed: 05/26/00

Instrument ID: 722 Time Analyzed: 0904

1	IS4 (PHN)	· · · · · · · · · · · · · · · · · · ·	IS5 (CRY)		IS6 (PRY)	
		RT #	AREA #	RT #	AREA #	RT #
İ	1	12.T #	AKCA #	1/1 #	12/11/2 17	TCI T
=========	1	=======		10 44	128115	22.79
12 HOUR STI		12.81	142226	19.44		
UPPER LIMIT		13.31	284452	19.94	256230	23.29
LOWER LIMIT	71905	12.31	71113	18.94	64058	22.29
=========	========	======	========	======	========	=======
CLIENT	\			,		
SAMPLE NO.	1			1		
	=========	======	========	======	====000=====	======
01 INTRA-LAB BI		12.79	147827	19.40	157444	22.76
02 INTRA-LAB CE	_	12.79	159317	19.40	158489	22.76
03 INTRA-LAB CI	_	12.79	169325	19.40	171252	22.77
04 DF/S1/0137/		12.80	157786	19.42	186995	22.78
05 05	1,2510	==:00	1			
06	_		i 		·	
07	-					
07		<u> </u>			<u> </u>	
08	_[ļ 		ļ 		
09	_	ļ			l ———	
10		.]				
11	_					I
12					İ	
13	_					
14					<u> </u>	
15					ļ	<u> </u>
16						·
17						l
18						<u> </u>
19	_					
20	-					
21	-			1		
22	-		-			
441		. 1	. I	. 1	. 1	1

IS4 (PHN) = Phenanthrene-d10 IS5 (CRY) = Chrysene-d12 IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.50 minutes of internal standard RT
RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV

GC/MS SEMIVOLATILE SAMPLE DATA

UXB INTERNATIONAL

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDK90102 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0146202

Client Sample Id: DF/S1/0137/WA/001

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L	Q
110-86-1	Pyridine	20	<u>"</u>
83-32-9	Acenaphthene	10	<u> U </u>
208-96-8	Acenaphthylene	10	ן
120-12-7	Anthracene	10	U
56-55-3	Benzo(a) anthracene	10	<u>"</u>
50-32-8	Benzo(a)pyrene	10	ן
205-99-2	Benzo(b) fluoranthene	10	<u> </u>
207-08-9	Benzo(k) fluoranthene	10	ן
191-24-2	Benzo(ghi)perylene	10	ן
111-91-1	bis(2-Chloroethoxy)methane	10	ן
111-44-4	bis(2-Chloroethyl) ether	10	U
117-81-7	bis(2-Ethylhexyl) phthalate	10	ן ט
101-55-3	4-Bromophenyl phenyl ether	10	ן ש
85-68-7	Butyl benzyl phthalate	10	ן ע
86-74-8	Carbazole	10	ן ט
106-47-8	4-Chloroaniline	10	<u>U</u>
59-50-7	4-Chloro-3-methylphenol	10	ן ט
91-58-7	2-Chloronaphthalene	10	ן
95-57-8	2-Chlorophenol	10	ן <u>ש</u>
7005-72-3	4-Chlorophenyl phenyl ether	10	ן <u>"</u>
218-01-9	Chrysene	10	<u> U </u>
53-70-3	Dibenz(a,h)anthracene	10	ן ט ו
132-64-9	Dibenzofuran	10	<u> U</u>
95-50-1	1,2-Dichlorobenzene	10	<u>ات</u> ا_
541-73-1	1,3-Dichlorobenzene	10	<u> u</u>
106-46-7	1,4-Dichlorobenzene	10	<u> U </u>
91-94-1	3,3'-Dichlorobenzidine	50	_ <u></u> U
120-83-2	2,4-Dichlorophenol	10	<u> u </u>

UXB INTERNATIONAL

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDK90102 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0146202

Client Sample Id: DF/S1/0137/WA/001

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/L	Q
84-66-2	Diethyl phthalate	10	<u>"</u>
105-67-9	2,4-Dimethylphenol	10	
131-11-3	Dimethyl phthalate	10	_ <u>U</u>
84-74-2	Di-n-butyl phthalate	10	_ <u>_</u>
117-84-0	Di-n-octyl phthalate	10	_ U
51-28-5	2,4-Dinitrophenol	50	
534-52-1	4,6-Dinitro-2-methylphenol	50	ן
121-14-2	2,4-Dinitrotoluene	10	ַן
606-20-2	2,6-Dinitrotoluene	10	<u></u>
206-44-0	Fluoranthene	10	_
86-73-7	Fluorene	10	<u> </u>
118-74-1	Hexachlorobenzene	10	<u></u> U
87-68-3	Hexachlorobutadiene	10	ַ
77-47-4	Hexachlorocyclopentadiene	50	<u></u> _U
67-72-1	Hexachloroethane	10	<u></u>
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
78-59-1	Isophorone	10	ו
91-57-6	2-Methylnaphthalene	1.0	ll
95-48-7	2-Methylphenol	10	<u> </u>
106-44-5	4-Methylphenol	10	U
91-20-3	Naphthalene	10	\U
88-74-4	2-Nitroaniline	50	<u>U</u>
99-09-2	3-Nitroaniline	50	U
100-01-6	4-Nitroaniline	50	
98-95-3	Nitrobenzene	10	<u> </u>
88-75-5	2-Nitrophenol	10	lu
100-02-7	4-Nitrophenol	50	<u>U</u>
621-64-7	N-Nitrosodi-n-propylamine	10	<u>u</u>

UXB INTERNATIONAL

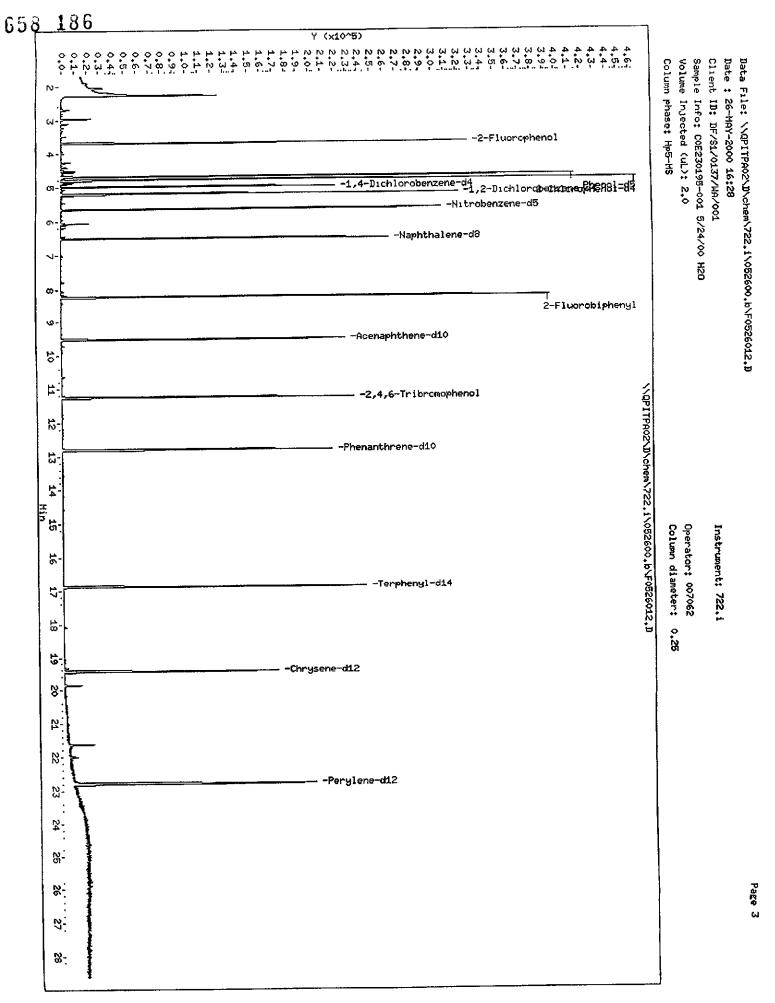
Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method. SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDK90102 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00


Moisture %:NA

QC Batch: 0146202

Client Sample Id: DF/S1/0137/WA/001

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/L Q	
86-30-6	N-Nitrosodiphenylamine	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	<u>U</u>
87-86-5	Pentachlorophenol	50	ט
85-01-8	Phenanthrene	10	<u> </u>
108-95-2	Phenol	10	<u>U</u>
129-00-0	Pyrene	10	ַ ַ ַ ַ ַ ַ
120-82-1	1,2,4-Trichlorobenzene	10	<u>"</u>
95-95-4	2,4,5-Trichlorophenol	10	<u> </u>
88-06-2	2,4,6-Trichlorophenol	10	<u> </u>

Data File: \\Qpitpa02\D\chem\722.i\052600.b\F0526012.D

Report Date: 26-May-2000 17:00

Page 1

STL Pittsburgh

Semivolatile REPORT SW-846 Method 8270

Data file ; \\Qpitpa02\D\chem\722.i\052600.b\F0526012.D

Lab Smp Id: 'DDK90102 Client Smp ID: DF/S1/0137/WA/001

Inj Date : 26-MAY-2000 16:28

Operator : 007062 Inst ID: 722.i

Smp Info : C0E230195-001 5/24/00 H2O

Misc Info : ddk90102,052600.b,8270b.m,2-root.sub

Comment

Method : \\QPITPA02\D\chem\722.i\052600.b\8270b.m

Meth Date: 26-May-2000 16:44 bungardf Quant Type: ISTD Cal Date: 26-MAY-2000 09:04 Cal File: F05260C5.D

Als bottle: 18

Dil Factor: 1.00000 Integrator: HP RTE Target Version: 4.03

Processing Host: PITPC083

Compound Sublist: 2-root.sub

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000 1000.000 1000.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

							CONCENTR	ATIONS
		QUANT SIG					ON-COLUMN	FINAL
Compou	nds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(ug/L)
	*****	2		****	*****	C2603866		===4445
* 1	1,4-Dichlorobenzene-d4	152	4.989	4 977	(1.000)	40683	40.0000	(Q)
* 2	Naphthalene-d8	136	6 506	6.505	(1.000)	162702	40.0000	
* 3	Acenaphthene-d10	164	9.514	9.512	(1.000)	95633	40.0000	
* 4	Phenanthrene-d10	188	12.804	12.803	(1.000)	172516	40.0000	
* 5	Chrysene-d12	240	19.423	19 427	(1.000)	157786	40.0000	
* 6	Perylene-d12	264	22.783	22.782	(1.000)	186995	40.0000	
10	N-Nitrosodimethylamine	74	Соп	pound No	t Detect	eđ.		
9	Pyridine	79	Соп	pound No	t Detect	ed.		
21	Anıline	93	Соп	npound No	t Detect	ed		
22	Phenol	94	Con	pound No	t Detect	ed.		
23	bis(2-Chloroethyl)ether	' 93	Con	mpound No	t Detect	ed.		
24	2-Chlorophenol	128	Con	mpound No	t Detect	ed		
26	1,3-Dichlorobenzene	146	Con	npound No	ot Detect	ed.		
27	1,4-Dichlorobenzene	146	Con	pound No	ot Detect	ed.		

Data File: \\Qpitpa02\D\chem\722.i\052600.b\F0526012.D Report Date: 26-May-2000 17:00

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (NG) (ug/L)
***************************************		ac 是非常感应 应应应应点证 医抗多类原体系 法自己自己的 使有点的复数
28 1.2-Dichlorobenzene	146	Compound Not Detected
29 Benzyl Alcohol	108	Compound Not Detected
30 2-Methylphenol	108	Compound Not Detected
31 2,2'-oxybis(1-Chloropropane	.) 45	Compound Not Detected
32 N-Nitroso-di-n-propylamine	70	Compound Not Detected.
192 4-Methylphenol	108	Compound Not Detected
34 Hexachloroethane	117	Compound Not Detected
35 Nitrobenzene	77	Compound Not Detected.
41 Isophorone	82	Compound Not Detected.
42 2-Nitrophenol	139	Compound Not Detected
43 2,4-Dimethylphenol	107	Compound Not Detected
44 bis (2-Chloroethoxy) methane	93	Compound Not Detected
48 2,4-Dichlorophenol	162	Compound Not Detected.
49 Benzoic Acid	122	Compound Not Detected.
50 1,2,4-Trichlorobenzene	180	Compound Not Detected.
51 Naphthalene	128	Compound Not Detected
52 4-Chloroaniline	127	Compound Not Detected
56 Hexachlorobutadiene	224	Compound Not Detected
59 4-Chloro-3-Methylphenol	107	Compound Not Detected.
62 2-Methylnaphthalene	142	Compound Not Detected.
205 1-Methylnaphthalene	142	Compound Not Detected
64 Hexachlorocyclopentadiene	236	Compound Not Detected.
66 2,4,6-Trichlorophenol	196	Compound Not Detected.
67 2,4,5-Trichlorophenol	196	Compound Not Detected
70 2-Chloronaphthalene	162	Compound Not Detected
73 2-Nitroaniline	65	Compound Not Detected
76 Dimethylphthalate	163	Compound Not Detected.
78 2,6-Dinitrotoluene	165	Compound Not Detected
79 Acenaphthylene	152	Compound Not Detected
81 3-Nitroaniline	138	Compound Not Detected
82 Acenaphthene	153	Compound Not Detected
83 2,4-Dinitrophenol	184	Compound Not Detected.
85 4-Nitrophenol	109	Compound Not Detected.
86 Dibenzofuran	168	Compound Not Detected.
87 2,4-Dinitrotoluene	165	Compound Not Detected.
91 2,3,5,6-Tetrachlorophenol	232	Compound Not Detected.
88 2,3,4,6-Tetrachlorophenol	232	Compound Not Detected
93 Diethylphthalate	149	Compound Not Detected
94 Fluorene	166	Compound Not Detected.
95 4-Chlorophenyl-phenylether		Compound Not Detected.
96 4-Nitroaniline	138	Compound Not Detected.
98 4,6-Dinitro-2-methylphenol		Compound Not Detected
99 N-Nitrosodiphenylamine	169	Compound Not Detected.
100 1,2-Diphenylhydrazine	77	Compound Not Detected
106 4-Bromophenyl-phenylether	248	Compound Not Detected
107 Hexachlorobenzene	283	Compound Not Detected.
111 Pentachlorophenol	265	Compound Not Detected

2016

Data File: \\Qpitpa02\D\chem\722.i\052600.b\F0526012.D Report Date: 26-May-2000 17:00

Compounds				CONCENTRATIONS
115 Phenanthrene 178 Compound Not Detected 116 Anthracene 178 Compound Not Detected. 119 Carbazole 167 Compound Not Detected. 120 Di-n-Butylphthalate 169 Compound Not Detected. 123 Pluoranthene 202 Compound Not Detected. 124 Benzidine 184 Compound Not Detected. 125 Pyrene 202 Compound Not Detected. 131 Butylbenzylphthalate 149 Compound Not Detected. 133 3,3'-Dichlorobenzidine 252 Compound Not Detected. 136 Benzo(a) Anthracene 228 Compound Not Detected. 137 Chrysene 228 Compound Not Detected. 139 bis (2-ethylhexyl) Phthalate 149 Compound Not Detected. 140 Di-n-octylphthalate 149 Compound Not Detected. 141 Benzo(b) fluoranthene 252 Compound Not Detected. 142 Benzo(b) fluoranthene 252 Compound Not Detected. 143 Benzo(a) pyrene 252 Compound Not Detected. 144 Benzo(b) fluoranthene 252 Compound Not Detected. 145 Benzo(a) pyrene 276 Compound Not Detected. 150 Dibenz (a, h) anthracene 278 Compound Not Detected. 151 Benzo (g, h, i) perylene 276 Compound Not Detected. 152 Benzo (g, h, i) perylene 276 Compound Not Detected. 153 Benzo (g, h, i) perylene 276 Compound Not Detected. 154 Nitrobenzene-d5 82 5640 5.634 (0.867) 116804 68.3265 34.2 155 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 156 Texphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44.2 158 2-Fluorophenol 112 3.680 3.657 (0.738) 106091 84.1703 42.1 159 2,4,6-Tribromophenol 330 11.255 11.243 (0.879) 42985 103.340 51.7		QUANT SIG		ON-COLUMN FINAL
115 Phenanthrene 178 Compound Not Detected 116 Anthracene 178 Compound Not Detected. 119 Carbazole 167 Compound Not Detected. 120 Di-n-Butylphthalate 149 Compound Not Detected. 123 Fluoranthene 202 Compound Not Detected. 124 Benzidine 184 Compound Not Detected. 125 Pyrene 202 Compound Not Detected. 131 Butylbenzylphthalate 149 Compound Not Detected. 133 Sutylbenzylphthalate 149 Compound Not Detected. 134 Benzo(a) Anthracene 228 Compound Not Detected. 135 3,3'-Dichlorobenzidine 252 Compound Not Detected. 137 Chrysene 228 Compound Not Detected. 138 Benzo(a) Anthracene 228 Compound Not Detected. 140 Di-n-octylphthalate 149 Compound Not Detected. 141 Benzo(b) fluoranthene 252 Compound Not Detected. 142 Benzo(k) fluoranthene 252 Compound Not Detected. 143 Benzo(a) pyrene 252 Compound Not Detected. 144 Benzo(b) fluoranthene 252 Compound Not Detected. 145 Benzo(a) pyrene 252 Compound Not Detected. 146 Benzo(a) pyrene 252 Compound Not Detected. 147 Benzo(b) fluoranthene 252 Compound Not Detected. 148 Benzo(a) pyrene 250 Compound Not Detected. 149 Indeno(1,2,3-cd) pyrene 276 Compound Not Detected. 150 Dibenz (a,h) anthracene 278 Compound Not Detected. 151 Benzo(g,h,i) perylene 276 Compound Not Detected. 152 Sib 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 \$155 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 \$155 7-Phenol-d5 99 4.689 4.689 4.689 (0.869) 169701 46.5844 23.3 \$157 Phenol-d5 99 4.689 4.689 6.0869 109701 46.5844 23.3 \$157 Phenol-d5 99 4.689 4.689 7.0.738 106091 84.1703 42.1 \$150 2-4,4,6-Tribromophenol 112 3.680 3.657 (0.738) 106091 84.1703 42.1 \$150 2-4,4,6-Tribromophenol 112 3.680 3.657 (0.738) 106091 84.1703 42.1 \$150 2-4,4,6-Tribromophenol 112 3.680 3.657 (0.738) 106091 84.1703 42.1 \$150 2-4,4,6-Tribromophenol 112 3.680 3.657 (0.738) 106091 84.1703 42.1 \$150 2-4,4,6-Tribromophenol 112 3.680 3.657 (0.738) 106091 84.1703 42.1 \$150 2-4,4,6-Tribromophenol 112 3.680 3.657 (0.738) 106091 84.1703 42.1 \$150 2-4,4,6-Tribromophenol 112 3.680 3.657 (0.738) 106091	Compounds	MASS	RT EXP RT REL RT RESPONSE	(NG) (ug/L)
116 Anthracene 178 Compound Not Detected. 119 Carbazole 167 Compound Not Detected. 120 Di-n-Butylphthalate 149 Compound Not Detected. 121 Fluoranthene 202 Compound Not Detected. 122 Fluoranthene 202 Compound Not Detected. 123 Fluoranthene 202 Compound Not Detected. 124 Benzidine 184 Compound Not Detected. 125 Pyrene 202 Compound Not Detected. 131 Butylbenzylphthalate 149 Compound Not Detected. 133 Butylbenzylphthalate 252 Compound Not Detected. 134 Benzo(a) Anthracene 228 Compound Not Detected. 135 Benzo(a) Anthracene 228 Compound Not Detected. 139 bis (2-ethylhexyl) Phthalate 149 Compound Not Detected. 140 Di-n-octylphthalate 149 Compound Not Detected. 141 Benzo(b) fluoranthene 252 Compound Not Detected. 142 Benzo(k) fluoranthene 252 Compound Not Detected. 143 Benzo(a) pyrene 252 Compound Not Detected. 144 Benzo(a) pyrene 252 Compound Not Detected. 145 Indeno(1,2,3-cd) pyrene 276 Compound Not Detected. 149 Indeno(1,2,3-cd) pyrene 276 Compound Not Detected. 150 Dibenz(a,h) anthracene 278 Compound Not Detected. 151 Benzo(g,h,i) perylene 276 Compound Not Detected. 152 Sib Sib Sib Sib Sib Sib Sib Sib Sib Sib		종보보고	下法 计显示性线 网络西西西 左线电路回路	日本ながらある ロロニコポコギ
119 Carbazole 167 Compound Not Detected. 120 Di-n-Butylphthalate 149 Compound Not Detected. 123 Fluoranthene 202 Compound Not Detected. 124 Benzidine 184 Compound Not Detected. 125 Pyrene 202 Compound Not Detected. 136 Butylbenzylphthalate 149 Compound Not Detected. 137 Chrysene 228 Compound Not Detected. 138 Benzo(a)Anthracene 228 Compound Not Detected. 139 bis(2-ethylhexyl)Phthalate 149 Compound Not Detected. 130 Di-n-octylphthalate 149 Compound Not Detected. 140 Di-n-octylphthalate 149 Compound Not Detected. 141 Benzo(b)fluoranthene 252 Compound Not Detected. 142 Benzo(b)fluoranthene 252 Compound Not Detected. 143 Benzo(b)fluoranthene 252 Compound Not Detected. 144 Benzo(a)pyrene 255 Compound Not Detected. 145 Benzo(a)pyrene 276 Compound Not Detected. 150 Dibenz(a,h)anthracene 278 Compound Not Detected. 151 Benzo(g,h,i)perylene 276 Compound Not Detected. 152 Standard Not Detected. 153 Nitrobenzene-d5 82 5640 5.634 (0.867) 116804 68.3265 34.2 154 Nitrobenzene-d5 82 5640 5.634 (0.867) 116804 68.3265 34.2 155 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 156 Texphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44.2 159 2-Fluorophenol 112 3.680 3.657 (0.738) 106091 84.1703 42.1 159 2-Fluorophenol 120 3.680 3.657 (0.738) 106091 84.1703 42.1	115 Phenanthrene	178	Compound Not Detected	
120 Di-n-Butylphthalate	116 Anthracene	178	Compound Not Detected.	
123 Fluoranthene 202 Compound Not Detected 124 Benzidine 184 Compound Not Detected 125 Pyrene 202 Compound Not Detected 131 Butylbenzylphthalate 149 Compound Not Detected 133 3,3'-Dichlorobenzidine 252 Compound Not Detected 135 Benzo (a) Anthracene 228 Compound Not Detected 137 Chrysene 228 Compound Not Detected 139 bis (2-ethylhexyl) Phthalate 149 Compound Not Detected 140 Di-n-octylphthalate 149 Compound Not Detected 141 Benzo (b) fluoranthene 252 Compound Not Detected 142 Benzo (a) pyrene 252 Compound Not Detected 143 Benzo (a) pyrene 252 Compound Not Detected 144 Benzo (a) pyrene 252 Compound Not Detected 145 Dibenz (a, h) anthracene 278 Compound Not Detected 150 Dibenz (a, h) anthracene 278 Compound Not Detected 151 Benzo (g,h,i) perylene 276 Compound Not Detected 152 Sits 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 156 Terphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 157 Phenol-dS 99 4.689 4.672 (0.940) 188795 88.4121 44 2 158 2-Fluorophenol 112 3.680 3.657 (0.738) 106091 84.1703 42.1 159 2,4,6-Tribromophenol 330 11.255 11.243 (0.879) 42985 103.340 51.7	119 Carbazole	167	Compound Not Detected.	
124 Benzidine 184 Compound Not Detected 125 Pyrene 202 Compound Not Detected 131 Butylbenzylphthalate 149 Compound Not Detected 133 3,3'-Dichlorobenzidine 252 Compound Not Detected 136 Benzo (a) Anthracene 228 Compound Not Detected 137 Chrysene 228 Compound Not Detected 139 bis (2-ethylhexyl) Phthalate 149 Compound Not Detected 140 Di-n-octylphthalate 149 Compound Not Detected 141 Benzo (b) fluoranthene 252 Compound Not Detected 142 Benzo (k) fluoranthene 252 Compound Not Detected 143 Benzo (a) pyrene 252 Compound Not Detected 144 Benzo (a) pyrene 252 Compound Not Detected 149 Indeno (1, 2, 3-cd) pyrene 276 Compound Not Detected 150 Dibenz (a, h) anthracene 278 Compound Not Detected 151 Benzo (g, h, i) perylene 276 Compound Not Detected 152 Sitz - Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 156 Terphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44 2 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 159 2,4,6-Tribromophenol 330 11.255 11.243 (0.879) 42985 103.340 51.7	120 Di-n-Butylphthalate	149	Compound Not Detected.	
125 Pyrene 202 Compound Not Detected	123 Fluoranthene	202	Compound Not Detected	
131 Butylbenzylphthalate 149 Compound Not Detected. 135 3,3'-Dichlorobenzidine 252 Compound Not Detected. 136 Benzo(a) Anthracene 228 Compound Not Detected 137 Chrysene 228 Compound Not Detected 139 bis(2-ethylhexyl) Phthalate 149 Compound Not Detected. 140 Di-n-octylphthalate 149 Compound Not Detected 141 Benzo(b) fluoranthene 252 Compound Not Detected. 142 Benzo(k) fluoranthene 252 Compound Not Detected. 143 Benzo(a) pyrene 252 Compound Not Detected. 144 Benzo(a) pyrene 255 Compound Not Detected. 149 Indeno(1, 2, 3-cd) pyrene 276 Compound Not Detected. 150 Dibenz(a,h) anthracene 278 Compound Not Detected. 151 Benzo(g,h,i) perylene 276 Compound Not Detected. 5 154 Nitrobenzene-d5 82 5640 5.634 (0 867) 116804 68.3265 34.2 5 155 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 5 156 Terphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 5 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44 2 5 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 5 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	124 Benzidine	184	Compound Not Detected	
135 3,3'-Dichlorobenzidine 252 Compound Not Detected 136 Benzo(a) Anthracene 228 Compound Not Detected 137 Chrysene 228 Compound Not Detected 139 bis(2-ethylhexyl) Phthalate 149 Compound Not Detected 140 Di-n-octylphthalate 149 Compound Not Detected 141 Benzo(b) fluoranthene 252 Compound Not Detected 142 Benzo(k) fluoranthene 252 Compound Not Detected 143 Benzo(a) pyrene 252 Compound Not Detected 144 Benzo(a) pyrene 252 Compound Not Detected 145 Benzo(a) pyrene 276 Compound Not Detected 150 Dibenz(a,h) anthracene 278 Compound Not Detected 151 Benzo(g,h,i) perylene 276 Compound Not Detected 152 S-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 156 Texphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44.2 158 2-Fluorophenol 112 3.680 3.657 (0.738) 106091 84.1703 42.1 159 2,4,6-Tribromophenol 330 11.255 11.243 (0.879) 42985 103.340 51.7	125 Pyrene	202	Compound Not Detected.	
136 Benzo(a) Anthracene 228 Compound Not Detected 137 Chrysene 228 Compound Not Detected 139 bis(2-ethylhexyl) Phthalate 149 Compound Not Detected. 140 Di-n-octylphthalate 149 Compound Not Detected 141 Benzo(b) fluoranthene 252 Compound Not Detected. 142 Benzo(k) fluoranthene 252 Compound Not Detected. 146 Benzo(a) pyrene 252 Compound Not Detected. 149 Indeno(1,2,3-cd) pyrene 276 Compound Not Detected. 150 Dibenz(a,h) anthracene 278 Compound Not Detected. 151 Benzo(g,h,i) perylene 276 Compound Not Detected. 152 Nitrobenzene-d5 82 5 640 5.634 (0 867) 116804 68.3265 34.2 153 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 156 Terphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44 2 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	131 Butylbenzylphthalate	149	Compound Not Detected.	
137 Chrysene 228 Compound Not Detected 139 bis(2-ethylhexyl)Phthalate 149 Compound Not Detected. 140 Di-n-octylphthalate 149 Compound Not Detected 141 Benzo(b)fluoranthene 252 Compound Not Detected. 142 Benzo(k)fluoranthene 252 Compound Not Detected. 146 Benzo(a)pyrene 252 Compound Not Detected. 149 Indeno(1,2,3-cd)pyrene 276 Compound Not Detected. 150 Dibenz(a,h)anthracene 278 Compound Not Detected 151 Benzo(g,h,i)perylene 276 Compound Not Detected. 5 154 Nitrobenzene-d5 82 5 640 5.634 (0 867) 116804 68.3265 34.2 \$ 155 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 \$ 156 Terphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 \$ 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44 2 \$ 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 \$ 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	135 3,3'-Dichlorobenzidine	252	Compound Not Detected.	
139 bis(2-ethylhexyl)Phthalate 149	136 Benzo(a) Anthracene	228	Compound Not Detected	
140 Di-n-octylphthalate 149 Compound Not Detected 141 Benzo (b) fluoranthene 252 Compound Not Detected. 142 Benzo (k) fluoranthene 252 Compound Not Detected. 146 Benzo (a) pyrene 252 Compound Not Detected. 149 Indeno (1, 2, 3-cd) pyrene 276 Compound Not Detected. 150 Dibenz (a, h) anthracene 278 Compound Not Detected. 151 Benzo (g, h, i) perylene 276 Compound Not Detected. \$ 154 Nitrobenzene-d5 82 5 640 5.634 (0 867) 116804 68.3265 34.2 \$ 155 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 \$ 156 Terphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 \$ 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44 \$ 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 \$ 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	137 Chrysene	228	Compound Not Detected	
141 Benzo (b) fluoranthene 252 Compound Not Detected. 142 Benzo (k) fluoranthene 252 Compound Not Detected. 146 Benzo (a) pyrene 252 Compound Not Detected. 149 Indeno (1,2,3-cd) pyrene 276 Compound Not Detected. 150 Dibenz (a, h) anthracene 278 Compound Not Detected. 151 Benzo (g,h,i) perylene 276 Compound Not Detected. \$ 154 Nitrobenzene-d5 82 5 640 5.634 (0 867) 116804 68.3265 34.2 \$ 155 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 \$ 156 Terphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 \$ 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44 \$ 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 \$ 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	139 bis(2-ethylhexyl)Phthalate	149	Compound Not Detected.	
142 Benzo (k) fluoranthene 252 Compound Not Detected. 146 Benzo (a) pyrene 252 Compound Not Detected. 149 Indeno (1,2,3-cd) pyrene 276 Compound Not Detected. 150 Dibenz (a, h) anthracene 278 Compound Not Detected. 151 Benzo (g,h,i) perylene 276 Compound Not Detected. \$ 154 Nitrobenzene-d5 82 5 640 5.634 (0 867) 116804 68.3265 34.2 \$ 155 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 \$ 156 Terphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 \$ 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44 \$ 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 \$ 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	140 Di-n-octylphthalate	149	Compound Not Detected	
146 Benzo(a) pyrene 252 Compound Not Detected. 149 Indeno(1,2,3-cd) pyrene 276 Compound Not Detected. 150 Dibenz(a,h) anthracene 278 Compound Not Detected. 151 Benzo(g,h,i) perylene 276 Compound Not Detected. \$ 154 Mitrobenzene-d5 82 5 640 5.634 (0 867) 116804 68.3265 34.2 \$ 155 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 \$ 156 Terphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 \$ 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44 \$ 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 \$ 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	141 Benzo(b) fluoranthene	252	Compound Not Detected.	
149 Indeno(1,2,3-cd)pyrene 276 Compound Not Detected. 150 Dibenz(a,h)anthracene 278 Compound Not Detected. 151 Benzo(g,h,i)perylene 276 Compound Not Detected. \$ 154 Nitrobenzene-d5 82 5 640 5.634 (0 867) 116804 68.3265 34.2 \$ 155 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 \$ 156 Terphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 \$ 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44.2 \$ 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 \$ 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	142 Benzo(k)fluoranthene	252	Compound Not Detected.	
150 Dibenz(a,h)anthracene 278 Compound Not Detected 151 Benzo(g,h,i)perylene 276 Compound Not Detected. \$ 154 Nitrobenzene-d5 82 5 640 5.634 (0 867) 116804 68.3265 34.2 \$ 155 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 \$ 156 Terphenyl-d14 244 16.870 16.868 (0.869) 169701 46.5844 23.3 \$ 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44.2 \$ 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 \$ 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	146 Benzo(a)pyrene	252	Compound Not Detected.	
151 Benzo(g,h,i)perylene 276 Compound Not Detected. \$ 154 Nitrobenzene-d5	149 Indeno(1,2,3-cd)pyrene	276	Compound Not Detected.	
\$ 154 Nitrobenzene-d5	150 Dibenz(a,h)anthracene	278	Compound Not Detected	
\$ 155 2-Fluorobiphenyl 172 8.237 8.230 (0.866) 187056 59.8611 29.9 \$ 156 Terphenyl-dl4 244 16.870 16.868 (0.869) 169701 46.5844 23.3 \$ 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44 2 \$ 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 \$ 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	151 Benzo(g,h,i)perylene	276	Compound Not Detected.	
\$ 156 Terphenyl-dl4 24 16.870 16.868 (0.869) 169701 46.5844 23.3 \$ 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44 2 \$ 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 \$ 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	\$ 154 Nitrobenzene-d5	82	5 640 5.634 (0 867) 116804	68.3265 34.2
\$ 157 Phenol-d5 99 4.689 4.672 (0.940) 148795 88.4121 44 2 \$ 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 \$ 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	\$ 155 2-Fluorobiphenyl	172	8.237 8.230 (0.866) 187056	59.8611 29.9
\$ 158 2-Fluorophenol 112 3 680 3.657 (0.738) 106091 84.1703 42.1 \$ 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	\$ 156 Terphenyl-d14	244	16.870 16.868 (0.869) 169701	46.5844 23.3
\$ 159 2,4,6-Tribromophenol 330 11.255 11 243 (0 879) 42985 103.340 51.7	\$ 157 Phenol-d5	99	4.689 4.672 (0.940) 148795	88.4121 44 2
•	\$ 158 2-Fluorophenol	112	3 680 3.657 (0.738) 106091	84.1703 42.1
\$ 186 2-Chlorophenol-d4 132 4.791 4.779 (0.960) 132596 104.182 52.1	\$ 159 2,4,6-Tribromophenol	330	11.255 11 243 (0 879) 42985	103.340 51.7
	\$ 186 2-Chlorophenol-d4	132	4.791 4.779 (0.960) 132596	104.182 52.1
\$ 187 1,2-Dichlorobenzene-d4 152 5.192 5 185 (1.041) 56464 60 5999 30 3	\$ 187 1,2-Dichlorobenzene-d4	152	5.192 5 185 (1.041) 56464	60 5999 30 3

QC Flag Legend

Q - Qualifier signal failed the ratio test.

GC/MS SEMIVOLATILE CALIBRATION DATA

Lab Name: STL PITTSBURGH

Contract:

Lab Code·

Case No. SAS No.: SDG No.: _

Instrument ID: 722 Calibration Date(s): 05/26/00

"Min RRF for SPCC(#) = 0.050

Max %RSD for CCC(*) = 30.0%

LAB FILE ID: RRF1	=F0526	0C2.D	RRF	2 =F05	260C1.D		
RRF3 =F05260C3.D RRF4	=F0526		RRF		260C5.D		I I
					_		,
COMPOUND	10000		•	J			- &
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ					RRF5		RSD
Phenol	= == == = * 1.837	=== = ≡ 1 803	1 901	1 075	 1.931	1 007	=====
bis(2-Chloroethyl)ether	1 1 315	1 1 330	1 1 3/3	1 1 204	1.324	(1.887)	1.8
2-Chlorophenol	1 1 432	1 1 161	1 1 460	1 1.294	1.324 1.441	1.321	
1,3-Dichlorobenzene	1 1 537	1 1 553	1 1 55/	1 1 500	1.544	1.439	
1,4-Dichlorobenzene	* 1 555	1 1 500	1 500:	1 1 541	1.544 1.588		
1,2-Dichlorobenzene	1.355	1 1 400	1 470	1 1.541	1.588 1.487		
2-Methylphenol	1 1 227	1 1 25C	1.4/9	1.454	1.487		
2,2'-oxybis(1-Chloropropane	1 2 220	1 1.200	1.∠00 2.040:	1.416	1.258	•	
4-Methylphenol		2.299 1.979	1 270	2.182	2.238	2.241	1.9
Hexachloroethane	1 1.324	1 0 640	1 1.3/0	1.346	1.387	1.360	
Nitrobenzene	_	0.049	0.643	0.629	0.648	0.6391	
Isophorone] 0.415 0.665	0.438	0.442	0.439	0.446	•	
2-Nitrophenol	_ 0.003	0.704	0.710	0.699	0.707		
2,4-Dimethylphenol	* 0.187	0.200	0.203	0.203	0.204	0.199	3.6
bis (2-Chloroethoxy) methane	1 0.347	0.381	0.388	0.386	0.398	0.3801	5.1
N-Nitroso-di-n-propylamine		0.411	0.415	0.408	0.412		
2,4-Dichlorophenol		1.075	1.057	1.024	1.050	1.052	1.8
1,2,4-Trichlorobenzene	* 0.275	0.290	0.2941	0.292	0.294	0.289	2.8
Naphthalene	1 0.2981	0.306	0.315	0.3091	0.3121	0.3081	2.1
4-Chloroaniline	1.087	1.129	1.132	1.124		,	1.9
	0.411	0.436	0.442	0.434	0.442	0.433	2.9
Hexachlorobutadiene	* 0.177	0.184	0.187	0.187	0.192	0.185	2.9
4-Chloro-3-Methylphenol	* 0.315	0.336	0.340	0.340]	0.344	0.335	3.4
2-Methylnaphthalene	0.711	0.742	0.752	0.745	0.753	0.741	2.3
Hexachlorocyclopentadiene	# 0.3601	0.408	0.4101	0.415	0.427	0.4041	6.4
2,4,6-Trichlorophenol	* 0.3381	0.363	0.360	0.358	0.362	0.356	2.9
2,4,5-Trichlorophenol	0.3551	0.387	0.3821	0.382	0.387	0.379	3.5
2-Chloronaphthalene	1.118	1.175	1.166	1.176	1.209	1.169	2.8
2-Nitroaniline	0.3991	0.4361	0.433	0.431	0.441	0.4281	3.8
Dimethylphthalate	1.327	1.384	1.372	1.364	1.367	1.363	1.6
Acenaphthylene	1.807	1.910	1.894	1.881	1.886	1.8761	2.1
2,6-Dinitrotoluene	1 0.2761	0.304	0.302	0.303	0.3051	0.2981	4.1
3-Nitroaniline	1 0.3321	0.3561	0.354	0.3551	0.3601	0.3511	3.2
Acenaphthene	* 1.165	1.195	1.196	1.1771	1.1991	1.1861	1.3
2,4-Dinitrophenol	# 0.118	0.177	0.187	0.198	0.2091	0.1781	20.0#
-Nitrophenol	# 0.243	0.285]	0.2941	0.3031	0.319	0.2891	9.8#
Dibenzofuran	1.654	1.696	1.689	1.681	1.695	1.6831	1.0
2,4-Dinitrotoluene	0.387	0.415	0.416	0.4161	0.4201	0.4111	3.3
	l i	i	í		1		!

page 1 of 3

FORM VI SV-1

1/87 Rev.

Lab Name: STL PITTSBURGH Contract:

Lab Code: Case No.: SAS No.: SDG No.:

Instrument ID: 722 Calibration Date(s): 05/26/00

Min RRF for SPCC(#) = 0.050 Max %RSD for CCC(*) = 30.0%

LAB FILE ID. RRF1	=F0526	0C2.D	RRF	2 =F05	260C1.D		
RRF3 =F05260C3.D RRF4	=F0526	0C4.D	RRF!	5 = F 05	260C5.D	İ	
	Ī	1	1	1	1		 1
COMPOUND	•	•		•	RRF5	RRF	RSD
Diethylphthalate	1.390	1.449	1.470	1.477	1.512	1.460	3.1
4-Chlorophenyl-phenylether_	0.617	0.641	0.636	0.628	0.641	0.633	1.6
Fluorene	1.361	1.402	1.384	1.384	1.415	1.389	1.5
4-Nitroaniline	0.323	0.351	0.352	0.352	0.354	0.346	3.8
4,6-Dinitro-2-methylphenol_	0.104	0.129	0.133	0.135	0.141	0.128	11.3
N-Nitrosodiphenylamıne (1)	* 0.537	0.534	0.533	0.535	0.546	0.537	1.0*
4-Bromophenyl-phenylether_	0.190	0.201	0.201	0.197	0.203	0.198	2.61
Hexachlorobenzene	0.204	0.216	0.212	0.211	0.219	0.212	2.71
Pentachlorophenol	# 0.071	0.105	0.115	0.120	0.132	0 109	21.2#
Phenanthrene	1.025	1.048	1.053	1.036	1.069	1.046	1.6
Anthracene	1.036	1.074	1.073	1.063	1.084	1.066	1.7
Carbazole	0.956	0.982	0.990	0.977	1.008	0.983	1.9
Di-n-Butylphthalate	1.211	1.294	1.316	1.313	1.363	1.299	4.3
Fluoranthene	* 1.069	1.120	1.125	1.112	1.152	1.116	2.7*
Pyrene			1.201		-	1.191	3.01
Butylbenzylphthalate	0.579	0.615	0.6201	0.605		0.6071	2.7
3,3'-Dichlorobenzidine			0.424			0.4221	3.31
Benzo (a) Anthracene			1.134				1.7
Chrysene	0.974		1.003				1.8
bis (2-ethylhexyl) Phthalate			0.824		,		5.01
Di-n-octylphthalate	1.515				1.674	•	3.7*
Benzo (b) fluoranthene	1.261		1.262		•	•	5.6
Benzo(k) fluoranthene	1.283		1.407				7.1
Benzo (a) pyrene	1.105		1.191			•	3.4*
Indeno (1,2,3-cd) pyrene	1.349				1.621	-	6.71
Dibenz (a,h) anthracene			1.305		•	•	7.4
Benzo(g,h,i)perylene	1.156		1.282			1.274	6.5
Pyridine		-	1.363		•	1.339	1.7
N-Nitrosodimethylamine	•	•	0.772			0.757	2.01
Aniline			2.212			2.208	1.8
Benzyl Alcohol			0.980			0.9641	1.7
Benzoic Acid			0.194			0.181	
2,3,4,6-Tetrachlorophenol			0.306		-	0.3051	3.91
2,3,5,6-Tetrachlorophenol	•	•	0.303	-	•		5.51
1,2-Diphenylhydrazine					0.896	•	2.8
	1	·	J. 0041	1.0,0	0.050	0.073	۱ ۲۰۰۰
	·	,	'	'	'	'	'

(1) Cannot be separated from Diphenylamine

page 2 of 3

FORM VI SV-2

1/87 Rev.

Lab Name: STL PITTSBURGH Contract:

Lab Code: Case No.: SAS No.: SDG No.:

Instrument ID: 722 Calibration Date(s): 05/26/00

Min RRF for SPCC(#) = 0.050 Max %RSD for CCC(*) = 30.0%

LAB FILE ID: RRF1	=F0526	000 5	555				
RRF3 =F05260C3.D RRF4	=F0526		RRF: RRF!		260C1.D 260C5.D]	
				J -205	200C3.D	i	
COMPOUND	 RRF1	 RRF2	 			i	ક્ર
	•	•			RRF5	RRF =====	RSD
Benzidine	0.477	0.597	0.533	0.516	0.5051	0.5261	8.5
1-Methylnaphthalene	0.675	0.674	0.686	0.693	0.696	0.685	1.5
Nitrobenzene-d5	I 0.394	0.422	0.427	0.424	0 4331	0 4201	3.6
2-Fluorobiphenyl_	1.254	1.330	1.315	1.306	1.330	1.307	
Terphenyl-d14	0.903	0.968	0.9321	0.907	0.9071	0.9231	3.(
Phenol-d5	1.651	1.642	1.652	1.641	1 6881	1.655	1.2
2-Fluorophenol	1.248	1.236	1.242	1.223	1.2471	1.239	0.8
2,4,6-Tribromophenol	0.086	0.096	0.0981	0.100	0 1031	0.097	6.9
2-Chlorophenol-d4	1.260	1.261	1.243	1.2331	1 2601	1.251	1.0
1,2-Dichlorobenzene-d4	0.892	0.931	0.9261	0.8941	0.938	0 9161	2.4
	į į	1		1,00.	0.5501	0.5101	2.4
			i i		;	——:	
						'	-
				'	:		
]				'	 ¦	
	ı —— ı				;	<u>'</u>	
	ı—— i		:		'	 ¦·	
	!		i	i	'	 :-	
	1		i			;·	
	!		i	`	——;	'.	
			i		;	·'.	
		·		i	'.	 '-	
		i		;		 '-	
	·	i		i	'.		~~
	·	i	<u>'</u> i	'i	:		
	<u> </u>	;	<u>'</u> i	'	;.		
	i——i	:	<u>'</u>	'	—— <u>`</u>	 ¦-	
	i		——;	'.	———-¦.	 ¦-	
		i	 ;			 ¦-	
	;	'i	 ¦:	'	¦.	<u>'</u> -	
		 ¦	'.	¦	¦-		
		<u>'</u>	 '.		¦-	 {-	
	'	 '	 ¦·	 ¦·			
		 :	'.		¦-	!-	
······································	'	'	'.	·	I	/	

page 3 of 3

FORM VI SV-3

1/87 Rev

653 194
Data File: \Qpitpa02\D\chem\722.i\052600.b/F05260C5.D
Report Date: 05/26/2000

INITIAL CALIBRATION REPORT

Instrument ID: 722.i Lab File ID: F05260C5.D

Analysis Type: NONE

Injection Date: 26-MAY-2000 09:04

Lab Sample ID: sstd160
Method File: \\QPITPA02\D\chem\722.i\052600.b\

	<u> </u>
COMPOUND	%rsd
Benzo(a)pyrene	34
Indeno(1,2,3-cd)pyrene	67
Dibenz(a,h)anthracene	74
Benzo(g,h,ı)perylene	65
l	

The average of all %RSD's in the initial calibration is 3.8

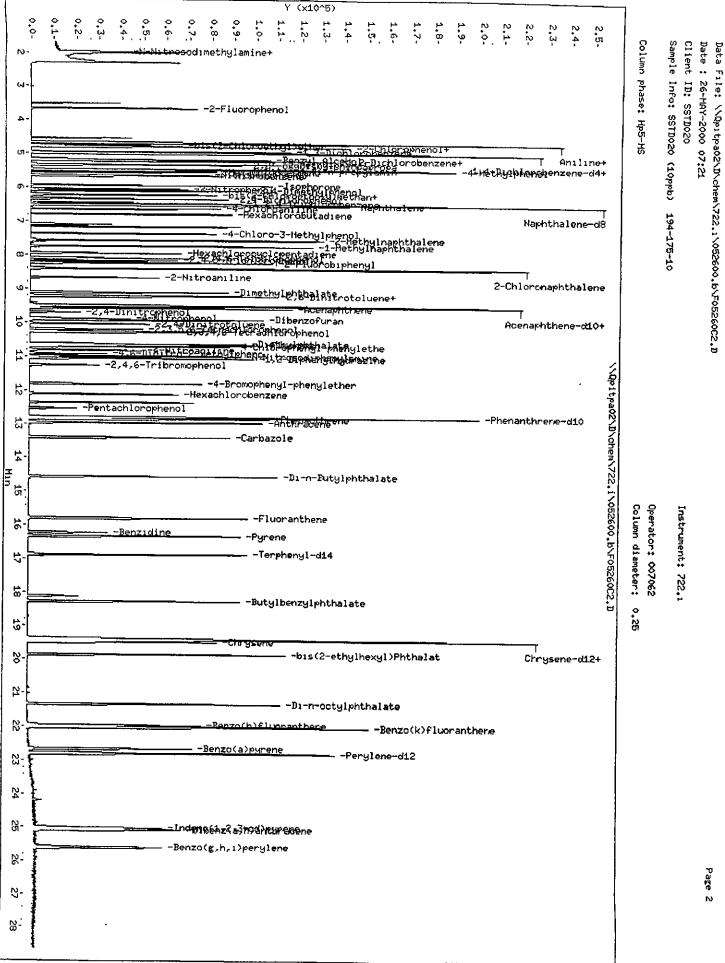
Data File: \\Qpitpa02\D\chem\722.i\052600.b/F05260C5.D
Report Date: 05/26/2000

INITIAL CALIBRATION REPORT

Instrument ID: 722.i Lab File ID: F05260C5.D Analysis Type: NONE

Injection Date: 26-MAY-2000 09:04
 Lab Sample ID: sstd160
Method File: \\QPITPA02\D\chem\722.i\052600.b\

COMPOUND	*R
共享 医医乳 以 以 二 以 四 以 如 多 名 名 名 合 点 点 法 法 法 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以	
Pyridine	
N-Nitrosodimethylamine	1
2-Fluorophenol	
Pheno1-d5	}
Aniline	1
Phenol	
bis(2-Chloroethyl)ether	1
2-Chlorophenol-d4	1
2-Chlorophenol	
1,3-Dichlorobenzene	1 :
1,4-Dichlorobenzene	} :
Benzyl Alcohol	1 :
1,2-Dichlorobenzene-d4	1 :
1,2-Dichlorobenzene	1 :
2-Methylphenol	[:
2.2 -oxybis(1-Chloropropane)	1
4-Methylphenol	1
N-Nitroso-di-n-propylamine	1
Hexachloroethane	1 1
Nitrobenzene-d5	1 3
Nitrobenzene] 2
Isophorone	2
2-Nitrophenol	1 3
2,4-Dimethylphenol	} 5
bis (2-Chloroethoxy) methane	2
Benzoic Acid	24
2,4-Dichlorophenol	[2
1,2,4-Trichlorobenzene	2
Naphthalene	1
4-Chloroaniline	2
Hexachlorobutadiene	2
4-Chloro-3-Methylphenol	1 3
2-Methylnaphthalene	! 2
1-Methylnaphthalene	1
Hexachlorocyclopentadiene	6
2,4,6-Trichlorophenol	1 2
2,4,5-Trichlorophenol	3
2-Fluorobiphenyl 2-Chloronaphthalene	2


INITIAL CALIBRATION REPORT

Instrument ID: 722.i Lab File ID: F05260C5.D

Analysis Type: NONE

Injection Date: 26-MAY-2000 09:04
 Lab Sample ID: sstd160
Method File: \\QPITPA02\D\chem\722.i\052600.b\

COMPOUND	%RS
2-Nitroaniline	=== ===≈= 3
Dimethylphthalate	1
Acenaphthylene	2
2,6-Dinitrotoluene	4
3-Nitroan:line	3
Acenaphthene	1
2,4-Dinitrophenol	26
4-Nitrophenol	9
Dibenzofuran	1
2,4-Dinitrotoluene	3
2,3,5,6-Tetrachlorophenol	5
2,3,4,6-Tetrachlorophenol	3
Diethylphthalate	3
Fluorene	1
4-Chlorophenyl-phenylether	1
4-Nitroaniline	3
4,6-Dinitro-2-methylphenol	11
N-Nitrosodiphenylamine	1
1,2-Diphenylhydrazine	2
2,4,6-Tribromophenol	6
4-Bromophenyl-phenylether	2
Hexachlorobenzene] 2
Pentachlorophenol	21
Phenanthrene	1
Anthracene	j 1
Carbazole	1
Di-n-Butylphthalate	4
Fluoranthene	2
Benzidine	8
Pyrene	3
Terphenyl-d14	3
Butylbenzylphthalate	2
Benzo (a) Anthracene	1
3,3'-Dichlorobenzidine	1 3
Chrysene	ĺ
bis(2-ethylhexyl)Phthalate	5
Di-n-octylphthalate	3
Benzo(b)fluoranthene	5
Benzo(k)fluoranthene	7

Report Date: 26-May-2000 07:58

STL Pittsburgh

Semivolatile REPORT SW-846 Method 8270

Data file : \\Qpitpa02\D\chem\722.i\052600.b\F05260C2.D

Lab Smp Id: sstd020 Client Smp ID: SSTD020

Inj Date : 26-MAY-2000 07:21

Operator: 007062 Inst ID: 722.i

Smp Info : SSTD020 (10ppb) 194-175-10

Misc Info: sstd020,052600.b,8270b.m,2-root.sub,1,1

Comment

Method : \\QPITPA02\D\chem\722.i\052600.b\8270b.m
Meth Date : 26-May-2000 07:58 bungardf Quant Type: Quant Type: ISTD

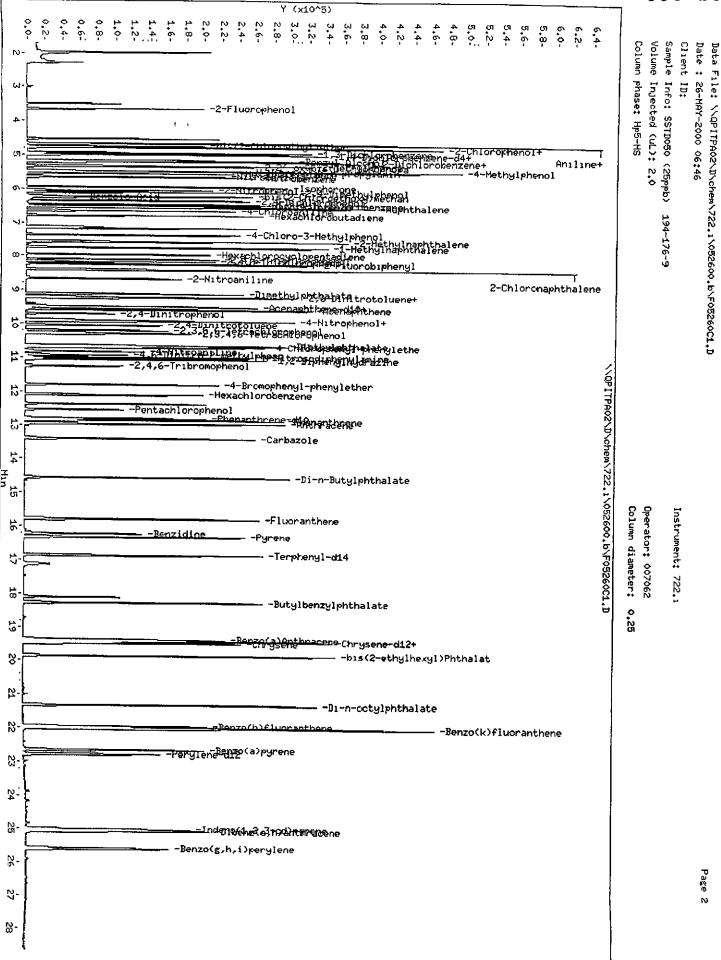
Cal Date : 26-MAY-2000 07:21 Cal File: F05260C2.D

Als bottle: 3 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 2-root.sub

Target Version: 4.03 Processing Host: PITPC083


		AMOUNTS						
		QUANT SIG CAL-AMT OF				ON-COL		
Compo	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
E222	- 今京立ニニニタユニ青田組化ニニンニニマ	2 K = =	==	=====	*****	## # 38882	======	&k=====
*]	1,4-Dichlorobenzene-d4	152	4 987	4 987	(1.000)	40355	40.0000	
* 2	Naphthalene-d8	136	6.515	6 515	(1.000)	158690	40.0000	
* 3	Acenaphthene-d10	164	9 522	9.522	(1.000)	90852	40 0000	
* 4	Phenanthrene-d10	188	12 813	12 813	(1.000)	172937	40 0000	
* 5	Chrysene-d12	240	19 437	19.437	(1.000)	158538	40.0000	
* 6	Perylene-d12	264	22 792	22 792	{1.000}	135587	40.0000	
10	N-Nitrosodimethylamine	7 4	1 979	1.979	(0.397)	14914	20 0000	19 6
9	Pyridine	79	1.995	1.995	(0.400)	27415	20 0000	20.3
21	Aniline	93	4 693	4 693	(0.941)	45230	20 0000	20 4
22	Phenol	94	4 688	4.688	(0.940)	37061	20 0000	19 7
23	bis(2-Chloroethyl)ether	93	4 757	4.757	(0.954)	26536	20 0000	19.9
24	2-Chlorophenol	128	4 805	4.805	(0.964)	28890	20 0000	19.8
26	1,3-Dichlorobenzene	146	4 949	4 949	(0.993)	31016	20 0000	19 9
27	1,4-Dichlorobenzene	146	5 008	5.008	(1.004)	31378	20 0000	19.8
28	1,2-Dichlorobenzene	146	5 211	5.211	(1,045)	29259	20 0000	19.7
29	Benzyl Alcohol	108	5 168	5.168	(1.036)	19192	20 0000	20.0
30	2-Methylphenol	108	5 318	5.318	(1.066)	24967	20 0000	198
31	2,2'-oxybis(1-Chloropropane)	45	5 345	5.345	(1.072)	45159	20 0000	19.7
32	N-Nitroso-di-n-propylamine	70	5 500	5.500	(1 103)	21262	20 0000	19.8
192	4-Methylphenol	108	5 478	5.478	(1.099)	26723	20 0000	19.6
34	Hexachloroethane	117	5 553	5.553	(1.114)	12598	20.0000	19 6
35	Nitrobenzene	77	5 665	5 665	(0 870)	32957	20 0000	19.5
41	Isophorone	82	5.938	5.938	(0 911)	52787	20 0000	19.4
42	2-Nitrophenol	139	6 050	6 050	(0.929)	14845	20 0000	19.3
43	2,4-Dimethylphenol	107	6 098	6.098	(0.936)	27564	20 0000	19.1
44	bis(2-Chloroethoxy)methane	93	6 221	6.221	(0 955)	31052	20 0000	19.5

2026

						AMOUN	TS
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
보드====대대 플린 방부====== 대 개플린 바르====== '	* # # #	**	=====		=======	======	*======
48 2,4-Dichlorophenol	162	6 344	6 344	(0 974)	21844	20 0000	19 5
49 Benzoic Acid	122	6 210	6 210	(0 953)	8146	20,0000	14.2
50 1,2,4-Trichlorobenzene	180	6 461	6 461	(0 992)	23626	20 0000	19 7
51 Naphthalene	128	6 541	6 541	(1 004)	86273	20.0000	19 6
52 4-Chloroaniline	127	6 643	6.643	(1 020)	32644	20 0000	19 4
56 Hexachlorobutadiene	225	6 798	6 798	(1 043)	14047	20.0000	19 6
59 4-Chloro-3-Methylphenol	107	7 369	7 369	(1 131)	25015	20.0000	19 4
62 2-Methylnaphthalene	142	7 567	7 567	(1 162)	56449	20 0000	19 6
205 1-Methylnaphthalene	142	7 749	7.749	(1 189)	53532	20 0000	20 0
64 Hexachlorocyclopentadiene	237	7 957	7 957	(0 836)	16339	20.0000	18.8
66 2,4,6-Trichlorophenol	196	8 101	8 101	{0.851}	15349	20.0000	19 3
67 2,4,5-Trichlorophenol	196	8.165	8 165	(0 858)	16138	20 0000	19 2
70 2-Chloronaphthalene	162	8 406	9 406	(0.883)	50792	20.0000	19 5
73 2-Nitroaniline	65	8.668	8.668	(0 910)	18144	20.0000	19,1
76 Dimethylphthalate	163	9 105	9 105	(0 956)	60280	20 0000	19 6
78 2,6-Dinitrotoluene	165	9 228	9.228	(0 969)	12562	20 0000	19 0
79 Acenaphthylene	152	9 207	9 207	(0 967)	82070	20 0000	19 4
81 3-Nitroanıline	138	9 495	9 495	(0.997)	15071	20.0000	19 3
82 Acenaphthene	153	9 586	9 586	(1 007)	52921	20.0000	19 7
83 2,4-Dinitrophenol	184	9.709	9.709	(1 020)	5351	20 0000	16 0
85 4-Nitrophenol	109	9 880	9.880	(1 038)	11048	20.0000	18 4
86 Dibenzofuran	168	9.918	9 918	(1.042)	75114	20 0000	19.7
87 2,4-Dinitrotoluene	165	10.040	10 040	(1 054)	17568	20 0000	19.3
91 2,3,5,6-Tetrachlorophenol	232	10 201	10 201	(1 071)	12526	20 0000	19.2
88 2,3,4,6-Tetrachlorophenol	232	10 291	10 291	(1 081)	12998	20 0000	19 4
93 Diethylphthalate	149	10.633	10.633	(1 117)	63131	20.0000	19 6
94 Fluorene	166	10.665	10 665	(1 120)	61815	20.0000	19.7
95 4-Chlorophenyl-phenylether	204	10 708	10 708	(1 125)	28026	20.0000	19.6
96 4-Nitroaniline	138	10 820	10 820	(1 136)	14689	20 0000	19.2
98 4,6-Dinitro-2-methylphenol	198	10.916	10.916	(0 852)	8958	20.0000	17 8
99 N-Nitrosodiphenylamine	169	10 991	10.991	(0 858)	46461	20.0000	20 0
100 1,2-Diphenylhydrazine	77	11.055	11 055	(0.863)	71901	20.0000	19 5
106 4-Bromophenyl-phenylether	248	11.809	11 809	(0.922)	16437	20 0000	19 4
107 Hexachlorobenzene	284	12 108	12 108	(0 945)	17657	20 0000	19 4
ll1 Pentachlorophenol	266	12 546	12 546	(0 979)	6178	20 0000	16 2
115 Phenanthrene	178	12.866	12 866	(1 004)	88619	20.0000	19 8
116 Anthracene	178	12.968	12 968	(1.012)	89565	20 0000	19 6
119 Carbazole	167	13.417	13 417	(1.047)	82707	20 0000	19.7
120 Di-n-Butylphthalate	149	14 560	14 560	(1.136)	104726	20 0000	19.3
123 Fluoranthene	202	15.799	15 799	(1 233)	92418	20 0000	19.5
124 Benzidine	184	16 227	16 227	(0 835)	37803	20 0000	17.8
125 Pyrene	202	16.333	16 333	(0 840)	94343	20.0000	19.5
131 Butylbenzylphthalate	149	18 294	18.294	(0 941)	45871	20.0000	19 4
135 3,3'-Dichlorobenzidine	252	19 448	19 448	(1.001)	31490	20 0000	19.3
136 Benzo(a)Anthracene	228	19.394	19.394	(0.998)	86651	20.0000	19 6
137 Chrysene	228	19 496	19 496	(1.003)	77211	20 0000	19 5
139 bis(2-ethylhexyl)Phthalate	149	19 870	19.870	(1 022)	58722	20.0000	18 8

Data File: \\Qpitpa02\D\chem\722.i\052600.b\F05260C2.D Report Date: 26-May-2000 07:58

							NUOMA	TS		
		QUANT SIG					CAL-AMT	ON-COL		
Comp	pounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)		
3222		====	==	*====		=======	== = ====			
14	10 Di-n-octylphthalate	149	21 334	21 334	(0.936)	102736	20 0000	19 5		
14	11 Benzo(b)fluoranthene	252	21.969	21 969	(0.964)	85518	20 0000	20 2		
1.4	12 Benzo(k)fluoranthene	252	22.017	22.017	(0.966)	86971	20 0000	19 4		
14	16 Benzo(a)pyrene	252	22 658	22.658	(0 994)	74918	20 0000	19 5		
14	9 Indeno(1,2,3-cd)pyrene	276	25 020	25 020	(1 098)	91479	20 0000	19 1		
15	0 Dibenz(a,h)anthracene	278	25.073	25.073 ((1.100)	79495	20 0000	19 1		
15	l Benzo(g,h,ı)perylene	276	25.591	25.591 ((1 123)	78361	20 0000	19.3		
\$ 15	4 Nitrobenzene-d5	82	5 644	5 644 ((0 866)	31297	20 0000	19 3		
\$ 15	5 2-Fluorobiphenyl	172	8 240	8 240 ((0.865)	56957	20 0000	19.4		
\$ 15	6 Terphenyl-d14	244	16 873	16.873 ((0.868)	71559	20 0000	19 3		
\$ 15	7 Phenol-d5	99	4 677	4.677 ((0.938)	33319	20 0000	20 0		
\$ 15	8 2~Fluorophenol	112	3 667	3 667 ((0.735)	25186	20 0000	20.1		
\$ 15	9 2,4,6-Tribromophenol	330	11.253	11.253 (0 878)	7401	20 0000	18 8		
\$ 18	6 2-Chlorophenol-d4	132	4.789	4 789 (0 960)	25422	20 0000	20.0		
\$ 18	7 1,2-Dichlorobenzene-d4	152	5 195	5 195 (1 042)	17989	20.0000	19.6		

Data File: \\Qpitpa02\D\chem\722.i\052600.b\F05260C1.D Report Date: 26-May-2000 07:24

STL Pittsburgh

Semivolatile REPORT SW-846 Method 8270

Data file : \\Qpitpa02\D\chem\722.i\052600.b\F05260C1.D

Lab Smp Id: sstd050 Client Smp ID: SSTD050

Inj Date : 26-MAY-2000 06:46

Operator: 007062 Inst ID: 722.i

Smp Info : SSTD050 (25ppb) 194-176-9

Misc Info: sstd050,052600.b,8270b.m,2-root.sub,1,2

Comment

Method : \\QPITPA02\D\chem\722.i\052600.b\8270b.m
Meth Date : 26-May-2000 07:24 bungardf Quant Type: Quant Type: ISTD

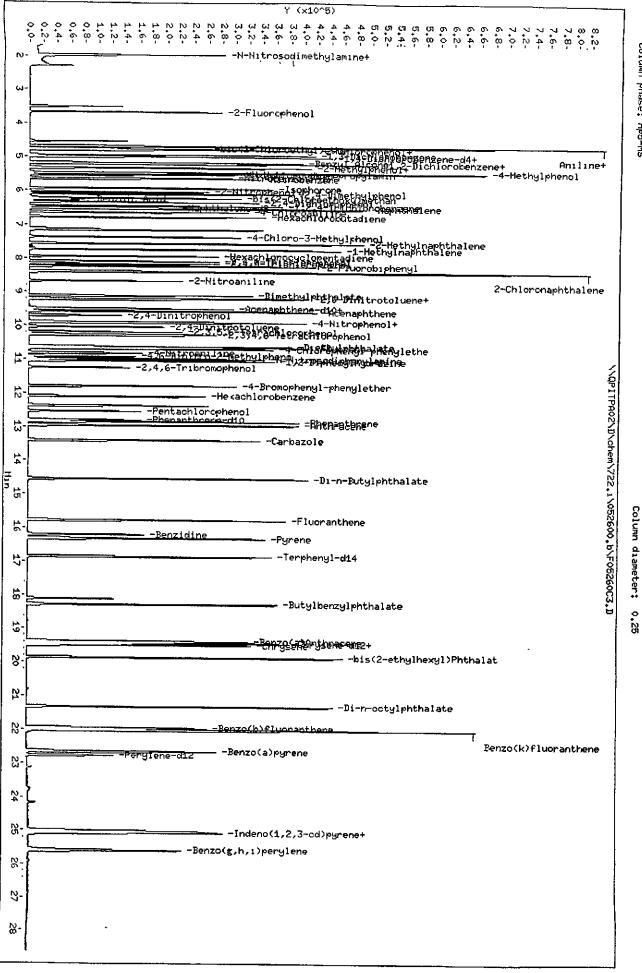
Cal Date : 19-MAY-2000 12:12 Cal File: F05190C5.D

Als bottle: 2 Calibration Sample, Level: 2

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: 2-root.sub

Target Version: 4.03 Processing Host: PITPC083


							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Comp	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
====	======================================	====	==	=====	~=====	****		
*	1 1,4-Dichlorobenzene-d4	152	4.977	4 977	(1 000)	43718	40.0000	
*	2 Naphthalene-d8	136	6,505	6 505	(1.000)	167887	40.0000	
*	3 Acenaphthene-d10	164	9 512	9.512	(1.000)	95217	40.0000	
*	4 Phenanthrene-d10	188	12 803	12.803	(1.000)	179488	40 0000	
*	5 Chrysene-d12	240	19,427	19.427	(1 000)	160460	40.0000	
*	6 Perylene-d12	264	22 782	22 782	(1.000)	147531	40.0000	
1	0 N-Nitrosodimethylamine	74	1 958	1.958	(0.394)	41947	50 0000	51 6
	9 Pyridine	79	1.969	1 969	(0 396)	71697	50.0000	50.3
2	1 Anılıne	93	4 683	4 683	(0.941)	117437	50 0000	49.5
2	2 Phenol	94	4 683	4.683	(0.941)	103472	50.0000	51 1
2	3 bis(2-Chloroethyl)ether	93	4 752	4.752	(0.955)	72689	50.0000	49 6
2	4 2-Chlorophenol	128	4 795	4.795	(0 964)	79842	50.0000	51.3
2	6 1,3-Dichlorobenzene	146	4 939	4 939	(0.992)	84877	50.0000	50 4
2	7 1,4-Dichlorobenzene	146	4.998	4 998	(1.004)	86862	50 0000	50 6
2	8 1,2-Dichlorobenzene	146	5.201	5.201	(1.045)	81349	50.0000	51 1
2	9 Benzyl Alcohol	108	5.164	5.164	(1 038)	51721	50.0000	49.6
3	0 2-Methylphenol	108	5 313	5 313	(1.068)	68621	50.0000	50.3
3	1 2,2'-oxybis(1-Chloropropane)	45	5.335	5 335	(1 072)	125651	50 0000	52.8
3	2 N-Nitroso-di-n-propylamine	70	5.495	5.495	(1 104)	58747	50.0000	52.5
19	2 4-Methylphenol	108	5.473	5.473	(1 100)	75055	50.0000	51.0
3	4 Hexachloroethane	117	5.543	5.543	(1 114)	35485	50.0000	52.4
3	5 Nitrobenzene	77	5 655	5 655	(0.869)	91937	50 0000	51.6
4	1 Isophorone	82	5.933	5 933	(0 912)	147669	50 0000	50.7
4.	2 2-Nitrophenol	139	6.040	6 040	(0.929)	41983	50 0000	49.7
4	3 2,4-Dimethylphenol	107	6.093	6 093	(0.937)	79994	50 0000	50.5
4	4 bis(2-Chloroethoxy)methane	93	6 216	6 216	(0.956)	86193	50 0000	50.1

Page 2

					AMOU	NTS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(NG)	(NG)
	겉목판무	==	t==== seq t==	*=====	======	=====
48 2,4-Dichlorophenol	162	6,339	6.339 (0 975)	60923	50 0000	50 6
49 Benzoic Acid	122	6 253	6 253 (0 961)	39349	50 0000	90 8
50 1,2,4-Trichlorobenzene	180	6 451	6 451 (0 992)	64269	50.0000	50 2
51 Naphthalene	128	6 531	6 531 (1 004)	236848	50.0000	50 £
52 4-Chloroaniline	127	6 638	6 638 (1 021)	91595	50 0000	50 2
56 Hexachlorobutadiene	225	6 788	6 788 (1 044)	38666	50 0000	51 9
59 4-Chloro-3-Methylphenol	107	7 365	7.365 (1 132)	70441	50.0000	50 8
62 2-Methylnaphthalene	142	7 562	7 562 (1 163)	155754	50 0000	50 8
205 1-Methylnaphthalene	142	7.739	7 739 (1 190)	141425	50 0000	49 8
64 Hexachlorocyclopentadiene	237	7.947	7.947 (0 835)	48504	50.0000	51 4
66 2,4,6-Trichlorophenol	196	8 091	8 091 (0.851)	43182	50 0000	51.0
67 2,4,5-Trichlorophenol	196	8 161	8.161 (0 858)	46030	50 0000	50.6
70 2-Chloronaphthalene	162	8 401	B.401 (0.883)	139832	50.0000	51 2
73 2-Nitroaniline	65	8 663	8 663 (0.911)	51883	50 0000	52 2
76 Dimethylphthalare	163	9 106	9 106 (0 957)	164728	50 0000	50.5
78 2,6-Dinitrotoluene	165	9 229	9.229 (0 970)	36211	50 0000	50.2
79 Acenaphthylene	152	9.202	9 202 (0 967)	227327	50 0000	50.4
81 3-Nitroaniline	138	9 496	9.496 (0.998)	42428	50 0000	49 1
82 Acenaphthene	153	9 576	9.576 (1 007)	142236	50.0000	50 7
83 2,4-Dinitrophenol	184	9 699	9 699 (1.020)	21073	50.0000	53 6
85 4-Nitrophenol	109	9 886	9.886 (1.039)	33925	50.0000	
86 Dibenzofuran	168	9.913	9.913 (1 042)	201911	50,0000	52 8
87 2,4-Dinitrotoluene	165	10.041	10 041 (1 056)	49397	50.0000	50 7
91 2,3,5,6-Tetrachlorophenol	232	10.191	10.191 (1 071)	35418	50.0000	49 2
88 2,3,4,6-Tetrachlorophenol	232	10.287	10 287 (1 081)	36244		45.9
93 Diethylphthalate	149	10.629	10.629 (1 117)	172495	50.0000 50 0000	48 5
94 Fluorene	166	10 655	10.655 (1 120)	166813	50.0000	49 8
95 4-Chlorophenyl-phenylether	204	10 698	10 698 (1.125)	76246	50 0000	51.0
96 4-Nitroanıline	138	10.821	10.821 (1.138)	41746	50 0000	51 3
98 4,6-Dinitro-2-methylphenol	198	10.917	10 917 (0 853)	28967	50 0000	48 1
99 N-Nitrosodiphenylamine	169	10.992	10 992 (0 859)	119882	50.0000	50 4
100 1,2-Diphenylhydrazıne	77	11.045	11.045 (0 863)	196609		50.3
106 4-Bromophenyl-phenylether	248	11.799	11 799 (0.922)	45147	50.0000 50.0000	52 5
107 Hexachlorobenzene	284	12.098	12 098 (0 945)	48540	50.0000	52.5
111 Pentachlorophenol	266	12.541	12.541 (0.980)	23525	50.0000	52.0
115 Phenanthrene	178	12.862	12.862 (1 005)	235181		34.9
116 Anthracene	178	12.963	12 963 (1 013)	241061	50 0000	50 5
119 Carbazole	167	13 407	13 407 (1 047)	220244	50 000 0	50.4
120 Di-n-Butylphthalate	149		14.550 (1 136)	290336	50.0000	48 8
123 Fluoranthene	202		15.789 (1.233)	251184	50.0000	48.8
124 Benzidine	184	16 217	16.217 (0.835)	119716	50.0000 50.0000	49 5
125 Pyrene	202		16.329 (0.841)	249744		53 2 53 1
131 Butylbenzylphthalate	149		18 284 (0.941)	123418	50 0000	53.1
135 3,3'-Dichlorobenzidine	252		19.443 (1.001)	85626	50 0000	49 6
136 Benzo(a)Anthracene	228		19 384 (0.998)	228806	50.0000 50 0000	51.2
137 Chrysene	228		19 491 (1 003)	204466		50.6
139 bis(2-ethylhexyl)Phthalate	149		19 860 (1 022)	166726	50.0000 50.0000	50 6
				244,20	30.0000	49 1

Data File: \\Qpitpa02\D\chem\722.i\052600.b\F05260C1.D Report Date: 26-May-2000 07:24

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(NG)	(NG)
	3 = 4 =	==	=======		-======	335555
140 Di-n-octylphthalate	149	21 329	21 329 (0 936)	292671	50 0000	48.3
141 Benzo(b)fluoranthene	252	21 965	21 965 (0 964)	227296	50 0000	48.8
142 Benzo(k) fluoranthene	252	22 023	22 023 (0 967)	250978	50.0000	51 4
146 Benzo(a)pyrene	252	22 659	22 659 (0 995)	213540	50 0000	50.0
149 Indeno(1,2,3-cd)pyrene	276	25 020	25 020 (1 098)	271442	50 0000	48.6
150 Dibenz(a,h)anthracene	278	25 063	25 063 (1.100)	235932	50 0000	49 2
151 Benzo(g,h,i)perylene	276	25 603	25 603 (1 124)	229113	50.0000	48 6
\$ 154 Nitrobenzene-d5	82	5 634	5 634 (0.866)	88575	50 0000	51 6
\$ 155 2-Fluorobiphenyl	172	8.230	8 230 (0 865)	158277	50 0000	51.2
\$ 156 Terphenyl-d14	244	16 868	16.968 (0 868)	194241	50.0000	53 9
\$ 157 Phenol-d5	99	4 672	4.672 (0 939)	89731	50 0000	50 З
\$ 158 2-Fluorophenol	112	3.657	3 657 (0 735)	67559	50.0000	49.3
\$ 159 2,4,6-Tribromophenol	330	11.243	11 243 (0 878)	21578	50.0000	48 7
\$ 186 2-Chlorophenol-d4	132	4.779	4.779 (0.960)	68900	50.0000	50 6
\$ 187 1,2-Dichlorobenzene-d4	152	5 185	5.185 (1 042)	50863	50 0000	51.2

Semivolatile REPORT SW-846 Method 8270

Data file : \\Qpitpa02\D\chem\722.i\052600.b\F05260C3.D

Lab Smp Id: sstd080 Client Smp ID: SSTD080

Inj Date : 26-MAY-2000 07:55

Operator : 007062 Inst ID: 722.i

Smp Info : SSTD080 (40ppb) 194-175-12

Misc Info: sstd080,052600.b,8270b.m,2-root.sub,1,3

Comment :

Method : \\QPITPA02\D\chem\722.i\052600.b\8270b.m

Meth Date: 26-May-2000 08:27 bungardf Quant Type: ISTD

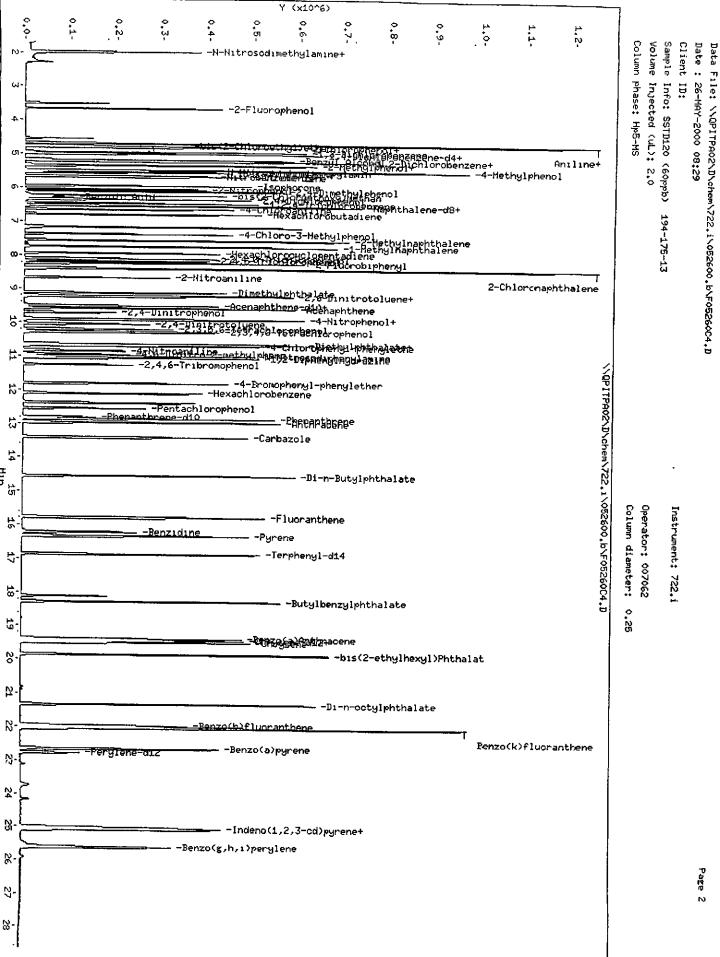
Als bottle: 4 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 2-root.sub

Target Version: 4.03
Processing Host: PITPC083

									AMOUN	TS.	
			QUANT SIG					CAI	- AMT	ON	-COL
Co	mpound	ls	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
* 6	=====	B	====	==	***		*======	===		==	=====
*	11,	4-Dichlorobenzene-d4	152	4.984	4.984	(1 000)	35803	40	0000		
*	2 Na	phthalene-d8	136	6 507	6.507	(1 000)	135750	40	0000		
*	3 Ac	enaphthene-d10	164	9.515	9 515	(1 000)	78657	40.	0000		
*	4 Ph	enanthrene-d10	188	12.805	12.805	(1 000)	148175	40	0000		
*	5 Ch	rysene-d12	240	19 424	19.424	(1 000)	138515	40	0000		
*	6 Pe	rylene-d12	264	22 774	22.774	(1 000)	122843	40	0000		
	10 N-	Nitrosodimethylamine	74	1.977	1.977	(0 397)	55294	80.	0000		81.3
	9 Py	ridine	79	1 982	1.982	(0 398)	97629	80.	0000		81.1
	21 An	ılıne	93	4 691	4.691	(0.941)	158393	80.	0000		80 4
	22 Ph	enol	94	4 691	4 691	(0 941)	136115	80.	0000		81 0
	23 bi	s(2-Chloroethyl)ether	93	4 760	4 760	(0.955)	96157	80	0000		80.8
	24 2-	Chlorophenol	128	4.903	4.803	(0.964)	104585	80	0000		80 5
	26 1,	3-Dichlorobenzene	146	4 947	4.947	(0 993)	111245	80	0000		80.3
	27 1,	4-Dichlorobenzene	146	5.000	5 000	(1.003)	113729	80.	0000		80 5
	28 1,	2-Dichlorobenzene	146	5.209	5 209	(1.045)	105912	80.	0000		80.4
	29 Bei	nzyl Alcohol	108	5.172	5 172	(1.038)	70210	80	0000		81.8
	30 2-6	Methylphenol	108	5 321	5 321	(1.068)	90681	80.	0000		80.8
	31 2,3	2'-oxybis(1-Chloropropane)	45	5.342	5 342	(1.072)	160936	80	0000		79.5
	32 N-1	Nitroso-di-n-propylamine	70	5.503	5 503	(1.104)	75663	80	0000		79 6
:	192 4-	Methylphenol	108	5.476	5.476	(1 099)	98108	во.	0000		80.8
	34 He:	xachloroethane	117	5 551	5.551	(1 114)	46020	80.	0000		80.5
	35 Nıt	trobenzene	77	5 663	5.663	(0 870)	119952	80.	0000		81.9
	41 Is	ophorone	82	5.941	5 941 ((0.913)	192771	80	0000		82.0
	42 2-1	Nitrophenol	139	6.042	6.042	(0.929)	55241	80.	0000		82.7
	43 2,4	4-Dimethylphenol	107	6.101	6.101 ((0 938)	105323	80.	0000		83.4
	44 bis	s(2-Chloroethoxy)methane	93	6 224	6.224 ((0 956)	112682	80	2000		81.8


STL Pittsburgh 2034

fbh to

BMOIDER

						AMOU	INTS
Comp	aunda	QUANT SIG				CAL-AMT	ON-COL
_	ounds	MASS	RT	EXP RT REL	RT RESPONSE	(NG)	(NG)
		****	==	######################################		70====	======
	8 2,4-Dichlorophenol	162	6.341	6.341 (0 9	75) 79961	80 0000	82 2
	9 Benzoic Acid	122	6 272	6 272 (0 9	64) 52568	80 0000	96 0
	0 1,2,4-Trichlorobenzene	180	6 454	6 454 (0.9	92) 85546	80 0000	82 3
•	1 Naphthalene	128	6 539	6 539 (1 0	05) 307475	80 0000	81 2
	2 4-Chloroaniline	127	6 641	6 641 (1 0	21) 119903	80 0000	82 2
	Hexachlorobutadiene	225	6 790	6 790 (1 0	44) 50677	80 0000	81 8
	4-Chloro-3-Methylphenol	107	7 372	7 372 (1 1	33) 92434	80 0000	82 4
	2 2-Methylnaphthalene	142	7 565	7.565 (1.10	63) 204150	80 0000	81 8
	5 1-Methylnaphthalene	142	7 741	7 741 (1 1		80 0000	80 9
	Hexachlorocyclopentadiene	237	7.944	7 944 (0.8	35) 64502	80 0000	83 6
6€	3 2,4,6-Trichlorophenol	196	8 094	8 094 (0 89		80.0000	81,5
67	7 2,4,5-Trichlorophenol	196	8 168	8.168 (0 89		80 0000	81.5
70	2-Chloronaphthalene	162	8 403	B 403 (0.88		80.0000	80 9
73	3 2-Nitroaniline	65	8.665	8 665 (0.9)	-	80.0000	82 0
76	Dimethylphthalate	163	9.109	9 109 (0 95		80 0000	82 U 80 6
78	2,6-Dinitrotoluene	165	9 232	9 232 (0 97		80 0000	
75	Acenaphthylene	152	9.205	9 205 (0.96		80.0000	82 0
81	. 3-Nitroaniline	138	9 499	9.499 (0.99			81.0
92	Acenaphthene	153	9 584	9.584 (1.00		80.0000	81 6
83	2,4-Dinitrophenol	184	9 707	9.707 (1 02		80 0000	80.7
	4-Nitrophenol	109	9 889	9 889 (1.03		80.0000	93 2
	Dibenzofuran	168	9.915			80 0000	85.8
87	2,4-Dinitrotoluene	165	10 044	9.915 (1 04		80 0000	90 4
	2,3,5,6-Tetrachlorophenol	232	10.193	10 044 (1 05		80 0000	82 0
	2,3,4,6-Tetrachlorophenol	232		10 193 (1 07		80.0000	83.0
	Diethylphthalate	149	10 295	10.295 (1 08		80 0000	81 9
	Fluorene	166	10 631	10.631 (1 11		80 0000	81.9
95		204	10.658	10.658 (1 12		60 0000	80 1
	4-Nitroaniline	138	10 701	10 701 (1 12		80 0000	80 6
	4,6-Dinitro-2-methylphenol		10 834	10 834 (1.13	-	80 0000	82.4
	N-Nitrosodiphenylamine	198	10.925	10 925 (0 85		80 0000	87 4
	1,2-Diphenylhydrazine	169	10.994	10 994 (0.85		80.0000	79.7
	4-Bromophenyl-phenylether	77	11.053	11 053 (0 86		80.0000	81 8
	Hexachlorobenzene	248	11.801	11 801 (0 92		80.0000	81.4
111		284	12 100	12.100 (0 94		80.0000	80 5
	Phenanthrene	266	12 544	12.544 (0 98		80.0000	94 7
	Anthracene	178	12 864	12 864 (1.00		80 0000	80 8
	Carbazole	178	12 966	12.966 (1.01)		80 0000	80 9
		167		13 409 (1 04		80 0000	81 2
	Di-n-Butylphthalate	149		14 552 (1.13		80.0000	82.7
	Fluoranthene	202		15 792 (1.23)	333295	80 0000	81 5
	Benzidine	184	16.219	· ·		80.0000	79 6
	Pyrene	202		16 331 (0 84)		80.0000	79 3
	Butylbenzylphthalate	149	18 281	18 281 (0 941	171681	80 0000	82 0
	3,3'-Dichlorobenzidine	252	19.440	19 440 (1 001	-	80 0000	81 5
	Benzo (a) Anthracene	228	19.387	19 387 (0 998	314103	80 0000	8 08
	Chrysene	228	19.494	19.494 (1 004	277808	80 0000	80 3
1.39	bis(2-ethylhexyl)Phthalate	149	19.857	19 857 (1 022	228249	80 0000	82 5

						AMOUN	TS .
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
======================================	====	22 =	======		======	D#4====	E======
140 Di-n-octylphthalate	149	21 326	21 326	(0 936)	401526	80 0000	82 8
141 Benzo (b) fluoranthene	252	21 967	21.967	(0 965)	309991	80 0000	80 6
142 Benzo(k)fluoranthene	252	22 026	22 026	(0 967)	345777	80 0000	83 4
146 Benzo(a)pyrene	252	22 662	22 562	(0 995)	292653	80 0000	82 8
149 Indeno(1,2,3-cd)pyrene	276	25.023	25,023	(1.099)	367598	80 0000	83 2
150 Dibenz(a,h)anthracene	278	25.071	25.071	(1.101)	320619	80 0000	83 4
151 Benzo(g,h,ı)perylene	276	25.605	25.605	(1 124)	314976	80 0000	83 6
\$ 154 Nitrobenzene-d5	82	5 642	5.642	(0 867)	116054	80 0000	82 5
\$ 155 2-Fluorobiphenyl	172	8 238	8 238	(0 866)	206930	80 0000	81.0
\$ 156 Terphenyl-d14	244	16 871	16.871	(0 869)	258273	80 0000	79 8
\$ 157 Phenol-d5	99	4 680	4.680	(0,939)	118265	80 0000	80 2
\$ 158 2-Fluorophenol	112	3 665	3 665	(0 735)	88941	80 0000	80 0
\$ 159 2,4,6-Tribromophenol	330	11 251	11 251	(0.879)	28908	80 0000	83 8
\$ 186 2-Chlorophenol-d4	132	4 787	4.787	(0 960)	89020	80 0000	79 3
\$ 187 1,2-Dichlorobenzene-d4	152	5 193	5.193	(1 042)	66346	80.0000	80 9

AMOUNTS

Data File: \\Qpitpa02\D\chem\722.i\052600.b\F05260C4.D

Report Date: 26-May-2000 09:12

STL Pittsburgh

Semivolatile REPORT SW-846 Method 8270

Data file : \\Qpitpa02\D\chem\722.i\052600.b\F05260C4.D

Lab Smp Id: sstd120 Client Smp ID: SSTD120

Inj Date : 26-MAY-2000 08:29

Operator : 007062 Inst ID: 722.i

Smp Info : SSTD120 (60ppb) 194-175-13

Misc Info: sstd120,052600.b,8270b.m,2-root.sub,1,4

Comment :

Method : \\QPITPA02\D\chem\722.i\052600.b\8270b.m

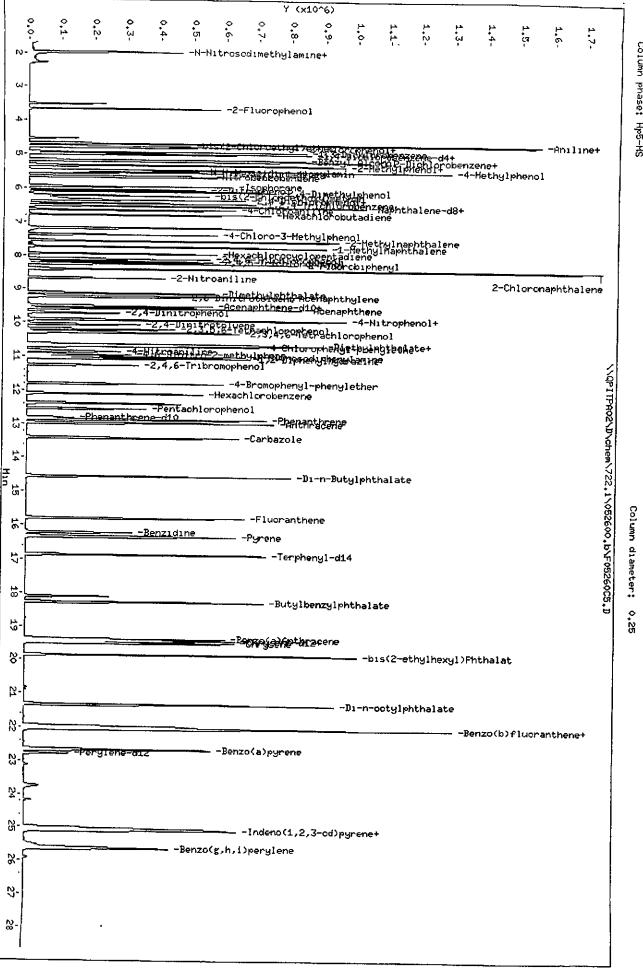
Meth Date: 26-May-2000 09:11 bungardf Quant Type: ISTD

Cal Date : 26-MAY-2000 08:29 Cal File: F05260C4.D

Als bottle: 5 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 2-root.sub


Target Version: 4.03
Processing Host: PITPC083

							AM	JUNTS
		QUANT SIG					CAL-AM	ON-COL
Compounds		MASS	RT	EXP RT	REL RT	RESPONSE	(NG	(NG)
	***********	====	==	======	202522	=======	======	=======
* 7	l 1,4-Dichlorobenzene-d4	152	4 984	4 984	(1.000)	35816	40.0000)
* 2	Naphthalene-dB	136	6 512	6 512	(1.000)	132779	40 0000	3
* 3	Acenaphthene-d10	164	9 515	9.515	(1.000)	76694	40.0000)
* 4	Phenanthrene-d10	188	12 805	12 805	(1 000)	145144	40 0000)
* 5	Chrysene-d12	240	19 430	19 430	(1 000)	138586	40 0000)
* 6	Perylene-d12	264	22.785	22.785	(1.000)	123988	40 0000)
10	N-Nitrosodimethylamine	74	1.982	1.982	(0.398)	79692	120.000	118
9	Pyridine	79	1 977	1 977	(0.397)	141942	120.000	118
21	. Anıline	93	4 691	4 691	(0 941)	235574	120.000	120
22	Phenol	94	4.696	4.696	(0.942)	201494	120.000	120
23	bis(2-Chloroethyl)ether	93	4.766	4.766	(0 956)	139033	120 000	118
24	2-Chlorophenol	128	4.803	4.803	(0.964)	150322	120.000	117
26	1,3-Dichlorobenzene	146	4 947	4.947	(0 993)	162191	120.000	118
27	1,4-Dichlorobenzene	146	5.006	5 006	(1 004)	165630	120 000	118
28	1,2-Dichlorobenzene	146	5.209	5.209	(1 045)	154089	120 000	118
29	Benzyl Alcohol	108	5.172	5.172	(1.038)	103312	120.000	120
30	2-Methylphenol	108	5,321	5 321	(1 068)	130670	120.000	117
31	2,2'-oxybis(1-Chloropropane)	45	5.342	5 342	(1.072)	234473	120 000	117
32	N-Nitroso-di-n-propylamine	70	5.508	5 508	(1.105)	109983	120,000	117
192	4-Methylphenol	108	5.481	5 481	(1.100)	144655	120 000	119
34	Hexachloroethane	117	5.551	5 551	(1.114)	67613	120 000	119
35	Nitrobenzene	77	5 663	5.663	(0.870)	174904	120 000	122
41	Isophorone	82	5 946	5 946	(0.913)	278303	120 000	121
42	2-Nitrophenol	139	6 048	6 048	(0.929)	81028	120 000	123
43	2,4-Dimethylphenol	107	6 101	6.101	(0 937)	153906	120.000	123
44	bis(2-Chloroethoxy)methane	93	6 224	6.224	(0 956)	162669	120.000	120

	OHAND GTO				AMOU	INTS
Compounds	QUANT SIG				CAL-AMT	ON-COL
	MASS	RT		L RT RESPONSE	(NG)	(NG)
48 2,4-Dichlorophenol	162	==			_	======
49 Benzoic Acid	122	6 347				122
50 1,2,4-Trichlorobenzene	180	6.299				146
51 Naphthalene	128	6 454				121
52 4-Chloroaniline		6 539	,	,		121
56 Hexachlorobutadiene	127 225	6 646			120 000	121
59 4-Chloro-3-Methylphenol		6 790	,-		120 000	122
62 2-Methylnaphthalene	107	7 378			120.000	123
205 1-Methylnaphthalene	142	7 565		-	120 000	121
64 Hexachlorocyclopentadiene	142	7 746			120 000	122
66 2,4,6-Trichlorophenol	237	7 949			120 000	125
67 2.4,5-Trichlorophenol	196	8 099	8 099 (0 8		120 000	121
70 2-Chloronaphthalene	196	8 174	8 174 (0.8		120 000	122
73 2-Nitroaniline	162	8.403	8.403 (0.8	-	120 000	122
	65	8 671	8 671 (0.9	99241	120 000	122
76 Dimethylphthalate	163	9 114	9 114 (0 9	958) 313767	120 000	120
78 2.6-Dinitrotoluene	165	9.237	9 237 (0 9	71) 69663	120 000	123
79 Acenaphthylene	152	9.205	9 205 (0 9	67) 432701	120 000	120
81 3-Nitroaniline	138	9 504	9 504 (0 9	199) 81751	120 000	122
82 Acenaphthene	153	9 584	9.584 (1 0	270912	120 000	119
83 2,4-Dinitrophenol	184	9 718	9 718 (1 0	21) 45442	120 000	139
85 4-Nitrophenol	109	9 899	9.899 (1 0	40) 69649	120 000	129
86 Dibenzofuran	168	9 921	9.921 (1 0	43) 386805	120.000	120
87 2,4-Dinitrotoluene	165	10 054	10 054 (1 0	57) 95649	120 000	122
91 2,3,5,6-Tetrachlorophenol	232	10 198	10 198 (1 0	72) 72468	120 000	127
88 2,3,4,6-Tetrachlorophenol	232	10.300	10.300 (1.0	83) 71874	120 000	124
93 Diethylphthalate	149	10.642	10 642 (1.1	18) 339850	120 000	122
94 Fluorene	166	10 669	10 669 (1.1	21) 318531	120 000	120
95 4-Chlorophenyl-phenylether	204	10.706	10 706 (1 1	25) 144524	120 000	120
96 4-Nitroaniline	138	10 845	10 845 (1 1	40) 81048	120 000	123
98 4,6-Dinitro-2-methylphenol	198	10 941	10 941 (0 8	54) 58823	120 000	129
99 N-Nitrosodiphenylamine	169	11.000	11 000 (0 8	59) 232899	120 000	120
100 1,2-Diphenylhydrazine	77	11.059	11.059 (0 8	64) 381052	120 000	121
106 4-Bromophenyl-phenylether	248	11 806	11.806 (0.9	22) 85806	120.000	120
107 Hexachlorobenzene	284	12.106	12.106 (0.9	45) 91960	120.000	120
111 Pentachlorophenol	266	12 549	12 549 (0.9	80) 52415	120 000	140
115 Phenanthrene	178	12 870	12.870 (1.0	05) 450970	120 000	119
116 Anthracene	178	12 976	12.976 (1.0	13) 462886	120 000	120
119 Carbazole	167	13 414	13.414 (1 0	48) 425491	120 000	120
120 Di-n-Butylphthalate	149	14 558	14 558 (1 1:	37) 571658	120 000	123
123 Fluoranthene	202	15 797	15 797 (1 2	34) 484379	120 000	121
124 Benzidine	184	16 224			120 000	117
125 Pyrene	202	16 337	16.337 (0 84	41) 483758	120 000	116
131 Butylbenzylphthalate	149	18 286	18 286 (0 94	11) 251622	120 000	120
135 3,3'-Dichlorobenzidine	252	19.446	19 446 (1 00	178450	120.000	123
, 136 Benzo(a)Anthracene	228	19.398	19 398 (0 99	98) 462006	120 000	119
137 Chrysene	228	19.499	19 499 (1.00	409089	120 000	119
139 bis(2-ethylhexyl)Phthalate	149	19.862	19 862 (1.02	22) 341896	120.000	123

Data File: \\Qpitpa02\D\chem\722.i\052600.b\F05260C4.D Report Date: 26-May-2000 09:12

						MOUA	ITS
		QUANT SIG				-CAL-AMT	ON-COL
Compo	punds	MASS	RT	EXP RT REL	RT RESPONSE	(NG)	(NG)
25033		====	==		== =======	======	****
140	Di-n-octylphthalate	149	21 331	21.331 (0 93	6) 603859	120 000	122
141	Benzo(b) fluoranthene	252	21.978	21 978 (0 96	5) 499967	120 000	126
142	Benzo(k)fluoranthene	252	22.042	22 042 (0 96	7) 498415	120 000	119
146	Benzo(a)pyrene	252	22 672	22 672 (0 99	5) 435880	120 000	122
149	Indeno(1,2,3-cd)pyrene	276	25 039	25 039 (1 09	9) 572671	120 000	126
150	Dibenz(a,h)anthracene	278	25 087	25 087 (1 10	1) 501088	120 000	127
151	Benzo(g,h,ı)perylene	276	25 621	25 621 (1 12	4) 487203	120.000	126
\$ 154	Nitrobenzene-d5	82	5 642	5 642 (0,86	6) 169008	120 000	122
\$ 155	2-Fluorobiphenyl	172	8 238	8 238 (0.86	6) 300470	120.000	120
\$ 156	Terphenyl-d14	244	16 871	16 871 (0.86	8) 377020	120 000	117
\$ 157	Phenol-d5	99	4 680	4.680 (0 93	9) 176313	120.000	120
\$ 158	2-Fluorophenol	112	3 665	3 665 (0.73	5) 131392	120.000	118
\$ 159	2,4,6-Tribromophenol	330	11 256	11.256 (0.87	9} 43360	120 000	126
\$ 186	2-Chlorophenol-d4	132	4 787	4.787 (0.96	0) 132518	120 000	118
\$ 187	1,2-Dichlorobenzene-d4	152	5 193	5 193 (1 04)	2) 96066	120 000	118

Page 1

Report Date: 26-May-2000 09:36

STL Pittsburgh

Semivolatile REPORT SW-846 Method 8270

Data file : \\Qpitpa02\D\chem\722.i\052600.b\F05260C5.D

Lab Smp Id: sstd160 Client Smp ID: SSTD160

Inj Date : 26-MAY-2000 09:04

Smp Info : SSTD160 (80ppb) 194-175-14

Misc Info: sstd160,052600.b,8270b.m,2-root.sub,1,5

Comment :

Method : \\QPITPA02\D\chem\722.i\052600.b\8270b.m

Meth Date: 26-May-2000 09:36 bungardf Quant Type: ISTD

Cal Date : 26-MAY-2000 09:04 Cal File: F05260C5.D

Als bottle: 6 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 2-root.sub

Target Version: 4.03
Processing Host: PITPC083

						AMOUNTS		
	QUANT SIG					CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)	
	====	==	===== 3		=======	¥V=3838	₽₹###	
* 1 1,4-Dichlorobenzene-d4	152	4 987	4.987	(1.000)	35904	40 0000		
* 2 Naphthalene-d8	136	6 514	6.514	(1.000)	134042	40.0000		
* 3 Acenaphthene-d10	164	9 517	9.517	(1.000)	77370	40.0000		
* 4 Phenanthrene-d10	188	12 813	12 813	(1.000)	143810	40 0000		
* 5 Chrysene-d12	240	19 437	19.437	(1.000)	142226	40 0000		
* 6 Perylene-d12	264	22 787	22.787	(1 000)	128115	40 0000		
10 N-Nitrosodimethylamine	74	1.990	1 990	(0 399)	109628	160 000	161 (A)	
9 Pyridine	79	1.979	1 979	(0 397)	192642	160 000	160 (A)	
21 Aniline	93	4 693	4 693	(0 941)	322346	160 000	163 (A)	
22 Phenol	94	4.698	4.698	(0.942)	277310	160 000	164 (A)	
23 bis(2-Chloroethyl)ether	93	4 768	4.768	(0.956)	190217	160.000	160 (A)	
24 2-Chlorophenol	128	4.805	4.805	(0.964)	206902	160.000	160 (A)	
26 1,3-Dichlorobenzene	146	4 949	4 949	(0.993)	221784	160.000	160 (A)	
27 1,4-Dichlorobenzene	146	5 008	5 008	(1.004)	228120	160 000	162 (A)	
28 1,2-Dichlorobenzene	146	5 211	5.211	(1.045)	213607	160,000	162 (A)	
29 Benzyl Alcohol	108	5 179	5.179	(1 039)	141033	160 000	163 (A)	
30 2-Methylphenol	108	5 329	5.329	(1.069)	180733	160 000	161 (A)	
31 2,2'-oxybis(1-Chloropropane	45	5 345	5 345	(1.072)	321418	160 000	160	
32 N-Nitroso-d1-n-propylamine	70	5.516	5.516	(1 106)	150735	160 000	160	
192 4-Methylphenol	108	5.489	5 489	(1.101)	199196	160 000	163 (A)	
34 Hexachloroethane	117	5.553	5 553	(1.114)	93128	160 000	162 (A)	
35 Nitrobenzene	77	5 670	5 670	(0 870)	239443	160 000	164 (A)	
41 Isophorone	82	5 948	5 948	(0.913)	3 7894 7	160.000	162 (A)	
42 2-Nitrophenol	139	6 050	6.050	(0.929)	109477	1.60.000	164 (A)	
43 2,4-Dimethylphenol	107	6 108	6.108	(0 938)	213667	160.000	168 (A)	
44 bis(2-Chloroethoxy)methane	93	6 231	6.231	(0.957)	221174	160 000	162 (A)	

Page 2

		ann				AMOUNTS		
Compo	nunda	QUANT SIG					CAL-AMT	ON-COL
Compo		MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
	**************************************	==== ;	==	=====	***===	*****	*****	* 在口具 家 章 智
	3 2,4-Dichlorophenol	162	6 349	6 349	(0 975)	157866	160 000	163 (A)
	Benzoic Acid	122	6 317	6 317	(0 970)	111474	160 000	184 (A)
	1,2,4-Trichlorobenzene	180	6 456	6 456	(0 991)	167220	160 000	162 (A)
	Naphthalene	128	6 541	6 541	(1 004)	612921	160 000	163 (A)
52		127	6 648	6 648	(1 021)	236863	160 000	163 (A)
56		225	6,792	6 792	(1 043)	102936	160 000	166 (A)
59		107	7 385	7 385	(1 134)	184627	160 000	164 (A)
	2-Methylnaphthalene	142	7.567	7 567	(1 162)	403785	160,000	163 (A)
	1-Methylnaphthalene	142	7 748	7 748	(1.189)	373339	160 000	163 (A)
	Hexachlorocyclopentadiene	237	7 952	7 952	(0.836)	132259	160 000	169 (A)
	2,4,6-Trichlorophenol	196	8.106	8 106	(0 852)	112092	160.000	163 (A)
	2,4,5-Trichlorophenol	196	8 176	8 176	(0 859)	119667	160 000	163 (A)
70	2-Chloronaphthalene	162	8 411	8.411	(0 894)	374059	160.000	165 (A)
73	2-Nitroaniline	65	8 678	8.678	(0 912)	136487	160 000	165 (A)
76	Dimethylphthalate	163	9 121	9.121	(0 958)	423108	160.000	160 (A)
78	2,6-Dinitrotoluene	165	9 244	9.244	(0 971)	94483	160.000	164 (A)
79	Acenaphthylene	152	9.212	9 212	(0.968)	583698	160 000	161 (A)
81	3-Nitroaniline	138	9 517	9.517	(1.000)	111584	160 000	164 (A)
82	Acenaphthene	153	9.591		(1 008)	371211	160 000	162 (A)
83	2,4-Dinitrophenol	184	9 725	9 725		64796	160 000	188 (A)
85	4-Nitrophenol	109	9.912	9 912		98674	160 000	177 (A)
86	Dibenzofuran	168	9.923	9 923		524590	160.000	
87	2,4-Dinitrotoluene	165	10.062	10.062		129889	160.000	161 (A)
91	2,3,5,6-Tetrachlorophenol	232	10 206	10 206		98199	160 000	164 (A)
88	2,3,4,6-Tetrachlorophenol	232	10 307	10.307		98089	160.000	168 (A)
93	Diethylphthalate	149	10.649	10 649 (467802	150.000	166 (A)
94	Fluorene	166	10.671	10.671		437846	160 000	166 (A)
95	4-Chlorophenyl-phenylether	204	10 708	10.708 (198397	160 000	163 (A)
	4-Nitroaniline	138	10 863	10.863 (109636		162 (A)
98	4,6-Dinitro-2-methylphenol	198	10.954	10 954 (81273	160 000	164 (A)
	N-Nitrosodiphenylamine	169	11.013	11 013 (314412	160 000	176 (A)
	1,2-Diphenylhydrazine	77	11.066	11 066 (515419	160.000	163 (A)
	4-Bromophenyl-phenylether	248	11.808	11 808 (116786	160 000 160 000	164 (A)
107	Hexachlorobenzene	284	12 113	12 113 (•	126187		164 (A)
111	Pentachlorophenol	266	12 556	12.556 (75944	160.000	165 (A)
	Phenanthrene	178	12.872	12.550 (614708	160 000	194 (A)
116	Anthracene	178	12.984	12.984 {			160 000	163 (A)
119	Carbazole	167	13 422	13.422 (623292	160 000	163 (A)
	Di-n-Butylphthalate	149	14.560			580037	160 000	164 (A)
	Fluoranthene	202	15.804	14.560 (784280	160 000	168 (A)
	Benzidine	184	16 226	15 804 (663001	160 000	165 (A)
	Pyrene	202		16 226 (287215	160 000	154
	Butylbenzylphthalate	149	16.344	16 344 (656705	160 000	155
	3,3'-Dichlorobenzidine	252	18 294	18 294 (349315	160 000	162 (A)
	Benzo (a) Anthracene	228	19.453	19 453 (245378	160 000	164 (A)
	Chrysene	228	19.400	19.400 (•	640120	160 000	161 (A)
	bis(2-ethylhexyl)Phthalate	149		19.512 (561510	160 000	159
	2 2	-17	A > 00%	19 864 (1 022)	479675	160 000	166 (A)

Data File: \\Qpitpa02\D\chem\722.1\052600.b\F05260C5.D Report Date: 26-May-2000 09:36

							AMOUN'	rs
		QUANT SIG					CAL-AMT	ON-COL
Comp	ounds	MASS	RT	EXP RT	RBL RT	RESPONSE	(NG)	(NG)
====	*********	= ==	==	-====	■ 無不多也元			=======
14	0 Di-n-octylphthalate	149	21 339	21 339	(0 936)	857732	160 000	167 (A)
14	1 Benzo(b)fluoranthene	252	21 996	21 996	(0.965)	722067	160 000	173 (A)
14	2 Benzo(k)fluoranthene	252	22 060	22 060	(0.968)	597836	160 000	142
14	6 Benzo(a)pyrene	252	22 685	22 685	(0 996)	619374	160 000	166 (A)
14	9 Indeno(1,2,3-cd)pyrene	276	25 057	25 057	(1 100)	830858	160.000	173 (A)
15	Dibenz(a,h)anthracene	278	25.100	25.100	(1 102)	736975	160 000	176 (A)
15	l Benzo(g,h,i)perylene	276	25 645	25 645	(1 125)	706880	160 000	173 (A)
\$ 15	Nitrobenzene-d5	82	5 649	5 649	(0.867)	232233	160 000	165 (A)
\$ 159	5 2-Fluorobiphenyl	172	8.245	8.245	(0.866)	411630	160 000	163 (A)
\$ 156	Terphenyl-d14	244	16 878	16.878	(0 868)	516115	160.000	157
\$ 15	7 Phenol-d5	99	4 687	4 687	(0.940)	242391	160 000	163 (A)
\$ 158	3 2-Fluorophenol	112	3.667	3 667	(0 735)	179080	160 000	161 (A)
\$ 159	2,4,6-Tribromophenol	330	11.258	11 258	(0 879)	59439	160.000	171 (A)
\$ 186	2-Chlorophenol-d4	132	4.789	4.789	(0.960)	180898	160 000	161 (A)
\$ 187	1,2-Dichlorobenzene-d4	152	5.195	5.195	(1.042)	134661	160 000	164 (A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

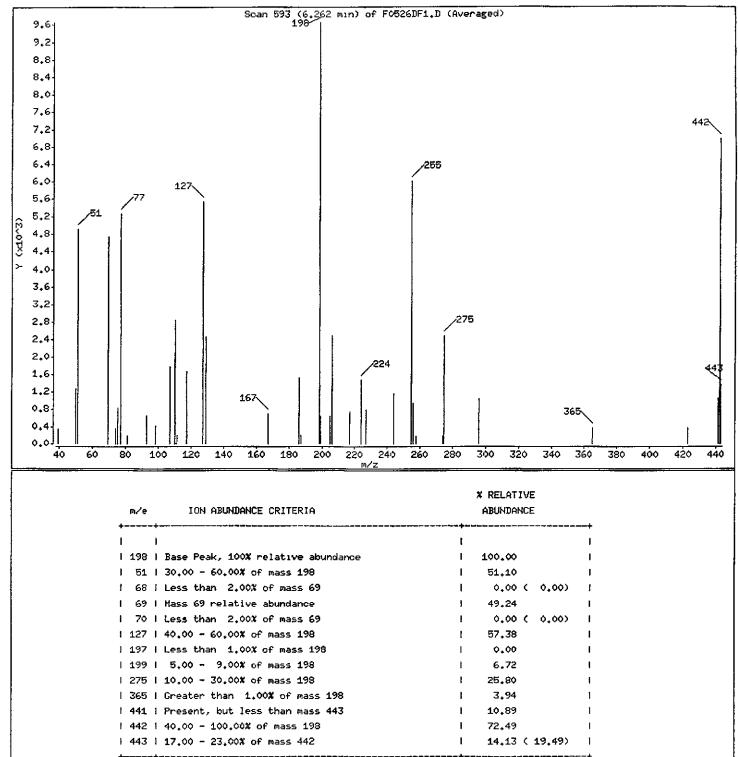
GC/MS SEMIVOLATILE QC DATA

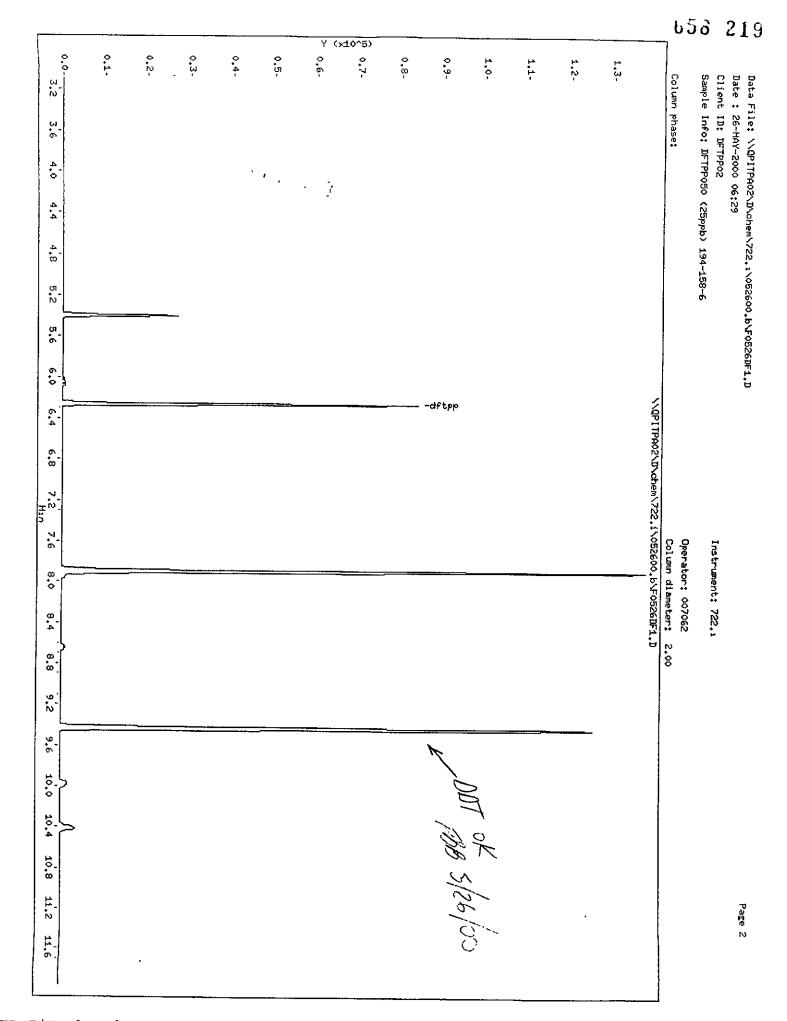
Data File: \\QPITPA02\D\chem\722.i\052600.b\F0526DF1.D

Date : 26-MAY-2000 06:29

Client ID: DFTPP02

Instrument: 722.1


Sample Info: DFTPP050 (25ppb) 194-158-6


Operator: 007062

Column phase:

Column diameter: 2.00

Page 4

Data File: \\QPITPAO2\D\chem\722.1\052600.b\F0526DF1.D

Date : 26-MAY-2000 06:29

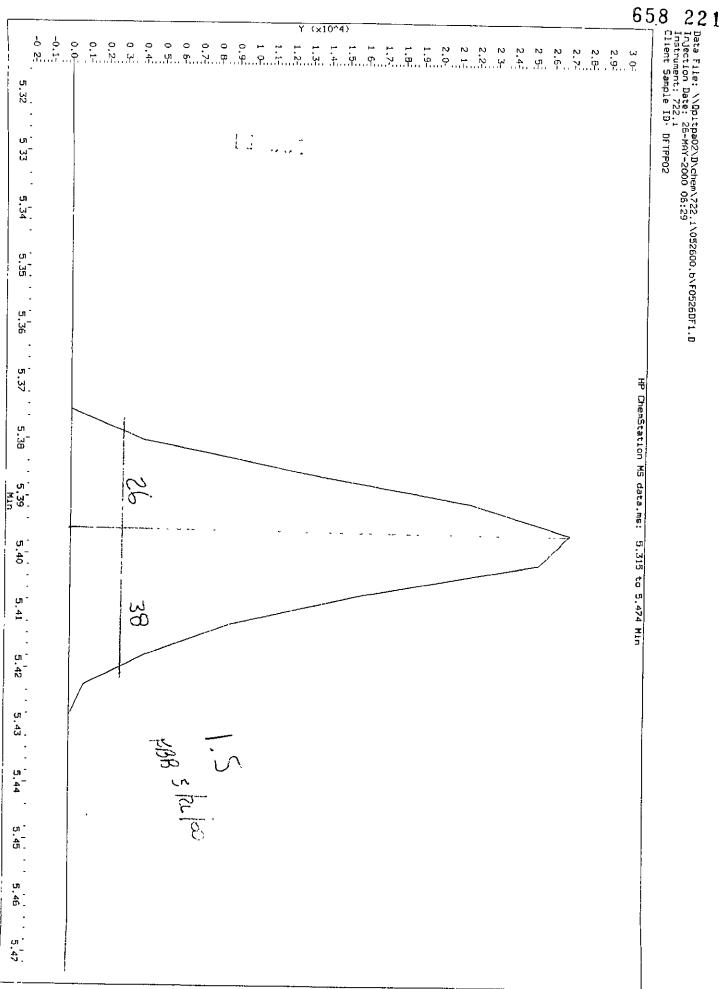
Client ID: DFTPP02

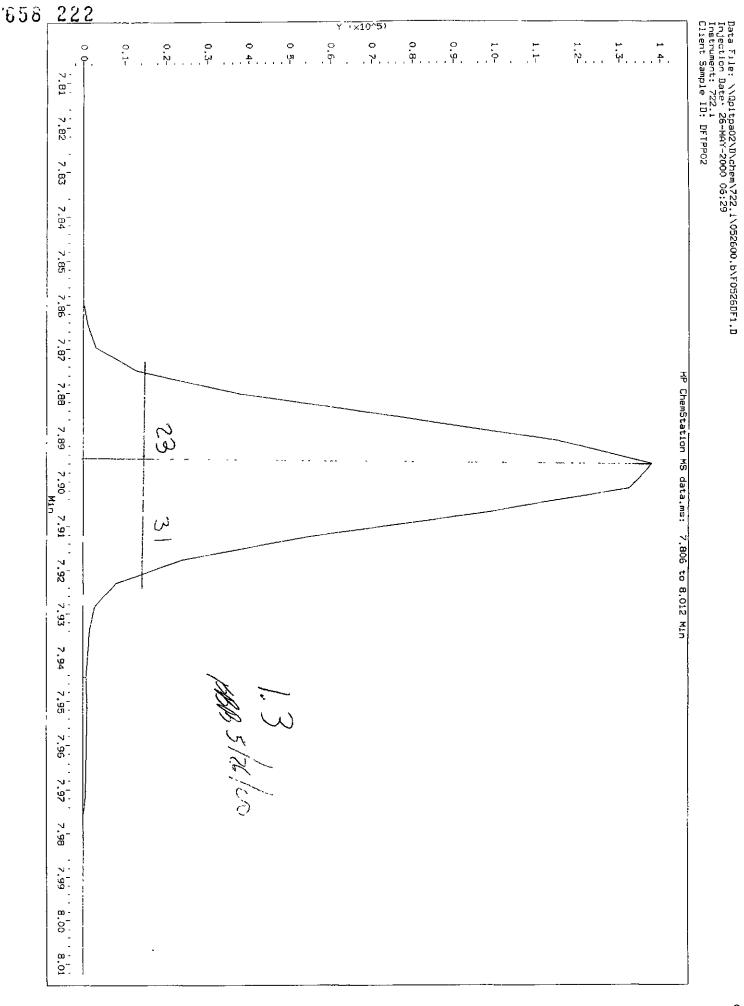
Instrument: 722.1

Sample Info: DFTPP050 (25ppb) 194-158-6

Operator: 007062

Column phase:


Column diameter: 2.00


Data File: F0526DF1.D

Spectrum: Scan 594 (6.262 min) of F0526DF1.D (Averaged)

Location of Maximum: 198.00 Number of points: 38

	m/z	Y		m/z	Y		m/z		Y		m/z		Y	
+-				407.00							274.00		180	
	39,00	306	•	107.00	1778	•	199.00		040	,	274,00		100	'
1	50.00	1264	ı	110,00	2832	1	205.00		644	i	275.00	2	2487	ı
1	51.00	4926	١	111.00	197	1	206,00	2	490	1	296,00	1	L034	ı
1	69,00	4747	ı	117.00	1665	١	217,00		741	I	365,00		380	1
1	74.00	344	t	127.00	5531	i	224.00	1	461	I	423.00		369	ŀ
+-		,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+		 	-+				-+				-+
1	75,00	811	ı	129.00	2463	Į	227,00		780	ţ	441.00	1	L050	1
1	77.00	52 7 1	ļ	167.00	684	ı	244.00	1	154	1	442.00	e	5988	ı
į	81,00	174	ļ	186.00	1502	1	255.00	6	011	1	443,00	1	.362	1
F	93,00	633	ı	187,00	190	1	256,00		924	ł				j
1	98,00	415	I	198,00	9640	I	258,00		177	1				ı
+-			+		 	+				-+-				-+

UXB INTERNATIONAL METHOD BLANK COMPOUNDS .

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E250000 202

Method. SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol: 1000 / mL Date Received: 05/20/00 Work Order: DDNQCl01 Date Extracted:05/24/00 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch. 0146202

Client Sample Id: INTRA-LAB BLANK

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L	Q
110-86-1	Pyridine	20	<u> </u>
83-32-9	Acenaphthene	10	<u> U</u>
208-96-8	Acenaphthylene	10	<u> U</u>
120-12-7	Anthracene	10	ןו_
56-55-3	Benzo(a)anthracene	10	ן ש
- 50-32-8	Benzo(a) pyrene	10	<u> U </u>
205-99-2	Benzo(b) fluoranthene	10	ן
207-08-9	Benzo(k) fluoranthene	10	<u> u </u>
191-24-2	Benzo(ghi)perylene	10	<u> U</u>
111-91-1	bis (2-Chloroethoxy) methane	10	ן
111-44-4	bis(2-Chloroethyl) ether	10	اتا_
117-81-7	bis(2-Ethylhexyl) phthalate	10	ןا
101-55-3	4-Bromophenyl phenyl ether	10	ן
85-68-7	Butyl benzyl phthalate	10	<u> u</u>
86-74-8	Carbazole	10	
106-47-8	4-Chloroaniline	10	_ <u></u>
59-50-7	4-Chloro-3-methylphenol	10	<u> u </u>
91-58-7	2-Chloronaphthalene	10	<u> U</u>
95-57-8	2-Chlorophenol	10	<u> </u>
7005-72-3	4-Chlorophenyl phenyl ether	10	<u> u</u>
218-01-9	Chrysene	10	<u> U U </u>
53-70-3	Dibenz (a, h) anthracene	<u> 10</u>	<u> u u </u>
132-64-9	Dibenzofuran	10	<u> u</u>
95-50-1	1,2-Dichlorobenzene	<u> 10</u>	ן
541-73-1	1,3-Dichlorobenzene	10	_
106-46-7	1,4-Dichlorobenzene	10	<u> u</u>
91-94-1	3,3'-Dichlorobenzidine	50	_lll
120-83-2	2,4-Dichlorophenol	10	_ll

UXB INTERNATIONAL METHOD BLANK COMPOUNDS

Lab Name:Severn Trent Laboratories, Inc.

SDG Number:

Matrix (soil/water) WATER

Lab Sample ID:C0E250000 202

Method: SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol: 1000 / mL Work Order: DDNQC101 Date Received: 05/20/00 Date Extracted:05/24/00

Dilution factor: 1

Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0146202

Client Sample Id: INTRA-LAB BLANK

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/L	<u>Q</u>
84-66-2	Diethyl phthalate	_ 10	<u>U</u>
105-67-9	2,4-Dimethylphenol	10	UU
131-11-3	Dimethyl phthalate	10	u
84-74-2	Di-n-butyl phthalate	10	lu
117-84-0	Di-n-octyl phthalate	10	U
51-28-5	2,4-Dinitrophenol		<u> </u>
534-52-1	4,6-Dinitro-2-methylphenol	50	<u> </u>
121-14-2	2,4-Dinitrotoluene	10	U
606-20-2	2,6-Dinitrotoluene	_ 10	<u> </u>
206-44-0	Fluoranthene	10	<u> </u>
86-73-7	Fluorene	10	<u>U</u>
118-74-1	Hexachlorobenzene	_ 10	<u></u>
87-68-3	Hexachlorobutadiene	10	<u></u> U
77-47-4	Hexachlorocyclopentadiene	50	<u> </u>
67-72-1	Hexachloroethane	_ 10	lu
193-39-5	Indeno(1,2,3-cd)pyrene	10	<u></u>
78-59-1	Isophorone	10	<u> </u>
91-57-6	2-Methylnaphthalene	10	<u>U</u>
95-48-7	2-Methylphenol	10	
106-44-5	4-Methylphenol	<u> 10</u>	<u>U</u>
91-20-3	Naphthalene	10	lu
88-74-4	2-Nitroaniline		
99-09-2	3-Nitroanıline	50	<u></u>
100-01-6	4-Nitroaniline	50	<u>u</u>
98-95-3	Nitrobenzene	10	<u> </u>
88-75-5	2-Nitrophenol	10	<u>u</u>
100-02-7	4-Nitrophenol	<u> 50</u>	U
621-64-7	N-Nitrosodi-n-propylamine	10	<u></u>

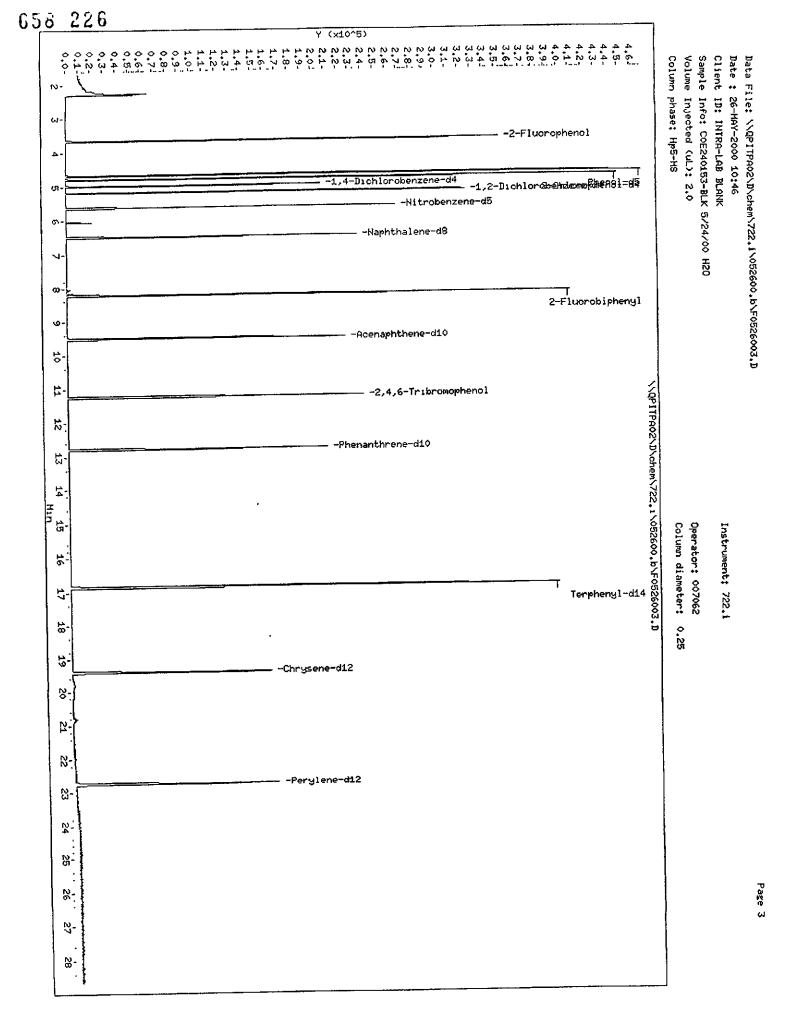
UXB INTERNATIONAL METHOD BLANK COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix. (soil/water) WATER Lab Sample ID:C0E250000 202

Method: SW846 8270C

Base/Neutrals and Acids (8270C)


Sample WT/Vol: 1000 / mL Date Received: 05/20/00 Work Order: DDNQC101 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed. 05/26/00

Moisture %:NA

QC Batch. 0146202

Client Sample Id: INTRA-LAB BLANK

CAS NO	COMPOUND (ug/L or ug	/kg) ug/L Q	
86-30-6	N-Nitrosodiphenylamine	10	ַ
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
87-86-5	Pentachlorophenol	50	<u>ש</u>
85-01-8	Phenanthrene	10	ט
108-95-2	Phenol	10	ַ ט
129-00-0	Pyrene	10	ָט
120-82-1	1,2,4-Trichlorobenzene	10	U
95-95-4	2,4,5-Trichlorophenol	10	ַט
88-06-2	2,4,6-Trichlorophenol	10	<u>u</u>

Report Date: 26-May-2000 11:15

STL Pittsburgh

Semivolatile REPORT SW-846 Method 8270

Data file: \\QPITPA02\D\chem\722.i\052600.b\F0526003.D Lab Smp Id: DDNQC101 Client Smp ID: Client Smp ID: INTRA-LAB BLANK

Inj Date : 26-MAY-2000 10:46

Inst ID: 722.i Operator : 007062

Smp Info : C0E240153-BLK 5/24/00 H2O

Misc Info : ddnqc101,052600.b,8270b.m,2-root.sub

Comment

Method : \\QPITPA02\D\chem\722.i\052600.b\8270b.m Meth Date : 26-May-2000 09:57 bungardf Quant Type: Quant Type: ISTD Cal Date : 26-MAY-2000 09:04 Cal File: F05260C5.D QC Sample: METHOD BLANK Als bottle: 9

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: 2-root.sub

Target Version: 4.03 Processing Host: QPITPA02

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000 1000.000 1000.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(ug/L)
==		AC23		0 2 0 0 5 0	3C=500	****	*****	
*	1 1,4-Dichlorobenzene-d4	152	4.979	4.987	(1.000)	36738	40.0000	(Q)
•	2 Naphthalene-d8	136	6.496	6 514	(1 000)	148095	40 0000	
	3 Acenaphthene-d10	164	9.498	9.517	(1,000)	92291	40 0000	
*	4 Phenanthrene-d10	188	12.789	12.813	(1,000)	170285	40 0000	
*	5 Chrysene-dl2	240	19.397	19 437	(1 000)	147827	40 0000	
*	6 Perylene-d12	264	22.757	22.787	(1.000)	157444	40.0000	
	10 N-Nitrosodimethylamine	74	Con	pound No	ot Detecte	d.		
	9 Pyridine	79	Сол	pound Ne	ot Detecte	:d		
	21 Anıline	93	Con	pound N	ot Detecte	:d		
	22 Phenol	94	Con	pound N	ot Detecte	:d		
	23 bis(2-Chloroethyl)ether	93	Соп	pound N	ot Detecte	d.		
	24 2-Chlorophenol	128	Con	pound N	ot Detecte	d.		
	26 1,3-Dichlorobenzene	146	Con	npound N	ot Detecte	ed .		
	27 1,4-Dichlorobenzene	146	Con	mpound N	ot Detecte	eđ.		

658 228

Data File: \QPITPA02\D\chem\722.i\052600.b\F0526003.D

Report Date: 26-May-2000 11:15

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(NG) (ug/L)
	*===	 	######################################
28 1,2-Dichlorobenzene	146	Compound Not Detected.	
29 Benzyl Alcohol	108	Compound Not Detected.	
30 2-Methylphenol	108	Compound Not Detected.	
31 2,2'-oxybis(1-Chloropropane)	45	Compound Not Detected	
32 N-Nitroso-di-n-propylamine	70	Compound Not Detected	
192 4-Methylphenol	108	Compound Not Detected	
34 Hexachloroethane	117	Compound Not Detected	
35 Nitrobenzene	77	Compound Not Detected.	
41 Isophorone	82	Compound Not Detected.	
42 2-Nitrophenol	139	Compound Not Detected.	
43 2,4-Dimethylphenol	107	Compound Not Detected.	
44 bis(2-Chloroethoxy)methane	93	Compound Not Detected	
48 2,4-Dichlorophenol	162	Compound Not Detected.	
49 Benzoic Acid	122	Compound Not Detected.	
50 1.2.4-Trichlorobenzene	180	Compound Not Detected.	
51 Naphthalene	128	Compound Not Detected.	
52 4-Chloroaniline	127	Compound Not Detected.	
56 Hexachlorobutadiene	224	Compound Not Detected.	
59 4-Chloro-3-Methylphenol	107	Compound Not Detected	
62 2-Methylnaphthalene	142	Compound Not Detected.	
205 1-Methylnaphthalene	142	Compound Not Detected.	
64 Hexachlorocyclopentadiene	236	Compound Not Detected.	
66 2,4,6-Trichlorophenol	196	Compound Not Detected	
67 2,4,5-Trichlorophenol	196	Compound Not Detected.	
70 2-Chloronaphthalene	162	Compound Not Detected	
73 2-Nitroaniline	65	Compound Not Detected.	
76 Dimethylphthalate	163	Compound Not Detected.	
78 2,6-Dinitrotoluene	165	Compound Not Detected	
79 Acenaphthylene	152	Compound Not Detected.	
81 3-Nitroaniline	138	Compound Not Detected	
82 Acenaphthene	153	Compound Not Detected.	
83 2,4-Dinitrophenol	184	Compound Not Detected.	
85 4-Nitrophenol	109	Compound Not Detected.	
86 Dibenzofuran	168	Compound Not Detected	
87 2.4-Dinitrotoluene	165	Compound Not Detected	
91 2,3,5,6-Tetrachlorophenol	232	Compound Not Detected	
88 2,3,4,6-Tetrachlorophenol	232	Compound Not Detected.	
93 Diethylphthalate	149	Compound Not Detected	
94 Fluorene	166	Compound Not Detected.	
95 4-Chlorophenyl-phenylether	204	Compound Not Detected.	
96 4-Nitroaniline	138	Compound Not Detected.	
98 4,6-Dinitro-2-methylphenol	198	Compound Not Detected.	
99 N-Nitrosodiphenylamine	169	Compound Not Detected.	
100 1,2-Diphenylhydrazine	77	Compound Not Detected	
106 4-Bromophenyl-phenylether	248	Compound Not Detected	
107 Hexachlorobenzene	283	Compound Not Detected	
111 Pentachlorophenol	265	Compound Not Detected.	

Data File: \\QPITPA02\D\chem\722.i\052600.b\F0526003.D Report Date: 26-May-2000 11:15

		CONCENTRATION	15
	QUANT SIG	ON-COLUMN PI	INAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (NG) (u	ug/L)
三国四岛市场在公共共和国市场市场市场市场市场市场市场	# 12 d to		
115 Phenanthrene	178	Compound Not Detected.	
116 Anthracene	178	Compound Not Detected.	
119 Carbazole	167	Compound Not Detected.	
120 D1-n-Butylphthalate	149	Compound Not Detected	
123 Fluoranthene	202	Compound Not Detected	
124 Benzidine	184	Compound Not Detected	
125 Pyrene	202	Compound Not Detected	
131 Butylbenzylphthalate	149	Compound Not Detected	
135 3,3'-Dichlorobenzidine	252	Compound Not Detected	
136 Benzo(a) Anthracene	228	Compound Not Detected.	
137 Chrysene	228	Compound Not Detected.	
139 bis(2-ethylhexyl)Phthalate	149	Compound Not Detected	
140 Di-n-octylphthalate	149	Compound Not Detected	
141 Benzo(b) fluoranthene	252	Compound Not Detected	
142 Benzo(k) fluoranthene	252	Compound Not Detected.	
146 Benzo(a)pyrene	252	Compound Not Detected.	
149 Indeno(1,2,3-cd)pyrene	276	Compound Not Detected.	
150 Dibenz(a,h)anthracene	278	Compound Not Detected.	
151 Benzo(g,h,i)perylene	276	Compound Not Detected.	
\$ 154 Nitrobenzene-d5	82	5.630 5 649 (0 867) 107096 68 8273	34.4
<pre>\$ 155 2-Fluorobiphenyl</pre>	172	8.221 8 245 (0.866) 191040 63.3499	31.7
\$ 156 Terphenyl-d14	244	16.854 16 878 (0.869) 284111 83 2453	41.6
\$ 157 Phenol-d5	99	4 669 4 687 (0 938) 163051 107.285	53.6
\$ 158 2-Fluorophenol	112	3.659 3.667 (0 735) 111920 98.3289	49.2
\$ 159 2.4.6-Tribromophenol	330	11.229 11 258 (0 978) 44111 107 438	53.7
\$ 186 2-Chlorophenol-d4	132	4.776 4.789 (0.959) 132037 114.882	57.4
\$ 187 1,2-Dichlorobenzene-d4	152	5 187 5.195 (1.042) 57252 68.0429	34.0

QC Flag Legend

Q - Qualifier signal failed the ratio test.

UXB INTERNATIONAL CHECK SAMPLE COMPOUNDS

Lab Name Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E250000 202

Method: SW846 8270C

Base/Neutrals and Acids (8270C)

Sample WT/Vol: 1000 / mL Date Received: 05/20/00 Work Order: DDNQCl02 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0146202

Client Sample Id: CHECK SAMPLE

CAS NO.	COMPOUND (ug/L or u	ng/kg) ug/L Q
83-32-9	Acenaphthene	40.2
59-50-7	4-Chloro-3-methylphenol	59.5
95-57-8	2-Chlorophenol	53.7
106-46-7	1,4-Dichlorobenzene	36.0
121-14-2	2,4-Dinitrotoluene	41.6
100-02-7	4-Nitrophenol	56.5
621-64-7	N-Nitrosodi-n-propylamine	44.5
87-86-5	Pentachlorophenol	67.8
108-95-2	Phenol	49.9
129-00-0	Pyrene	42.7
120-82-1	1,2,4-Trichlorobenzene	37.2

Data File: \\Qpitpa02\D\chem\722.i\052600.b\F0526004.D

Report Date: 26-May-2000 11:52

STL Pittsburgh

Semivolatile REPORT SW-846 Method 8270

Data file : \\Qpitpa02\D\chem\722.i\052600.b\F0526004.D

Client Smp ID: INTRA-LAB CHECK Lab Smp Id: DDNQC102

Inj Date : 26-MAY-2000 11:20

Inst ID: 722.i Operator : 007062

Smp Info : C0E240153-LCS 5/24/00 H2O

Misc Info : ddnqc102,052600.b,8270b.m,2-root.sub

Comment

: \\QPITPA02\D\chem\722.i\052600.b\8270b.m Method

Meth Date: 26-May-2000 09:57 bungardf Quant Type: ISTD Cal File: F05260C5.D Cal Date : 26-MAY-2000 09:04

QC Sample: LCS Als bottle: 10

Dil Factor: 1.00000 Compound Sublist: 2-root.sub Integrator: HP RTE

4.03 Target Version: Processing Host: PITPC083

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000 1000.000 1000.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

						CC	NCENTRA	ATIONS
	QUANT SIG					ON-C	OLUMN	FINAL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	ſ	NG)	(ug/L)
	====	==	882673	****	****	225	22==	*****
* 1 1,4-Dichlorobenzene-d4	152	4.979	4.987	(1.000)	37216	40	0000	(Q)
* 2 Naphthalene-d8	136	6 496	6.514	(1.000)	147725	40.	0000	
* 3 Acenaphthene-d10	164	9.498	9 517	(1.000)	89356	-	0000	
* 4 Phenanthrene-d10	188	12 789	12.813	(1 000)	168059		.0000	
* 5 Chrysene-dl2	240	19.397	19.437	(I 000)	159317		0000	
* 6 Perylene-d12	264	22 757	22.787	(1.000)	158489	40.	.0000	
10 N-Nitrosodimethylamine	74	Con	pound No	ot Detect	eđ.			
9 Pyridine	79	Con	pound No	ot Detect	ed.			
21 Aniline	93	Con	mpound No	ot Detect	ed.			
22 Phenol	94	4.685	4.698	(0 941)	175197	99	7656	49.9(Q)
23 bis(2-Chloroethyl)ether	93	Cor	mpound N	ot Detect	ed.			
24 2-Chlorophenol	128	4.797	4.805	(0.964)	143813	10	7 444	53.7
26 1,3-Dichlorobenzene	146	Cor	mpound N	ot Detect	ed			
27 1.4-Dichlorobenzene	146	4 995	5 008	(1.003)	105378	72	0238	36.0
28 1,2-Dichlorobenzene	146	Coi	mpound N	ot Detect	eđ.			

Data File: \\Qpitpa02\D\chem\722.i\052600.b\F0526004.D Report Date: 26-May-2000 11:52

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXPRT REL RT RESPONSE (NG) (ug/L)
立位公司通过公司公司司司司司司司司司司司司司司司司司司司司司司司司司司司司司司司司	***************************************	重性 性血性反应性 医电阻电流放射 计电阻电路 计自分计算
29 Benzyl Alcohol	108	Compound Not Detected.
30 2-Methylphenol	108	Compound Not Detected.
31 2,2'-oxybis(1-Chloropropane)	45	Compound Not Detected
32 N-Nitroso-di-n-propylamine	70	5.486 5 516 (1 102) 87172 89 0858 44 5
192 4-Methylphenol	108	Compound Not Detected.
34 Hexachloroethane	117	Compound Not Detected
35 Nitrobenzene	77	Compound Not Detected
41 Isophorone	82	Compound Not Detected.
42 2-Nitrophenol	139	Compound Not Detected.
43 2,4-Dimethylphenol	107	Compound Not Detected.
44 bis(2-Chloroethoxy)methane	93	Compound Not Detected.
48 2,4-Dichlorophenol	162	Compound Not Detected
49 Benzoic Acid	122	Compound Not Detected
50 1,2,4-Trichlorobenzene	180	6.442 6.456 (0 992) 84624 74 4043 37.2
S1 Naphthalene	128	Compound Not Detected
52 4-Chloroaniline	127	Compound Not Detected
56 Hexachlorobutadiene	224	Compound Not Detected
59 4-Chloro-3-Methylphenol	107	7,345 7 385 (1 131) 147204 118 924 59 5
62 2-Methylnaphthalene	142	Compound Not Detected.
205 1-Methylnaphthalene	142	Compound Not Detected.
64 Hexachlorocyclopentadiene	236	Compound Not Detected.
66 2,4,6-Trichlorophenol	196	Compound Not Detected.
67 2,4,5-Trichlorophenol	196	Compound Not Detected.
70 2-Chloronaphthalene	162	Compound Not Detected.
73 2-Nitroaniline	65	Compound Not Detected.
76 Dimethylphthalate	163	Compound Not Detected
78 2.6-Dinitrotoluene	165	Compound Not Detected.
79 Acenaphthylene	152	Compound Not Detected.
81 3-Nitroaniline	138	Compound Not Detected.
82 Acenaphthene	153	9,568 9 591 (1 007) 213426 80,5102 40.2
83 2,4-Dinitrophenol	184	Compound Not Detected.
85 4-Nitrophenol	109	9 877 9 912 (1.040) 72934 113 066 56 5(Q)
86 Dibenzofuran	168	Compound Not Detected.
87 2,4-Dinitrotoluene	165	10 022 10.062 (1.055) 76254 83 1370 41.6 Compound Not Detected
91 2,3,5,6-Tetrachlorophenol	232	•
88 2,3,4,6-Tetrachlorophenol	232	Compound Not Detected. Compound Not Detected.
93 Diethylphthalate 94 Fluorene	149 166	Compound Not Detected
95 4-Chlorophenyl-phenylether	204	Compound Not Detected.
96 4-Nitroaniline	138	Compound Not Detected.
98 4,6-Dinitro-2-methylphenol	198	Compound Not Detected.
99 N-Nitrosodiphenylamine	169	Compound Not Detected.
100 1,2-Diphenylhydrazine	77	Compound Not Detected.
106 4-Bromophenyl-phenylether	248	Compound Not Detected
107 Hexachlorobenzene	283	Compound Not Detected.
111 Pentachlorophenol	266	12,527 12.556 (0 980) 61934 135.594 67.8
115 Phenanthrene	178	Compound Not Detected.
	-··	W

						CONCENTRA	TIONS
	QUANT SIG					ON-COLUMN	FINAL
	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(ug/L)
프로영경환경향취적	#325	**	*****	202223	=======		*****
	178	Cor	npound No	t Dete cte	ed .		
	167	Cor	npound No	t Detecte	ed .		
hthalate	149	Cor	npound No	t Detecte	ed		
e	202	Cor	npound No	t Detecte	ed		
	184	Cor	npound No	t Detecte	ed		
	202	16 315	16.344	(0.841)	404758	85.3361	42 7
phthalate	149	Cor	mpound No	t Detecte	ed.		
robenzidine	252	Cor	mpound No	t Detecte	ed		
hracene	228		•				
	228		•				
hexyl)Phthalate	149	Coi	mpound No	t Detecte	ed.		
hthalate	149	Coi	mpound No	t Detecte	ed.		
oranthene	252	Co	mpound No	t Detecte	ed.		
oranthene	252		•				
ene	252	Cor	mpound No	t Detect	ed.		
3-cd)pyrene	276		-				
anthracene	278	Co	mpound No	t Detect	ed		
)perylene	276	Co	-				
ue-d5	82	5.630					36 3
henyl	172	8.221	8 245	(0 866)	• • • • • • • • • • • • • • • • • • • •		35.7
114	244	16 854		•			41.0
	99	4 674	4.687	(0 939)			55.9
enol	112	3.659	3,667	(0 735)	118976		51.6
romophenol	330	11.229		-	48562	119.844	59.9
enol-d4	132	4.776	4 789	(0.959)	138608		59 5
robenzene-d4	152	5.182	5.195	(1 041)	59236	69.4975	34.7
	phthalate robenzidine hracene hexyl) Phthalate hthalate oranthene oranthene ene 3-cd) pyrene anthracene l) perylene e-d5 chenyl did enol comophenol enol-d4	MASS 178 167 hthalate 149 e	MASS RT 178 Cor 167 Cor 167 Cor 167 Cor 168 Cor 169 Cor 184 Cor 202 16 315 phthalate 149 Cor 202 16 315 phthalate 149 Cor robenzidine 252 Cor hracene 228 Cor hexyl) Phthalate 149 Cor 201 Cor 202 16 315 Cor 202 16 315 Cor 203 Cor 204 Cor 205 Cor 206 Cor 207 Cor 208 Cor 209 Cor 200 C	MASS RT EXP RT 178 Compound No 167 Compound No hthalate 149 Compound No 202 Compound No 202 16 315 16.344 phthalate 149 Compound No robenzidine 252 Compound No hracene 228 Compound No hexyl) Phthalate 149 Compound No hexyl) Phthalate 149 Compound No coranthene 252 Compound No oranthene 252 Compound No oranthene 252 Compound No oranthene 252 Compound No oranthene 252 Compound No perylene 276 Compound No anthracene 278 Compound No operylene 276 Compound No	MASS	MASS	MASS RT EXP RT REL RT RESPONSE (NG) 178

QC Flag Legend

Q - Qualifier signal failed the ratio test.

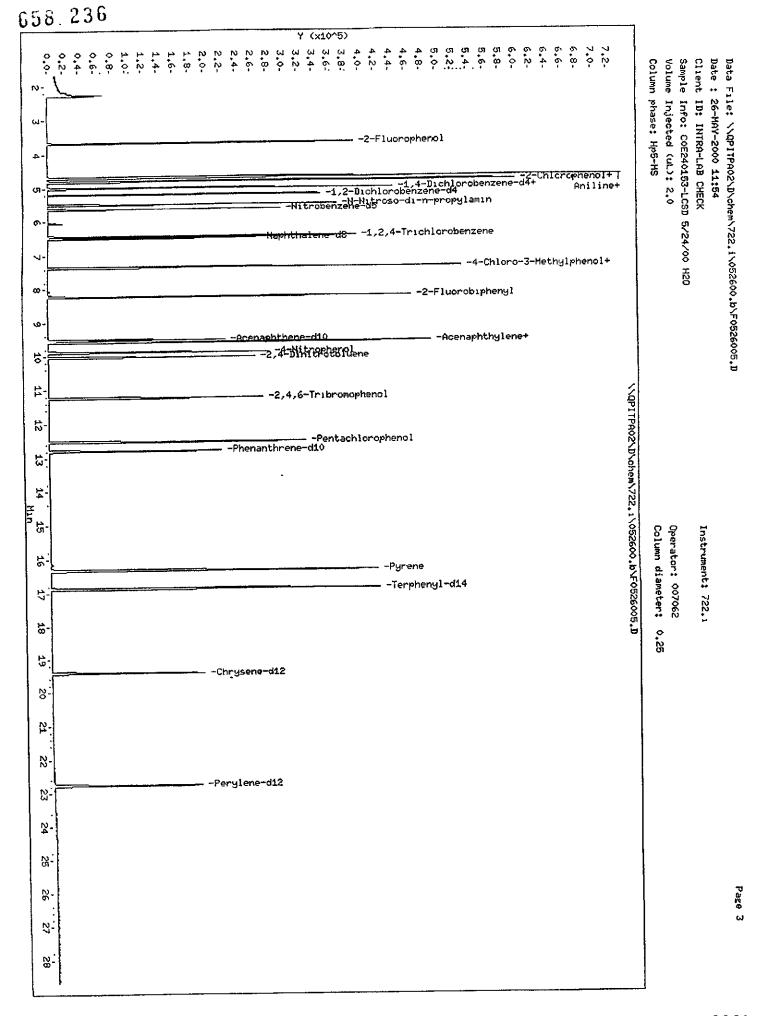
UXB INTERNATIONAL CHECK SAMPLE DUPLICATE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E250000 202

Method: SW846 8270C

Base/Neutrals and Acids (8270C)


Sample WT/Vol: 1000 / mL Date Received: 05/20/00 Work Order: DDNQCl03 Date Extracted:05/24/00 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0146202

Client Sample Id: DUPLICATE CHECK

CAS NO.	COMPOUND (ug/L or u	ug/kg) ug/L Q
83-32-9	Acenaphthene	39.3
59-50-7	4-Chloro-3-methylphenol	57.9
95-57-8	2-Chlorophenol	51.8
106-46-7	1,4-Dichlorobenzene	34.6
121-14-2	2,4-Dinitrotoluene	40.6
100-02-7	4-Nitrophenol	54.9
621-64-7	N-Nitrosodi-n-propylamine	42.7
87-86-5	Pentachlorophenol	66.0
108-95-2	Phenol	48.4
129-00-0	Pyrene	[41.7
120-82-1	1,2,4-Trichlorobenzene	36.4

Data File: \\Qpitpa02\D\chem\722.i\052600.b\F0526005.D

Report Date: 26-May-2000 12:26

STL Pittsburgh

Semivolatile REPORT SW-846 Method 8270

Data file : \\Qpitpa02\D\chem\722.i\052600.b\F0526005.D

Lab Smp Id: DDNQC103 Client Smp ID: INTRA-LAB CHECK

Inj Date : 26-MAY-2000 11:54

Operator : 007062 Inst ID Smp Info : C0E240153-LCSD 5/24/00 H20 Misc Info : ddnqc103,052600.b,8270b.m,2-root.sub Inst ID: 722.i

Comment

Method : \\QPITPA02\D\chem\722.i\052600.b\8270b.m Meth Date : 26-May-2000 09:57 bungardf Quant Type: Quant Type: ISTD Cal Date : 26-MAY-2000 09:04 Cal File: F05260C5.D

OC Sample: LCSD Als bottle: 11

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: 2-root.sub

Target Version: 4.03 Processing Host: PITPC083

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000 1000.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

						CONCENTRA	ATIONS
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(ug/L)
중 다 다 건 건 의 는 는 학 및 다 리 다 드 등 등 급 구 한 등 목 등 도 다	****		Z2988E	200000		2000cc	########
* 1 1,4-Dichlorobenzene-d4	152	4.981	4.987	(1.000)	40299	40 0000	(Q)
* 2 Naphthalene-d8	136	6.498	6.514	(1.000)	158308	40.0000	
* 3 Acenaphthene-d10	164	9.506	9.517	(1 000)	95449	40.0000	
* 4 Phenanthrene-d10	188	12.791	12 813	{1 000}	179564	40.0000	
* 5 Chrysene-d12	240	19.405	19 437	(1 000)	169325	40.0000	
 6 Perylene-d12 	264	22.765	22.787	(1.000)	171252	40.0000	
10 N-Nitrosodimethylamine	74	Con	pound No	ot Detect	eđ.		
9 Pyridine	79	Con	pound No	ot Detect	ed.		
21 Aniline	93	Con	pound No	ot Detect	ed		
22 Phenol	94	4 687	4 698	(0.941)	184244	96.8909	48.4 (Q)
23 bis(2-Chloroethyl)ether	93	Con	npound No	ot Detect	ed		
24 2-Chlorophenol	128	4.800	4.805	(0 964)	150095	103 559	51.8
26 1,3-Dichlorobenzene	146	Con	npound No	ot Detect	ed.		
27 1,4-Dichlorobenzene	146	4.997	5.008	(1.003)	109476	69 1004	34.6
28 1,2-Dichlorobenzene	146	Con	npound N	ot Detect	ed		

			CONCENTRATIO	NS
		QUANT SIG	ON-COLUMN F	INAL
Compos	inds	MASS	RT EXP RT REL RT RESPONSE (NG) (ug/L)
-	*****	교교통의	日本 正正正正正 英国中日本区 医医院内管管内 化环烷烷合物 正常	### #
29	Benzyl Alcohol	108	Compound Not Detected.	
	2-Methylphenol	108	Compound Not Detected.	
	2.2'-oxybis(1-Chloropropane)	45	Compound Not Detected.	
	N-Nitroso-di-n-propylamine	70	5.494 5 516 (1.103) 90565 85 4727	42.7
	4-Methylphenol	108	Compound Not Detected	
	Hexachloroethane	117	Compound Not Detected.	
35	Nitrobenzene	77	Compound Not Detected.	
41	Isophorone	82	Compound Not Detected.	
	2-Nitrophenol	139	Compound Not Detected	
	2,4-Dimethylphenol	107	Compound Not Detected	
	bis (2-Chloroethoxy) methane	93	Compound Not Detected	
	2,4-Dichlorophenol	162	Compound Not Detected	
	Benzoic Acid	122	Compound Not Detected	
50	1,2,4-Trichlorobenzene	180	6.445 6 456 (0 992) 88797 72.8541	36.4
51	Naphthalene	128	Compound Not Detected	
52	4-Chloroaniline	127	Compound Not Detected.	
56	Hexachlorobutadiene	224	Compound Not Detected	
59	4-Chloro-3-Methylphenol	107	7 353 7 385 (1 132) 153555 115.762	57.9
62	2-Methylnaphthalene	142	Compound Not Detected	
205	1-Methylnaphthalene	142	Compound Not Detected	
64	Hexachlorocyclopentadiene	236	Compound Not Detected	
66	2,4,6-Trichlorophenol	196	Compound Not Detected	
67	2,4,5-Trichlorophenol	196	Compound Not Detected	
70	2-Chloronaphthalene	162	Compound Not Detected	
73	2-Nitroaniline	65	Compound Not Detected	
76	Dimethylphthalate	163	Compound Not Detected	
78	2,6-Dinitrotoluene	165	Compound Not Detected.	
79	Acenaphthylene	152	Compound Not Detected.	
81	3-Nitroaniline	138	Compound Not Detected.	
82	Acenaphthene	153	9 570 9 591 (1.007) 222457 78.5601	39 3
83	2,4-Dinitrophenol	184	Compound Not Detected	
85	4-Nitrophenol	109	9.880 9.912 (1 039) 75669 109.818	54 9 (Q)
	Dibenzofuran	168	Compound Not Detected.	
	2,4-Dinitrotoluene	165	10 029 10.062 (1 055) 79607 81.2523	40.6
	2,3,5,6-Tetrachlorophenol	232	Compound Not Detected	
	2,3,4,6-Tetrachlorophenol	232	Compound Not Detected	
	Diethylphthalate	149	Compound Not Detected	
	Fluorene	166	Compound Not Detected	
	4-Chlorophenyl-phenylether	204	Compound Not Detected.	
	4-Nitroaniline	138	Compound Not Detected.	
· ·	4,6-Dinitro-2-methylphenol	198	Compound Not Detected.	
	N-Nitrosodiphenylamine	169 77	Compound Not Detected	
	1,2-Diphenylhydrazine		Compound Not Detected.	
	4-Bromophenyl-phenylether	248	Compound Not Detected.	
	Hexachlorobenzene	283	Compound Not Detected. 12.535 12.556 (0.980) 64431 132.023	66.0
	Pentachlorophenol	266		00.U
115	Phenanthrene	178	Compound Not Detected.	

2066

Data File: \\Qpitpa02\D\chem\722.i\052600.b\F0526005.D
Report Date: 26-May-2000 12:26

		CONCENTRATIONS	s
	QUANT SIG	ON-COLUMN FI	NAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (NG) (us	g/L)
변 다 # 차 년 개 집 등학료를 이 부동 또 또 다 그 그 프 프 크 건 한 등 등	****	医釉 有事是保护法 过草草葡萄香 医二溴甲磺基苯茚 拉克雷德国战场 性道症的	ខាងបន្
116 Anthracene	178	Compound Not Detected.	
119 Carbazole	167	Compound Not Detected	
120 Di-n-Butylphthalate	149	Compound Not Detected	
123 Fluoranthene	202	Compound Not Detected	
124 Benzidine	184	Compound Not Detected	
125 Pyrene	202	16 323 16.344 (0.841) 420357 83 3867 4	41.7
131 Butylbenzylphthalate	149	Compound Not Detected	
135 3,3'-Dichlorobenzidine	252	Compound Not Detected.	
136 Benzo (a) Anthracene	228	Compound Not Detected	
137 Chrysene	228	Compound Not Detected.	
139 bis(2-ethylhexyl)Phthalate	149	Compound Not Detected	
140 Di-n-octylphthalate	149	Compound Not Detected	
141 Benzo(b) fluoranthene	252	Compound Not Detected.	
142 Benzo(k) fluoranthene	252	Compound Not Detected	
146 Benzo(a)pyrene	252	Compound Not Detected	
149 Indeno(1,2,3-cd)pyrene	276	Compound Not Detected.	
150 Dibenz(a,h)anthracene	278	Compound Not Detected	
151 Benzo(g,h,i)perylene	276	Compound Not Detected	
\$ 154 Nitrobenzene-d5	82	5 633 5.649 (0 867) 115378 69 3657 3	34 7
\$ 155 2-Fluorobiphenyl	172	8 224 8.245 (0 865) 213249 68 3749	34 2
\$ 156 Terphenyl-d14	244	16 862 16 878 (0.869) 305174 78.0640	39.0
\$ 157 Phenol-d5	99	4 677 4 687 (0.939) 177354 106 386	53.2
\$ 158 2-Fluorophenol	112	3 662 3 667 (0.735) 122785 98 3432 4	49.2
\$ 159 2,4,6-Tribromophenol	330	11 237 11 258 (0 878) 49541 114.427	57.2
\$ 186 2-Chlorophenol-d4	132	4 784 4.789 (0 960) 142126 112 734	56.4
\$ 187 1,2-Dichlorobenzene-d4	152	5.189 5 195 (1 042) 60810 65.8861	32 9

QC Flag Legend

Q - Qualifier signal failed the ratio test.

GC/MS SEMIVOLATILE MISCELLANEOUS

Batch Number: 0 146 20 2 Quanterra N:\QAU.OGBOOKS_PDFC_L L_EXT DOC May-00	over 5/25/2000 Time 18.20 but Number Sample 10 but Analysi Sun 134 001 0F 240 134 001 0F 240 134 001 0F 240 134 001 0F 240 134 001 0F 240 134 001 0F 240 153 001 0F 2	ous L-L on Worksheet
	NA NA NA NA NA NA NA NA NA NA NA NA NA N	00مواجر
Log Book Number OP-00-003	186-15-6 929-0 1000 1000 1000 1000 1000 1000 1000 1	
mber OP-00	Solvent M. Solvent M.	
-0037	17828 Surrogue Lou# 4-176 14-176	3
Ker	3000 Sun 3 S	→
Leaks.	The spike of the s	STL Pit 450 Wil Pittsbur 412-820
Page 18	SM 2H LA SA SA SA SA SA SA SA SA SA SA SA SA SA	STL Pittsburgh 450 William Pitt Way Pittsburgh, PA 15238 412-820-8380
STL Pittsburg	Cleennup Insubhate ANA	2

Instrument Name: GC/MS Instrument #1
Sequence File: C:\HPCHEM\1\SEQUENCE\052600.S

Comment: STL- PITT HP5973-2 LOG 2ul inj 100ul+1ul int

Operator: 007062

 ∞

in

 ω

Data Path: C:\HPCHEM\1\DATA\052600.b\

Method Path: C:\HPCHEM\1\METHODS\

5/26/00 FBB

20700

Line	Туре	Vial	DataFile	Method	Sample Name
1) 2) 3) 4) 5) 6) 7) 8) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) Byte	Sample Sample	ASC 17 ASC 25 ASC 18 19 20 1059320	F0526012 F0526013 F0526014 Space on	DFTPP 72EARLY	DFTPP050 (25ppb) 194-158-6 SSTD050 (25ppb) 194-176-9 SSTD020 (10ppb) 194-175-10 SSTD080 (40ppb) 194-175-12 SSTD120 (60ppb) 194-175-13 SSTD160 (80ppb) 194-175-14 C0E240153-002 5/25/00 Soil C0E240153-BLK 5/24/00 H20 C0E240153-LCS 5/24/00 H20 C0E240153-LCSD 5/24/00 H20 C0E240153-O01 5/24/00 H20 C0E240153-001 5/24/00 H20 C0E200135-001 5/24/00 H20 C0E200135-002 5/24/00 H20 C0E200135-004 5/24/00 H20 C0E200135-005 5/24/00 H20 C0E200135-004 5/24/00 H20 C0E200135-005 5/24/00 H20 C0E200135-005 5/24/00 H20 C0E200135-005 5/24/00 H20 C0E200135-005 5/24/00 H20 C0E200135-005 5/24/00 H20 C0E240124-001 5/24/00 H20 C0E240124-001 5/24/00 H20 C0E240144-001 X20 F.V=20ml 5/24
Seau	ence Veri:	LICALION	DOTTE:		

5/24/00 5:59:04 MT SAMPLE CUSTODIAN REMOVAL REQUEST

PSR024

REQUESTED BY: TROUTB

Base/Neutrals and Acids (82700) METHOD: QL

STORAGE LOCATION	WORK ORDER #	PICKED CNTR#	CONTROL #	CLIENT #	ANALYSIS	LOTID	SMP#	<u>SFX</u>	MATRIX DESCRIPTION	-	CVD	QTY <u>REQD</u>
4C CLP1	DDGQT-1-07		236314	120141	1-49-QL	COE200135	001	WATER		0	10	1
4C CLP1	DDGR6-1-07		236315	120141	I-49-QL	COE200135	002	WATER		0	10	1
4C CLP1	DDGR9-1-07		236316	120141	I~49-QL	COE200135	003	WATER		0	10	1
4C CLP1	DDGRA-1-07		236317	120141	I-49-QL	C0E200135	004	WATER		0	10	1
4C CLP1	DDGRC-1-07		236318	120141	I-49-QL	COE200135	005	WATER	:	0	10	1
4F	DDK90-1-02		236313	399411	1-49-QL	COE230195	001	WATER		0	9	1

RELINQUISHED BY B Front	B Front	5/24/2000 08:30 5/24/2000 12:40

PESTICIDE DATA

As Co

PESTICIDE QC SUMMARY

WATER PESTICIDE SURROGATE RECOVERY

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: C0E230195

GC Column(1): RTX-CLP ID: 0.53 (mm)

1	EPA	TCX	DCB	S3	S4	S 5	S6	TOT
	SAMPLE NO.	%REC #	%REC #	%REC #	%REC #	%REC #	%REC #	OUT
	========	=====	=====	=====	=====	=====	=====	===
01	DF/S1/0137/W	73	65					0
02	PBLK	82	68					0
03	LCS	85	74					0
04	LCSD	100	89		· · · · · · · · · · · · · · · · · · ·			0
05	LCS	90	103					0
06	LCSD LCSS							
07								
08								
10								
11								
12								
13								
11 12 13 14 15 16 17 18 19								
15								
16								
17								
18								
19								l
20								
21	<u>.</u>							
22								ll
23	<u> </u>							<u> </u>
24								
25								
20		ļ						
20		ļ	ļ——					
20 21 22 23 24 25 26 27 28 29								[<u>]</u>
30		<u> </u>						[
50	I	·	·	·	1	† ————	·	·

ADVISORY OLLGO

S1 (TCX) = Tetrachloro-m-xylene (30-150) 37-130 S2 (DCB) = Decaphlorobinhamid S2 (DCB) = Decachlorobiphenyl

(30-150)10-147

Column to be used to flag recovery values

* Values outside of QC limits

D Surrogate diluted out

page 1 of 1

FORM II PEST-1

OLM03.0

SW846 8081A CHECK SAMPLE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot #: C0E240000

" , WO #: DDN21102 BATCH: 0145492

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	 QUAL
					=======================================
gamma-BHC (Lindane)	0.250	0.193	77	49- 137	Ì
Heptachlor	0.250	0.190	76	57~ 124	
Aldrin	0.250	0.202	81	62- 120	
Dieldrin	0.500	0.426	85	68- 130	
Endrin	0.500	0.351	70	46- 137	
4,4'-DDT	0.500	0.319	64	60- 140	

NOTES(S):			

* Values outside of QC limits Spike Recovery: 0 out of 6 outside limits COMMENTS:

FORM III

658 248

SW846 8081A CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot #: C0E240000

WO #: DDN21103 BATCH: 0145492

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	QUAL
] =============	===========	: = ====	#========	=========
======================================	0.250	0.230	92_	49- 137	.
gamma-BHC (Lindane)	0.250	0.229	91	57- 124	.
Heptachlor	0.250	0.246	1 98	62 - 120	1
Aldrin		0.384	77	68 - 130	
Dieldrin	0.500	0.425	85	46- 137	
Endrin 4,4'-DDT	0.500	0.392	78	60- 140	

NOTES(S):	

* Values outside of QC limits Spike Recovery: 0 out of 6 outside limits COMMENTS:

PBLK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.: 40325

SDG No.: C0E230195

Lab Sample ID: DDN21101

Lab File ID: C-A2565

Matrix (soil/water) WATER

Extraction: (SepF/Cont/Sonc) SW3510

Sulfur Cleanup (Y/N) N

Date Extracted: 05/24/00

Date Analyzed (1): 05/27/00

Date Analyzed (2):

Time Analyzed (1): 0435

Time Analyzed (2):

Instrument ID (1): GC3

Instrument ID (2):

GC Column (1): RTX-CLP

ID: 0.53 (mm) GC Column (2):

ID:

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	ļ	DATE	DATE
	SAMPLE NO.	SAMPLE	ID	ANALYZED 1	ANALYZED 2
	SAMELL NO.				======
'				05/27/00	}
01	DF/S1/0137/W	DDK90103	1	05/27/00	
02	LCS	DDN21102	ŀ	05/27/00	
03		DDN21103	1	05/27/00	l
04	LCS	DDN21102	ŀ	05/27/00 05/27/00 05/31/00	
	1000	551152202	i		
05					
06				····	i
07					l
08					
09					i
10	- 				
11			 -		
12					
13					
14					
15					
16					
17		·			
		·] -			
18					
19		.		ļ. 	·
20					
21		_			
22		· 			
23		-			
2.3		-			
24		-			-
25		.			-
26	5	_		.1 <u></u> 1	_

COMMENTS:	

page 1 of 1

FORM IV PEST

OLMO3.0

PESTICIDE SAMPLE DATA

UXB INTERNATIONAL

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8081A

Pesticides (8081A)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDK90103 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/27/00

Moisture %:NA

QC Batch: 0145492

Client Sample Id: DF/S1/0137/WA/001

309-00-2 Aldrin 0.050 U 319-84-6 alpha-BHC 0.050 U 319-85-7 beta-BHC 0.050 U 319-86-8 delta-BHC 0.050 U	CAS NO.	COMPOUND (ug/L	or ug/kg) ug/L (2
319-85-7 beta-BHC 0.050 U 319-86-8 delta-BHC 0.050 U 58-89-9 gamma-BHC (Lindane) 0.050 U 5103-71-9 alpha-Chlordane 0.050 U 72-54-8 4,4'-DDD 0.050 U 72-55-9 4,4'-DDE 0.050 U 50-29-3 4,4'-DDT 0.050 U 60-57-1 Dieldrin 0.050 U 33213-65-9 Endosulfan II 0.050 U 33213-65-9 Endosulfan Sulfate 0.050 U 72-20-8 Endrin 0.050 U 72-20-8 Endrin 0.050 U 72-20-8 Endrin 0.050 U 7421-93-4 Endrin aldehyde 0.050 U 53494-70-5 Endrin ketone 0.050 U 76-44-8 Heptachlor 0.050 U 72-43-5 Methoxychlor 0.050 U 0.050 U	309-00-2	Aldrin	0.050	·
319-85-7 beta-BHC	319-84-6	alpha-BHC	0.050	:
319-86-8 delta-BHC 0.050 U 58-89-9 gamma-BHC (Lindane) 0.050 U 5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 72-54-8 4,4'-DDD 0.050 U 72-55-9 4,4'-DDE 0.050 U 50-29-3 4,4'-DDT 0.050 U 60-57-1 Dieldrin 0.050 U 959-98-8 Endosulfan I 0.050 U 33213-65-9 Endosulfan II 0.050 U 1031-07-8 Endosulfan sulfate 0.050 U 72-20-8 Endrin aldehyde 0.050 U 53494-70-5 Endrin ketone 0.050 U 1024-57-3 Heptachlor 0.050 U 1024-57-3 Heptachlor epoxide 0.050 U 1024-57-3 Methoxychlor 0.10 U 100-50 U 1024-57-3 Methoxychlor 0.10 U 100-50 U 10		beta-BHC	0.050	
58-89-9 gamma-BHC (Lindane) 0.050 U 5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 72-54-8 4,4'-DDD 0.050 U 72-55-9 4,4'-DDE 0.050 U 50-29-3 4,4'-DDT 0.050 U 60-57-1 Dieldrin 0.050 U 959-98-8 Endosulfan I 0.050 U 33213-65-9 Endosulfan II 0.050 U 1031-07-8 Endosulfan sulfate 0.050 U 72-20-8 Endrin 0.050 U 72-20-8 Endrin aldehyde 0.050 U 53494-70-5 Endrin ketone 0.050 U 76-44-8 Heptachlor 0.050 U 1024-57-3 Heptachlor epoxide 0.050 U 1024-57-3 Heptachlor epoxide 0.050 U 1024-57-3 Methoxychlor 0.10 U 10.050 U 1		delta-BHC	0.050	·
5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 72-54-8 4,4'-DDD 0.050 U 72-55-9 4,4'-DDE 0.050 U 50-29-3 4,4'-DDT 0.050 U 60-57-1 Dieldrin 0.050 U 959-98-8 Endosulfan I 0.050 U 33213-65-9 Endosulfan II 0.050 U 1031-07-8 Endosulfan sulfate 0.050 U 72-20-8 Endrin 0.050 U 7421-93-4 Endrin aldehyde 0.050 U 53494-70-5 Endrin ketone 0.050 U 76-44-8 Heptachlor 0.050 U 1024-57-3 Heptachlor epoxide 0.050 U 1024-57-3 Methoxychlor 0.10 U 1024-57-5 1024-57-5 Methoxychlor 0.10 U 1024-57-5 Methoxychlor 0.10 U 1024-57-5 Methoxychlor 0.10 U 1024-57-5 1024-57-5 Methoxychlor 0.10 U 1024-57-5 Methoxychlor 0.10 U 1024-57-5 Methoxychlor 0.10 U 1024-57-5 Methoxychlor 0.10 U 1024-57-5 Methoxychlor 0.10 U 1024-57-5 Methoxychlor 0.10 U 1024-57-5 Methoxychlor 0.10 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U 1024-57-5 U		gamma-BHC (Lindane)	0.050	
5103-74-2 gamma-Chlordane 0.050 U 72-54-8 4,4'-DDD 0.050 U 72-55-9 4,4'-DDE 0.050 U 50-29-3 4,4'-DDT 0.050 U 60-57-1 Dieldrin 0.050 U 959-98-8 Endosulfan I 0.050 U 33213-65-9 Endosulfan II 0.050 U 1031-07-8 Endosulfan sulfate 0.050 U 72-20-8 Endrin 0.050 U 7421-93-4 Endrin aldehyde 0.050 U 53494-70-5 Endrin ketone 0.050 U 76-44-8 Heptachlor 0.050 U 1024-57-3 Heptachlor epoxide 0.050 U 1024-57-3 Methoxychlor 0.050 U 1024-57-3 Methoxychlor 0.050 U 1024-57-3 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 Methoxychlor 0.050 U 1024-57-5 1024-57-5 Methoxychlor 0.050 U 1024-57-5 1024-57-5 Methoxychlor 0.050 U 1024-57-5	· ——	alpha-Chlordane	0.050	
72-54-8	·——	gamma-Chlordane	0.050	· ·
72-55-9	,	4,4'-DDD	0.050	
50-29-3			0.050	<u>u</u>
60-57-1 Dieldrin 0.050 U 959-98-8 Endosulfan I 0.050 U	!	4,4'-DDT	0.050	·
959-98-8	I		0.050	
33213-65-9	· ————————————————————————————————————	Endosulfan I	0.050	· ·
1031-07-8	·	Endosulfan II	0.050	,
72-20-8 Endrin 0.050 U 7421-93-4 Endrin aldehyde 0.050 U 53494-70-5 Endrin ketone 0.050 U 76-44-8 Heptachlor 0.050 U 1024-57-3 Heptachlor epoxide 0.050 U 72-43-5 Methoxychlor 0.10 U		Endosulfan sulfate	0.050	· · — · · · · · · · · · · · · · · · · ·
7421-93-4 Endrin aldehyde 0.050 U 53494-70-5 Endrin ketone 0.050 U 76-44-8 Heptachlor 0.050 U 1024-57-3 Heptachlor epoxide 0.050 U 72-43-5 Methoxychlor 0.10 U			0.050	
53494-70-5 Endrin ketone 0.050 U 76-44-8 Heptachlor 0.050 U 1024-57-3 Heptachlor epoxide 0.050 U 72-43-5 Methoxychlor 0.10 U		Endrin aldehyde	0.050	
76-44-8 Heptachlor 0.050 U 1024-57-3 Heptachlor epoxide 0.050 U	·		0.050	
1024-57-3 Heptachlor epoxide 0.050 U		Heptachlor	0.050	;
72-43-5 Methoxychlor 0.10 U	· — — — — — — — — — — — — — — — — — — —		0.050	
1 <u></u>			0.10	:
	8001-35-2		2.0	<u> U </u>

€58 252

Data File: /var/chem/gc3.i/2260-E.b/c-a2563.d

Report Date: 31-May-2000 10:08

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2260-E.b/c-a2563.d

Lab Smp Id: DDK90103 Client Smp ID: DF/S1/0137/WA/001

Inj Date : 27-MAY-2000 03:44

Operator: 1891 Inst ID: gc3.i

Smp Info : DDK90103,2260-E.b,,PEST.sub,,,

Misc Info : 230195001

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

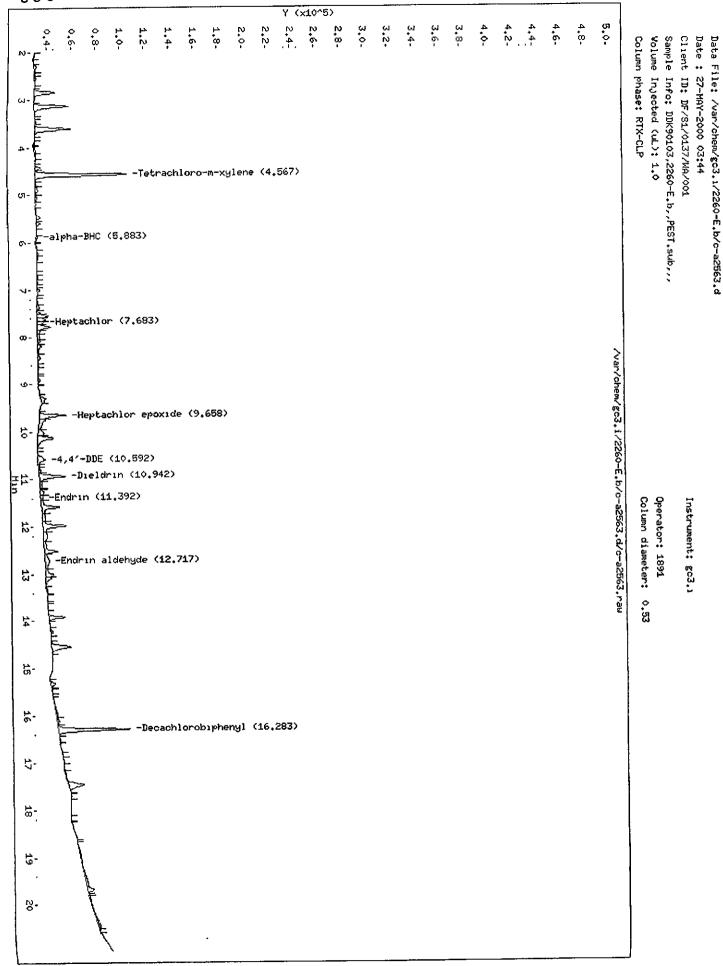
Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a2541.d

Als bottle: 1

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: all.sub

Target Version: 3.40


Concentration Formula: Amt * DF * (Vt/Vo)/Vi

Name	Value	Description
DF Vt Vo Vi	10000.000	Dilution Factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected

		CONCENTRATIONS
		ON-COLUMN FINAL
Compounds	RT EXP RT DLT RT RESPONSE	(ng) (ug/L)
	55 在美国政治会 医骨骨骨管	22222E 22222
\$ 1 Tetrachloro-m-xylene	4.567 4.558 0.009 75205	0.01464 0.146388
2 Diallate A	Compound Not Detected.	
3 Diallate B	Compound Not Detected.	
4 MIREX	Compound Not Detected.	
5 alpha-BHC	5 883 5 883 0.000 1468	0 000196 0.00195605
6 gamma-BHC (Lindane)	Compound Not Detected.	
7 beta-BHC	Compound Not Detected	
8 delta-BHC	Compound Not Detected	
9 Chlordane	Compound Not Detected.	
10 Heptachlor	7 683 7.683 0 000 5427	0 00083 0 00829650
11 Aldrin	Compound Not Detected.	
12 Heptachlor epoxide	9 658 9 658 0.000 22131	0.00422 0.0421651
' 13 gamma-Chlordane	Compound Not Detected.	
14 alpha-Chlordane	Compound Not Detected	
15 Endosulfan I	Compound Not Detected.	
16 4,4'-DDB	10 592 10.550 0.042 5895	0.00140 0 0140251

Data File: /var/chem/gc3.i/2260-E.b/c-a2563.d Report Date: 31-May-2000 10:08

		CONCENTRATIONS
		ON-COLUMN FINAL
Compounds	RT EXP RT DLT RT RESPONS	E (ng) (ug/L)
	MA 57555 BEETGS 55555	
17 Dieldrin	10 942 10 942 \ 0 000 2204	9 0 00394 0 0393853
18 Toxaphene	Compound Not Detected	
19 Isodrin	Compound Not Detected	
20 Endrin	11 392 11.375 0 017 182	8 0 000384 0.00384377
21 4,4'-DDD	Compound Not Detected	
22 Endopulfan II	Compound Not Detected	
23 4,4'-DDT	Compound Not Detected.	
24 Endrin aldehyde	12 717 12.717 0 000 360	0 00100 0 0100066
25 Methoxychlor	Compound Not Detected.	
26 Endosulfan sulfate	Compound Not Detected	
27 Bndrin ketone	Compound Not Detected	
28 Chlorobenzilate	Compound Not Detected	
29 Kapone	Compound Not Detected.	
\$ 30 Decachlorobiphenyl	16 283 16.292 -0 009 5826	0 01303 0.130252

PESTICIDE CALIBRATION DATA

. A

Report Date : 30-May-2000 15:55

KTX-02

STL-PITTSBURGH

COMPOUND LISTING

Method file : /var/chem/gc3.i/2260-E.b/PESTA.m

Quant Method : ESTD Target Version : 3.40 Last Update : 30-May-2000 15:52 Number of Cpnds : 30

Data Type : GC MULTI COMP

Global Integrator : Falcon

Chromat Events Values

Initial:Start Threshold 40.000000
Initial:End Threshold 20.000000
Initial:Area Threshold 1000.000000
Initial:P-P Resolution 1.000000
Initial:Bunch Factor 1.000000
Initial:Negative Peaks ON

Initial:Negative Peaks ON Initial:Tension 0.000000

.558 4.508-4.608 5.137e+0 .733 5.683-5.783 1.904e+0 .042 5.992-6.092 5.678e+0 .275 13.225-13.325 3.722e+0 .883 5.833-5.933 7.505e+0 .625 6.575-6.675 6.866e+0 .908 6.858-6.958 2.811e+0 .267 7.217-7.317 5.491e+0
.042 5.992-6.092 5.678e+0- .275 13.225-13.325 3.722e+0- .883 5.833-5.933 7.505e+0- .625 6.575-6.675 6.866e+0- .908 6.858-6.958 2.811e+0-
.042 5.992-6.092 5.678e+0 .275 13.225-13.325 3.722e+0 .883 5.833-5.933 7.505e+0 .625 6.575-6.675 6.866e+0 .908 6.858-6.958 2.811e+0
.275 13.225-13.325 3.722e+0 .883 5.833-5.933 7.505e+0 .625 6.575-6.675 6.866e+0 .908 6.858-6.958 2.811e+0
6.625 6.575-6.675 6.866e+0 6.908 6.858-6.958 2.811e+0
.908 6.858-6.958 2.811e+0
267 7.217-7.317 5.491e+0
, , , , , , , , - , ,
7.500 7.450-7.550 3.237e+0
7.683 7.633-7.733 5.911e+0
9.933 9.883-9.983 8.386e+0
0.208 10.158-10.258 1.169e+0
7.683 7.633-7.733 6.541e+0
3.300 8.250-8.350 5.466e+0
0.658 9.608-9.708 5.249e+0
9.925 9.875-9.975 5.332e+0
0.208 10.158-10.258 5.307e+0
).433 10.383-10.483 5.316e+0
).550 10.500-10.600 4.203e+0
0.942 10.892-10.992 5.598e+0
467 11.417-11.517 6.061e+0
842 11.792-11.892 7.141e+0

STL-PITTSBURGH

COMPOUND LISTING

Method file : /var/chem/gc3.i/2260-E.b/PESTA.m

Compor	und	RT	RT Window	RF
19 Iso	ndmin	8.992	8.942-9.042	5.601e+06
	•			
20 End		11.375		
21 4,4	4′-DDD		11.717-11.817	
22 End	dosulfan II		11.800-11.900	
23 4,4	4′-DDT		12.267-12.367	
24 End	drin aldehyde		12.667-12.767	
25 Met	thoxychlor		13.392-13.492	
26 End	dosulfan sulfate		13.533-13.633	
27 End	drin ketone		14.033-14.133	
28 Ch	lorobenzilate		11.392-11.492	
29 Ke	pone		11.833-11.933	
\$ 30 De	cachlorobiphenyl	16.292	16.242-16.342	4.473e+06
1				

Report Date : 30-May-2000 15:55

STL-PITTSBURGH

INITIAL CALIBRATION DATA

Start Cal Date : 26-MAY-2000 09:16 End Cal Date : 26-MAY-2000 18:18

Quant Method : ESTD
Origin : Disabled
Target Version : 3.40
Integrator : Falcon

Method file : /var/chem/gc3.i/2260-E.b/PESTA.m

Cal Date : 30-May-2000 15:52 g

Curve Type : Average

Calibration File Names:

Level 1: /var/chem/gc3.i/2260-E.b/c-a2537.d Level 2: /var/chem/gc3.i/2260-E.b/c-a2538.d Level 3: /var/chem/gc3.i/2260-E.b/c-a2539.d Level 4: /var/chem/gc3.i/2260-E.b/c-a2540.d Level 5: /var/chem/gc3.i/2260-E.b/c-a2541.d

	1 0.00500	1 0 01000 1	0 02500	0.05000 l	0.10000	1	
	•						l % RSD
Compound	Level 1 		Level 3	-		,	
	339940						
2 Diallate A						•	•
3 Diallate B	100440			•			
4 MIRBX	4691600 7170400	'		•			
5 alpha-BHC	/1/0400						
6 gamma-BHC (Lindane)	3112200	•					•
7 beta-BHC	3112200	,		•			•
8 delta-BHC	5215000	+++++	323728		+++++	323728	•
9 Chlordane(1) (2)	+++++	+++++	591088	'	++++	520720 591088	•
(3)	+++++	+++++	838572		++++	838572	•
(4)	+++++	+++++	1168520		+++++	1168520	•
, ,	1 6871600	•					•
10 Heptachlor 11 Aldrin	1 5728600	•			1		•
12 Heptachlor epoxide	5769800	:		•			
•	5707400	•					
13 gamma-Chlordane	5804600	•	'				•
14 alpha-Chlordane	5459200	•	,				•
15 Endosulfan I	4217200	•		'			•
16 4,4'-DDE	5488400		•				
17 Dieldrin	++++	3171000 +++++	9033000 60607		 +++++	60607	
18 Toxaphene(1) (2)	+++++	l +++++	71410		1 +++++	71410	•
(3)	1 ++++	+++++	76039		++++	76039	
(3)	+++++	1 +++++	120897		+++++	1 120897	
	11177	'				:	•
19 Isodrin	1 4733000			'		•	•
20 Endrin				<u>'</u>		•	
21 4,4'-DDD	3422000	3348800	3/35360	3032320	1 4000000	1 302/400	. 25 20,

Report Date : 30-May-2000 15:55

STL-PITTSBURGH

INITIAL CALIBRATION DATA

Start Cal Date : 26-MAY-2000 09:16 End Cal Date : 26-MAY-2000 18:18

: ESTD Quant Method : Disabled Origin Target Version : 3.40

Integrator : Falcon
Method file : /var/chem/gc3.i/2260-E.b/PESTA.m
Cal Date : 30-May-2000 15:52 g
Curve Type : Average

	0 00500	0.01000	0 02500	0.05000	0.10000		!
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	RRF [% RSD
			=======================================	======			
22 Endosulfan II	4644400	5509300	3949640	3767220	4087520	4391616	16.064
23 4,4'-DDT	3182800	3044400	3574440	3577280	4873430	3650470	19 815
24 Endrin aldehyde	3953000	4557200	3189360	3025560	3297980	3604620	17 712
25 Methoxychlor	1718200	1590300	1675700	1621290	2090975	1739293	11 652
26 Endosulfan sulfate	4002000	4729700	3400000	3279440	3630990	3808426	15 335
27 Endrin ketone	4363600	5267900	3777600	3597620	4030880	4207520	15 661
28 Chlorobenzilate	3715200	4074040	2641680	2770827	3375670	3315483	18.405
29 Kepone	98350	78376	41844	35475	33500	57509	50 776 <
= 6 +			~======		********	*******	
\$ 1 Tetrachloro-m-xylene	5559600	5126600	5126640	4500880	5373080	5137360	7.781
\$ 30 Decachlorobiphenyl	4757800	4308100	4290840	3903280	5105370	4473078	10.402
	1 1	i	I	1	1		

96.19.2

PESTICIDE CALIBRATION VERIFICATION SUMMARY

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: SDGA18632

GC Column: RTX-CLP ID: 0.53 (mm) Init. Calib. Date(s): 05/26/00 05/26/00

EPA Sample No.(PIBLK): _____

Date Analyzed:

Lab Sample ID (PIBLK): ____

Time Analyzed :____

EPA Sample No. (PEM):

Date Analyzed:05/26/00

Lab Sample ID (PEM): EVALB

Time Analyzed:0850

PEM COMPOUND	RT	RT W. FROM	WOCINI OT	CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D	
Endrin 4,4'-DDT	11.38 12.32			0.036591 0.039093			

/2,5 4,4'-DDT % breakdown (1): 21.12 Endrin % breakdown (1):

#31/co

Combined % breakdown (1): _35.33 20.1

OLM03.0

7D PESTICIDE CALIBRATION VERIFICATION SUMMARY

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.: 40325

SDG No.: SDGA18632

GC Column: RTX-CLP ID: 0.53 (mm) Init. Calib. Date(s): 05/26/00 05/26/00

EPA Sample No. (PIBLK):

Date Analyzed :____

Lab Sample ID (PIBLK):

Time Analyzed :_____

EPA Sample No. (PEM):

Date Analyzed:05/26/00

Lab Sample ID (PEM): EVALB

Time Analyzed: 1936

PEM COMPOUND	RT	RT WI FROM	WODIN TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D
Endrin 4,4'-DDT	11.38	11.32			0.025000	
1,1 551						
						

4,4'-DDT % breakdown (1): 10.91

Combined * '

Endrin % breakdown (1):

Combined % breakdown (1): 19-64 213

FORM VII PEST-1

OLM03.0

Data File: /var/chem/gc3.i/2260-E.b/c-a2555.d

Report Date: 30-May-2000 16:04

STL-PITTSBURGH

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: gc3.i

Lab File ID: c-a2555.d Analysis Type:

Lab Sample ID: MEDA

Quant Type: ESTD

Injection Date: 27-MAY-2000 00:18

Init. Calibration Date(s): 05/26/0 05/26/0 Init. Calibration Times: 09:16 18:18

Method File: /var/chem/gc3.i/2260-E.b/PESTA.m

		1		ļ		1	MIN	1	MAX
	COMPOUND	1	RRF	1	RFO	1	RRP	% D ↓	%D
==	******				****	-	==== =	====] :	====
\$	1 Tetrachloro-m-xylene	5	137360	000	4470240	000 0	.000	13.0	15.0
	5 alpha-BHC	7	504934	000	6506920	000 0	.010	13.3	15 0
	6 gamma-BHC (Lindane)	6	B66280	000	5959600	000 0	010	13.2	15.0
	10 Heptachlor	6	541314	000	5547360	.000 0	.010	15.2	15.0
	15 Endosulfan I	5	316182.	000	4460240	.000 0	.010	16.1	15 0
	17 Dieldrin	5	598284.	0001	4718880	000]0	.010	15 7	15.0
	20 Bndrin	4	755752.	000	4197600	000 0	.010	11 7	15.0
	21 4,4'-DDD	3	817468	000	3354920	00010	.010	12.1	15 0
	23 4,4'-DDT	3	650470.	000	3040000	000 0	.010	16 7	15 0
	25 Methoxychlor	1	739293	000	1463540	00000	.010	15.9	15 0
\$	30 Decachlorobiphenyl	4	473078.	000	3726160	000 0	.010	16.7	15.0
		į.		1		1	1	1	- 1

7E

Data File: /var/chem/gc3.1/2260-E.b/c-a2556.d

Report Date: 30-May-2000 16:04

STL-PITTSBURGH +

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: gc3.i

Lab File ID: c-a2556.d

Analysis Type:

Lab Sample ID: MEDB

Quant Type: ESTD

Injection Date: 27-MAY-2000 00:44
Init. Calibration Date(s): 05/26/0 05/26/0

Init. Calibration Times: 09:16 18:18
Method File: /var/chem/gc3.i/2260-E.b/PESTA.m

_						 		
ī		1	1		MI	и	MAX	I
ı	COMPOUND	RRF	1	RFO	RR	F ND	₹D	İ
=	1. 中国 - 中国 - 中国 - 中国 - 中国 - 中国 - 中国 - 中国	*****	:				= =====	ı
1	11 Aldrin	5466046	000	5222920.	000 0.0	10 4.4	1 15 0	1
Ţ	7 beta-BHC	2810948	000	2674880.	000 0 0	10 4 (B 15 0	ı
1	8 delta-BHC	5491176	.000	5420800	000 0.0	10 1.:	3 15.0	۱
1	12 Heptachlor epoxide	5248654	.000	4834560	000 0 0	10 7	9 15 0	1
1	13 gamma-Chlordane	\$331570	.000	4986600	000 0.0	10 6.	5 15.0	1
1	14 alpha-Chlordane	5306750	000	4893600.	000 0.0	10) 7.	в 15.0	1
١	16 4,4'-DDR	4203186	000	4067160.	000 0	10 3	2 15 0	,]
1	22 Endosulfan II	4391616	000	4039120.	000 0.0	10 B	0 15 0	1
ļ	24 Bndrin aldehyde	3604620	.000	3379160.	.000 0.0	10 6	3 15 0	ı
-	26 Endosulfan sulfate	3808426	000	3588600.	.000 0.0	10 5.	8 15.0) [
1	27 Endrin ketone	4207520	.000	3926600	000 0 0	10 6.	7 15.0	1
1		l			_	!	_1	_1

HE=10.2

Data File: /var/chem/gc3.i/2260-E.b/c-a2570.df Report Date: 30-May-2000 16:05

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: gc3.i Lab File ID: c-a2570.d

Analysis Type:

Lab Sample ID: MEDA Quant Type: ESTD

Injection Date: 27-MAY-2000 06:44

Init. Calibration Date(s): 05/26/0 05/26/0 Init. Calibration Times: 09:16 18:18 Method File: /var/chem/gc3.i/2260-E.b/PESTA.m

	1	1	MIN	MAX
COMPOUND	RRF	RF0	RRF	*D *D
		-=	==== ==== =	
\$ 1 Tetrachloro-m-x	ylene 5137366	000 5091680	000 0.000	0.9 15 0
5 alpha-BHC	750493	4.000 6970920	.000 0.010	7.1 15 0
6 gamma-BHC (Lind	ane) 686628	0.000 6029200	000 0.010	12 2 15 0
10 Heptachlor	654131	1.000 5442800	.000 0 010	16.8 15 0
15 Endosulfan I	531618:	2 000 3827080	.000[0.010]	28.0 15.0
17 Dieldrin	, 559828-	4.000 4252760	.000 0.010	24.0 15 0
20 Endrin	475575	2.000 4067960	.000 0 010	14.5 15 0
21 4,4'-DDD	381746	8 000 3946760	.000 0 010	-3.4 15.0
23 4,4'-DDT	365047	000 2128280	.000 0.010	41 7 15.0
25 Methoxychlor	173929	3.000 1342000	.000]0.010	22.6] 15.0
\$ 30 Decachlorobiphe	nyl 447307	8 000 3463200	.000 0.010	22.6 15.0
	į.	ı	1 1	1 1

Data File: /var/chem/gc3.i/2260-E.b/c-a2571.d-

Report Date: 30-May-2000 16:05

.STL-PITTSBURGH

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: gc3.i

Lab File ID: c-a2571.d

Analysis Type:

Lab Sample ID: MEDB

Quant Type: ESTD

Injection Date: 27-MAY-2000 07:10

Init. Calibration Date(s): 05/26/0 05/26/0 Init. Calibration Times: 09:16 18:18

Method File: /var/chem/gc3.i/2260-E.b/PESTA.m

	í <u> </u>	1	MIN	1	IAX
COMPOUND	RRF	[RFO	RRF	%D 1	ED
		== =======	=== ===== =		===
11 Aldrin	5466046 0	00 5249400.	000 0 010	4 0 1	15.0
7 beta-BHC	2810948 0	00 2951920.	000 0 010	-5 0 1	15.0
8 delta-BHC	5491176.0	00 5111640	000 0.010	6.9 1	15.0
12 Heptachlor epoxide	5248654.0	00 4789160	000 0.010	8.8	15.0
13 gamma-Chlordane	5331570.0	00 4842160	000 0 010	9 2 3	LS 0
14 alpha-Chlordane	5306750.0	00 4702640	000 0 010	11.4	15.0
16 4,4'-DDB	4203186.0	00 4009680	000 0 010	4.6	L5.0
22 Endosulfan II	4391616 0	00 3899960	000 0 010	11 2	15 0
24 Endrin aldehyde	3604620 0	00 3238640	.000 0 010	10 2	LS 0
26 Endoculfan sulfate	3808426 0	00 3013480	.000 0.010]	20 9	L5.0
27 Endrin ketone	4207520.0	00 3296360	000 0 010	21 7	15.0
	1	1	1 1	1	

AVE-137

8D PESTICIDE ANALYTICAL SEQUENCE

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT

Case No.:

SAS No.: 40325 SDG No.: C0E230195

GC Column: RTX-CLP ID: 0.53 (mm) Init. Calib. Date(s): 05/26/00 05/26/00

Instrument ID: GC3

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROC TCX: 4.56					
	EPA	LAB	DATE	TIME	TCX	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	=======================================		=======================================	=========	=======================================	======
01		EVALB	05/26/00	0850	4.57	16.30
02		MEDTOX	05/26/00	0916	4.57	16.30
03		MEDCHLOR	05/26/00	0942	4.57	16.30
04		LOWA	05/26/00	1426 1452	4.57 4.57	16.30 16.30
05		MLOWA	05/26/00	1518	4.57	16.30
06		MEDA MHIGHA	05/26/00 05/26/00	1544	4.57	16.29
07		HIGHA	05/26/00	1610	4.56	16.29
08 09		LOWB	05/26/00	1635	4.50	10.29
10		MLOWB	05/26/00	1701		
11		MEDB	05/26/00	1727		:
12		MHIGHB	05/26/00	1753		
13		HIGHB	05/26/00	1818	·	
14		2ND A	05/26/00	1844	4.56	16.29
15		2ND B	05/26/00	1910	1.55	20.22
16		EVALB	05/26/00	1936	4.57	16.29
17		MEDA	05/27/00	0018	4.58	16.30
18		MEDB	05/27/00	0044		
19		EVALB	05/27/00	0110	4.58	16.30
20	DF/S1/0137/W	DDK90103	05/27/00	0344	4.57	16.28
21	PBLK	DDN21101	05/27/00	0435	4.58	16.28
22	LCS	DDN21102	05/27/00	0501	4.58	16.28
23	LCSD	DDN21103	05/27/00	0527	4.57	16.28
24		MEDA	05/27/00	0644	4.57	16.28
25		MEDB	05/27/00	0710		
26						
27						
28						
29						
30						
31						
32		l	l <u></u>	1	l	

QC LIMITS

TCX = Tetrachloro-m-xylene (+/- 0.05 MINUTES)

Column used to flag retention time values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII PEST

OLM03.0

DCB = Decachlorobiphenyl

^{(+/- 0.05} MINUTES)

Data File: /var/chem/gc3.i/2260-E.b/c-a2519.d

Report Date: 30-May-2000 16:09

STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2519.d

Lab Smp Id: EVALB

Inj Date : 26-MAY-2000 08:50

Operator: 1891 Inst ID: gc3.i

Smp Info : EVALB, 2260-E.b, , EVALBR. sub, , 3, 1

Misc Info : 190-88-8

Comment :

Method: /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a2541.d

Als bottle: 1 QC Sample: PEM

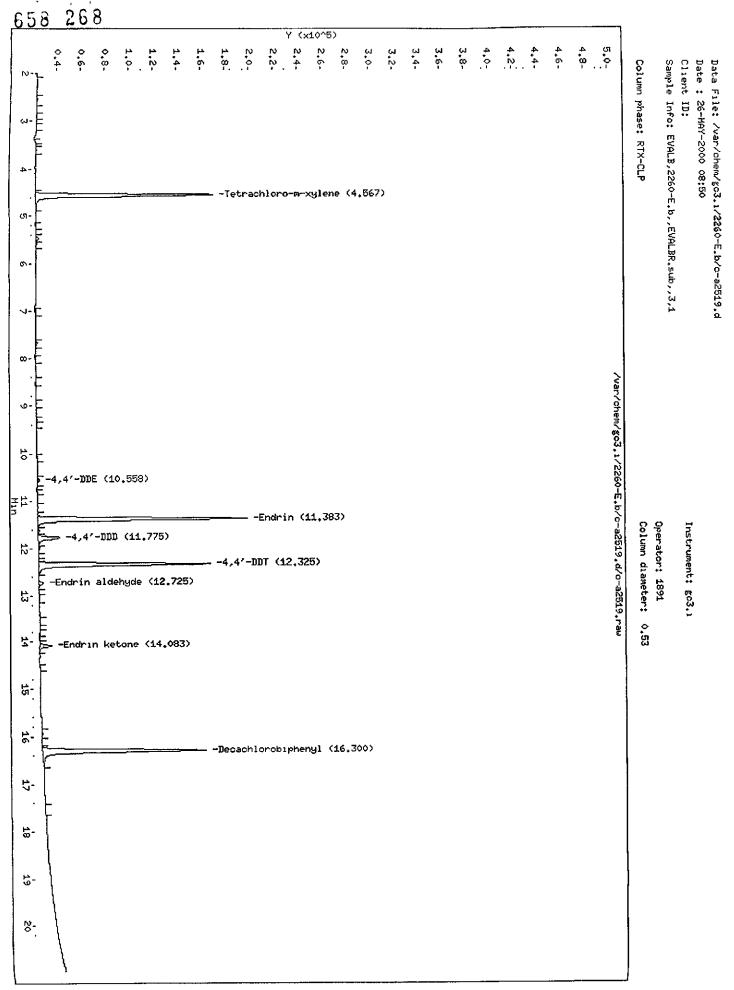
Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: EVALBR.sub

Target Version: 3.40

						CONCENT	ICAT TOTAL
						ON-COLUMN	FINAL
Con	mpounds	ŔŦ	BXP RT	DLT RT	response	(ng)	(ng)
12 13 t		**	=====		39999222		2228800
\$	1 Tetrachloro-m-xylene	4.567	4 558	0.009	147643	0.02874	0.0287391(R)
	16 4,4'-DDB	10.558	10.550	0.008	1898	0.000452	0.000451562
	20 Endrin	11 383	11 375	0 008	174016	0.03659	0.0365906
	21 4,4'-DDD	11.775	11 767	0 008	18428	0.00483	0.00482728
	23 4,4'-DDT	12.325	12 317	0.008	142709	0 03909	0.0390933
	24 Bndrin ældehyde	12.725	12.717	0 008	3986	0.00111	0 00110580
	27 Endrin ketone	14 083	14.083	0.000	10304	0.00245	0.00244895
\$	30 Decachlorobiphenyl	16.300	16.292	0 008	135824	0.03036	0.0303648(R)

QC Flag Legend


R - Spike/Surrogate failed recovery limits.

DOT= 10.5 Goldon - 7.6

CONCENTRATIONS

idning Breakolon = (3996 + 10304) X100, 7,60% (3986 + 10304+174016)

DDT Bruskelon (1990+1642e) X100= 1251

Data File: /var/chem/gc3.i/2260-E.b/c-a2520.d

Report Date: 30-May-2000 16:09

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2260-E.b/c-a2520.d

Lab Smp Id: MEDTOX

Inj Date : 26-MAY-2000 09:16

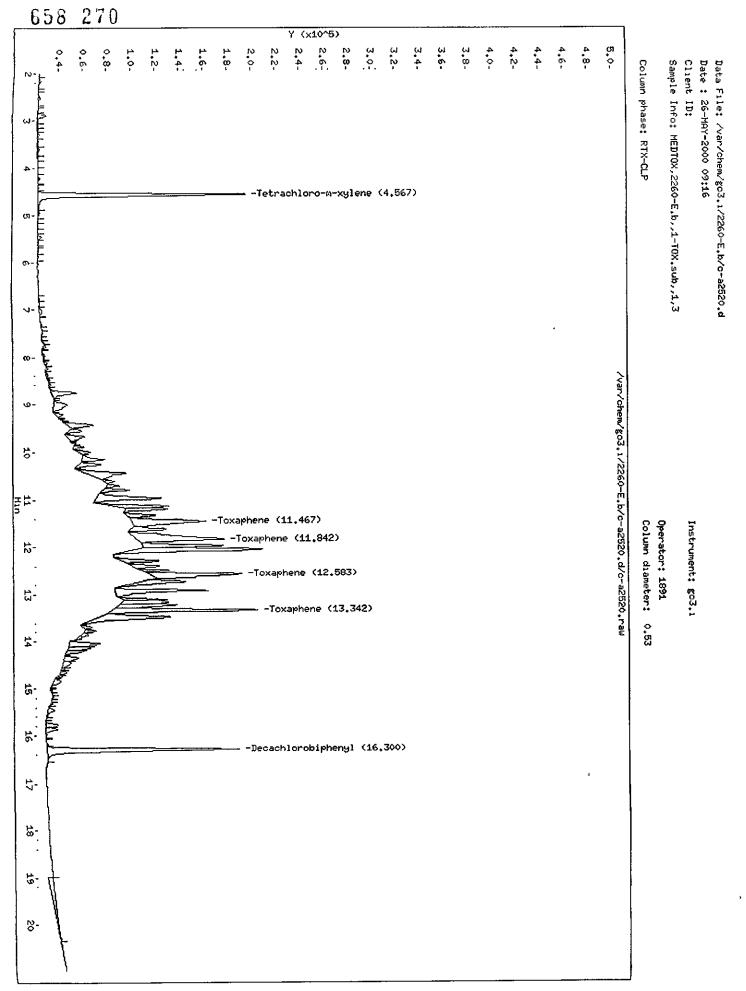
Operator : 1891 Inst ID: gc3.i

Smp Info : MEDTOX,2260-E.b,,1-TOX.sub,,1,3
Misc Info : 190-84-13

Comment

: /var/chem/gc3.i/2260-E.b/PESTA.m Method

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 09:16 Cal File: c-a2520.d


Calibration Sample, Level: 3 Als bottle: 1

Dil Factor: 1.00000

Compound Sublist: 1-TOX.sub Integrator: Falcon

Target Version: 3.40

				AMOUNTS		
				CAL-AMT	ON-COL	
Compounds	RT	BXP RT DLT RT	response	(ng)	(ng)	
	==			2005222		
18 Toxaphene	11 467	11.467 0 000	60607	1 00000	1 00000	
\$ 1 Tetrachloro-m-xylene	4.567	4 558 0.009	171749	0 02500	0.0250000	
\$ 30 Decachlorobiphenyl	16.300	16.292 0.008	159099	0.02500	0.0250000	

Data File: /var/chem/gc3.i/2260-E.b/c-a2521.d

Report Date: 30-May-2000 16:09

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2260-E.b/c-a2521.d

Lab Smp Id: MEDCHLOR

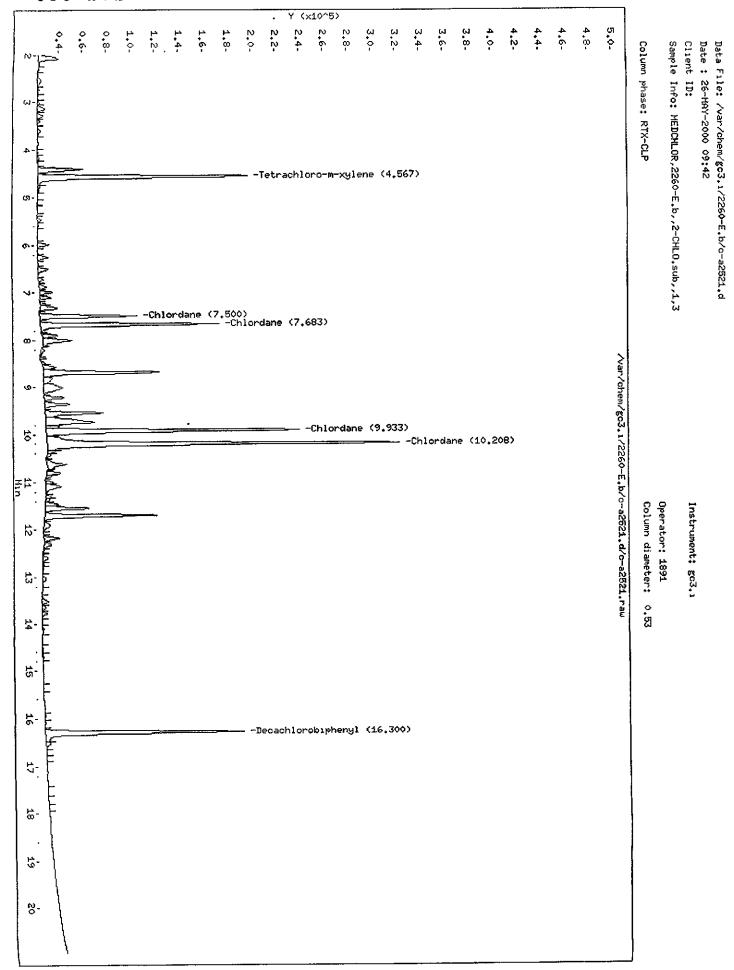
Inj Date : 26-MAY-2000 09:42
Operator : 1891 Inst ID: gc3.i

Smp Info : MEDCHLOR, 2260-E.b,, 2-CHLO.sub,, 1,3

Misc Info : 190-85-10

Comment

Method : /var/chem/gc3.i/2260-E.b/PESTA.m Meth Date : 30-May-2000 16:08 matkol Quan Quant Type: ESTD Cal Date : 26-MAY-2000 09:42 Cal File: c-a2521.d


Calibration Sample, Level: 3 Als bottle: 1

Dil Factor: 1.00000

Compound Sublist: 2-CHLO.sub Integrator: Falcon

Target Version: 3.40

						AMOUNTS			
						CAL-AMT	ON-COL		
Co	pmpounds	RT	BXP RT	DLT RT	RESPONSE	(ng)	(ng)		
==		= 0	=====	pp=====	*******		862222		
	9 Chlordane	7.500	7.500	0.000	80932	0.25000	0 250000		
\$	1 Tetrachloro-m-xylene	4 567	4.558	0.009	173445	0.02500	0 0250000		
ŝ	30 Decachlorobiphenyl	16 300	16.292	0 008	164457	0.02500	0.0250000		

Data File: /var/chem/gc3.i/2260-E.b/c-a2532.d

Report Date: 30-May-2000 16:10

STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2532.d

Lab Smp Id: LOWA

Inj Date : 26-MAY-2000 14:26

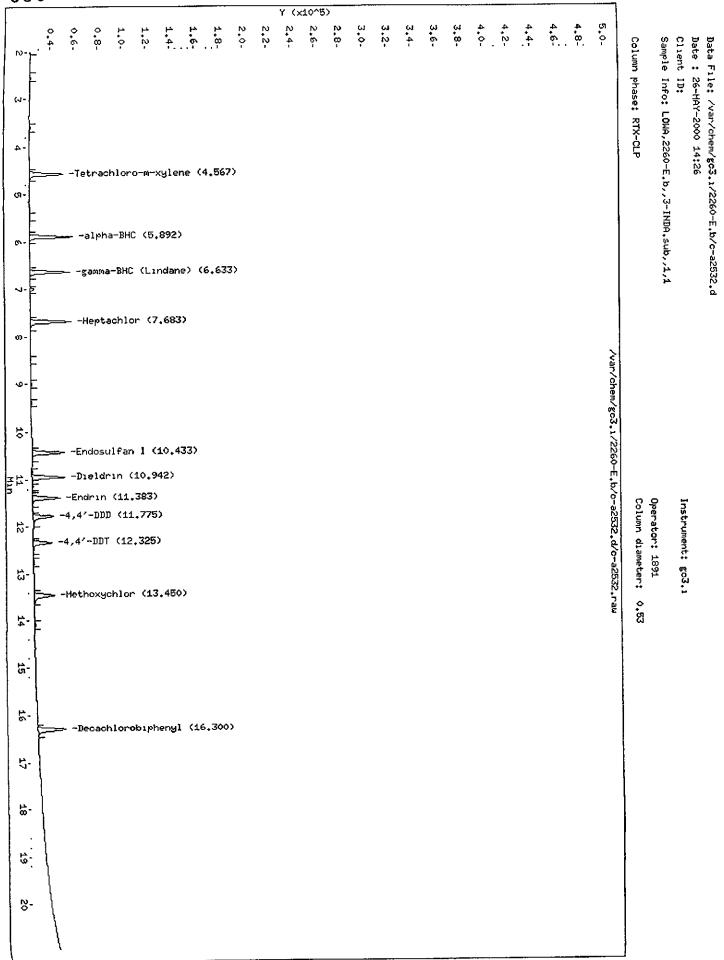
Operator : 1891 Inst ID: gc3.i

Smp Info : LOWA, 2260-E.b, , 3-INDA.sub, , 1, 1
Misc Info : 190-84-1

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Cal Date : 26-MAY-2000 17:27 Quant Type: ESTD Cal File: c-a2539.d


Calibration Sample, Level: 1 Als bottle: 1

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 3-INDA.sub

Target Version: 3.40

					AMOUNTS		
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ng)	(ng)	
	幸年		=====	*******	~ # = = = =		
\$ 1 Tetrachloro-m-xylene	4 567	4 558	0.009	27798	0.00500	0 00520258	
S alpha-BHC	5.892	5.883	0 009	35852	0 00500	0.00483968	
6 gamma-BHC (Lindane)	6.633	6 625	0 008	33221	0.00500	0.00489096	
10 Heptachlor	7.683	7.683	0.000	34358	0.00500	0.00510871	
15 Endosulfan I	10 433	10.433	0.000	27296	0 00500	0.00505373	
17 Dieldrin	10 942	10.942	0.000	27442	0 00500	0.00492613	
20 Endrin	11.383	11 375	0 008	23665	0.00500	0 00497051	
21 4,4'-DDD	11.775	11.767	0.008	17110	0 00500	0.00478109	
23 4,4'-DDT	12.325	12.317	0.008	15914	0.00500	0.00471021	
25 Methoxychlor	13.450	13 442	0 008	17182	0 01000	0.0101252	
\$ 30 Decachlorobiphenyl	16.300	16.292	0.008	23789	0 00500	0.00525803	

Data File: /var/chem/gc3.i/2260-E.b/c-a2533.d

Report Date: 30-May-2000 16:10

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2260-E.b/c-a2533.d

Lab Smp Id: MLOWA

Inj Date : 26-MAY-2000 14:52

Operator: 1891 Inst ID: gc3.i

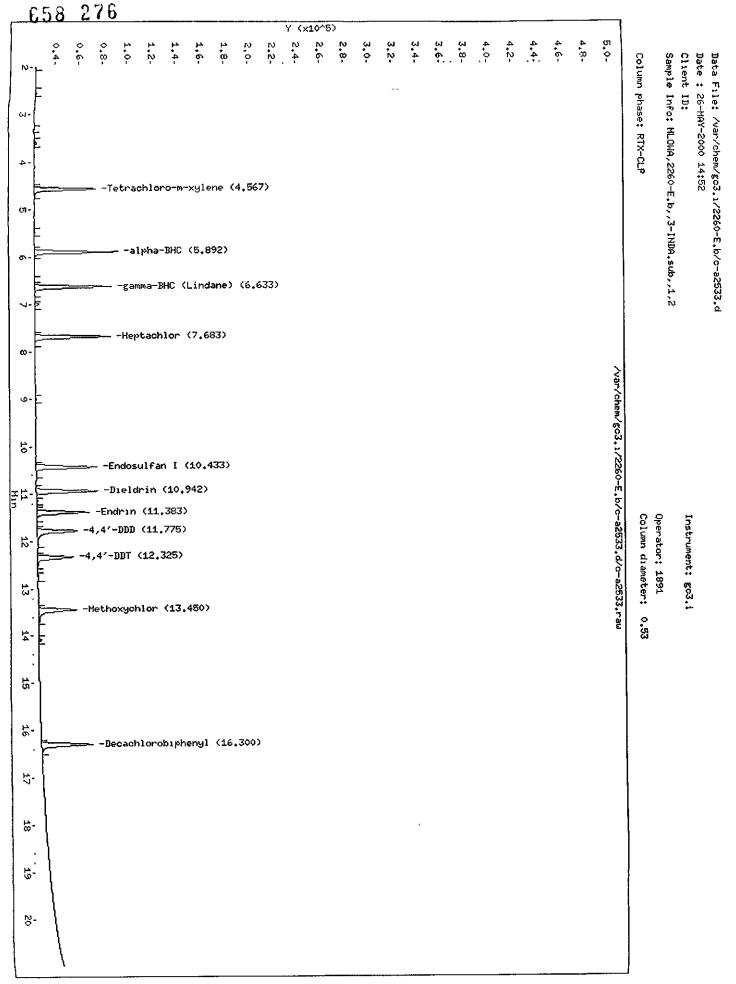
Smp Info : MLOWA, 2260-E.b,, 3-INDA.sub,, 1,2

Misc Info : 190-84-2

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 17:27 Cal File: c-a2539.d


Als bottle: 1 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 3-INDA.sub

Target Version: 3.40

					AMOUNTS		
		•			CAL-AMT	ON-COL	
Compounds	RT	BXP RT	DLT RT	RESPONSE	(ng)	(ng)	
수밖면도교육로드를벌써받으므므므로드로드라워워드다다	==	****	=====	******	6222726	*****	
\$ 1 Tetrachloro-m-xylene	4.567	4 558	0.009	51266	0.01000	0 00972615	
5 alpha-BHC	5.892	5 883	0.009	69557	0.01000	0 00958458	
6 gamma-BHC (Lindane)	6.633	6.625	0.008	63664	0.01000	0 00957303	
10 Heptachlor	7.683	7 683	0.000	62950	0.01000	0.00956408	
15 Endosulfan I	10.433	10.433	0.000	50773	0.01000	0.00959211	
17 Dieldrin	10 942	10 942	0.000	51710	0.01000	0.00950994	
20 Endrin	11.383	11 375	0 008	44134	0.01000	0 00950102	
21 4,4'-DDD	11.775	11.767	0.008	33488	0.01000	0 00956239	
23 4,4'-DDT	12.325	12 317	0 008	30444	0.01000	0.00931803	
25 Methoxychlor	13 450	13.442	0.008	31806	0.02000	0.0191441	
\$ 30 Decachlorobiphenyl	16.300	16.292	0.008	43081	0.01000	0.00967624	

Data File: /var/chem/gc3.i/2260-E.b/c-a2534.d

Report Date: 30-May-2000 16:10

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2260-E.b/c-a2534.d

Lab Smp Id: MEDA

Inj Date : 26-MAY-2000 15:18

Operator: 1891 Inst ID: gc3.i

Smp Info : MEDA, 2260-E.b, , 3-INDA.sub, , 1, 3

Misc Info: 190-84-3

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 15:18 Cal File: c-a2534.d

Als bottle: 1 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 3-INDA.sub

Target Version: 3.40

					AMOUNTS		
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ng)	(ng)	
***************************************	==	#####	=====	=======		E====E	
\$ 1 Tetrachloro-m-xylene	4.567	4.558	0 009	128166	0.02500	0.0250000	
5 alpha-BHC	5.892	5.883	0.009	191136	0.02500	0.0250000	
6 gamma-BHC (Lindane)	6.633	6.625	0 008	173511	0 02500	0 0250000	
10 Heptachlor	7 683	7.683	0.000	164479	0.02500	0.0250000	
15 Endosulfan I	10.433	10.433	0.000	133578	0.02500	0 0250000	
17 Dieldrin	10.942	10.942	0.000	141325	0.02500	0.0250000	
20 Bndrin	11.383	11 375	0.008	119729	0.02500	0.0250000	
21 4,4'-DDD	11 767	11 767	0 000	93384	0.02500	0.0250000	
23 4,4'-DDT	12.325	12.317	0.008	89361	0.02500	0 0250000	
25 Methoxychlor	13 450	13 442	0.008	83785	0 05000	0.0500000	
\$ 30 Decachlorobiphenyl	16.300	16 292	0.008	107271	0.02500	0.0250000	

Data File: /var/chem/gc3.i/2260-E.b/c-a2535.d

Report Date: 30-May-2000 16:10

STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2535.d

Lab Smp Id: MHIGHA

Inj Date : 26-MAY-2000 15:44

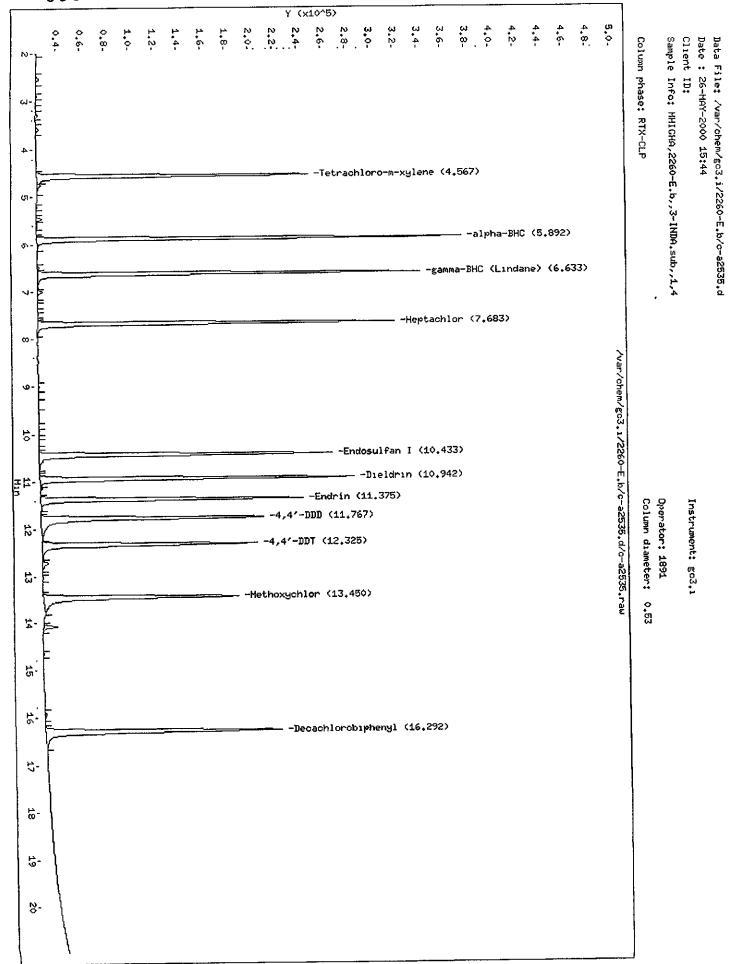
Operator : 1891 Inst ID: gc3.i

Smp Info : MHIGHA, 2260-E.b, , 3-INDA.sub, , 1, 4

Misc Info : 190-84-4

Comment

Method : /var/chem/gc3.i/2260-E.b/PESTA.m Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 17:27 Cal File: c-a2539 Cal File: c-a2539.d


Als bottle: 1 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 3-INDA.sub

Target Version: 3.40

						AMOU	nts
						CAL-AMT	ON-COL
Cor	npounds	RT	BXP RT	DLT RT	RESPONSE	(ng)	(ng)
==:		= =	222888			===== =	======
\$	1 Tetrachloro-m-xylene	4.567	4.558	0.009	225044	0.05000	0.0443137
	S alpha-BHC	5.892	5.883	0.009	352409	0.05000	0.0489122
	6 gamma-BHC (Lindane)	6.633	6.625	0.008	317854	0.05000	0 0483279
	10 Heptachlor	7.683	7.683	0.000	296316	0 05000	0 0461694
	15 Endosulfan I	10.433	10.433	0.000	242306	0.05000	0.0467643
	17 Dieldrin	10.942	10.942	0 000	260364	0.05000	0.0483955
	20 Endrin	11.375	11 375	0.000	217602	0.05000	0 0475955
	21 4,4'-DDD	11.767	11.767	0 000	184616	0.05000	0 0520101
	23 4,4'-DDT	12 325	12 317	0.008	178864	0.05000	0 0534764
	25 Methoxychlor	13.450	13 442	0.008	162129	0 10000	0.0981783
\$	30 Decachlorobiphenyl	16.292	16.292	0.000	195164	0 05000	0.0452291

Data File: /var/chem/gc3.i/2260-E.b/c-a2536.d

Report Date: 30-May-2000 16:10

STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2536.d

Lab Smp Id: HIGHA

Inj Date : 26-MAY-2000 16:10

Operator: 1891 Inst ID: gc3.i

Smp Info : HIGHA, 2260-E.b, , 3-INDA.sub, , 1, 5

Misc Info : 190-84-5

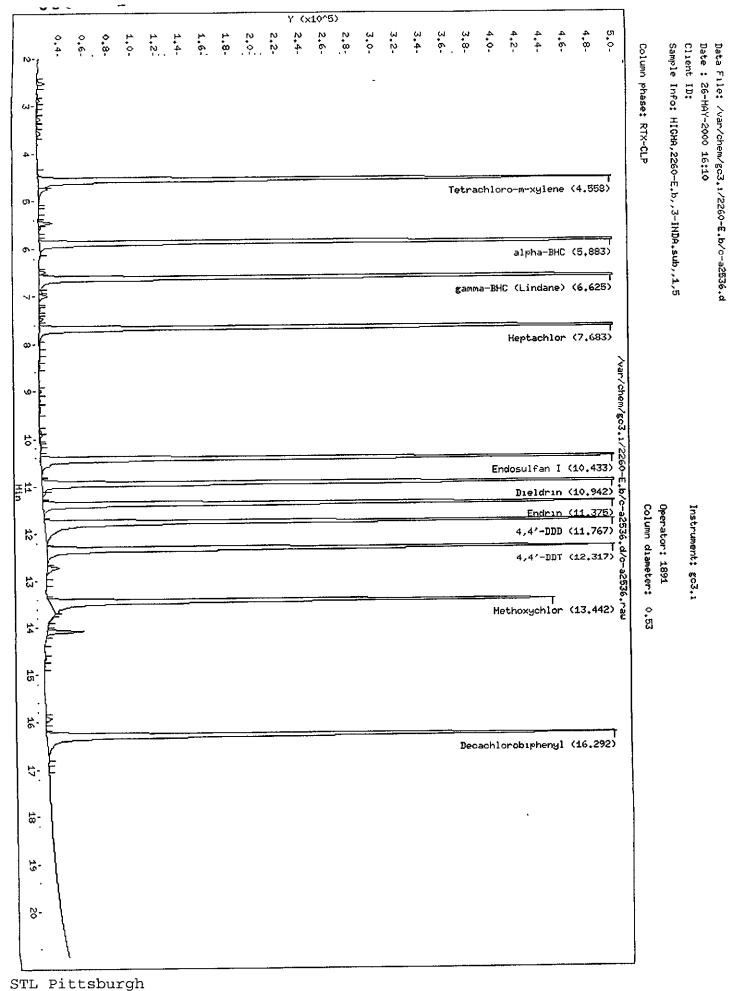
Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 17:27 Cal File: c-a2539.d

Als bottle: 1 Calibration Sample, Level: 5

Dil Factor: 1.00000


Integrator: Falcon Compound Sublist: 3-INDA.sub

Target Version: 3.40

				amounts		
				CAL-AMT	ON-COL	
Compounds	RT	EXP RT DLT RT	RESPONSE	(ng)	(ng)	
	**		=======	222222	22222E	
\$ 1 Tetrachloro-m-xylene	4 558	4 558 0.000	537308	0 10000	0.104588(A)	
5 alpha-BHC	5.883	5.883 0.000	870495	0.10000	0 115990(A)	
6 gamma-BHC (Lindane)	6 625	6.625 0.000	802328	0.10000	0.116850(A)	
10 Heptachlor	7 683	7.683 0 000	703449	0 10000	0 107539(A)	
15 Endosulfan I	10.433	10.433 0.000	585517	0 10000	0.110139(A)	
17 Dieldrin	10.942	10 942 0.000	647174	0 10000	0 115602(A)	
20 Bndrin	11.375	11.375 0 000	549116	0.10000	0.115464(A)	
21 4,4'-DDD	11.767	11.767 0 000	488886	0.10000	0.128066(A)	
23 4,4'-DDT	12.317	12.317 0 000	487343	0.10000	0.133501(A)	
25 Methoxychlor	13.442	13.442 0.000	418195	0.20000	0 240440(A)	
\$ 30 Decachlorobiphenyl	16.292	16 292 0 000	510537	0.10000	0.114136(A)	

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Data File: /var/chem/gc3.i/2260-E.b/c-a2537.d

Report Date: 30-May-2000 16:10

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2260-E.b/c-a2537.d

Lab Smp Id: LOWB

Inj Date : 26-MAY-2000 16:35

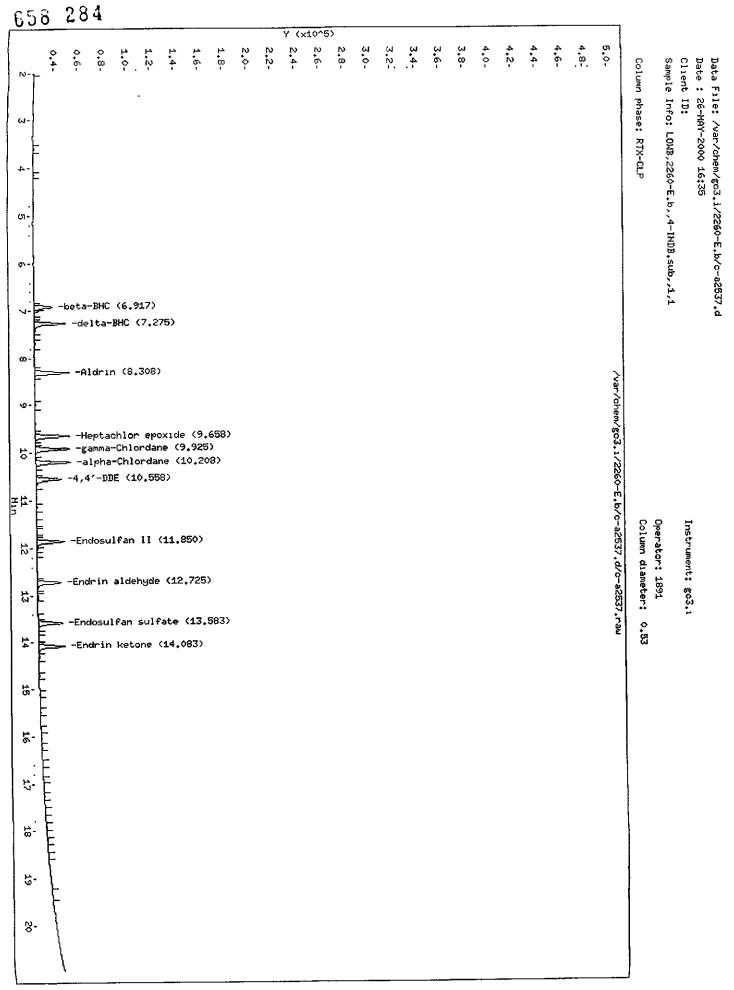
Operator : 1891 Inst ID: gc3.i

Smp Info : LOWB, 2260-E.b, , 4-INDB.sub, ,1,1
Misc Info : 190-84-7

Comment

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Cal Date : 26-MAY-2000 17:27 Quant Type: ESTD Cal File: c-a2539.d


Calibration Sample, Level: 1 Als bottle: 1

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 4-INDB.sub

Target Version: 3.40

					AMOUNTS		
					CAL-AMT	ON-COL	
Compounds	RT	BXP RT	DLT RT	RESPONSE	(ng)	(ng)	
党政工事员宣传规则自由的基本自己的政策和自己的政策	**	=====	=====	*****	****	=======	
11 Aldrin	8 308	8.300	0.008	28643	0.00500	0.00536595	
7 beta-BHC	6.917	6 908	0 009	15561	0.00500	0.00553276	
8 delta-BHC	7 275	7 267	0 008	26075	0 00500	0.00510218	
12 Heptachlor epoxide	9.658	9.658	0.000	28849	0.00500	0 00550751	
13 gamma-Chlordane	9 925	9.925	0 000	28537	0.00500	0.00543591	
14 alpha-Chlordane	10.208	10.208	0 000	29023	0 00500	0.00550911	
16 4,4'-DDB	10.558	10.550	0.008	21086	0.00500	0 00529187	
22 Endosulfan II	11.850	11 950	0.000	23222	0.00500	0.00540421	
24 Endrin aldehyde	12 725	12.717	0.008	19765	0.00500	0.00553458	
26 Endosulfan sulfate	13.583	13 583	0.000	20010	0.00500	0.00540665	
27 Endrin ketone	14.083	14 083	0.000	21918	0.00500	0.00535990	

Data File: /var/chem/gc3.i/2260-E.b/c-a2538.d

Report Date: 30-May-2000 16:10

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2260-E.b/c-a2538.d

Lab Smp Id: MLOWB

Inj Date : 26-MAY-2000 17:01

Operator: 1891 Inst ID: gc3.i

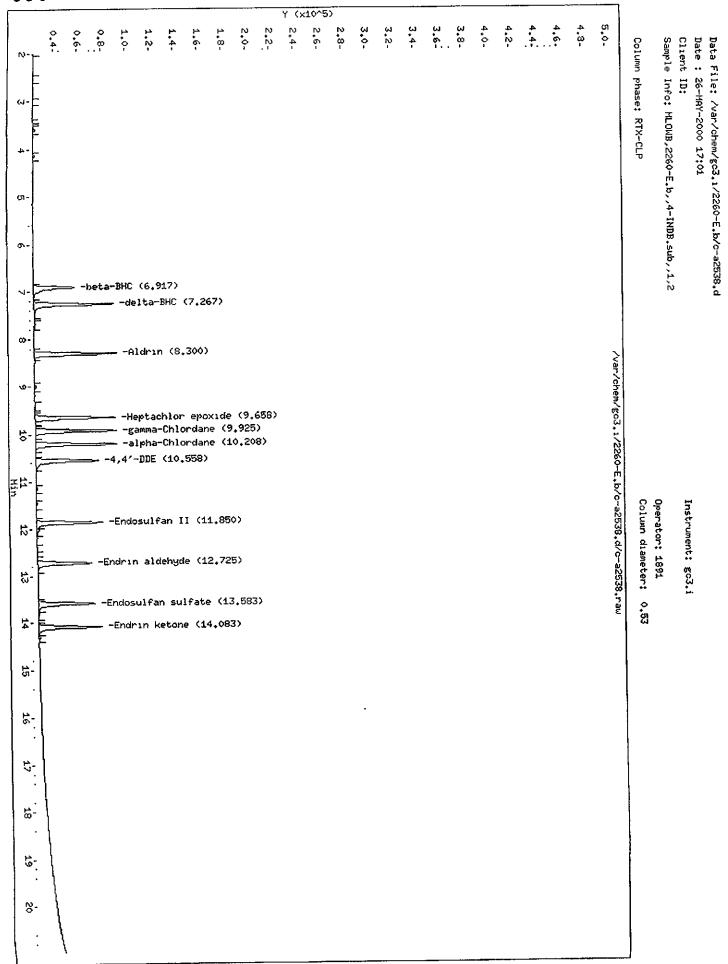
Smp Info : MLOWB, 2260-E.b, , 4-INDB.sub, , 1, 2

Misc Info: 190-84-8

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 17:27 Cal File: c-a2539.d


Als bottle: 1 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 4-INDB.sub

Target Version: 3.40

				AMOUNTS		
					CAL-AMT	ON-COL
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ng)	(ng)
	==	======	=====	*****	****	=======
11 Aldrin	8 300	8 300	0 000	68204	0 01000	0.0116946
7 beta-BHC	6.917	6 908	0.009	34690	0 01000	0.0114438
8 delta-BHC	7 267	7 267	0 000	66026	0 01000	0 0117737
12 Reptachlor epoxide	9.658	9.658	0.000	66680	0.01000	0.0116680
13 gamma-Chlordane	9 925	9 925	0 000	67079	0 01000	0.0116948
14 alpha-Chlordane	10 208	10.208	0.000	67170	0.01000	0 0116795
16 4,4'-DDB	10 558	10.550	0.008	51646	0.01000	0.0117969
22 Bndosulfan II	11 850	11 850	0 000	55093	0 01000	0 0117191
24 Endrin aldehyde	12.725	12.717	0.008	45572	0.01000	0.0116856
26 Bndosulfan sulfate	13.583	13 583	0.000	47297	0.01000	0.0116959
27 Endrin ketone	14.083	14.083	0.000	52679	0.01000	0 0117858

Data File: /var/chem/gc3.i/2260-E.b/c-a2539.d

Report Date: 30-May-2000 16:10

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2260-E.b/c-a2539.d

Lab Smp Id: MEDB

Inj Date : 26-MAY-2000 17:27

Operator : 1891 Inst ID: gc3.i

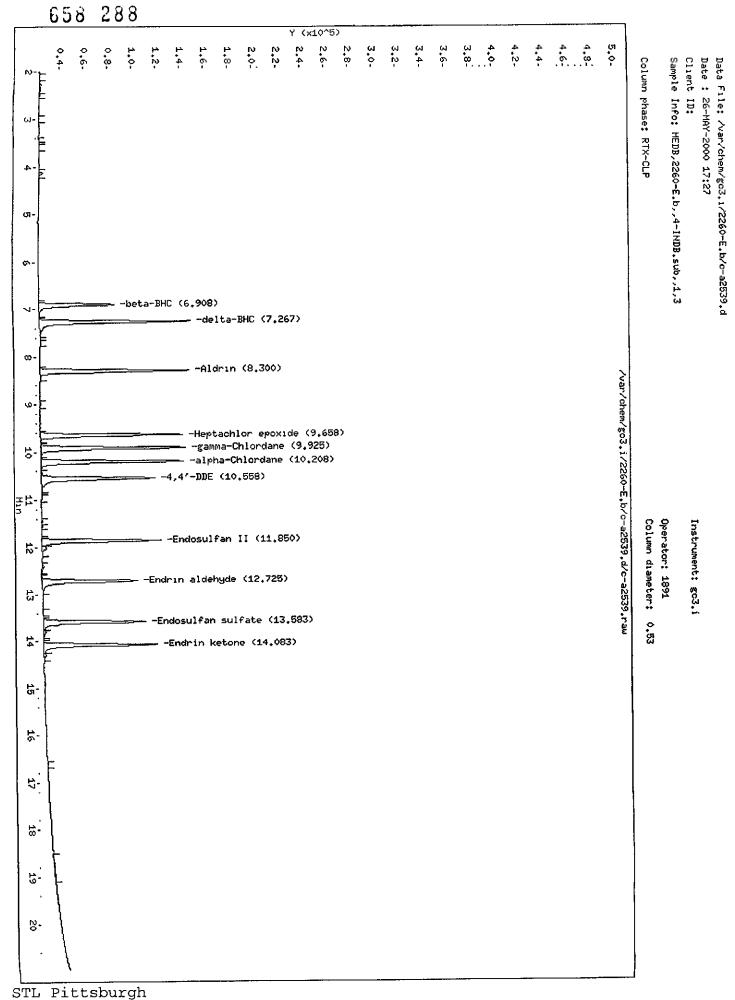
Smp Info : MEDB, 2260-E.b, ,4-INDB.sub, ,1,3

Misc Info : 190-84-9

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 17:27 Cal File: c-a2539.d


Als bottle: 1 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 4-INDB.sub

Target Version: 3.40

					AMOU	AMOUNTS	
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ng)	(ng)	
	==	****	======	20025284	255555	722220c	
11 Aldrin	8 300	8 300	0 000	123681	0 02500	0 0250000	
7 beta-BHC	6.908	6 908	0.000	62821	0.02500	0 0250000	
8 delta-BHC	7.267	7 267	0 000	125153	0.02500	0 0250000	
12 Heptachlor epoxide	9.658	9.658	0 000	117661	0 02500	0.0250000	
13 gamma-Chlordane	9.925	9.925	0.000	119801	0.02500	0 0250000	
14 alpha-Chlordane	10.208	10 208	0 000	118294	0 02500	0.0250000	
16 4,4'-DDE	10.558	10 550	0.008	93800	0.02500	0 0250000	
22 Endooulfan II	11 950	11 850	0 000	98741	0 02500	0.0250000	
24 Bndrin aldehyde	12 725	12 717	0 008	79734	0 02500	0 0250000	
26 Endosulfan sulfate	13.563	13.583	0.000	85000	0 02500	0.0250000	
27 Bndrin ketone	14 083	14 083	0.000	94440	0 02500	0.0250000	

Data File: /var/chem/gc3.i/2260-E.b/c-a2540.d

Report Date: 30-May-2000 16:10

STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2540.d

Lab Smp Id: MHIGHB

Inj Date : 26-MAY-2000 17:53

Operator: 1891 Inst ID: gc3.i

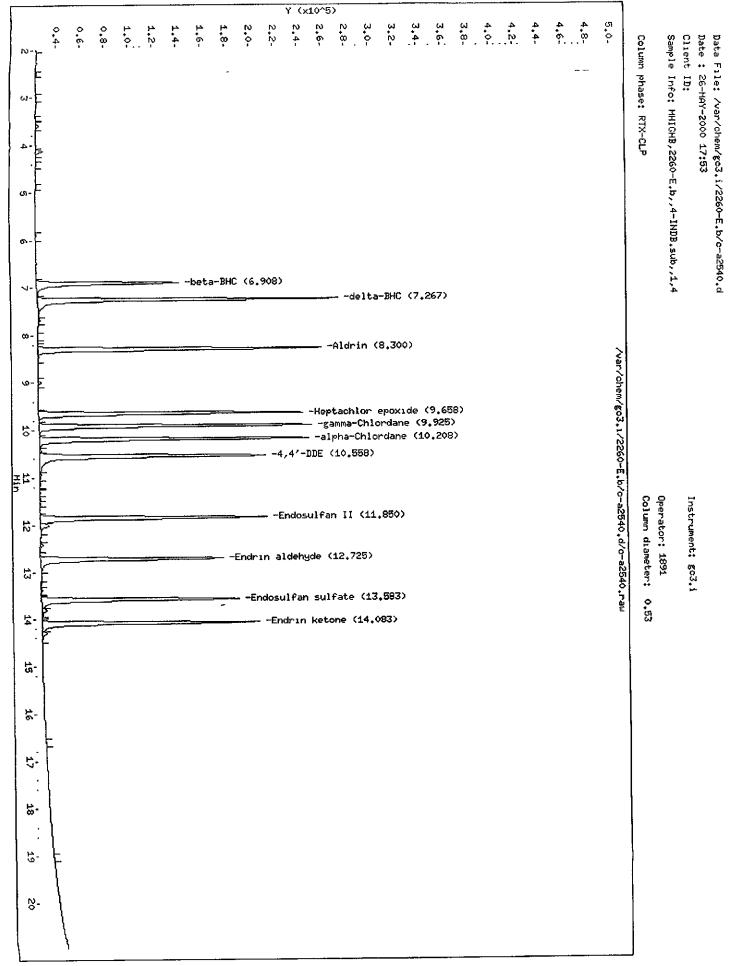
Smp Info : MHIGHB, 2260-E.b, ,4-INDB.sub, ,1,4

Misc Info: 190-84-10

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 17:53 Cal File: c-a2540.d


Als bottle: 1 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 4-INDB.sub

Target Version: 3.40

				UOMA	nts	
					CAL-AMT	ON-COL
Compounds	RT	BXP RT	DLT RT	Response	(ng)	(ng)
	==	****	22228	88863222	2222005	=====
11 Aldrin	8.300	8 300	0.000	235801	0.05000	0.0424632
7 beta-BHC	6.908	6 908	0.000	117979	0 05000	0.0412023
8 delta-BHC	7.267	7 267	0 000	249661	0 05000	0.0457738
12 Heptachlor epoxide	9.658	9 658	0.000	219252	0.05000	0 0407356
13 gamma-Chlordane	9.925	9 925	0.000	226011	0 05000	0 0416082
14 alpha-Chlordane	10.208	10.208	0.000	223318	0.05000	0 0411272
16 4,4'-DDB	10 558	10 550	0.008	187082	0.05000	0 0443442
22 Endoculfan II	11.850	11.850	0.000	188361	0 05000	0 0421612
24 Endrin aldehyde	12.725	12.717	0.008	151278	0.05000	0.0410938
26 Endosulfan pulfate	13.583	13 583	0.000	163972	0.05000	0.0425593
27 Endrin ketone	14 083	14 083	0 000	179881	0.05000	0.0423082

Data File: /var/chem/gc3.i/2260-E.b/c-a2541.d

Report Date: 30-May-2000 16:11

STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2541.d

Lab Smp Id: HIGHB

Inj Date : 26-MAY-2000 18:18

Operator: 1891 Inst ID: gc3.i

Smp Info : HIGHB, 2260-E.b, , 4-INDB.sub, , 1, 5

Misc Info : 190-84-11

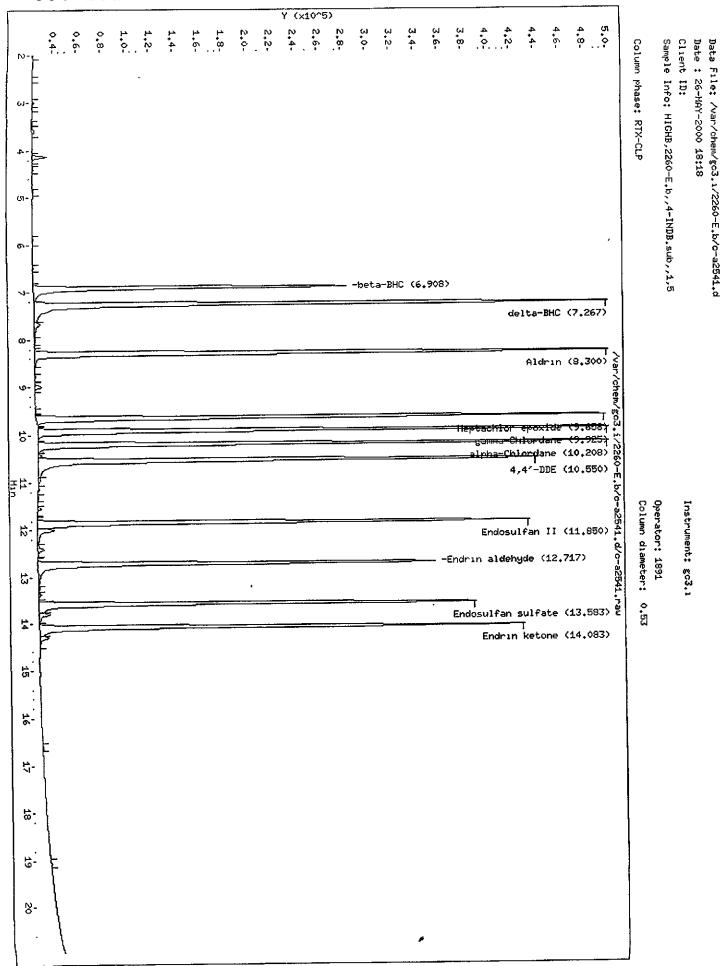
Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a2541.d

Als bottle: 1 Calibration Sample, Level: 5

Dil Factor: 1.00000


Integrator: Falcon Compound Sublist: 4-INDB.sub

Target Version: 3.40

					MOU	RTS
					CAL-AMT	ON-COL
Compounds	RT	BXP RT	DLT RT	RESPONSE	(ng)	(ng)
***************	# =		200007	222220EA	======	
11 Aldrin	8.300	8.300	0.000	511797	0 10000	0.0936320
7 beta-BHC	6.908	6.908	0.000	260112	0.10000	0.0925353
8 delta-BHC	7.267	7.267	0.000	563894	0 10000	0.102691(A)
12 Heptachlor epoxide	9.658	9 658	0 000	471399	0.10000	0.0898133
13 gamma-Chlordane	9.925	9.925	0.000	493029	0.10000	0 0924735
14 alpha-Chlordane	10.208	10.208	0.000	481403	0 10000	0.0907152
16 4,4'-DDB	10.550	10.550	0.000	414049	0 10000	0.0985084
22 Endoculfan II	11.850	11.850	0.000	408752	0 10000	0.0930755
24 Endrin aldehyde	12.717	12.717	0.000	329798	0.10000	0.0914931
26 Bndosulfan sulfate	13.503	13 583	0.000	363099	0 10000	0.0953410
27 Endrin ketone	14 083	14.083	0.000	403088	0.10000	0.0958018

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Data File: /var/chem/gc3.i/2260-E.b/c-a2542.d

Report Date: 30-May-2000 16:11

STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2542.d

Lab Smp Id: 2ND A

Inj Date : 26-MAY-2000 18:44

Operator: 1891 Inst ID: gc3.i

Smp Info : 2ND A, 2260-E.b, , INDA.sub, , 2, 3

Misc Info : 190-82-2

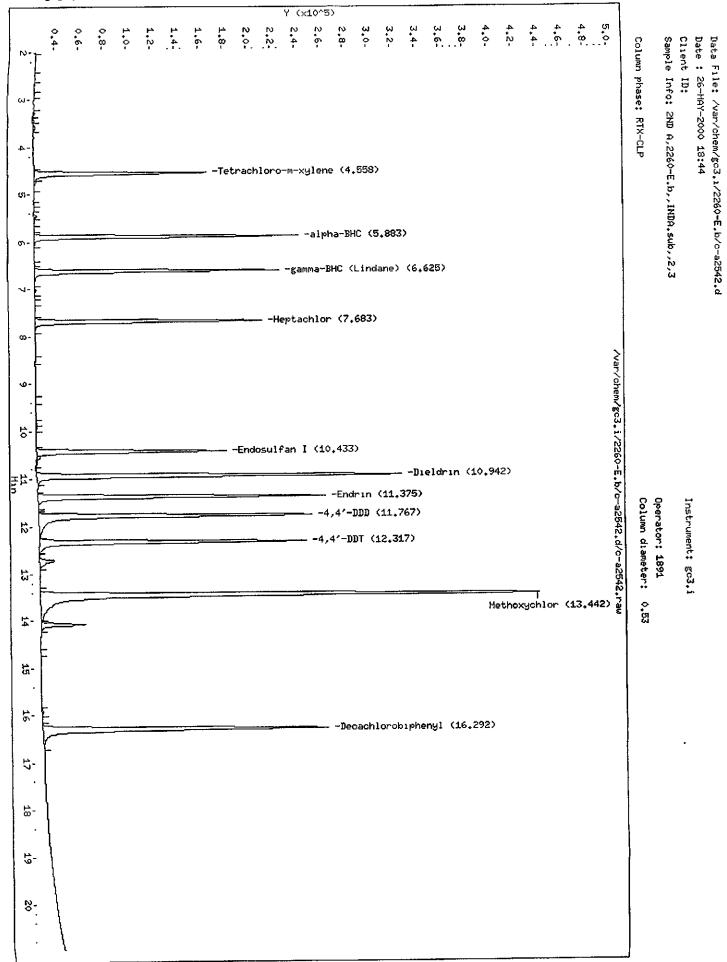
Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a2541.d

Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000


Integrator: Falcon Compound Sublist: INDA.sub

Target Version: 3.40

							AMOUNTS		
							CAL-AMT	ON-COL	
Co	mpo	unds	RT	EXP RT	DLT RT	RBSPONSE	(ng)	(ng)	
==	===		==	******	22225	****	=0=====	******	
\$	1	Tetrachloro-m-xylene	4.558	4.558	0.000	142798	0.02500	0.0277960	
	5	alpha-BHC	5 883	5.883	0 000	218916	0 02500	0.0291696	
	6	gamma-BHC (Lindane)	6.625	6 625	0 000	203035	0.02500	0 0295699	
	10	Heptachlor	7.683	7 683	0.000	188207	0.02500	0.0287720	
	15	Endosulfan I	10.433	10.433	0.000	157413	0 02500	0.0296102	
	17	Dieldrin	10 942	10.942	0.000	302851	0 02500	0.0540971	
	20	Endrin	11.375	11.375	0.000	238074	0 02500	0 0500602	
	21	4,4'-DDD	11.767	11 767	0.000	226860	0 02500	0 0594268	
	23	4,4'-DDT	12 317	12.317	0.000	221662	0.02500	0.0607215	
	25	Methoxychlor	13.442	13 442	0.000	413990	0 05000	0.238022(A)	
\$	30	Decachlorobiphenyl	16 292	16.292	0 000	236421	0.02500	0.0528542	

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Data File: /var/chem/gc3.i/2260-E.b/c-a2543.d

Report Date: 30-May-2000 16:11

STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2543.d

Lab Smp Id: 2ND B

Inj Date : 26-MAY-2000 19:10
Operator : 1891 Inst ID: gc3.i

Smp Info : 2ND B, 2260-E.b, , INDB. sub, , 2, 3

Misc Info : 190-82-5

Comment

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a254: Cal File: c-a2541.d


Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: INDB.sub

Target Version: 3.40

					AMOUNTS		
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ng)	(ng)	
=======================================	==	======	*****	=======	=======		
11 Aldrin	8 300	8 300	0.000	173468	0.02500	0 0317356	
7 beta-8HC	6 908	6.908	0 000	84796	0.02500	0.0301663	
8 delta-BHC	7 267	7.267	0 000	174313	0 02500	0.0317442	
12 Heptachlor epoxide	9 658	9 658	0 000	166423	0 02500	0 0317077	
13 gamma-Chlordane	9.925	9.925	0.000	168369	0.02500	0.0315796	
14 alpha-Chlordane	10 208	10 208	0.000	167460	0.02500	0 0315560	
16 4,4'-DDE	10.550	10.550	0.000	257757	0.02500	0 0613242	
22 Endosulfan II	11.850	11.850	0 000	260957	0 02500	0.0594216	
24 Endrin aldehyde	12.717	12 717	0.000	205070	0.02500	0.0568909	
26 Endosulfan sulfate	13.583	13 583	0.000	230639	0.02500	0.0605602	
27 Bndrin ketone	14 083	14 083	0 000	254254	0.02500	0.0604285	

Data File: /var/chem/gc3.i/2260-E.b/c-a2544.d

Report Date: 30-May-2000 16:11

STL-PITTSBURGH

CONCENTRATIONS

Data file: /var/chem/gc3.i/2260-E.b/c-a2544.d

Lab Smp Id: EVALB

Inj Date : 26-MAY-2000 19:36

Operator: 1891 Inst ID: gc3.i

Smp Info : EVALB, 2260-E.b., EVALBR. sub, , 3, 1

Misc Info: 190-88-8

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a2541.d

Als bottle: 1 QC Sample: PEM

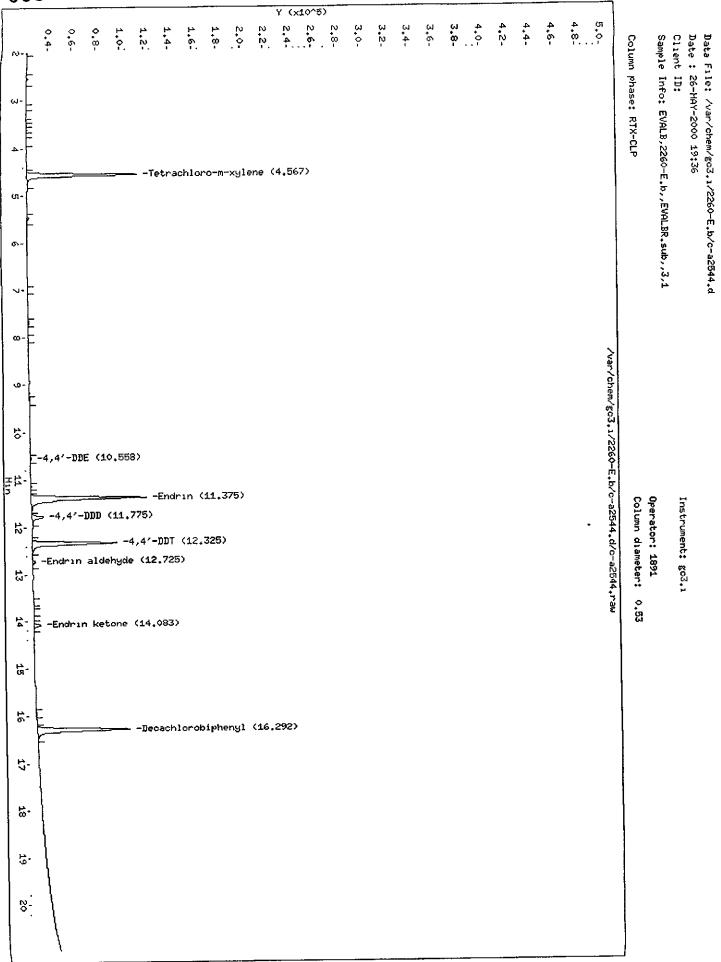
Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: EVALBR.sub

Target Version: 3.40

•						CONCENTRATIONS		
						ON-COLUMN	PINAL	
Co	pmpounds	RT	BXP RT	DLT RT	response	(ng)	(ng)	
		5 2	t	=====	******	300000	======	
\$	1 Tetrachloro-m-xylene	4 567	4 558	0 009	90798	0.01767	0.0176740(R)	
	16 4,4'-DDE	10 558	10.550	0 008	863	0.000205	0.000205320	
	20 Endrin	11 375	11 375	0 000	95718	0 02013	0 0201268	
	21 4,4'-DDD	11.775	11.767	0.008	9633	0.00252	0 00252340	
	23 4,4'-DDT	12.325	12.317	800 0	70976	0.01944	0 0194430	
	24 Endrin aldehyde	12.725	12 717	0 008	2568	0.000712	0 000712419	
	27 Endrin ketone	14 083	14.083	0 000	6178	0.00147	0 00146832	
ŝ	30 Decachlorobiphenyl	16 292	16 292	0 000	76867	0.01718	0.0171844 (R)	

QC Flag Legend


R - Spike/Surrogate failed recovery limits.

DD= 19.4

Endur Breentcla - (2569+6172) 1100:

DT Breatdon (903+9633) x (03 12,90)
STL Pittsburgh (903+9632) 7003

3054

Data File: /var/chem/gc3.i/2260-E.b/c-a2555.d

Report Date: 30-May-2000 16:11

STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2555.d

Lab Smp Id: MEDA

Inj Date : 27-MAY-2000 00:18

Operator : 1891 Inst ID: gc3.i

Smp Info : MEDA, 2260-E.b,, INDA.sub,, 2,3
Misc Info : 190-84-3

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a2541.d

Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: INDA.sub

Target Version: 3.40

						AMOU	nts
						CAL-AMT	ON-COL
Compounds		RT	EXP RT	DLT RT	RESPONSE	(ng)	(ng)
=======================================	=======		2 2 2 2 2 2 E		2222288	222220	*****
\$ 1 Tetrachloro	-m-xylene	4.575	4 558	0 017	111756	0.02500	0.0217536
5 alpha-BHC		5 892	5.883	0.009	162673	0 02500	0.0216755
6 gamma-BHC (Lindane)	6.633	6.625	0 008	148990	0.02500	0 0216988
10 Heptachlor		7.692	7.683	0 009	138684	0.02500	0.0212012
15 Bndosulfan	ı	10.442	10.433	0 009	111506	0 02500	0.0209748
17 Dieldrin		10.950	10.942	0.008	117972	0.02500	0.0210729
20 Endrin		11 383	11 375	0 008	104940	0.02500	0 0220659
21 4,4'-DDD		11.775	11.767	0 008	83873	0.02500	0 0219708
23 4,4'-DDT		12.325	12.317	0 008	76000	0.02500	0.0208192
25 Methoxychlo	r	13.450	13.442	0 008	73177	0.05000	0.0420728
\$ 30 Decachlorob	iphenyl	16.300	16 292	0 008	93154	0.02500	0.0208255

STL Pittsburgh

3057

Data File: /var/chem/gc3.i/2260-E.b/c-a2556.d

Report Date: 30-May-2000 16:12

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2260-E.b/c-a2556.d Lab Smp Id: MEDB

Inj Date : 27-MAY-2000 00:44

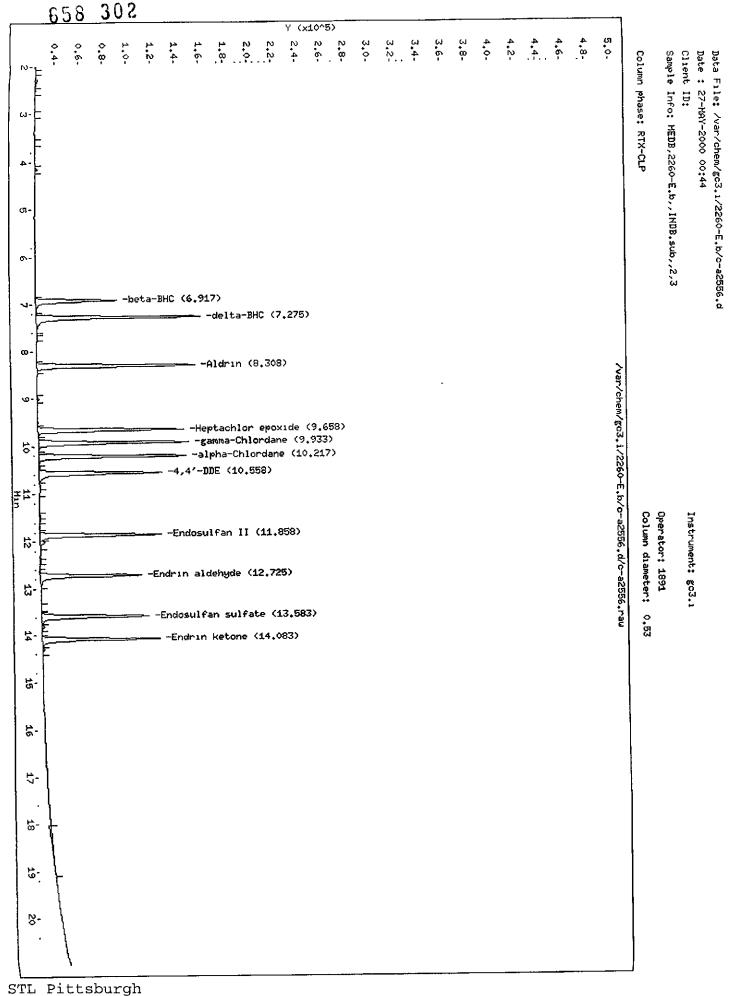
Operator : 1891 Inst ID: gc3.i

Smp Info : MEDB, 2260-E.b,, INDB. sub,, 2,3

Misc Info: 190-84-9

Comment

Method : /var/chem/gc3.i/2260-E.b/PESTA.m Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a254 Cal File: c-a2541.d


Continuing Calibration Sample Als bottle: 1

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: INDB.sub

Target Version: 3.40

					AMOUNTS		
					CAL-AMT	ON-COL	
Compounds	RT	BXP RT	DLT RT	RBSPONSB	(ng)	(ng)	
		22222	#===	========	*=====	*****	
11 Aldrin	8.308	8.300	0 008	130573	0.02500	0.0238880	
7 beta-BHC	6.917	6 908	0 009	66872	0.02500	0.0237898	
8 delta-BHC	7.275	7 267	0.008	135520	0.02500	0.0246796	
12 Heptachlor epoxide	9.658	9 658	0 000	120864	0.02500	0.0230276	
13 gamma-Chlordane	9.933	9 925	0 008	124665	0 02500	0.0233824	
14 alpha-Chlordane	10.217	10 208	0.009	122340	0.02500	0 0230536	
16 4,4'-DDE	10.558	10.550	0.008	101679	0.02500	0.0241909	
22 Endoculfan II	11.858	11 850	0.008	100978	0.02500	0.0229934	
24 Endrin aldehyde	12 725	12 717	0.008	84479	0.02500	0.0234363	
26 Bndosulfan sulfate	13.583	13.583	0.000	89715	0.02500	0 0235570	
27 Endrin ketone	14.083	14.083	0.000	98165	0.02500	0.0233308	

Data File: /var/chem/gc3.i/2260-E.b/c-a2557.d

Report Date: 30-May-2000 16:12

STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2557.d

Lab Smp Id: EVALB

Inj Date : 27-MAY-2000 01:10

Operator: 1891 Inst ID: gc3.i

Smp Info : EVALB, 2260-E.b, , EVALBR. sub, , 3, 1

Misc Info: 190-88-8

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a2541.d

Als bottle: 1 QC Sample: PEM

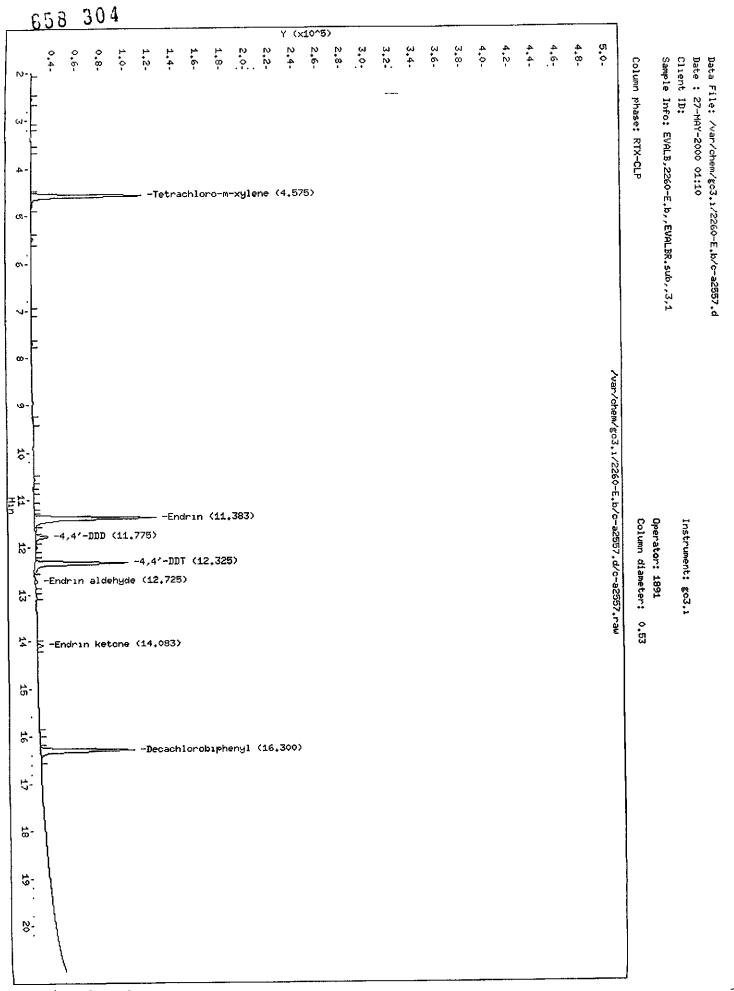
Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: EVALBR.sub

Target Version: 3.40

				CONCENTRATIONS		
				ON-COLUMN	FINAL	
Compounds	RT	BXP RT DLT RT	respons e	(ng)	(ng)	
	==	医多色蛋白素 经共产力率率	======	2225588	======================================	
\$ 1 Tetrachloro-m-xylene	4 575	4 558 0.017	91988	0 01791	0.0179057(R)	
16 4,4'-DDB	Con	pound Not Detec	eted.			
20 Bndrin	11.383	11 375 0 008	101267	0 02129	0.0212936	
21 4,4'-DDD	11.775	11 767 0.008	10672	0.00280	0.00279557	
23 4,4'-DDT	12,325	12.317 0 008	77545	0.02124	0.0212425	
24 Endrin aldehyde	12 725	12.717 0.008	2245	0 000623	0 000622812	
27 Bndrin ketone	14 083	14.083 0.000	5062	0.00120	0.00120308	
\$ 30 Decachlorobiphenyl	16.300	16.292 0 000	78159	0.01747	0.0174732(R)	

QC Flag Legend


R - Spike/Surrogate failed recovery limits.

2015-1210) 2005-6.70% (2045+8100+101267) 2005-6.70%

STL Pittsburgh

(2572+ 775K)

3060

Data File: /var/chem/gc3.i/2260-E.b/c-a2570.d

Report Date: 30-May-2000 16:13

STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2570.d

Lab Smp Id: MEDA

Inj Date : 27-MAY-2000 06:44

Operator: 1891 Inst ID: gc3.i

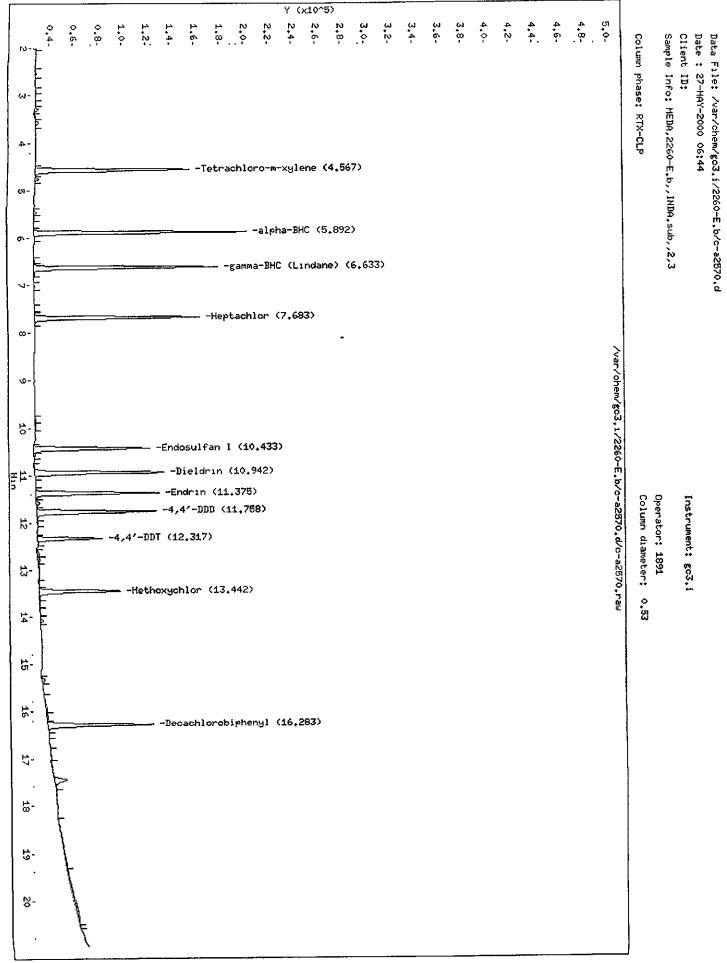
Smp Info : MEDA, 2260-E.b, , INDA. sub, , 2, 3

Misc Info : 190-84-3

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a2541.d


Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: INDA.sub

Target Version: 3.40

						UOMA	NTS
						CAL-AMT	ON-COL
C	ompounds	RT	EXP RT	DLT RT	RESPONSE	(ng)	(ng)
=		50		28222	*******	보르르쿠루두급	2202088
\$	1 Tetrachloro-m-xylene	4 567	4.558	0.009	127292	0.02500	0.0247777
	5 alpha-BHC	5.892	5.883	0.009	174273	0.02500	0.0232211
	6 gamma-BHC (Lindane)	6.633	6 625	0.008	150730	0 02500	0.0219522
	10 Heptachlor	7 683	7 683	0.000	136070	0.02500	0.0208016
	15 Bndosulfan I	10 433	10.433	0.000	95677	0.02500	0 0179973
	17 Dieldrin	10.942	10 942	0.000	106319	0.02500	0 0189914
	20 Endrin	11.375	11.375	0.000	101699	0.02500	0.0213844
	21 4,4'-DDD	11 758	11 767	-0.009	98669	0.02500	0.0258467
	23 4,4'-DDT	12.317	12 317	0.000	53207	0.02500	0 0145754
	25 Methoxychlor	13 442	13.442	0 000	67100	0 05000	0.0385789
\$	30 Decachlorobiphenyl	16 283	16.292	-0 009	86580	0 02500	0.0193558

Data File: /var/chem/gc3.i/2260-E.b/c-a2571.d

Report Date: 30-May-2000 16:13

STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2571.d

Lab Smp Id: MEDB

Inj Date : 27-MAY-2000 07:10

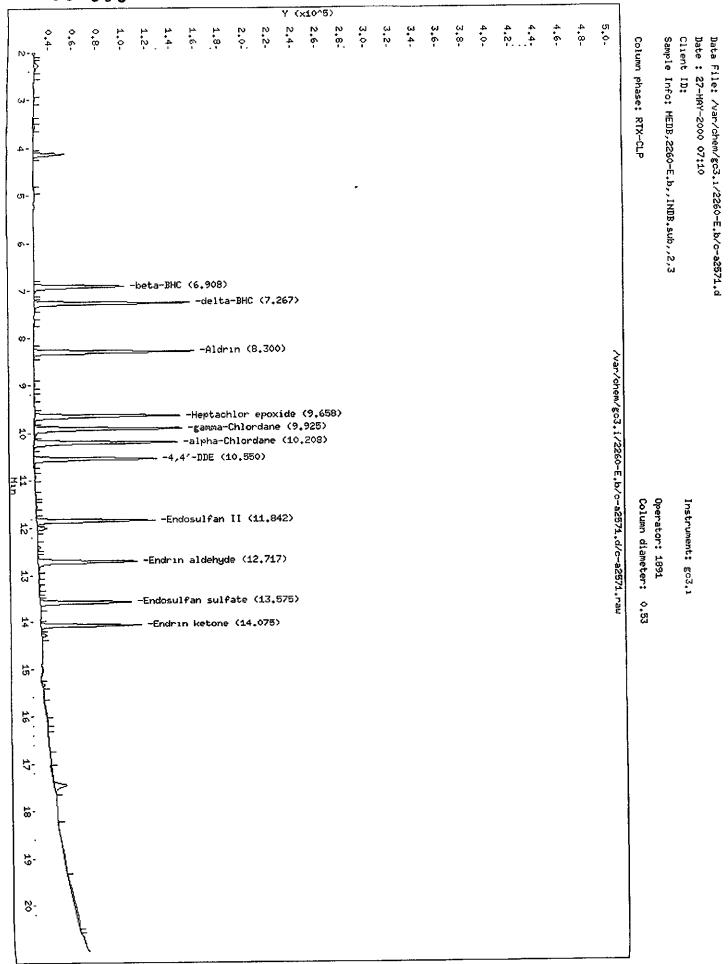
Operator : 1891 Inst ID: gc3.i

Smp Info : MEDB, 2260-E.b,, INDB.sub,, 2,3

Misc Info : 190-84-9

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a2541.d


Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: INDB.sub

Target Version: 3.40

				AMOUNTS		
					CAL-AMT	ON-COL
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ng)	(ng)
	==	======	*****	\$==== =	======	
11 Aldrin	8.300	B 300	0.000	131235	0 02500	0.0240091
7 beta-BHC	6.908	6.908	0 000	73798	0.02500	0.0262538
8 delta-BHC	7.267	7 267	0.000	127791	0.02500	0.0232721
12 Heptachlor epoxide	9 658	9 658	0 000	119729	0.02500	0.0228114
13 gamma-Chlordane	9.925	9 925	0 000	121054	0.02500	0.0227051
14 alpha-Chlordane	10 208	10 208	0 000	117566	0.02500	0.0221540
16 4,4'-DDB	10.550	10.550	0 000	100242	0 02500	0 0238490
22 Endosulfan II	11.842	11 850	-0 008	97499	0 02500	0.0222012
24 Endrin aldehyde	12.717	12.717	0 000	80966	0.02500	0.0224617
26 Endosulfan sulfate	13.575	13 583	-0.008	75337	0.02500	0.0197817
27 Endrin Ketone	14.075	14.083	-0 008	82409	0.02500	0 0195861

Report Date : 01-Jun-2000 12:07

HBY935

KIX-Cep

STL-PITTSBURGH

COMPOUND LISTING

Method file : /var/chem/gc3.i/2310-E.b/PESTA.m

Quant Method : ESTD Target Version : 3.40 Last Update : 01-Jun-2000 12:06 Number of Cpnds : 30

Data Type : GC MULTI COMP

Global Integrator : Falcon

Chromat Events Values

Initial:Start Threshold 40.000000
Initial:End Threshold 20.000000
Initial:Area Threshold 1000.000000
Initial:P-P Resolution 1.000000
Initial:Bunch Factor 1.000000
Initial:Nogative Peaks

Initial:Negative Peaks ON

Initial:Tension 0.000000

Compound	RT	RT Window	RF
\$ 1 Tetrachloro-m-xylene 2 Diallate A 3 Diallate B 4 MIREX 5 alpha-BHC 6 gamma-BHC (Lindane) 7 beta-BHC 8 delta-BHC 9 Chlordane	4.575 5.733 6.042 13.275 5.892 6.633 6.917 7.275 7.508	5.683-5.783 5.992-6.092 13.225-13.325 5.842-5.942 6.583-6.683 6.867-6.967 7.225-7.325	4.562e+06 5.955e+06 5.424e+06 2.861e+06 4.379e+06 1.609e+05
10 Heptachlor 11 Aldrin 12 Heptachlor epoxide 13 gamma-Chlordane 14 alpha-Chlordane 15 Endosulfan I 16 4,4'-DDE 17 Dieldrin 18 Toxaphene	7.692 9.933 10.217 7.683 8.308 9.658 9.933 10.217 10.442 10.558 10.950 11.475 11.842 12.583	7.642-7.742 9.883-9.983 10.167-10.267 7.633-7.733 8.258-8.358 9.608-9.708	2.810e+05 4.235e+05 5.870e+05 5.162e+06 5.281e+06 4.859e+06 5.035e+06 4.959e+06 4.272e+06 4.491e+06 4.491e+06 5.654e+04 6.358e+04 6.724e+04

658 310 Report Date: 01-Jun-2000 12:07 HSP3E

COMPOUND LISTING

Method file : /var/chem/gc3.i/2310-E.b/PESTA.m

Compound	RT	RT Window	RF
19 Isodrin 20 Endrin 21 4,4'-DDD 22 Endosulfan II 23 4,4'-DDT 24 Endrin aldehyde 25 Methoxychlor 26 Endosulfan sulfate 27 Endrin ketone 28 Chlorobenzilate 29 Kepone \$ 30 Decachlorobiphenyl	12.325 12.725 13.450 13.592 14.092 11.442 11.883	11.333-11.433	3.692e+06 4.076e+06 2.429e+06 3.387e+06 1.404e+06 2.726e+06 3.274e+06

(Œ

Report Date : 01-Jun-2000 12:07

RTX-COP

STL-PITTSBURGH

INITIAL CALIBRATION DATA

Start Cal Date : 31-MAY-2000 14:45 End Cal Date : 31-MAY-2000 19:30

Quant Method : ESTD
Origin : Disabled
Target Version : 3.40
Integrator : Falcon

Method file : /var/chem/gc3.i/2310-E.b/PESTA.m

Cal Date : 01-Jun-2000 12:06 g

Curve Type : Average

Calibration File Names:

Level 1: /var/chem/gc3.i/2310-E.b/c-a2580.d Level 2: /var/chem/gc3.i/2310-E.b/c-a2581.d Level 3: /var/chem/gc3.i/2310-E.b/c-a2582.d Level 4: /var/chem/gc3.i/2310-E.b/c-a2583.d Level 5: /var/chem/gc3.i/2310-E.b/c-a2584.d

	0.00500	0.01000	0.02500	0.05000	0.10000	ا ا	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	RRF	* RSD
			*******		442582588		************
2 Diallate A	+++++	+++++	+++++	+++++	+++++	+++++	+++++
3 Diallate B	++++	+++++	+++++	+++++	++++	+++++ +	++++
4 MIREX	1 +++++	++++	+++++	++++	+++++	+++++	++++
5 alpha-BHC	6239600	6321300	6079960	5790300	5344990	5955230	6.66
6 gamma-BHC (Lindane)	5771200	5777900	5493120	5252620	4822790	5423526	7.38
7 beta-BHC	3298600	3245500	2778600	2627860	2352910	2860694	14.18
0 delta-BHC	4294000	4552700	4360040	4466340	4219520	4378520	3.03
9 Chlordane(1)	+++++	+++++	160932	+++++	++++	160932	0.00
(2)	1 +++++ 1	+++++	280992	+++++	+++++	280992	0.00
(3)	+++++	+++++	423456	+++++	++++	423456	0.00
(4)	+++++	+++++	587044	+++++	+++++	587044	0.00
10 Heptachlor	5879200	5665000	5125920	4805420	4336020	5162312	12.16
11 Aldrin	5818000	5833900	5241640	5024740	4489070	5281470	10.74
12 Heptachlor epoxide	5588400	5475600	4773080	4482060	3975160	4858860	13.97
13 gamma-Chlordane	5660000	5621000	4928320	4738400	4225900	5034724	12.11
14 alpha-Chlordane	5693400	5591500	4840440	4615920	4056170	4959486	13 84
15 Endosulfan I	4824400	4733300	4253800	3985220	3564930	4272330	12.27
16 4,4'-DDE	4845800	4925300	4455720	4338060	3907100	4494396	9.17
17 Dieldrin	4861000	4832400	4564120	4299400	3898080	4491000	8.95
18 Toxaphene(1)	+++++	+++++	56539	+++++	++++	56539	0 00
(2)	+++++	+++++	63580	+++++	++++	63580	0.00
(3)	+++++	+++++	67235	+++++	++++	67235	0.00
(4)	+++++	+++++	48336	+++++	****	48336	0 00
19 Isodrin	+++++	+++++	+++++	+++++	+++++	+++++	+++++
20 Endrin	4383200	4343300	4121240	3887740	3510970	4049290	8 8 9
21 4,4'-DDD	3975800	3935700	3730160	3579760	3238030	3691890	8 12

658 312

Report Date : 01-Jun-2000 12:07

STL-PITTSBURGH

INITIAL CALIBRATION DATA

Start Cal Date : 31-MAY-2000 14:45 End Cal Date : 31-MAY-2000 19:30

: ESTD Quant Method : Disabled Origin Target Version : 3.40 : Falcon Integrator

Method file : /var/chem/gc3.i/2310-E.b/PESTA.m

: 01-Jun-2000 12:06 g Cal Date

: Average Curve Type

	0.00500	0.01000	0.02500	0 05000	0.10000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	RRF	* RSD
" 第四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四		*******					######################################
22 Endosulfan II	4565600	4552400	4010200	3822360	3431120	4076336	11.96
23 4,41-DDT	2238600	2427000	2408600	2551140	2517510	2428570	5.019
24 Endrin aldehyde	3900400	3783000	3313840	3139420	2795900	3386512	13.503
25 Methoxychlor	1514900	1551200	1376240]	1333080	1243200	1403724	9.12
26 Endosulfan sulfate	2859600	2809000	2725960	2637240	2598740	2726108	4.052
27 Endrin ketone	3474000	3371800	3345720	3092720	3087220	3274292	5.34
28 Chlorobenzilate	+++++	++++	+++++	+++++	+++++	+++++	+++++
29 Kepone	+++++	++++	+++++	++++	+++++	+++++	+++++
귳벋쯘 远뀰퍞뀰쓜者윰윰윰윰륟 륟뿄探探끆컽む뚔띉건댅쟢դ르뙆첉æ					********	**********	
1 Tetrachloro-m-xylene	5460200	5159800	4508200	4062360	3617190	4561550	16.65
30 Decachlorobiphenyl	4130400	3868400	3345680	3045080	2754050	3428722	16.59

658 313

Lab Name: STL-PITTSBURGH Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: G

GC Column: RTX-CLP ID: 0.53 (mm) Init. Calib. Date(s): 05/31/00 05/31/00

EPA Sample No. (PIBLK): _____ Date Analyzed:____

Lab Sample ID (PIBLK): _____ Time Analyzed :_____

EPA Sample No. (PEM): EVALB Date Analyzed: 05/31/00

Lab Sample ID (PEM): EVALB Time Analyzed :1419

PEM COMPOUND	RT	RT WINDOW RT FROM TO		CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D	
Endrin 4,4'-DDT	11.40			0.018339 0.019183			<-

MA

4,4'-DDT % breakdown (1): 14-2

Endrin % breakdown (1):

13.94

Combined % breakdown (1): 18-

18.19 4.2.

OLMO3.0

PESTICIDE CALIBRATION VERIFICATION SUMMARY

658 314

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: G

GC Column: RTX-CLP ID: 0.53 (mm) Init. Calib. Date(s): 05/31/00 05/31/00

EPA Sample No. (PIBLK):

Date Analyzed :

Lab Sample ID (PIBLK): _____

Time Analyzed :_____

EPA Sample No. (PEM): EVALB

Date Analyzed:05/31/00

Lab Sample ID (PEM): EVALB

Time Analyzed: 2048

PEM COMPOUND	RT	RT WINDOW FROM TO		CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D
Endrin 4,4'-DDT	11.38	li e		0.025662 0.027007		2.6 8.0

MA

4,4'-DDT % breakdown (1):

20.90 Endrin % breakdown (1):

Combined % breakdown (1): 28.80 43

OLMO3.0

Data File: /var/chem/gc3.i/2310-E.b/c-a2595.d }

Report Date: 01-Jun-2000 12:09

STL-PITTSBURGH

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: gc3.i Lab File ID: c-a2595.d

Analysis Type:

Lab Sample ID: MEDA

Quant Type: ESTD

Injection Date: 01-JUN-2000 00:15

Init. Calibration Date(s): 05/31/0 05/31/0
Init. Calibration Times: 14:45 19:30
Method File: /var/chem/gc3.i/2310-E.b/PESTA.m

 	COMPOUND	RRF	RFO	MIN RRF	MAX *D *D
 ==	· 医克拉克尔比尔 医马克德氏性 医克拉氏氏征 医艾克氏病 医二甲基苯酚 医二甲基苯酚	*********	========		.===== =====
\$	1 Tetrachloro-m-xylene	4561550.000	4648600 0	000.01	-1 9} 15 0}
Ì	5 alpha-BHC	5955230 000	6531320.0	00 0.010	-9.7 15 0
l	6 gamma-BHC (Lindane)	5423526 000	5908840.0	00 0.010	-8.9 15.0
	10 Heptachlor	5162312.000	5423920.0	00 0.010	-5.1 15.0
1	15 Endosulfan I	4272330.000	4411640 0	00 0 010	-3 3 15 0
i	17 Dieldrin	4491000.000	4701600.0	00 0 010	-4.7 15.0
ı	20 Endrin	4049290.000	4234120.0	00 0.010	-4.6] 15.0
1	21 4,4'-DDD	3691890.000	3676360.0	00 0.010	0.4 15.0
1	23 4,4'-DDT	2428570.000	2651960 0	00 0.010	-9.2 15 0
1	25 Methoxychlor	1403724 000	1452920 0	00 0.010	-3.5 15.0]
\$	30 Decachlorobiphenyl	3428722 000	3562920.0	00 0.010	-3 9 15.0
١		l	l	1	

658 316

Data File: /var/chem/gc3.i/2310-E.b/c-a2596.d Report Date: 01-Jun-2000 12:09

STL-PITTSBURGH

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: gc3.i Lab File ID: c-a2596.d

Analysis Type:

Lab Sample ID: MEDB Quant Type: ESTD

Injection Date: 01-JUN-2000 00:41 Init. Calibration Date(s): 05/31/0 05/31/0 Init. Calibration Times: 14:45 19:30 Method File: /var/chem/gc3.i/2310-E.b/PESTA.m

ı —			1	MIN		MAX
	COMPOUND	RRF	RF0	RRF	% D	%D
=			2000000000000		.====	*****
l	11 Aldrin	5281470.000	5233960.00	010.010	0.9]	15 0
1	7 beta-BHC	2860694.000	2741040.00	010 010	4.2	15.0
1	8 delta-BHC	4378520.000	4660240.00	000 010	-6.4	15.0
1	12 Heptachlor epoxide	4858860.000	4796360 00	010.010	1 3	15.0
ì	13 gamma-Chlordane	5034724.000	4936080 00	00 0.010	2.0	15 0
ĺ	14 alpha-Chlordane	4959486.000	4859240.00	010.010	2.0	15.0
1	16 4,4'-DDE	4494396.000	4308560.00	00 0.010	4.1	15.0
ı	22 Endosulfan II	4076336.000	3991680.00	00 0.010	2.1	15.0
ĺ	24 Endrin aldehyde	3386512.000	3309080.00	00 0.010	2.3	15.0
i	26 Endosulfan sulfate	2726108.000	2994560.00	00 0.010	-98	15.0
İ	27 Endrin ketone	3274292 000	3585600.00	00 0.010	-9.5	15.0
i		1	1		ا	

8D PESTICIDE ANALYTICAL SEQUENCE

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT

Case No.:

SAS No.: 40325

SDG No.: C0E230195

GC Column: RTX-CLP

ID: 0.53 (mm) Init. Calib. Date(s): 05/31/00 05/31/00

Instrument ID: GC3

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO					
	TCX: 4.58	DCB:	16.30			
	EPA	LAB	DATE	TIME	TCX	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	========	=======	========	========	=======	=======
01	EVALB	EVALB	05/31/00	1419	4.60	16.31
	MEDTOX	MEDTOX	05/31/00	1445	4.58	16.30
03	MEDCHLOR	MEDCHLOR	05/31/00	1511	4.58	16.30
	LOWA	LOWA	05/31/00	1537	4.58	16.30
05	MLOWA	MLOWA	05/31/00	1603	4.58	16.30
06	MEDA	MEDA	05/31/00	1629	4.58	16.30
07	MHIGHA	MHIGHA	05/31/00	1655	4.58	16.30
80	HIGHA	HIGHA	05/31/00	1721	4.58	16.30
09	LOWB	LOWB	05/31/00	1747		
10	MLOWB	MLOWB	05/31/00	1813	,	
11	MEDB	MEDB	05/31/00	1839		
12	MHIGHB	MHIGHB	05/31/00	1905		
13	HIGHB	HIGHB	05/31/00	1930		
14	2ND A	2ND A	05/31/00	1956	4.58	16.30
15	2ND B	2ND B	05/31/00	2022		
	LCS	DDN21102	05/31/00	2349	4.58	16.29
17	1	MEDA	06/01/00	0015	4.58	16.30
18	MEDB	MEDB	06/01/00	0041		
19						
20						
21						
22						
23						
24	l					
25					·	
26						
27	<u> </u>					
28						
29						
30						
31						
32	ļ					

QC LIMITS

TCX = Tetrachloro-m-xylene

(+/-0.05 MINUTES)

DCB = Decachlorobiphenyl

(+/- 0.05 MINUTES)

Column used to flag retention time values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII PEST

OLMO3.0

Data File: /var/chem/gc3.i/2310-E.b/c-a2572.d

Report Date: 01-Jun-2000 12:14

STL-PITTSBURGH

CONCENTEATIONS

Data file : /var/chem/gc3.i/2310-E.b/c-a2572.d

Lab Smp Id: EVALB Client Smp ID: EVALB

Inj Date : 31-MAY-2000 14:19

Operator: 1891 Inst ID: gc3.i

Smp Info : EVALB, 2310-E.b, , EVALBR. sub, , 3, 1

Misc Info: 190-88-8

Comment :

Method : /var/chem/gc3.i/2310-E.b/PESTA.m

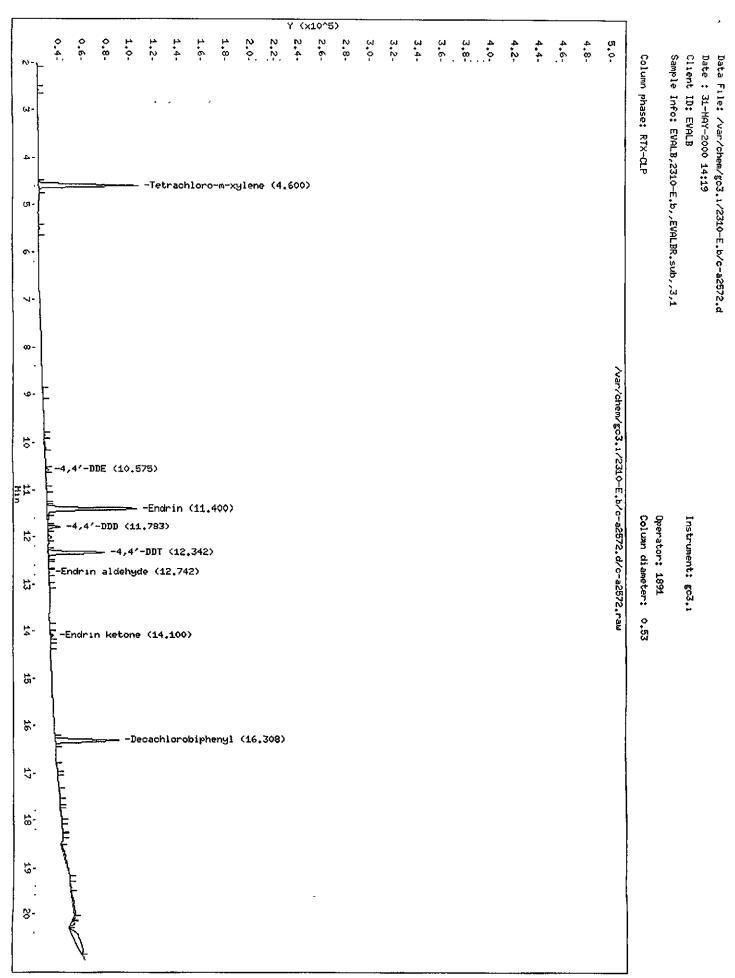
Meth Date : 01-Jun-2000 12:09 g Quant Type: ESTD Cal Date : 31-MAY-2000 19:30 Cal File: c-a2584.d

Als bottle: 1 QC Sample: PEM

Dil Factor: 1.00000
Integrator: Falcon Compound Sublist: EVALBR.sub

Target Version: 3.40

						CONCENT	KALLONS
						ON-COLUMN	FINAL
C	ompounds	RT	BXP RT	DLT RT	response	(ng)	(ng)
=	2 三世 2 2 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9	# =			*****	200005	#=====
\$	1 Tetrachloro-m-xylene	4.600	4.575	0.025	83271	0.01825	0.0182550(R)
	16 4,4'-DDB	10 575	10.558	0 017	2630	0 000585	0 000585173
	20 Endrin	11.400	11.383	0 017	74260	0.01834	0.0183390
	21 4,4'-DDD	11.783	11 775	0.008	10989	0.00298	0 00297652
	23 4,4'-DDT	12.342	12 325	0 017	46586	0.01918	0.0191825
	24 Endrin aldehyde	12.742	12.725	0 017	826	0.000244	0.000243909(M)
	27 Endrin ketone	14.100	14.092	0.008	2429	0.000742	0 000741840
\$	30 Decachlorobiphenyl	16.308	16.300	0.00B	53050	0 01547	0 0154722(R)


QC Flag Legend

R - Spike/Surrogate failed recovery limits.

M - Compound response manually integrated.

Endin Bleatch (926+2428) × 100 = 4.2%.

DIST Brankdon (2630+4656) X100, 22.6/16
(2630+16958+4656)

658 320

Data File: /var/chem/gc3.i/2310-E.b/c-a2573.d

Report Date: 01-Jun-2000 12:14

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2310-E.b/c-a2573.d

Client Smp ID: MEDTOX Lab Smp Id: MEDTOX

Inj Date : 31-MAY-2000 14:45

Operator : 1891 Inst ID: gc3.i

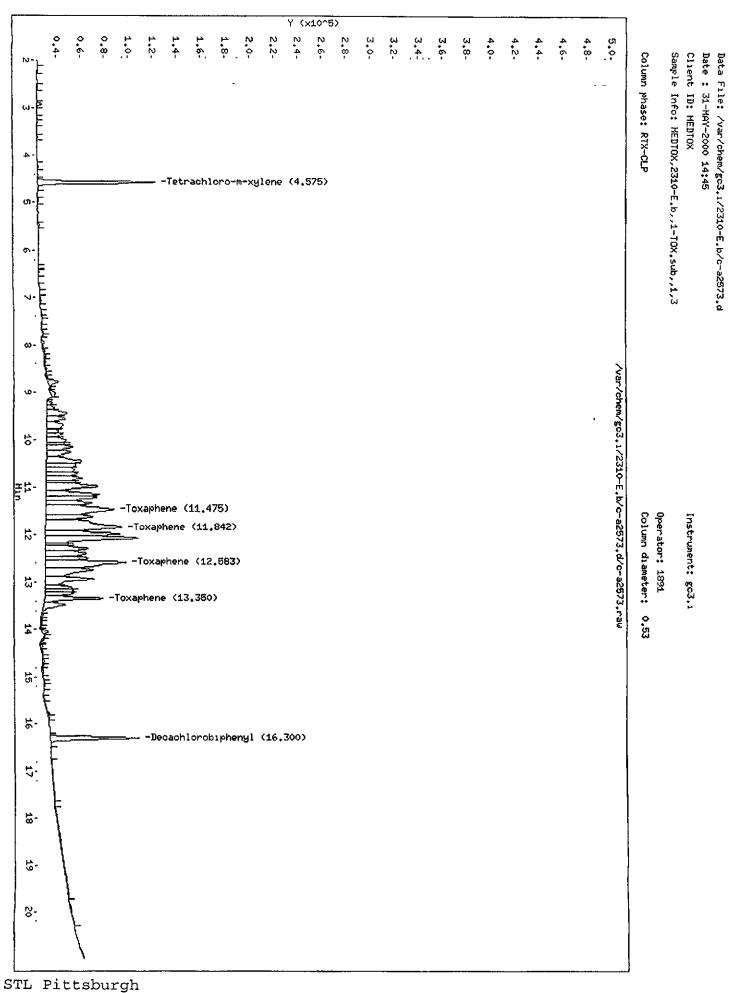
Smp Info : MEDTOX, 2310-E.b, ,1-TOX.sub, ,1,3

Misc Info: 190-84-13

Comment

: /var/chem/gc3.i/2310-E.b/PESTA.m Method

Quant Type: ESTD Meth Date : 01-Jun-2000 12:09 g Cal File: c-a2573.d Cal Date : 31-MAY-2000 14:45


Calibration Sample, Level: 3

Als bottle: 1 Dil Factor: 1.00000

Compound Sublist: 1-TOX.sub Integrator: Falcon

Target Version: 3.40

							AMOU	NTS	
						CAI	-AMT	ON-	-COL
Co	ompounds	RT	EXP RT	OLT RT	Response	(ng)	(ng)
=:	: ####################################	==		*****	=======	# #:	====	==	====
	18 Toxaphene	11 475	11.475	0.000	56539	1.0	0000	1.	00000
\$	1 Tetrachloro-m-xylene	4.575	4.575	0.000	97879	0.0	2500	0.02	50000
\$	30 Decachlorobiphenyl	16 300	16.300	0 000	74101	0 (2500	0.02	50000

658 322

Data File: /var/chem/gc3.i/2310-E.b/c-a2574.d

Report Date: 01-Jun-2000 12:14

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2310-E.b/c-a2574.d

Client Smp ID: MEDCHLOR Lab Smp Id: MEDCHLOR

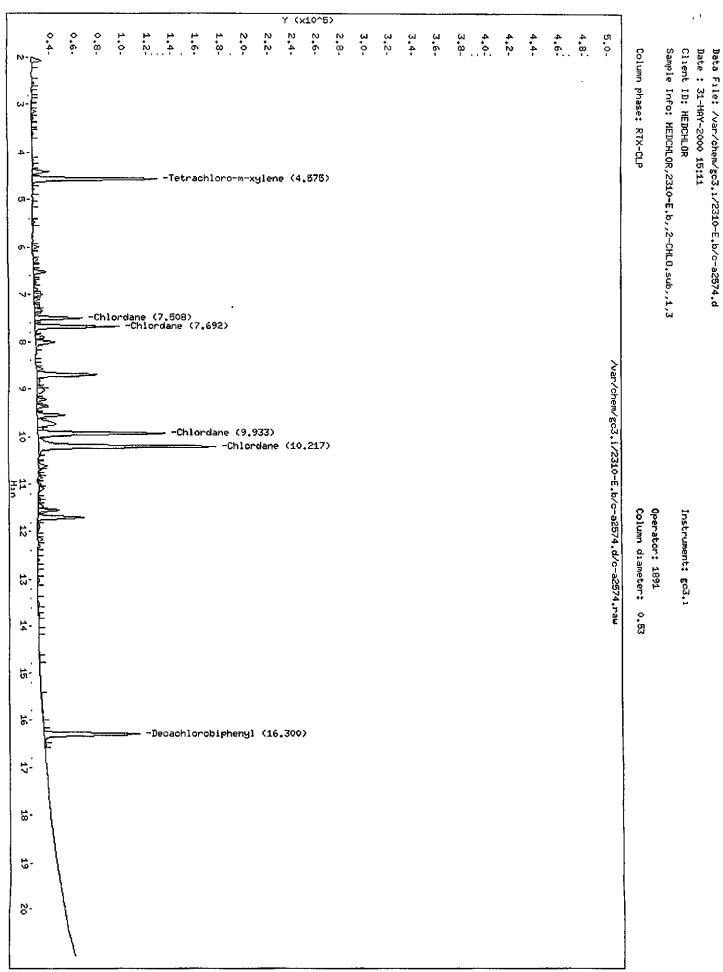
Inj Date : 31-MAY-2000 15:11

Operator: 1891 Inst: Smp Info: MEDCHLOR, 2310-E.b,, 2-CHLO.sub,, 1,3 Inst ID: gc3.i

Misc Info: 190-85-10

Comment

: /var/chem/gc3.i/2310-E.b/PESTA.m Method


Meth Date : 01-Jun-2000 12:09 g Quant Type: ESTD Cal File: c-a2574.d Cal Date : 31-MAY-2000 15:11

Calibration Sample, Level: 3 Als bottle: 1

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 2-CHLO.sub

Target Version: 3.40

					AMO	UNTS
					CAL-AMT	ON-COL
Compounds	RT	BXP RT	DLT RT	response	(ng)	(ng)
	==	======	222224		======	
9 Chlordane	7.508	7.508	0.000	40233	0.25000	0 250000
\$ 1 Tetrachloro-m-xylene	4.575	4.575	0.000	103452	0 02500	0 0250000
\$ 30 Decachlorobiphenyl	16 300	16 300	0.000	79805	0.02500	0.0250000

Data File: /var/chem/gc3.i/2310-E.b/c-a2575.d

Report Date: 01-Jun-2000 12:14

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2310-E.b/c-a2575.d

Lab Smp Id: LOWA Client Smp ID: LOWA

Inj Date : 31-MAY-2000 15:37

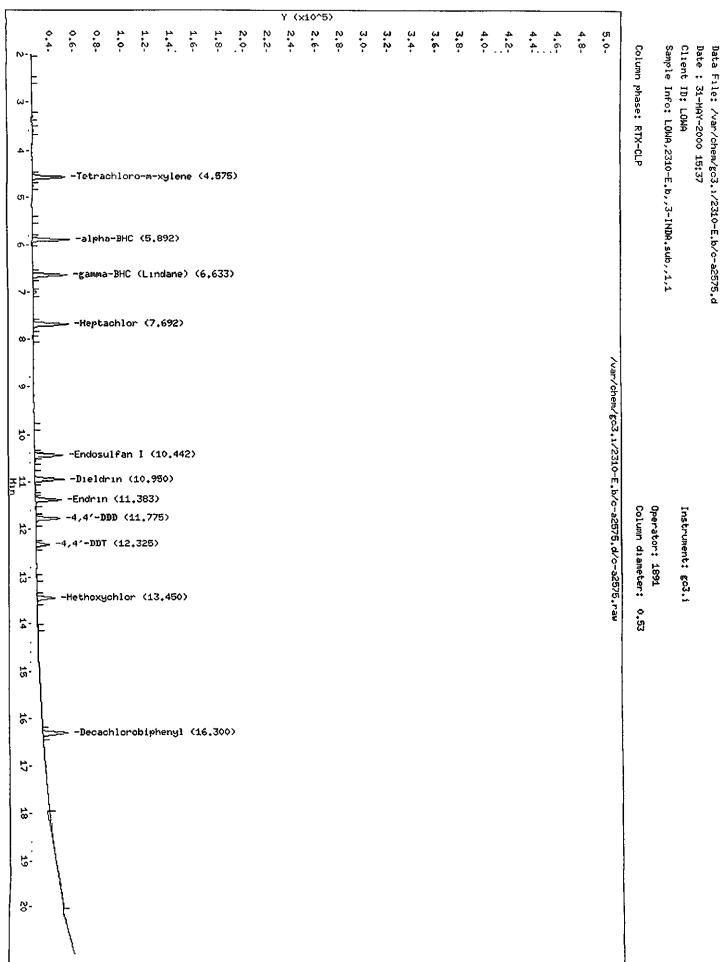
Inst ID: gc3.i Operator : 1891

Smp Info : LOWA, 2310-E.b, , 3-INDA. sub, , 1, 1

Misc Info : 190-84-1

Comment

Method : /var/chem/gc3.i/2310-E.b/PESTA.m Meth Date : 01-Jun-2000 12:09 g Quan Quant Type: ESTD Cal File: c-a2575.d Cal Date : 31-MAY-2000 15:37


Calibration Sample, Level: 1 Als bottle: 1

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 3-INDA.sub

Target Version: 3.40

						AMOUNTS		
						CAL-AMT	ON-COL	
Co	ompounds	RT	EXP RT	DLT RT	response	(ng)	(ng)	
===		==	C C C C M M M	802222	=======	======	****	
\$	1 Tetrachloro-m-xylene	4 575	4 575	0 000	27301	0.00500	0.00568873	
	5 alpha-BHC	5.892	5.892	0.000	31198	0.00500	0 00500000	
	6 gamma-BHC (Lindane)	6.633	6 633	0.000	28856	0.00500	0.00500000	
	10 Heptachlor	7.692	7.683	0.009	29396	0 00500	0.00500000	
	15 Endosulfan I	10 442	10.442	0.000	24122	0 00500	0 00500000	
	17 Dieldrin	10 950	10 950	0 000	24305	0.00500	0.00500000	
	20 Endrin	11 383	11 383	0.000	21916	0.00500	0.00500000	
	21 4,4'-DDD	11 775	11.775	0.000	19879	0 00500	0 00500000	
	23 4,4'-DDT	12.325	12.325	0.000	11193	0 00500	0.00500000	
	25 Methoxychlor	13.450	13 450	0.000	15149	0.01000	0.0100000	
\$	30 Decachlorobiphenyl	16.300	16.300	0 000	20652	0 00500	0.00564062	

Data File: /var/chem/gc3.i/2310-E.b/c-a2576.d

Report Date: 01-Jun-2000 12:14

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2310-E.b/c-a2576.d

Client Smp ID: MLOWA Lab Smp Id: MLOWA

Inj Date : 31-MAY-2000 16:03

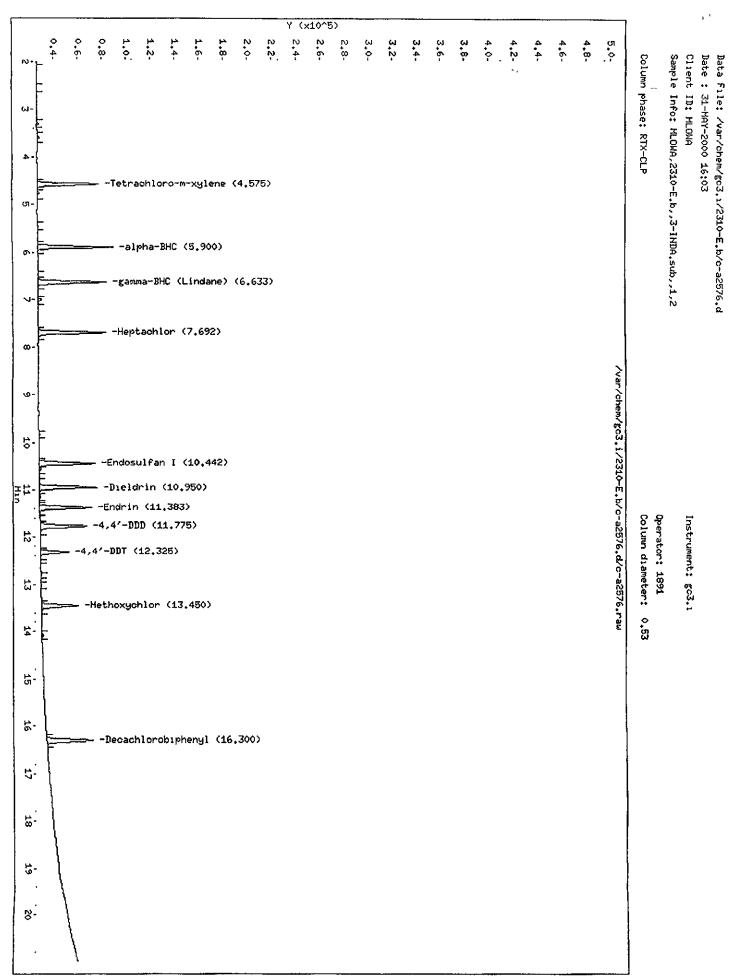
Operator: 1891 In: Smp Info: MLOWA, 2310-E.b., 3-INDA.sub, ,1,2 Inst ID: gc3.i

Misc Info: 190-84-2

Comment

Method : /var/chem/gc3.i/2310-E.b/PESTA.m

Meth Date : 01-Jun-2000 12:09 g Quant Type: ESTD Cal File: c-a2576.d Cal Date : 31-MAY-2000 16:03


Als bottle: 1 Calibration Sample, Level: 2

Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: 3-INDA.sub

Target Version: 3.40

						AMOUNTS		
						CAL-AMT	ON-COL	
Co	ompounds	RT	BXP RT	DLT RT	RESPONSE	(ng)	(ng)	
==		==			*****	======		
\$	1 Tetrachloro-m-xylene	4.575	4,575	0.000	51598	0.01000	0.0104888	
	5 alpha-BHC	5.900	5.892	0.008	63213	0 01000	0.0100650	
	6 gamma-BHC (Lindane)	6.633	6.633	0.000	57779	0.01000	0 0100058	
	10 Heptachlor	7 692	7 683	0.009	56650	0.01000	0.00981445	
	15 Endosulfan I	10 442	10.442	0 000	47333	0.01000	0 00990468	
	17 Dieldrin	10.950	10.950	0.000	48324	0.01000	0.00997050	
	20 Endrin	11.383	11 383	0.000	43433	0 01000	0 00995428	
	21 4,4'-DDD	11.775	11.775	0.000	39357	0.01000	0.00994931	
	23 4,4'-DDT	12.325	12.325	0.000	24270	0.01000	0.0104038	
	25 Methoxychlor	13.450	13.450	0.000	31024	0.02000	0.0202368	
\$	30 Decachlorobiphenyl	16 300	16.300	0 000	38684	0.01000	0.0103701	

Data File: /var/chem/gc3.i/2310-E.b/c-a2577.d

Report Date: 01-Jun-2000 12:14

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2310-E.b/c-a2577.d

Client Smp ID: MEDA Lab Smp Id: MEDA

Inj Date : 31-MAY-2000 16:29

Operator: 1891 Smp Info: MEDA, 2310-E.b,,3-INDA.sub,,1,3 Inst ID: gc3.i

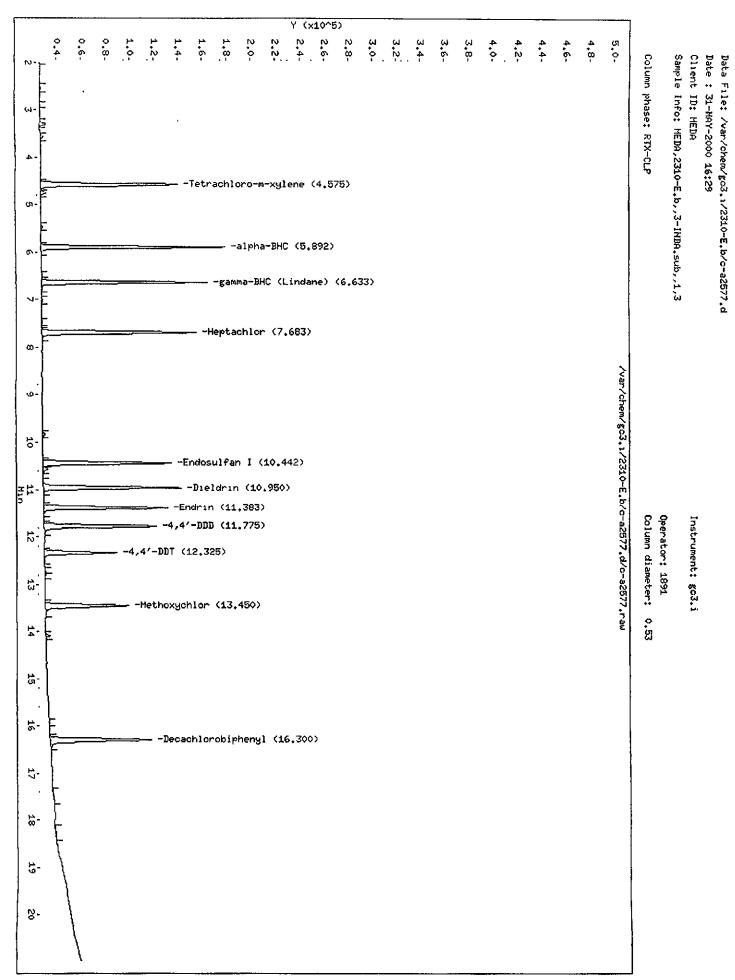
Misc Info: 190-84-3

Comment

Method : /var/chem/gc3.i/2310-E.b/PESTA.m

Meth Date : 01-Jun-2000 12:09 g Quant Type: ESTD Cal File: c-a2577.d Cal Date : 31-MAY-2000 16:29

Calibration Sample, Level: 3 Als bottle: 1


Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: 3-INDA.sub

Target Version: 3.40

					AMOUNTS		
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	response	(ng)	(ng)	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	==	=====	*****		======	BBE#4==	
\$ 1 Tetrachloro-m-xylene	4 575	4.575	0 000	112705	0.02500	0.0223500	
5 alpha-BHC	5.892	5 892	0 000	151999	0.02500	0.0244622	
6 gamma-BHC (Lindane)	6,633	6.633	0 000	137328	0.02500	0 0241743	
10 Heptachlor	7.683	7 683	0.000	128148	0.02500	0 0230619	
15 Endosulfan I	10 442	10 442	0.000	106345	0 02500	0.0230992	
17 Dieldrin	10 950	10 950	0.000	114103	0 02500	0 0240090	
20 Endrin	11.383	11 383	0 000	103031	0.02500	0 0240582	
21 4,4'-DDD	11 775	11.775	0 000	93254	0 02500	0.0240311	
23 4,4'-DDT	12.325	12 325	0 000	60215	0.02500	0 0255357	
25 Methoxychlor	13 450	13.450	0.000	68812	0 05000	0.0464701	
\$ 30 Decachlorobiphenyl	16.300	16 300	0 000	83642	0.02500	0 0221188	

3085



Data File: /var/chem/gc3.i/2310-E.b/c-a2578.d

Report Date: 01-Jun-2000 12:14

#### STL-PITTSBURGH

Data file: /var/chem/gc3.i/2310-E.b/c-a2578.d

Client Smp ID: MHIGHA Lab Smp Id: MHIGHA

Inj Date : 31-MAY-2000 16:55

Operator : 1891 Inst ID: gc3.i

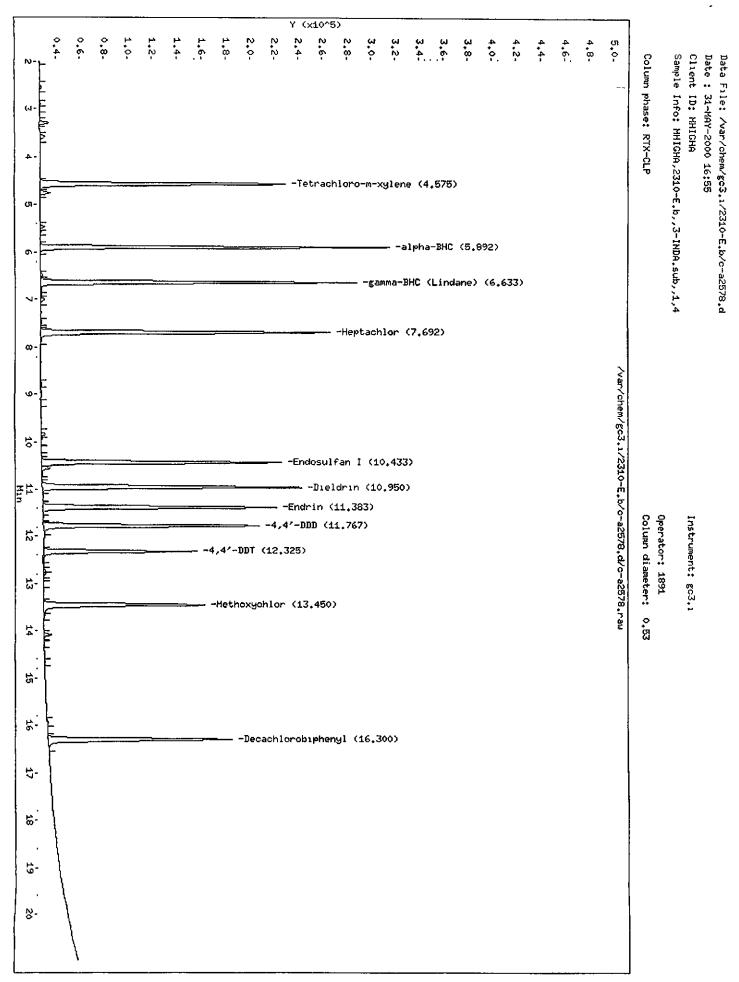
Smp Info : MHIGHA,2310-E.b,,3-INDA.sub,,1,4
Misc Info : 190-84-4

Comment

: /var/chem/gc3.i/2310-E.b/PESTA.m Method

Meth Date : 01-Jun-2000 12:09 g Cal Date : 31-MAY-2000 16:55 Quant Type: ESTD Cal File: c-a2578.d

Calibration Sample, Level: 4 Als bottle: 1


Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 3-INDA.sub

Target Version: 3.40

						AMOU	NTS
						CAL-AMT	ON-COL
Co	ompoundo	RT	EXP RT	DLT RT	RESPONSE	( ng)	( ng)
	*************	==	20222		=======	222250	======
ş	1 Tetrachloro-m-xylene	4.575	4.575	0 000	203118	0.05000	0.0423371
	S alpha-BHC	5 892	5.892	0.000	289515	0.05000	0.0474009
	6 gamma-BHC (Lindane)	6.633	6 633	0 000	262631	0.05000	0.0471196
	10 Heptachlor	7.692	7.683	0 009	240271	0.05000	0.0447525
	15 Endosulfan I	10 433	10 442	-0 009	199261	0.05000	0 0447860
	17 Dieldrin	10.950	10 950	0.000	214970	0 05000	0 0463374
	20 Bndrin	11.383	11.383	0 000	194387	0.05000	0.0464610
	21 4,4'-DDD	11.767	11.775	-0.008	178988	0.05000	0.0470358
	23 4,4'-DDT	12 325	12.325	0.000	127557	0.05000	0.0530088
	25 Methoxychlor	13.450	13.450	0.000	133308	0.10000	0.0923278
e	36 Becachlorobinhenvi	16.300	16 300	0.000	152254	0 05000	0.0423235

3087



Data File: /var/chem/gc3.i/2310-E.b/c-a2579.d

Report Date: 01-Jun-2000 12:14

#### STL-PITTSBURGH

Data file: /var/chem/gc3.i/2310-E.b/c-a2579.d

Lab Smp Id: HIGHA Client Smp ID: HIGHA

Inj Date : 31-MAY-2000 17:21

Operator: 1891 Inst ID: gc3.i

Smp Info : HIGHA, 2310-E.b,, 3-INDA.sub,, 1,5

Misc Info: 190-84-5

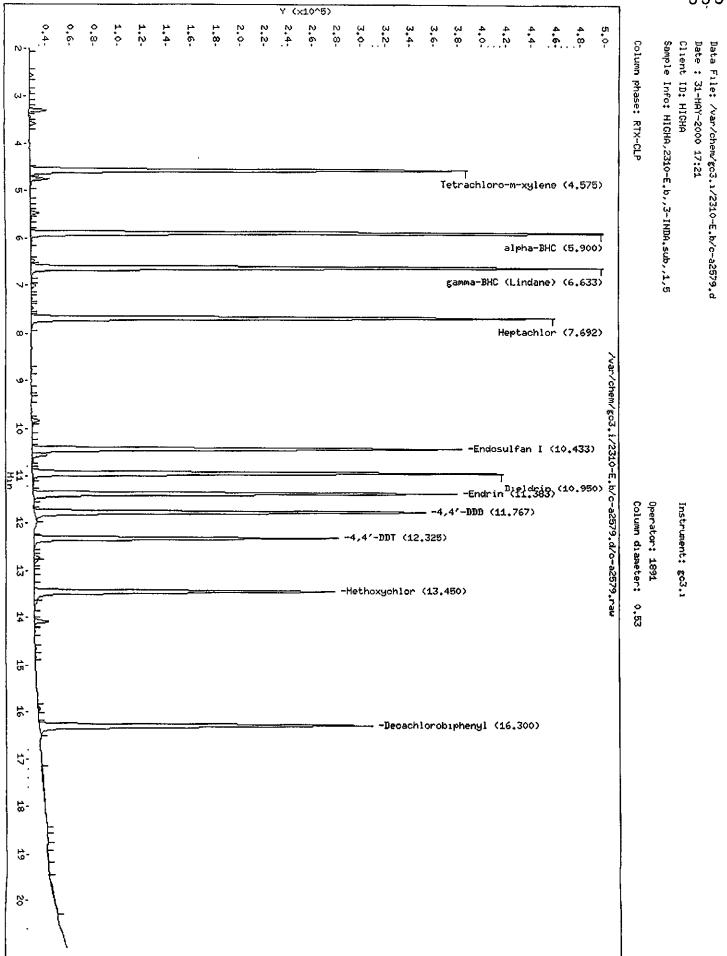
Comment

Method : /var/chem/gc3.i/2310-E.b/PESTA.m

Meth Date : 01-Jun-2000 12:09 g Quant Type: ESTD Cal Date : 31-MAY-2000 17:21 Cal File: c-a2579.d

Als bottle: 1 Calibration Sample, Level: 5

Dil Factor: 1.00000


Integrator: Falcon Compound Sublist: 3-INDA.sub

Target Version: 3.40

					AMOUNTS		
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	( ng)	( ng)	
	77 T		*****	******	<b>2022</b>	222222	
\$ 1 Tetrachloro-m-xylene	4.575	4.575	0.000	361719	0.10000	0.0792974	
5 alpha-BHC	5.900	5.892	0 008	534499	0.10000	0.0897529	
6 gamma-BHC (Lindane)	6.633	6 633	0.000	482279	0.10000	0.0889235	
10 Heptachlor	7 692	7 683	0.009	433602	0.10000	0.0839938	
15 Endosulfan I	10 433	10.442	-0 009	356493	0 10000	0 0834423	
17 Dieldrin	10.950	10.950	0.000	389808	0 10000	0 0867976	
20 Bndrin	11 383	11.383	0.000	351097	0 10000	0.0867058	
21 4,4'-DDD	11.767	11.775	-0 008	323803	0.10000	0.0877066	
23 4,4'-DDT	12.325	12.325	0 000	251751	0 10000	0 103662(A)	
25 Methoxychlor	13 450	13,450	0 000	248640	0.20000	0.177129	
\$ 30 Decachlorobiphenyl	16.300	16.300	0.000	275405	0.10000	0 0803229	

### QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.



Data File: /var/chem/gc3.i/2310-E.b/c-a2580.d

Report Date: 01-Jun-2000 12:14

#### STL-PITTSBURGH

Data file: /var/chem/gc3.i/2310-E.b/c-a2580.d

Client Smp ID: LOWB Lab Smp Id: LOWB

Inj Date : 31-MAY-2000 17:47

Operator : 1891 Inst ID: gc3.i

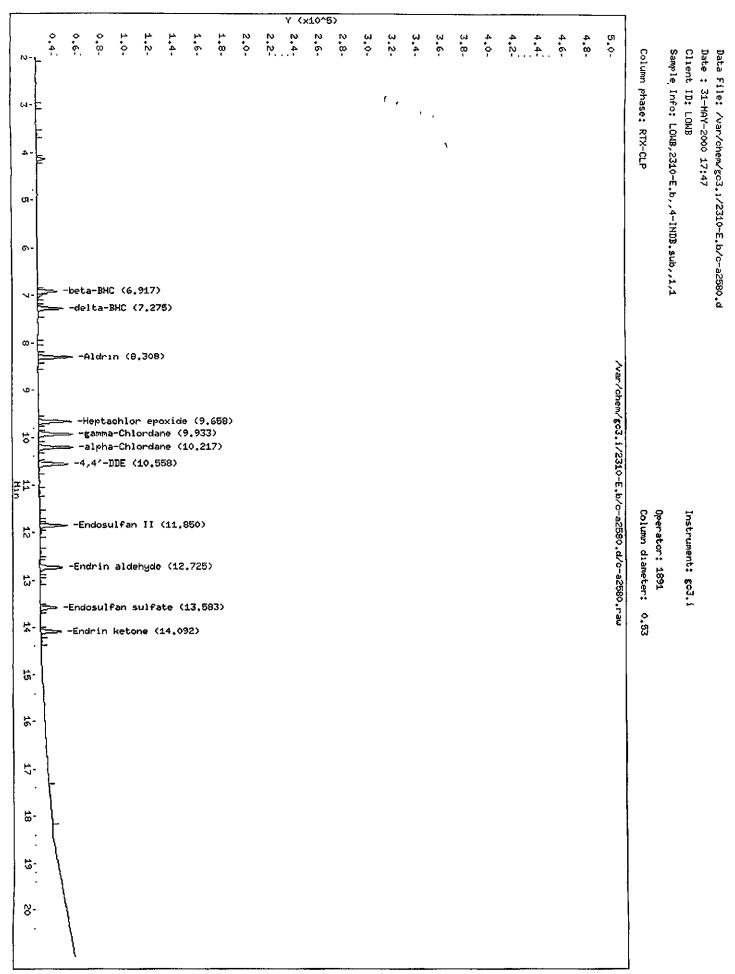
Smp Info : LOWB, 2310-E.b, , 4-INDB. sub, , 1, 1

Misc Info : 190-84-7

Comment

Method : /var/chem/gc3.i/2310-E.b/PESTA.m

Quant Type: ESTD Meth Date : 01-Jun-2000 12:09 g Cal Date : 31-MAY-2000 17:47 Cal File: c-a2580.d


Calibration Sample, Level: 1 Als bottle: 1

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 4-INDB.sub

Target Version: 3.40

					AMOUNTS	
					CAL-AMT	ON-COL
Compounds	RT	EXP RT	DLT RT	Response	( ng)	( ng)
	<b>F</b> =	======	===0==	*****	=== <b>==</b>	======
11 Aldrin	8 308	8 308	0.000	29090	0 00500	0.00500000
7 beta-BHC	6 917	6.917	0 000	16493	0.00500	0.00500000
8 delta-BHC	7 275	7.275	0.000	21470	0.00500	0 00500000
12 Heptachlor epoxide	9.658	9.658	0.000	27942	0 00500	0.00500000
13 gamma-Chlordane	9 933	9 933	0.000	28300	0.00500	0.00500000
14 alpha-Chlordane	10 217	10.217	0 000	28467	0 00500	0 00500000
16 4,4'-DDE	10.558	10 55B	0.000	24229	0 00500	0.00500000
22 Endosulfan II	11.850	11.858	-0.008	22828	0.00500	0 00500000
24 Endrin aldehyde	12.725	12.725	0 000	19502	0.00500	0 00500000
26 Endosulfan sulfate	13 583	13 592	-0.009	14298	0.00500	0 00500000
27 Endrin ketone	14 092	14.092	0 000	17370	0.00500	0 00500000

3091



Data File: /var/chem/gc3.i/2310-E.b/c-a2581.d

Report Date: 01-Jun-2000 12:14

#### STL-PITTSBURGH

33718 0 01000 0.00985071

Data file : /var/chem/gc3.i/2310-E.b/c-a2581.d

Lab Smp Id: MLOWB Client Smp ID: MLOWB

Inj Date : 31-MAY-2000 18:13

Operator : 1891 Inst ID: gc3.i

Smp Info : MLOWB, 2310-E.b,, 4-INDB.sub,, 1,2

Misc Info : 190-84-8

Comment :

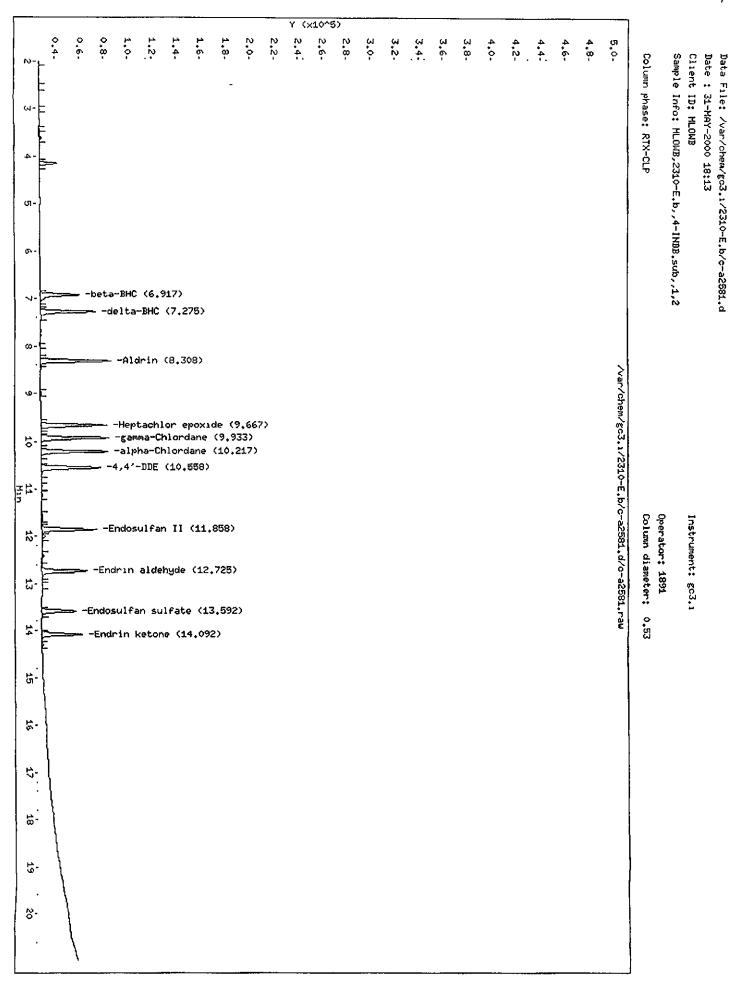
Method : /var/chem/gc3.i/2310-E.b/PESTA.m

Meth Date : 01-Jun-2000 12:09 g Quant Type: ESTD Cal Date : 31-MAY-2000 18:13 Cal File: c-a2581.d

Als bottle: 1 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 4-INDB.sub


Target Version: 3.40

					UOMA	nts
					CAL-AMT	ON-COL
Compounds	RT	EXP RT	DLT RT	response	( ng)	( ng)
	==	=====	=====	*=======	******	
11 Aldrin	8.308	8.308	0.000	58339	0 01000	0.0100136
7 beta-BHC	6.917	6.917	0 000	32455	0 01000	0.00991886
8 delta-BHC	7.275	7 275	0.000	45527	0.01000	0.0102924
12 Heptachlor epoxide	9.667	9.658	0.009	54756	0.01000	0 00989805
13 gamma-Chlordane	9.933	9.933	0.000	56210	0.01000	0 00996543
14 alpha-Chlordane	10.217	10.217	0.000	55915	0.01000	0.00990970
16 4,4'-DDB	10.558	10.558	0.000	49253	0.01000	0 0100814
22 Endoculfan II	11 858	11.858	0 000	45524	0.01000	0 00998552
24 Endrin aldehyde	12.725	12.725	0 000	37830	0.01000	0 00984720
26 Endosulfan sulfate	13.592	13 592	0.000	28090	0.01000	0.00991074

14.092 14 092 0 000

3093

27 Endran ketone



Data File: /var/chem/gc3.i/2310-E.b/c-a2582.d

Report Date: 01-Jun-2000 12:14

#### STL-PITTSBURGH

Data file : /var/chem/gc3.i/2310-E.b/c-a2582.d

Lab Smp Id: MEDB Client Smp ID: MEDB

Inj Date : 31-MAY-2000 18:39

Operator: 1891 Inst ID: gc3.i

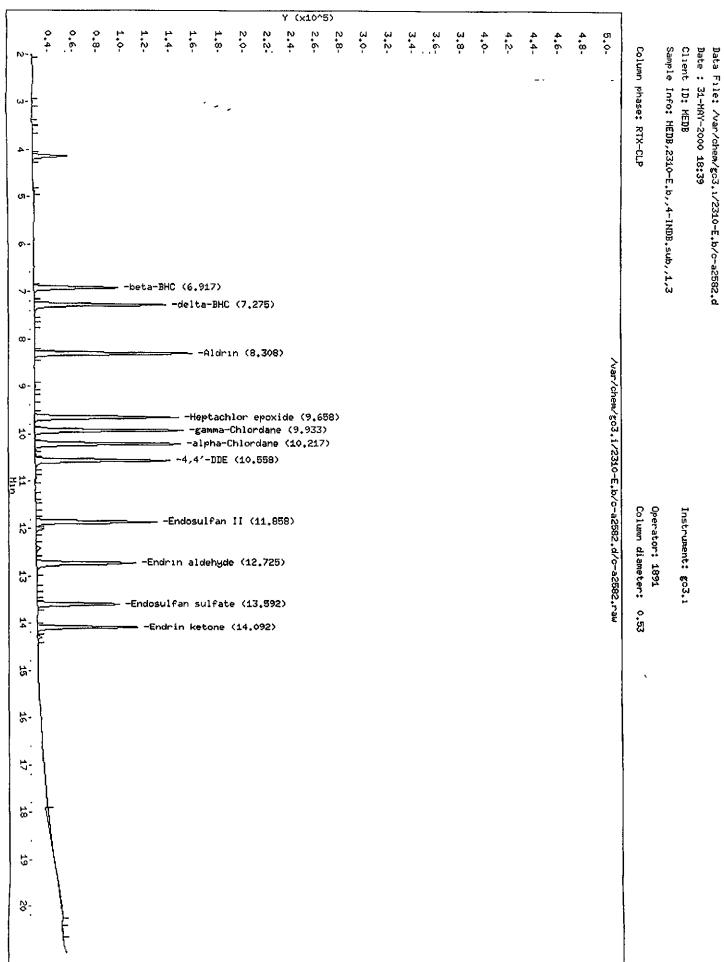
Smp Info : MEDB, 2310-E.b, , 4-INDB. sub, ,1,3

Misc Info: 190-84-9

Comment

Method : /var/chem/gc3.i/2310-E.b/PESTA.m

Meth Date : 01-Jun-2000 12:09 g Quant Type: ESTD Cal Date : 31-MAY-2000 18:39 Cal File: c-a2582.d


Als bottle: 1 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 4-INDB.sub

Target Version: 3.40

					AMOUNTS		
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	( ng)	( ng)	
	E 6	=====	======	#######	======	******	
11 Aldrin	8.308	8 308	0 000	131041	0 02500	0.0232706	
7 beta-BHC	6.917	6.917	0.000	69465	0.02500	0 0223535	
8 delta-BHC	7.275	7.275	0.000	109001	0 025 <b>00</b>	0.0247603	
12 Heptachlor epoxide	9.658	9 658	0 000	119327	0.02500	0 0226040	
13 gamma-Chlordane	9.933	9.933	0 000	123208	0 02500	0 0228032	
14 alpha-Chlordane	10.217	10 217	0 000	121011	0.02500	0.0225132	
16 4,4'-DDE	10.558	10.558	0 000	111393	0.02500	0.0234894	
22 Endosulfan II	11.858	11.858	0 000	100255	0 02500	0.0229098	
24 Endrin aldehyde	12.725	12.725	0 000	82846	0 02500	0.0226000	
26 Endosulfan sulfate	13.592	13 592	0.000	68149	0 02500	0.0243547	
27 Endrin ketone	14 092	14.092	0.000	83643	0.02500	0.0246214	



Data File: /var/chem/gc3.i/2310-E.b/c-a2583.d

Report Date: 01-Jun-2000 12:14

### STL-PITTSBURGH

Data file : /var/chem/gc3.i/2310-E.b/c-a2583.d

Lab Smp Id: MHIGHB Client Smp ID: MHIGHB

Inj Date : 31-MAY-2000 19:05

Operator: 1891 Inst ID: gc3.i

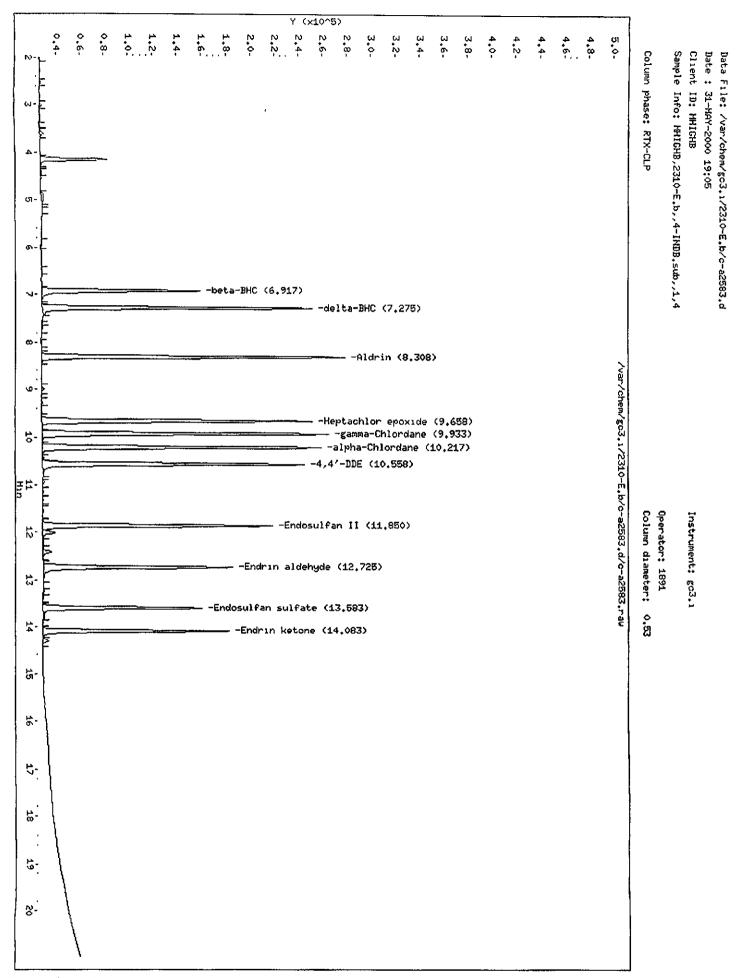
Smp Info : MHIGHB, 2310-E.b,, 4-INDB.sub,, 1,4

Misc Info: 190-84-10

Comment

Method : /var/chem/gc3.i/2310-E.b/PESTA.m

Meth Date: 01-Jun-2000 12:09 g Quant Type: ESTD Cal Date: 31-MAY-2000 19:05 Cal File: c-a2583.d


Als bottle: 1 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 4-INDB.sub

Target Version: 3.40

					AMOUNTS		
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	( ng)	( ng)	
	==	*****	=====	******	======	======	
11 Aldrin	8.308	8 308	0.000	251237	0.05000	0.0458498	
, 7 beta-BHC	6.917	6.917	0.000	131393	0.05000	0 0439788	
8 delta-BHC	7.275	7.275	0.000	223317	0.05000	0.0505440	
12 Heptachlor epoxide	9.658	9.658	0 000	224103	0.05000	0.0441166	
13 gamma-Chlordane	9 933	9 933	0 000	236920	0.05000	0.0452402	
14 alpha-Chlordane	10.217	10.217	0.000	230796	0 05000	0 0445095	
16 4,4'-DDB	10.558	10.558	0 000	216903	0 05000	0.0467340	
22 Endosulfan II	11.850	11.858	-0 008	191118	0.05000	0.0451001	
24 Endrin aldehyde	12 725	12.725	0 000	156971	0.05000	0 0444153	
26 Endosulfan sulfate	13.583	13.592	-0 009	131862	0.05000	0.0478116	
27 Endrin ketone	14.083	14.092	-0 009	154636	0.05000	0.0465622	



Data File: /var/chem/gc3.i/2310-E.b/c-a2584.d

Report Date: 01-Jun-2000 12:14

#### STL-PITTSBURGH

Data file : /var/chem/gc3.i/2310-E.b/c-a2584.d

Client Smp ID: HIGHB Lab Smp Id: HIGHB

Inj Date : 31-MAY-2000 19:30

Operator : 1891 Inst ID: gc3.i

Smp Info : HIGHB,2310-E.b,,4-INDB.sub,,1,5
Misc Info : 190-84-11

Comment

: /var/chem/gc3.i/2310-E.b/PESTA.m Method

Quant Type: ESTD Meth Date : 01-Jun-2000 12:09 g Cal Date : 31-MAY-2000 19:30 Cal File: c-a2584.d


Calibration Sample, Level: 5 Als bottle: 1

Dil Factor: 1.00000

Compound Sublist: 4-INDB.sub Integrator: Falcon

Target Version: 3.40

					AMOUNTS	
					CAL-AMT	ON-COL
Compounds	RT	EXP RT	DLT RT	RESPONSE	( ng)	( ng)
	==	=====	=====	=======	======	*=====
11 Aldrin	8.308	8 308	0.000	448907	0.10000	0.0849966
7 beta-BHC	6.917	6.917	0.000	235291	0.10000	0.0822496
8 delta-BHC	7.275	7.275	0.000	421952	0 10000	0 0963686
12 Heptachlor epoxide	9.658	9.658	0.000	397516	0.10000	0.0818126
13 gamma-Chlordane	9.933	9.933	0.000	422590	0 10000	0.0839351
14 alpha-Chlordane	10.217	10 217	0 000	405617	0.10000	0.0817861
16 4,4'-DDE	10.558	10.558	0 000	390710	0.10000	0 0869327
22 Endosulfan II	11 850	11.858	-0.008	343112	0 10000	0 0841717
24 Endrin aldehyde	12.725	12.725	0 000	279590	0.10000	0.0825599
26 Endosulfan sulfate	13 583	13.592	-0.009	259874	0 10000	0.0953278
27 Endrin ketone	14 083	14.092	-0 009	308722	0.10000	0.0942866



Data File: /var/chem/gc3.i/2310-E.b/c-a2585.d

Report Date: 01-Jun-2000 12:14

### STL-PITTSBURGH

Data file : /var/chem/gc3.i/2310-E.b/c-a2585.d

Lab Smp Id: 2ND A Client Smp ID: 2ND A

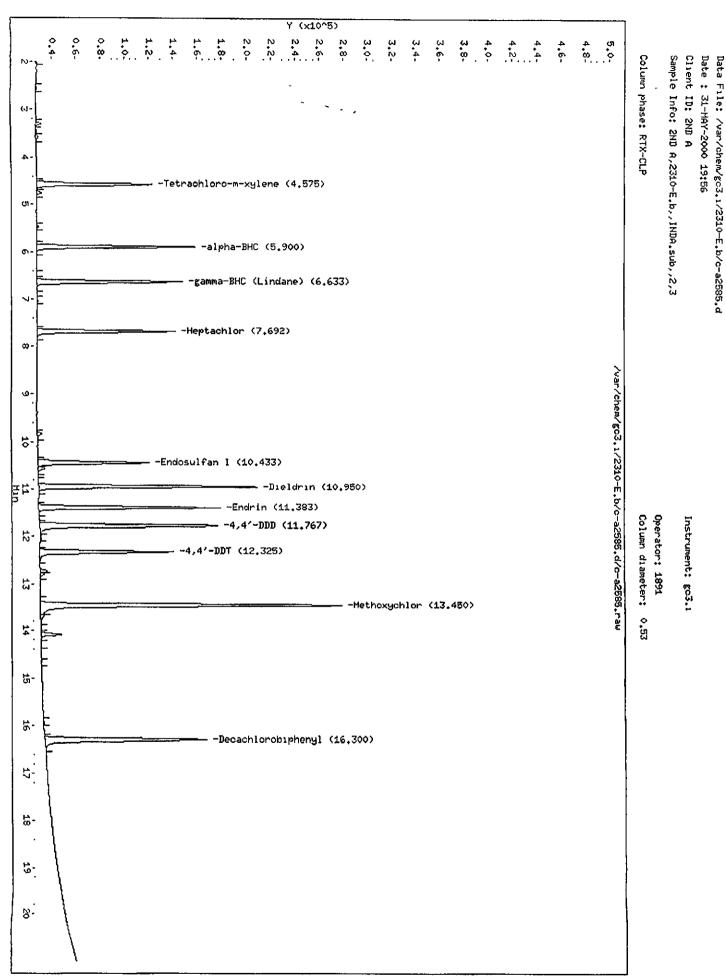
Inj Date : 31-MAY-2000 19:56

Operator: 1891 Smp Info: 2ND A,2310-E.b,,INDA.sub,,2,3 Inst ID: gc3.i

Misc Info: 190-82-2

Comment

Method : /var/chem/gc3.i/2310-E.b/PESTA.m Meth Date : 01-Jun-2000 12:09 g Quar Quant Type: ESTD Cal Date : 31-MAY-2000 19:30 Cal File: c-a2584.d


Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: INDA.sub

Target Version: 3.40

						<b>ETHUOMA</b>	
						CAL-AMT	ON-COL
Co	mpounds	RT	BXP RT	DLT RT	response	( ng)	( ng)
===		20			*****	*****	======
\$	1 Totrachloro-m-xylene	4.575	4.575	0.000	95501	0 02500	0.0209361
	5 alpha-BHC	5 900	5 892	0.008	131616	0.02500	0.0221009
	6 gamma-BHC (Lindane)	6.633	6.633	0.000	121166	0.02500	0.0223408
	10 Heptachlor	7 692	7 683	0.009	114349	0 02500	0 0221507
	15 Endosulfan I	10.433	10 442	-0 009	92472	0 02500	0 0216444
	17 Dieldrin	10.950	10 950	0.000	181033	0.02500	0.0403102
	20 Endrin	11 383	11 383	0.000	150387	0 02500	0.0371391
	21 4,4'-DDD	11.767	11 775	-0.008	148121	0.02500	0.0401206
	23 4,4'-DDT	12 325	12.325	0 000	111428	0.02500	0.0458821
	25 Methoxychlor	13.450	13.450	0.000	249284	0.05000	0 177588
Ś	30 Decachlorobiphenvl	16.300	16.300	0.000	134130	0.02500	0 0391195



Data File: /var/chem/gc3.i/2310-E.b/c-a2586.d

Report Date: 01-Jun-2000 12:14

#### STL-PITTSBURGH

Data file : /var/chem/gc3.i/2310-E.b/c-a2586.d

Client Smp ID: 2ND B Lab Smp Id: 2ND B

Inj Date : 31-MAY-2000 20:22 Operator : 1891 Inst ID: gc3.i

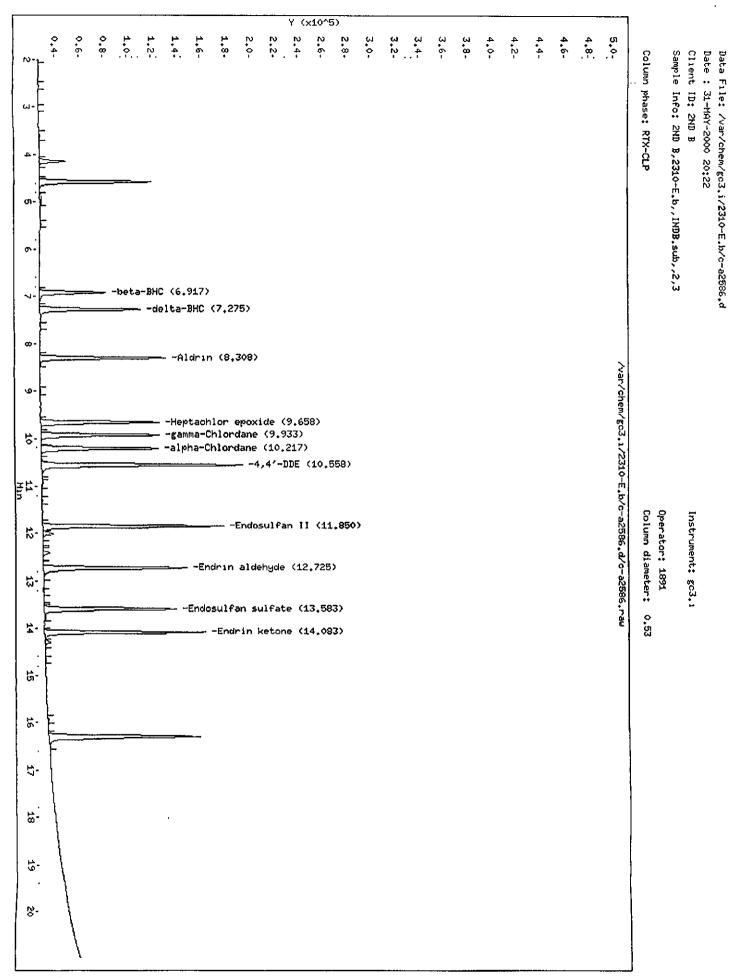
Smp Info : 2ND B,2310-E.b,,INDB.sub,,2,3

Misc Info: 190-82-5

Comment : Method : /var/chem/gc3.i/2310-E.b/PESTA.m

Meth Date : 01-Jun-2000 12:09 g Quant Type: ESTD Cal File: c-a2584.d Cal Date : 31-MAY-2000 19:30

Als bottle: 1 Continuing Calibration Sample


Dil Factor: 1.00000

Compound Sublist: INDB.sub Integrator: Falcon

Target Version: 3.40

ΑN	OUNTS	

					CAL-AMT	ON-COL	
Compounds	RT	BXP RT	DLT RT	RESPONSE	( ng)	( ng)	
	==	=====	*****		======		
11 Aldrin	8.308	8 308	0 000	104013	0 02500	0.0196939	
7 beta-BHC	6.917	6.917	0.000	54771	0 02500	0 0191460	
8 delta-BHC	7 275	7 275	0.000	83171	0.02500	0.0189952	
12 Heptachlor epoxide	9.658	9 658	0.000	98469	0.02500	0 0202659	
13 gamma-Chlordane	9.933	9 933	0 000	97854	0 02500	0.0194358	
14 alpha-Chlordane	10.217	10 217	0 000	97483	0 02500	0.0196559	
16 4,4'-DDB	10.558	10.558	0 000	165695	0 02500	0.0368670	
22 Endosulfan II	11.850	11.858	-0.008	149660	0 02500	0.0367143	
24 Endrın aldehyde	12 725	12.725	0.000	119386	0.02500	0.0352534	
26 Endosulfan sulfate	13.583	13.592	-0 009	109417	0.02500	0.0401367	
27 Endrin ketone	14.083	14.092	-0 009	133041	0.02500	0.0406320	



Data File: /var/chem/gc3.i/2310-E.b/c-a2587.d

Report Date: 01-Jun-2000 12:14

#### STL-PITTSBURGH

Data file: /var/chem/gc3.i/2310-E.b/c-a2587.d

Client Smp ID: EVALB Lab Smp Id: EVALB

Inj Date : 31-MAY-2000 20:48

Inst ID: qc3.i Operator : 1891

Smp Info : EVALB, 2310-E.b, , EVALBR. sub, , 3, 1

Misc Info: 190-88-8

Comment

: /var/chem/gc3.i/2310-E.b/PESTA.m Method

Meth Date: 01-Jun-2000 12:09 g Quant Type: ESTD Cal Date : 31-MAY-2000 19:30 Cal File: c-a2584.d

QC Sample: PEM Als bottle: 1

Dil Factor: 1.00000

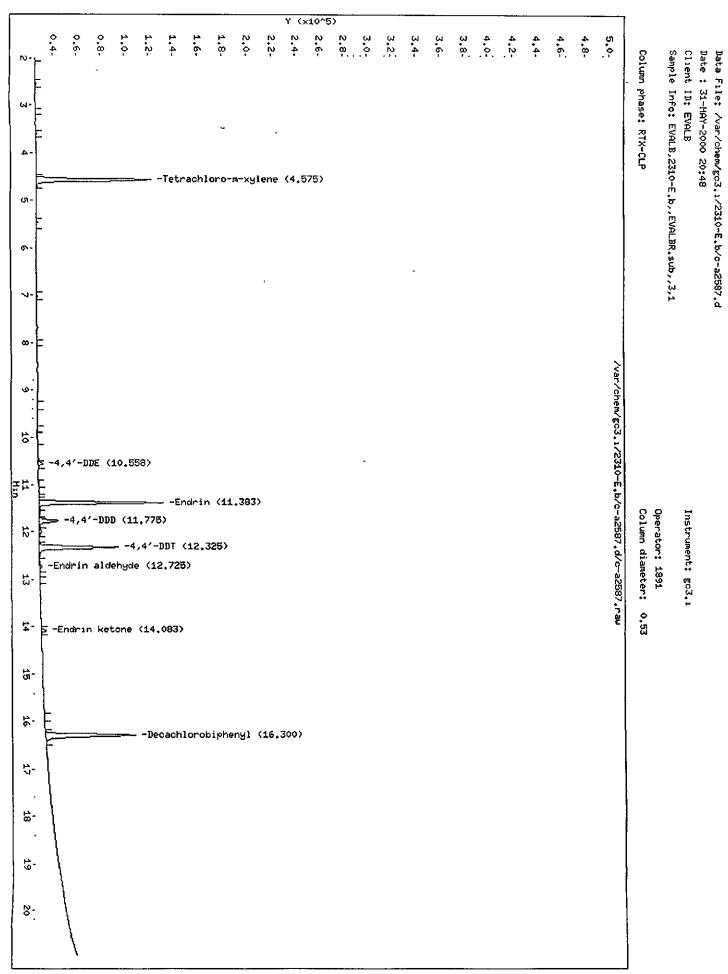
Compound Sublist: EVALBR.sub Integrator: Falcon

Target Version: 3.40

					ON-COLUMN	FINAL
Compounds	RT	EXP RT	DLT RT	response	( ng)	( ng)
********	<b>#</b> #		======	=======	======	======
\$ 1 Tetrachloro-m-xylene	4.575	4.575	0 000	95693	0.02098	0.0209782(R)
16 4,4'-DDB	10.558	10.558	0.000	3752	0.000835	0.000834817
20 Endrin	11.383	11.383	0 000	103914	0.02566	0.0256623
21 4,4'-DDD	11.775	11 775	0 000	16206	0.00439	0 00438962
23 4,4'-DDT	12.325	12.325	0.000	65588	0.02701	0.0270068
24 Endrin aldehyde	12.725	12.725	0.000	2097	0 000619	0.000619221

14.083 14.092 -0 009 0.00136 0.00135632 27 Endrin ketone 0.02185 0.0218530(R) 16 300 16 300 0.000 74928 \$ 30 Decachlorobiphenyl

QC Flag Legend


R - Spike/Surrogate failed recovery limits.

Endin Breakdon (2097+4441) X100 5,99% (2097+4441+103914)

CONCENTRATIONS

557 Bolaton=(3752+655) 73752+16006+6550)

4441



Data File: /var/chem/gc3.i/2310-E.b/c-a2595.d

Report Date: 01-Jun-2000 12:15

### STL-PITTSBURGH

Data file : /var/chem/gc3.i/2310-E.b/c-a2595.d

Lab Smp Id: MEDA Client Smp ID: MEDA

Inj Date : 01-JUN-2000 00:15

Operator : 1891 Inst ID: gc3.i

Smp Info : MEDA, 2310-E.b, , INDA. sub, , 2, 3

Misc Info: 190-84-3

Comment :

Method : /var/chem/gc3.i/2310-E.b/PESTA.m

Meth Date : 01-Jun-2000 12:09 g Quant Type: ESTD Cal Date : 31-MAY-2000 19:30 Cal File: c-a2584.d


Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: INDA.sub

Target Version: 3.40

						UOMA	nts
						CAL-AMT	ON-COL
Co	mpounds	RT	BXP RT	DLT RT	RESPONSE	( ng)	( ng)
=:	######################################	==		***===	=======		22222
\$	1 Tetrachloro-m-xylene	4 575	4.575	0.000	116215	0.02500	0.0254771
	5 alpha-BHC	5.892	5.892	0.000	163283	0.02500	0.0274184
	6 gamma-BHC (Lindane)	6 633	6.633	0.000	147721	0.02500	0 0272371
	10 Heptachlor	7.683	7.683	0.000	135598	0 02500	0.0262669
	15 Endosulfan I	10.433	10.442	-0.009	110291	0.02500	0.0258152
	17 Dieldrin	10.950	10.950	0.000	117540	0.02500	0.0261723
	20 Endrin	11.383	11 383	0 000	105853	0.02500	0 0261411
	21 4,4'-DDD	11.775	11.775	0 000	91909	0.02500	0 0248948
	23 4,4'-DDT	12.325	12.325	0.000	66299	0.02500	0.0272996
	25 Methoxychlor	13.450	13.450	0.000	72646	0.05000	0 0517523
e	30 Decachlorobinhenvl	16.300	16.300	0.000	89073	0 02500	0.0259785



Data File: /var/chem/gc3.i/2310-E.b/c-a2596.d

Report Date: 01-Jun-2000 12:15

#### STL-PITTSBURGH

Data file: /var/chem/gc3.i/2310-E.b/c-a2596.d

Client Smp ID: MEDB Lab Smp Id: MEDB

Inj Date : 01-JUN-2000 00:41 Operator : 1891 Inst ID: gc3.i

Smp Info : MEDB, 2310-E.b, , INDB. sub, , 2, 3

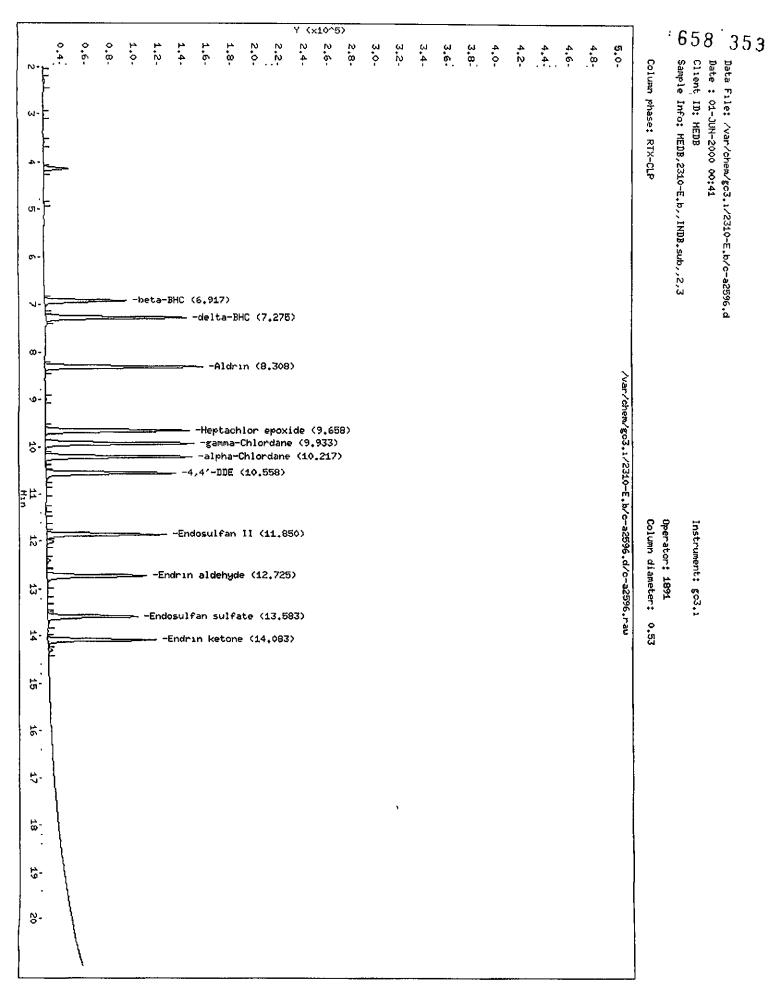
Misc Info: 190-84-9

Comment:

Method : /var/chem/gc3.i/2310-E.b/PESTA.m

Meth Date: 01-Jun-2000 12:09 g Quant Type: ESTD Cal File: c-a2584.d Cal Date : 31-MAY-2000 19:30

Continuing Calibration Sample Als bottle: 1


Dil Factor: 1.00000

Compound Sublist: INDB.sub Integrator: Falcon

Target Version: 3.40

OUNTS	

					CAL-AMT	ON-COL
Compounds	RT	BXP RT	DLT RT	response	( ng)	( ng)
	==	=====	프로프로프트	========		======
11 Aldrın	8.308	8.308	0.000	130849	0 02500	0 0247751
7 beta-BHC	6 917	6.917	0.000	68526	0.02500	0.0239543
8 delta-BHC	7 275	7.275	0 000	116506	0 02500	0.0266085
12 Heptachlor epoxide	9 658	9 658	0.000	119909	0 02500	0.0246784
13 gamma-Chlordane	9.933	9.933	0.000	123402	0.02500	0 0245102
14 alpha-Chlordane	10.217	10.217	0.000	121481	0.02500	0.0244947
16 4,4'-DDE	10.558	10 558	0.000	107714	0 02500	0.0239663
22 Endosulfan II	11 850	11.858	-0.008	99792	0 02500	0.0244808
24 Bndrin aldehyde	12.725	12.725	0.000	82727	0.02500	0.0244284
26 Endosulfan sulfate	13 583	13 592	-0.009	74864	0 02500	0.0274619
27 Endrin ketone	14 083	14.092	-0 009	89640	0 02500	0.0273769



PESTICIDE QC DATA

# UXB INTERNATIONAL METHOD BLANK COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER ... Lab Sample ID:C0E240000 492

Method: SW846 8081A

Pesticides (8081A)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDN21101 Date Extracted:05/24/00 Date Analyzed: 05/27/00

Moisture %:NA

QC Batch: 0145492

Client Sample Id: INTRA-LAB BLANK

### CONCENTRATION UNITS.

	******	IRAITON UNITS.	
CAS NO.	COMPOUND (ug/L o	or ug/kg) ug/L Q	
309-00-2	Aldrin	0.050	<u>U</u>
319-84-6	alpha-BHC	0.050	<u> </u>
319-85-7	beta-BHC	0.050	
319-86-8	delta-BHC	0.050	ַ ט
58-89-9	gamma-BHC (Lindane)	0.050	<u>"</u>
5103-71-9	alpha-Chlordane	0.050	U
5103-74-2	gamma-Chlordane	0.050	ַ ַ ַ ַ
72-54-8	4,4'-DDD	0.050	U
72-55-9	4,4'-DDE	0.050	<u> </u>
50-29-3	4,4'-DDT	0.050	ַ
60-57-1	Dieldrin	[0.050	U
959-98-8	Endosulfan I	0.050	u
33213-65-9	Endosulfan II	0.050	U
1031-07-8	Endosulfan sulfate	0.050	U
72-20-8	Endrin	0.050	<u>U</u>
7421-93-4	Endrin aldehyde	0.050	<u> </u>
53494-70-5	Endrin ketone	0.050	<u> </u>
76-44-8	Heptachlor	0.050	<u>U</u>
1024-57-3	Heptachlor epoxide	0.050	U
72-43-5	Methoxychlor	0.10	<u> </u>
8001-35-2	Toxaphene	2.0	<u> </u>

Data File: /var/chem/gc3.i/2260-E.b/c-a2565.d

Report Date: 31-May-2000 10:08

#### STL-PITTSBURGH

Data file: /var/chem/gc3.i/2260-E.b/c-a2565.d

Lab Smp Id: DDN21101 Client Smp ID: INTRA-LAB BLANK

Inj Date : 27-MAY-2000 04:35

Operator : 1891 Inst ID: gc3.i

Smp Info : DDN21101,2260-E.b,,PEST.sub,,3,

Misc Info: 230195BLK

Comment :

Method : /var/chem/gc3.i/2260-E.b/PESTA.m

Meth Date: 30-May-2000 16:08 matkol Quant Type: ESTD
Cal Date: 26-MAY-2000 18:18 Cal File: c-a2541.d
Als bottle: 1 QC Sample: METHOD BLANK

Dil Factor: 1.00000

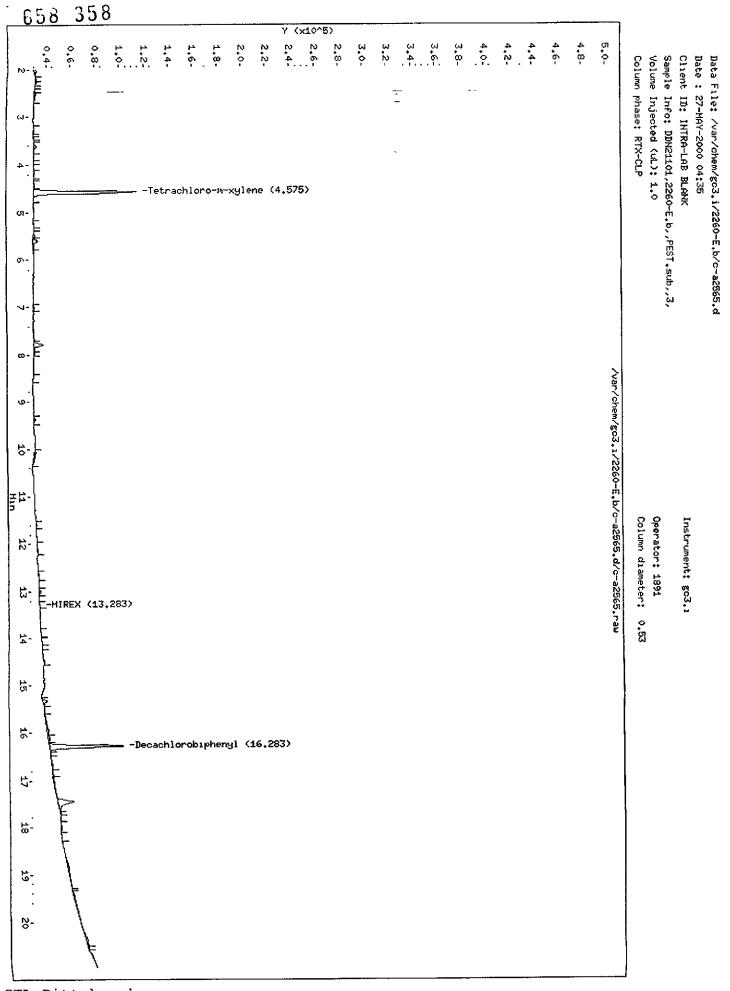
Integrator: Falcon Compound Sublist: all.sub

Target Version: 3.40

Concentration Formula: Amt * DF * (Vt/Vo)/Vi

Name	Value	Description
DF		Dilution Factor
۷t		Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
٧i	1.000	Volume injected

### CONCENTRATIONS


		ON-COLUMN FINAL
Compounds	RT EXP RT DLT RT RESPONSE	( ng) ( ug/L)
\$ 1 Tetrachloro-m-xylene	4 575 4 558 0.017 84011	0 01635 0.163530
2 Diallate A	Compound Not Detected.	
3 Diallate B	Compound Not Detected.	
4 MIREX	13.283 13.275 0.008 420	0.000113 0.00112830(a)
5 alpha-BHC	Compound Not Detected.	
6 gamma-BHC (Lindane)	Compound Not Detected	
7 beta-BHC	Compound Not Detected	
8 delta-BHC	Compound Not Detected	
9 Chlordane	Compound Not Detected	
10 Heptachlor	Compound Not Detected.	
11 Aldrin	Compound Not Detected.	
12 Heptachlor epoxide	Compound Not Detected	
13 gamma-Chlordane	Compound Not Detected.	
14 alpha-Chlordane	Compound Not Detected.	
15 Endosulfan I	Compound Not Detected.	
16 4,4'-DDE	Compound Not Detected	

Data File: /var/chem/gc3.i/2260-E.b/c-a2565.d Report Date: 31-May-2000 10:08

<del>-</del> -						C	ONCENTR	ATIONS
						ON-	согими	FINAL
Compounds	RT	BXP	RT I	OLT RT	RESPONSE	(	ng)	( ug/L)
******	22	====	== :	=====	=======	==:	====	*****
17 Dieldrin	Con	mpound	Not	t Detecte	d			
18 Toxaphene	Cos	mpound	Not	Detecte	a			
19 Isodrin	Cos	mpound	Not	. Detecte	å.			
20 Endrin	Cor	mpound	Not	Detecte	đ.			
21 4,4'-DDD	Cor	mpound	Not	Detecte	3			
22 Endoculfan II	Cor	mpound	Not	Detecte	<b>1</b> .			
23 4,4'-DDT	Con	mpound	Not	Detecte	<del>i</del>			
24 Endrin aldehyde	Cor	mpound	Not	Detecte	<b>1.</b>			
25 Methoxychlor	Con	mpound	Not	Detecte	<b>3</b> .			
26 Endosulfan sulfate	Con	mpound	Not	Detecte	±			
27 Endrin ketone	Cor	mpound	Not	Detecte	1			
28 Chlorobenzilate	Cor	mpound	Not	Detecte	<del>j</del>			
29 Kepone	Cor	mpound	Not	Detecte	<b>3</b> .			
\$ 30 Decachlorobiphenyl	16.283	16 2	92	-0.009	60483	0.0	01352	0.135216

# QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).



### UXB INTERNATIONAL CHECK SAMPLE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WATER

Lab Sample ID:C0E240000 492

Method: SW846 8081A

Pesticides (8081A)

Sample WT/Vol: 1000 / mL

Work Order: DDN21102

Dilution factor: 1

Moisture %:NA

Date Received: 05/23/00

Date Extracted: 05/24/00

Date Analyzed: 05/27/00

QC Batch: 0145492

Client Sample Id: CHECK SAMPLE

### CONCENTRATION UNITS:

CAS NO.	COMPOUND (L	ıg/L or ug/kg) ug/L Q
309-00-2	Aldrin	0.202
58-89-9	gamma-BHC (Lindane)	0.193
50-29-3	4,4'-DDT	0.319
60-57-1	Dieldrin	0.426
72-20-8	Endrin	0.351
76-44-8	Heptachlor	0.190

Data File: /var/chem/gc3.i/2310-E.b/c-a2594.d

Report Date: 01-Jun-2000 13:59

#### STL-PITTSBURGH

Data file: /var/chem/gc3.i/2310-E.b/c-a2594.d Lab Smp Id: DDN21102 Client Client Smp ID: LCS

Inj Date : 31-MAY-2000 23:49 Operator : 1891 Inst ID: gc3.i

Smp Info : DDN21102,2310-E.b,,PEST.sub,,3,

Misc Info : E230195LCS

Comment

Method : /var/chem/gc3.i/2310-E.b/PESTA.m Meth Date : 01-Jun-2000 12:09 g Quan Cal Date : 31-MAY-2000 19:30 Cal Quant Type: ESTD Cal File: c-a2584.d

QC Sample: LCS Als bottle: 1

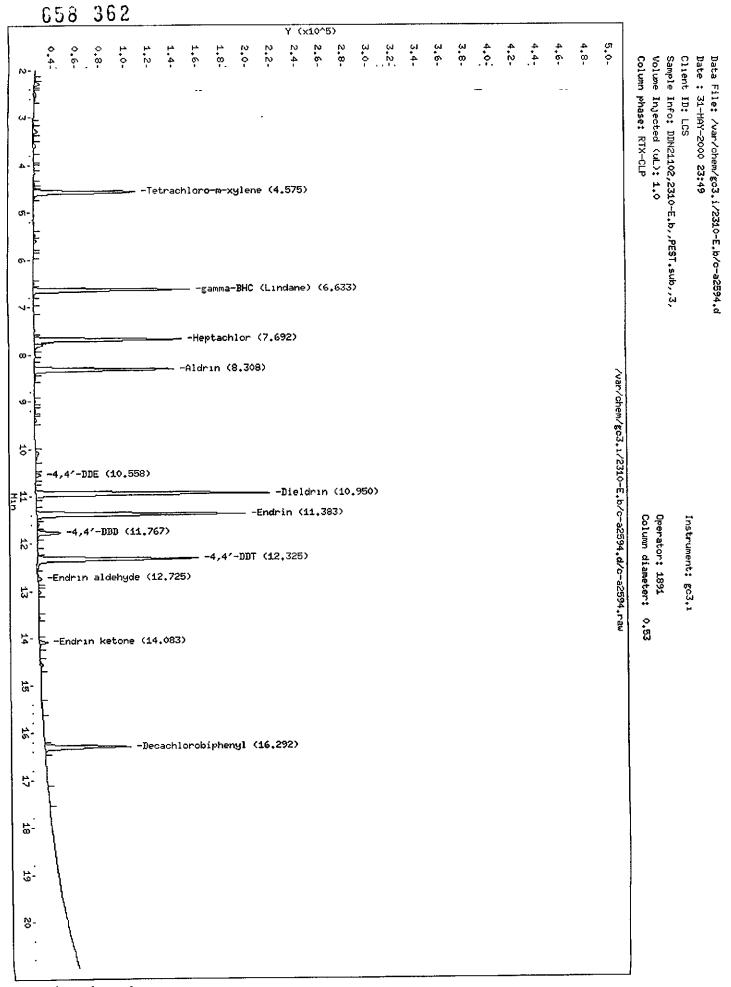
Dil Factor: 1.00000

Compound Sublist: PEST.sub Integrator: Falcon

Target Version: 3.40 Processing Host: hpuxcs21

Concentration Formula: Amt * DF * (Vt/Vo)/Vi

Name	Value	Description
DF Vt Vo	10000.000	Dilution Factor Volume of final extract (uL) Volume of sample extracted (mL)
Vi		Volume injected


		CONCENTRATIONS
		ON-COLUMN FINAL
Compounds	RT EXP RT DLT RT RESPONSE	( ng) ( ug/L)
	我是 苯苯环亚苯苯 医苯亚苯基因 通勤证式产生基础	요즘요요요ㅎ 유산강리즈프프
5 alpha-BHC	Compound Not Detected.	,
6 gamma-BHC (Lindane)	6.633 6.633 0.000 127763	0.02356 0.235572
7 beta-BHC	Compound Not Detected.	
9 Chlordane	Compound Not Detected.	
10 Heptachlor	7 692 7.683 0.009 121261	0 02349 0 234897
8 delta-BHC	Compound Not Detected.	
11 Aldrin	8 308 8.308 0.000 114150	0 02161 0.216133
12 Heptachlor epoxide	Compound Not Detected.	
13 gamma-Chlordane	Compound Not Detected.	
14 alpha-Chlordane	Compound Not Detected	
15 Endosulfan I	Compound Not Detected.	
16 4,4'-DDE	10.558 10 558 0.000 4393	0.000977 0.00977439(a)
17 Dieldrin	10.950 10 950 0.000 191539	0.04265 0 426495
20 Endrin	11.383 11.383 0.000 171512	0.04236 0.423561
18 Toxaphene	Compound Not Detected.	

Data File: /var/chem/gc3.i/2310-E.b/c-a2594.d Report Date: 01-Jun-2000 13:59

_				CONCENTI	RATIONS
		<b></b>		ON-COLUMN	FINAL
Compounds	RT EX	OP RT DLT RT	RESPONSE	(ng)	( ug/L)
经国际股份股份 化环状 化环状 计设计 计电阻 医电阻 医电阻		, n c n n n n n n n n n n n n n n n n n	********		<b>EGX</b> #553
21 4,4'-DDD	11 767 11	L.775 -0.008	19095	0.00517	0 0517215
22 Endosulfan II	Compo	and Not Detecte	ed		•
23 4,4'-DDT	12 325 12	2.325 0.000	132812	0.05469	0 546873
24 Endrin aldehyde	12.725 12	725 0.000	3515	0 00104	0 0103794(a)
26 Endosulfan sulfate	Сопрос	and Not Detecte	ed.		
25 Methoxychlor	Compou	und Not Detecte	ed.		
27 Endrin ketone	14.083 14	1 092 -0.009	7151	0 00218	0 0218398(a)
\$ 1 Tetrachloro-m-xylene	4 575 4	1 575 0.000	82522	0.01809	0.180908
\$ 30 Decachlorobiphenyl	16 292 16	5.300 -0.008	70561	0.02058	0.205794

# QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).



Data File: /var/chem/gc3.i/2260-E.b/c-a2566.d Report Date: 30-May-2000 16:12

STL-PITTSBURGH

Data file : /var/chem/gc3.i/2260-E.b/c-a2566.d

Lab Smp Id: DDN21102 Client Smp ID: INTRA-LAB CHECK

Inj Date : 27-MAY-2000 05:01

Operator : 1891 In Smp Info : DDN21102,2260-E.b,,PEST.sub,,3, Inst ID: gc3.i

Misc Info: 230195LCS

Comment

Method : /var/chem/gc3.i/2260-E.b/PESTA.m Meth Date : 30-May-2000 16:08 matkol Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a2541.d Als bottle: 1 QC Sample: LCS

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: PEST.sub

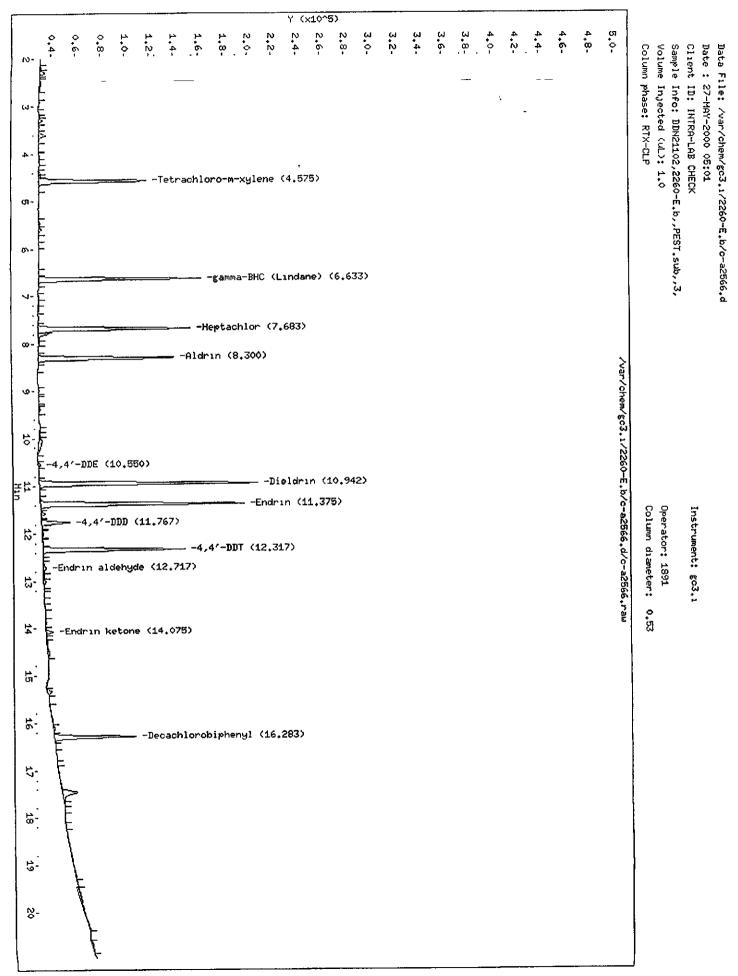
Target Version: 3.40

Concentration Formula: Amt * DF * (Vt/Vo)/Vi

Name	Value	Description
DF Vt Vo Vi	10000.000 1000.000	Dilution Factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected

					CONCENT	TATIONS
					ON-COLUMN	FINAL
Compounds	RT	BXP RT D	LT RT	RESPONSE	( ng)	( ug/L)
# 마취보장 OF CE CE CE CE CE CE CE CE CE CE CE CE CE	==		****	*****	======	******
5 alpha-BHC	Con	pound Not	Detected	<b>d</b> .		
6 gamma-BHC (Lindane)	6 633	6 625	0.008	132328	0 01927	0 192722
7 beta-BHC	Con	pound Not	Detected	đ.		
9 Chlordane	Con	pound Not	Detected	đ		
10 Heptachlor	7.683	7 683	0 000	124262	0.01900	0 189965
8 delta-BHC	Con	apound Not	Detected	d.		
11 Aldrin	8 300	8.300	0.000	110518	0.02022	0 202190
12 Heptachlor epoxide	Con	pound Not	Detected	d.		
13 gamma-Chlordane	Con	pound Not	Detected	đ.		
14 alpha-Chlordane	Con	apound Not	Detected	d.		
15 Bndosulfan I	Con	pound Not	Detected	d.		
16 4,4'-DDB	10.550	10 550	0.000	2364	0.000562	0 00562430(a)
17 Dieldrin	10.942	10.942	0.000	178584	0.03190	0.318998(R)
20 Endrin	11.375	11 375	0.000	166891	0.03509	0 350924
18 Toxaphene	Con	pound Not	Detecte	đ.		
21 4,4'-DDD	11.767	11.767	0.000	23222	0.00608	0 0608309
22 Endosulfan II	Con	pound Not	Detected	d		

Data File: /var/chem/gc3.i/2260-E.b/c-a2566.d


Report Date: 30-May-2000 16:12

								_	
	<del>-</del>		CONCENTRATIONS						
								ON-COLUMN	N FINAL
Com	pounds	RT		EXP RT DLT RT		DLT RT	RESPONSE	( ng)	( ug/L)
===	****		==	==:		발크등록록 <b>즉</b>	=======	202222	
	23 4,4'-DDT	12	317	12	317	0 000	116439	0 03190	0.318970
	24 Endrin aldehyde	12	717	12	717	0.000	2518	0.000699	0 00698548(a)
	26 Endosulfan sulfate		Соп	pour	nd N	ed.			
	25 Methoxychlor		Con	pour	nd N	ot Detecte	∍d		
	27 Endrin ketone	14	075	14	083	-0.008	5486	0 00130	0 0130386(a)
\$	1 Tetrachloro-m-xylene	4	575	4	558	0.017	87723	0 01708	0.170755
s	30 Decachlorobiphenyl	16	283	16	292	-0.009	66567	0.01488	0.148817

### QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).R Spike/Surrogate failed recovery limits.

3121



# UXB INTERNATIONAL CHECK SAMPLE DUPLICATE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 492

Method: SW846 8081A

Pesticides (8081A)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDN21103 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/27/00

Moisture %:NA

QC Batch: 0145492

Client Sample Id: DUPLICATE CHECK

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L	or ug/kg) ug/L Q
309-00-2	Aldrin	0.246
58-89-9	gamma-BHC (Lindane)	0.230
50-29-3	4,4'-DDT	0.392
60-57-1	Dieldrin	0.384
72-20-8	Endrin	0.425
76-44-8	Heptachlor	0.229

Data File: /var/chem/gc3.i/2260-E.b/c-a2567.d

Report Date: 30-May-2000 16:12

#### STL-PITTSBURGH

Data file : /var/chem/gc3.i/2260-E.b/c-a2567.d

Lab Smp Id: DDN21103 Client Smp ID: INTRA-LAB CHECK

Inj Date : 27-MAY-2000 05:27

Operator : 1891 Inst ID: gc3.i

Smp Info : DDN21103,2260-E.b,,PEST.sub,,3,

Misc Info: 230195LCD

Comment

Method : /var/chem/gc3.i/2260-E.b/PESTA.m Meth Date : 30-May-2000 16:08 matkol Quar Quant Type: ESTD Cal Date : 26-MAY-2000 18:18 Cal File: c-a2541.d

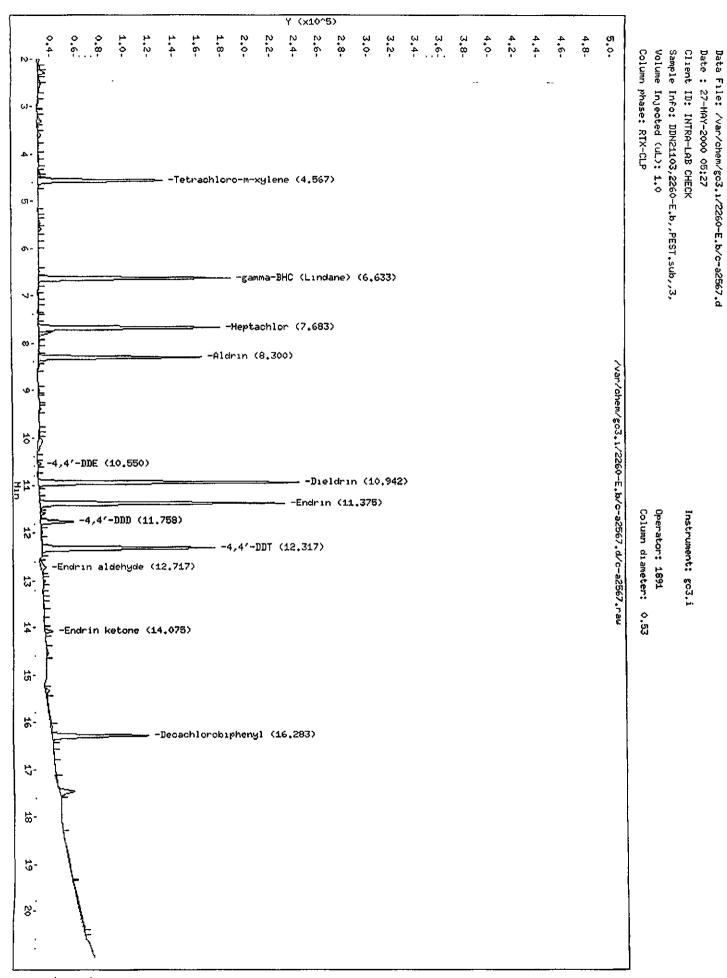
Als bottle: 1 OC Sample: LCSD Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: PEST.sub

Target Version: 3.40

Concentration Formula: Amt * DF * (Vt/Vo)/Vi

Name	Value	Description
DF Vt Vo Vi	10000.000 1000.000	Dilution Factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected


		CONCENTRATIONS
		ON-COLUMN FINAL
Compounds	RT EXP RT DLT RT RESPONSE	( ng) ( ug/L)
		220000 Q222223
5 alpha-BHC	Compound Not Detected.	
6 gamma-BHC (Lindane)	6 633 6 625 0 008 158057	0 02302 0 230193
7 beta-BHC	Compound Not Detected.	
9 Chlordane	Compound Not Detected	
10 Heptachlor	7.683 7.683 0 000 149622	0.02287 0.228734
8 delta-BHC	Compound Not Detected	
11 Aldrin	8.300 8 300 0.000 134392	0 02459 0 245867
12 Heptachlor epoxide	Compound Not Detected	
13 gamma-Chlordane	Compound Not Detected	
14 alpha-Chlordana	Compound Not Detected	
15 Endoculfan I	Compound Not Detected.	
16 4,4'-DDB	10.550 10.550 0 000 2925	0.000696 0.00695901(a)
17 Dieldran	10 942 10.942 0.000 215081	0 03842 0.384191
20 Bndrin	11.375 11.375 0.000 202351	0.04255 0.425487
18 Toxaphene	Compound Not Detected	
21 4,4'-DDD	11 758 11.767 -0.009 27432	0.00719 0.0718591
22 Endopulfan II	Compound Not Detected.	

Data File: /var/chem/gc3.i/2260-E.b/c-a2567.d Report Date: 30-May-2000 16:12

-				CONCENT	RATIONS
				ON-COLUMN	FINAL
Compounds	RT	EXP RT DLT RT	RESPONSE	( ng)	( ug/L)
-	==		========	======	======
23 4,4'-DDT	12.317	12.317 0 000	143124	0 03921	0.392070
24 Endrin aldehyde	12.717	12.717 0.000	3843	0.00107	0 0106613(a)
26 Endosulfan sulfate	Con	apound Not Detect	ed		
25 Methoxychlor	Com	apound Not Detect	ed.		
27 Endrin ketone	14 075	14 083 -0.008	6818	0.00162	0 0162043(a)
\$ 1 Tetrachloro-m-xylene	4 567	4 558 0.009	102305	0 01991	0 199139
\$ 30 Decachlorobiphenyl	16 283	16 292 -0 009	79473	0 01777	0 177670

### QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).



# PESTICIDE MISCELLANEOUS

STIL 1	Tel Clean up Method	Volume (mL)	2-1		0,1 1,-1	NA NA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA						•	Mill Mark	Margaret Co.	1 5-24-00				-	70/10/	Extract(s) Relinguished Analyst Analyst	anding KEPIDEXE	an 100 100 00	X /	1 Mr. Date 5.26-0	658 371
₩ <b>₩</b>	§.C	Volume (mL)	7	1	18-061		*														NV PY P	Extract(s) R	7	875-00 1600 M		Reviewed By Grues W	
PRO BY HEXANE	10 / Solpent Ol		1000 10.0	4	2,4	7	7 45 2 mat 100ml														MY MY KOKM	Extract(s) Received   Location	0.12 B	William Colored States		- T13624	
A Strado	Payametet PCB Method	Sample ID / Cliènt ID .	JUN MIN	CS LANT	NS 1 2012	20043	100														\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Date   Time A	00 2150 M	5-26-00 doug for		Lot Number	
nel ksheet	Date Completed		1. POE 230 195 &	2	7	5.	VOE BYD INY	000	01	11.	12.	13.	14.	15.	16.	17.	19.	20.	22.	23	Analyst Analyst	Extract(s)		ALL MANNE		Sodium Sulfate Mig. R. D. DO.	

Page 34 of 80

Turbochrom Sequence File : H:\ACQUIRE\MET_SEQ\2260-E.SEQ

Created by : DE11/02/98 on : 5/26/00 13:36 Edited by : DE05/26/00 on : 5/26/00 16:32

Description: QUANTERRA PGH 8081 RUN ON GC#3 CLP1/CLP2 COLUMNS

REVIEWED BY:

Row Site Rack Vial Inst

STL PittsburgMethod

Number of Times Edited: 2

# Sequence File Header Information:

Number of Rows : 53

Instrument Type : 760 / 900 Series Intelligent Interface

Injection Type : SINGLE

Row	Туре	Sample Name	Sample Number	Sequence Samp Study Name	le Descri Sample Amount	ptions - ISTD Amount	Channel A Sample Volume	Dil. Factor	Mult	Divisor	Addend	Norm. factor
1	Std Check	EVALB, 2260-E.b,	190-88-8		1 000	1.000	1.000	1.000	1.000	1.000	0 000	
2	Cal:Replace	MEDTOX, 2260-E.b	190-84-13		1.000	1.000	1.000	1.000	1.000	1.000	0 000	
3	Cal:Replace	MEDCHLOR, 2260-E	190-85-10		1.000	1.000	1.000	1.000	1.000	1.000	0.000	
4	Cal Replace	LAPPX9,2260-E.b	190-80-6		1 000	1.000	1.000	1.000	1.000	1.000	0 000	
5	Cal Replace	MLAPPX9,2260-E.	190-80-7		1 000	1.000	1.000	1.000	1.000	1.000	0.000	
6	Cal:Replace	MAPPX9,2260-E b	190-80-8		1.000	1.000	1.000	1.000	1.000	1.000	0 000	100.000
7	Cal Replace	мнаррх9,2260-Е.	190-80-9		1.000	1.000	1.000	1.000	1.000	1.000	0 000	100.000
8	Cal Replace	HAPPX9,2260-E b	190-80-10		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000 100.000
9	Cal Replace	L8081F, 2260-E.b	190-74-1		1.000	1.000	1.000	1.000	1.000	1.000	0 000	100.000
10	Cal Replace	ML8081F,2260-E.	190-74-2		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000
11	Cal Replace	M8081F, 2260-E.b	190-74-3		1.000	1.000	1.000	1.000	1.000		0.000	100.000
12	Cal.Replace	мн8081F, 2260-Е.	190-74-4		1.000	1.000	1.000	1.000 1.000	1.000		0.000	
13	Cal Replace	H8081F, 2260-E.b	190-74-5		1.000	1.000	1.000	1.000	1.000		0.000	•
14	Cal.Replace	LOWA, 2260-E.b.,	190-84-1		1.000	1.000	1.000	1.000	1.000		0 000	
15	Cal Replace	MLOWA, 2260-E.b,	190-84-2		1.000	1.000	1.000	1.000	1 000		0 000	100.000
16	Cal Replace	MEDA, 2260-E b,,	190-84-3		1.000	1.000	1.000	1 000	1.000		0 000	100.000
17	Cal:Replace	MHIGHA, 2260-E.b	190-84-4		1.000	1.000	1.000	1.000	1.000		0.000	
78	Cal Replace	HIGHA, 2260-E.b,	190-84-5 190-84-7		1.000	1.000	1.000	1.000	1.000		0.000	
19	Cai Replace	LOWB, 2260-E.b,,	190-84-8		1.000	1.000	1.000	1.000	1.000		0.000	
20	Cal Replace	MLOWB, 2260-E.b, MEDB, 2260-E.b,	190-84-9		1.000	1.000	1.000	1.000	1.000		0 000	
21	Cal Replace	MHIGHB, 2260-E.b	190-84-10		1 000	1.000	1.000	1.000	1.000		0 000	1
22 23	Cal Replace Cal.Replace	HIGHB, 2260-E.b.	190-84-11		1.000	1.000	1.000	1.000	1.000		0 000	
24	Std Check	2ND A, 2260-E.b,	190-82-2		1.000	1.000	1.000	1.000	1.000	1.000	0 000	100.000
25	Std Check	2ND B, 2260-E.b.	190-82-5		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000
26	Std Check	EVALB, 2260-E.b.	190-88-8		1.000	1.000	1.000	1.000	1.000	1.000	0.000	
27	Sample	DD8G610A,2260-E	160189008	`	1 000	1.000	1.000	1.000	1.000	1.000	0.000	
28	Sample	DD8G710A,2260-E	160189009	1	1.000	1.000	1.000	1.000	1.000		0.000	
29	Sample	DD8GP10A,2260-E	160189019	10	1.000	1.000	1.000	1.000	1.000		0 000	
30	Sample	DD8GQ10A, 2260-E	160189020	Regular 8081	1.000	1.000	1.000	1.000	1.000		0 000	
31	Sample	DD8GV10A, 2260-E	160189023	S and !!	1.000	1.000		1.000	1.000		0.000	
32	Sample	DD9NN10R, 2260-E	170151001	1	1.000	1.000		1.000	1.000		0.000	
33	Sample	DD9PJ10R, 2260-E	170159001	1	1.000	1.000		1.000	1.000		0 000	
34	Sample	DDG3A101,2260-E	160189BLK2	2 <b>]</b>	1.000	1.000		1.000	1.000		0 000	,
35	Std Check	MAPPX9, 2260-E.b	190-80-8		1.000	1 000		1.000	1.000		0 000	
36	Std Check	M8081F,2260-E.b	190-74-3		1.000	1.000		1.000	1.000		0.000	
37	Std Check	MEDA, 2260-E.b.,	190-84-3		1.000	1.000		1.000	1.000		0.000	
38	Std Check	MEDB,2260-E.b,,	190-84-9		1.000	1.000		1.000	1.000		0.000	
39	Std Check	EVALB, 2260-E.b,	190-88-8		1.000	1.000		1.000	1.000		0.000	
40	Sample	DD5VE113,2260-E			1.000	1 000		1.000	1.000		0.000	1
41	Sample	DD9NW113,2260-E			1.000	1,000		1.000	1.000 1.000		0.000	
42	Sample	DDKW0101,2260-E			1.000	1,000			1.000		0.000	
43	Sample	<del>DDKW0102,2260-</del> E			1.000			1.000	1.000		0.000	
44	Sample	DDKWU103,2260-E			1.000	1.000			1.000		0.000	
45	Sample	DDK90103,2260-E	230195001	Li. H.				1.000	1.000		0.000	
46	Sample	DD1.FR10R, 2260-E		<b>ULU.</b>	1.000 1.000				1.000		0.000	
47	Sample	DDN21101,2260-E	230195BLK	13. 3.	1.000				1.000		0.000	
48	Sample	DDN21102,2260-E		weethis	1.000				1.000		0.000	
49	Sample	DDN21103,2260-E	230195LCD 190-80-8		1.000				1.000		0 000	(
50	Std Check	MAPPX9,2260-E.b	190-74-3		1.000				1.000		0.000	(
51	Std Check	M8081F, 2260-E.b	190-74-3		1.000				1.000		0 000	
52 53	Std Check	MEDA, 2260-E.b.,	190-84-9		1.000				1.000		0 000	(
53	Std Check	MEDB, 2260-E.b.,	190-04-9		1.000	2.500						

								F					0.00	2 12 2
													<u> </u>	<u> 373</u>
	_	1	1	GEN3C	GEN3A	122190A	EVAL	C-A2519	C-A2519	C-A2519	_	_	_	LPT1:
100	_	1	2	GEN3C	GEN3A	122190A	TOX	C-A2520	C-A2520	C-A2520	N	MED	N	LPT1 , LP
		1	2	GEN3C	GEN3A	122190A	TOX	C-A2521	C-A2521	C-A2521	N	MED	Ŋ	LPT1 . LP
, -				GEN3C	GEN3A	122190A	INDA	C-A2522	C-A2522	C-A2522	Ŋ	LOW	N	LPT1
4 -	-	j	4		GEN3A	122190A	INDA	C-A2523	C-A2523	C-A2523	N	MLOW	N	LPT1
5	-	1	5	GEN3C	GEN3A	122190A	INDA	C-A2524	C-A2524	C-A2524	N	WLOW	N N	LPT1.
6	-	1	6	GEN3C	GEN3A	122190A	INDA	C-A2525	C-A2525	C-A2525	N	MLOW	N	LPT1:
7	-	1	7	GEN3C	GEN3A GEN3A	122190A	INDA	- C-A2526	C-A2526	C-A2526	N	- MLOW		LPT1.
8	-	1	8	GEN3C	GEN3A	122190A	INDA	C-A2527	C-A2527	C-A2527	N	LOW	N	LPT1 ·
9	-	1	9	GEN3C	GEN3A	122190A	INDA	C-A2528	C-A2528	C-A2528	N	MLOW	N	LPT1:
10	-	1	10	GEN3C	GEN3A GEN3A	122190A	INDA	C-A2529	C-A2529	C-A2529	И	MLOW	N	LPT1:
11	-	1	11	GEN3C	GEN3A	122190A	INDA	C-A2530	C-A2530	C-A2530	N	MLOW	N	LPT1 ·
1 <i>2</i> 13	-	1	12 13	GEN3C GEN3C	GEN3A	122190A	INDA	C-A2531	C~A2531	C-A2531	N	MLOW	N	LPT1.
13	-	1	4	GEN3C	GEN3A	122190A	INDA	C-A2532	C-A2532	C-A2532	N	LOW	N	LPT1:
	_	1	5	GEN3C	GEN3A	122190A	INDA	C-A2533	C-A2533	C-A2533	N	MLOW	N	LPT1.
15 16	-	1	6	GEN3C	GENJA '	122190A	INDA	C-A2534	C-A2534	C-A2534	N	MLOW	N	LPT1.
	_	1	7	GEN3C	GEN3A	122190A	INDA	C-A2535	C-A2535	C-A2535	N	MLOW	N	LPT1:
17				GEN3C	GEN3A	122190A	INDA	C-A2536	C-A2536	C-A2536	N	MLOW	N	LPT1.
18	-	1	8	GEN3C	GEN3A	122190A	INDA	C-A2537	C-A2537	C-A2537	N	LOW	N	LPT1
19	-	1	9		GEN3A	122190A	INDA	C-A2538	C-A2538	C-A2538	N	MLOW	N	LPT1
20	-	1	10	GEN3C	GEN3A	122190A	INDA	C-A2539	C-A2539	C-A2539	N	MLOW	N	LPT1
21	-	1	11	GEN3C	GEN3A	122190A	INDA	C-A2540	C-A2540	C-A2540	N	MLOW	N	LPT1:
22	-	1	12	GEN3C	GEN3A	122190A	INDA	C-A2541	C-A2541	C-A2541	N	MLOW	N	LPT1.
23	-	1	13	GEN3C	GEN3A	122190A	INDA	C-A2542	C-A2542	C-A2542		-	-	LPT1:
24	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2543	C-A2543	C-A2543	_	-	_	LPT1:
25	-	1	24	GEN3C	GEN3A	122190A	EVAL	C-A2544	C-A2544	C-A2544	_	-	_	LPT1:
26	-	1	1	GEN3C GEN3C	GEN3A	122190A	INDA	C-A2545	C-A2545	C-A2545		-	_	LPT1 ·
27	-	1	23 23	GEN3C	GEN3A	122190A	INDA	C-A2546	C-A2546	C-A2546	_	_	-	LPT1.
28 29	-	1 1	23	GEN3C	GEN3A	122190A	INDA	C-A2547	C-A2547	C-A2547	-	-	_	LPT1
30	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2548	C-A2548	C-A2548	_	-	_	LPT1.
31	_	î	23	GEN3C	GEN3A	122190A	INDA	C-A2549	C-A2549	C-A2549	-	-	_	LPT1 ·
32	_	î	23	GEN3C	GEN3A	122190A	INDA	C-A2550	C-A2550	C-A2550	-	-	_	LPT1:
33	_	ī	23	GEN3C	GEN3A	122190A	INDA	C-A2551	C-A2551	C-A2551	-	-	_	LPT1:
34	_	1	23	GEN3C	GEN3A	122190A	INDA	C-A2552	C-A2552	C-A2552	-	-	-	LPT1.
35	_	1	6	GEN3C	GEN3A	122190A	INDA	C-A2553	C-A2553	C-A2553	-	-		LPT1:
36	-	1	11	GEN3C	GEN3A	122190A	INDA	C-A2554	C-A2554	C-A2554	-	-	-	LPT1:
37	_	1	6	GEN3C	GEN3A	122190A	INDA	C-A2555	C-A2555	C-A2555	-	-	-	LPT1:
38	_	1	11	GEN3C	GEN3A	122190A	INDA	C-A2556	C-A2556	C-A2556	-	-	-	LPT1:
39	-	1	1	GEN3C	GEN3A	122190A	EVAL	C-A2557	C-A2557	C-A2557	-	-	-	LPT1:
40	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2558	C-A2558	C-A2558	-	-	-	LPT1:
41	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2559	C-A2559	C-A2559	-	-	~	LPT1.
42	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2560	C-A2560	C-A2560	-	-	-	LPT1
43	_	1	23	GEN3C	GEN3A	122190A	INDA	C-A2561	C-A2561	C-A2561	-	-	•	LPT1.
44	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2562	C-A2562	C-A2562		-	-	LPT1:
45	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2563	C-A2563	C-A2563	-	-	-	LPT1:
46	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2564	C-A2564	C-A2564	-	-	-	LPT1:
47	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2565	C-A2565	C-A2565	-	-	-	LPT1:
48	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2566	C-A2566	C~A2566	-	-	-	LPT1:
49	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2567	C-A2567	C-A2567	-	-	•••	LPT1.
50	-	1	6	GEN3C	gen3a	122190A	INDA	C-A2568	C-A2568	C-A2568	-	-	-	LPT1.
51	-	1	11	GEN3C	GEN3A	122190A	INDA	C-A2569	C-A2569	C-A2569	-	-	-	LPT1:
52	-	1	6	GEN3C	GEN3A	122190A	INDA	C-A2570	C-A2570	C-A2570	-	-	-	LPT1.
53	-	1	11	GEN3C	GEN3A	122190A	INDA	C-A2571	C-A2571	C-A2571	-	-	-	LPT1:

Turbochrom Sequence File : H:\ACQUIRE\MET_SEQ\2310-E.SEQ

Created by : DE11/02/98 on : 6/1/00 11:46 Edited by : JC05/31/00 on : 6/1/00 11:58

Description: QUANTERRA PGH 8081 RUN ON GC#3 CLP1/CLP2 COLUMNS-

REVIEWED BY:

Number of Times Edited: 2

# Sequence File Header Information:

Number of Rows : 25

Instrument Type : 760 / 900 Series Intelligent Interface

Injection Type : SINGLE

				Sequence Samp	ole Descri	ptions -	Channel A					
Row	Туре	Sample Name	Sample Number	Study Name	Sample Amount	ISTD Amount	Sample Volume	Dil. Factor	Mult	Divisor	Addend	Norm. factor
1	Std Check	EVALB, 2310-E.b,	190-88-8		1.000	1 000	1.000	1.000	1.000	1.000	0.000	100.000
2	Cal·Replace	MEDTOX, 2310-E.b	190-84-13		1 000	1.000	1.000	1 000	1.000	1.000	0.000	100.00þ
3	Cal.Replace	MEDCHLOR, 2310-E	190-85-10		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100 000
4	Cal Replace	LOWA, 2310-E.b.,	190-84-1		1,000	1 000	1.000	1.000	1.000	1.000	0.000	100 000
5	Cal Replace	MLOWA, 2310-E.b.	190-84-2		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000
6	Cal Replace	MEDA, 2310-E.b,,	190-84-3		1.000	1 000	1.000	1.000	1.000	1.000	0.000	100.000
7	Cal Replace	MHIGHA, 2310-E.b	190-84-4		1.000	1 000	1.000	1.000	1.000	1.000	0.000	100.000
8	Cal Replace	HIGHA, 2310-E.b,	190-84-5		1 000	1.000	1.000	1.000	1.000	1 000	0.000	100.000
9	Cal Replace	LOWB, 2310-E.b.,	190-84-7		1.000	1 000	1.000	1.000	1.000	1.000	0.000	100.00þ
_0	Cal Replace	MLOWB, 2310-E.b.	190-84-8		1.000	1.000	1.000	1 000	1.000	1.000	0.000	100.000
11	Cal·Replace	MEDB, 2310-E.b.,	190-84-9		1.000	1.000	1.000	1 000	1.000	1.000	0.000	100.000
12	Cal.Replace	MHIGHB, 2310-E.b	190-84-10		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.00b
13	Cal:Replace	HIGHB, 2310-E.b,	190-84-11		1.000	1.000	1.000	1 000	1.000	1.000	0.000	100.00p
14	Std Check	2ND A.2310-E.b.	190-82-2		1.000	1.000	1.000	1 000	1.000	1.000	0.000	100.000
15	Std Check	2ND B, 2310-E.b,	190-82-5		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000
16	Std Check	EVALB, 2310-E.b,	190-88-8		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000
17	Sample	DBLX3104; 2310-E	E240180001		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000
18	Sample	DDLX310M, 2310-E	240190001S		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000
19	Sample	DDLX310N, 2310-E	2401800010	•	1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000
20	Sample	DDLX6104, 2310-E	E240180002		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000
21	Sample	DDTM6101, 2210-E	E240180BLK		1.000	1.000	1.000	1.000	1 000	1.000	0.000	100.000
22	Sample	DOTM6102, 2310-E	E240100ECS		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000
23	Sample	DDN21102,2310-E		Dearing	1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000
24	Std Check	MEDA, 2310-E.b.,	190~84~3 b		1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000
25	Std Check	MEDB, 2310-E.b,,	190-84-901	oney .	1.000	1.000	1.000	1.000	1.000	1.000	0.000	100.000

Rov	Site	Rack	Vıal	Inst	Process	Calib	Report	Raw	Result	Baseline			Level	Update	Out
				Method	Method	Method	Format	File	File	File	Raw File	Rpt	Name	RT	Dev
 1	-	1	1	GEN3C	GEN3A	122190A	EVAL	C-A2572	C-A2572		C-A2572	-	_	-	LPT1:
2	-	1	2	GEN3C	GEN3A	122190A	TOX	C-A2573	C-A2573		C-A2573	N	MED	N	LPT1: LPT
3	_	1	2	GEN3C	GEN3A	122190A	TOX	C-A2574	C-A2574		C-A2574	N	MED	N	LPT1: LPT
4	-	1	4	GEN3C	GEN3A	122190A	INDA	C-A2575	C-A2575		C-A2575	N	LOW	N	LPT1:
5	-	1	5	GEN3C	GEN3A	122190A	INDA	C-A2576	C-A2576		C-A2576	N	MLOW	N	LPT1.
6	_	1	6	GEN3C	GEN3A	122190A	INDA	C-A2577	C-A2577		C-A2577	N	MLOW	N	LPT1 ·
7	-	1	7	GEN3C	GEN3A	122190A	INDA	C-A2578	C-A2578		C-A2578	N	MLOW	N	LPT1
8	-	1	8	GEN3C	GEN3A	122190A	INDA	C-A2579	C~A2579		C-A2579	N	MLOW	N	LPT1:
9	-	1	9	GEN3C	GEN3A	122190A	INDA	C-A2580	C-A2580		C-A2580	N	LOW	И	LPT1.
10	-	1	10	GEN3C	GEN3A	122190A	INDA	C-A2581	C-A2581		C-A2581	N	MLOW	И	LPT1
12	_	1	11	GEN3C	GEN3A	122190A	INDA	C-A2582	C-A2582		C-A2582	N	MLOW	N	LPT1.
12		1	12	GEN3C	GEN3A	122190A	INDA	C-A2583	C-A2583		C-A2583	N	MLOW	N	LPT1 -
13		1	13	GEN3C	GEN3A	122190A	INDA	C-A2584	C-A2584		C-A2584	N	MLOW	N	LPT1.
14	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2585	C-A2585		C-A2585	_	~	-	LPT1:
15	-	1	24	GEN3C	GEN3A	122190A	INDA	C-A2586	C-A2586		C-A2586	-	-	-	LPT1:
16	-	1	1	GEN3C	GEN3A	122190A	EVAL	C-A2587	C-A2587		C-A2587	-	-	-	LPT1:
.7	_	1	23	GEN3C	GEN3A	122190A	INDA	C-A2588	C-A2588		C-A2588	-	-	-	LPT1.
18	_	1	23	GEN3C	GEN3A	122190A	INDA	C-A2589	C-A2589		C-A2589	-	-	-	LPT1 ·
19		1	23	GEN3C	GEN3A	122190A	INDA	C-A2590	C-A2590		C-A2590		-	-	LPT1.
20		1	23	GEN3C	GEN3A	122190A	INDA	C-A2591	C-A2591		C-A2591	_	-	-	LPT1 ·
21		1	23	GEN3C	GEN3A	122190A	INDA	C-A2592	C-A2592		C-A2592	-	-	-	LPT1:
22	-	1	23	GEN3C	GEN3A	122190A	INDA	C-A2593	C-A2593		C-A2593	-	-	-	LPT1
23		1	23	GEN3C	GEN3A	122190A	INDA	C-A2594	C-A2594		C-A2594	-	-	-	LPT1:
24		1	6	GEN3C	GEN3A	122190A	INDA	C-A2595	C-A2595		C-A2595	-	-	-	LPT1:
25		1	11	GEN3C	GEN3A	122190A	INDA	C-A2596	C-A2596		C-A2596	-	-	-	LPT1.

PSRO24 5/24/00 13:45:09 MT

SAMPLE CUSTODIAN REMOVAL REQUEST

PAGE 001

REQUESTED BY: YUSHINSC

METHOD: QJ Pesticides (8081A)

STORAGE LOCATION	WORK ORDER #	PICKED CNTR#	CONTROL #	CLIENT #	ANALYSIS	LOTID	SMP#	<u>sfx</u>	MATRIX DESCRIPTION		RTY G	
4F	DDK90-1-03	<del></del>	236505	399411	I-09-QJ 0	0E230195	001	WATE	R	0	9	1
6B CLP1	DDLFR-1-OR		236506	416241	1-09-QJ 0	:0E240144	001	WATE	R	0	20	1

Gushinski Gushinski	Justinski Justinski	5-24-00 15 5-24-00 22

PCB DATA

PCB QC SUMMARY

SW846 8082 SURROGATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT QESSDG:

Lot #: C0E230195

-	CLIENT ID.	SRG01	SRG02	TOT OUT
		======	======	======
01	DF/S1/0137/WA/001	77	84	_00
	METHOD BLK. DDN23101	86	92	00
	LCS DDN23102	95	100	00
	LCSD DDN23103	96	101	00

SURROGA	ATES	QC LIMITS
SRG01	= Tetrachloro-m-xylene	( 45-120)
SRG02	= Decachlorobiphenyl	( 24-128)

[#] Column to be used to flag recovery values

^{*} Values outside of required QC Limits

D System monitoring Compound diluted out

#### SW846 8082 CHECK SAMPLE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot #: C0E240000

WO #: DDN23102 BATCH: 0145495

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L )	% REC	QC LIMITS REC	    QUAL
	=======================================		aa===	===========	======
Aroclor 1016	10.0	8.49	85	61- 118	<u> </u>
Aroclor 1260	10.0	9.09	91	61- 124	ll

NOTES (S):	

* Values outside of QC limits

Spike	Recovery:	0	out of	2	outside	limits	
COMMEN	ITS:						

658 330 SW846 8082 CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot #: C0E240000

WO #: DDN23103 BATCH: 0145495

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L )	% REC	QC LIMITS REC	QUAL
=======================================	=======================================	==========	=====	========	am======
Aroclor 1016	10.0	8.74	87	61- 118	ļ <u></u>
Aroclor 1260	10.0	9.12	91	61- 124	

NOTES (S) :		

* Values outside of QC limits Spike Recovery: __0 out of __2 outside limits COMMENTS:

FORM III

#### SW846 8082 METHOD BLANK SUMMARY

Lab Name: Severn Trent Laboratories, Inc.

Lab Code: QESPIT

SDG Number:

Lab File ID: h-a20691.

Lot Number: C0E230195

Matrix: WATER

Extraction Method:

Date Extracted: 05/24/00

Date Analyzed(1): 05/31/00

Date Analyzed(2): N/A

Time Analyzed(1): 02:57

Time Analyzed(2): N/A

Instrument ID(1): M/N

Instrument ID(2): N/A

GC Column(1): N/A ID: N/A GC Column(2): N/A ID:

BLANK WORKORDER NO.

DDN23101

N/A

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, AND MSD:

1		SAMPLE		DATE	DATE	
	CLIENT ID.	WORK ORDE	₹ #	ANALYZED(1)	ANALYZED(2)	
			====		=======================================	
01	DF/S1/0137/WA/001	DDK90104		05/31/00	N/A	
	CHECK SAMPLE	DDN23102	C	05/31/00	N/A	
	DUPLICATE CHECK	DDN23103	L	05/31/00	N/A	
04					İ	
05				1		
06						
07					l <u></u>	
08	<u> </u>					
09	<u> </u>					
10				1		į
11	1					
12				1	ļ <u>.</u>	]
13						l
14	\					
15	<u> </u>				<u> </u>	
16		Í				į
17	Í	<u></u>				ŀ
18				<u> </u>		ŀ
19		<u> </u>				ŀ
20				.		

COMMENTS:					
	 	<del></del>	FORM	IV	

PCB SAMPLE DATA

#### UXB INTERNATIONAL

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8082

PCBs (8082)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDK90104 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/31/00

Moisture %:NA

QC Batch: 0145495 Client Sample Id: DF/S1/0137/WA/001

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L (	2
12674-11-2	Aroclor 1016	1.0	<u> </u>
11104-28-2	Aroclor 1221	1.0	<u>"</u>
11141-16-5	Aroclor 1232	1.0	<u> </u>
53469-21-9	Aroclor 1242	1.0	ן ט
12672-29-6	Aroclor 1248	1.0	<u>  U</u>
11097-69-1	Aroclor 1254	1.0	<u> </u> u
11096-82-5	Aroclor 1260	1.0	<u>  U</u>

Data File: /var/chem/gc8.i/2250.b/h-a20689.d

Report Date: 31-May-2000 08:39

Page 1

STL-PITTSBURGH

Data file: /var/chem/gc8.i/2250.b/h-a20689.d Lab Smp Id: DDK90104 Clien Client Smp ID: DF/S1/0137/WA/001

Inj Date : 31-MAY-2000 02:18

Inst ID: gc8.i Operator : 010139

Smp Info : DDK90104,2250.b

Misc Info : 230195-1

Comment

Method : /var/chem/gc8.i/2250.b/PCBA.m Meth Date : 31-May-2000 08:13 g Quant Type: ESTD Cal Date : 25-MAY-2000 19:01 Cal File: h-a2054 Cal File: h-a20549.d

Als bottle: 56

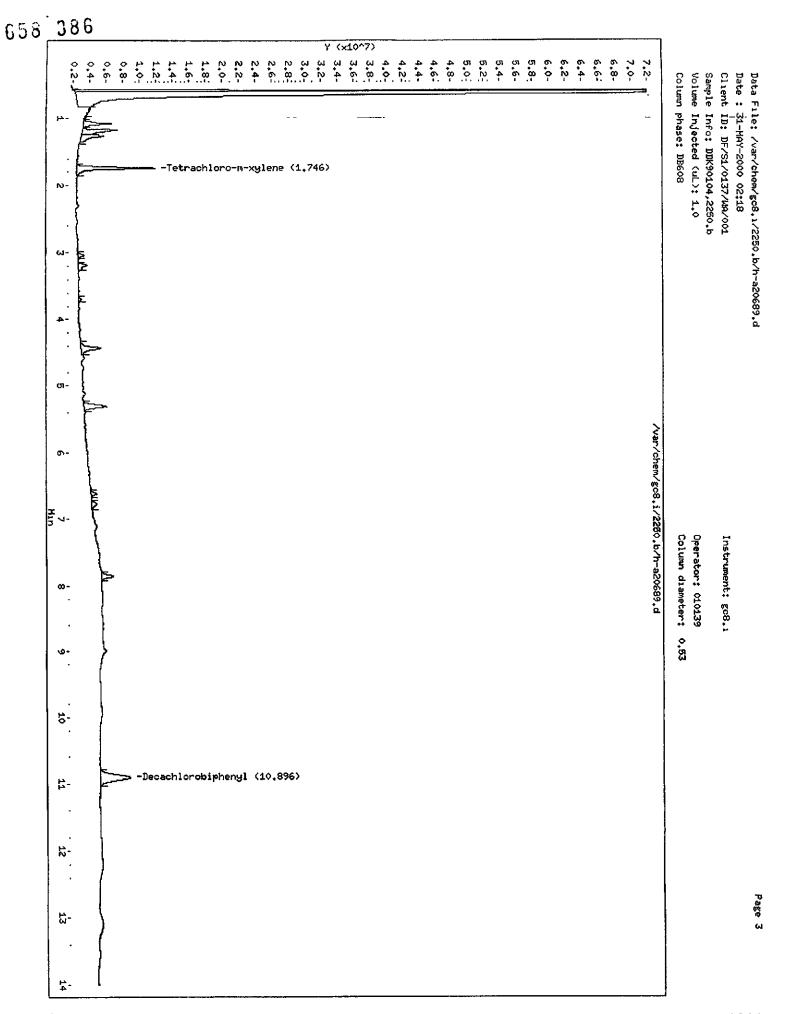
Dil Factor: 1.00000

Compound Sublist: all.sub Integrator: Falcon

Sample Matrix: WATER Target Version: 3.40

Concentration Formula: Amt * DF * Vt/Vo/Vi

Name	Value	Description
DF Vt Vo Vi	10000.000	Dilution Factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected


#### CONCENTRATIONS

					CC	NCENTRO	ATTONS			
					ON	-COL	FINAL			
RT	EXP RT	DLT I	RT	RESPONSE	(	ng)	( ug/L)	TARGET	RANGE	RATIO
8-3	p = 2 2 2 5 5	====:		8625555	==	48763	*****	0000000		
\$ 1 '	Cetrachlo	ro-m-	xylene				CAS #:	877-09-8	1	
1.74	1.747	-0.	001	9480636	0	01546	0.15463	0.00-	0.00	0.00
51	Chlordane	ted fo	or Quant.	or Qual	\$1 <u>0</u>	gnal (s)	CAS #:	57-74-9		
8 .	Aroclor-							11104-28	3-2	
Peaks	not detec	cted f	or Quant.	or Qual.	szá	gnal(s)	•			

Page 2

Data File: /var/chem/gc8.i/2250.b/h-a20689.d Report Date: 31-May-2000 08:39

_		CONCENTRA	ATIONS		_
		ON-COL	FINAL		
RT EXP RT DLT RT	RESPONSE	( ng)	( ug/L)	TARGET RANGE	RAT10
98 BENCUT CIRCHAR	******	D380800	******	*******	E02240
					-
14 Aroclor-1232			CAS #.	11141-16-5	
Peaks not detected for Quant	-	-			
15 Aroclor-1242				53469-21-9	
Peaks not detected for Quant	or Qual	signal(s)			
			<b></b>		
20 Aroclor-1016			CAS #:	12674-11-2	
Peaks not detected for Quant.	or Qual.	sıgnal (s)	•		
21 Aroclor-1248			CAS #	12672-29-6	
Peaks not detected for Quant.	or Qual.	signal(s)			
33 Aroclor-1254			CAS #:	11097-69-1	
Peaks not detected for Quant	or Qual.	sıgnal (s)			
\$ 34 Decachlorobiphenyl				2051-24-3	
10.896 10 921 -0.025					
36 Aroclor-1260				11096-82-5	• • • • • •
Peaks not detected for Quant.	or Qual.	signal(s)	•		



PCB
CALIBRATION DATA

Report Date : 26-May-2000 10:12

Page 1

# STL-PITTSBURGH

# INITIAL CALIBRATION DATA

Start Cal Date : 25-MAY-2000 16:23 : 25-MAY-2000 19:01 End Cal Date

: ESTD Quant Method : Disabled Origin Target Version : 3.40

: Falcon Integrator : /var/chem/gc8.i/2250.b/PCBA.m Method file : 26-May-2000 10:11 eppinged Cal Date

: Average Curve Type

Calibration File Names:

Level 1: /var/chem/gc8.i/2250.b/h-a20545.d Level 2: /var/chem/gc8.i/2250.b/h-a20546.d Level 3: /var/chem/gc8.i/2250.b/h-a20547.d Level 4: /var/chem/gc8.i/2250.b/h-a20548.d Level 5: /var/chem/gc8.i/2250.b/h-a20549.d

	0.00500	01000	0.02500 !	0.05000	0.10000 ,	'	
Compound	•	Level 2	Level 3	Level 4	Level 5	RRF }	₹ RSD
			********		**********		********
51 Chlordane(1)	+++++	+++++	+++++	+++++	*****	+++++ !	+++++
(2)	1 ++++	++++	+++++ 1	++++	+++++	++++- }	+++=+
(3)	1 +++++	+++++	+++++ !	+++++	+++++	++++	+-+++
(4)	1 +++++ 1	+++++	++++	++++	+++++	++++	+++++
8 Aroclor-1221(1)	+++++	++++	6072946	+++++	++++	6072946	0.000
(2)	1 +++++ 1	****	3840346	+++++	+++++	3840346	0.000
(3)	+++++	++++	11680556	+++++	+++++	11680556'	0.000
14 Aroclor-1232(1)	+++++	+++++	7723038	+++++	+++++	7723038	0,000
(2)	+++++	++++	11790882	++++	+++++	11790882	0 000
(3)	+++++	+++++	7802416	+++++	+++	7802416	0 000
(4)	1 +++++ !	++++	5515122	+++++	+++++ <b> </b>	5515122	0 000
15 Aroclor-1242(1)	+++++	++++	13492972	++++	+++++	13492972	0.000
(2)	+	++++	22150990	++++	+++++	22150990	0 000
(3)	1 +++++ 1	+++++	10243034	+++++	+++++ !	10243034	0.000
(4)	1 +++++ 1	++++	13717370	++++	+++++	13717370:	0 000
(5)	+++++	++++	9726812	++++	+++++	9726312	0.000
20 Aroclor-1016(1)	12257300	11377050		•	,	10140988	16 15
20 AFOCIOI-1016(1)	21615410	20343750	17603966	16840526	15613319	18403394	13 57
(3)	34189340	32896200	29255534	28438345	27121802	30380244	9.94
(4)	16163970	15282345	13130344	12503259	11776206	13771225	13 58
(5)	22133860	20831930	18097064	17339425	16413213	18963098	12.76
21 Aroclor-1248(1)	1 +++++	++++	14741246	il ++++	•	14741246,	0 00
21 Arocior-1246(1)	, .   +++++	++++	13556302	2 +++++	,	13556302'	0.00
(3)	+++++	++++	1693968	****	•	16939688	
(4)	++++	+++++	1763399	2! ++++	++++	17633992	0.00
(4)	+++++	+++++	1689205	2	+++++	16892052	0.00
(3)	i ' '	I	1	1	l	i	



ς,

Page 2658 389

### STL-PITTSBURGH

### INITIAL CALIBRATION DATA

Start Cal Date : 25-MAY-2000 16:23 End Cal Date : 25-MAY-2000 19:01

Quant Method : ESTD
Origin : Disabled
Target Version : 3.40
Integrator : Falcon

Method file : /var/chem/gc8.i/2250.b/PCBA.m Cal Date : 26-May-2000 10:11 eppinged

Curve Type : Average

Compound	Penel I   Penel I   Penel I	₹ RSD
医耳状腺素 医多种性 医多种性 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基		
33 Aroclor-1254(1)	+++++   +++++   13523388  +++++   +++++   13523388;	0 00
(2)	+++++   +++++   16607860  +++++   +++++   16607860!	0 00
(3)	+++++   +++++   12654104  +++++   +++++   12654104	0.00
(4)	1 +++++   +++++   25147350  +++++   ++++-   25147350'	0.0
(5)	+++++   +++++   17846900  +++++   +++++   17846900	0 0
• • •	27376050 23616880 21624986 20720283 19737648 22615169	13 3
36 Aroclor-1260(1) (2)	28959500  24641280  23206332  22201560  21064586  24014652;	12.7
	28310540 24683575 23427998 22869001 22147536 24287730.	10.0
(3)	41568330  37024930  35944990  36682058  35144374  37272936'	6.7
(4)	21235160  18815690  17951180  17841844  17232584  18615292	8 4
(5)	41730100  10010000  1001100  11041044  11081000	
등록로 조르는 다 보는 다 보는 다 하는 수 있는 수 있는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같	[665111800]621804400[605712920]593601040]579339840[613114000]	5.3
1 Tetrachloro-m-xylene		7.7
34 Decachlorobiphenyl	238823600 220856400 214042760 203237760 195738950 214539894	,.,
	· · · · · · · · · · · · · · · · · · ·	

Data File: /var/chem/gc8.i/2250.b/h-a20642.d

Report Date: 31-May-2000 10:13

FL 68908A DB608

Page 2

#### STL-PITTSBURGH

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: gc8.i

Lab File ID: h-a20642.d

Analysis Type:

Lab Sample ID: M1660

Quant Type: ESTD

Injection Date: 30-MAY-2000 10:48

Init. Calibration Date(s): 05/25/0
Init. Calibration Times: 16:23 05/25/0 19:01 Method File: /var/chem/gc8.i/2250.b/PCBA.m

,	l	1	MIN	1	1	MAX
COMPOUND	RRF	RFC	•	•	•	₹D
		***   ******		=   = = = =	== =	====
20 Aroclor-1016(1)	[10140987.8	00   104845	6 000 0.01	0 -3	4	15 0
(2)	18403394	200   191392	8.000 0 01	10 -4	0	15.0
(3)	30380244.	300 311018	72 000 0 01	to  -2	4	15 0
(4)	13771224	300   139529	84.000 0.01	LO  -1	. 3	15.0
(5)	18963098.	400 193166	98 000 0 0	10] -1	. 9	15.0
\$ 1 Tetrachloro-m-xylene	613114000	.000 66303	9600 000 0			15.
\$ 34 Decachlorobiphenyl	214539894	000   23429	6520.000 0	010	-9.2	2 15.
36 Aroclor-1260(1)	22615169.	300   233444	84 000 0 0	10  -3	2	15.0
(2)	24014651.	700 245301	86.000 0.0	10} -2	.1	15.0
(3)	24287729.	900 246328	68 000 0.0	10  -:	4	15.0
(4)	37272936.	500   357325	72 000 0 0	10	1.1	15.0
(5)	18615291.	600 193541	14.000 0.0	10; -	0	15.0
•••				1	<u></u> l.	

Page 2

ata File: /war/chem/gc8.i/2250.b/h-a20682.d

eport Date: 31-May-2000 08:39

STL-PITTSBURGH

CONTINUING CALIBRATION COMPOUNDS

istrument ID: gc8.i ab File ID: h-a20682.d

nalysis Type:

ab Sample ID: M1660 lant Type: ESTD

Injection Date: 30-MAY-2000 23:59
Init. Calibration Date(s): 05/25/0
Init. Calibration Times: 16:23 05/25/0 19:01

Method File: /var/chem/gc8.i/2250.b/PCBA.m

	MIN	XAM
COMPOUND	RRF RFO RRF	D   D
. 医自己现在性含染色色色红芽素含色及类型双色双层性配合过去分类		
20 Aroclor-1016(1)	[10140987.800  9896550.000 0.010	2.4 15.0
(2)	[18403394.200]17955188.000 0 010]	2.4 15.0
(3)	[30380244 300   29713456.000   0.010	2.2   15.0
(4)	13771224.800 12944850.000 0.010	6.0 15.0
(5)	[18963098.400]17843966.000]0 010]	5 9 15 0
1 Tetrachloro-m-xylene	[613114000.000   629849120.000   0.000	-2.7 15
34 Decachlorobiphenyl	214539894.000 207482880 000 0 010	3.3 15
36 Aroclor-1260(1)	22615169.300 21781008.000 0.010	3.7 15.0
(2)	[24014651.700[22861774.000[0.010]	4 8   15.0
(3)	24287729.900 23133706 000 0.010	4 8 15.0
(4)	37272936.500 33926624.000 0.010	9.0  15.0
(5)	18615291.600 16681252 000 0 010	10 4   15.0
ν/		

nalysis Type:

ab Sample ID: M1660 uant Type: ESTD

ata File: /var/chem/gc8.i/2250.b/h-a20703.d

eport Date: 31-May-2000 10:23



Page 1

4017

# STL-PITTSBURGH

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 31-MAY-2000 08:08 nstrument ID: gc8.i ab File ID: h-a20703.d

Init. Calibration Date(s): 05/25/0
Init. Calibration Times: 16:23 05/25/0 19:01

Method File: /var/chem/gc8.i/2250.b/PCBA.m

	MIN	XAN
COMPOUND	RRF RFO RRF D	%D
		*****
20 Aroclor-1016(1)	10140987.800  9608270.000 0 010  5.3	
(2)	18403394.200 17078538 000 0 010  7.2	15.0
(3)	30380244.300 28666016.000 0.010 5.6	15 0
(4)	13771224.800 12195546.000 0.010  11.4	15.0
(5)	18963098.400 16917288.000 0.010  10.8	15.0
1 Tetrachloro-m-xylene	[613114000 000]600237760.000[0.000] 2	1   15
\$ 34 Decachlorobiphenyl	214539894 000 213220680 000 0.010 0	6  15
36 Aroclor-1260(1)	[22615169.300 21361852 000 0 010  5.5]	15.0
(2)	[24014651 700]22325546 000[0.010] 7.0	15.0
(3)	[24287729.900 22605384 000 0.010 6 9	15.0
(4)	[37272936 500]33875756 000[0.010] 9.1]	15.0
(5)	18615291.600 18218858.000 0.010  2 1	15.0

#### 8D PESTICIDE ANALYTICAL SEQUENCE

Lab Name: STL-PITTSBURGH Contract:

Lab Code: STLPIT Case No.: SAS No.: 40325 SDG No.: C0E230195

GC Column: DB608 ID: 0.53 (mm) Init. Calib. Date(s): 05/25/00 05/25/00

Instrument ID: GC8

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROC TCX: 1.75	FATE RT FROM 1 DCB: 1	NITIAL CALI 10.92	BRATION		
	EPA SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	TCX RT #	DCB RT #
	000=========	============	=======================================			=======
01		M2154	05/25/00	1623	1.74	10.91
02		M1232	05/25/00	1643		
03		M1242	05/25/00	1702		
04		M1248	05/25/00	1722		
05		L1660	05/25/00	1742	1.75	10.92
06		ML1660	05/25/00	1802	1.75	10.92
07		M1660	05/25/00	1822	1.75	10.92
08	!	MH1660	05/25/00	1841	1.75	10.92
09		H1660	05/25/00	1901	1.75	10.92
10		2M2154	05/25/00	1921	1.74	
11		2M1232	05/25/00	1941		
12		2M1242	05/25/00	2000		
13		2M1248	05/25/00	2020		
14		2M1660	05/25/00	2040		
15		M2154	05/30/00	0929	1.74	10.90
16		M1232	05/30/00	0948		<u> </u>
17		M1242	05/30/00	1008		
18		M1248	05/30/00	1028		
19		M1660	05/30/00	1048	1.75	10.90
20		M1660	05/30/00	2359	1.74	10.90
21	DF/S1/0137/W		05/31/00	0218	1.75	10.90
22		DDN23101	05/31/00	0257	1.74	10.90
23		DDN23102	05/31/00	0317	1.75	10.90
24	LCSD	DDN23103	05/31/00	0337	1.74	10.90
25		M1660	05/31/00	8080	1.74	10.90
26						
27	<del></del>		<u> </u>		\	
28	İ	<u> </u>			ļ ———	<u> </u>
29					<u> </u>	
30			ļ <del></del>	·	<b></b>	
31						
32	l <u></u>		]	l	l	II

QC LIMITS

TCX = Tetrachloro-m-xylene (+/- 0.05 MINUTES) DCB = Decachlorobiphenyl (+/- 0.07 MINUTES)

# Column used to flag retention time values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII PEST

OLM03.0

Data File: /var/chem/gc8.i/2250.b/h-a20541.d

Report Date: 01-Jun-2000 11:22

Page 1

#### STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20541.d

Lab Smp Id: M2154

Inj Date : 25-MAY-2000 16:23

Inst ID: gc8.i Operator : 010139

Smp Info : M2154,2250.b Misc Info : 190-83-1

Comment

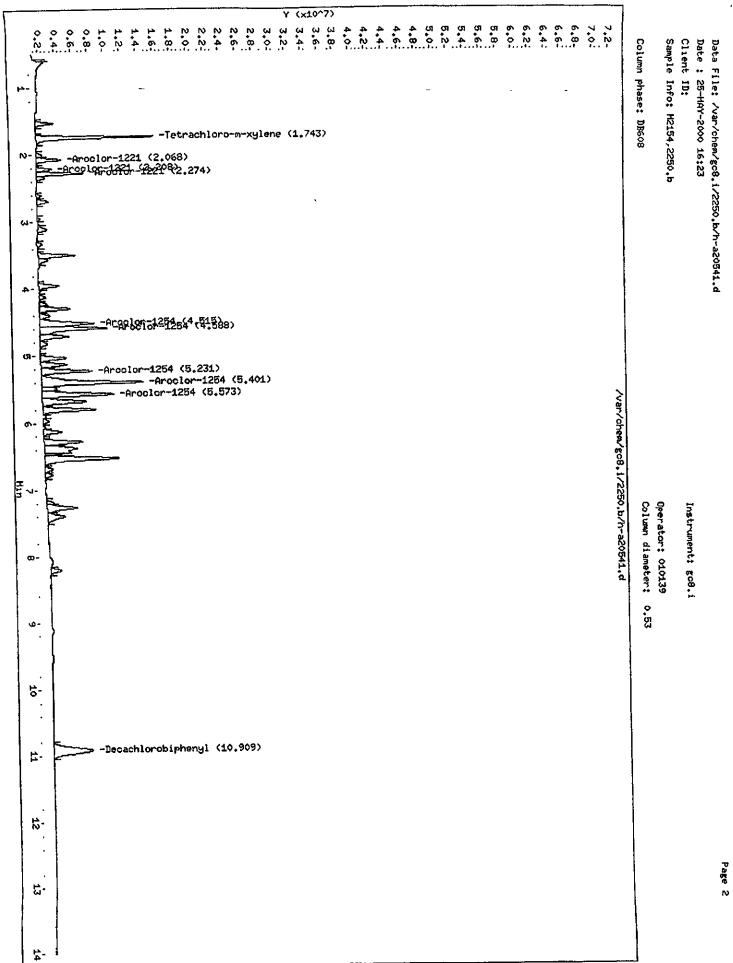
: /var/chem/gc8.i/2250.b/PCBA.m Method

Quant Type: ESTD Meth Date: 01-Jun-2000 10:53 g

Cal Date : 25-MAY-2000 16:23 Cal File: h-a20541.d

Calibration Sample, Level: 3 Als bottle: 2

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 2-2154.sub


Sample Matrix: None Target Version: 3.40

#### AMOUNTS

				CAL-AMT	ON-COL		
RT I	EXP RT	DLT RT	RESPONSE	( ng)	( ng)	TARGET RANGE	RATIO
						22211111111111111111111111111111111111	
8 Aroclor-1221					CAS #	11104-28-2	
2 068	2.068	0.000	3036473	0.50000	0.50000	0.00- 0.00	0.00
2.208	2 208					116.57- 156.57	
2 274	2.274	0.000	5840278	0.50000	0.50000	66.04- 106.04	0.00
		Average of Pe					
\$ 1 Te	trachlo	ro-m-xylene				877-09-8	
1.743	1.747	-0.004	14430961	0.02500	0.025000	0 00- 0.00	0.00
s 34 Decachlorobiphenyl					CAS #. 2051-24-3		
10 909	10.921	-0 012	4887513	0.02500		0.00- 0.00	
33 Aroclor-1254						11097-69-1	
4.515	4.515	0 000				0.00- 0.00	
4.588	4.588	0.000	8303930			92.23- 132.23	
5.231	5.231	0.000				77.40- 117.40	
5.401	5.401					51.09- 91.09	
5.573	5.573	0.000	8923450			65.01- 105.01	0.00
		Average of P			0.5		

#### QC Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20542.d

Report Date: 01-Jun-2000 11:22

Page 1

## STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20542.d

Lab Smp Id: M1232

Inj Date : 25-MAY-2000 16:43

Inst ID: gc8.i

Operator : 010139 Smp Info : M1232,2250.b Misc Info : 190-83-2

Comment

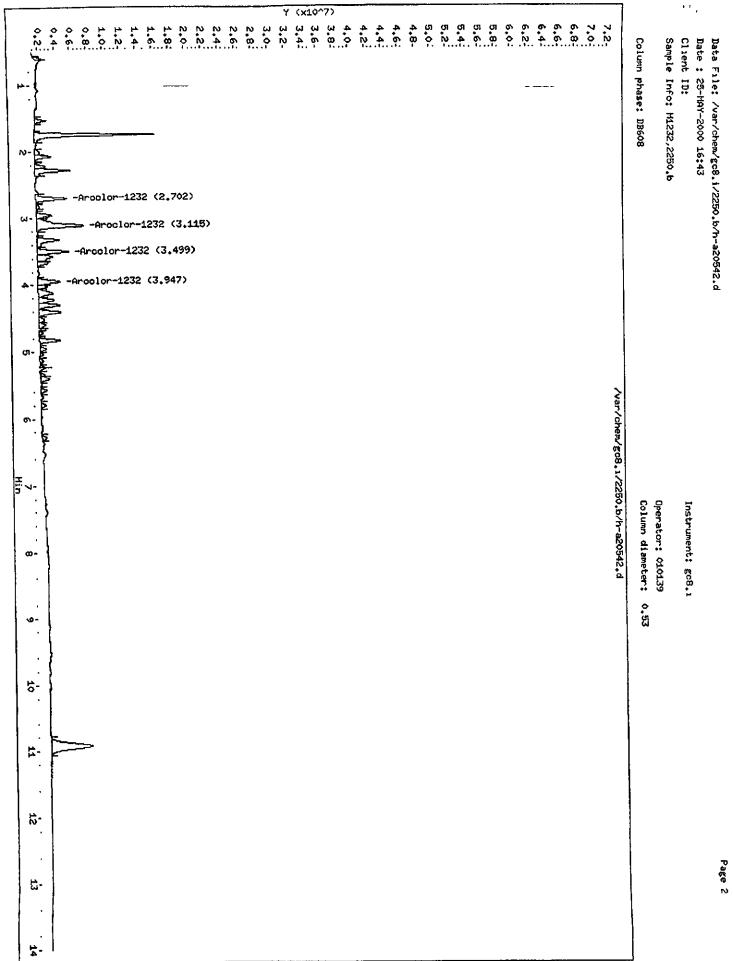
: /var/chem/gc8.i/2250.b/PCBA.m Method

Quant Type: ESTD Meth Date: 01-Jun-2000 10:53 g

Cal Date : 25-MAY-2000 16:43 Cal File: h-a20542.d

Calibration Sample, Level: 3 Als bottle: 3

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 3-1232.sub


Sample Matrix: None Target Version: 3.40

#### AMOUNTS

				CAL-AMT	ON-COL		
RT	EXP RT I	LT RT	RESPONSE	(ng)	( ng)	TARGET RANGE	RATIO
22 435542 7		******	医医性性坏疽 计计	**0****	<b>马马里拉索宾</b> 斯	5 美国 医医毒虫 拉塞 双 平 电	の本本主義
14 Ar	oclor-12	32			CAS #	11141-16-5	
2.702	2.702	0.000	3861519	0.50000	0.50000	0 00- 0.00	0.00(M)
3.115	3.115	0.000	5895441	0.50000	0.50000	146.26- 186.26	0.00
3 499	3.499	0.000	3901208	0 50000	0.50000	65 99- 105 99	0.00
3.947	3.947	0.000	2757561	0.50000	0 50000	74.18- 114.18	0.00
	A	verage of P	eak Amounts	-	0 5		

## QC Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20543.d

Report Date: 01-Jun-2000 11:23

Page 1

# STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20543.d

Lab Smp Id: M1242

Inj Date : 25-MAY-2000 17:02

Inst ID: gc8.i Operator : 010139 Smp Info : M1242,2250.b

Misc Info : 190-83-3

Comment

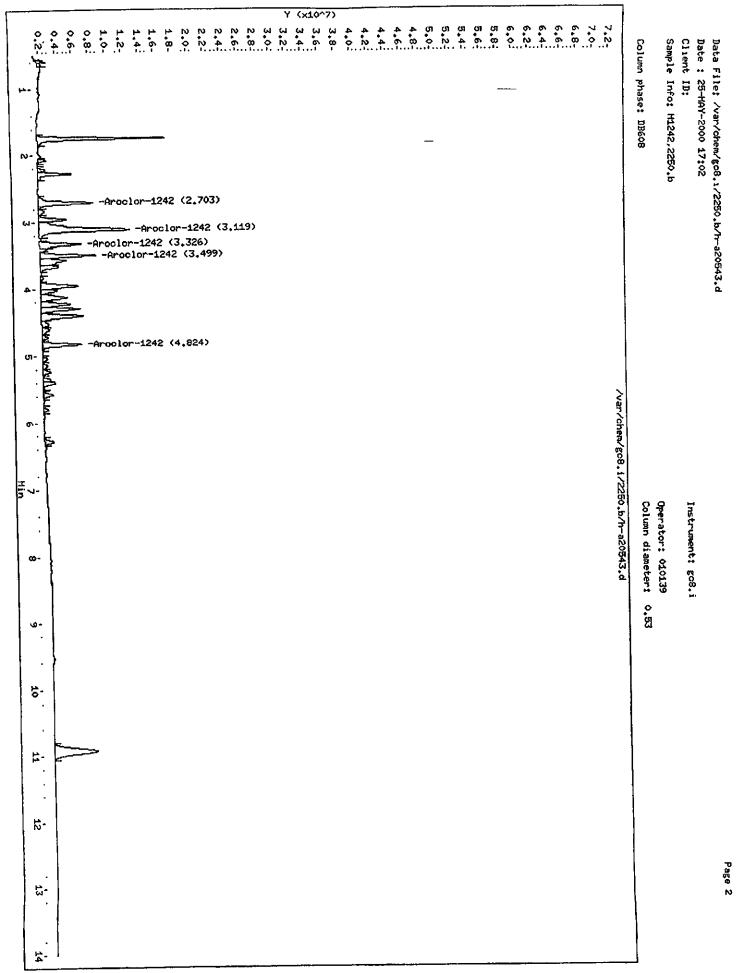
: /var/chem/gc8.i/2250.b/PCBA.m Method

Meth Date : 01-Jun-2000 10:53 g Quant Type: ESTD

Cal Date : 25-MAY-2000 17:02 Cal File: h-a20543.d

Calibration Sample, Level: 3 Als bottle: 4

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 4-1242.sub


Sample Matrix: None Target Version: 3.40

#### AMOUNTS

	EXP RT I	OLT RT	RESPONSE (	-	ON-COL		RANGE	RATIO
15 Ar	oclor-12	42			CAS #:	53469-2	21-9	
2 703	2 703	0.000	6746486 0	50000	0 50000	0.00-	0.00	0.00(M)
3 118	3 118	0.000	11075495 0	50000	0.50000	310.13-	350.13	0.00
3 326	3 326	0.000	5121517 0	50000	0 50000	749.70-	789.70	0.00
3 499	3 499	0.000	6858685 0	.50000	0.50000	512.48-	552.48	0.00
4.824	4.824	0.000	4863406 0	.50000	0.50000	314 30-	354 30	0.00
7.047		•	Peak Amounts =		0 5			

# QC Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20544.d

Report Date: 01-Jun-2000 11:23

Page 1

## STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20544.d

Lab Smp Id: M1248

Ing Date : 25-MAY-2000 17:22

Inst ID: gc8.i Operator : 010139

Smp Info : M1248,2250.b Misc Info : 190-83-4

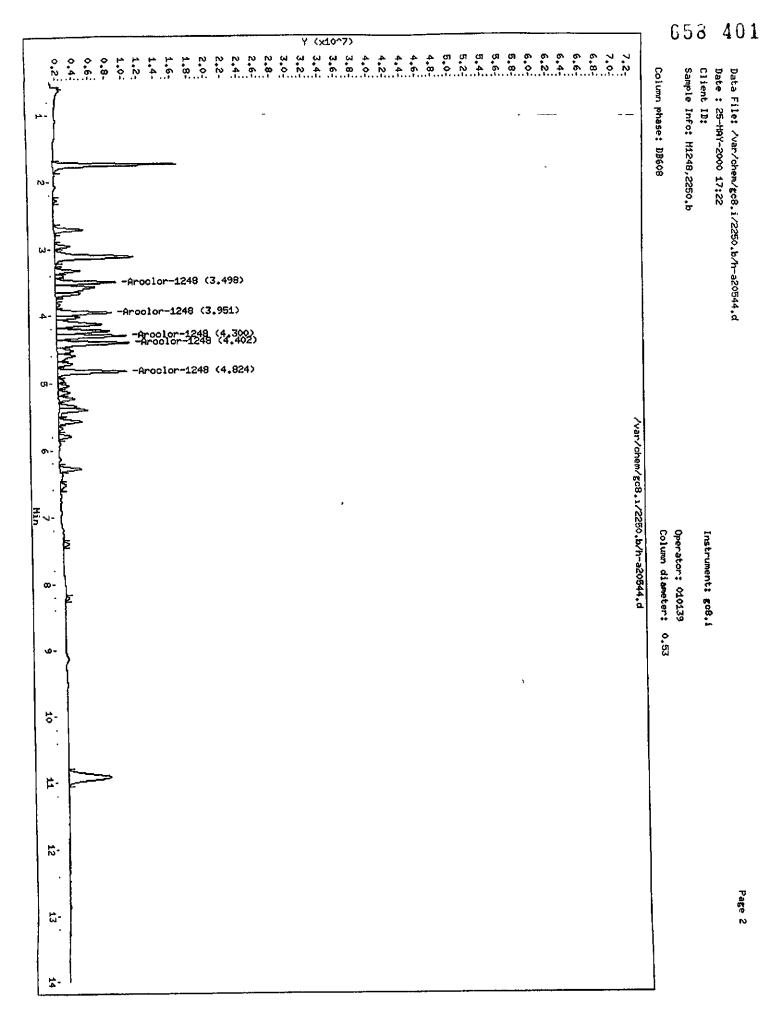
Comment

Method : /var/chem/gc8.i/2250.b/PCBA.m Meth Date : 01-Jun-2000 10:53 g Cal Date : 25-MAY-2000 17:22 Quant Type: ESTD Cal File: h-a20544.d

Calibration Sample, Level: 3 Als bottle: 5

Dil Factor: 1.00000

Compound Sublist: 5-1248.sub Integrator: Falcon


Sample Matrix: None Target Version: 3.40

#### AMOUNTS

				CAL-AMT	ON-COL		
RT I	EXP RT I	LT RT	RESPONSE	(ng)	( ng)	TARGET RANGE	RATIO
== (			******	42====	******		<b>44</b> 888
21 Ar	oclor-124	18			CAS #	12672-29-6	
3.498	3 498	0 000	7370623	0.50000	0.50000	0.00- 0 00	0.00(M)
3.951	3.951	0 000	6778151	0.50000	0.50000	114.57- 154.57	0.00
4 300	4 300	0 000	8469844	0.50000	0.50000	63.67- 103.67	0.00
4.402	4.402	0.000	8816996	0.50000	0.50000	43.86- 83.86	0.00
4.824	4 824	0 000	8446026	0.50000	0.50000	128.08- 168.08	0.00
****	A	verage of	Peak Amounts	-	0.5		

# QC Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20545.d Page 1

Report Date: 01-Jun-2000 11:23

## STL-PITTSBURGH

Data file: /var/chem/gc8.i/2250.b/h-a20545.d

Lab Smp Id: L1660

Inj Date : 25-MAY-2000 17:42

Operator: 010139 Inst ID: gc8.i

Operator : 010139 Smp Info : L1660,2250.b

Misc Info : 190-83-5

Comment

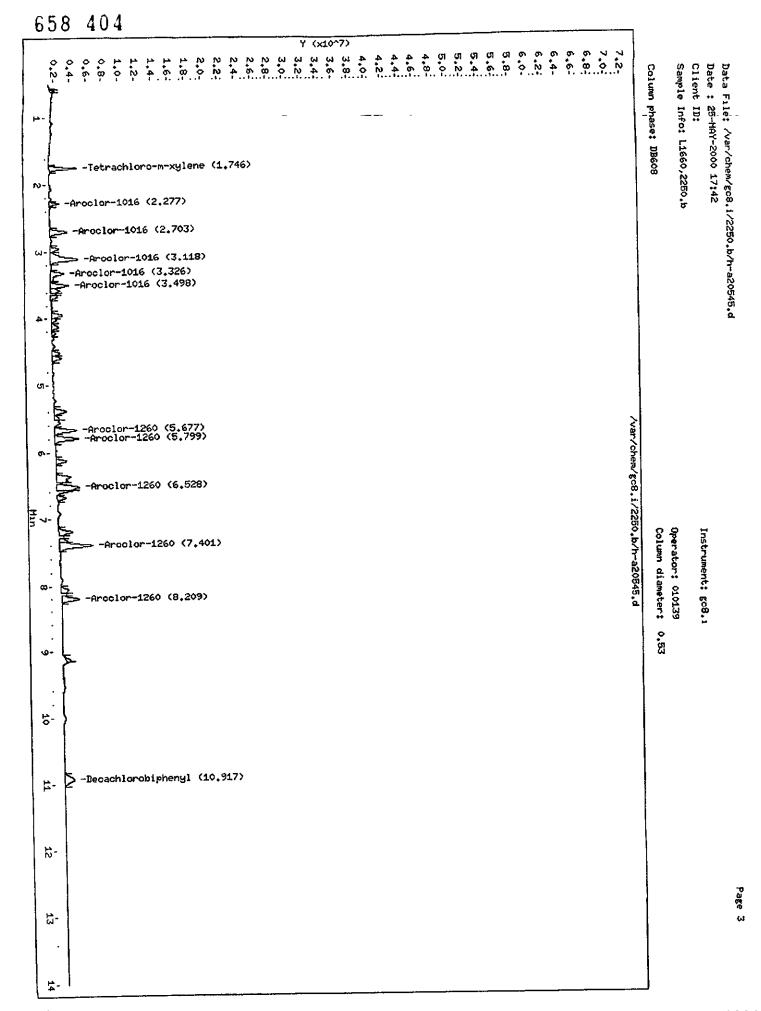
Method : /var/chem/gc8.i/2250.b/PCBA.m

Meth Date: 01-Jun-2000 10:53 g Quant Type: ESTD Cal Date: 25-MAY-2000 17:42 Cal File: h-a20545.d

Cal Date : 25-MAY-2000 17:42 Cal File: h-a20545.d Calibration Sample, Level: 1

Dil Factor: 1.00000
Integrator: Falcon
Compound Sublist: 1-1660.sub

Integrator: Falcon Compound Sublist: 1-16
Target Version: 3.40 Sample Matrix: None


#### AMOUNTS

				14.0-1.			
				CAL-AMT			
RT E	EXP RT I	OLT RT	RESPONSE	( ng)	( ng)	TARGET RANG	E RATIO
== =	*******	5. 2. 2. 章 章 章 格		******	22220P	474444 <b>88</b> 4	15 SK##E
20 Arc	clor-10	16			CAS # ·	12674-11-2	
2 277	2 277	0 000	1225730	0.10000	0 10000	0.00- 0.0	0.00(M)
2.703	2.704	-0.001	2161541	0 10000	0 10000	80.00- 120.0	0.00
3,118	3.119	-0.001	3418934	0.10000	0.10000	416 04- 456.0	0.00
		-0 001	1616397	0 10000	0.10000	203.51- 243.5	0.00
3 498	3 499	-0.001	2213386	0.10000	0.10000	297.56- 337.5	56 0 00
		verage of Pea					
+	<del></del>						
s 1 Te	trachlor	o-m-xylene				877-09-8	
1 746	1.747	-0.001	3325559	0 00500	0 005353	6 0.00-	0.00 0.00
					<del>-</del>		
\$ 34 De	cachloro	biphenyl				2051-24-3	
10.917	10 921	-0.004	1194118	0.00500	0.005498	7 0.00-	0.00 0.00(M)
	oclor-12					11096-82-5	
5.677	5.681	-0.004	2737609	0 10000	0.10000	0 00- 0	00 0 00(M)
		0.001				95.86- 135.	
		0.002				116.91- 156.	91 0.00
7.401	7.401	0.000	4156833	3 0.10000	0 10000	120.00- 160.	00 0.00
	8.210		212351	6 0.10000	0.10000	108 33- 148.	33 0.00
	1	Average of Pea	ak Amounts		0.1		
				<b></b> -	<b></b>		

Data File: /var/chem/gc8.i/2250.b/h-a20545.d Report Date: 01-Jun-2000 11:23

QC Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20546.d

Report Date: 01-Jun-2000 11:23

Page 1

## STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20546.d

Lab Smp Id: ML1660

Inj Date : 25-MAY-2000 18:02

Inst ID: gc8.i

Operator : 010139 Smp Info : ML1660,2250.b

Misc Info : 190-83-6

Comment

: /var/chem/gc8.i/2250.b/PCBA.m Method

Quant Type: ESTD Meth Date : 01-Jun-2000 10:53 g Cal Date : 25-MAY-2000 18:02 Cal File: h-a20546.d

Calibration Sample, Level: 2

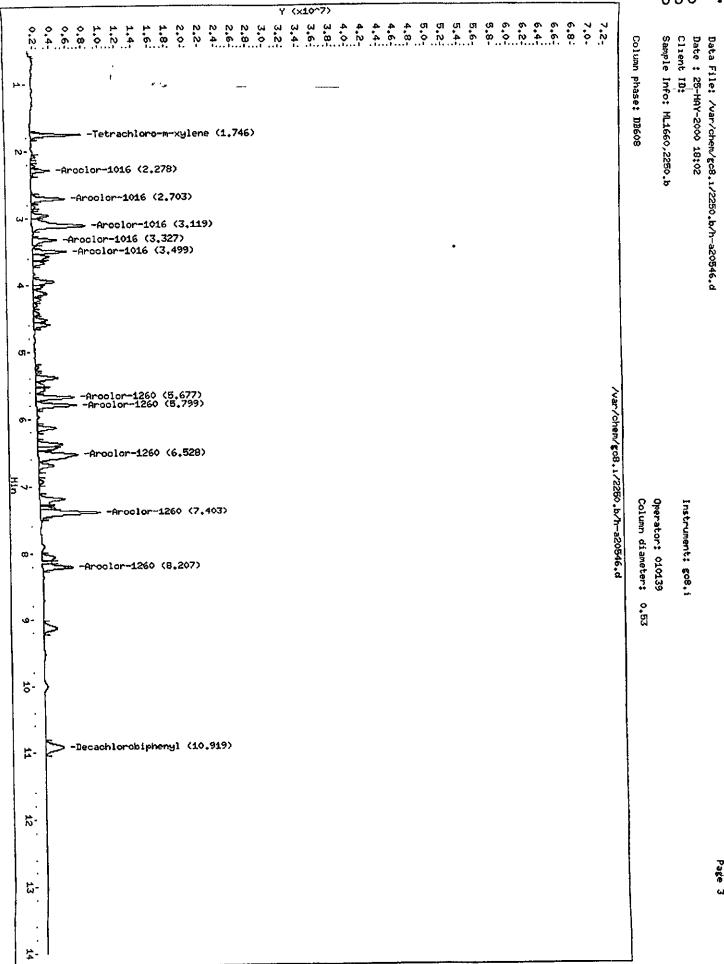
Als bottle: 7 Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: 1-1660.sub

Target Version: 3.40

Sample Matrix: None

## AMOUNTS


				CAL-AMT	ON-COL		
RT I	EXP RT I	LT RT	RESPONSE	( ng)	( ng)	TARGET RANGE	RATIO
					*****	*****	
	oclor-10					12674-11-2	
						0.00- 0.00	
2 703	2.704	-0.001	4068750	0.20000	0 19394	80.00- 120 00	0.00
3.119	3.119	0.000	6579240	0 20000	0 19614	416.04- 456.04	0.00
3 327	3 327	0.000	3056469	0.20000	0.19439	203.51- 243.51	0.00
3 499	3.499	0.000	4166386	0.20000	0.19394	297.56- 337.56	0.00
		verage of Pea					
		o-m-xylene				877-09-8	
						0.00- 0.00	
		biphenyl				2051-24-3	
•		• -	2208564		**	0.00- 0.00	0.00
	oclor-12					: 11096-82-5	
• • • • • • • • • • • • • • • • • • • •			4723376	0.20000	0 18526	0.00- 0.00	0.00(M)
		0.001				95.86- 135.86	
-						116.91- 156.91	
						120.00- 160.00	
8.207						108.33- 148.33	0.00
	A	verage of Pe	ak amounts	•	0 18636		

Data File: /var/chem/gc8.i/2250.b/h-a20546.d Report Date: 01-Jun-2000 11:23

Page 2

QC-Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20547.d

Report Date: 01-Jun-2000 11:23

Page 1

## STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20547.d

Lab Smp Id: M1660

Inj Date : 25-MAY-2000 18:22

Inst ID: gc8.i Operator : 010139 Smp Info : M1660,2250.b

Misc Info: 190-83-7

Comment

: /var/chem/gc8.i/2250.b/PCBA.m Method

Meth Date : 01-Jun-2000 10:53 g Quant Type: ESTD Cal File: h-a20547.d

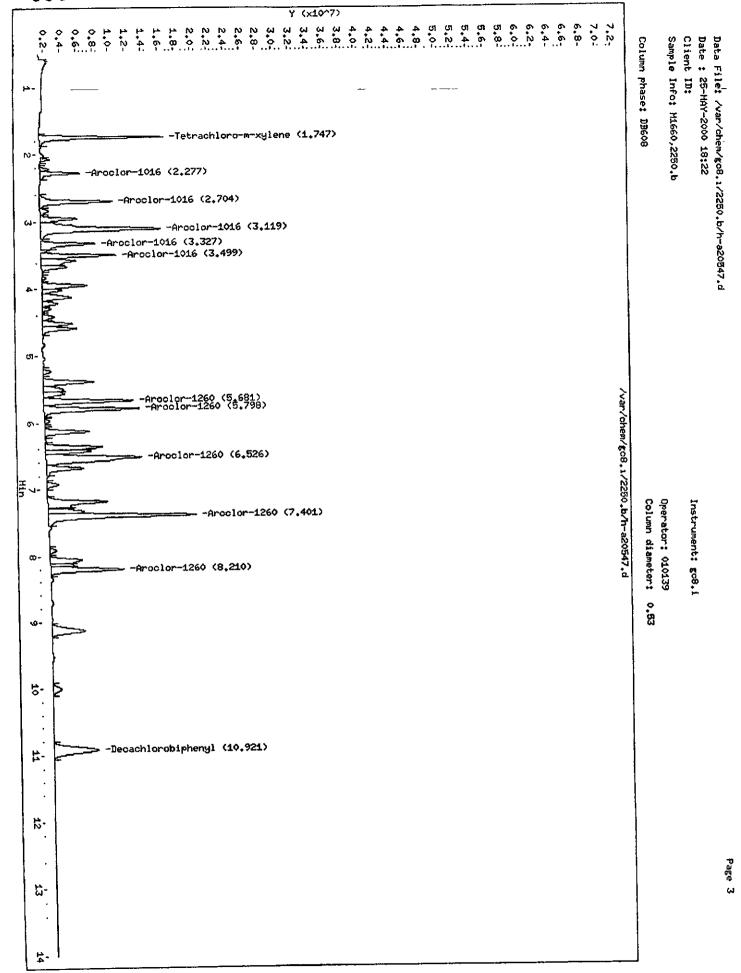
Cal Date : 25-MAY-2000 18:22 Calibration Sample, Level: 3

Als bottle: 8

Dil Factor: 1.00000 Compound Sublist: 1-1660.sub Integrator: Falcon

Sample Matrix: None Target Version: 3.40

#### AMOUNTS


			1			
			•	ON-COL		
RT E	XP RT I	OLT RT	RESPONSE ( ng)	( ng)	TARGET RANGE	RATIO
z= *		*****	化二氢苯酚 化三氯甲基苯基二甲		A 착용을 받는 보고 국가고 다고 다	****
20 Arc	clor-10	16			12674-11-2	
2 277	2 277	0.000	4840819 0.50000			0.00(M)
=	2.704	0.000	8801983 0.50000	0 44333	80.00- 120.00	0.00
	3 119		14627767 0.50000	0.45550	416.04- 456.04	0.00
3 327	3 327	0.000	6565172 0.50000	0.44183	203 51- 243 51	0.00
	3.499		9048532 0 50000	0.44455	297.56- 337.56	0.00
_	A	verage of P	eak Amounts =	0.44422		
s 1 Tel	trachlor	o-m-xylene		CAS #:	877-09-8	
1.747	1.747	0.000	15142823 0 02500	0.024003	0.00- 0.00	0.00
\$ 34 De	cachloro	biphenyl		CAS #:	2051-24-3	
10 921	10.921	0.000	5351069 0.02500	0 023828	0 00- 0.00	0.00
	oclor-12				11096-82-5	
	5.681		10812493 0.50000	0.44669	0.00- 0.00	0.00(M)
	5.798	0 000	11603166 0.50000	0.45321	95.86- 135.86	0.00
	6 526		11713999 0.50000	0.45984	116.91- 156.91	0.00
7,401	7.401	0.000	17972495 0.50000	0.47074	120 00- 160.00	0.00
8 210		0 000	8975590 0.50000	0.46424	108.33- 148.33	0.00
•	1	Average of I	Peak Amounts =	0 45894		

Data File: /var/chem/gc8.i/2250.b/h-a20547.d Report Date: 01-Jun-2000 11:23

658 409 Page 2

QC Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20548.d

Report Date: 01-Jun-2000 11:23

Page 1

# STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20548.d

Lab Smp Id: MH1660

Inj Date : 25-MAY-2000 18:41

Inst ID: gc8.i

Operator : 010139 Smp Info : MH1660,2250.b Misc Info : 190-83-8

Comment

: /var/chem/gc8.i/2250.b/PCBA.m Method

Meth Date: 01-Jun-2000 10:53 g Quant Type: ESTD Cal Date : 25-MAY-2000 18:41 Cal File: h-a20548.d

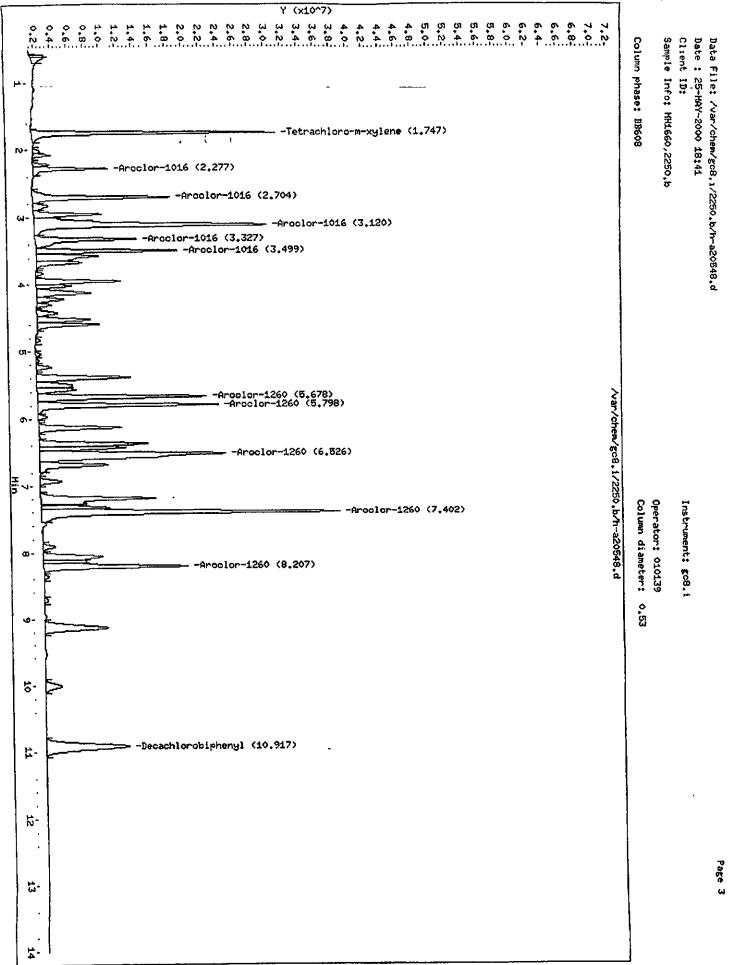
Calibration Sample, Level: 4 Als bottle: 9

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 1-1660.sub

Sample Matrix: None Target Version: 3.40

#### AMOUNTS

		CYT-YWL	OM COD		
RT EXP RT DLT RT	ESPONSE	( ng)	( ng)	TARGET RANGE	RATIO
es medés commede a					
20 Aroclor-1016			CAS #	12674-11-2	
	9104277	1.00000	0.85848	0.00- 0.00	0.00
2 704 2 704 0 000					
				416.04- 456.04	
3,327 3 327 0.000					
3,499 3,499 0.000					
Average of Peak A	Amounts	-	0.88252		
\$ 1 Tetrachloro-m-xylene				877-09-8	
1 747 1.747 0 000					
\$ 34 Decachlorobiphenyl				2051-24-3	
10.917 10 921 -0 004					
36 Aroclor-1260			CAS #	: 11096-82-5	
5.678 5.681 -0.003	20720283	1 00000	0.88796	0.00- 0.00	0.00(M)
5.798 5 798 0.000	22201560	1.00000	0 89695	95.86- 135 86	0.00
6.526 6.526 0.000	22869001	1.00000	0.92129	116.91- 156.91	0.00
7.402 7 401 0.001					
8 207 8 210 -0.003					
Average of Peak	Amounts	-	0.9235		


658 412

Data File: /var/chem/gc8.i/2250.b/h-a20548.d Report Date: 01-Jun-2000 11:23

Page 2

QC Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20549.d

Report Date: 01-Jun-2000 11:23

Page 1

## STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20549.d

Lab Smp Id: H1660

Inj Date : 25-MAY-2000 19:01

Inst ID: gc8.i Operator : 010139

Smp Info : H1660,2250.b Misc Info : 190-83-9

Comment

Method : /var/chem/gc8.i/2250.b/PCBA.m Meth Date : 01-Jun-2000 10:53 g Cal Date : 25-MAY-2000 19:01 Quant Type: ESTD Cal File: h-a20549.d

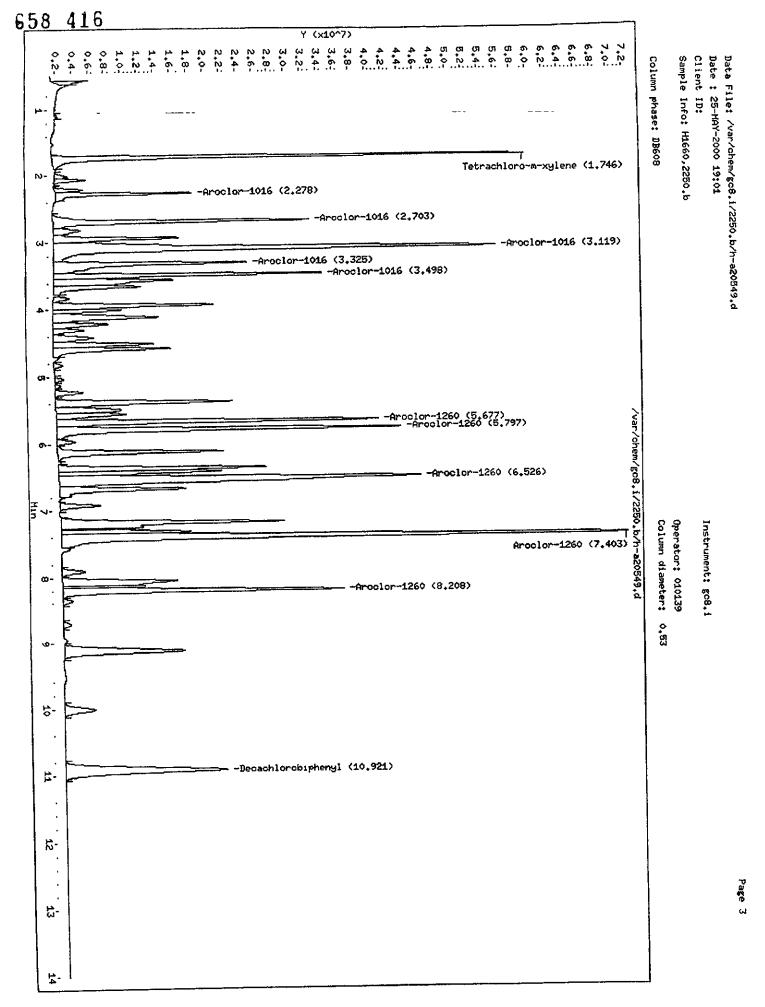
Calibration Sample, Level: 5

Als bottle: 10

Dil Factor: 1.00000 Compound Sublist: 1-1660.sub Integrator: Falcon

Sample Matrix: None Target Version: 3.40

#### AMOUNTS


		CAL-AMT	ON-COL		
RT EXP RT DLT RT	RESPONSE	( ng)	( ng)	TARGET RANGE	RATIO
*** **********************************				<b>四世</b>	
20 Aroclor-1016			CAS #:	12674-11-2	
2.278 2 277 0.001	16569348	2.00000	1 6339	0 00- 0.00	0.00(M)
	31226638	2.00000	1.6968	80.00- 120.00	0.00
	54243605	2.00000	1.7855	416 04- 456 04	0.00
3.325 3.327 -0.002	23552412	2.00000	1.7103	203.51- 243.51	0.00
3.498 3 499 -0.001	32826426	2.00000	1.7311	297.56- 337.56	0.00
Average of Peak	Amounts	=	1.7115		
s 1 Tetrachloro-m-xylene			CAS #:	877-09-8	
1 746 1 747 -0.001	57933984	0.10000	0 094491	0.00- 0.00	0.00
s 34 Decachlorobiphenyl			CAS #:	2051-24-3	
10 921 10 921 0.000	19573895	0.10000	0.091237	7 0.00- 0.00	0.00
36 Aroclor-1260				: 11096-82-5	
5 677 5.681 -0 004	39475295	2.00000	1.7455	0.00- 0.00	0.00(M)
5.797 5.798 -0.001	42129173	2.00000	1.7543	95.86- 135 86	0 00
6.526 6 526 0 000	44295071	2 00000	1 8238	116 91- 156.91	0.00
7 403 7 401 0 002	70288749	2.00000	1.8858	120.00- 160.00	0.00
8 208 8 210 -0 002	34465168	2.00000	1.8514	108.33- 148.33	0.00
Average of Peal	: Amounts			~~~~~~~~~	

Data File: /var/chem/gc8.i/2250.b/h-a20549.d Report Date: 01-Jun-2000 11:23

Page 2

QC Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20550.d

Report Date: 01-Jun-2000 11:23

Page 1

## STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20550.d

Lab Smp Id: 2M2154

Inj Date : 25-MAY-2000 19:21

Inst ID: gc8.i

Operator : 010139 Smp Info : 2M2154,2250.b Misc Info : 190-66-13

Comment

: /var/chem/gc8.i/2250.b/PCBA.m Method

Meth Date: 01-Jun-2000 10:53 g Quant Type: ESTD Cal Date : 25-MAY-2000 19:01 Cal File: h-a20549.d

Continuing Calibration Sample Als bottle: 11

Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: 2154.sub

Sample Matrix: None Target Version: 3.40

#### AMOUNTS

				CAL-AMT	ON-COL		
RT	EXP RT I	OLT RT	RESPONSE	(ng)	( ng)	TARGET RANGE	RATIO
*=	*****		22664076	******	20022EE		<b>库里里</b> 2万
8 A	roclor-122	21			CAS #:	11104-28-2	
2 071	2.068	0.003	3343838	0.50000	0.55061	0.00- 0.00	0.00
2 211	2.208	0 003	2193730	0.50000	0.57123	116 57- 156.57	0.00
						66 04- 106.04	
			eak Amounts				
		o-m-xylene				877-09-8	
						6 0.00- 0.0	
	ecachloro					2051-24-3	
	d Not Det						
	roclor-12					11097-69-1	
4 520	4.515	0 005	7636747	0.50000	0.56471	0.00- 0.00	0.00(M)
4 592	4 588	0.005	9471249	0 50000	0 57029	92.23- 132.23	0.00
5.234	5.231	0 003	7166386	0.50000	0.56633	77.40- 117.40	0.00
5 404	5.401	0.003	14218841	0.50000	0.56542	51.09- 91.09	0.00
5 578	5 5 5 7 3	0.005	10553659	0 50000	0.59134	65.01- 105.01	0 00
	P	verage of 1	Peak Amounts		0.57162		

## QC Flag Legend

M - Compound response manually integrated.

Data File: /var/chem/gc8.i/2250.b/h-a20551.d

Report Date: 01-Jun-2000 11:23

Page 1

## STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20551.d Lab Smp Id: 2M1232

Inj Date : 25-MAY-2000 19:41

Inst ID: gc8.i Operator : 010139

Smp Info : 2M1232,2250.b Misc Info : 190-66-14

Comment

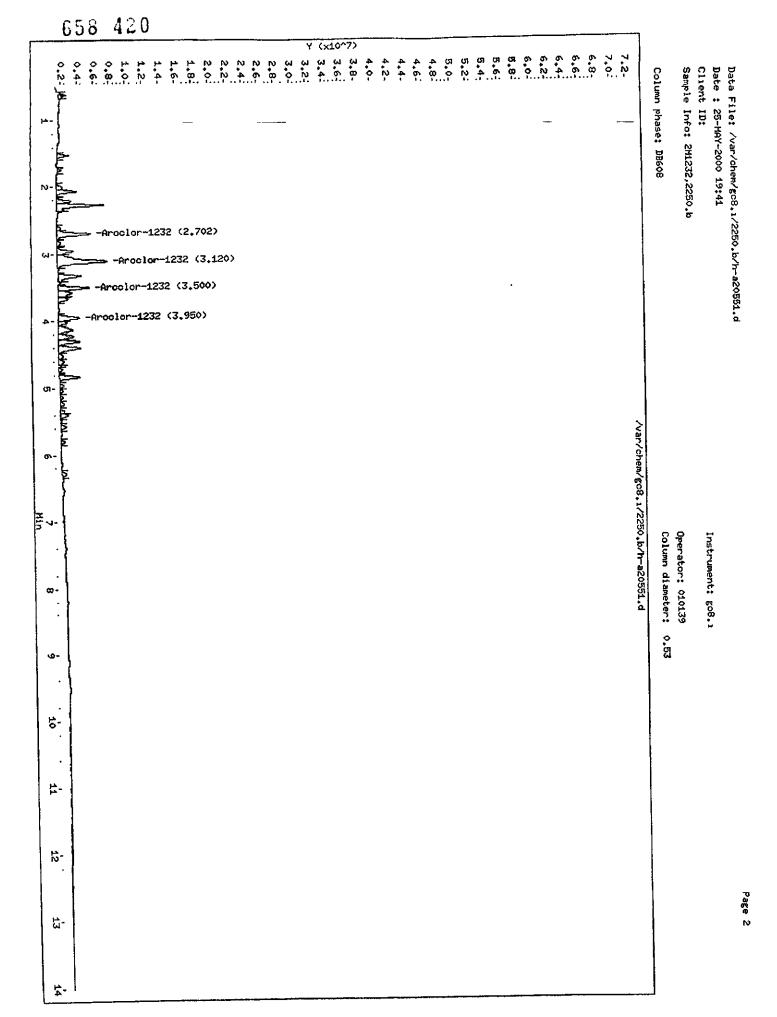
Method : /var/chem/gc8.i/2250.b/PCBA.m

Meth Date : 01-Jun-2000 10:53 g Quant Type: ESTD

Cal File: h-a20549.d Cal Date : 25-MAY-2000 19:01

Continuing Calibration Sample Als bottle: 12

Dil Factor: 1.00000 Compound Sublist: 1232.sub


Integrator: Falcon Target Version: 3.40 Sample Matrix: None

#### AMOUNTS

CAL-AMT ON-COL  RT EXP RT DLT RT RESPONSE ( ng) ( ng) TARGET RANGE	
14 Aroclor-1232 CAS #: 11141-16-5	
2.702 2.702 0.000 4113275 0.50000 0.53260 0.00- 0.00	0.00(M)
3.120 3 115 0 005 6049055 0.50000 0.51303 146.26- 186.26	0.00
3.500 3.499 0.001 3862488 0 50000 0.49504 65.99- 105.99	0 00
3 950 3 947 0.003 2592477 0 50000 0.47007 74.18- 114.18	0.00
Average of Peak Amounts = 0.50268	

## QC Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20552.d

Report Date: 01-Jun-2000 11:23

Page 1

STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20552.d 1-

Lab Smp Id: 2M1242

Inj Date : 25-MAY-2000 20:00

Operator : 010139 Inst ID: gc8.i

Smp Info : 2M1242,2250.b

Misc Info: 190-67-1

Comment

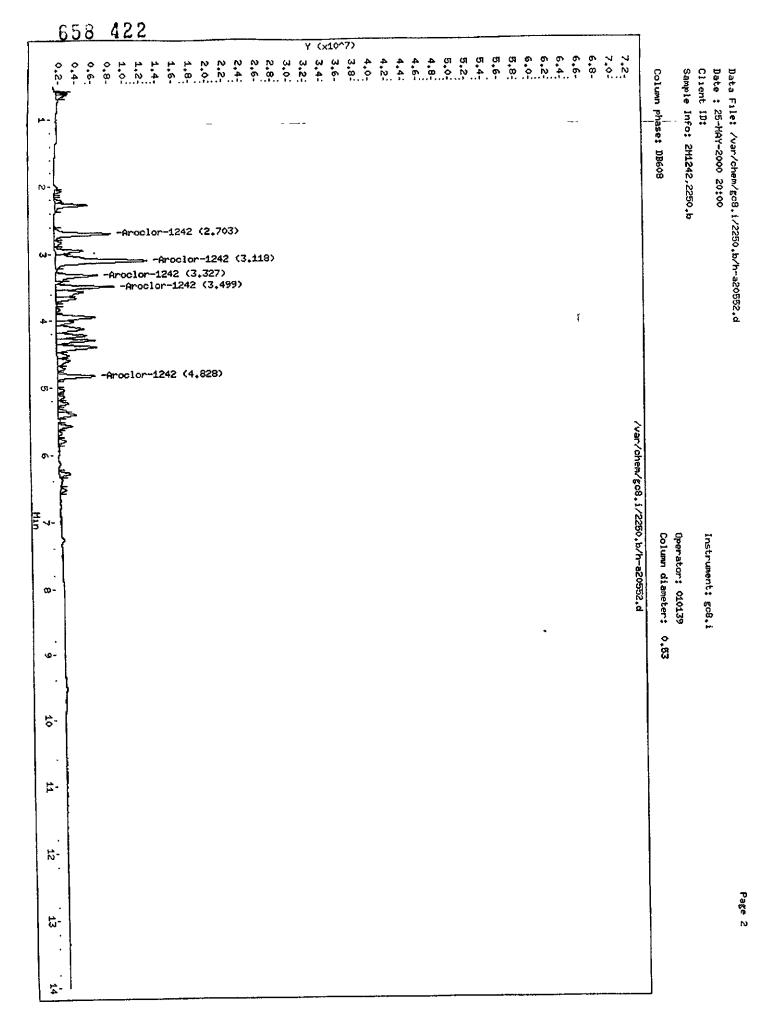
: /var/chem/gc8.i/2250.b/PCBA.m Method

Meth Date : 01-Jun-2000 10:53 g Cal Date : 25-MAY-2000 19:01 Als bottle: 13 Quant Type: ESTD Cal File: h-a20549.d

Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 1242.sub


Target Version: 3.40 Sample Matrix: None

#### AMOUNTS

				CAL-AMT ON-COL				
RT I	EXP RT [	LT RT	response	( ng)	( ng)	TARGET	RANGE	RATIO
•• •		******	计算机可靠机		*******	0,9,4,8,2		*****
15 Arc	oclor-12	12			CAS #	53469-2	1-9	
2 703	2 703	0.000	6933444	0.50000	0.51386	0 00-	0.00	0 00(M)
3.118	3 118	0.000	11297487	0.50000	0.51002	310.13-	350.13	0.00
3.327	3 326	0.001	5262139	0.50000	0.51373	749.70-	789.70	0.00
3 499	3.499	0.000	7186072	0.50000	0.52387	512.48-	552.48	0.00
4.828	4.824	0.004	4631196	0.50000	0 47613	314 30-	354.30	0.00
	A	verage of P	Peak Amounts	-	0.50752			

## QC Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20553.d

Report Date: 01-Jun-2000 11:23

Page 1

## STL-PITTSBURGH

Data file: /var/chem/gc8.i/2250.b/h-a20553.d Lab Smp Id: 2M1248

Inj Date : 25-MAY-2000 20:20

Inst ID: gc8.i

Operator : 010139 Smp Info : 2M1248,2250.b Misc Info : 190-67-2

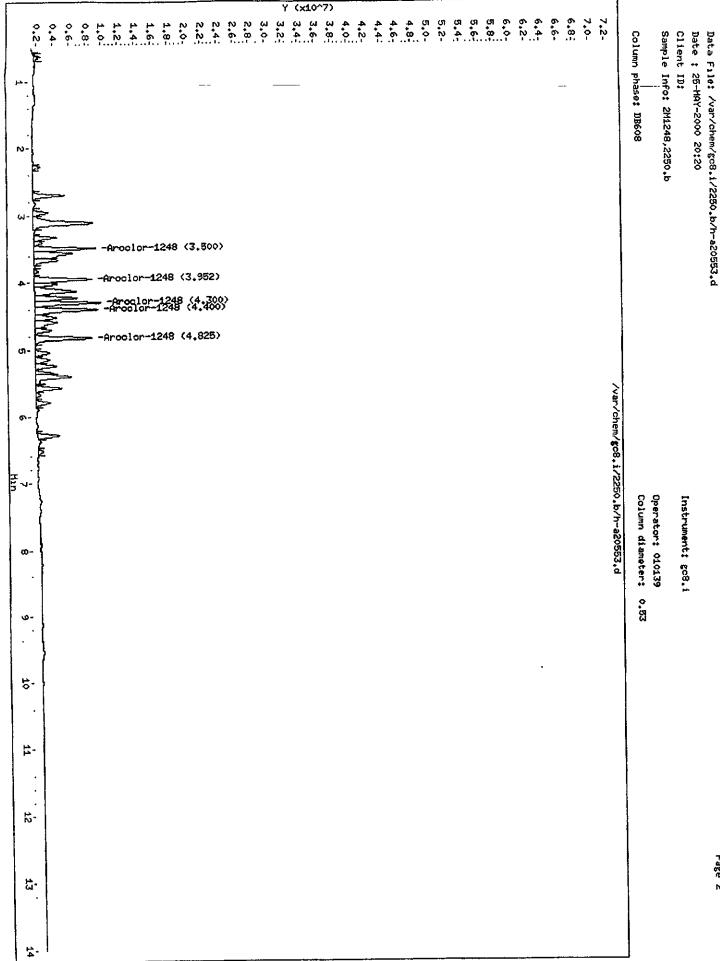
Comment

: /var/chem/gc8.i/2250.b/PCBA.m Method

Meth Date : 01-Jun-2000 10:53 g Quant Type: ESTD Cal Date : 25-MAY-2000 19:01 Cal File: h-a20549.d

Continuing Calibration Sample Als bottle: 14

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 1248.sub


Sample Matrix: None Target Version: 3.40

#### AMOUNTS

				CAL-AMT	ON-COL			
RT	EXP RT I	OLT RT	RESPONSE	( ng)	( ng)	TARGET	range	RATIO
==	*****	22255	2042422	******	*******	******	weess	*****
21 A:	coclor-12	48			CAS #	12672-2	9-6	
3.500	3.498	0.002	7563992	0 50000	0 51312	0.00-	0.00	0.00(M)
3.952	3.951	0 001	7009133	0.50000	0.51704	114.57-	154.57	0.00
4 300	4 300	0 000	8123951	0.50000	0.47958	63.67-	103.67	0 00
4 400	4 402	-0 002	7755518	0.50000	0.43980	43.86-	83.86	0.00
4 825	4 824	0 001	7016013	0.50000	0.41534	128.08-	168.08	0.00
	А	verage of	Peak Amounts	-	0.47298			

## QC Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20554.d

Report Date: 01-Jun-2000 11:23 

Page 1

## STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20554.d Lab Smp Id: 2M1660

Inj Date : 25-MAY-2000 20:40

Inst ID: gc8.i Operator : 010139

Smp Info : 2M1660,2250.b

Misc Info: 190-67-4

Comment :

Method : /var/chem/gc8.i/2250.b/PCBA.m

Meth Date : 01-Jun-2000 10:53 g Quant Type: ESTD

Cal Date : 25-MAY-2000 19:01 Cal File: h-a20549.d Continuing Calibration Sample

Als bottle: 15

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 1660.sub

Sample Matrix: None Target Version: 3.40

#### **AMOUNTS**

				CAL-AMT	ON-COL		
RT I	EXP RT	DLT RT	RESPONSE	( ng)	( ng)	TARGET RANGE	RATIO
== 1				*****	2237744	2222222222	D 2 E 2 E
20 Arc	oclor-10	)16			CAS #	12674-11-2	
2.277	2.277	0 000	5250672	0.50000	0 51777	0 00- 0 00	0.00(M)
2 703	2.704	-0.001	8882861	0.50000	0.48268	80.00- 120.00	0.00
3 117	3.119	-0.002	14506996	0.50000	0 47751	416 04- 456.04	0.00
3.327	3.327	0.000	6612821	0.50000	0.48019	203.51- 243.51	0.00
3.498	3 499	-0.001	8900403	0.50000	0.46935	297 56- 337.56	0.00
	į	Average of 1	Peak Amounts	-	0.4855		

#### CAS #. 877-09-8 \$ 1 Tetrachloro-m-xylene

# Compound Not Detected

## \$ 34 Decachlorobiphenyl

## Compound Not Detected

36 Arc	clor-12	60			CAS #:	11096-	32-5	
5 676	5.681	-0.005	10928036	0 50000	0.47880	0.00-	0.00	0.00(M)
5 796	5 798	-0 002	11609599	0.50000	0.48344	95.86-	135.86	0.00
6 528	6.526	0.002	10661586	0.50000	0.43897	116.91-	156.91	0 00
7.402	7.401	0.001	21145709	0.50000	0.56732	120.00-	160.00	0.00
8.210	8.210	0.000	10039898	0.50000	0.53934	108 33-	148.33	0.00
		verage of P	eak Amounts		0.50157			

STL Pittsburgh 4050

CAS #. 2051-24-3

Data File: /var/chem/gc8.i/2250.b/h-a20554.d Report Date: 01-Jun-2000 11:23 Page 2

QC Flag Legend

M - Compound response manually integrated.



Data File: /var/chem/gc8.i/2250.b/h-a20638.d

Report Date: 31-May-2000 10:13

# STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20638.d

Lab Smp Id: M2154

Inj Date : 30-MAY-2000 09:29

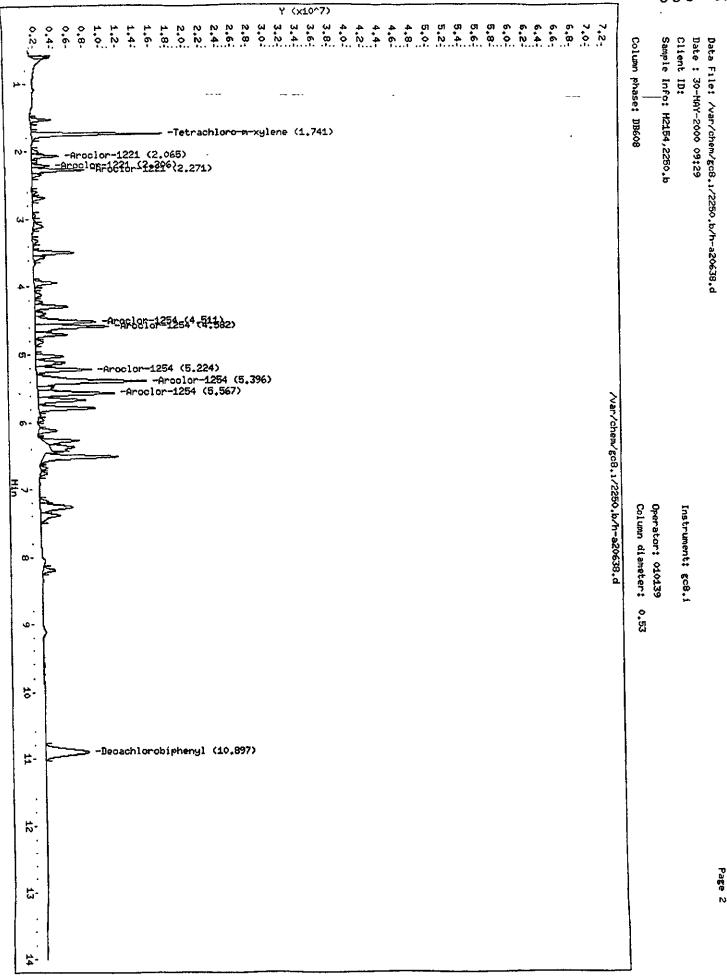
Inst ID: gc8.i Operator : 010139

Smp Info : M2154,2250.b Misc Info : 190-83-1

Comment

Method : /var/chem/gc8.i/2250.b/PCBA.m Meth Date : 31-May-2000 10:06 g Cal Date : 25-MAY-2000 19:01 Quant Type: ESTD Cal File: h-a20549.d

Continuing Calibration Sample


Als bottle: 3

Dil Factor: 1.00000

Compound Sublist: 2-2154.sub Integrator: Falcon

Sample Matrix: None Target Version: 3.40

		amounts					
				CAL-AMT	ON-COL		
RT E	XP RT	DUT RT	RESPONSE	( ng)	( ng)	TARGET RANGE	RATIO
** ** **		222472E		****	-42222	**********	*****
						20 2	
8 Arc	clor-12	21				11104-28-2	0.00
2.065	2.068	-0.003	3334355	0.50000	0.54905	0.00- 0.00	0.00
2.206	2.208	-0.002	2129640	0.50000	0.55454	116.57- 156.57	0.00
		-0 003	6426300	0.50000	0.55017	66.04- 106.04	0.00
2.2/1	,	verage of	Peak Amounts		0.55126	10.2	
						: 877-09-8	
\$ 1 Te	trachlo:	ro-m-xylene	3				0.00
1.741	1 747	-0.006	15837790	0.02500	0.02583	2 0.00- 0.00	
		obiphenyl				: 2051-24-3	
10.897	10.921	-0.024	5293885	0.02500	0.02467	6 0.00- 0.00	0.00
						: 11097-69-1	
33 Ar	oclor-1	254					0.00
4.511	4.515	-0.004				0.00- 0.00	0.00
4.582	4 588	-0 006		7 0.50000		92.23- 132.23	
5 224	5.231	-0.007	686170			77.40- 117.40	
		-0 005	1340669	4 0.50000	0.53312	2 51.09- 91.09	0.00
		-0.006	939405	4 0.50000	0.52637	65.01- 105.01	0.00
2 20.			Peak Amounts	: <b>=</b>	0.5404	1	
					A		



Page 1

Data File: /var/chem/gc8.i/2250.b/h-a20639.d

Report Date: 31-May-2000 10:13

# STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20639.d

Lab Smp Id: M1232

Inj Date : 30-MAY-2000 09:48

Operator : 010139 Smp Info : M1232,2250.b Misc Info: 190-83-2

Comment

: /var/chem/gc8.i/2250.b/PCBA.m

Method Meth Date : 31-May-2000 10:06 g

Cal Date : 25-MAY-2000 19:01

Als bottle: 4

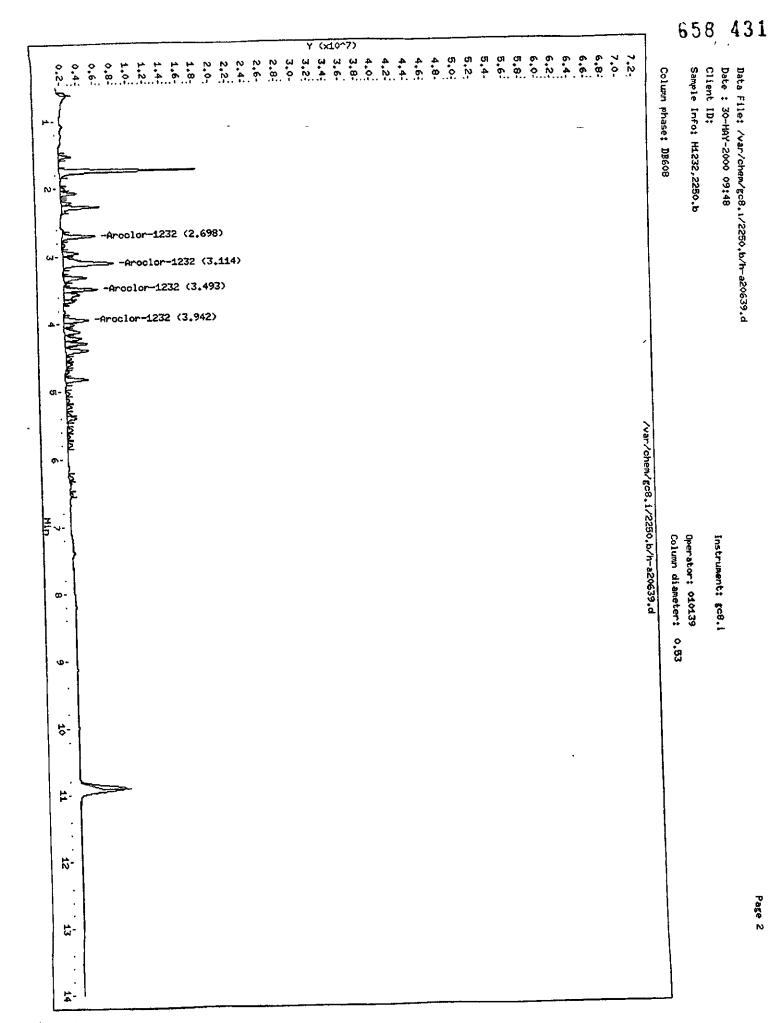
Dil Factor: 1.00000

Integrator: Falcon

Target Version: 3.40

Inst ID: gc8.i

Quant Type: ESTD


Cal File: h-a20549.d Continuing Calibration Sample

Compound Sublist: 3-1232.sub

Sample Matrix: None

#### AMOUNTS

•		DLT RT	RESPONSE	CAL-AMT	ON-COL	TARGET		RATIO
14 Arc 2.698 3.114 3.493 3.942	2 702 3 115 3 499 3 947	-0.004 -0.001 -0.006	6178693 4138805	0.50000 0.50000 0.50000	0.53380 0.52402	146.26- 3 65.99- 3	0.00 186.26 105.99	0.00 0.00 0.00 0.00
3.742		=	eak Amounts	<b>.</b>	0.53506			



Data File: /var/chem/gc8.i/2250.b/h-a20640.d

Report Date: 31-May-2000 10:13

Page 1

· .

### STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20640.d

Lab Smp Id: M1242

Inj Date : 30-MAY-2000 10:08

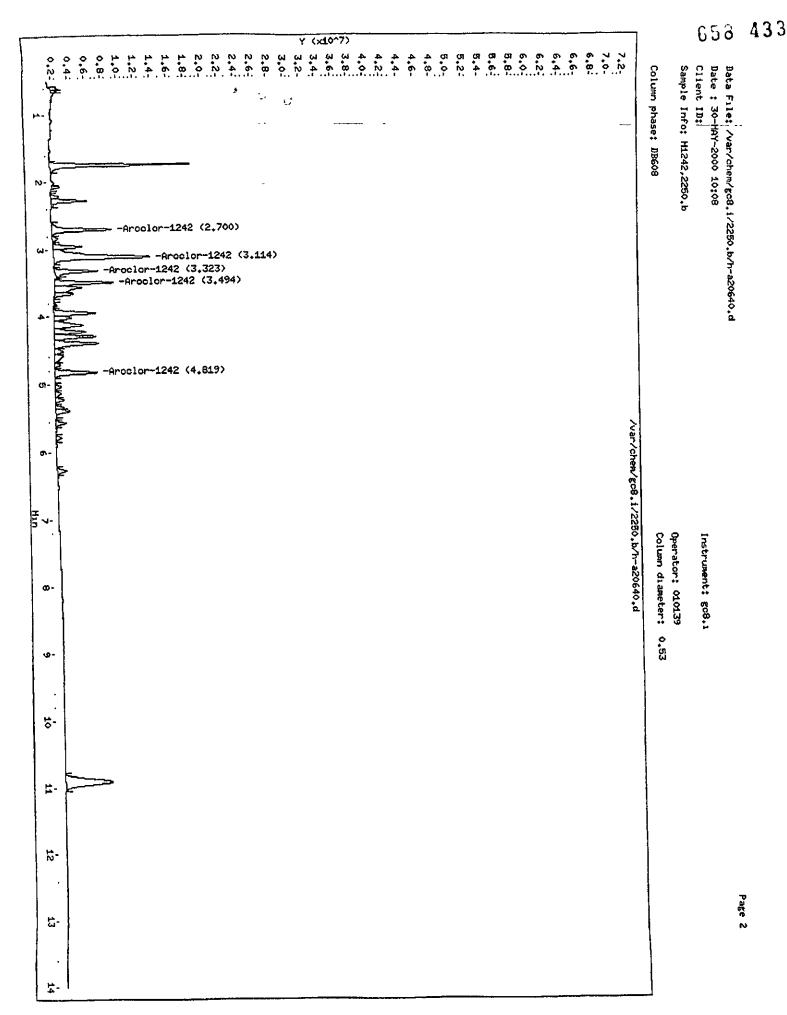
Inst ID: gc8.i

Operator : 010139 Smp Info : M1242,2250.b Misc Info: 190-83-3

Comment

: /var/chem/gc8.i/2250.b/PCBA.m Method

Quant Type: ESTD Meth Date: 31-May-2000 10:06 g Cal Date: 25-MAY-2000 19:01 Cal File: h-a20549.d


Continuing Calibration Sample Als bottle: 5

Dil Factor: 1.00000 Compound Sublist: 4-1242.sub

Integrator: Falcon Sample Matrix: None Target Version: 3.40

#### AMOUNTS

			CAL-	TML	ON-COL			
RT EXP RT	DLT RT	RESPONSE	( r	ıg)	( ng)	TARGET	RANGE	RATIO
	E = E = = 0 =	*****		医神经医气功益	22634		****	
15 Aroclor-1	1242				ÇAS #	53469-2	21-9	
2.700 2.70		7310446	0 50	000	0.54180	0.00-	0.00	0.00
3.114 3.11		11828656	0.50	000	0.53400	310.13-	350.13	0.00
3.323 3.32		5216573	0.50	000	0.50928	749.70-	789 70	0 00
3.323 3.32	• • • • • • • • • • • • • • • • • • • •	7143376	0.50	000	0.52075	512 48-	552.48	0.00
		5178728	0.50	000	0 53242	314.30-	354.30	0.00
4 819 4.82		Peak Amounts			0.52765			



Page 1

Data File: /var/chem/gc8.i/2250.b/h-a20641.d

Report Date: 31-May-2000 10:13

## STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20641.d

Lab Smp Id: M1248

Inj Date : 30-MAY-2000 10:28 Operator : 010139 Smp Info : M1248,2250.b Inst ID: gc8.i

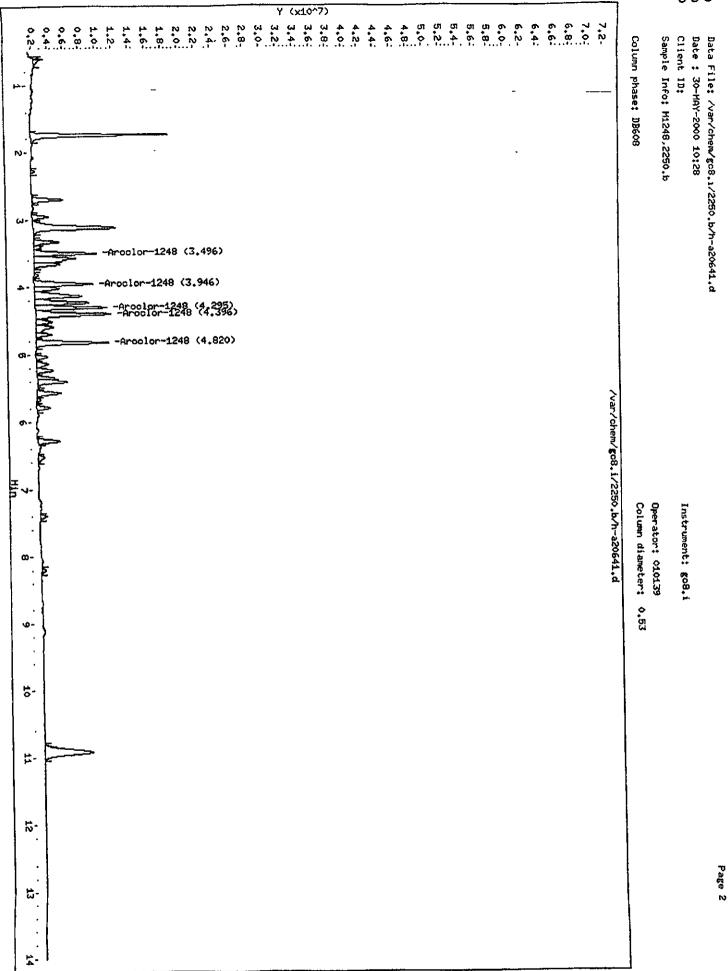
Misc Info : 190-83-4

Comment

: /var/chem/gc8.i/2250.b/PCBA.m Method

Quant Type: ESTD Meth Date: 31-May-2000 10:06 g Cal Date: 25-MAY-2000 19:01 Cal File: h-a20549.d

Continuing Calibration Sample Als bottle: 6 Dil Factor: 1.00000


Compound Sublist: 5-1248.sub Integrator: Falcon

Sample Matrix: None Target Version: 3.40

#### AMOUNTS

				CAL-AMT	ON-COL		
RT E	XP RT I	DLT RT	response	(ng)	( ng)	TARGET RANGE	RATIO
4= 4		*****	******	*****	*******	<b>迪巴拉泰国霍尔</b> 莱特克克可	
21 Arc	clor-12	48			CAS #	: 12672-29-6	
3.496	3.498	-0.002	7933529	0 50000	0.53818	0.00- 0 00	0 00
3 946	3.951	-0.005	7458096	0.50000	0.55016	114.57- 154.57	0 00
4.295	4.300	-0.005	9083169	0.50000	0.53621	63.67- 103.67	0.00
4 396	4 402	-0.006	9471640	0 50000	0.53712	43.86- 83 86	0.00
4.820	4.824	-0.004	9050335	0.50000	0.53577	128 08- 168.08	0 00
1.320		• • • •	Peak Amounts	-	0.53949		

7.9 Cal



Page 1 Report Date: 31-May-2000 10:13

### STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20642.d

Lab Smp Id: M1660

Inj Date : 30-MAY-2000 10:48 Operator : 010139 Inst ID: gc8.i

Smp Info : M1660,2250.b

Misc Info : 190-83-7

Comment

: /var/chem/gc8.i/2250.b/PCBA.m Method

Meth Date : 31-May-2000 10:06 g Cal Date : 25-MAY-2000 19:01 Quant Type: ESTD Cal File: h-a20549.d

Continuing Calibration Sample Als bottle: 7

Dil Factor: 1.00000 Compound Sublist: 1-1660.sub Integrator: Falcon

Sample Matrix: None Target Version: 3.40

### AMOUNTS

				CAL-AMT	ON-COL		
RT	EXP RT	DLT RT	RESPONSE	( ng)	( ng)	TARGET RANGE	RATIO
*=			*******	#E05535	2207455	<b>电影影響和海岸区域</b> 超位	****
20 Ar	oclor-10	16			CAS #:	12674-11-2	
2.276	2.277	-0 001	5242283	0.50000	0.51694	0.00- 0.00	0.00
2.699	2 704	-0 005	9569649	0 50000	0.51999	80.00- 120.00	0 00
3.116	3 119	-0.003	15550936	0.50000	0.51188 4	16.04- 456.04	0.00
3 323	3.327	-0 004	6976492	0.50000	0.50660 2	203.51- 243.51	0.00
3.495	3 499	-0 004	9658349	0 50000	0 50932 2	97.56- 337.56	0.00
	i	Average of	Peak Amounts •	1	0.51295		
\$ 1 Te	trachlo:	ro-m-xylene			CAS #:	877-09-8	
1 745	1 747	-0.002	16575990	0.02500	0 027036	0.00- 0.00	0.00
		obiphenyl			**	2051-24-3	
10.898	10.921	-0.023	5857413	0.02500	0.027302	0.00- 0.00	0.00
		• • • • • • • • • • • • • • • • • • •					
	roclor-1					11096-82-5	
5 671	5.681	-0 010	11672242	0.50000	0.51612	0.00- 0.00	0.00
5.793	5 798	-0 005	12265093	0 50000	0.51073	95.86- 135.86	0.00
6 522	6 526	-0.004	12316434	0.50000	0.50710	116.91- 156.91	0.00
7.393	7 401	-0 008	17866286	0.50000	0.47934	120.00- 160.00	0.00
8 199	8 210	-0.011	9677057	0.50000	0.51984	108.33- 148.33	0.00
		Average of	Peak Amounts	=	0 50663		

Data File: /var/chem/gc8.i/2250.b/h-a20682.d

Report Date: 31-May-2000 08:39

### STL-PITTSBURGH

Page 1

Data file : /var/chem/gc8.i/2250.b/h-a20682.d

Lab Smp Id: M1660

Inj Date : 30-MAY-2000 23:59

Operator: 010139 Inst ID: gc8.i

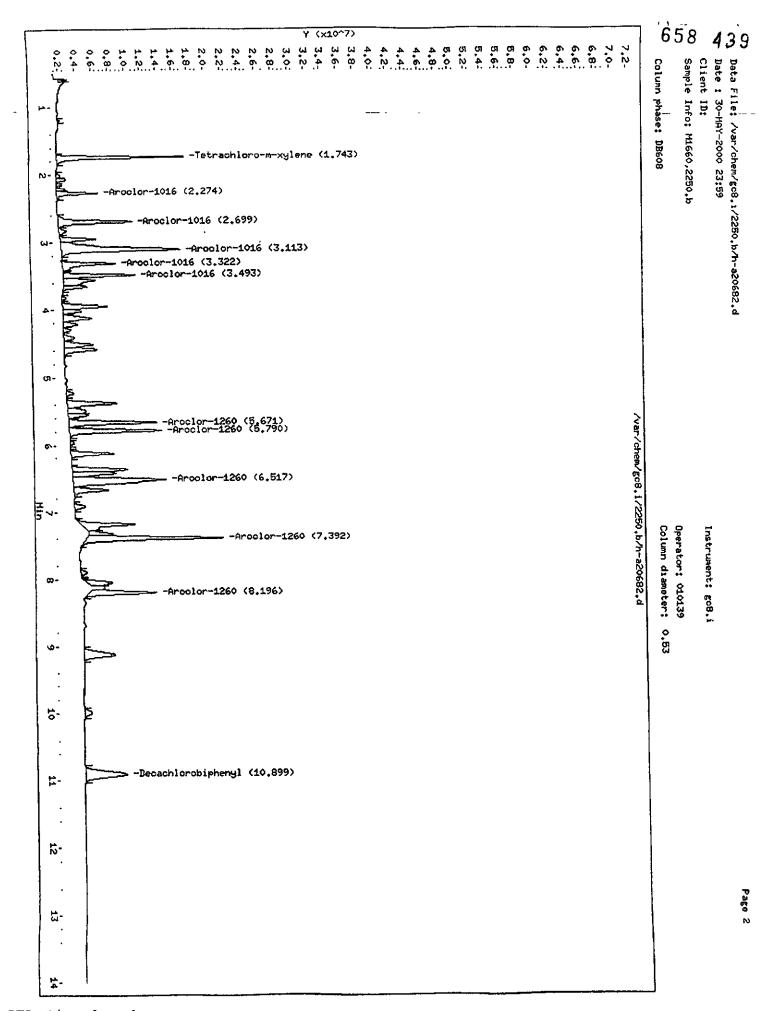
Operator : 010139 Smp Info : M1660,2250.b Misc Info : 190-83-7

Comment

Method : /var/chem/gc8.i/2250.b/PCBA.m

Meth Date : 31-May-2000 08:13 g Quant Type: ESTD Cal Date : 25-MAY-2000 19:01 Cal File: h-a20549.d

Als bottle: 49 Continuing Calibration Sample


Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 1-1660.sub

Target Version: 3.40 Sample Matrix: None

#### AMOUNTS

				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
				CAL-AMT	ON-COL		
RT	EXP RT	DLT RT	RESPONSE	(ng)	(ng)	TARGET RANGE	RATIO
	*******	F#4###		****		***********	
20 A	coclor-10	16			CAS #	12674-11-2	
2.274	2.277	-0 003	4948275	0.50000	0.48795	0 00- 0.00	0.00
2.699	2.704	-0.005	8977594	0.50000	0.48782	80.00- 120.00	0.00
3.113	3.119	-0.006	14856728	0.50000	0.48902	416.04- 456.04	0 00
3.322	3.327	-0.005	6472425	0 50000	0.47000	203.51- 243.51	0 00
3.493	3.499	-0.006	8921983	0.50000	0.47049	297.56- 337.56	0.00
	A	verage of Pe	ak Amounts :		0.48106		
	· • • • • • • • •						
\$ 1 Te	trachlor	o-m-xylene			CAS #:	877-09-8	
						0.00- 0.00	
		biphenyl				2051-24-3	
10 899	10 921	-0.022	5187072	0 02500	0.024178	0 00- 0.00	0.00
			<b></b>			•••••	
36 A1	coclor-12	60			CAS #:	11096-82-5	
5.671	5.681	-0.010	10890504	0.50000	0.48156	0.00- 0.00	0 00
5.790	5.798	-0.008	11430887	0.50000	0.47600	95.86- 135.86	0.00
6.517	6 526	-0 009	11566853	0.50000	0.47624	116 91~ 156 91	0.00
7.392	7 401	-0.009	16963312	0.50000	0.45511	120.00- 160.00	0.00
8 196	8.210	-0 014	8340626	0.50000	0.44805	108.33- 148.33	0.00
	A	verage of Pe	ak Amounts	-	0.46739		



Data File: /var/chem/gc8.i/2250.b/h-a20703.d

Report Date: 31-May-2000 10:40

Page 1

## STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20703.d

Lab Smp Id: M1660

Inj Date : 31-MAY-2000 08:08

Inst ID: gc8.i

Operator : 010139 Smp Info : M1660,2250.b

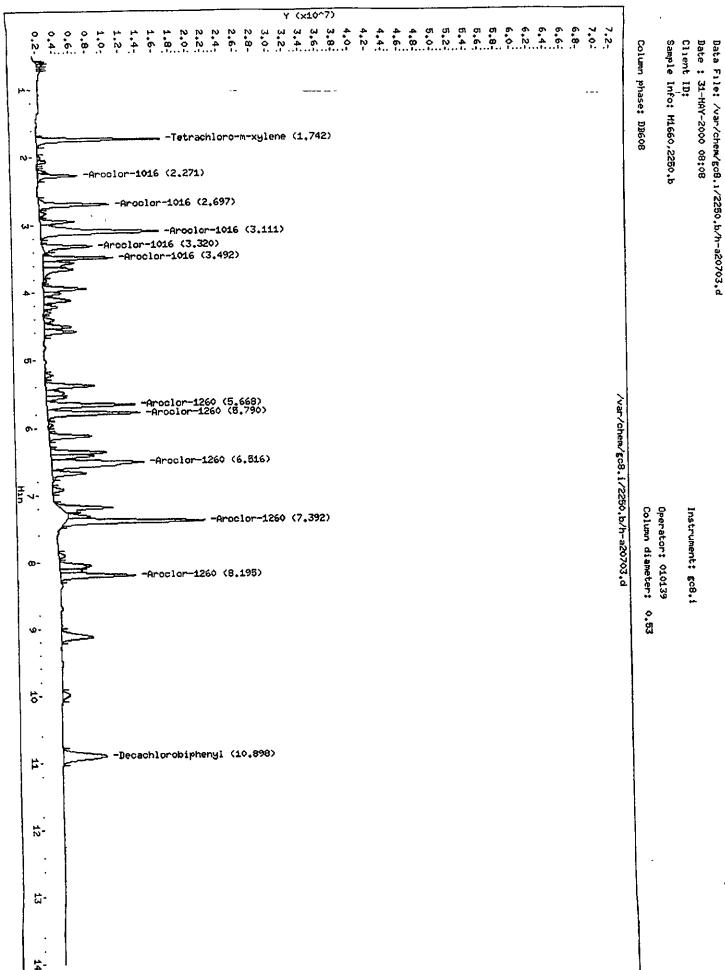
Misc Info : 190-83-7

Comment

Method : /var/chem/gc8.i/2250.b/PCBA.m Meth Date : 31-May-2000 10:23 g Quant Type: ESTD

Cal File: h-a20549.d Cal Date : 25-MAY-2000 19:01

Continuing Calibration Sample


Als bottle: 66 Dil Factor: 1.00000

Compound Sublist: 1-1660.sub Integrator: Falcon

Sample Matrix: None Target Version: 3.40

#### AMOUNTS

				CAL-AMT	ON-COL			
RT 1	EXP RT D	ኒጥ ዋጥ	RESPONSE	( ng)	( ng)	TARGET	RANGE	RATIO
		<b></b>	******					
20 27	oclor-101	6			CAS #:	12674-1	1-2	
-	2.277	-0.006	4804135	0 50000	0.47373	0.00-	0.00	0 00
•	2 704	-	8539269	0.50000	0.46400	80.00-	120.00	0.00
	3.119		14333008					0.00
		-0.007				203 51-	243.51	0.00
3 492	3 499	-0 007	8458644	0.50000	0.44606	297.56-	337 56	0.00
3 472		verage of Pea		•	0.45968			
\$ 1 Te	etrachloro	o-m-xylene -0.005	15005944	0.02500	CAS #:	877-09- 0.00-	0.00	
C 24 D4	ecachi orol	biphenvl			CAS #:	2051-24	1-3	
10 898	10 921	-0.023	5330517	0.02500	0.024846	0.00	- 0.00	0 00
	roclor-12	60			CAS #	11096-	B2-5	
5.668	5.681	-0.013		0.50000				0.00
5.790	5.798	-0.008	1116277	0.50000				
6 516	6.526			2 0.50000				0.00
7 392	7.401	-0 009	1693787	0.50000	0.45443			0.00
8 195	8.210	-0.015	910942	9 0.50000		108 33-	148.33	0.00
	4	verage of Pe	ak Amounts	•	0.46925			



PCB QC DATA

# UXB INTERNATIONAL METHOD BLANK COMPOUNDS

Lab Name:Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER

Lab Sample ID:C0E240000 495

Method: SW846 8082

PCBs (8082)

Sample WT/Vol: 1000 / mL

Date Received: 05/23/00 Date Extracted:05/24/00

Work Order: DDN23101 Dilution factor: 1

Date Analyzed: 05/31/00

Dilution factor:
Moisture %:NA

QC Batch: 0145495

<del>---</del> --

Client Sample Id: INTRA-LAB BLANK

### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	<u>Q</u>
12674-11-2	Aroclor 1016	1.0	U
11104-28-2	Aroclor 1221	1.0	<u>"</u>
11141-16-5	Aroclor 1232	1.0	<u></u>
53469-21-9	Aroclor 1242	1.0	<u> </u>
12672-29-6	Aroclor 1248	1.0	<u> </u>
11097-69-1	Aroclor 1254	1.0	<u> </u>
11096-82-5	Aroclor 1260	1.0	וט ו

Data File: /var/chem/gc8.i/2250.b/h-a20691.d

Report Date: 31-May-2000 08:39

STL-PITTSBURGH

Page 1

Data file : /var/chem/gc8.i/2250.b/h-a20691.d

Client Smp ID: INTRA-LAB BLANK Lab Smp Id: DDN23101

Inj Date : 31-MAY-2000 02:57

Operator : 010139 Smp Info : DDN23101,2250.b Inst ID: gc8.i

Misc Info: 230195BLK

Comment :

Method : /var/chem/gc8.i/2250.b/PCBA.m Meth Date : 31-May-2000 08:13 g Quant Type: ESTD Cal File: h-a20549.d Cal Date : 25-MAY-2000 19:01 QC Sample: BLANK Als bottle: 58

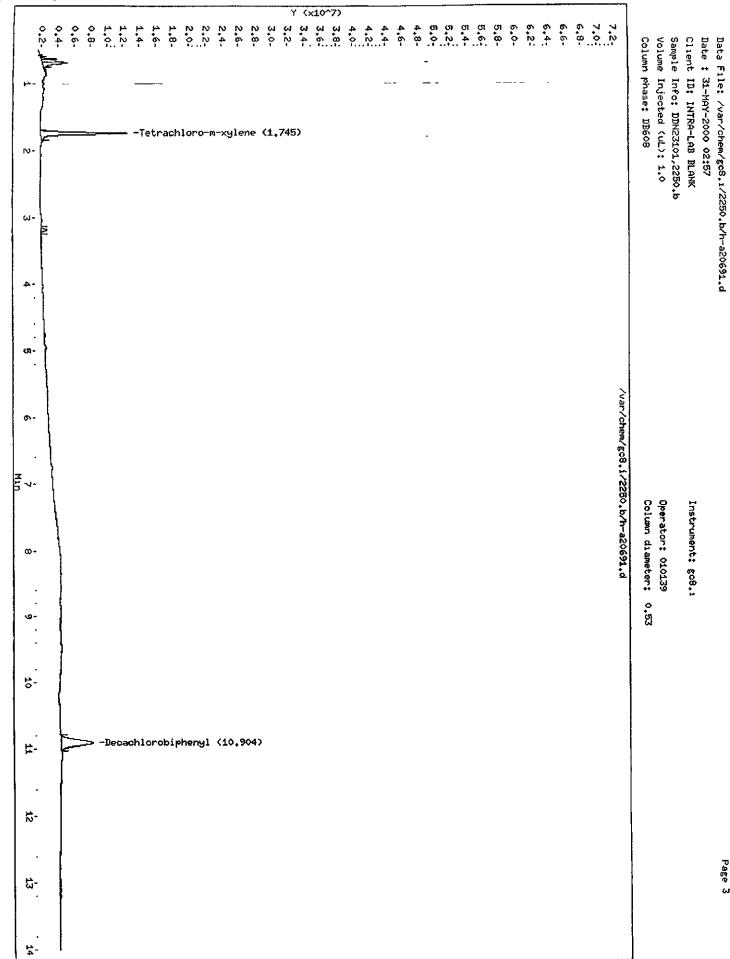
Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: all.sub

Sample Matrix: WATER Target Version: 3.40

Concentration Formula: Amt * DF * Vt/Vo/Vi

Name	Value	Description
DF Vt Vo Vi	10000.000	Dilution Factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected


CONCENTRATIONS

					ON-	COL	FINAL			
RT	EXP RT	DLT RT		RESPONSE	(	ng)	( ug/L)	TARGET	range	RATIO
	*****	****	ı	******	= = =			===outl	95226	
1 745	1 747		:				CAS #.		0.00	
	hlordane							57-74-9		
Peaks r				or Qual	_					
8 <i>P</i>	Aroclor-1						CAS #.	11104-2		
Peaks r	ot dete	cted for	Quant. o	or Qual.	вigr	nal(s)				

Page 2

Data File: /var/chem/gc8.i/2250.b/h-a20691.d Report Date: 31-May-2000 08:39

_				CONCENTRA	-		
				ON-COL			
RT	EXP RT					TARGET RANGE	RATIO
••		BBB#####	********		*******	**********	***
14	Aroclor-1	1232			CAS #·	11141-16-5	
Peaks	not detec	cted for Quant.	-				
15	Aroclor-:					53469-21-9	
		cted for Quant		-			
	Aroclor-	1016		**		12674-11-2	
Peaks	not dete	cted for Quant	or Qual.	signal(s)			
	Aroclor-	1248		••••		12672-29-6	•••••
Peaks	not detec	cted for Quant	or Qual.	signal(s)	-		
	Aroclor-	1254	<b></b>			11097-69-1	
		cted for Quant.		_			
\$ 34	Decachlo	robiphenyl			CAS #	2051-24-3	
		1 -0.017					
	Aroclor-	1260				11096-82-5	• • • • • •
Peaks	not dete	cted for Quant.	or Qual.	signal(s)			
• • • • •							



# UXB INTERNATIONAL CHECK SAMPLE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 495

Method: SW846 8082

PCBs (8082) -

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDN23102 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/31/00

Moisture %:NA

QC Batch: 0145495 Client Sample Id: CHECK SAMPLE

		CONCENTRATION UNITS:
CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L Q
12674-11-2	Aroclor 1016	8.49
11096-82-5	Aroclor 1260	9.09

Page 1

Data File: /var/chem/gc8.i/2250.b/h-a20692.d

Report Date: 31-May-2000 08:39

### STL-PITTSBURGH

Data file : /var/chem/gc8.i/2250.b/h-a20692.d

Lab Smp Id: DDN23102 Client Smp ID: INTRA-LAB CHECK

Inj Date : 31-MAY-2000 03:17

Operator: 010139 Inst ID: gc8.i

Smp Info : DDN23102,2250.b

Misc Info : 230195LCS

Comment

Method : /var/chem/gc8.i/2250.b/PCBA.m

Meth Date: 31-May-2000 08:13 g Quant Type: ESTD Cal Date: 25-MAY-2000 19:01 Cal File: h-a20549.d

Als bottle: 59 QC Sample: LCS

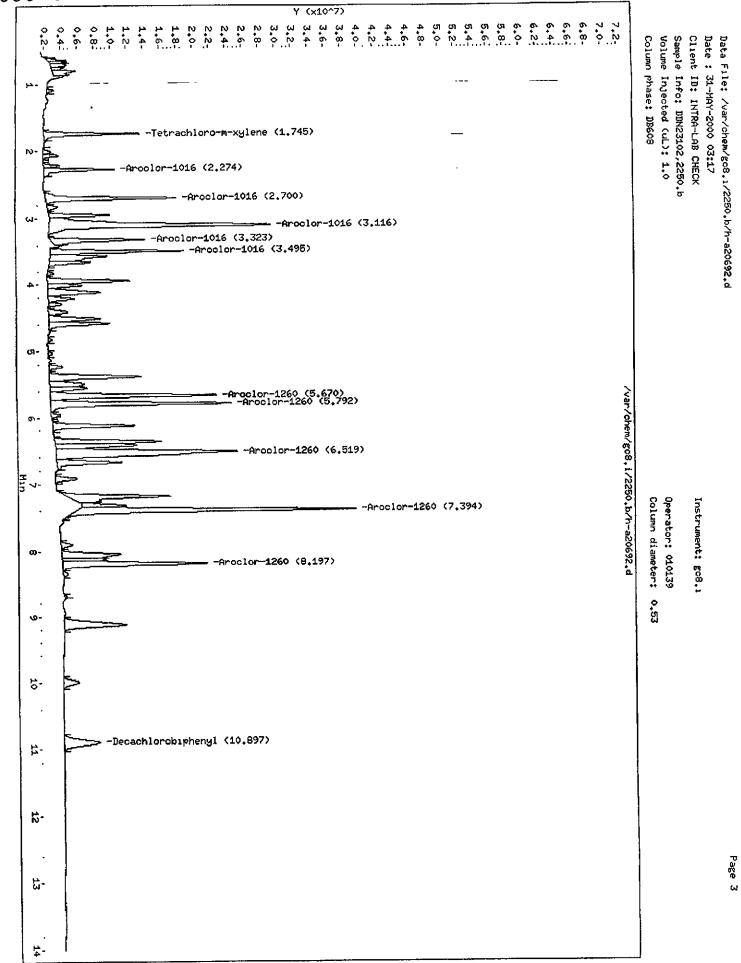
Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 1-1660.sub

Target Version: 3.40 Sample Matrix: WATER

Concentration Formula: Amt * DF * Vt/Vo/Vi

Name	Value	Description
DF Vt Vo	10000.000	Dilution Factor Volume of final extract (uL) Volume of sample extracted (mL)
Vi		Volume injected


# CONCENTRATIONS ON-COL FINAL

RT	EXP RT	DLT RT	RESPONSE	(ng)	( ug/L)	TARGET RAN	NGE RATIO
==	0:03#5	30002022	2020000	******		******	*** ****
20 A	roclor-1	016			CAS #:	12674-11-2	
2 274	2.277	-0 003	8475664	0.83578	8.3578	0.00- 0	.00 0.00
2 700	2 704	-0 004	15789622	0.85797	8 5797	80.00- 120	.00 0.00
3.116	3.119	-0.003	26841004	0.88350	8.8350	416.04- 456	.04 0.00
3 323	3 327	-0 004	11364045	0.82520	8.2520	203 51- 243	51 0.00
3 495	3.499	-0.004	15998858	0.84368	8.4368	297 56- 337	.56 0.00
		Average of 1	Peak Concentra	ations =	8.4923		
			<b></b>				<b></b>
\$ 1 T	etrachlo	ro-m-xylene			CAS #	877-09-8	
1.745	1 747	-0.002	11628547	0.01897	0.18966	0.00- 0	.00 0.00
<b>-</b>							
\$ 34 D	ecachlor	obiphenyl			CAS #:	2051-24-3	
10.897	10.921	-0.024	4281992	0.01996	0.19959	0.00- 0	.00 0 00.
				<b></b>			
36 A	roclor-1	260			CAS #:	11096-82-5	
5 670	5.681	-0.011	20041231	0.88619	8.8618	0.00- 0	.00 0.00

Page 2

Data File: /var/chem/gc8.i/2250.b/h-a20692.d Report Date: 31-May-2000 08:39

				CONCENTR	ATIONS		
				ON-COL	FINAL		-
RT E	EXP RT	DLT RT	response	( ng)	( ug/L)	TARGET RANGE	RATIO
		2000年2月10日	*****	8882924	E080838	*******	82228
36 Arc	oclor-12	60 (continue	ed)				
5 792	5 798	-0 006	21785716	0 90718	9 0718	95 86- 135 86	0.00
6 519	6.526	-0 007	21999515	0 90579	9 0579	116 91- 156.91	0 00
7 394	7 401	-0 007	33972089	0.91144	9 1144	120.00- 160 00	0.00
8.197	8 210	-0 013	17435227	0 93661	9 3661	108.33- 148.33	0 00
	A	verage of Po	eak Concentra	ations =	9 0944		



### UXB INTERNATIONAL CHECK SAMPLE DUPLICATE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER

Lab Sample ID: C0E240000 495

Method: SW846 8082

PCBs (8082)

Sample WT/Vol: 1000 / mL , Work Order: DDN23103 . . .

Date Received: 05/23/00 Date Extracted:05/24/00

Dilution factor: 1

Date Analyzed: 05/31/00

Moisture %:NA

QC Batch: 0145495

Client Sample Id: DUPLICATE CHECK

## CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
Ī	12674-11-2	Aroclor 1016	8.74	
ĺ	11096-82-5	Aroclor 1260	9.12	11

Data File: /var/chem/gc8.i/2250.b/h-a20693.d

Report Date: 31-May-2000 08:39

## STL-PITTSBURGH

Page 1

Data file : /var/chem/gc8.i/2250.b/h-a20693.d

Client Smp ID: INTRA-LAB CHECK Lab Smp Id: DDN23103

Inj Date : 31-MAY-2000 03:37

Operator : 010139 Smp Info : DDN23103,2250.b Misc Info : 230195LCD Inst ID: gc8.i

Comment :

Method : /var/chem/gc8.i/2250.b/PCBA.m Meth Date : 31-May-2000 08:13 g Quant Type: ESTD Cal File: h-a20549.d Cal Date : 25-MAY-2000 19:01 QC Sample: LCSD

Als bottle: 60

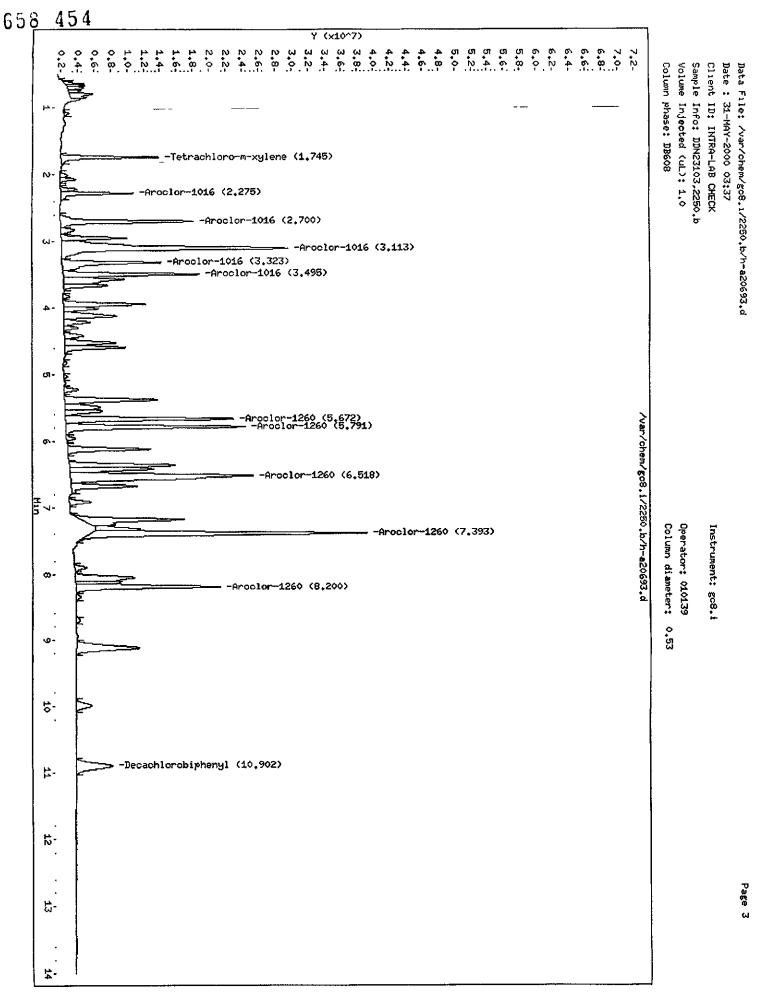
Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: 1-1660.sub

Sample Matrix: WATER Target Version: 3.40

Concentration Formula: Amt * DF * Vt/Vo/Vi

Name	Value	Description
DF Vt Vo Vi	10000.000	Dilution Factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected


#### CONCENTRATIONS

				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	( ng)	( ug/L)	TARGET RANGE	RATIO
# 6	****		******	*****	****	<b>3</b> 中国在亚拉姆亚克产出基	****
20 Ar	oclor-10	16			CAS #:	12674-11-2	
2 275	2.277	-0.002	8667237	0 85467	8.5467	0 00- 0.00	0 00
2 700	2 704	-0.004	16110632	0 87542	8.7542	80.00- 120.00	0 00
3 113	3 119	-0 006	27394045	0.90171	9.0170	416.04- 456.04	0.00
3 323	3.327	-0.004	11993808	0.87093	8 7093	203.51- 243 51	0.00
3 495	3.499	-0 004	16464103	0.86822	8.6822	297.56- 337 56	0.00
• ••		Average of	Peak Concentra	ations =	8.7419		
		ro-m-xylen				877-09-8	
				0.01928	0 19284	0.00- 0.00	0.00
		obiphenyl				2051-24-3	
			4312981	0.02010	0.20103	0.00- 0.00	0 00
_	roclor-1					11096-82-5	
			20342934	N 89953			0.00
5 672	5.681	-0.009	20342334	0.09933	0 3733	• • • • • • • • • • • • • • • • • • • •	

Page 2

Data File: /var/chem/gc8.i/2250.b/h-a20693.d Report Date: 31-May-2000 08:39

			ON-COL	FINAL	ı	
EXP RT I	OLT RT	RESPONSE	( ng)	( ug/L)	TARGET RANGE	RATIO
e:		82200 ,	2000000	8888888		
oclor-12	50 (continue	- d)				
5.798	-0 007	21779210	0 90691	9 0691	95 86- 135 86	0.00
6 526	-0.008	22170621	0 91283	9 1283	116.91- 156.91	0 00
7.401	-0 008	33591128	0.90122	9 0122	120 00- 160.00	0 00
8 210	-0.010	17515051	0 94090	9 4090	108 33- 148.33	0 00
	5.798 6 526 7.401	5.798 -0 007 6 526 -0.008 7.401 -0 008	5.798 -0 007 21779210 6 526 -0.008 22170621 7.401 -0 008 33591128	EXP RT DLT RT RESPONSE ( ng)	EXP RT DLT RT RESPONSE ( ng) ( ug/L)	EXP RT DLT RT RESPONSE ( ng) ( ug/L) TARGET RANGE  Color-1260 (continued)  5.798 -0 007 21779210 0 90691 9 0691 95 86- 135 86 6 526 -0.008 22170621 0 91283 9 1283 116.91- 156.91  7.401 -0 008 33591128 0.90122 9 0122 120 00- 160.00



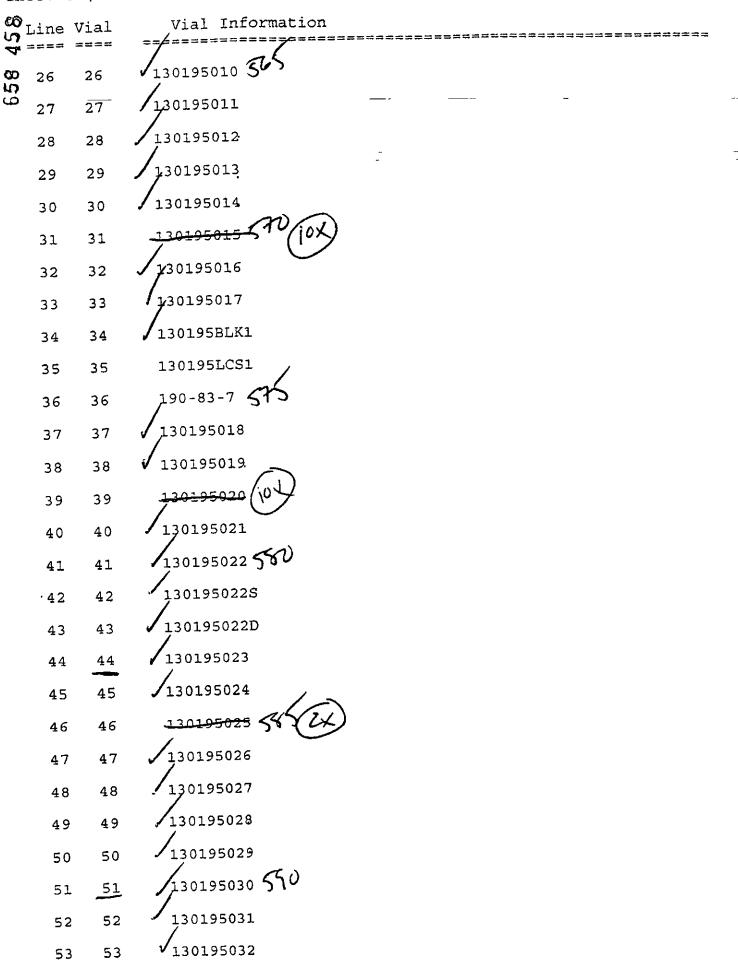
PCB MISCELLANEOUS

Separatory Funnel Extraction Worksheet Date Extraction Began

S -- 2 4 -- 00 Quanterra N:\QA\LOGBOOKS\sepfun extr.doc May-00 Sodium Sulfate Mfg Analyst 30 (Record line number from above) Lot Number ORR Extract(s) 502 H BUVE Date Completed 5-26-00 ۷ Q Sample ID 525 5 B 5-24-00 Date 2130 1200 Lot Number Extract(s) Received pHSample Volume (mL) 1000 OP-00-0035 A STATE SA Solveni O TEXANG Final Volume (mL) KUZM 10.0 PRATO# 0145492 Locatio 100mx Surrogate Number 8.06-06 Reviewed By 28 & 2018 28 6 2018 2018 2018 2-24-00 22.25 5-26-00 Surrogate Volume (mL) 2140 Time Saminas in Season Roacon

BAKE

CARE Solvent Migh Extract(s) Relinquished 190-73-1 Matrix Spike No. KI-1-8-06 Analyst STL Pittsburgh 450 William Pitt Way Pittsburgh, PA 15238 412-820-8380 adheral Matrix Spike Volume (ml.) 9 Clean up Method 0 -24-DO Page 34 of 80 KEFIZEXE Location Cleanup Date 1.00 4081


ල පු හ 0 5 7 Croctad = DE 5-25-00

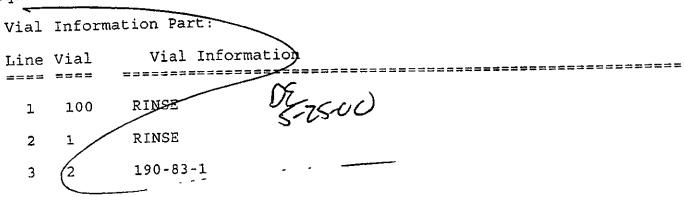
Sequence Table (Front Injector):

Vial Information Part:

	1	$\gamma$ [	
<del>tt</del>			

			\
Line	Vial	Vial Information	=======================================
1	1	RINSE	
2	2	190-83-1 541	
3	3	190-83-2	
4	4	190-83-3	
5	5	1,90-83-4	( )
6	6	190-83-5 545	lant. regid
7	7	190-83-6 [,]	
8	8	190-83-7	•
9	9	190-83-8	
10	10	190-83-9-	
11	11	190-66-13 550	
12	12	190-66-14.	
13	13	190-67-1	
14	14	190-67-2	
15	15	190-67-4	
16	16	130195001 555	
17	17	130195002	
18	18	130195003	
19	9 19	130195004	
20	20	130195005	
2	1 21	/ ₁₃₀₁₉₅₀₀₅₅ 510	
2	2 22	130195005D	
2	3 23	130195006	
2	4 24	130195007	
2	5 25	<b>J</b> 130195009	




Line	Vial	Vial Information	= `
54	54	<del>/30195033</del> (51×)	
55	55	130195BLK2	
56	56	130195LCS2 555	
57	57	190-83-7	
58	58	130195034·	
59	59	1,30195035	
60	60	130195036·	
61	61	130195037 600	
62	62	130195038	
63	63	130195040	
64	64	130195041	
65	65	130195042	
66	66	190-83-7605	

# Method and Injection Info Part:

Line	Vial	SampleName	Method	Inj ===	SampleType	InjVolume	DataFile
==== 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 7 18 19 20 21 22 23 24		PCB PCB PCB PCB PCB PCB PCB PCB PCB PCB	 1111111111111111111111111111111111	Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample		
25	25	DD6AL102,2250.b	PCB	1	Sample		

ince. C. /incomm./2/obev=-								
	Tine	Wial	SampleName	Method	Inj	SampleType	InjVolume	DataFile
	11 TITE		=======================================			=========		========
	====		<del></del>					
	26	26	DD6AM102,2250.b	PCB	1	Sample		
0 9		27	DD6AN102,2250.b	PCB	1	Sample		3
) <del> </del>	28	28	DD6AP102,2250.b	PCB	1.	Sample		<u>t -                                   </u>
	29	29	DD6AQ102,2250.b	PCB	1	Sample		*
8	30	30	DD6AR102,2250.b	PCB	1.	Sample		^
Çη	31	31	DD6AT102,2250.b	PCB	1	Sample		•
	32	32	DD6AV102,2250.b	PCB	1.	Sample		•
	33	33	DD6AW102,2250.b	PCB	1.	Sample		~
	34	34	DDJ8X101,2250.b	PCB	1	Sample		
	35	35	DDJ8X102,2250.b	PCB	1	Sample		
		36	M1660,2250.b	PCB	1	Sample		
	36	37	DD6AX102,2250.b	PCB	1	Sample		
	37	38	DD6C0102,2250.b	PCB	1	Sample		
	38	39	DD6C0102,2250.b	PCB	1	Sample		
	39	40	DD6C2102,2250.b	PCB	1	Sample		
	40	41	DD6C3102,2250.b	PCB	1	Sample		
	41	42	DD6C3104,2250.b	PCB	1	Sample		
	42	42	DD6C3105,2250.b	PCB	1	Sample		
	43 44	44	DD6C4102,2250.b	PCB	1	Sample		
		45	DD6C5102,2250.b	PCB	1	Sample		
	45	46	DD6C6102,2250.b	PCB	1.	Sample		
	46	47	DD6C7102,2250.b	PCB	1	Sample		
	47	48	DD6C8102,2250.b	PCB	1	Sample		
	48	49	DD6C9102,2250.b	PCB	1	Sample		
	49	50	DD6CA102,2250.b	PCB	1	Sample		
	50	50 51	DD6CC102,2250.b	PCB	1	Sample		
	51	52	DD6CD102,2250.b	PCB	1	Sample		
	52	54 53	DD6CE102,2250.b	PCB	1	Sample		
	53 54		DD6CF102,2250.b	PCB	1	Sample		
	54	54 55	DDKP0101,2250.b	PCB	1	Sample		
	55	55 56	DDKP0102,2250.b	PCB	1	Sample		
	56	56	M1660,2250.b	PCB	1	Sample		
	57	57 50	DD6CG102,2250.b	PCB	ī	Sample		
	58	58	DD6CG102,2250.b	PCB	1	Sample		
	59	59 60	DD6CJ102,2250.b	PCB	1.	Sample		
	60	60 61	DD6CK102,2250.b	PCB	1	Sample		
	61	62	DD6CL102,2250.b	PCB	1	Sample		
	62	63	DD6CN102,2250.b	PCB	1	Sample		
	63	64	DD6CR102,2250.b	PCB	1	Sample		
	64		DD6CP102,2250.b	PCB	ī	Sample		
	65	65 66	M1660,2250.b	PCB	1	Sample		
	66	66	PIT000,2250.2	<del></del>	-	-		

## Sequence Table (Back Injector):



## Sequence Table (Front Injector):

V <u>i</u> al	Informat	tion Part:	ıΛΛ
Line		Vial Information -	*
== <b>=</b>	2 '	RINSE	
2	3	190-83-1 <i>i 38</i>	
3	4 i	190-83-2 <i>639</i>	
4	5	190-83-3 640	
5	6	190-83-4 64/	
6	7	190-83-7 642	·
7	8	1 <del>80288001 6</del> 43 5X	
. 8	11	1 <del>8028800</del> 2 644 5X	
9	12	<del>180288003</del> 645 TBA	
10	13	1 <del>80288004</del> 646 3X	
11	14	180288005 647 3X	
12	15	180288006 BYB 3X	
13	16	180288007 649	
14	17	180288008 650	
15	18	180288009 651	
16	19	180288010 652	
17	20	180288011 653	
18	21	180288012 454 3X	
19	22	180288013 655	
20	23	1802880 <b>14</b> 656	
21	24	180288015 <i>157</i>	
22	25	1 <del>80288016</del> 658 TBA	
23	26	180288BLK 659	
24	27	180288LCS 660	
25	28	190-83-7 <b>bb</b>	

6158

143110	·						
Line Vial	Vial Infor		=======================================	*==#=====	=======	=====	====
26 29	180288018 /	162					
27 30	180288019	663 -	<u></u>				
28 31	180288020	664	TBA			_	
29 32	180288021	665					
30 33	180288022	666	+BA				
31 34	1 <del>80288</del> 022S	667					
32 35	180288022D	668	V				
33 36	1 <u>80288023</u>	669	5X				
34 37	180288024	470					
35 38	180288025	671	ЗX				
36 39	180288026	672					
37 40	180288027	623					
38 41	180288028	674					
39 42	180288029	675					
40 43	180288030	676					
41 44	180288031	677					
42 45	180288032	678					
43 46	180288033	679					
44 47	180288BLK2	680					
45 48	180288LCS2	681					
46 49	190-83-7	682					
47 50	180288034	683					
48 51	180288035	684					
49 52	180288036	685					
50 53	180288037	686					
51 54	180288038	687					
52 55	180288041	688					
53 56	230195001	689					

Line	V1al ====	Vial Information
54	57	240144001 690
55	58	230195BLK 69(
56	59	230195LCS 492
57	60	230195LCD (9)
58	61	130142001 *10 194
59	62	170155001 *10 015
60	63	130142BLK 696
61	64	130142LCS 697
62	65	130142LCD //1
63	8	180288001 *5 699
64	9	180288001S *5 700
65	_ 10	180288001D *5 70!
66	11	180288002 *5 <b>70</b> ∂
67	66	190-83-7 703
68	12	180288003 704
69	13	180288004 *3 <b>70\$</b>
70	14	180288005*3 7OV
71	15	180288006*3 707
72	95	1301950059 *4 707
73	66	190-83-7 709
74	81	130195051 *1000 710
75	66	190-83-7 711

Method and Injection Info Part:

Line	Vial ====	SampleName	Method	Inj ===	SampleType	InjVolume	DataFile
2 3	2 3 4 5 6 7 8	HEXANE M2154,2250.b M1232,2250.b M1242,2250.b M1248,2250.b M1660,2250.b DDDNM102,2250.b	PCB PCB PCB PCB PCB PCB PCB	1 1 1 1 1	Sample Sample Sample Sample Sample Sample		

edieuce: C:/whcwrw/T/proormer/space.								
	Line	Vial ====	SampleName	Method		SampleType	InjVolume	DataFile
"J"								
~~	8	11	DDDNW102,2250.b	PCB	1	Sample		
<del>ن</del> 80	9	12 -	DDDP1102,2250.b	PCB	1.	Sample		
చ	10	13	DDDP4102,2250.b	PCB	1	Sample		
	11	14	DDDP7102,2250.b	PCB	1.	Sample		
	12	15	DDDPC102,2250.b	PCB	1	Sample		
	13	16	DDDPE102,2250.b	PCB	1	Sample		
	14	17	DDDPF102,2250.b	PCB	1	Sample		
	15	18	DDDPH102,2250.b	PCB	1	Sample		
	16	19	DDDPK102,2250.b	PCB	1	Sample		
	17	20	DDDPL102,2250.b	PCB	1	Sample		
	18	21	DDDPN102,2250.b	PCB	1	Sample		
	19	22	DDDPQ102,2250.b	PCB	1	Sample		
	20	23	DDDPT102,2250.b	PCB	1	Sample		
	21	24	DDDPW102,2250.b	PCB	1	Sample		
	22	25	DDDPX102,2250.b	PCB	1	Sample Sample		
	23	26	DDN3X101,2250.b	PCB	1	Sample		
	24	27	DDN3X102,2250.b	PCB	1 1	Sample		
	25	28	M1660,2250.b	PCB	1.	Sample		
	26	29	DDDQ1102,2250.b	PCB PCB	1	Sample		
	27	30	DDDQ2102,2250.b	PCB	1	Sample		
	28	31	DDDQ9102,2250.b	PCB	ī	Sample		
	29	32	DDDQD102,2250.b	PCB	1	Sample		
	30	33	DDDQF102,2250.b DDDQF103,2250.b	PCB	1	Sample		
	31	34	DDDQF104,2250.b	PCB	1	Sample		
	32	35 36	DDDQH102,2250.b	PCB	1	Sample		
	33	36 37	DDDQJ102,2250.b	PCB	1	Sample		
	34	38	DDDQL102,2250.b	PCB	1	Sample		
	35 36	39	DDDQW102,2250.b	PCB	ı	Sample		
	37	40	DDDQX102,2250.b	PCB	1	Sample		
	38	41	DDDR0102,2250.b	PCB	1	Sample		
	39	42	DDDR1102,2250.b	PCB	1	Sample		
	40	43	DDDR2102,2250.b	PCB	1	Sample		
	41	44	DDDR3102,2250.b	PCB	1	Sample		
	42		DDDR4102,2250.b	PCB	1.	Sample		
	43		DDDR6102,2250.b	PCB	1	Sample		
	44	47	DDQEJ101,2250.b	PCB	1	Sample Sample		
	45	48	DDQEJ102,2250.b	PCB	1	Sample		
	46		M1660,2250.b	PCB	1 1	Sample		
	47		DDDR7102,2250.b	PCB	1	Sample		
	48		DDDR9102,2250.b		1	Sample		
	49		DDDRA102,2250.b		1	Sample		
	50		DDDRD102,2250.b		î	Sample		
	51		DDDRF102,2250.b		1	Sample		
	52		DDDRQ102,2250.h		ī	Sample		
	53		DDK90104,2250.k		ī	Sample		
	54		DDLFR10Q,2250.k DDN23101,2250.k		1	Sample		
	55		DDN23101,2250.1		1	Sample		
	56 57		DDN23102,2250.1		1	Sample		
	5 58		DD5VE114,2250.		1	Sample		
	5:	_	DD9NW114,2250.	o PCB	1	Sample		
	61		DDKW4101,2250.	b PCB	1	Sample		
	6:		DDKW4102,2250.	b PCB	1			
	6		DDKW4103,2250.	b PCB	1			
	6	3 8	DDDNM102,2250.	b PCB	1	Sample		
								_ 4

Line	Vial	SampleName	Method	Inj ===	SampleType	InjVolume	DataFile
64	9	DDDNM103,2250.b	PCB	1	Sample		
65	10	DDDNM104,2250.b	PCB	1	Sample	:	
66	11	DDDNW102,2250.b	PCB	1	Sample	û	
67	66	M1660,2250.b	PCB	1	Sample		
68	12	DDDP1102,2250.b	PCB	1	Sample	1	
69	13	DDDP4102,2250.b	PCB	1	Sample	4	
70	14	DDDP7102,2250 b	PCB	1	Sample		
71	15	DDDPC102,2250.b	PCB	1	${ t Sample}$		
72	95	DD6DC102,2250.b	PCB	1	Sample		
73	66	M1660,2250.b	PCB	1	Sample		
74	81	DD6D3102,2250.b	PCB	1	Sample		
75	66	M1660,2250.b	PCB	1	Sample		

Sequence Table (Back Injector):

No entries - empty table!

PSRO24

5/24/00 13:46:50 MT SAMPLE CUSTODIAN REMOVAL REQUEST

PAGE 001

REQUESTED BY: YUSHINSC

METHOD: QH PCBs (8082)

STORAGE LOCATION	WORK ORDER #	PICKED CNTR#	CONTROL #	CLIENT #	ANALYSIS	LOTID	SMP#	<u>sfx</u>	MATRIX DESCRIPTION	-•	TY QT CVD RE	•
4f	DDK90-1-04		236508	399411	I-09-QH	COE230195	001	WAT	ER .	0	9	1
6B CLP1	DDLFR-1-0Q		236507	416241	I-09-QH	COE240144	001	WAT	ER .	0	20	1

RELINQUISHED BY		RECEIVED BY		DATE/TIME	
P. Un	shinski	1. Zu	skinski skinski	5-24-00	1540
Mis	whinski	Plan	skinski	5-24-00	<i>333</i> 1
······································					
					<del></del>

HERBICIDE DATA

HERBICIDE QC SUMMARY

#### SW846 8151A SURROGATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc.

Client: UXB INTERNATIONAL

Lab Code: QESPIT QESSDG:

Lot #: C0E230195

CLIENT ID.	SRG01	TOT OUT
2200222222222222222	======	======
01 DF/S1/0137/WA/001	97	00
02 METHOD BLK. DDN20101	101	00
03 LCS DDN20102	104	<u>  00  </u>
04 LCSD DDN20103	108	00

SURROGATES = DCAA SRG01

QC LIMITS ( 53-119)

FORM II

[#] Column to be used to flag recovery values

^{*} Values outside of required QC Limits

D System monitoring Compound diluted out

## SW846 8151A CHECK SAMPLE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: UXB INTERNATIONAL

Lab Code: QESPIT

SDG No:

Lot #: C0E240000

WO #: DDN20102 BATCH: 0145491

	SPIKE ADDED	SAMPLE CONCENT.	%	QC LIMITS	
COMPOUND	(ug/L )	(ug/L )  ====================================	REC	REC  =========	QUAL
2,4-D	16.0	17.6	110	46- 124	
2,4,5-TP (Silvex)	4.00	4.16	104	53 - 127	
2.4.5-T	4.00	4.47	112	40- 126	

NOTES(S):	

* Values outside of QC limits

Spike	Recovery:	0	out of	 outside	limits
COMMEN	ITS:				
	<u></u>		<del></del>	 	

#### SW846 8151A CHECK SAMPLE DUPLICATE RECOVERY

ah	Name:	Severn	Trent	Laboratories,	Inc.
Jan.	rianic.		C11C	Tabor acom Total	

Client: UXB INTERNATIONAL

Lab Code: QESPIT_____

SDG No:

Lot #: C0E240000

WO #: DDN20103 BATCH: 0145491

	SPIKE ADDED	SAMPLE CONCENT.	8	QC LIMITS	
COMPOUND	(ug/L ) == ==================================	(ug/L )	REC	REC	QUAL : ========
2,4-D	16.0	17.8	111	46- 124	.
2,4,5-TP (Silvex)	4.00	4.33	108	53- 127	<u> </u>
2,4,5-T	4.00	4.57	114	40- 126	.   <u></u>

NOTES (S) :		
	<del></del> -	 

* Values outside of QC limits

Spike	Recovery:	0	out of	3	outside	limits
COMMEN'	TS:					
			· -			

#### SW846 8151A METHOD BLANK SUMMARY

BLANK WORKORDER NO. DDN20101

Lab Name: Severn Trent Laboratories, Inc.

Lab Code: QESPIT

SDG Number: --

Lab File ID: a-b30063.

Lot Number: C0E230195

Matrix: WATER

Extraction Method: 8151A

Date Extracted: 05/24/00

Date Analyzed(1): 05/26/00

Date Analyzed(2): N/A

Time Analyzed(1): 18:25

Time Analyzed(2): N/A

Instrument ID(1): A/B

Instrument ID(2): N/A

GC Column(1): DB5/DB1701 ID: 053 GC Column(2): N/A ID:

N/A

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, AND MSD:

ī		SAMPLE		DATE	DATE
	CLIENT ID.	WORK ORDER	# 5	ANALYZED(1)	ANALYZED(2)
	=======================================		===	=======================================	========
01	DF/S1/0137/WA/001	DDK90112		05/26/00	N/A
	CHECK SAMPLE	DDN20102	C	05/26/00	N/A
	DUPLICATE CHECK	DDN20103	L_	05/26/00	N/A
04					
05		<u></u>			
06	Í				<u> </u>
07					
08					ļ[
09	1			<u></u>	ļ
10					]
11		<u> </u>			!
12		Ì			
13					
14	1	<u> </u>			1
15		ļ		.	\ <u></u>
16	l	<u></u>			ļ
17	l	<u></u>			<u> </u>
18	l	ļ			
19	<u> </u>	<u> </u>		_	
20	·	l		_	.

COMMENTS:	
	FORM IV

HERBICIDE SAMPLE DATA

#### UXB INTERNATIONAL

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E230195 001

Method: SW846 8151A

Herbicides (8151A)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDK90112 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0145491

Client Sample Id: DF/S1/0137/WA/001

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
94-75-7	2,4-D	4.0	ן
93-72-1	2,4,5-TP (Silvex)	1.0	<u>  u</u>

Data File: /var/chem/gc1.i/2250.b/a-b30057.d

Report Date: 27-May-2000 08:45

#### STL-PITTSBURGH

Data file: /var/chem/gcl.i/2250.b/a-b30057.d Lab Smp Id: DDK90112 Clien

Client Smp ID: DF/S1/0137/WA/001

Inj Date : 26-MAY-2000 15:31

Operator : 01797 Inst ID: gcl.i

Smp Info : DDK90112,2250.b

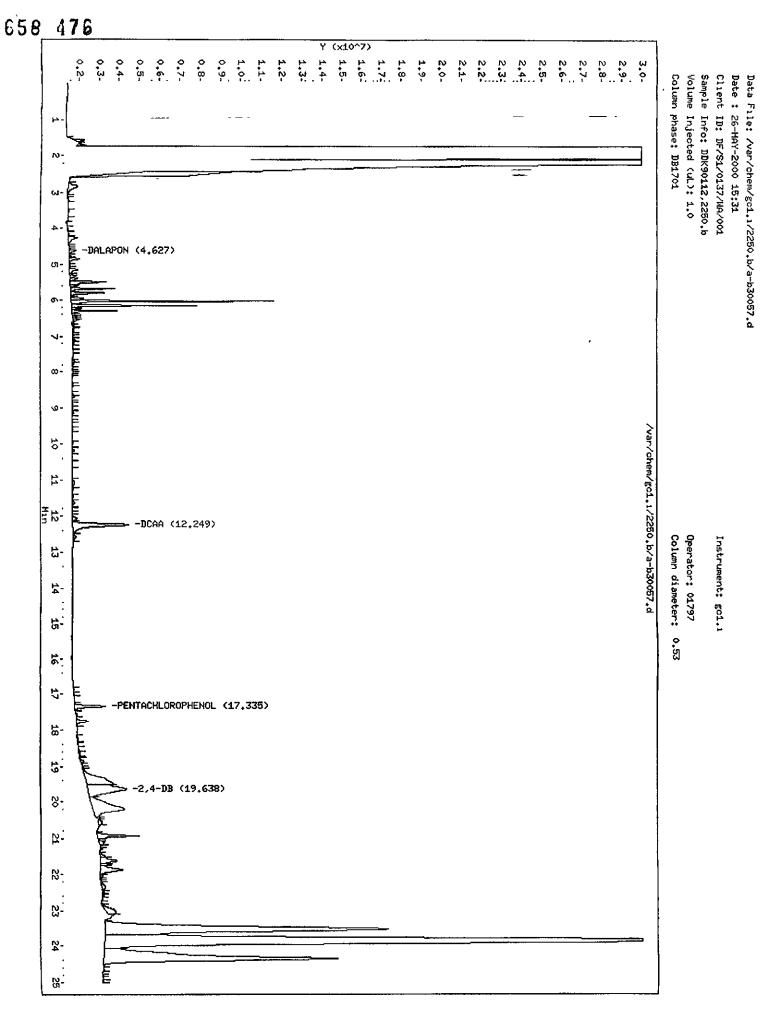
Misc Info : 230195001

Comment

Method : /var/chem/gc1.i/2250.b/LONGHB.m Meth Date : 27-May-2000 08:40 g Qua Quant Type: ESTD Cal Date : 25-MAY-2000 15:20 Cal File: a-b30007.d

Als bottle: 57

Dil Factor: 1.00000


Integrator: Falcon Compound Sublist: all.sub

Target Version: 3.40

# Concentration Formula: Amt * DF * 20*Vt/Vo/Vi

Name	Value	Description
DF	1.000	Dilution Factor
۷t	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi		Volume injected

		CONCENTRATIONS
		ON-COLUMN FINAL
Compounds	RT EXP RT DLT RT RESPONSE	( ng) ( ug/L)
<b>美发表中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央</b>	左京 医医性性管 医神经神经 医艾尔尔氏征	******
1 DALAPON	4.627 4.649 -0 022 353851	0.00281 0 5621
\$ 2 DCAA	12.249 12 244 0.005 16348954	0.04849 9.698
3 DICAMBA	Compound Not Detected	
4 MCPP	Compound Not Detected	
5 MCPA	Compound Not Detected	
6 DICHLOROPROP	Compound Not Detected	
7 2,4-D	Compound Not Detected	
8 PENTACHLOROPHENOL	17 335 17 334 0 001 1523165	0 00126 0 2518
9 2,4,5-TP(SILVEX)	Compound Not Detected	
10 2,4,5-T	Compound Not Detected.	
11 2,4-DB	19 638 19 678 -0.040 1891841	0.02808 5.615
12 DINOSEB	Compound Not Detected.	



# HERBICIDE CALIBRATION DATA

658 478

Report Date : 25-May-2000 18:28

6D HR8501B DB1721

STL-PITTSBURGH

#### COMPOUND LISTING

Method file : /var/chem/gc1.i/2250.b/LONGHB.m

Quant Method : ESTD Target Version : 3.40 Last Update : 25-May-2000 18:28 Number of Cpnds : 12

Data Type : GC MULTI COMP

Global Integrator : Falcon

Chromat Events Values

Initial:Start Threshold 3608.000000
Initial:End Threshold 1804.000000
Initial:Area Threshold 36080.000000
Initial:P-P Resolution 1.000000
Initial:Bunch Factor 10.000000

Initial:Negative Peaks ON

Initial:Tension 0.200000

Compound	RT	RT Window	RF
1 DALAPON \$ 2 DCAA 3 DICAMBA 4 MCPP 5 MCPA 6 DICHLOROPROP 7 2,4-D 8 PENTACHLOROPHENOL 9 2,4,5-TP(SILVEX) 10 2,4,5-T 11 2,4-DB 12 DINOSEB	13.430 14.436 15.738 17.062 17.334 18.507 19.160 19.678	4.579-4.719 12.174-12.314 12.864-13.004 13.360-13.500 14.366-14.506 15.668-15.808 16.992-17.132 17.264-17.404 18.437-18.577 19.090-19.230 19.608-19.748 20.275-20.415	7.316e+07 1.210e+09 6.470e+08 5.614e+08 6.738e+07

Report Date : 25-May-2000 18:29

68 H868501B D31721

#### STL-PITTSBURGH

#### INITIAL CALIBRATION DATA

Start Cal Date : 25-MAY-2000 13:24 End Cal Date : 25-MAY-2000 15:20

Quant Method : ESTD
Origin : Disabled
Target Version : 3.40
Integrator : Falcon

Method file : /var/chem/gc1.i/2250.b/LONGHB.m

Cal Date : 25-May-2000 18:28 g

Curve Type : Average

## Calibration File Names:

Level 1: /var/chem/gc1.i/2250.b/a-b30003.d Level 2: /var/chem/gc1.i/2250.b/a-b30004.d Level 3: /var/chem/gc1.i/2250.b/a-b30005.d Level 4: /var/chem/gc1.i/2250.b/a-b30006.d Level 5: /var/chem/gc1.i/2250.b/a-b30007.d

		0 00500   0	01000   0.02500	0.05000   0 10000	l l	
	Compound	Level 1   Le	vel 2   Level 3	Level 4   Level 5	RRF	RSD
-					a   » ж ж в з в <b>в в е   •</b>	
	1 DALAPON	138676818 131	206318   127444374	119289624 11286865	3 [125897157]	8.015
	3 DICAMBA	255804057 263	313052 266825388	252786439 23188964	1   254123715	5.369
	4 MCPP	346285	287367 246719	204806 17258	0 251552	27 183
	5 MCPA	444528	383882  332278	280717  24554	7] 337391	23 578
	6 DICHLOROPROP	64841557  65	255212  64639788	58854400  5307549	3  61333290	8.664
	7 2,4-D	66878009 73	142753  77500118	76159641 7213030	3  73162165	5.650
	8 PENTACHLOROPHENOL	1 135e+09 1 2	22e+09 1 276e+09	1.251e+09 1 164e+0	9 1.210e+09	4.870
	9 2,4,5-TP(SILVEX)	599292381 648	499905 683223886	668215107 63593564	3   647033384	4.986
	10 2,4,5-T	474722391 537	462952 591594218	604311564 59915465	6 561449156	9 862
	11 2,4-DB	54434360 62	768981  70269219	72962414  7648559	2 67384113	13.091
	12 DINOSEB	[664148580]662	837165 668905827	638183386 60336494	1 647487980	4.233
	· 化二甲基甲基甲基甲基甲基甲基甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲			2068#4# <b>227</b> 55500004#		
;	2 DCAA	377328826 369	9167247 350318801	313280835 27577611	2 337174364	12 539
		1 1	1	1	1 1	

Lis 10.77. 030

689016

658 480

Data File: /var/chem/gc1.i/2250.b/a-b30049.d Db170

Report Date: 26-May-2000 12:21

#### STL-PITTSBURGH

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: gcl-i

Lab File ID: a-b30049.d

Analysis Type:

Lab Sample ID: Mherb

Quant Type: ESTD

Injection Date: 26-MAY-2000 11:39

Init. Calibration Date(s): 05/25/0 05/25/0 Init. Calibration Times: 13:24 15:20

Method File: /var/chem/gc1.i/2250.b/LONGHB.m

1		MIN   MAX	ļ
į	COMPOUND	RRF   RFO   RRF   %D   %D	1
	s 大红儿们们们们们对社会社会社会社会企业的 网络科拉尔拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉	######################################	1
1	1 DALAPON	125897157 499 123676514 806 0 010 1 8 15	0
\$	2 DCAA	337174364.364 332475452 409 0.010  1.4  15	0
1	3 DICAMBA	254123715.428 250358729.412 0.010 1 5 15	0
1	4 MCPP	251551.505 237005.986 0 010 5.8 15.0	1
1	S MCPA	337390.579 317543.107 0.010 5.9 15.0	1
F	6 DICHLOROPROP	61333289.846 62798903 302 0 010 -2 4 15.0	1
1	7 2,4-D	73162154.809 82506169.213 0 010 -12 B 15.0	1
1	8 PENTACHLOROPHENOL	1209688964 100   1124969078 947   0 010   7.0   :	15 0
i	9 2,4,5-TP(SILVEX)	647033384.343 641167962.085 0.010  0 9  15	0]
1	10 2,4,5-T	561449156 332 630502606.635 0 010 -12.3 15	.0}
1	11 2,4-DB	67384113.217   80609656.805   0.010   -19 6   15.0	<b>  &lt; -</b>
ì	12 DINOSEB	647487979.868   587855511.811   0.010   9.2   15	.0
_			1

AVE=6.77

658 481

Data File: /var/chem/gc1.1/2250.b/a-b30066.d Report Date: 27-May-2000 08:46

#### STL-PITTSBURGH

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: gc1.i

Lab File ID: a-b30066.d

Analysis Type:

Lab Sample ID: Mherb

Injection Date: 26, MAY-2000 19:53
Init. Calibration Date(s): 05/25/0 05/25/0 Init. Calibration Times: 13:24 15:20

Method File: /var/chem/gcl.i/2250.b/LONGHB.m

Quant Type: ESTD

		MIN   MAX
(	COMPOUND	RRF   RF0   RRF   %D   %D
: 12 1	医亚尔森氏试验检 化二氯甲基甲基 医自己 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	
	1 DALAPON	125897157 499 125032665 148 0.010  0.7  15 0
	2 DCAA	[337174364.364]342405017 626[0 010] -1.6[ 15.0]
	3 DICAMBA	254123715.428 259269764.706 0.010  -2 0  15.0
	4 MCPP	251551 505   244505.751 0 010   2.8 15.0
	S MCPA	337390.579 326821 612 0.010 3 1 15 0
	6 DICHLOROPROP	[61333289 846 64184634.434 0.010  -4 6  15.0
	7 2,4-D	73162164 809 82219882.491 0 010 -12 4 15.0
	8 PENTACHLOROPHBNOL	1209688964.100 1203246052.632 0 010  0.5  15
	9 2,4,5-TP(SILVEX)	647033384.343 684805165.877 0.010  -5 8  15.0
	10 2,4,5-T	561449156.332 641842464.455 0 010  -14.3  15 0
	11 2,4-DB	67384113 217 81643065 089 0.010  -21.2  15 0 <
	12 DINOSEB	647487979.868 625055039.370 0 010  3 5  15.0

AVE= 6.0

#### 8D PESTICIDE ANALYTICAL SEQUENCE

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT

Case No.:

SAS No.: 40325 SDG No.: C0E230195

GC Column: DB1701 ID: 0.53 (mm) Init. Calib: Date(s): 05/25/00 05/25/00

Instrument ID: GC1

-ui -

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO	SATE RT FROM	BRATION			
	51 : 12.24					
	EPA	LAB	DATE	TIME	S1	
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
Λ1	=======================================	====================================	05/25/00	1224	10 05	======
01 02		LHERB MLHERB	05/25/00	1324 1354	12.25 12.25	
03		MHERB	05/25/00	1422	12.23	
04		MHHERB	05/25/00	1451	12.24	
05		HHERB	05/25/00	1520	12.24	
06		MHERB	05/26/00	1139	12.24	<del></del>
	DF/S1/0137/W		05/26/00	1531	12.25	
08		DDN20101	05/26/00	1825	12.25	
	LCS1	DDN20102	05/26/00	1854	12.24	
10	LCD1	DDN20103	05/26/00	1923	12.23	
11		MHERB	05/26/00	1953	12.24	i
12 13	<del></del>				<del></del>	
14						
15						<del></del>
16						·
17	· · · · · · · · · · · · · · · · · · ·			<u> </u>		
18						
19						
20						
21						
22 23	<u> </u>					<u> </u>
24						
25		<u> </u>			<u> </u>	
26						
27	· · · · · · · · · · · · · · · · · · ·	<del></del>	<del></del>	·	·	
28						
29						
30						
31						
32						

S1 = DCAA

QC LIMITS (+/- 0.07 MINUTES)

page 1 of 1

FORM VIII PEST

OLM03.0

[#] Column used to flag retention time values with an asterisk.

^{*} Values outside of QC limits.

Data File: /var/chem/gc1.i/2250.b/a-b30003.d

Report Date: 25-May-2000 18:29

#### STL-PITTSBURGH

€.

Data file : /var/chem/gc1.i/2250.b/a-b30003.d

Lab Smp Id: Lherb

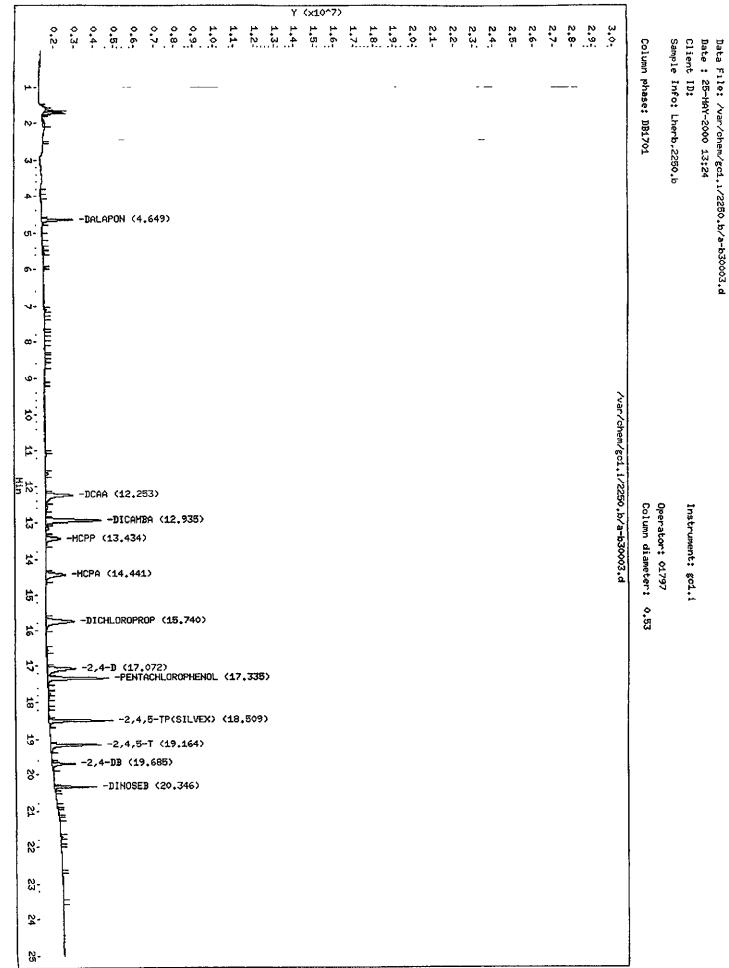
Inj Date : 25-MAY-2000 13:24 Operator : 01797 Inst ID: gcl.i

Smp Info : Lherb, 2250.b Misc Info : 190-80-1

Comment

Method : /var/chem/gcl.i/2250.b/LONGHB.m Meth Date : 25-May-2000 18:29 eppinged Quant Type: ESTD Cal Date : 25-MAY-2000 13:24 Cal File: a-b3000

Cal File: a-b30003.d


Als bottle: 3 Calibration Sample, Level: 1

Dil Factor: 1.00000

Compound Sublist: 1-all.sub Integrator: Falcon

Target Version: 3.40

				AMOUNTS			
						CAL-AMT	ON-COL
Compo	unds	RT	EXP RT	DLT RT	RESPONSE	( ng)	(ng)
		# 3		******		<b>=</b> 00000##	*****
8	PENTACHLOROPHENOL	17 335	17.334	0.001	3018785	0 00266	0 002660
1	DALAPON	4.649	4.649	0 000	1525445	0.01100	0 01100
\$ 2	DCAA	12 253	12.244	0.009	8037104	0 02130	0.02130
3	DICAMBA	12 935	12 934	0 001	2711523	0.01060	0.01060
4	MCPP	13 434	13.430	0.004	734125	2.12000	2.120
5	MCPA	14.441	14.436	0.005	951290	2.14000	2.140
6	DICHLOROPROP	15.740	15.738	0.002	1374641	0.02120	0.02120
7	2,4-D	17.072	17.062	0.010	1411126	0 02110	0.02110
9	2,4,5-TP(SILVEX)	18.509	18.507	0 002	3146285	0.00525	0.005250
10	2,4,5-T	19.164	19 160	0.004	2501787	0 00527	0.005270
11	2,4-DB	19 685	19.678	0 007	1148565	0.02110	0.02110
12	DINOSEB	20 346	20 345	0 001	2105351	0.00317	0 003170



Data File: /var/chem/gc1.i/2250.b/a-b30004.d

Report Date: 25-May-2000 18:29

#### STL-PITTSBURGH

ī

Data file: /var/chem/gcl.i/2250.b/a-b30004.d

Lab Smp Id: MLherb

Inj Date : 25-MAY-2000 13:54

Inst ID: gcl.i

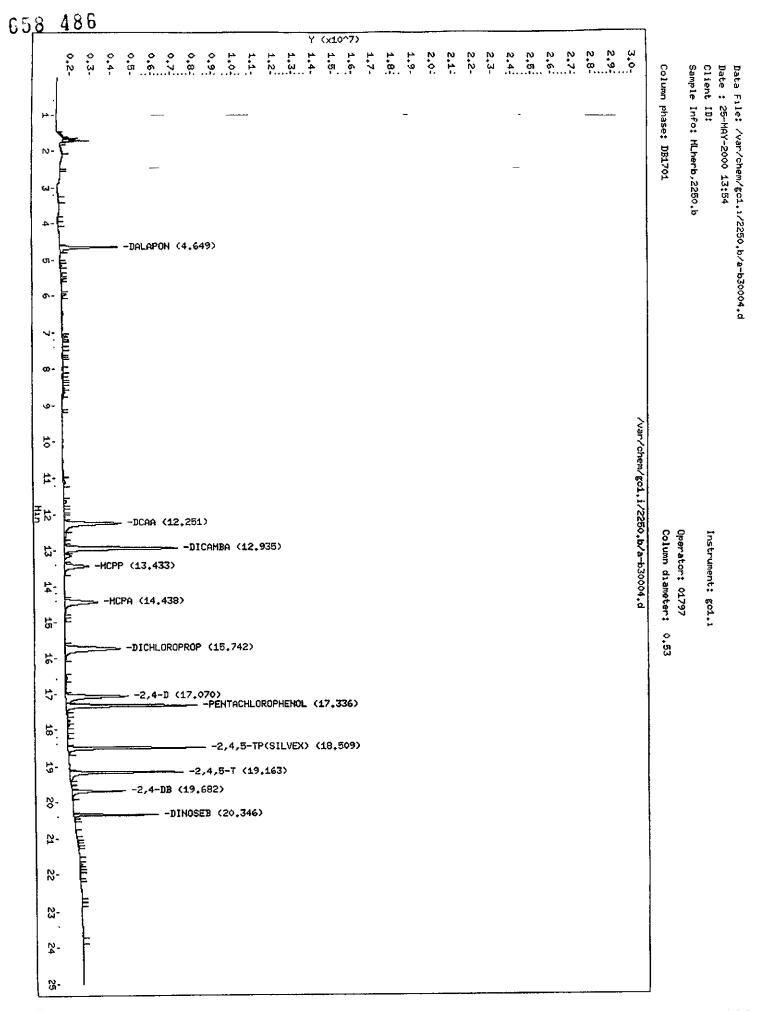
Operator : 01797 Smp Info : MLherb,2250.b

Misc Info : 190-80-2

Comment

: /var/chem/gcl.i/2250.b/LONGHB.m Method

Meth Date: 25-May-2000 18:29 eppinged Cal Date: 25-MAY-2000 13:54 Quant Type: ESTD


Cal File: a-b30004.d

Calibration Sample, Level: 2 Als bottle: 4

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 1-all.sub

Target Version: 3.40

							AMOUR	ITS
							CAL-AMT	ON-COL
Com	pot	unds	RT	EXP RT	DLT RT	RESPONSE	( ng)	( ng)
		2 全 3 数 6 号 15 平 3 号 16 三 5 三 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	••	420003		*======	*****	ロゴロゴの発布
	8	PENTACHLOROPHENOL	17 336	17.334	0 002	6503398	0 00532	0.005518
	1	DALAPON	4 649	4.649	0 000	2886539	0 02200	0.02139
\$	2	DCAA	12 251	12 244	0 007	15689608	0.04250	0.04204
	3	DICAMBA	12 935	12.934	0.001	5608568	0 02130	0 02161
	4	MCPP	13.433	13 430	0 003	1224182	4 26000	3.864
	5	мсра	14.438	14 436	0 002	1643015	4 28000	3.967
	6	DICHLOROPROP	15 742	15.738	0 004	2766821	0 04240	0 04253
	7	2,4-D	17.070	17 062	0.008	3108567	0.04250	0.04440
	9	2,4,5-TP(SILVEX)	18.509	18 507	0.002	6809249	0.01050	0 01091
	10	2,4,5-T	19 163	19 160	0 003	5643361	0.01050	0 01115
	11	2,4-DB	19.682	19.678	0.004	2648851	0 04220	0.04520
	12	DINOSEB	20.346	20.345	0.001	4209016	0.00635	0.006344



Data File: /var/chem/gc1.i/2250.b/a-b30005.d

Report Date: 25-May-2000 18:29

STL-PITTSBURGH

Data file : /var/chem/gc1.i/2250.b/a-b30005.d

Lab Smp Id: Mherb

Inst ID: gcl.i

Inj Date : 25-MAY-2000 14:22 Operator : 01797 Smp Info : Mherb, 2250.b

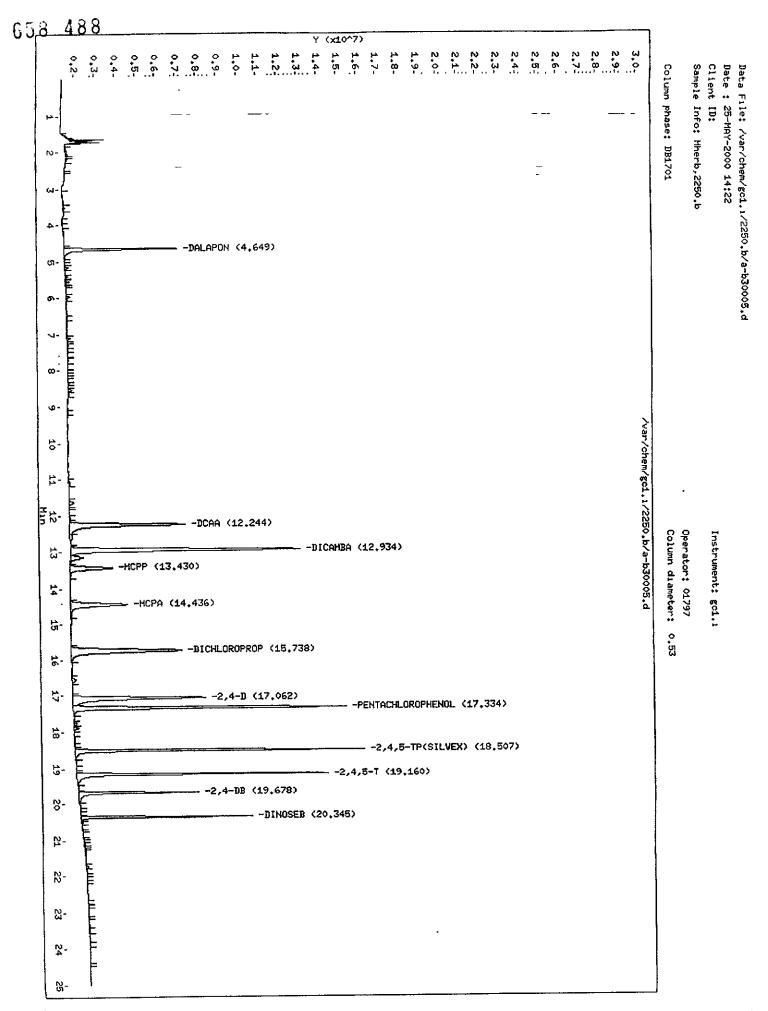
Misc Info : 190-80-3

Comment

Method : /var/chem/gcl.i/2250.b/LONGHB.m

Meth Date : 25-May-2000 18:29 eppinged Cal Date : 25-MAY-2000 14:22 Quant Type: ESTD

Cal File: a-b30005.d


Calibration Sample, Level: 3 Als bottle: 5

Dil Factor: 1.00000

Compound Sublist: 1-all.sub Integrator: Falcon

Target Version: 3.40

						AMOUN	TS
						CAL-AMT	ON-COL
Compour	nds	RT	EXP RT	DLT RT	RESPONSE	( ng)	( ng)
	<b>海沙亚迪国国国际中国城市委员员地</b> 农农港市	44			222227	******	
8 1	PENTACHLOROPHENOL	17.334	17 334	0.000	13573473	0.01064	0 01121
1 !	DALAPON	4.649	4 649	0.000	5594808	0.04390	0 04224
\$ 2 1	DCAA	12.244	12 244	0 000	29812130	0 08510	0 08154
3 !	DICAMBA	12 934	12.934	0.000	11340079	0.04250	0 04328
4 1	MCPP	13 430	13 430	0.000	2102050	8 52000	7 163
5	мсра	14.436	14 436	0 000	2844301	8.56000	7.352
6	DICHLOROPROP	15.738	15 738	0.000	5481454	0.08480	0 08444
7	2,4-D	17 062	17.062	0.000	6595260	0.08510	0.09096
9	2,4,5-TP(SILVEX)	18.507	18 507	0 000	14416024	0.02110	0 02240
10	2,4,5-T	19.160	19 160	0.000	12482638	0 02110	0 02335
11	2,4-DB	19 678	19.678	0.000	5937749	0.08450	0.09502
12	DINOSEB	20.345	20.345	0.000	8495104	0.01270	0.01277



Data File: /var/chem/gcl.i/2250.b/a-b30006.d

Report Date: 25-May-2000 18:29

#### STL-PITTSBURGH

Data file: /var/chem/gc1.i/2250.b/a-b30006.d

Lab Smp Id: MHherb

Inj Date : 25-MAY-2000 14:51

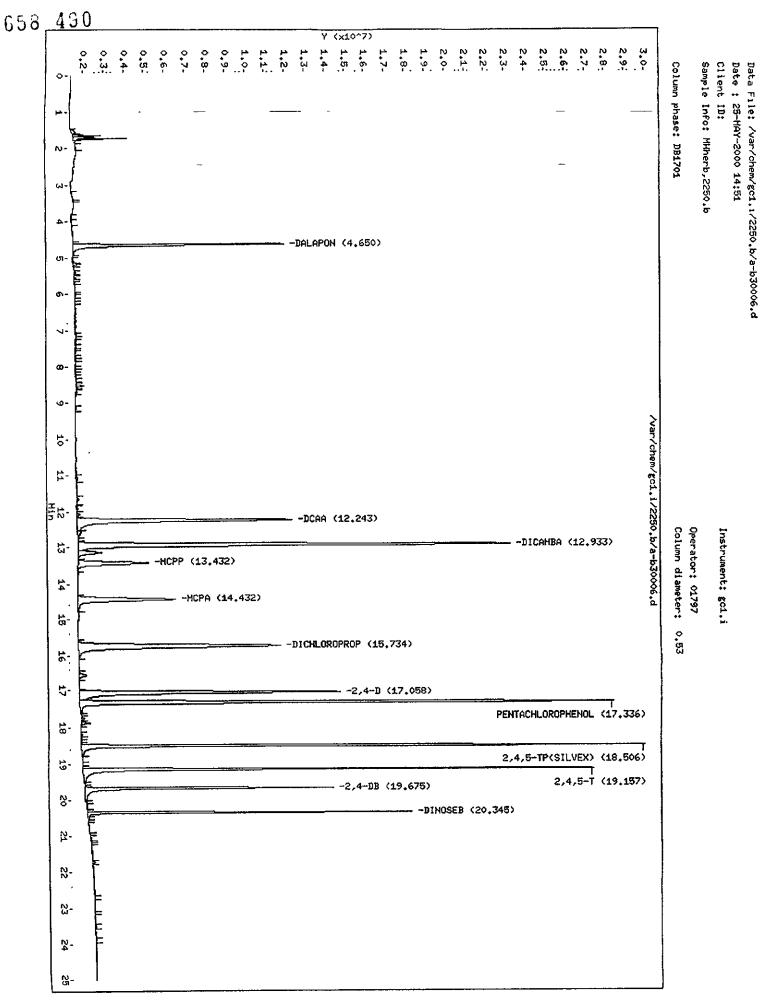
Operator : 01797 Inst ID: gcl.i

Smp Info : MHherb, 2250.b

Misc Info: 190-80-4

Comment

Method : /var/chem/gcl.i/2250.b/LONGHB.m Meth Date : 25-May-2000 18:29 eppinged Qua Quant Type: ESTD Cal File: a-b30006.d Cal Date : 25-MAY-2000 14:51


Calibration Sample, Level: 4 Als bottle: 6

Dil Factor: 1.00000

Compound Sublist: 1-all.sub Integrator: Falcon

Target Version: 3.40

					AMOUN	rrs
					CAL-AMT	ON-COL
Con	mpounds	RT	EXP RT DLT RT	RESPONSE	( ng)	( ng)
	医多种氏试验 化异合物 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	33		******	******	*****
	8 PENTACHLOROPHENOL	17.336	17 334 0 002	26622591	0.02128	0.02180
	1 DALAPON	4 650	4.649 0.001	10473629	0 08780	0.08109
\$	2 DCAA	12 243	12.244 -0 001	53257742	0.17000	0 1511
	3 DICAMBA	12 933	12.934 -0 001	21512126	0.08510	0 08284
	4 MCPP	13.432	13.430 0.002	3481697	17.0000	12.83
	5 MCPA	14 432	14.436 -0 004	4800267	17.1000	13.32
	6 DICHLOROPROP	15 734	15 738 -0 004	10005248	0.17000	0 1578
	7 2,4-D	17.058	17.062 -0.004	12947139	0.17000	0.1763
	9 2,4,5-TP(SILVEX)	18.506	18.507 -0 001	28131856	0.04210	0.04329
	10 2,4,5-T	19.157	19.160 -0 003	25501948	0.04220	0 04620
	11 2,4-DB	19.675	19 678 -0.003	12330648	0.16900	0 1894
	12 DINOSEB	20 345	20.345 0.000	16209858	0.02540	0 02462



Data File: /var/chem/gcl.i/2250.b/a-b30007.d

Report Date: 25-May-2000 18:29

#### STL-PITTSBURGH

Data file: /var/chem/gcl.i/2250.b/a-b30007.d Lab Smp Id: Hherb

2.

Inj Date : 25-MAY-2000 15:20

Inst ID: gcl.i Operator : 01797

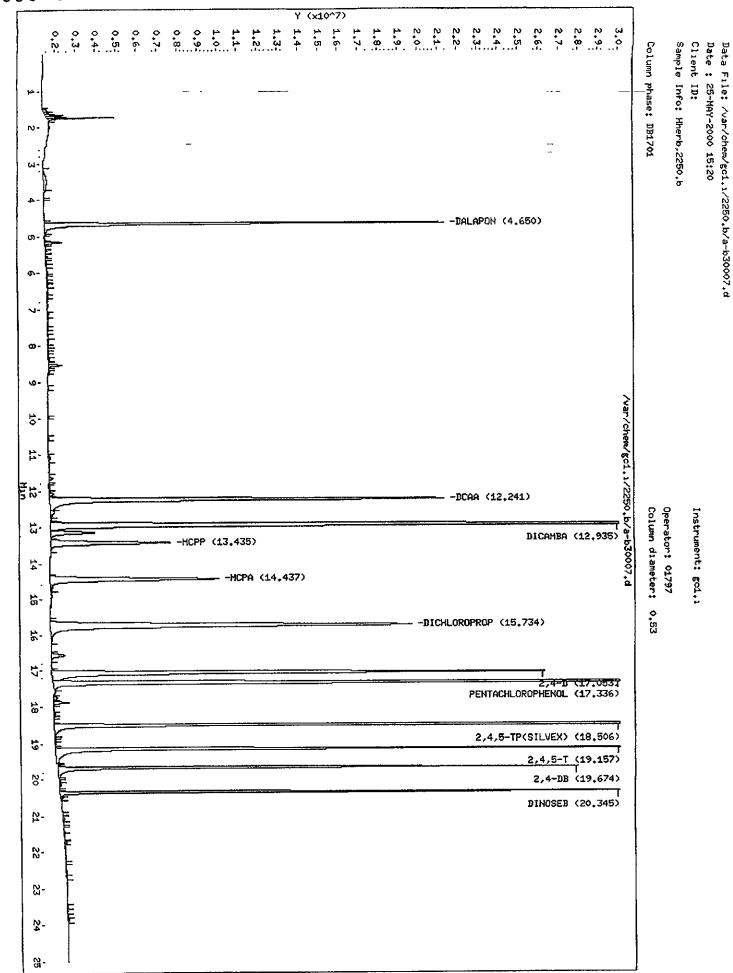
Smp Info : Hherb, 2250.b Misc Info : 190-80-5

Comment

: /var/chem/gcl.i/2250.b/LONGHB.m Method

Meth Date: 25-May-2000 18:29 eppinged Cal Date: 25-MAY-2000 15:20 Quant Type: ESTD

Cal File: a-b30007.d


Calibration Sample, Level: 5 Als bottle: 7

Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: 1-all.sub

Target Version: 3.40

						AMOUN	TS
						CAL-AMT	ON-COL
Compou	ınds	RT	EXP RT	DLT RT	response	( ng)	( ng)
<b>=</b> 2.0 0 0 0	2. 医医性性 计分析 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基		522FG\$		442222	8 W # # # # #	******
8	PENTACHLOROPHENOL	17.336	17.334	0 002	49543350	0 04255	0 04096
1	DALAPON	4 650	4 649	0 001	19864883	0.17600	0.1578
\$ 2	DCAA	12 241	12 244	-0 003	93763878	0 34000	0 2781
3	DICAMBA	12 935	12 934	0 001	39421239	0 17000	0.1551
4	MCPP	13.435	13.430	0 005	5884988	34.1000	23.39
5	MCPA	14 437	14 436	0 001	8348609	34.0000	24 74
6	DICHLOROPROP	15 734	15.738	-0.004	17992592	0 33900	0.2934
7	2,4-D	17.053	17.062	-0.009	24524303	0.34000	0 3352
9	2,4,5-TP(SILVEX)	18.506	18.507	-0 001	53418594	0.08400	0.08256
10	2,4,5-T	19.157	19 160	-0.003	50568653	0.08440	0.09007
11	2,4-DB	19.674	19.678	-0.004	25852130	0 33800	0 3836
12	DINOSEB	20.345	20 345	0 000	30650939	0.05080	0.04734



Data File: /var/chem/gc1.i/2250.b/a-b30049.d

Report Date: 26-May-2000 12:21

# STL-PITTSBURGH

Data file : /var/chem/gc1.i/2250.b/a-b30049.d

1 26

Lab Smp Id: Mherb

Inj Date : 26-MAY-2000 11:39

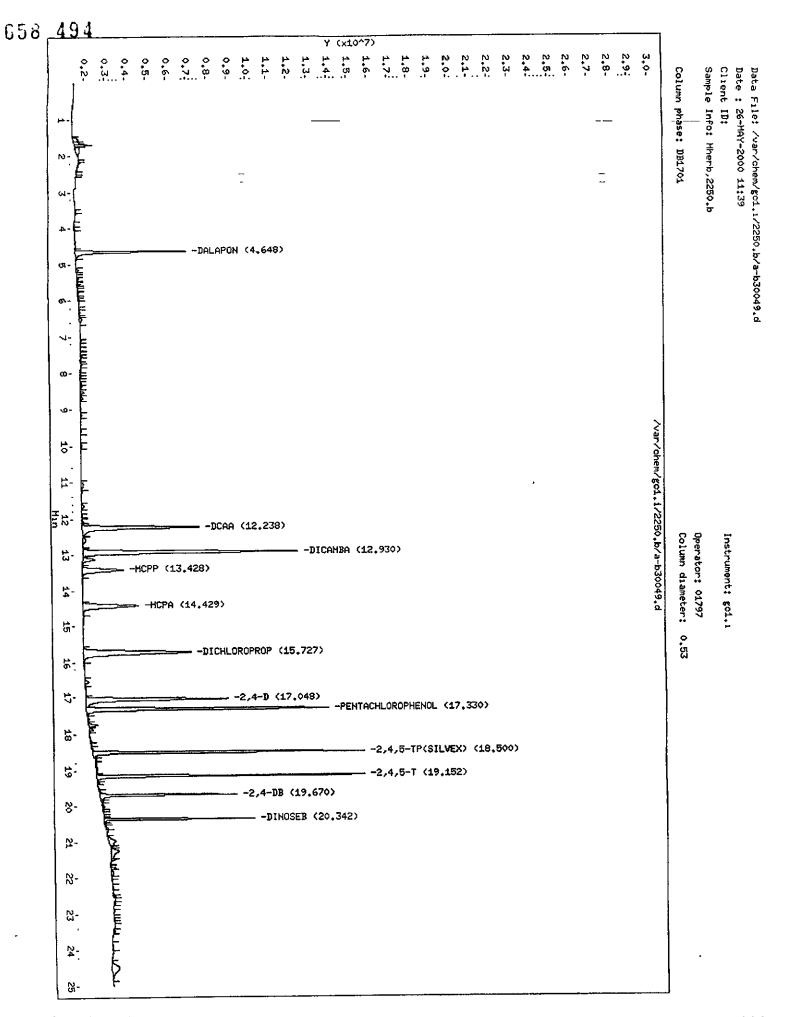
Operator: 01797 Inst ID: gcl.i

Smp Info : Mherb,2250.b Misc Info : 190-80-3

Comment :

Method : /var/chem/gcl.i/2250.b/LONGHB.m

Meth Date: 26-May-2000 12:21 g Quant Type: ESTD


Cal Date : 25-MAY-2000 15:20 Cal File: a-b30007.d

Als bottle: 49 Continuing Calibration Sample

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: all.sub

Target Version: 3.40

						AMOU:	NTS
						CAL-AMT	ON-COL
Cor	npounds	ŔŦ	EXP RT	DLT RT	RESPONSE	( ng)	( ng)
	- 华比西国西省市立为华华市西省国家国家中华大学市		*****			244E388	******
	1 DALAPON	4 648	4.649	-0.001	5429399	0.04390	0 04312
\$	2 DCAA	12 238	12 244	-0.006	28293661	0.08510	0.08391
	3 DICAMBA	12 930	12 934	-0 004	10640246	0.04250	0.04187
	4 MCPP	13.428	13.430	-0 002	2019291	8 52000	8.027
	5 MCPA	14 429	14.436	-0.007	2718169	8.56000	8.056
	6 DICHLOROPROP	15.727	15.738	-0.011	5325347	0.08480	0 08683
	7 2,4-D	17 048	17 062	-0 014	7021275	0.08510	0.09597
	8 PENTACHLOROPHENOL	17.330	17 334	-0 004	11969671	0 01064	0 009895
	9 2,4,5-TP(SILVEX)	18.500	18.507	-0.007	13528644	0.02110	0 02091
	10 2,4,5-T	19.152	19.160	-0 008	13303605	0.02110	0 02370
	11 2,4-DB	19 670	19.678	-0 008	6811516	0.08450	0.1011
	12 DINOSEB	20.342	20 345	-0 003	7465765	0.01270	0 01153



Data File: /var/chem/gc1.i/2250.b/a-b30066.d

Report Date: 27-May-2000 08:46

#### STL-PITTSBURGH

Data file : /var/chem/gc1.i/2250.b/a-b30066.d

Lab Smp Id: Mherb
Inj Date : 26-MAY-2000 19:53

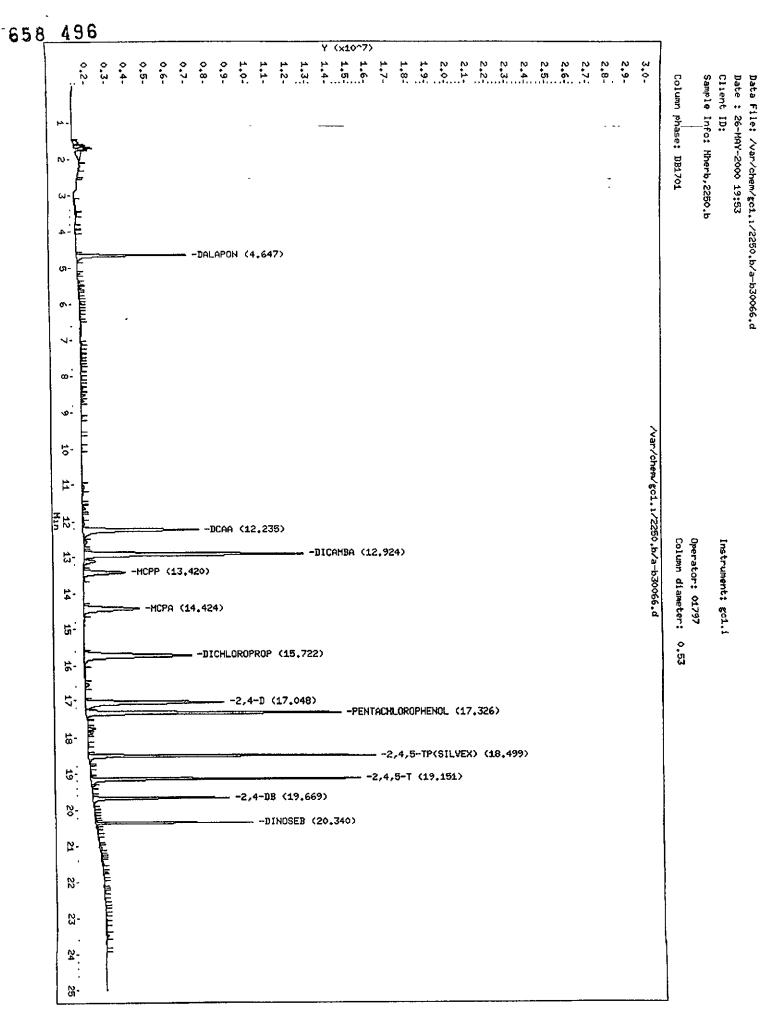
Inst ID: gcl.i Operator : 01797

Smp Info : Mherb, 2250.b Misc Info: 190-80-3

Comment

Quant Type: ESTD

Method : /var/chem/gcl.i/2250.b/LONGHB.m Meth Date : 27-May-2000 08:40 g Qua Cal Date : 25-MAY-2000 15:20 Cal Cal File: a-b30007.d


Continuing Calibration Sample Als bottle: 65

Dil Factor: 1.00000

Compound Sublist: all.sub Integrator: Falcon

Target Version: 3.40

					NUOMA	TS
					CAL-AMT	ON-COL
Co	mpounds	RT	EXP RT DLT RT	RESPONSE	(ng)	( ng)
**				9888343 <b>2</b>	2022年2457	
	1 DALAPON	4 647	4 649 -0 00	2 5488934	0.04390	0 04360
\$	2 DCAA	12 235	12 244 -0.00	9 29138667	0.08510	0 08642
	3 DICAMBA	12.924	12 934 -0.01	0 11018965	0.04250	0.04336
	4 MCPP	13.420	13 430 -0.01	0 2083189	8.52000	8.281
	5 MCPA	14.424	14.436 -0.01	2 2797593	8 56000	8.292
	6 DICHLOROPROP	15.722	15 738 -0.01	6 5442857	0 08480	0 08874
	7 2,4-D	17.048	17.062 -0.01	4 6996912	0.08510	0 09564
	8 PENTACHLOROPHENOL	17.326	17.334 -0 00	8 12802538	0.01064	0.01058
	9 2,4,5-TP(SILVEX)	18 499	18 507 -0.00	8 14449389	0.02110	0 02233
	10 2,4,5-T	19 151	19.160 -0 00	9 13542876	0.02110	0.02412
	11 2,4-DB	19.669	19 678 -0.00	9 6898839	0.08450	0.1024
	12 DINOSEB	20.340	20 345 -0.00	5 7938199	0.01270	0 01226



HERBICIDE QC DATA 658 498

# UXB INTERNATIONAL METHOD BLANK COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG N

SDG Number:

Matrix (soil/water) WATER

Lab Sample ID: C0E240000 491

Method: SW846 8151A

Work Order: DDN20101

Dilution factor: 1

Herbicides (8151A)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00

Date Extracted: 05/24/00 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0145491

Client Sample Id: INTRA-LAB BLANK

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	_Q
94-75-7	2,4-D	4.0	_ U
93-72-1	2,4,5-TP (Silvex	)   1.0	U

Data File: /var/chem/gc1.i/2250.b/a-b30063.d

Report Date: 27-May-2000 08:46

#### STL-PITTSBURGH

Data file : /var/chem/gc1.i/2250.b/a-b30063.d

Lab Smp Id: DDN20101 Client Smp ID: PBLK1

Inj Date : 26-MAY-2000 18:25 Operator : 01797 Smp Info : DDN20101,2250.b Inst ID: gc1.i

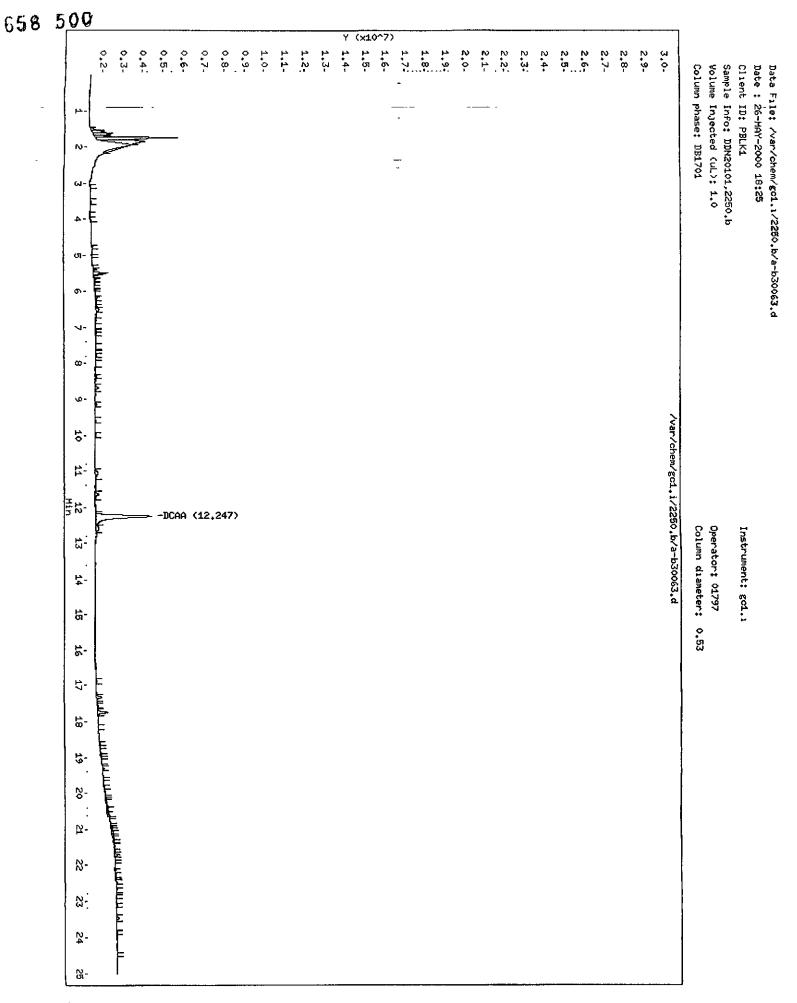
Misc Info: 230195BLK

Comment

: /var/chem/gc1.i/2250.b/LONGHB.m Method

Meth Date : 27-May-2000 08:40 g Cal Date : 25-MAY-2000 15:20 Quant Type: ESTD Cal File: a-b30007.d Als bottle: 62 QC Sample: BLANK

Dil Factor: 1.00000


Integrator: Falcon Compound Sublist: all.sub

Target Version: 3.40

Concentration Formula: Amt * DF * 20*Vt/Vo/Vi

Name	Value	Description
DF	1.000	Dilution Factor
Vt		Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi		Volume injected

			CONCENTRATIONS		ATIONS		
					ON-	COLUMN	FINAL
Compounds		RT	EXP RT DLT RT	RESPONSE	(	ng)	( ug/L)
					==:		
1	DALAPON	Cod	mpound Not Detec	ted			
\$ 2	DCAA	12.247	12.244 0 003	16989146	0.	05039	10.08
3	DICAMBA	Cos	mpound Not Detec	ted.			
4	MCPP	Co	mpound Not Detec	ted			
5	MCPA	Co	mpound Not Detec	ted.			
6	DICHLOROPROP	Co	mpound Not Detec	ted.			
7	7 2,4-D	Co	mpound Not Detec	ted.			
8	PENTACHLOROPHENOL	Co	mpound Not Detec	ted			
9	2,4,5-TP(SILVEX)	Co	mpound Not Detec	ted			
10	) 2,4,5-T	Co	mpound Not Detec	ted			
1.7	1 2,4-DB	Co	mpound Not Detec	ted.			
12	DINOSEB	Co	mpound Not Detec	ted			



# UXB INTERNATIONAL CHECK SAMPLE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER Lab Sample ID:C0E240000 491

Method: SW846 8151A

Herbicides (8151A)

Sample WT/Vol: 1000 / mL Date Received: 05/23/00 Work Order: DDN20102 Date Extracted:05/24/00 Dilution factor: 1 Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0145491

Client Sample Id: CHECK SAMPLE

### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L Q
94-75-7	2,4-D	17.6
93-72-1	2,4,5-TP (Silvex)	4.16
93-76-5	2,4,5-T	4.47

Data File: /var/chem/gcl.i/2250.b/a-b30064.d

Report Date: 27-May-2000 08:46

#### STL-PITTSBURGH

Data file: /var/chem/gc1.i/2250.b/a-b30064.d

Lab Smp Id: DDN20102 Client Smp ID: LCS1

Inj Date : 26-MAY-2000 18:54

Operator : 01797 Inst ID: gcl.i

Smp Info : DDN20102,2250.b

Misc Info: 230195LCS

Comment

Method : /var/chem/gc1.i/2250.b/LONGHB.m Meth Date : 27-May-2000 08:40 g Qua Cal Date : 25-MAY-2000 15:20 Cal Quant Type: ESTD Cal File: a-b30007.d

Als bottle: 63 QC Sample: LCS

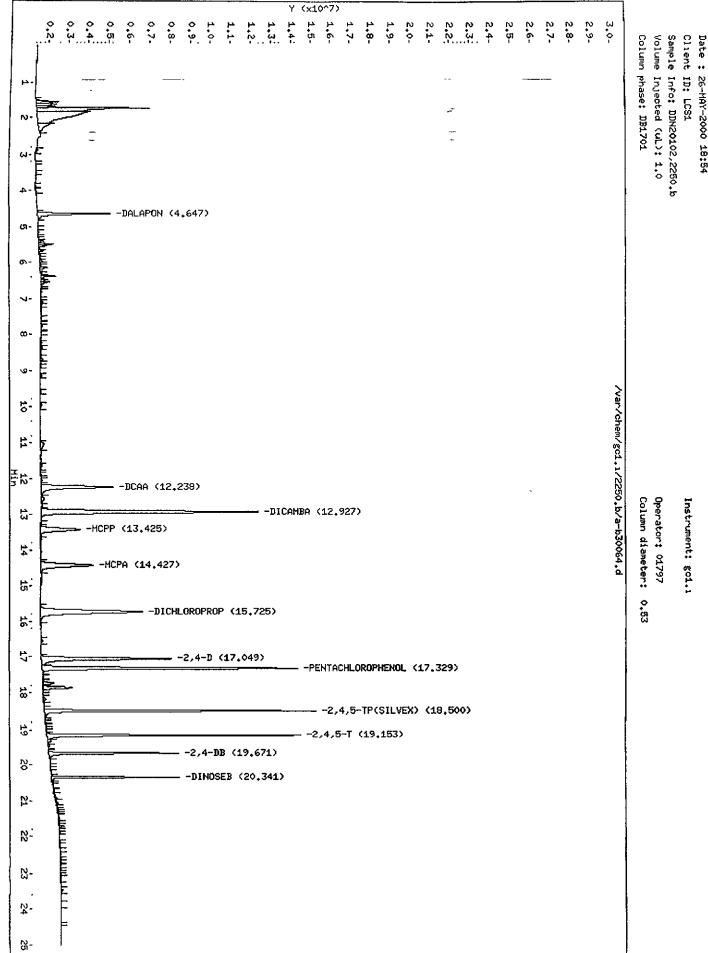
Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: all.sub

Target Version: 3.40

Concentration Formula: Amt * DF * 20*Vt/Vo/Vi

Name	Value	Description
DF	1.000	Dilution Factor
۷t	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected


						CONCENTRATIONS	
						on-column	FINAL
Compounds		RT	EXP RT	DLT RT	RESPONSE	(ng)	( ug/L)
		==				****	
1	DALAPON	4 647	4 649	-0 002	3586529	0.02849	5 698
\$ 2	DCAA	12.238	12 244	-0 006	17583865	0.05215	10 43
3	DICAMBA	12 927	12.934	-0 007	10711710	0.04215	8 430
4	MCPP	13.425	13.430	-0.005	1944728	7.73093	1546
5	MCPA	14.427	14 436	-0.009	2571072	7.62046	1524
6	DICHLOROPROP	15.725	15.738	-0.013	5051821	0 08237	16 47
7	2,4-D	17 049	17.062	-0.013	6433332	0 08793	17 59
8	PENTACHLOROPHENOL	17.329	17.334	-0 005	12650072	0.01046	2.091(R)
9	2,4,5-TP(SILVEX)	18 500	18 507	-0 007	13441240	0 02077	4 155
10	2,4,5-T	19.153	19 160	-0 007	12560828	0.02237	4.474
11	2,4-DB	19.671	19.678	-0 007	6430945	0 09544	19.09
12	DINOSEB	20.341	20 345	-0 004	6316738	0 00976	1 951

Data File: /var/chem/gc1.i/2250.b/a-b30064.d Report Date: 27-May-2000 08:46

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

----



Data File: /var/chem/gc1.1/2250.b/a-b30064.d

#### UXB INTERNATIONAL CHECK SAMPLE DUPLICATE COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WATER

Lab Sample ID:C0E240000 491

Method: SW846 8151A,

Herbicides (8151A) (

Date Received: 05/23/00

Sample WT/Vol: 1000 / mL Work Order: DDN20103

Date Extracted: 05/24/00

Dilution factor: 1

Date Analyzed: 05/26/00

Moisture %:NA

QC Batch: 0145491

Client Sample Id: DUPLICATE CHECK

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L Q
94-75-7	2,4-D	17.8
93-72-1	2,4,5-TP (Silvex)	4.33
93-76-5	2,4,5-T	4.57

Data File: /var/chem/gc1.i/2250.b/a-b30065.d

Report Date: 27-May-2000 08:46

#### STL-PITTSBURGH

Data file : /var/chem/gc1.i/2250.b/a-b30065..d

Lab Smp Id: DDN20103 Client Smp ID: LCD1

Inj Date : 26-MAY-2000 19:23

Operator: 01797 Inst ID: gcl.i

Smp Info : DDN20103,2250.b

Misc Info: 230195LCD

Comment

Method : /var/chem/gc1.i/2250.b/LONGHB.m

Meth Date : 27-May-2000 08:40 g Quant Type: ESTD Cal Date : 25-MAY-2000 15:20 Cal File: a-b30007.d

Als bottle: 64 QC Sample: LCSD

Dil Factor: 1.00000

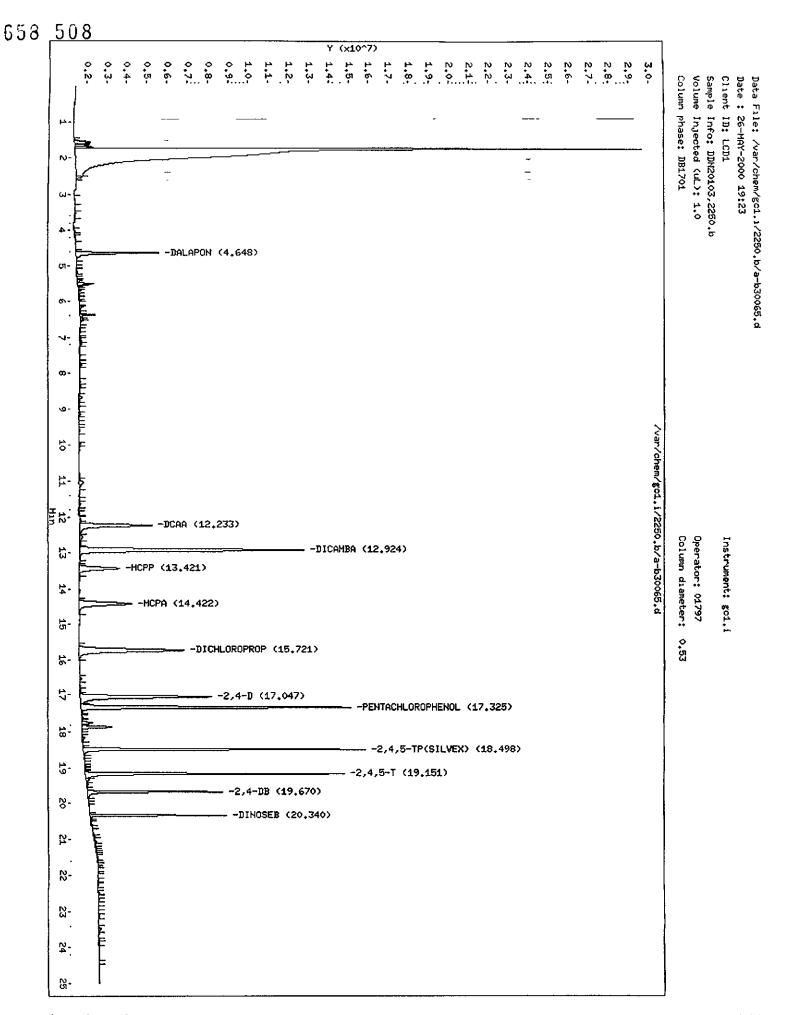
Integrator: Falcon Compound Sublist: all.sub

Target Version: 3.40

Concentration Formula: Amt * DF * 20*Vt/Vo/Vi

Name	Value	Description
DE	1 000	Dilukian Manhan
DF		Dilution Factor
٧t	10000.000	Volume of final extract (uL)
٧o	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected

						CONCENTRA	TIONS
				ON-COLUMN	FINAL.		
Compounds		RT	EXP RT	DLT RT	RESPONSE	( ng)	( ug/L)
		## EUDDIG E8988			******		
1	DALAPON	4.648	4.649	-0.001	4127716	0.03279	6 557
\$ 2	DCAA	12.233	12.244	-0.011	18246844	0.05412	10 82
3	DICAMBA	12 924	12.934	-0.010	11104456	0 04370	8.739
4	MCPP	13.421	13 430	-0.009	2002092	7 95897	1592
5	MCPA	14.422	14 436	-0.014	2629631	7 79403	1559
6	DICHLOROPROP	15.721	15.738	-0.017	5198876	0.08476	16.95
7	2,4-D	17 047	17 062	-0.015	6496343	0 08879	17 76
8	PENTACHLOROPHENOL	17 325	17 334	-0 009	13393287	0.01107	2.214(R)
9	2,4,5-TP(SILVEX)	18 498	18.507	-0.009	13999048	0 02164	4.327
10	2,4,5-T	19.151	19.160	-0 009	12832566	0.02286	4 571
11	2,4-DB	19.670	19.678	-0.008	6701120	0 09945	19.89
12	DINOSEB	20.340	20.345	-0 005	6761042	0.01044	2 088


STL Pittsburgh 5040

Data File: /var/chem/gc1.i/2250.b/a-b30065.d Report Date: 27-May-2000 08:46

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

40, 10



HERBICIDE MISCELLANEOUS

·····

STL Pittsburgh 5043

510 658 Separatory Funnel Date Extraction Began -Extraction Worksheet 2 2 3 5 2 13 19 12 Sodium Sulfate Mfg. Analyst Quanterra N \QA\LOGBOOKS\sepfun extr.doc May-00 (Record line number from above) 411 Lot Number 23019 Extract(s) ROUNE Adox 5 Date Completed 5-25-00 60 60 K h Sample ID 500 00 50 7 Jaclos 5-25-00 5-24-00 Date Payamethir NOV V 20 x Dicypun Long 20/00 0500 0800 Time (8)51A 30 Client ID Lot Number Extract(s) Received Analyst 118583 Volume 1000 OP-00-0035 € Sopposition of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the PEFIZ-Volume (mL) 43 10.0 10/00 Ory Kre B*0145491 Surrogate Number EXT 190-89-3 to Solvent Lot BX2 Reviewed By 5-25-00 5-24-00 5/26/00 Date 244279 Sur**v**ogate Volume (mL) 2/40 1345 OPac amitted to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to have integrated to ha Matrix Spike Nø Extract(s) Relinquished Solvent Mig. 10-91-Analyst ans. Fo (<del>,</del> Matrix Spike Volume (mL) STL Piasburgh 450 William Pia Way Pittsburgh, PA 15238 412-820-8380 Glean up Mayo halar 191-192 PEFIAE, Page 36 of 1-00 Location Date 3.2: Cleanup Date 5044

Line	Vial	SampleName	Method	Inj	SampleType	InjVolume	DataFile
====	<b>#</b> = = =	=======================================	##65533	===	=========	=======	=======
58	2	HEXANE	HERB	1	Sample	year ver	
59	59	DDF8L102,2250-b	HERB		Sample	- 17-	· · ·
60	60	DDF8W102,2250.b	HERB	1	Sample	1	
61	61	DDF94102,2250.b	HERB	1	Sample	1 )	
62	62	DDN20101,2250.b	HERB	1	Sample		
63	63	DDN20102,2250.b	HERB	1	Sample	_	
64	64	DDN20103,2250.b	HERB	1	Sample		
65	65	Mherb,2250.b	HERB	1	Sample		
66	66	DDQLF101,2250.b	HERB	1	Sample		
67	67	DDQLF102,2250.b	HERB	1	Sample	. 1/1 .	
68	68	DDQLF103,2250.5	HERB	1	Sample	1///	
69	69	DDLXR101/2250.b	HERB	1	Sample	120100	
70	70	DDLXV101,2250.b	HERB	1	Sample	500100	
71	71	DDR3J101,2250.b	HERB	1	Sample	·	
72	72	DDR3J102,2250.b	HERB	1	Sample		
73,	<del>/1</del> 3	DDNP2106,2250.b	HERB	1	Sample		
74	74	DDNP2107,2250.b	HERB	1	Sample		
75	75	DDNP2102,2250.b	HERB	1	Sample		
76	55	DDLCE101,2250.b_	HERB	1	Sample		
77	56	DDLCG101,2250.b	HERB	1	Sample		
78	76	Mherb, 2250.b	HERB	1	Sample		

Sequence Table (Back Injector):

Vial Information Part:

١	/
1	
d	
<u></u>	

Line	Vial	Vial Information
1	1	RINSE
2	2	RINSE
3	3	190-80-1
4	4	190-80-2
5	5	190-80-3
6	6	190-80-4
7	7	190-80-5
8	8	170150BLK
9	9	170150LCS
10	10	170150003S
11	11	170150003D
12	12	170150002
13	13	170150003

658 512 Sequence: C:\HPCHEM\2\SEQUENCE\2250.S

Line	Vial		mation	:=========	= = = = = = = <b>= = =</b>		===
14	14	180158001	•				
15	15	190181001	<u> </u>			-	_
16	16	190181002				<del>-</del>	
17	17	190181003					
18	18	180303BLK					
19	19	180303LCS					
20	20	180303001S					
21	21	180303001D					
22	22	180303001					
23	23	170151001					
24	24	170159001					
25	25	170151BLK					
26	26	170151LCS				_	
27	27	170151LCD				•	
28	28	190-80-3					
29	29	230156001					
30	30	230156002					
31	31	230156003					
32	32	230156003S					
33	33	230156003D					
34	34	230156004	t				
35	35	130142001					
36	36	230156BLK					
37	37	230156LCS					
38	38	190257001					
39	39	190257001S					
40	40	190257001D					
41	41	190257BLK					

	ine V		Vial Information	<del></del>
4	12	42	190257LCS	02-
4	43	43	130141001	67
4	44	44	170152-2	- -
•	45	45	170158-2	<del></del>
	46	46	170160-2	
	47	47	240137-2	
	48	48	130141BLK	
	49	49	190-80-3	
	50	50	130141LCS	
	51	51	130141LCD	
	52	52	240124BLK	•
	53	53	240124LCS	
	54	54	240124LCD	
	55	55	240124003	
	56	56	240124004	
	57	57	230195-1	
	58	58	240144-1	
	59	2	RINSE	
	60	59	190188-2	
	61	60	190188-4	
	62	61	190188-5	
	63	62	230195BLK	
	64	63	230195LCS	
	65	64	230195LCD	
	66	65	190-80-3	
	67	66	240186BLK	
	68	67	240186LCS	
	69	68	240186LCD	

Line	Vıal	Vial Information	
====	====	=======================================	=======================================
70	69	240186001	-
71	70	240186002	
72	71	250138BLK _	<del>-</del>
73	72	250138LCS	
74	73	250138001S	
75	74	250138001D	
76	75	250138001	
77	55	240124003 *50	
78	56	240124004 *10	
79	76	190-80-3	

Method and Injection Info Part:

Line	Vial	SampleName	Method	Inj	SampleType	InjVolume	DataFile
====	====		=======	===	=========	========	========
1	1	HEXANE	HERB	1	Sample		
2	2	HEXANE	HERB	1	Sample		
3	3	Lherb, 2250.b	HERB	1	Sample		
4	4	MLherb,2250.b	HERB	1.	Sample		
5	5	Mherb, 2250.b	HERB	1	Sample		
6	6	MHherb,2250.b	HERB	1	Sample		
7	7	Hherb, 2250.b	HERB	1	Sample		
8	8	DDH3H101,2250.b	HERB	1	Sample		
9	9	DDH3H102,2250.b	HERB	1	Sample		
10	10	DD9N6105,2250.b	HERB	1	Sample		
11	11	DD9N6106,2250.b	HERBA	1	Sample		
12	12	DD9MW102,2250.b	HERBA	1	Sample		
13	13	DD9N6104,2250.b	HERBA	1	Sample		
14	14	DDCJ8101,2250.b	HERBA	1	Sample		
15	15	DDF6M101,2250.b	HERBA	1	Sample		
16	16	DDF6P101,2250.b	HERBA	1	Sample		
17	17	DDF6Q101,2250.b	HERBA	1	Sample		
18	18	DDH3F101,2250.b	HERBA	1	Sample		
19	19	DDH3F102,2250.b	HERBA	1	Sample		
20	20	DDDV1110,2250.b	HERBA	1.	Sample		
21	21	DDDV1111,2250.b	HERBA	1	Sample		
22	22	DDDV1105,2250.b	HERBA	1	Sample		
23	23	DD9NN11D,2250.b	HERBA	1	Sample		
24	24	DD9PJ12G,2250.b	HERBA	1	Sample		
25	25	DDJCV101,2250.b	HERBA	1	Sample		
26	26	DDJCV102,2250.b	HERBA	1	Sample		
27	27	DDJCV103,2250.b	HERBA	1	Sample		
28	28	Mherb,2250.b	HERBA	1.	Sample		
29	29	DDJX1102,2250.b	HERBA	1	Sample		
30	30	DDJX5102,2250.b	HERBA	1	Sample		
31	31	DDJX7102,2250.b	HERBA	1	Sample		

	•• •	C	Makibad	T-4-2	G ]	T - 437 - 7	Data n. 1
		SampleName	Method	Inj	SampleType		DataFile
====	====	=======================================	=======	===	=======		=======
32	32	DDJX7103,2250.b	HERBA	1	Sample	0	
33	33	DDJX7104,2250.b	HERBA		Sample		<del>-</del> -
34	34	DDJX9102,2250.b	HERBA	1	Sample		
35	35	DD5VE11D,2250.b	HERBA	1	Sample	•	
36	36	DDN48101,2250.b	HERBA	1	Sample	u	
37	37	DDN48102,2250.b	HERBA	1	Sample	ñ	
38	38	DDFV6105,2250.b	HERBA	1	Sample	• •	
. 39	39 .	DDFV6103,2250.b	HERBA	1	Sample	• 1	
40	40	DDFV610T,2250.b	HERBA	î	Sample		
41	41	DDFV0101,2250.b	HERBA	1	Sample		
42	42	DDKWG101,2250.b	HERBA	i	Sample		
43	43	DD5VC117,2250.b	HERBA	ì	Sample		
44	44	DD3VC117,2230.b	HERBA	1	Sample		
45	45	DD9N112A,2250.b	HERBA	1	Sample		
45 46	45 46	DD9PX115,2250.b	HERBA	1	Sample		
	47	DDJFK113,2230.b	HERBA	1	Sample		
47 48	48	DDM76101,2250.b	HERBA	1	Sample		
49	49	Mherb, 2250.b	HERBA	1	Sample		
		DDM76102,2250.b	HERBA	1	Sample		
50 51	50 51		HERBA	1	Sample		
51 52	51 53	DDM76103,2250.b	HERBA	1	Sample		
52	52 53	DDN1X101,2250.b	HERBA	1	Sample		
53		DDN1X102,2250.b	HERBA	1	Sample		
54	5 <b>4</b>	DDN1X103,2250.b	HERBA	1	Sample		
55 56	55	DDLCE101,2250.b	HERBA	1	Sample		
56	56 67	DDLCG101,2250.b	HERBA	1	Sample	,	
57	57	DDK90112,2250.b			Sample		
58	58	DDLFR11E,2250.b	HERBA	1 1	Sample		
59	2	HEXANE	HERBA	1	-		
60	59	DDF8L102,2250.b	HERBA HERBA	1	Sample Sample		
61	60	DDF8W102,2250.b		1	Sample		
62	61	DDF94102,2250.b	HERBA HERBA	1	Sample		
63	62	DDN20101,2250.b		1	Sample		
64	63	DDN20102,2250.b	HERBA	ì	Sample		
65	64	DDN20103,2250.b Mherb,2250.b	HERBA HERBA	1	Sample		
66	65	DDQLF101,2250.b	HERBA	1	Sample		
67 60	66	DDQLF101,2250.b	HERBA	1	Sample		
68	67 68	DDQLF102,2250.b	HERBA	1	Sample		
69	68		HERBA	1	Sample		
70	69	DDLXR101,2250.b DDLXV101,2250.b	HERBA	1	Sample		
71	70	DDR3J101,2250.b	HERBA	1	Sample		
72	71	-	HERBA	1	Sample		
73	72 73	DDR3J102,2250.b DDNP2106,2250.b	HERBA	1	Sample		
74	73 74	DDNP2106,2250.b	HERBA	1	Sample		
75	74 75	DDNP2107,2250.b	HERBA	1	Sample		
76	75 55	DDNP2102,2250.b	HERBA	1	Sample		
77	55 56	DDLCG101,2250.b	HERBA	1	Sample		
78 79	76	Mherb, 2250.b	HERB	1.	Sample		
19	70	MITCED, 2230.D	مده د د د	<b></b>	Dampro		

PSR024

5/24/00 13:51:14 MT SAMPLE CUSTODIAN REMOVAL REQUEST

PAGE 001

REQUESTED BY: YUSHINSC

METHOD: QS Herbicides (8151A)

STORAGE LOCATION	WORK ORDER #	PICKED CNTR#	CONTROL #	CLIENT #	ANALYSIS	LOTID	SMP#	<u>sfx</u>	MATRIX DESCRIPTION	—- <del>7р</del> г		Y Q1	
4 <b>F</b>	DDK90-1-12		236511	399411	I-OA-QS	COE230195	001	W	ATER		0	9	1
6E CLP1	DDLFR-1-1E		236510	416241	I-OA-QS	COE240144	001	W	ATER		0	20	1
5R3,4L2,CS5B,SU	DDF8L-1-02		236512	394097	I-OA-QS	H0E190188	002	W	ATER		0	10	1
5R3,4L2,CS5B,SU	DDF8W-1-02		236513	394097	I-OA-QS	H0E190188	004	u	ATER		0	9	1
5R3,4L2,CS5B,SU	DDF94-1-02		236514	394097	I-OA-QS	H0E190188	005	u	ATER		0	9	1

RELINQUISHED BY  JUSHINSKI  JUSHINSKI	Juskinski Juskinski	5-24-001540 5-24-00 223

**METALS DATA** 

	Client ID	Lab Sample ID:	
	DF/S1/0137/WA/001	DDK90	
	DF/S1/0137/WA/001D	DDK90D	
	DF/S1/0137/WA/001S	DDK90S	
and for comp	leteness, for other than conditions detailed	terms and conditions of the contract, both tea above. Release of the data combined in this ad on diskette has been authorized by the Lat	hardcop
and for comp data package	6010B, 7470A  this data package is in compliance with the eleteness, for other than conditions detailed and in the computer-readable data submitted the Manager's designee, as verified by the form	above. Release of the data combined in this d on diskette has been authorized by the Lat	hardcop boratory
and for comp data package Manager or t	this data package is in compliance with the eleteness, for other than conditions detailed and in the computer-readable data submitt	above. Release of the data combined in this d on diskette has been authorized by the Lat llowing signature.	hardcop boratory

REVIEWED BY: QUF
DATE: 5-27-00

Version 3.63.4

Cover Page Equivalent

METALS RESULTS

STL Pittsburgh

#### Metals Data Reporting Form

Sample Results

Lab Sample ID: DDK90 Client ID: DF/S1/0137/WA/001

Matrix: Water Units: ug/L Prep Date: 5/24/00 Prep Batch: 0145186

Weight: NA Volume: 50 Percent Moisture: NA

	WL/		Report		Γ			Anal	Anal
Element	Mass	MDL_	Limit	Conc	Q	DF	Instr	Date	Time
Aluminum	308.22	12.7	200	7010	N	1	ICP	5/25/00	9:00
Antimony	220.35	1.5	60.0	1.5	В	1	ICPST	5/26/00	8:52
Arsenic	189.04	2.6	10.0	6.4	В	1	ICPST	5/26/00	8:52
Barium	493.41	0.41	200	208		1	ICP	5/25/00	9:00
Beryllium	313.04	0.071	5.0	0.20	В	1	ICP	5/25/00	9:00
Cadmium	226.50	0.49	5.0	0.49	บ	1	ICPST	5/26/00	8:52
Calcium	317.93	37.9	5000	38100		1	ICP	5/25/00	9:00
Chromium	267.72	1.0	10.0	10.1		1	ICPST	5/26/00	8:52
Cobalt	228.62	3.2	50.0	3.2	U	1	ICP	5/25/00	9:00
Copper	324.75	2.2	25.0	16.6	В	1	ICP	5/25/00	9:00
Iron	259.94	8.8	100	6870		1	ICP	5/25/00	9:00
Lead	220.35	1.9	3.0	22.5		1	ICPST	5/26/00	8:52
Magnesium	279.08	19.9	5000	5500		1	ICP	5/25/00	9:00
Manganese	257.61	0.87	15.0	79.8		1	ICP	5/25/00	9:00
Nickel	231.60	6.1	40.0	11.7	В	1	ICP	5/25/00	9:00
Potassium	766.49	496	5000	4140	В	1	ICP	5/25/00	9:00
Selenium	220.35	2.1	5.0	2.1	U	1	ICPST	5/26/00	8:52
Silver	328.07	0.94	10.0	0.94	U	1	ICPST	5/26/00	8:52
Sodium	589	14.5	5000	1200	В	1	ICP	5/25/00	9:00
Thallium	190.86	3.9	10 0	3.9	U	1	ICPST	5/26/00	8:52
Vanadium	292.40	1.8	50.0	13.0	В	1	ICP	5/25/00	9:00
Zine	213.86	3.1	20.0	49.1	<u> </u>	1	ICP	5/25/00	9:00

Comments: Lot #: C0E230195 Sample #: 1

5 %

U Result is less than the MDL

Form 1 Equivalent

#### Metals Data Reporting Form

Sample Results

Lab Sample ID:

DDK90

Client ID:

DF/S1/0137/WA/001

Matrix:

Water

Units:

ug/L

**Prep Date:** 5/25/00

Prep Batch:

냋¥

0145297

Weight:

NA

Volume:

100

Percent Moisture:

NA

Element	WL/ Mass	MDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.045	0.20	0.045	U	1	CVAA	5/25/00	11:46

Initial Cali	ibration	Verifica	ition Stan	dard	A.A.	**						<u> </u>
Instrument	:- C7	/AA	_		Ţ	<u> </u>	Units:	1	ıg/L ·		-	-7-
Chart Num	ber: 052	25HGA.F	RN		C		Accepta	ble Ra	nge:8	0% - 1	20%	
Standard Se	ource: _		•	Standar	d ID:	0	014-10	9-12				
WL/ True ICV5-1 5/25/00 9:49 AM %					77	%	13	%	TC	%	F1	%
Element	Mass	Conc Found Rec Found				Rec	Found	Rec	Found	Rec	Found	Rec
Mercury	253.7	2 5										

#### Metals Data Reporting Form

Initial Calib	ration Verificatio	n Standard					£4,s	
Instrument:	ICP	~	<del></del> -	Units:	ug/L	-	76	

Chart Number: J00525A.ARC Acceptable Range: 90% - 110%

Standard Source: Inorganic Ventures Standard ID: 0014-061-7.

			ICV2- 5/25/0 7:54 Al	)								
	WL/	True		%		%		%		%		%
Element	Mass	Conc	Found	Rec	Found	Rec	Found	Rec	Found	Rec	Found	Rec
Aluminum	308.215	25000.0	25134.36	100.5								
Barium	493.409	1000.0	995.52	99.6				j				
Beryllium	313.042	1000 0	982.99	98.3						Ī		į
Calcium	317.933	25000.0	25393.58	101.6						-		
Cobalt	228.616	1000 0	1004.78	100.5				į				
Copper	324.754	1000.0	989 67	99.0				Ì				
Iron	259.94	25000.0	26197.54	104.8								}
Magnesium	279.079	25000.0	25537.82	102.2								
Manganese	257.61	1000.0	1010.27	101.0								
Nickel	231.604	1000.0	1012.93	101.3								
Potassium	766.491	25000.0	25055 00	100.2								
Sodium	588 995	25000.0	25213.46	100.9						1		
Vanadium	292.402	1000.0	993.94	99.4		}						
Zinc	213.856	1000.0	1003.38	100.3								

Initial Cali	bration ^v	Verifica	tion Stan	dard	Îzi							**
Instrument:	IC.	PST	<del></del>	-		_	Units:	- · i	ig/L	_		**
Chart Numi	ber: <u>T0</u> 0	)526A.A	(		Acceptable Range: 90% - 110%							
Standard Sc	ource:	In	organic Ve	ntures			Standar	d ID:	0	014-07	9-6	
	WL/	True	ICV3- 5/26/0 7·43 A	0		%		%		%		%
Element	Mass	Conc	Found	Rec	Found_	Rec	Found	Rec	Found	Rec	Found	Rec
Antimony	220.353	250.0	248.08	99.2						}		
Arsenic	189.042	250.0	250.39	100.2						Ì		
Cadmium	226.502	250.0	245.23	98.1								1
Chromium	267.716	1000.0	1007.94	100.8								
Lead	220.353	250.0	250.42	100.2								
Selenium	220 353	250.0	251.01	100.4								
Silver	328.068	500.0	499.56	99.9								
Thallium	190.864	500.0	507.74	101.5						1		

Continuing	g Calibra	tion Ve	rification	1								•
Instrument	:CV	'AA	_				Units:	-1	ug/L			<u>.</u>
Chart Ņum	ber: <u>052</u>	5HGA.P	RN				Accepta	ble Ra	inge: 8	0% - 1	20%	
Standard S	ource:	In	organic Ve	ntures			Standar	d ID:	00	)14-10	9-13	<del>-</del>
			CCV5-	·1	CCV5-	-2	CCV5-	3	CCV5	-4	CCV5	-5
	1		5/25/0	0	5/25/0	0	5/25/00 5/25/00				5/25/0	0
Ì	WL/		9:53 A	M	10:17 A	M	10:42 A	M	11:07 A	M	11:33 A	M
	** 🗗	True		%		%		%		%		%
Element	Mass	Conc	Found	Rec	Found	Rec	Found	Rec	Found	Rec	Found	Rec
Mercury	253.7	5.0	5.13	102.6	5.09	101.8	5.02	100.4	5.12	102.4	5.18	103.6

#### Metals Data Reporting Form

Continuing Calibration Verification * # # # _-:Units: ___ug/L Instrument: CVAA -Acceptable Range: 80% - 120% Chart Number: 0525HGA.PRN Standard ID: 0014-109-13 Standard Source: Inorganic Ventures CCV5-6 5/25/00 11:52 AM WL/ % % % % True Rec Found Rec Found Rec Found Rec Rec **Found** Element Mass Conc Found 5.0 5.14 102.8 Mercury 253.7

#### Metals Data Reporting Form

Continuing Calibration Verification

Instrument: ICP _____Units: ug/L

Chart Number: J00525A.ARC Acceptable Range: 90% - 110%

Standard Source: Inorganic Ventures Standard ID: 0014-087-7

											<del></del>	
			CCV2-	1	CCV2-	2	CCV2-	3				
			5/25/00	)	5/25/00	)	5/25/00	)				
	WL/		8:34 Al	VI.	8:48 Al	И	9:13 A	м				
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	True		%		%		%		%		%
Element	Mass	Conc	Found	Rec	Found	Rec	Found	Rec	Found	Rec	Found	Rec
Aluminum	308.215	50000.0	49678.20	99.4	49485.40	99.0	49693.21	99.4				
Barium	493.409	5000 0	4875.68	97.5	4866.47	97.3	4874.04	97.5				
Beryllium	313.042	5000.0	4934.68	98.7	4927.91	98.6	4977.85	99.6				
Calcium	317.933	50000.0	50561.52	101.1	50218.47	100.4	51097.76	102.2				
Cobalt	228.616	5000.0	4963.63	99.3	4952.87	99.1	5010.47	100.2				
Copper	324.754	5000.0	4913 89	98.3	4905.63	98.1	4910.59	98.2				
Iron	259.94	50000.0	51502 96	103.0	51367.95	102.7	51956.38	103.9				
Magnesium	279.079	50000.0	50020.92	100.0	49880.34	99.8	50126.85	100.3		ļ		
Manganese	257.61	5000.0	4956.77	99.1	4938.95	98.8	5003.07	100.1				
Nickel	231.604	5000.0	4971.74	99.4	4939.57	98.8	5019.78	100.4		i		
Potassium	766.491	50000.0	50041.59	100.1	49398.16	98.8	49085.69	98.2				
Sodium	588.995	50000.0	49811.38	99.6	49502.41	99.0	49029.39	98.1				
Vanadium	292 402	5000.0	4943.13	98.9	4927 43	98.5	4979 18	99.6				
Zinc	213.856	5000 0	4990.41	99.8	4961.14	99.2	5015.39	100.3				

#### Metals Data Reporting Form

			CCV3-	1	CCV3-	2						
	1		5/26/00	)	5/26/00	)		İ		l		
	1 3377 /		8·36 Al	М	9:09 Al	Л						
	WL/	True		%		%		%		%		%
Element	Mass	Conc	Found	Rec	Found	Rec	Found	Rec	Found	Rec	Found	Rec
Antimony	220.353	500.0	513.47	102.7	518 99	103.8	, ,					
Arsenic	189.042	500.0	516.96	103.4	516.62	103.3						
Cadmium	226.502	500.0	503.91	100.8	504.64	100.9						
Chromium	267.716	2000.0	2071.77	103.6	2069.35	103.5				ļ		
Lead	220.353	500.0	518.83	103.8	522.26	104.5		1		- 1		
Selenium	220.353	500.0	518 95	103.8	524.43	104.9						
Silver	328.068	1000.0	1037.03	103.7	1033.19	103.3		İ				
Thallium	190.864	1000.0	1071.36	107.1	1075.60	107.6		]				

Initial Calib	oration ₋ B	lank R	esults				<u>;</u>					
Instrument:	CV.	AA	<del></del>				Units:	-	ug/L			
Chart Numb	oer: <u>0525</u>	HGA.P	RN_				- -					
Standard So	urce:			٠,	<del></del>		.: Standaı	rd ID:				
ICB1   5/25/00   9.51 AM							Found		Found	0	Found	
								<u> </u>	rounu	<u>V</u>	round	<u> </u>
Mercury 253.7 0.2 0.0 U							1					

Initial Calibration Blank Results	<del>.1b.</del>
Instrument: ICP	Units: ug/L
Chart Number: J00525A.ARC	**************************************
Standard Source:	Standard ID:
ICBI	

			ICB1 5/25/00 7:57 AN									
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found	Q	Found	Q	Found	Q
Aluminum	308.215	200	12.7	U		·						
Barium	493.409	200	0 4	U								
Beryllium	313.042	5	0 1	U								
Calcium	317.933	5000	37.9	U			İ					
Cobalt	228.616	50	3.2	U								
Copper	324 754	25	2,2	U							}	
Iron	259.94	100	8.8	U					Į.			
Magnesium	279.079	5000	19.9	U								
Manganese	257.61	15	0.9	U					ļ			
Nickel	231.604	40	6.1	U								
Potassium	766.491	5000	496.0	U					ļ			
Sodium	588.995	5000	14.5	U							ļ	
Vanadium	292.402	50	-2 5	В								
Zınc	213.856	20	3.1	U								

U Result is less than the MDL

B Result is between MDL and RL

# Metals Data Reporting Form

Initial Calibi	nitial Calibration Blank Results														
Instrument:	ICP	ST	_			<b></b> .	Units:		ug/L						
Chart Numbe	r: <u>T00</u> :	526A.A	RC_			u+;							<u>~</u>		
Standard Sou	tandard Source:						Standar	rd ID:				<u>-</u>			
					ICB1 5/26/00 7.48 AM									<del></del>	
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found	Q	Found	Q	Found	0			
Antimony	220.353	60	1.5	U									1		
Arsenic	189.042	10	2.6	Ü	•										
Cadmium	226.502	5	0.5	U											
Chromium	267.716	10	1.0	U											
Lead	220.353	3	1.9	U			:								
Selenium	220.353	5	2.1	U											

328.068

190.864

Silver

Thallium

10

10

0.9

-3.9 B

U

# Metals Data Reporting Form

Continuing	Calibra	tion B	lank-Resi	ılts		-		-	<del></del>	<del></del>		
Instrument:	C	VAA	_				Units:		_:ug/L	_		
Chart Numb	oer: <u>052</u>	25HGA.	PRN						~7			
Standard So	ource: _					_	Standa	rd ID	):			<del></del>
	CCB1 5/25/00 9·55 AM		CCB2 5/25/0 10:20 A	0	CCB3 5/25/00 10·44 A	)	CCB4 5/25/0 11:09 A	0	CCB5 5/25/0 11:36 A	0		
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found	Q	Found	Q	Found	Q
Mercury	253.7	0.2	0.0	U	0.0	U	0.0	U	0.0	U	0.0	U

Form 3 Equivalent

U Result is less than the MDL

Continuing	g Calibra	tion B	lank Resu	ılts				<b>-</b>			<u> </u>	
Instrument:	C	JAA	_				Units:		ug/L			
Chart Numl	ber: <u>052</u>	25HGA.	PRN		- -						- 1	<del>-</del>
Standard Sc	ource: _					<del></del>	Standa	ard II	):			
	WL/	Report	CCB6 5/25/00 11:54 AI	)								
Element	Mass	Limit	Found	Q	Found	Q	Found	Q	Found	Q	Found	Q
Mercury	253.7	0.2	0.1	В								

Continuing Calibration Blank-Results	<del> </del>
Instrument: ICP	Units:Rug/L
Chart Number: J00525A.ARC	<del>Z</del> p
Standard Source:	Standard ID:

			CCB1 5/25/00 8:37 AN		CCB2 5/25/00 8:51 AN		CCB3 5/25/00 9:16 AN					
Element	WL/ Mass	Report Limit		Q	Found	<u>,</u> Q	Found	Q	Found	Q_	Found	Q
Aluminum	308.215	200	12.7	U	12.7	U	12.7	U				
Barium	493,409	200	0.4	U	0.4	U	0.4	U				
Beryllium	313.042	5	0.3	В	0.1	В	0.4	В	1			
Calcium	317.933	5000	37.9	U	37.9	U	37.9	U				
Cobalt	228.616	50	3.2	U	3.2	U	3.2	U				
Copper	324.754	25	2.2	U	2.2	U	2.2	U				
Iron	259.94	100	8.8	U	8.8	U	8.8	U				
Magnesium	279.079	5000	19.9	U	19.9	U	19.9	U				
Manganese	257.61	15	0.9	U	0.9	U	0.9	U				
Nickel	231.604	40	6.1	U	6.1	U	6.1	U				
Potassium	766.491	5000	496.0	Ü	496.0	U	496.0	U	ļ.			
Sodium	588.995	5000	14.5	U	14.5	U	14.5	U				
Vanadium	292.402	50	1.8	U	-2.3	В	1.8	U		i		
Zinc	213 856	20	3.1	U	3.1	Ŭ	3.1	U				

U Result is less than the MDL

B Result is between MDL and RL

Continuing-Ca	alibration-B	lank Results	<del>-</del>		·
Instrument:	ICPST		- 4-18-1-1	Units: ug/L	-
Chart Number	: T00526A.A	ARC	Ċ		.7.
Standard Source	ce:			Standard ID:	
		CCB1 5/26/00 8:40 AM	CCB2 5/26/00 9:13 AM		

			CCB1 5/26/00 8:40 AM		CCB2 5/26/00 9:13 AN	)						
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found	Q	Found	Q	Found	Q
Antimony	220.353	60	1.5	U	1.5	U						
Arsenic	189.042	10	2.6	Ü	2.6	U						
Cadmium	226.502	5	0.5	U	0.5	U					<b>1</b> 1	
Chromium	267.716	10	1.0	U	1.0	U						
Lead	220.353	3	1.9	U	1.9	U						
Selenium	220.353	5	2.1	U	2.1	U			!			
Silver	328.068	10	0.9	U	0.9	U						
Thallium	190.864	10	3.9	U	3.9	U						

U Result is less than the MDL

B Result is between MDL and RL

#### Metals Data Reporting Form

121.

Preparation Blank Results

Lab Sample ID:

DDLA7B

Matrix: Water Units: ug/L Prep Date: 5/24/00 Prep Batch: 0145186

Weight: NA Volume: 50 Percent Moisture: NA

	WL/	MIN	Report	Como		DF	Instr	Anal Date	Anal Time
Element	Mass	MDL	Limit	Conc	Q	Dr	Instr	Date	Time
Aluminum	308.215	12.7	200	12.7	U	1	ICP	5/25/00	8:54
Antimony	220.353	1.5	60.0	1.5	U	1	ICPST	5/26/00	8:44
Arsenic	189.042	2.6	10.0	2.6	U	1	ICPST	5/26/00	8:44
Barium	493.409	0.41	200	0.41	U	1	ICP	5/25/00	8:54
Beryllium	313.042	0.071	5.0	-0 090	В	1	ICP	5/25/00	8:54
Cadmium	226.502	0.49	5.0	0.49	Ū	1	ICPST	5/26/00	8:44
Calcium	317.933	37.9	5000	37.9	U	1	ICP	5/25/00	8:54
Chromium	267.716	1.0	10.0	1.0	U	1	ICPST	5/26/00	8:44
Cobalt	228.616	3.2	50.0	3.2	U	1	ICP	5/25/00	8:54
Copper	324.754	2.2	25.0	2.2	U	1	ICP	5/25/00	8:54
Iron	259.94	8.8	100	8.8	υ	1	ICP	5/25/00	8:54
Lead	220.353	1.9	3.0	1.9	U	1	ICPST	5/26/00	8:44
Magnesium	279.079	19.9	5000	19.9	U	1	ICP	5/25/00	8:54
Manganese	257.61	0.87	15.0	0.87	Ŭ	1	ICP	5/25/00	8:54
Nickel	231.604	6.1	40.0	6.1	บ	1	ICP	5/25/00	8:54
Potassium	766.491	496	5000	496	υ	1	ICP	5/25/00	8:54
Selenium	220.353	2.1	5.0	2.1	U	1	ICPST	5/26/00	8:44
Silver	328.068	0.94	10.0	0.94	U	1	ICPST	5/26/00	8:44
Sodium	588.995	14.5	5000	14.5	υ	1	ICP	5/25/00	8:54
Thallium	190.864	3.9	10.0	3.9	U	1	ICPST	5/26/00	8:44
Vanadium	292.402	1.8	50.0	-2.50	В	1	ICP	5/25/00	8:54
Zinc	213.856	3.1	20.0	3.1	U	1	ICP	5/25/00	8:54

Comments: Lot #: C0E230195

#### Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: DDLR3B

Matrix: Water Units: ug/L Prep Date: 5/25/00 Prep Batch: 0145297 

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	MDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.045	0 20	0.045	υ	1	CVAA	5/25/00	11.42

658 538

Copper

Magnesium

Manganese Nickel

Potassium

Vanadium

Sodium

Zinc

Iron

324.754

259 94

279.079 257 61

231.604

766.491

588.995

292,402

213.856

25

15

40

5000

5000

50

20

200000

500000

#### Metals Data Reporting Form

Interference Check Standard A ·EA. Units: ____ ug/L Instrument: ___ICP Acceptable Range: 80% - 120% Chart Number: J00525A.ARC Standard ID: Standard Source: Inorganic Ventures 0014-088-12 **ICSA** 5/25/00 8:00 AM WL/ Reporting True Limit **Found Found** Found Found Element Mass Conc Found 308.215 500000 497000 Aluminum 493.409 200 2 Barium Beryllium 313.042 5 0 500000 484000 Calcium 317.933 Cobalt 228.616 50 12

-5

-1

-8

5

2

3

-160

184000

481000

U Result is less than the MDL

B Result is between MDL and RL

Interference Ch	eck Standard A		•	
Instrument:	ICPST	Units: ug/L	<del></del>	
Chart Number:	T00526A.ARC	Acceptable Range	:0% - 0%	
Standard Source	: Inorganic Ventures	Standard ID:	0014-088-12	

				ICSA 5/26/00 7:52 AM				
Element	WL/ Mass	Reporting Limit	True Conc	Found	Found	Found	Found	Found
Antimony	220.353	60		0				
Arsenic	189.042	10		0		1		
Cadmium	226.502	5		2				Ì
Chromium	267.716	10		2				
Lead	220.353	3		0				
Selenium	220.353	5		و۔				
Silver	328.068	10	:	0				
Thallium	190.864	10		-1				

U Result is less than the MDL

#### Metals Data Reporting Form

Interference Check Standard AB

ur.

Instrument: ____ ICP Units: ____ ug/L

Chart Number: J00525A.ARC Acceptable Range: 80% - 120%

Standard Source: Inorganic Ventures Standard ID: 0014-043-1

			ICSAE 5/25/00	) [								
	WL/	True	8:03 Al	VI %		%	<del>.</del>	%		%		%
Element	Mass	Conc	Found	Rec	Found	Rec	Found	Rec	Found	Rec	Found	Rec
Aluminum	308.215	500000	498784.8	99.8								
Barium	493.409	500	464.9	93.0		İ						
Beryllium	313.042	500	442.6	88.5								
Calcium	317.933	500000	482906.8	96.6						ľ		
Cobalt	228.616	500	460.3	92.1				Ì				
Copper	324.754	500	501.4	100.3								
Iron	259.94	200000	183638.8	91.8						-		
Magnesium	279.079	500000	480122.3	96.0								
Manganese	257.61	500	457.6	91.5		İ		ì				
Nickel	231.604	1000	882.0	88.2		1		-		ļ		
Potassium	766.491	10000	9941.8	99.4		l		l				
Sodium	588.995	10000	10074.0	100.7								
Vanadium	292.402	500	462.3	92.5				l				
Zinc	213.856	1000	958.9	95.9								

U Result is less than the MDL

B Result is between MDL and RL

N Spike recovery failed

#### Metals Data Reporting Form

Interference Check Standard AB	Án.
Instrument:ICPST	Units:
Chart Number: T00526A.ARC	Acceptable Range: 80% - 120%

Standard Source: Standard ID: Inorganic Ventures 0014-075-12 **ICSAB** 5/26/00 7:56 AM WL/ % % % % % True Found Found Rec Found Rec Found Rec Mass Conc Found Rec Rec Element 1051 1 105.1 Antimony 220.353 1000 189.042 1000 1017.9 101.8 Arsenic Cadmium 933.6 93.4 226.502 1000 267.716 500 509.8 102.0 Chromium 220.353 1000 1028.4 **102.8** Lead 220.353 1000 1032.0 103.2 Selenium Silver 328.068 1000 1114.4 111.4 Thallium 190.864 1000 1097.3 109.7

N Spike recovery failed

#### Metals Data Reporting Form

Matrix Spike-Sample Results - 43 Spike Sample ID: DDK90S DDK90 DF/S1/0137/WA/001S Original Sample ID: Client ID: ΩĬ Prep Batch: 0145186 Matrix: Water Units: ug/L Prep Date: 5/24/00 NA Volume: 50 **Percent Moisture:** NA Weight:

	[ ]			<u> </u>							os	OS	MS	MS
	WL/	os	_	MS		Spike	%	os	MS	Y4-	Anal	Anal	Anal	Anal
Element	Mass	Conc	Q	Conc	Q	Level	Rec	DF	DF	Instr	Date	Time	Date	Time
Aluminum	308.2	7010		9940	N	2000	146.1	1	1	ICP	5/25/00	9:00	5/25/00	9:07
Antimony	220.4	1 5	В	477		500	95.0	1	1	ICPST	5/26/00	8:52	5/26/00	9:00
Arsenic	189.0	6.4	В	1930		2000	96 4	1	1	ICPST	5/26/00	8:52	5/26/00	9:00
Barium	493.4	208		2070		2000	93.1	1	1	ICP	5/25/00	9:00	5/25/00	9.07
Beryllium	313.0	0.20	В	47.1		50	93.9	1	1	ICP	5/25/00	9:00	5/25/00	9:07
Cadmium	226.5	0.49	U	46.9		50	93.7	1	1	ICPST	5/26/00	8:52	5/26/00	9:00
Calcium	317.9	38100		84300		50000	92.4	1	1	ICP	5/25/00	9:00	5/25/00	9.07
Chromium	267.7	10.1		205		200	97.5	1	1	ICPST	5/26/00	8:52	5/26/00	9:00
Cobalt	228.6	3.2	U	468	j .	500	93.6	1	1	ICP	5/25/00	9:00	5/25/00	9:07
Copper	324.8	16.6	В	256		250	95. <b>9</b>	1	1	ICP	5/25/00	9:00	5/25/00	9:07
Iron	259.9	6870		7520	NC	1000		1	1	ICP	5/25/00	9:00	5/25/00	9:07
Lead	220.4	22.5		516		500	98.6	1	1	ICPST	5/26/00	8.52	5/26/00	9:00
Magnesium	279.1	5500		53200		50000	95.4	1	1	ICP	5/25/00	9.00	5/25/00	9:07
Manganese	257.6	79.8		549		500	93.8	1	1	ICP	5/25/00	9:00	5/25/00	9:07
Nickel	231.6	11.7	В	481		500	93.9	1	1	ICP	5/25/00	9:00	5/25/00	9:07
Potassium	766.5	4140	В	51800		50000	95.3	1	1	ICP	5/25/00	9:00	5/25/00	9:07
Selenium	220.4	2.1	U	1950		2000	97.5	1	1	ICPST	5/26/00	8:52	5/26/00	9:00
Silver	328.1	0.94	U	49.5		50	99.0	1	1	ICPST	5/26/00	8:52	5/26/00	9:00
Sodium	589	1200	В	48800		50000	95.1	1	1	ICP	5/25/00	9:00	5/25/00	9.07
Thallium	190.9	3.9	U	2080		2000	104.2	i	1	ICPST	5/26/00	8:52	5/26/00	9:00
Vanadium	292.4	13.0	В	482		500	93.8	1	1	ICP	5/25/00	9:00	5/25/00	9:07
Zinc	213.9	49.1		523		500	94.8	1	I	ICP	5/25/00	9:00	5/25/00	9:07

Comments: Lot #: C0E230195 Sample #: 1

Version 3.63.4

Form 5A Equivalent

U Result is less than the MDL

B Result is between MDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

^{*} Duplicate analysis RPD was not within limits

#### Metals Data Reporting Form

Matrix Spik	e Sampl	e Result	S				4:	<del></del>			-			
Spike Sample	ID:	I	DDK	90S		_	i.						-	
Original Sample ID: DDK90				(90		Clien	t ID:ब्र	DF	/S1/01	37/WA/	001S			
Matrix: W	ater	Units:	ι	ıg/L		Prep D	ate:	5/25	5/00	_ Pr	ep Batch	ı: <u>01</u>	45297	_
Weight:	<u>IA</u>	Volume:		100		Percent Moisture: NA								
Element	WL/ Mass	OS Conc	Q	MS Conc	Q	Spike Level	% Rec	OS DF	MS DF	Instr	OS Anal Date	OS Anal Time	MS Anal Date	MS Anal Time
Mercury	253.7	0.045	U	1.2		1	120.0	1	1	CVAA	5/25/00	11:46	5/25/00	11:48

Comments: Lot #: C0E230195 Sample #: 1

Version 3.63.4

U Result is less than the MDLB Result is between MDL and RL

Form 5A Equivalent

N Spike recovery failed

NC Percent recovery was not calculated

* Duplicate analysis RPD was not within limits

#### Metals Data Reporting Form

Spike Sample ID: DDK90D

Original Sample ID: DDK90 Client ID: DF/S1/0137/WA/001D 35.

Matrix: Water Units: ug/L Prep Date: 5/24/00 Prep Batch: 0145186

Weight: NA Volume: 50 Percent Moisture: NA

[	1							<u> </u>	Ι		os	os	MSD	MSD
	WL/	os	_	MSD		Spike	%	os	MSD		Anal	Anal	Anal	Anal
Element	Mass	Conc	Q	Conc	Q	Level	Rec	DF	DF	Instr	Date	Time	Date	Time
Aluminum	308.2	7010	N	10400	N	2000	171.2	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Antimony	220.4	1.5	В	500		500	99.7	1	1	ICPST	5/26/00	8:52	5/26/00	9:05
Arsenic	189.0	6.4	В	2010		2000	100.0	1	1	ICPST	5/26/00	8:52	5/26/00	9:05
Barium	493.4	208		2120		2000	95.7	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Beryllium	313.0	0.20	В	48 7		50	97.0	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Cadmium	226.5	0 49	U	48.7		50	97.4	1	1	ICPST	5/26/00	8:52	5/26/00	9:05
Calcium	317.9	38100		87500		50000	98.7	ī	1	ICP	5/25/00	9:00	5/25/00	9:10
Chromium	267.7	10.1		216		200	102.8	1	1	ICPST	5/26/00	8:52	5/26/00	9:05
Cobalt	228.6	3.2	U	484	,	500	96.7	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Copper	324.8	16.6	В	266		250	99.6	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Iron	259.9	6870		7840	NC	1000		1	1	ICP	5/25/00	9:00	5/25/00	9:10
Lead	220.4	22.5		537		500	103.0	1	1	ICPST	5/26/00	8:52	5/26/00	9:05
Magnesium	279.1	5500		54400		50000	97.8	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Manganese	257.6	79.8		566		500	97.3	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Nickel	231.6	11.7	В	486	Ì	500	94.8	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Potassium	766.5	4140	В	52500		50000	96.7	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Selenium	220.4	2.1	ប	2030		2000	101.4	1	1	ICPST	5/26/00	8:52	5/26/00	9:05
Silver	328.1	0.94	U	51.4		50	102.7	1	1	ICPST	5/26/00	8:52	5/26/00	9:05
Sodium	589	1200	В	49300	1	50000	96.3	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Thallium	190.9	3.9	U	2160		2000	107.9	1	1	ICPST	5/26/00	8:52	5/26/00	9:05
Vanadium	292.4	13.0	В	498		500	97.0	1	1	ICP	5/25/00	9:00	5/25/00	9:10
Zinc	213 9	49.1		529		500	96.1	1	1	ICP	5/25/00	9:00	5/25/00	9:10

Comments: Lot #: C0E230195 Sample #: 1

Version 3.63.4

Form 5A Equivalent

U Result is less than the MDL

B Result is between MDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

^{*} Duplicate analysis RPD was not within limits

#### Metals Data Reporting Form

Matrix-Spil	ke Dupli	cate San	ıple	Results						·	<u>.</u>	-		<del>-</del>
Spike Sample	ID:	I	DDK	90D		_								
Original Sam	ple ID:		DDF	(90	-	Clie	nt ID:	D	F/S1/0	137/WA	/001D	<b></b>	Ξ	
Matrix:V	Vater	Units:	ι	ıg/L	P	rep Da	te:	5/25/	/00	Pre	p Batch:	0145	5297	
Weight:	NA	Volume: 100 Percent Moisture: NA												
Element	WL/ Mass	OS Conc	Q	MSD Conc	Q	Spike Level	% Rec	OS DF	MSD DF	Instr	OS Anal Date	OS Anal Time	MSD Anal Date	MSD Anal Time
Mercury	253.7	0.045	υ	1.1		1	112.0	1	1	CVAA	5/25/00	11:46	5/25/00	11:50

Comments: Lot #: C0E230195 Sample #: 1

Version 3.63.4

U Result is less than the MDL

Form 5A Equivalent

B Result is between MDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

^{*} Duplicate analysis RPD was not within limits

#### Metals Data Reporting Form

Matrix Spike Duplicate RPD Report

Matrix Spike Duplicate Sample ID:

DDK90D

Matrix Spike Sample ID:

DDK90S

Client ID: 2 DF/S1/0137/WA/001D

Matrix:

Water

Units:

ug/L

Prep Date:

5/24/00

Prep Batch:

0145186

Weight:

NA

Volume:

50

Percent Moisture:

NA

	WL/	MS		MSD			MS	MSD		MS Anal	MS Anal	MSD Anal	MSD Anal
Element	Mass	Conc	Q	Conc	Q	RPD	DF	DF	Instr	Date	Time	Date	Time
Aluminum	308.215	9940	N	10400	N	15.8 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Antimony	220.353	477		500		4.8 %	l	1	ICPST	5/26/00	9:00	5/26/00	9:05
Arsenic	189.042	1930		2010		3.7 %	1	1	ICPST	5/26/00	9:00	5/26/00	9:05
Barium	493.409	2070		2120		2.7 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Beryllium	313.042	47.1		48.7		3.2 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Cadmium	226.502	46.9		48.7		3.8 %	1	1	ICPST	5/26/00	9:00	5/26/00	9:05
Calcium	317.933	84300		87500		6.6 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Chromium	267 716	205		216		5.3 %	1	j	ICPST	5/26/00	9:00	5/26/00	9:05
Cobalt	228.616	468		484		3.3 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Copper	324.754	256		266		3.7 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Iron	259.94	7520	NC	7840	NC		1	1	ICP	5/25/00	9:07	5/25/00	9:10
Lead	220.353	516		537		4.3 %	1	1	ICPST	5/26/00	9:00	5/26/00	9:05
Magnesium	279.079	53200		54400		2.5 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Manganese	257.61	549		566		3.6 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Nickel	231.604	481		486		1.0 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Potassium	766.491	51800		52500		1.5 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Selenium	220 353	1950		2030		4.0 %	1	1	ICPST	5/26/00	9:00	5/26/00	9:05
Silver	328.068	49.5	İ	51.4		3.7 %	I	1	ICPST	5/26/00	9:00	5/26/00	9:05
Sodium	588.995	48800		49300		1.2 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Thallium	190.864	2080		2160		3.5 %	1	1	ICPST	5/26/00	9:00	5/26/00	9:05
Vanadium	292.402	482		498		3.4 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10
Zinc	213.856	523	<u> </u>	529	}	1.3 %	1	1	ICP	5/25/00	9:07	5/25/00	9:10

Comments: Lot #: C0E230195 Sample #. 1

Version 3.63 4

Form 6 Equivalent

U Result is less than the MDL

B Result is between MDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

^{*} Duplicate analysis RPD was not within limits

#### Metals Data Reporting Form

Matrix S	pike Duplic	ate RPL	Re	eport		_		<u> </u>	ar •-	·			
Matrix Sp	ike Duplicate	Sample II	): _		DDK	390D				Ġ			
Matrix Sp	Matrix Spike Sample ID:			DK90S	ı	Cli	ient ID	:	DF/S1	/0137/WA	/001D		
Matrix: _	Satrix: Water Units:					Prep Da	ıte: _	5/2:	5/00	Prep	Batch:	01452	297
Weight: _	NA	Volume:		100		Percent Moisture: NA							
Element	WL/ Mass	MS Cone	Q	MSD Cone	Q	RPD	MS DF	MSD DF	Instr	MS Anal Date	MS Anal Time	MSD Anal Date	MSD Anal Time
Mercury	253.7	1.2		1.1		6.9 %	1	ı	CVAA	5/25/00	11:48	5/25/00	11:50

Comments: Lot #. C0E230195 Sample #: 1

Version 3.63.4

U Result is less than the MDL

Form 6 Equivalent

B Result is between MDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

* Duplicate analysis RPD was not within limits

#### Metals Data Reporting Form

Laboratory Control Sample Results

Lab Sample ID:

DDLA7C

Matrix: Water

Units: ug/L

Prep Date:

5/24/00

Prep Batch:

0145186

Weight:

NA

Volume:

50

Percent Moisture:

NA

Element	WL/ Mass	Spike Level	Conc	Percent Recovery	Q	Range	DF	Instr	Anal Date	Anal Time
Aluminum	308.215	2000	1930	96.5		<b>80</b> -120	1	ICP	5/25/00	8:57
Antimony	220.353	500	496	99.3		80-120	1	ICPST	5/26/00	8:48
Arsenic	189.042	2000	1990	99.6	,	80-120	1	ICPST	5/26/00	8:48
Barium	493.409	2000	1930	96.6		80-120	1	ICP	5/25/00	8:57
Beryllium	313.042	50.0	48.6	97.2		80-120	ī	ICP	5/25/00	8:57
Cadmium	226.502	50.0	48.8	97.6		80-120	1	ICPST	5/26/00	8:48
Calcium	317.933	50000	49100	98.3		80-120	1	ICP	5/25/00	8:57
Chromium	267.716	200	204	101.8		80-120	1	ICPST	5/26/00	8:48
Cobalt	228.616	500	482	96.4		80-120	1	ICP	5/25/00	8:57
Copper	324.754	250	242	96.7		80-120	1	ICP	5/25/00	8:57
Iron	259.94	1000	1040	103.8		80-120	1	ICP	5/25/00	8:57
Lead	220.353	500	514	102.8		80-120	1	ICPST	5/26/00	8:48
Magnesium	279.079	50000	49300	98.7		80-120	1	ICP	5/25/00	8:57
Manganese	257.61	500	490	98.1		80-120	1	ICP	5/25/00	8:57
Nickel	231.604	500	483	96 5		80-120	1	ICP	5/25/00	8:57
Potassium	766.491	50000	48500	97.0		80-120	1	ICP	5/25/00	8:57
Selenium	220.353	2000	2030	101.7		80-120	1	ICPST	5/26/00	8:48
Silver	328.068	50.0	50.9	101.9		80-120	1	ICPST	5/26/00	8:48
Sodium	588.995	500 <b>00</b>	48900	97.9	<b>\</b>	80-120	1	ICP	5/25/00	8:57
Thallium	190.864	2000	2150	107.5		80-120	1	ICPST	5/26/00	8:48
Vanadium	292.402	500	485	97.0		80-120	1	ICP	5/25/00	8:57
Zinc	213.856	500	494	98.7	<u> </u>	80-120	1	ICP	5/25/00	8:57

Comments: Lot #: C0E230195

Metals Data Reporting Form

Laboratory Control Sample Results

11:

Lab Sample ID:

DDLR3C

Matrix:

Water

Units:

Prep Date:

5/25/00

Prep Batch: -0145297

Weight:

NA

Volume:

ug/L 100

Percent Moisture:

NA

Element	WL/ Mass	Spike Level	Сопс	Percent Recovery	Q	Range	DF	Instr	Anal Date	Anal Time
Mercury	253.7	2.5	2.6	104.0		80-120	1	CVAA	5/25/00	11:44

B Result is between MDL and RL

#### Metals Data Reporting Form

- Serial Dilution RPD Report

Serial Dilution Sample ID: _____ DDK90P

Original Sample ID: DDK90 - Client ID: DF/S1/0137/WA/001 -

Matrix: Water Units: ug/L Prep Date: 5/24/00 Prep Batch: 0145186

Weight: NA Volume: 50 Percent Moisture: NA

	<del>,                                    </del>			0		Ι΄			<del></del>	OC	06	Ser Dil	Ser Dil
	WL/	os		Serial Dilution		Percent	os	Ser Dil		OS Anal	OS Anai	Anal	Anal
Element	Mass	Conc	Q	Conc	Q	Diff	DF	DF	Instr	Date	Time	Date Date	Time
Aluminum	308.215	7010	N	7020		0.1%	1	5	ICP	5/25/00	9:00	5/25/00	9:03
Antimony	220 353	1.5	В	7.3	U		i	5	ICPST	5/26/00	8:52	5/26/00	8:56
Arsenic	189.042	6.4	В	12.8	U		1	5	ICPST	5/26/00	8:52	5/26/00	8:56
Barium	493,409	208		207	В	0.5 %	1	5	ICP	5/25/00	9:00	5/25/00	9:03
Beryllium	313.042	0.20	В	0 36	U		1	5	ICP	5/25/00	9.00	5/25/00	9:03
Cadmium	226.502	0.49	U	2.5	U		1	5	ICPST	5/26/00	8:52	5/26/00	8:56
Calcium	317.933	38100	1	38600		1.4%	1	5	ICP	5/25/00	9:00	5/25/00	9:03
Chromium	267.716	10.1		9.2	В	İ	1	5	ICPST	5/26/00	8:52	5/26/00	8:56
Cobalt	228.616	3.2	U	16.1	U		1	5	ICP	5/25/00	9:00	5/25/00	9:03
Copper	324.754	16.6	В	18.5	В		1	5	ICP	5/25/00	9:00	5/25/00	9:03
Iron	259.94	6870		6980		1.7%	1	5	ICP	5/25/00	9:00	5/25/00	9:03
Lead	220.353	22.5		25.4		1	1	5	ICPST	5/26/00	8:52	5/26/00	8:56
Magnesium	279.079	5500		5490	В	0.1%	1	5	ICP	5/25/00	9:00	5/25/00	9:03
Manganese	257.61	79.8		80.1		0.3 %	1	5	ICP	5/25/00	9:00	5/25/00	9:03
Nickel	231.604	11.7	В	30.7	U		1	5	ICP	5/25/00	9:00	5/25/00	9:03
Potassium	766.491	4140	В	4180	В	1	1	5	ICP	5/25/00	9:00	5/25/00	9:03
Selenium	220.353	2.1	U	10.5	U		1	5	ICPST	5/26/00	8:52	5/26/00	8:56
Silver	328.068	0.94	U	4.7	υ	Ì	1	5	ICPST	5/26/00	8:52	5/26/00	8:56
Sodium	588.995	1200	В	1170	В	2.2 %	1	5	ICP	5/25/00	9:00	5/25/00	9:03
Thallium	190.864	3.9	υ	19.4	U		1	5	ICPST	5/26/00	8:52	5/26/00	8:56
Vanadium	292.402	13.0	В	13.5	В		1	5	ICP	5/25/00	9:00	5/25/00	9:03
Zinc	213.856	49.1		51.3	В		1	5	ICP	5/25/00	9:00	5/25/00	9:03

Comments:

## Metals Data Reporting Form

Instrument:	CVAA	Units:	ppb	

Instrument Detection Eimits

Element	Wavelength /Mass	Reporting Limit	MDL	Date of MDL
Mercury	253.70	0.2	0.045	3/20/00

## Metals Data Reporting Form

Instrument Detection Limits

Instrument: ICP

Units: ppb

Element	Wavelength /Mass	Reporting Limit	MDL	Date of MDL
Aluminum	308.21	200	12.7	4/1/00
Barium	493.41	200	0 41	4/1/00
Beryllium	313.04	5	0 071	4/1/00
Calcium	317.93	5000	37.9	4/1/00
Cobalt	228.62	50	3 2	4/1/00
Copper	324.75	25	2.2	4/1/00
Iron	259.94	100	8.8	4/1/00
Magnesium	279.08	5000	19.9	4/1/00
Manganese	257.61	15	0.87	4/1/00
Nickel	231.60	40	6.1	4/1/00
Potassium	766.49	5000	496	4/1/00
Sodium	589.00	5000	14.5	4/1/00
Vanadium	292.40	50	1.8	4/1/00
Zinc	213.86	20	3.1	4/1/00

#### Metals Data Reporting Form

Instrument Detection Limits ____

Instrument: ICPST Ui

Units: ppb

Element	Wavelength /Mass	Reporting Limit	MDL	Date of MDL
Antimony	220 35	60	1.5	4/1/00
Arsenic	189 04	10	2.6	4/1/00
Cadmium	226 50	5	0.49	4/1/00
Chromium	267 72	10	10	4/1/00
Lead	220 35	3	1.9	4/1/00
Selenium	220.35	5	2.1	4/1/00
Silver	328.07	10	0.94	4/1/00
Thallium	190.86	10	3.9	4/1/00

# Metals Data Reporting Form

Inter-Element Correction Factors

astrument: _	ICP	Date of IEC's: 3/27/00
Interfering Element	Wavelength /Mass	Correction Factor(s)
Aluminum	308.215	As(0.008365), Mn(0.00002), Pb(0.000527)
Antimony	206.838	Ni(-0.000449), Pb(-0.001338), Sn(-0.004668)
Arsenic	193.696	Cd(0.011196)
Barium	493.409	Co(0.000506)
Beryllium	313.042	Cd(0.008625)
Cadmium	228.802	Co(0.002633)
Chromium	267.716	Pb(-0.000686), Sb(0.008213), V(-0.001979)
Cobalt	228.616	Al(-0.014067), B(0.00201), Cd(-0.004523), Cu(-0.00091), Pb(-0.027395), Sb(-0.003935), Tl(0.007862)
Copper	324.754	Zn(0.00466)
Iron	259.94	Ag(-0.000239), As(0.001314), B(-0.001921), Cd(-0.000034), Cu(-0.00008), Mn(-0.000288), Mo(-0.00015), Pb(0.000225), Se(-0.003656), Sn(-0.00019), Tl(0.010326), Zn(0.000098)
Manganese	257.61	Ag(0.000201), Tl(-0.005634)
Molybdenum	202.03	Al(0.008699), Cr(-0.000292), Mn(-0.00033), Sb(0.005808), V(-0.019318)
Nickel	231.604	Cd(-0.000409), Sb(-0.009092), Zn(0.003263)
Tin	189.989	Sb(0.002262)
Titanium	334.941	Co(0.001637), Fe(-0.003475), Sb(0.001696), Sn(0.003624)
Vanadium	292.402	Ag(-0.005069), Al(0.012877), As(0.017242), Be(0.00265), Cd(0.000094), Cr(0.000568), Sb(-0.003793), Si(-0.012762), Tl(0.007148), Zn(-0.004494)

# Metals Data Reporting Form

Inter-Elemen	t Correction	Factors
(nstrument: _	ICPST	Date of IEC's: 5/25/00
Interfering Element	Wavelength /Mass	Correction Factor(s)
Aluminum	308.215	Pb(0.000457), Se(0.00001), Tl(-0.00002)
Aluminum	308.215	Pb(-0.000157), Se(0.000011)
Chromium	267.716	Sb(0.006664)
Chromium	267.716	As(-0.002441), Sb(0.010481)
Cobalt	228.616	Se(-0.000324)
Cobalt	228.616	Cd(-0.000111), Fe(0.08869), Ni(-0.00066), Se(0.000351), Tl(0.002179)
Iron	271.441	Cd(0.000101), Pb(0.000107), Sb(0.000019), Se(-0.000024), Tl(-0.000052), V(-0.000349), Zn(0.000127)
Iron	271.441	Pb(0.000054), Sb(0.000021), Se(-0.000286)
Magnesium	279.078	Fe(-0.000306)
Manganese	257.61	TI(-0.006029)
Molybdenum	202.03	Pb(-0.00068), Sb(-0.009237)
Molybdenum	202.03	Al(0.011136), As(-0.002441), Cr(-0.000312), Pb(-0.000307), Sb(-0.002657)
Nickel	231.604	Pb(0.000247), Sb(-0.000886), Zn(0.004557)
Nickel	231.604	Pb(0.000124)
Vanadium	292.402	Al(0.02185), Be(-0.0083), Cr(-0.000183), Fe(0.007812), Sb(-0.007991), Se(0.000216), Tl(0.001386)
Vanadium	292.402	Pb(-0.000475), Se(0.000099)

# Metals Data Reporting Form

Linear-Dynamic Ranges

Instrument: CVAA

Units: ppb

Element	Wavelength	Linear	Date of Linear
	/Mass	Range	Range
Mercury	253.70	10	1/15/00

# Metals Data Reporting Form

Linear-Dynamic Ranges

Instrument: ICP

Units: ppb

Element	Wavelength /Mass	Linear Range	Date of Linear Range
Aluminum	308.21	600000	4/5/00
Barium	493.41	100000	4/5/00
Beryllium	313.04	15000	4/5/00
Calcium	317 93	600000	4/5/00
Cobalt	228 62	100000	4/5/00
Copper	324.75	100000	4/5/00
Iron	259.94	400000	4/5/00
Magnesium	279.08	600000	4/5/00
Manganese	257.61	100000	4/5/00
Nickel	231.60	100000	4/5/00
Potassium	766.49	1000000	4/5/00
Sodium	589.00	400000	4/5/00
Vanadium	292.40	100000	4/5/00
Zinc	213.86	100000	4/5/00

## Metals Data Reporting Form

- Jitt

Instrument:	ICPST	Units:	daa	

Linear Dynamic-Ranges

Element	Wavelength /Mass	Linear Range	Date of Linear Range
Antimony	220.35	10000	3/15/00
Arsenic	189.04	10000	3/15/00
Cadmium	226.50	5000	3/15/00
Chromium	267.72	20000	3/15/00
Lead	220.35	5000	3/15/00
Selenium	220.35	10000	3/15/00
Silver	328.07	2000	3/16/00
Thallium	190.86	10000	3/15/00

## Metals Data Reporting Form

Preparation Log

Preparation Batch: 0145186 Instrument: ICP Matrix: Water 11

Sample ID	Prep Date	Weight (g)	Volume (mi)	% Moisture
DDLA7B	5/24/00	NA	50	NA
DDLA7C	5/24/00	NA	50	NA
DDK90	5/24/00	NA	50	NA
DDK90D	5/24/00	NA	50	NA
DDK90S	5/24/00	NA	50	NA

# 658 560

# Metals Data Reporting Form

Preparation Log

Preparation Batch: 0145297 Instrument: CVAA Matrix: Water

Sample ID	Prep Date	Weight (g)	Volume (ml)	% Moisture
DDLR3B	5/25/00	NA .	100	NA
DDLR3C	5/25/00	NA	100	NA
DDK90	5/25/00	NA	100	NA
DDK90D	5/25/00	NA	100	NA
DDK90S	5/25/00	NA	100	NA

STL Pittsburgh

# Metals Data Reporting Form

Instrument Runlog

Instrument: CVAA

Chart Number: _0525HGA.PRN

Sample Name	Date of Analysis	Time of Analysis
Std1Rep1	5/25/00	9.37 AM
Std2Rep1	5/25/00	9·39 AM
Std3Rep1	5/25/00	9:41 AM
Std4Rep1	5/25/00	9:43 AM
Std5Rep1	5/25/00	9:45 AM
Std6Rep1	5/25/00	9:47 AM
ICV5-1	5/25/00	9·49 AM
ICB1	5/25/00	9:51 AM
CCV5-1	5/25/00	9.53 AM
CCB1	5/25/00	9:55 AM
ZZZZZZ	5/25/00	9:57 AM
ZZZZZZ	5/25/00	9:59 AM
ZZZZZZ	5/25/00	10:01 AM
ZZZZZZ	5/25/00	10 02 AM
ZZZZZZ	5/25/00	10:04 AM
zzzzzz	5/25/00	10:06 AM
ZZZZZZ	5/25/00	10:08 AM
ZZZZZZ	5/25/00	10:10 AM
ZZZZZZ	5/25/00	10:13 AM
ZZZZZZ	5/25/00	10.15 AM
CCV5-2	5/25/00	10·17 AM
CCB2	5/25/00	10:20 AM
zzzzz	5/25/00	10:22 AM
ZZZZZZ	5/25/00	10:24 AM
ZZZZZZ	5/25/00	10:26 AM
ZZZZZZ	5/25/00	10:28 AM
ZZZZZZ	5/25/00	10:29 AM
ZZZZZZ	5/25/00	10:31 AM
ZZZZZZ	5/25/00	10:33 AM
ZZZZZZ	5/25/00	10:36 AM
ZZZZZZ	5/25/00	10:38 AM
ZZZZZZ	5/25/00	10:40 AM
CCV5-3	5/25/00	10:42 AM
CCB3	5/25/00	10 44 AM
ZZZZZZ	5/25/00	10.46 AM
ZZZZZZ	5/25/00	10:48 AM
ZZZZZZ	5/25/00	10:51 AM
ZZZZZZ	5/25/00	10:53 AM
ZZZZZZ	5/25/00	10:55 AM
ZZZZZZ	5/25/00	10:57 AM
ZZZZZZ	5/25/00	10:59 AM

Form 14 Equivalent

## Metals Data Reporting Form

Instrument Runlog

nt:

Instrument: CVAA Chart Number: 0525HGA.PRN

	Date of_	Time of
Sample Name	Analysis -	Analysis
ZZZZZZ	5/25/00	11:01 AM
ZZZZZZ	5/25/00	11:03 AM
ZZZZZZ	5/25/00	11:05 AM
CCV5-4	5/25/00	11:07 AM
CCB4	5/25/00	11:09 AM
ZZZZZZ	5/25/00	11:11 AM
ZZZZZZ	5/25/00	11:13 AM
ZZZZZZ	5/25/00	11:15 AM
ZZZZZZ	5/25/00	11:17 AM
ZZZZZZ	5/25/00	11:19 AM
ZZZZZZ	5/25/00	11:21 AM
ZZZZZZ	5/25/00	11.23 AM
ZZZZZZ	5/25/00	11:25 AM
ZZZZZZ	5/25/00	11:28 AM
ZZZZZZ	5/25/00	11:30 AM
CCV5-5	5/25/00	11:33 AM
CCB5	5/25/00	11:36 AM
ZZZZZZ	5/25/00	11 38 AM
ZZZZZZ	5/25/00	11:40 AM
DDLR3B	5/25/00	11:42 AM
DDLR3C	5/25/00	11:44 AM
DDK90	5/25/00	11:46 AM
DDK90S	5/25/00	11:48 AM
DDK90D	5/25/00	11:50 AM
CCV5-6	5/25/00	11·52 AM
CCB6	5/25/00	11:54 AM

## Metals Data Reporting Form

Instrument Runlog

Instrument: ICP — — — Chart Number: __ J00525A-ARC —

	Date of	Time of
Sample Name	Analysis	Analysis
STD1	5/25/00	7·44 AM
STD5A	5/25/00	7:48 AM
STD5B	5/25/00	7:51 AM
ICV2-1	5/25/00	7:54 AM
ICB1	5/25/00	7:57 AM
ICSA	5/25/00	8:00 AM
ICSAB	5/25/00	8:03 AM
ZZZZZZ	5/25/00	8:09 AM
ZZZZZZ	5/25/00	8:12 AM
ZZZZZZ	5/25/00	8:15 AM
ZZZZZZ	5/25/00	8:18 AM
ZZZZZZ	5/25/00	8:21 AM
ZZZZZZ	5/25/00	8:24 AM
ZZZZZZ	5/25/00	8:28 AM
ZZZZZZ	5/25/00	8:31 AM
CCV2-1	5/25/00	8:34 AM
CCB1	5/25/00	8:37 AM
ZZZZZZ	5/25/00	8:41 AM
ZZZZZZ	5/25/00	8:45 AM
CCV2-2	5/25/00	8:48 AM
CCB2	5/25/00	8:51 AM
DDLA7B	5/25/00	8:54 AM
DDLA7C	5/25/00	8:57 AM
DDK90	5/25/00	9·00 AM
DDK90P	5/25/00	9:03 AM
DDK90S	5/25/00	9:07 AM
DDK90D	5/25/00	9:10 AM
CCV2-3	5/25/00	9:13 AM
CCB3	5/25/00	9:16 AM
ZZZZZZ	5/25/00	9:38 AM
ZZZZZZ	5/25/00	9:41 AM
ZZZZZZ	5/25/00	9:45 AM
ZZZZZZ	5/25/00	9:48 AM
ZZZZZZ	5/25/00	9:51 AM
ZZZZZZ	5/25/00	9:54 AM
ZZZZZZ	5/25/00	9:57 AM
ZZZZZZ	5/25/00	10:01 AM
ZZZZZZ	5/25/00	10:04 AM
ZZZZZZ	5/25/00	10:07 AM
ZZZZZZ	5/25/00	10:10 AM
ZZZZZZ	5/25/00	10:13 AM

Form 14 Equivalent

658 564

#### Metals Data Reporting Form

)Ls

Instrument Runlog

Instrument: ____ICP

Chart Number: __J00525A.ARC

A 3.34	Date of	Time of
Sample Name	Analysis	Analysis
ZZZZZZ	5/25/00	10 16 AM
ZZZZZZ	5/25/00	10:19 AM
ZZZZZZ	5/25/00	10:23 AM
ZZZZZZ	5/25/00	10:26 AM
ZZZZZZ	5/25/00	10:29 AM
ZZZZZZ	5/25/00	10:32 AM
ZZZZZZ	5/25/00	10:35 AM
ZZZZZZ	5/25/00	10:39 AM
ZZZZZZ	5/25/00	10:42 AM
ZZZZZZ	5/25/00	10:45 AM
ZZZZZZ	5/25/00	10:48 AM
ZZZZZZ	5/25/00	10:51 AM
ZZZZZZ	5/25/00	10:54 AM
ZZZZZZ	5/25/00	10:57 AM
ZZZZZZ	5/25/00	11:01 AM
ZZZZZZ	5/25/00	11:04 AM
ZZZZZZ	5/25/00	11:07 AM
ZZZZZZ	5/25/00	11:10 AM
ZZZZZZ	5/25/00	11:13 AM
ZZZZZZ	5/25/00	11:16 AM
ZZZZZZ	5/25/00	11:19 AM
ZZZZZZ	5/25/00	11:23 AM
ZZZZZZ	5/25/00	11:26 AM
ZZZZZZ	5/25/00	11:29 AM
ZZZZZZ	5/25/00	11:32 AM
ZZZZZZ	5/25/00	11:35 AM
ZZZZZZ	5/25/00	11:38 AM
ZZZZZZ	5/25/00	11:41 AM
ZZZZZZ	5/25/00	11:46 AM
ZZZZZZ	5/25/00	11:50 AM
ZZZZZZ	5/25/00	11:53 AM
ZZZZZZ	5/25/00	11:56 AM
ZZZZZZ	5/25/00	11:59 AM
ZZZZZZ	5/25/00	12:02 PM
ZZZZZZ	5/25/00	12:05 PM
ZZZZZZ	5/25/00	12:08 PM
ZZZZZZ	5/25/00	12:11 PM
7.7.7.7.7.7.	5/25/00	12:15 PM
ZZZZZZ	5/25/00	12:18 PM
ZZZZZZ	5/25/00	12:21 PM
ZZZZZZ	5/25/00	12:24 PM

Form 14 Equivalent

## Metals Data Reporting Form

Instrument Runlog

\$ 4. t

Instrument: _____ICP---

Chart Number: __J00525A.ARC

Sample Name	Date of Analysis	Time of Analysis
ZZZZZZ	5/25/00	12:27 PM
ZZZZZZ	5/25/00	12·30 PM
ZZZZZZ	5/25/00	12:34 PM
ZZZZZZ	5/25/00	12:37 PM

# 658 566

__

#### Metals Data Reporting Form

Instrument Runlog

Instrument: --- ICPST ---

Chart Number: T00526A.ARC

	Date of	Time of
Sample Name	Analysis	Analysis
STD1	5/26/00	7:31 AM
STD6	5/26/00	7:36 AM
STD7	5/26/00	7:40 AM
ICV3-1	5/26/00	7:43 AM
ICB1	5/26/00	7:48 AM
ICSA	5/26/00	7:52 AM
ICSAB	5/26/00	7:56 AM
ZZZZZZ	5/26/00	8:02 AM
ZZZZZZ	5/26/00	8:06 AM
ZZZZZZ	5/26/00	8:11 AM
ZZZZZZ	5/26/00	8:15 AM
ZZZZZZ	5/26/00	8:19 AM
ZZZZZZ	5/26/00	8:23 AM
ZZZZZZ	5/26/00	8:27 AM
ZZZZZZ	5/26/00	8:31 AM
CCV3-1	5/26/00	8:36 AM
CCB1	5/26/00	8:40 AM
DDLA7B	5/26/00	8:44 AM
DDLA7C	5/26/00	8·48 AM
DDK90	5/26/00	8:52 AM
DDK90P	5/26/00	8:56 AM
DDK90S	5/26/00	9·00 AM
DDK90D	5/26/00	9·05 AM
CCV3-2	5/26/00	9 09 AM
CCB2	5/26/00	9:13 AM
ZZZZZZ	5/26/00	9:18 AM
ZZZZZZ	5/26/00	9:22 AM
ZZZZZZ	5/26/00	9:26 AM
ZZZZZZ	5/26/00	9:30 AM
ZZZZZZ	5/26/00	9:34 AM
ZZZZZZ	5/26/00	9:39 AM
ZZZZZZ	5/26/00	9:43 AM
ZZZZZZ	5/26/00	9:47 AM
ZZZZZZ	5/26/00	9:51 AM
ZZZZZZ	5/26/00	9:55 AM
ZZZZZZ	5/26/00	9:59 AM
ZZZZZZ	5/26/00	10:03 AM
ZZZZZZ	5/26/00	10.08 AM
ZZZZZZ	5/26/00	10:12 AM
ZZZZZZ	5/26/00	10:16 AM
ZZZZZZ	5/26/00	10:20 AM

# Metals Data Reporting Form

## Instrument Runlog

ter

Instrument:	- ICPST	Chart Number: T00526A.ARC
-------------	---------	---------------------------

<u>___</u>

Sample Name	Date of Analysis	Time of Analysis
ZZZZZZ	5/26/00	10:24 AM
ZZZZZZ	5/26/00	10:28 AM
ZZZZZZ	5/26/00	10:33 AM

METALS RAW DATA

STL Pittsburgh 6052

Analysis Report Averages

05/25/00 01:15:14 PM

page 3

	• A	
m l	char 10	
Munuel	neederho	5-25-00

	Trunce 100 esoures 3-2	5-00					
#	Sample Name	AL	BA	BE	CA	CO	CU
			<del></del>				
		<b>-</b> :				•	<del></del> -
	STD1	.01109	.00014	.00295	.00005	.00014	.00054
	STD5A		4.20211	14.7971		1.33774	2.36544
3	STD5B	11.544 🔀			21.662		
4		25.134	.99552	.98299	25.394	1.0048	.98967
5		.00087	00016	.00004	00526	.00038	00084
6	ICSA 0014-088-12	496.75	.00154	00003	483.52	.01167	00515
7	ICSAB 0014-043-1	498.78	.46489	.44255	482.91	.46027	.50136
8	DDLFVB	.02608	00011	00005	.08818	.00037	00189
9	DDLFVC	1.9855	1.9324	.04991	42.536	.49580	.24324
	DDK1J (QC)	00169	.29195	.00000	134.06	.00137	.00332
11	DDK1JP5 (QC)	00652	.05923	00010	26.372	00040	.00049
	DDK1JS (QC)	2.0280	2.2096	.04968	180.50	.49304	.24993
13	DDK1JD (QC)	2.3507	2.5043	.05764	182.12	.57175	.28803
	DDKA2F	.01604	.06518	00006	39.811	.00072	.00329
	DDKA7F	.06843	.04476	00004	30.532	.00035	.00105
	CCV2-1 0014-087-7	49.678	4.8757	4.9347	50.562	4.9636	4.9139
	CCB1	00661	.00002	.00027	00099	.00037	00084
	DDK9T	.00634	.27884	.00002	S4114.5	.00083	.01563
	DDLFVC RERUN CA, K	1.9783	1.9141	.05024	42.989	.50444	.23458
	CCV2-2	49.485	4.8665	4.9279	50.218	4.9529	4.9056
	CCB2	<b>-</b> .00358	00033	.00014	00424	00075	00105
	DDLA7B	00955	00028	00009	.02583	00112	00063
	DDLA7C	1.9300	1.9317	.04859	49.132	.48221	.24175
	DDK90	7.0141	.20787	.00020	38.091	00076	.01660
	DDK90P5	1.4046	.04138	00004	7.7222	00007	.00370
	DDK90S	9.9358	2.0707	.04714	84.288	.46810	.25640
	DDK90D	10.439	2.1210	.04869	87.465	.48369	.26553
	CCV2-3	49.693	4.8740	4.9779	51.098	5.0105	4.9106
	CCB3	00184	.00002	.00037	00372	00150	00084
	DDL6CB	00038	00006	.00000	.02651	.00112	00084
	DDL6CC	1.9415	1.9379	.04899	50.082	.48745	.24260
	DD3QM	.01985	.04193	00003	38.829	00076	.00233
	DD3QN	71.913	.96663	.00345	93.533	.04893	.06819
	DD3QQ	25.207	.29395	.00126	37.232	.02165	.03060
	DD3QR	00306	00002	00006	.02710	00337	00105
	DD3QT	43.897	.37894	.00289	60.254	.02771	.04580
	DD3QV	.03513	.30026	.00000	46.913	00014	00069
	DD3QX	58.747	.53491	.00293	100.18	.03265	.05852
	DD3QXP5	11.826	.10898	.00062	20.576	.00698	.01127
	CCV2-4	50.062	4.9291	5.0601	51.646	5.0632	4.9698
	CCB4	.00158	.00011	.00041	.00039	00225	00063
	DD3QXS	95.909	2.4647	.05084	151.91	.51368	.30879
	DD3QXD	92.859	2.4539	.05082	151.31	.50956	.30620
	DD3R0	27.671	.33584	.00168	111.27	.01776	.05269
	DD4WA	14.118	.17945	.00065	46.262	.00754	.01402
	DD4WG	.13045	.27346	.00000	55.400	00013	.00067
	DD4WH	4.3956	.18385	.00008	73.090	.00316	.00858
	DD4WJ	95.354	.79529	.00524	H753.05	.08471	.16641
	DD4WK	.27480	.05269	.00006	42.063	00003	.00154
	DD4WL DD4WM	29.101	.27436	.00138	52.867	.01562	.03078
	CCV2-5	00304 49.604	00002	.00000	.20650	00112	00063
	CCB5	.00072	4.8661 .00037	5.0477 .00051	52.267 00282	5.0883 00075	4.8938
در		.000/2	. 0003/	.00057	00282	000/5	00084

Alia.	Tybib Report 11ve.	Lagoo	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			F . J
#	Sample Name	AL	BA	BE	CA	CO	CU
				,			
54	DD50E	.02114	.42092	.00000	46.652	.00054	.00050
55	DD50N	9.5555	1.2267	.00104	63.439	.01145	.03033
	CCV2-6	49.579	4.8573	5.0332	52.379	5.0955	4.8797
	CCB6	00102	.00013	.00037	00213	00075	00084
	DDL76BF	00481	00028	00006	.02241	00224	00169
	DDL76CF	1.9157	1.9070	.04953	50.742	.49349	.23795
	DD3QMF	.00383	.03907	.00000	37.376	00189	00126
	DD3QNF	.00083	.18678	.00003	80.597	00195	00146
	DD3QQF	.00004	.09865	.00000	35.932	.00333	00143
	DD3QRF	.00301	00033	00006	.01945	00037	.00126
		.00744	.09717	.00003	48.738	.00371	00102
	DD3QTF	.00171	.26932	00003	46.376	00087	00125
	DD3QVF	.00171	.19604	.00003	81.259	.00103	00095
	DD3QXF	00170	.03984	.00003	16.826	.00103	00106
	DD3QXFP5		4.8077	5.0930	52.693	5.1131	4.8282
	CCV2-7	48.891			00063	00112	.00021
	CCB7	00227	.00011	.00068			.24060
	DD3QXSF	1.9455	2.1062	.05011	134.28	.49152	.24379
	DD3QXDF	1.9710	2.1184	.05103	136.86	.50764	00110
	DD3R0F	.00000	.15405	.00004	86.420	.00143	
	DD4WAF	.00690	.07439	.00007	40.213	00040	00097
	DD4WGF	.00428	.24725	.00003	54.308	00312	00034
	DD4WHF	.00777	.14451	00003	71.289	.00068	00019
	DD4WJF	.00168	.26960	00003	75.032	00125	00076
	DD4WKF	.01044	.04572	.00007	37.561	.00036	00021
78	DD4WLF	.00480	.07772	.00013	41.737	.00147	.00029
79	DD4WMF	.00346	00016	00002	.05006	00075	00042
80	CCV2-8	49.161	4.8282	5.1527	53.456	5.1789	4.8502
81	CCB8	00267	00011	.00034	00255	00075	00105
82	DD50EF	00009	.42608	.00006	48.942	.00130	00063
83	DD50NF	00009	1.0810	.00003	37.964	00279	00062
84	DD3QXFP5 RERUN ZN	.00174	.04060	.00010	16.769	00038	00085
85	CCV2-9	49.161	4.8441	5.1836	53.137	5.1644	
86	CCB9	.00856	.00002	.00037	00172	00074	00021
#	Sample Name	FE	<b>K</b>	MG	MN	NA	NI
_	amp a	00045	03179	.00015	.00014	.05155	00015
	STD1	.00245	031/9	.00015	1.88405		1.60741
	STD5A	00 0050	0 68045	D CACCA	1.00405	52.5656	1.00/41
	STD5B	28.2359			1 0100		1.0129
	ICV2-1 0014-061-7	26.198	25.055	25.538	1.0103		~.00233
	ICB1	00159			00026		
	ICSA 0014-088-12	183.65	15716	481.03	00109		00798
	ICSAB 0014-043-1	183.64	9.9418	480.12	.45763	10.074	.88197
	DDLFVB	.01257	22741		00026		.00006
	DDLFVC	1.0583	40.771	42.456	.50384	40.750	.50999
	DDK1J (QC)	4.5998	5.1179	26.310	.94480	105.99	00758
	DDK1JP5 (QC)	.92673	1.0410	5.1605	.19129	20.809	.00581
	DDK1JS (QC)	5.4749	51.617	73.215	1.4287	150.72	.49347
	DDK1JD (QC)	5.5823	54.492	76.149	1.4916	150.19	.57730
14	DDKA2F	1.6349	2.4295	7.7120	2.3891	14.769	.00547
15	DDKA7F	.02195	1.4976	7.0784	.00133	10.055	.00788
16	CCV2-1 0014-087-7	51.503	50.042	50.021	4.9568	49.811	4.9717
17	CCB1	00247	.03512	.00653	.00000	.00380	.00182

page 5

	-	*				03,23,00	OT.13.14	FIL	page 5
#	Sample	Name		FE	K_	MG	MN	NA	NI
		<b></b> -			<del></del>				
	<u>.</u>		_	_					
	DDK9T					491647	5.4544	53.130	.00708
	DDLFVC	RERUN	CA,K		L39.497		.50702	L39.272	.50049
	CCV2-2			51.368	49.398	49.880	4.9390	49.502	4.9396
	CCB2			7.00442			.00000	.0058 <b>0</b>	00272
	DDLA7B			.00017	01848		00052		00104
	DDLA7C			1.0376	48.524		.49036	48.927	.48248
	DDK90	_		6.8685	4.1361		.07984	1.1973	.01166
	DDK90P	5		1.3965	.83572	1.0979	.01602	.23422	00416
	DDK90S			7.5233	51.767		.54884	48.769	.48104
	DDK90D			7.8399	52.477	54.418	.56617	49.326	.48585
	CCV2-3			51.956	49.086	50.127	5.0031	49.029	5.0198
	CCB3 DDL6CB			00247			00026		.00573
	DDT9CR			.00531	07950		00052	.00914	00058
				1.0543	48.501		.49594	48.846	.49665
	DD3QM			.17124	.97439		.00721	5.0266	.00629
	DD3QN			109.92	13.586	48.928	1.0546	31.526	.07992
	DD3QQ DD3QR			44.395	5.7336	23.937	1.4784	46.801	.02992
	DD3QR DD3QT			.03860 67.883	08320	.00653	.00001	.01551	.00171
	DD3Q1			7.2001	9.4259 1.61 <b>7</b> 8		2.1545	30.021	.03926
	DD3QX			92.202	6.9631	21.726 51.800	.36078 2.1776	67.680	.00117
	DD3QXP5	รี		19.403	1.4829	10.612	$\frac{2.1776}{.45214}$	102.28 20.526	.05165
	CCV2-4	•		52.526	49.204	50.598	5.0584	49.789	.01404
	CCB4			.00053	01294		00000	.00238	5.0590 .00169
	DD3QXS			94.144	59.257		2.6750	150.61	.54676
	DD3QXD			90.868	59.100	101.67	2.6614	150.66	.54252
	DD3R0			64.366	6.7172	59.566	1.7932	99.236	.03445
45	DD4WA			16.749	9.1892	18.603	1.2935	16.518	.01427
46	DD4WG			3.1698	1.7824	22.895	.50289	59.805	.00415
	DD4WH			6.8786	2.1170	35.285	2.0661	42.916	.01167
	DD4WJ			212.50	30.106	431.87	10.607	15.345	.13961
	DD4WK			.88194	20.004	26.045	.08992	16.906	.00431
	DD4WL			33.472	12.628	24.835	1.4787	15.792	.03247
	DD4WM			.01788	.01848	.01503	.00027	.04265	.00328
	CCV2-5			52.561	48.873	50.142	5.0739	48.982	5.0743
	CCB5			00053	15161	00392	.00027	.00837	.00117
	DD50E			.97100	1.7121	28.558	.39295	44.633	00310
	DD50N CCV2-6			33.209	4.7370	38.586	.37339	55.248	.02812
	CCV256			52.575	49.274	50.093	5.0792	49.125	5.0913
	DDL76BI	7		.00106 00566	.00554	00653	.00000	.00590	.00254
	DDL76CE			1.0424	14791	00719	00053	.00133	00486
	DD3QMF	•		.00583	47.205 1.1574	49.188 14.446	.49806	47.807	.49612
	DD3QMF			2.8532	4.8516	36.313	.00531 .67871	4.8169	00472
	DD3QQF			3.1277	1.1574	18.695	1.1970	28.071 44.984	00175 .00238
	DD3QRF			00246	.06656	.00457	00026	.00761	
	DD3QTF			5.6702	4.6371	22.850	1.3473	27.758	00053 .00519
	DD3QVF			2.7584	1.3091	21.048	.35526	63.304	.00093
	DD3QXF			11.830	1.1038	36.156	1.2934	93.618	.00093
	DD3QXF1	25		2.4575	.33465	7.4426	.26921	18.938	.00196
	CCV2-7			52.799	46.135	49.730	5.1055	46.789	5.0829
	CCB7			00017	02403	.00392	.00000	.00780	.00162
	DD3QXSF			13.045	47.693	87.207	1.8167	146.33	.49092
71	DD3QXDF	ק		13.085	47.928	87.815	1.8345	144.18	.50629

111100	Lybro Morolo			•			
#	Sample Name	FE	K	MG	MN	NA	NI
				***			
		4 6501	00470	20 605	1.6867	05 061	00207
	DD3R0F						.00307
73		1.0794			1.1319		.00160
74	DD4WGF	1.0192	1.6844		.47680		00561
75	DD4WHF	.18079	1.2998	32.757	1.8618		.002875
76	DD4WJF	3.7161	1.0613	30.280	1.5946	15.141	00398
77	DD4WKF	00638	18.756		.04802	16.199	.00216
	DD4WLF	1.0608	5.3545	12.157	1.1666	15.660	.00376
	DD4WMF	00602	.03143	.00196	00026	.06150	.00069
	CCV2-8	53.306 00194 .02425	46.852	50.071		47.233	5.1757
	CCB8	- 00194	03512	00261		.00637	00197
	DD50EF	02425	1.8989	29.500	.41045		
	DD50NF	.13688	1 5069	21.621	.13933		
0.4	DDOONE DEDIM 7N	2 4712	26439	7 4446	27080	18.909	.00083
04	DDSQAFFS RERON AN	E2 222	16 205	50 212	5 1 <i>46</i> 3	47 514	5.1871
85	DD3QXFP5 RERUN ZN CCV2-9 CCB9	00010	40.333	00457	0.1403	00790	.00106
86	CCB9	00212	.02588	00457	.00053	.00790	.00108
#	Sample Name	v	ZN				
1	STD1 STD5A	.00039	.00033				
	STD5A	T.2T/0	1.4//23				
3	STD5B						
4	ICV2-1 0014-061-7	.99394	1.0034				
5	ICB1	00250	00013				
6	STD5B ICV2-1 0014-061-7 ICB1 ICSA 0014-088-12 ICSAB 0014-043-1 DDLFVB DDLFVC DDK1J (QC) DDK1JP5 (QC)	.00149	.00308				
7	ICSAB 0014-043-1	.46233	.95888				•
8	DDLFVB	00516	.00398				
9	DDI.FVC	48429	.51527				
10	DDK1J (QC)	00254	.41555				
11	DDK1JP5 (QC)	00067	.08433				
12	DDK1JS (QC)	.48289	92177				
		.56033	.99117				
	DDK1JD (QC)	00217					
	DDKA2F	.00217	.01003				
	DDKA7F	4.9431	4.9904				
	CCV2-1 0014-087-7						
	CCB1	00099	.00602				
	DDK9T	.00253					
	DDLFVC RERUN CA, K	.48797	.51556				
	CCV2-2	4.9274	4.9611				
	CCB2	00228					
22	DDLA7B	00250					
23	DDLA7C	.48489	.49357				
24	DDK90	.01298	.04907				
25	DDK90P5	.00269	.01026				
26	DDK90S	.48173	.52313				
	DDK90D	.49803	.52937				
	CCV2-3	4.9792	5.0154				
	CCB3	00136					
	DDL6CB	00258					
	DDL6CC	.48924	.50243				
	DD3QM	.00018	.07468				
		.11653	.28638				
	DD3QN		.10040				
	DD3QQ	.04680					
35	DD3QR	00255	.0141/				

05/25/00 01:15:14 PM

					1.5
#	Sample Name	V	ZN		
⁻ 36	DD3QT	.05836	.27255	ōs-	·
	DD3QV	00255	.04684	,u	
	DD3OX	.10603	.16091	10	
	DD3QXP5				
	CCV2-4	.01939	.03342	771	
	CCB4	5.0274	5.0462	•	
		00131	.00093	<b>.</b> **	
	DD3QXS	.60985	.,66571		
	DD3QXD	.60224	.67925		
	DD3R0	.05375	.13833		
45	DD4WA	.02072	.06329		
46	DD4WG	.00010	.06413		
47	DD4WH	.00779	.05961		
48	DD4WJ	.18251	.43630		
49	DD4WK	.00108	.06668		
	DD4WL	.04014	.11154		
	DD4WM	00158	.01850		
	CCV2-5	5.0343	5.0483		
	CCB5				
		00222	.00120		
	DD50E	.00149	.01900		
	DD50N	.02865	.13423		
	CCV2-6	5.0272	5.0348		
	CCB6	00093	.00356		
58	DDL76BF	00248	.00253		
59	DDL76CF	.48778	.49381		
60	DD3QMF	00243	.00890		
	DD3QNF	.00126	.01188		
	DD3QQF	00125	.01211		
	DD3QRF	00026	.00405		
	DD3QTF	00129	.00954		
	DD3QVF	.00000			
	DD3QXF		.00910		
	DD3QXFP5	00242	.00942		
		.00005	.02943		
	CCV2-7	5.0461	5.0327		
	CCB7	00230	.00188		
	DD3QXSF	.48664	.49876		
	DD3QXDF	.49868	.50965		
	DD3R0F	00246	.01255		
73	DD4WAF	00245	.00999		
74	DD4WGF	00124	.00588		
75	DD4WHF	.00101	.01124		
76	DD4WJF	.00037	.00467		
77	DD4WKF	00257	.02498		
	DD4WLF	00128	.00613		
	DD4WMF	00219	.00486		
	CCV2-8	5.0961	5.0412		
	CCB8	00238	00013	•	
	DD50EF				
		.00118	.01516		
	DD50NF	00176	.00339		
	DD3QXFP5 RERUN ZN	00004	.00363		
	CCV2-9	5.0900	5.0308		
86	CCB9	00230	00055		

MTW 5-25-00

	MTW 5-25-00				•				
#	Sample Name	File	Method	Date	ü∈ T	ime	OpID	Туре	Mode
					<u> </u>				
	<del></del>								
1	STD1	J00525A	QUANMET	05/25/00		7:44		X	IR
2	STD5A	J00525A	QUANMET	05/25/00		7:48		X	IR
3	STD5B ==	J00525A	QUANMET	05/25/00		7:51		X	IR
4	ICV2-1 00 <b>14-</b> 061-7	J00525A	QUANMET	05/25/00	0	7:54	MTM	S	CONC
5	ICB1	J00525A	QUANMET	05/25/00		7:57	MTW	S	CONC
6	ICSA 0014-088-12	J00525A	QUANMET	05/25/00		3:00	MTW	Q	CONC
7	ICSAB 0014-043-1	J00525A	QUANMET	05/25/00		3:03	MTW	Q	CONC
8	DDLFVB	J00525A	QUANMET	05/25/00	08	3:09	MTW	S	CONC
9	DDLFVC	J00525A	QUANMET	05/25/00	08	3:12	MTM	S	CONC
10	DDK1J (QC)	J00525A	QUANMET	05/25/00	08	3:15	MTW	S	CONC
11	DDK1JP5 (QC)	J00525A	QUANMET	05/25/00	0.8	3:18	MTW	S	CONC
12	DDK1JS (QC)	J00525A	QUANMET	05/25/00	08	3:21	MTW	S	CONC
13	DDK1JD (QC)	J00525A	QUANMET	05/25/00	0.8	3:24	WTM	S	CONC
14	DDKA2F	J00525A	QUANMET	05/25/00	0.8	3:28	WTM	S	CONC
15	DDKA7F	J00525A	QUANMET	05/25/00		3:31	MTW	S	CONC
16	CCV2-1 0014-087-7	J00525A	QUANMET	05/25/00	0.8	3:34	MTW	S	CONC
17	CCB1	J00525A	QUANMET	05/25/00	0.8	3:37	WTM	S	CONC
18	DDK9T	J00525A	QUANMET	05/25/00	0.8	3:41	MTW	S	CONC
19	DDLFVC RERUN CA, K	J00525A	QUANMET	05/25/00	0.8	3:45	MTW	S	CONC
	CCV2-2	J00525A	QUANMET	05/25/00	0.8	3:48	MTW	S	CONC
	CCB2	J00525A	QUANMET	05/25/00	0.8	3:51	WTW	S	CONC
	DDLA7B	J00525A	QUANMET	05/25/00		3:54	MTW	S	CONC
	DDLA7C	J00525A	QUANMET	05/25/00		3:57	MTW	S	CONC
	DDK90	J00525A	QUANMET	05/25/00			MTW	s	CONC
	DDK90P5	J00525A	QUANMET	05/25/00			MTW	S	CONC
	DDK90S	J00525A	QUANMET	05/25/00			MTW	S	CONC
27	DDK90D	J00525A	QUANMET	05/25/00		9:10		S	CONC
	CCV2-3	J00525A	QUANMET	05/25/00		9:13		S	CONC
	CCB3	J00525A	QUANMET	05/25/00			MTW	S	CONC
	DDL6CB	J00525A	QUANMET	05/25/00			MTW	S	CONC
	DDL6CC	J00525A	QUANMET	05/25/00			MTW	S	CONC
	DD3QM	J00525A	QUANMET	05/25/00			MTW	S	CONC
	DD3QN	J00525A	QUANMET	05/25/00		9:48	WTM	S	CONC
	DD3QQ	J00525A	QUANMET	05/25/00		9:51	MTW	S	CONC
	DD3QR	J00525A	QUANMET	05/25/00	0.9	9:54	WTM	S	CONC
	DD3QT	J00525A	QUANMET	05/25/00	0.9	9:57	MTW	S	CONC
	DD3QV	J00525A	QUANMET	05/25/00		0:01	MTW	S	CONC
38	DD3QX	J00525A	QUANMET	05/25/00		0:04	MTW	S	CONC
39	DD3QXP5	J00525A	QUANMET	05/25/00		0:07	MTM	S	CONC
40	CCV2-4	J00525A	QUANMET	05/25/00			MTM	S	CONC
41	CCB4	J00525A	QUANMET	05/25/00			MTW	S	CONC
42	DD3QXS	J00525A	QUANMET	05/25/00			WTM	S	CONC
43	DD3QXD	J00525A	QUANMET	05/25/00	10	1:19	MTM	S	CONC
44	DD3R0	J00525A	QUANMET	05/25/00			MTM	S	CONC
45	DD4WA	J00525A	QUANMET	05/25/00	10	1:26	MTW	S	CONC
46	DD4WG	J00525A	QUANMET	05/25/00			MTW	S	CONC
47	DD4WH	J00525A	QUANMET	05/25/00			MTW	S	CONC
48	DD4WJ	J00525A	QUANMET	05/25/00			WTM	S	CONC
49	DD4WK	J00525A	QUANMET	05/25/00			MTW	S	CONC
50	DD4WL	J00525A	QUANMET	05/25/00			WTM	S	CONC
51	DD4WM	J00525A	QUANMET	05/25/00			MTW	S	CONC
52	CCV2-5	J00525A	QUANMET	05/25/00			MTW	S	CONC
53	CCB5	J00525A	QUANMET	05/25/00	1	0:51	MTW	S	CONC

Analysis Report Summary 05/25/00 01:15:14 PM

page 2

#	Sample Name	File	Method	Date	Time	OIqO	Туре	Mode
54	DD50E	J00525A	QUANMET -	05/25/00	10.54	MCCITA		GOTGT.
	DD50N	J00525A	QUANMET		10:54	MTW	S	CONC
	CCV2-6	J00525A		05/25/00	10:57	MTW	S	CONC
57	CCB6	J00525A	QUANMET	05/25/00	11:01	MTW	S	CONC
58	DDL76BF	J00525A	QUANMET	05/25/00	11:04	MTW	S	CONCI
59	DDL76GF	,	QUANMET	05/25/00	11:07		S	CONC
		J00525A	QUANMET	05/25/00	11:10	MTW	S	CONC
60	DD3QMF	J00525A	QUANMET	05/25/00	11:13		S	CONC
61	DD3QNF	J00525A	QUANMET	05/25/00		WTM	S	CONC
62	DD3QQF	J00525A	QUANMET	05/25/00	11:19		S	CONC
63	DD3QRF	J00525A	QUANMET	05/25/00	11:23	MTW	S	CONC
64	DD3QTF	J00525A	QUANMET	05/25/00	11:26	MTW	S	CONC
65	DD3QVF	J00525A	QUANMET	05/25/00	11:29	WTM	S	CONC
66	DD3QXF	J00525A	QUANMET	05/25/00	11:32	MTW	S	CONC
67	DD3QXFP5	J00525A	QUANMET	05/25/00	11:35	MTW	S	CONC
68	CCV2-7	J00525A	QUANMET	05/25/00	11:38	MTW	S	CONC
69	CCB7	J00525A	QUANMET	05/25/00	11:41	MTW	S	CONC
70	DD3QXSF	J00525A	QUANMET	05/25/00	11:46	MTW	S	CONC
71	~	J00525A	QUANMET	05/25/00	11:50	MTW	S	CONC
72	DD3R0F	J00525A	QUANMET	05/25/00	11:53	MTM	S	CONC
73	DD4WAF	J00525A	QUANMET	05/25/00	11:56	MTW	S	CONC
74	DD4WGF	J00525A	QUANMET	05/25/00	11:59	MTW	S	CONC
75	DD4WHF	J00525A	QUANMET	05/25/00	12:02	MTW	S	CONC
76	DD4WJF	J00525A	QUANMET	05/25/00	12:05	MTW	S	CONC
77	DD4WKF	J00525A	QUANMET	05/25/00	12:08	MTW	S	CONC
78	DD4WLF	J00525A	QUANMET	05/25/00	12:11	MTW	S	CONC
79	DD4WMF	J00525A	QUANMET	05/25/00	12:15	MTW	S	CONC
80	CCV2-8	J00525A	QUANMET	05/25/00	12:18	MTW	S	CONC
81	CCB8	J00525A	QUANMET	05/25/00	12:21	MTW	S	CONC
82	DD50EF	J00525A	QUANMET	05/25/00	12:24	MTW	S	CONC
83	DD50NF	J00525A	QUANMET	05/25/00	12:27	MTW	S	CONC
84	DD3QXFP5 RERUN ZN	J00525A	QUANMET	05/25/00	12:30	MTW	S	CONC
85	CCV2-9	J00525A	QUANMET	05/25/00	12:34	MTW	S	CONC
86	CCB9	J00525A	QUANMET	05/25/00	12:37	MTW	S	CONC

Standardization Rpt.

Method: QUANMET Standard: STD1 Run Time: 05/25/00 07:44:53

Elem  Avge SDev %RSD	AG00075 .00010 13.333	AL .01110 .00048 4.2891	AS .00020 .00114 571.55	B	BA .00014 .00018 125.28	BE .00295 .00010 3.3898	CA
#1 #2 #3 #4	00080 00060 00080	.01080 .01180 .01100 .01080	00140 .00080 .00120 .00020	.00000 .00000 .00000	.00000 .00008 .00008 .00040	.00280 .00300 .00300 .00300	00147 .00002 00024 .00192
Elem	CD	CO	CR	CU	FE	K_	LI
Avge	.00013	.00015	.00065	.00055	.00245	03180	.00035
SDev	.00010	.00025	.00074	.00055	.00148	.00817	.00032
%RSD	73.105	167.77	113.40	100.14	60.495	25.681	92.478
#1	.00020	00020	00020	.00000	.00120	04160	00004
#2	.00000	.00020	.00060	.00020	.00140	03380	.00048
#3	.00020	.00020	.00060	.00080	.00280	02980	.00024
#4	.00012	.00040	.00160	.00120	.00440	02200	.00072
Elem	MG	MN	MO	NA	NI	PB	SB
Avge	.00015	.00015	.00005	.05155	00015	.00015	.00005
SDev	.00060	.00010	.00010	.00108	.00014	.00030	.00041
%RSD	398.14	66.667	200.00	2.0863	91.665	200.00	824.62
#1	.00000	.00000	.00000	.05140	00008	.00040	.00000
#2	00040	.00020	.00020	.05040	00032	.00000	.00000
#3	.00000	.00020	.00000	.05140	00021	00020	.00060
#4	.00100	.00020	.00000	.05300	.00000	.00040	00040
Elem	SE	SI	SN	SR	TI	TL	V_
Avge	.00020	.00085	00025	.00000	.00215	00035	.00040
SDev	.00184	.00010	.00268	.00000	.00025	.00041	.00046
%RSD	920.15	11.765	1070.1	.00000	11.705	117.80	115.47
#1 #2 #3 #4	.00200 .00140 00200 00060	.00080 .00100 .00080 .00080	.00140 00420 .00040 .00140	.00000 .00000 .00000	.00220 .00240 .00180 .00220	00040 00040 00080 .00020	.00000 .00080 .00000 .00080
Elem Avge SDev %RSD	ZN .00034 .00008 23.311						
#1 #2 #3 #4	.00032 .00040 .00040 .00024						

CO

1.3377

.73469

1.3394

1.3246

1.3484

1.3386

.24400

.00298

1.2213

.24500

.23960

.24620

.24520

.34620

.00318

.91828

.34580

.34440

.35080

.34380

TL

PB

.0110

.0399

.67326

5.9528

5.8730

5.9614

5.9232

.68662

.0098

.0630

.79822

7.9633

7.8208

7.9163

7.8579

.00585

.63932

.91440

.90720

.91780

.92080

Standardization Rpt. 0014-072-2 Standard: STD5A Method: QUANMET Run Time: 05/25/00 07:48:04 ا بسته د ر BE CD . BA Elem ĀS AG:  $.\overline{5}8022$ :14.797 .84765 4.2021 .52800 Avge .25325 .00518 າດ .107 .00453 .00287 .0362 SDev .00169 72625ي<del>ن</del> .61126 .86095 %RSD .66817 .85766 .49505 4.2484 .14.860 .84367 .52740 .58152 .25260 #1 4.1657 14.643 .84287 .52240 .57756 #2 .25140 14.881 .85335 4.2114 #3 .25540 .53340 .58365 14.805 .85071 4.1829 .52880 .57815 #4 .25360 NI MO CU LI MN Elem CR 1.6074 2.3654 5.4344 1.8841 .39060 3.3833 Avge .0180 .0972 .0143 .00340 SDev .0241 .76039 .86995 .75902 1.7881 .71128 %RSD .39000 1.6076 5.5366 1.8842 #1 3.3790 2.3896 2.3510 5.4856 1.8648 .38620 1.5929 #2 3.3524 .39420 1.6197 1.8992 #3 3.4094 2.3686 5.3995 1.6094 1.8880 .39200 5.3159 #4 3.3924 2.3526 SR TI SI SN Elem SB se.91505 7.8896 5.9276 .33275 .51515 Avge .19140

.00320

.96090

.33060

.33000

.33700

.33340

#3	.19240	.51800
#4	.19140	.51340
Elem	Ÿ	ZN
Avge	1.5176	1.4772
SDev	.0100	.0067
%RSD	.66043	.45377
11 -		
#1	1.5202	1.4763
#2	1.5036	1.4687
#3	1.5274	1.4848

1.5192

.00186

.96903

.19300

.18880

SDev

%RSD

#1

#2

#4

.00528

1.0259

.52060

.50860

1.4792

Standardization Rpt. 05/25/00 07:54:18 AM page 1

Method: QUANMET Standard: STD5B 00.4-072-3

Run Time: 05/25/00 07:51:13

Elem	AL -	⁻ CA	FE	KICT.	MG-	NA-	- <u>-</u>
Avge	11.544	21.662	28.2 <b>36</b>	2.6725	7.6466	52.566	E
SDev	.033	.159	.091	>0455	.0085	.795	€
%RSD	.28198	.73627	.32276	1 <u>.7</u> 037	.11167	1.5121	$\vec{Z}_{\lambda}$ .
#1	11.554	21.551	28.146	2.7134	7.6498	53.233	
#2	11.515	21.834	28.361	2.6088	7.6466	51.432	
#3	11.521	21.759	28.235	2.6946	7.6350	52.632	
#4	11.585	21.504	28.201	2.6730	7.6552	52.965	

Standardization

Method: QUANMET Slope = Conc(SIR)/IR

	3	*** 1		`		
Element		High std	Low std	. •	Y-intercept	Date Standardized
·_AG	-328.068	STD5A	STD1	7.68238-		05/25/00 07:51:13
$\mathtt{AL}$	308.215	STD5B	STD1	8.67088 يز	096247	05/25/00 07:51:13
AS	193.696	STD5A	STD1	↑ 19.2733	003855	05/25/00 07:51:13
-B_	249.600	STD5A	STD1	<i>-</i> ≂ 17.2695	.000000	05/25/00 07:51:13
$B\overline{A}$	493.409	STD5A	STD1	2.37984	000336	05/25/00 07:51:13
$\mathtt{BE}$	313.042	STD5A	STD1	.677736	001999	05/25/00 07:51:13
CA	317.933	STD5B	STD1	4.61640,	000272	05/25/00 07:51:13
CD	228.802	STD5A	STD1	11.9759	001550	05/25/00 07:51:13
CO	228.616	STD5A	STD1	7.51178	001127	05/25/00 07:51:13
CR	267.716	STD5A	STD1	2.95708	001922	05/25/00 07:51:13
CU	324.754	STD5A	STD1	4.22466	002324	05/25/00 07:51:13
${ t FE}$	259.940	STD5B	STD1	3.54190	008678	05/25/00 07:51:13
K	766.491	STD5B	STD1	36.9788	1.17593	05/25/00 07:51:13
$\mathtt{L}\overline{\mathtt{I}}$	670.789	STD5A	STD1	1.84025	000644	05/25/00 07:51:13
MG	279.079	STD5B	STD1	13.0779	001962	05/25/00 07:51:13
MN	257.610	STD5A	STD1	5.30639	000796	05/25/00 07:51:13
MO	202.030	STD5A	STD1	25.6049	001280	05/25/00 07:51:13
NA	588.995	STD5B	STD1	1.90425	098164	05/25/00 07:51:13
NI	231.604	STD5A	STD1	6.21779	.000951	05/25/00 07:51:13
PB	220.353	STD5A	STD1	39.8024	005970	05/25/00 07:51:13
SB	206.838	STD5A	STD1	52.3208	002616	05/25/00 07:51:13
SE	196.026	STD5A	STD1	19.4194	003884	05/25/00 07:51:13
SI	288.158	STD5A	STD1	29.7451	025283	05/25/00 07:51:13
SN	189.989	STD5A	STD1	10.9140	.002728	05/25/00 07:51:13
SR	409.552	STD5A	STD1	1.26749	.000000	05/25/00 07:51:13
TI	334.941	STD5A	STD1	1.68764	003628	05/25/00 07:51:13
TL	190.864	STD5A	STD1	57.9823	.020294	05/25/00 07:51:13
V	292.402	STD5A	STD1	6.45072	002580	05/25/00 07:51:13
$z\overline{N}$	213.856	STD5A	STD1	6.79418	002298	05/25/00 07:51:13

05/25/00 07:57:28 AM

page 1

Method: QUANMET Sample Name: ICV2-1 0014-061-7 Run Time: 05/25/00 .07:54:22 Operator: MTW

RUN TIME: 05/25/00 07:54:22 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1 _}-₹-₹

Mod	le: CO	NC Corr.	_Factor: 1			3"	r	
Un Av SD	em nits ge SD	AG ppm .50621 .00411 .81127	AL , ppm 25.134 .110 .43906	AS ppm / 1.0054 .0054 .53783	B_ ppm 1.0060 .0105 1.0392		BE -ppm .98300 .00495 .50323	CA ppm 25.394 .238 .93684
#1 #2 #3	<b>.</b>	.50852 .50545 .51011 .50078	25.184 25.235 24.980 25.139	.99824 1.0055 1.0113 1.0066	1.0059 1.0053 .99361 1.0192	.99880 1.0021 .98492 .99634	.98432 .98839 .98281 .97647	25.377 25.321 25.721 25.155
	rors gh	LC Pass .55000 .45000	LC Pass 27.500 22.500	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 27.500 22.500
Un Av SI	.em nits ge Oev RSD	CD ppm 1.0172 .0058 .57314	CO ppm / 1.0048 .0077 .76658	CR ppm 1.0142 .0088 .86422	CU ppm * .98968 .00900 .90947	FE ppm 26.198 .103 .39388	K_ / ppm 25.055 .630 2.5139	LI ppm .98720 .03005 3.0439
#1 #2 #3	<u>?</u> }	1.0136 1.0121 1.0179 1.0251	1.0022 1.0037 1.0157 .99764	1.0144 1.0156 1.0239 1.0026	.99348 .99855 .97745 .98924	26.216 26.227 26.295 26.052	25.109 25.338 24.162 25.612	.99123 1.0008 .94410 1.0127
Hi	rors gh w	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 27.500 22.500	LC Pass 27.500 22.500	LC Pass 1.1000 .90000
Ur Av SI	lem nits /ge Dev RSD	MG ppm 25.538 .150 .58594	MN / ppm 1.0103 .0066 .65278	MO ppm .99227 .01692 1.7054	NA ppm 25.213 .650 2.5795	NI ppm 1.0129 .0190 1.8771	PB / ppm 1.0533 .0303 2.8731	SB ppm 1.0165 .0061 .60119
#3 #3 #4	2 3	25.576 25.733 25.403 25.440	1.0116 1.0095 1.0180 1.0020	.97051 .99099 1.0115 .99609	25.324 25.487 24.277 25.766	1.0083 1.0128 1.0382 .99238	1.0631 1.0472 1.0875 1.0153	1.0218 1.0114 1.0217 1.0110
H:	rrors igh ow	LC Pass 27.500 22.500	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 27.500 22.500	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000
Ui Ar Si	lem nits vge Dev RSD	SE ppm 1.0502 .0477 4.5450	SI ppm 1.0166 .0084 .82949	SN / ppm 1.0233 .0469 4.5809	SR ppm .99253 .00584 .58798	TI ppm .99039 .00371 .37437	TL ppm 4.9125 .0906 1.8448	V_ ppm .99394 .00436 .43893
#:		1.0474 1.0940	1.0047 1.0225	.99987 .96926	.99585 .99798	.99241 .99376	4.9007 5.0281	.99352 .99392

page 2

#3 #4	1.0749 .98464	1.0226	1.0697 1.0544	.98475 .99154	.99005 .98533	4.8070 4.9140	.99950 : 098883	
Errors High Low	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 5.5000 4.5000	icLC Pass 1 1.1000 	
Elem Units Avge SDev %RSD	ZN ppm 1.0034 .0038 .38196							
#1 #2 #3 #4	1.0052 1.0025 1.0074 .99849							
Errors High Low	LC Pass 1.1000 .90000							

15.14

Operator: MTW

Method: QUANMET Sample Name: ICB1

Run Time: 05/25/00 07:57:30 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Elem Units == Avge SDev %RSD	AG ppm 00155 .00077 49.563	AL ppm .00087 .00468 537.17	AS ppm 01827 .00368 20.134	B_ ppm	BA ppm 00017 .00012 70.711	BE ppm .00004 .00011 273.39	CA ppm 00527 .00277 52.520
#1 #2 #3 #4	00040 00193 00193 00193	.00779 00257 00082 00091	01544 01535 01923 02308	00000 00000 00000	00014 00034 00006 00014	00010 .00018 .00004 .00004	00858 00310 00288 00652
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.30000	.20000	.20000	.00500	5.0000
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00191	.00038	.00089	00084	00159	08690	00044
SDev	.00058	.00213	.00177	.00081	.00271	.21190	.00023
%RSD	30.281	558.49	198.45	95.953	170.20	243.84	52.444
#1	00180	00112	.00281	00148	00372	10354	00028
#2	00139	00112	.00044	00064	00372	09615	00064
#3	00273	.00339	.00163	.00021	.00195	.18489	00021
#4	00171	.00038	00133	00148	00088	33281	00064
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.05000	.01000	.02500	.10000	5.0000	.05000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00131	00026	.00384	.00114	00234	.01395	.00254
SDev	.00987	.00061	.00418	.00466	.00532	.02945	.02007
%RSD	754.98	231.57	108.88	407.68	227.56	211.17	790.60
#1	00981	00080	.00384	00524	.00241	.02582	01319
#2	.00327	.00026	00128	.00124	00248	01395	.00786
#3	.01373	00079	.00384	.00581	00973	.04983	01322
#4	00196	.00027	.00896	.00276	.00045	00592	.02870
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.0000	.01500	.04000	5.0000	.04000	.10000	.06000
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00388	02383	.00820	.00006	.00000	.06381	00250
SDev	.02710	.00297	.02255	.00013	.00032	.02574	.00008
%RSD	698.82	12.483	275.12	200.00	378e6	40.340	3.1709
#1	01555	01937	.03323	.00000	.00008	.07834	0025 <b>0</b>
#2	.01164	02532	02125		00025	.08994	0026 <b>0</b>

Low

-.02000

Analysis Report

Method: QUANMET

Sample Name: ICSA 0014-088-12

Operator: MTW

page 1

Run Time: 05/25/00 08:00:38 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E 7 -<u>-</u> Corr. Factor: 1 Mode: CONC CA BA / ΒE AS В ALAG Elem ppm / ppm_ ppm ppm ppm ppm Units ppm 483.52 -.00004 .00155 -.29602 -.03714 496.75 Avge -.00189 .00007 2.41 .00020 .00569 .04890 .00207 1.66 SDev 196.07 .49742 12.659 16.519 15.334 .33487 %RSD 109.63 485.92 .00003 -.03031 .00176 -.28857 496.37 .00052 #1 484.65 .00157 -.00011 -.04146 -.23425#2 -.00265 495.01 483.19 .00003 .00157 -.03459 -.30932 -.00112 496.62 #3 480.32 -.00010 .00129 499.01 -.35193 -.04219-.00430 #4 NOCHECK OC Pass NOCHECK NOCHECK NOCHECK OC Pass Errors NOCHECK 500.00 Value 500.00 20.000 20.000 Range LI CU FΕ K_ CR CO Elem CD ppm ~ ppm / mag ppm ppm ppm Units mag .00167 -.15716 183.65 -.00515 .01168 -.00133 .00164 Avge .28074 .00054 .00042 .32 .00153 .00194 .00268 SDev 178.63 32.457 8.2411 .17648 114.81 16.611 %RSD 163.54 .23666 .00193 184.06 -.00533 -.00192 .01243 .00143 #1 .00230 -.14792 183.65 -.00452 .01393 .00044 #2 .00039 .00135 -.35500 183.63 -.00074 -.00537 .00545 .01091 #3 .00111 183.27 -.36239 -.00540 -.00310 .00943 -,00071 #4 NOCHECK NOCHECK QC Pass NOCHECK NOCHECK NOCHECK Errors NOCHECK 200.00 Value 20.000 Range PB SB NΑ NI MO MN Elem MG ppm / / 1 mqq ppm ppm mag ppm Units ppm .02102 .07337 .00514 -.00798 .01082 -.00109 Avge 481.03 .01794 .01779 .00263 .00997 .01028 .00062 SDev .63 85.358 51.097 24.249 124.86 95.039 .13095 56.926 %RSD -.00270 -.00958 .08143 .00581 .02624 -.00017 480.77 #1 .02889 .07436 -.01542 .00847 .00570 -.00133 #2 480.29 .03931 -.01344 .08937 -.00137 .00238 .00569 #3 481.37 .01855 .00390 .04832 .00652 .00564 481.71 -.00152 #4 NOCHECK NOCHECK NOCHECK NOCHECK NOCHECK NOCHECK QC Pass Errors Value 500.00 Range 20.000 V TL TI SR SNSE SI Elem ppm mqq ppm ppm maa Units ppm ppm .55327 .00150 -.02261 .01332 -.05387 .06991 Avge .34511 .00266 .03679 .00058 .00031 .02688 SDev .07634 .00003 177.46 6.6502 2.5490 2.2950 .04846 49.889 %RSD 22.121 .00308 .53164 .01317 -.02185 -.01899 .06993 #1 .28446 .00269 .51266 .01317 -.02287 -.08440 .35676 .06993 #2

Analysis	Report	QC Star	ndard	05/25	/00 08:03:4	14 AM	658 58 page 2	15
#3 #4	.29064	.06993 .06986	05816 05396	.01317 .01378	02253 02320	.58252 .58627	.00269 00248	; m
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	亚
Elem Units Avge SDev %RSD	ZN / ppm .00308 .00245 79.580			tı				
#1 #2 #3 #4	.00403 .00385 .00497 00052							
Errors Value Range	NOCHECK							

Method: QUANMET Sample Name: ICSAB 0014-043-1 Operator: MTW Run Time: 05/25/00 08:03:47

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Elem	AG	AL	AS	B_	BA	BE	CA
Units	ppm	ppm-	ppm	ppm	ppm	ppm	ppm
Avge	.98792	498.78	Q.64369	.91298	.46489	.44256	482.91
SDev	.00239	1.48	.01969	.01120	.00104	.00179	1.69
%RSD	.24185	.29714	3.0582	1.2264	.22321	.40529	.34959
#1	.98895	498.46	Q.63167	.92016	.46530	.44138	481.37
#2	.99082	500.24	Q.62268	.92077	.46578	.44502	485.15
#3	.98597	499.58	Q.66415	.91420	.46510	.44273	481.88
#4	.98595	496.86	Q.65627	.89678	.46340	.44109	483.23
Errors	QC Pass	QC Pass	QC Fail	QC Pass	QC Pass	QC Pass	QC Pass
Value	1.0000	500.00	1.0000	1.0000	.50000	.50000	500.00
Range	20.000	20.000	20.000	20.000	20.000	20.000	20.000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	1.0031	.46028	.44416	.50137	183.64	9.9418	.97341
SDev	.0072	.00247	.00359	.00190	.56	.1173	.00724
%RSD	.71497	.53573	.80873	.37819	.30521	1.1799	.74410
#1	1.0119	.45725	.44106	.50196	183.17	9.8881	.97322
#2	1.0049	.46026	.44756	.50291	184.44	9.9621	.97846
#3	1.0006	.46329	.44697	.50200	183.56	9.8216	.97874
#4	.99493	.46030	.44105	.49860	183.38	10.095	.96324
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	1.0000	.50000	.50000	.50000	200.00	10.000	1.0000
Range	20.000	20.000	20.000	20.000	20.000	20.000	20.000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	480.12	.45763	.91339	10.074	.88197	1.0493	.93046
SDev	1.29	.00148	.00967	.081	.01302	.0593	.04453
%RSD	.26828	.32242	1.0583	.80749	1.4759	5.6468	4.7853
#1	479.33	.45618	.92740	10.080	.88400	.99379	.91722
#2	481.98	.45969	.91223	10.145	.87759	1.1042	.97997
#3	479.98	.45733	.90698	10.112	.86763	1.0968	.94882
#4	479.19	.45733	.90695	9.9586	.89868	1.0026	.87584
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	500.00	.50000	1.0000	10.000	1.0000	1.0000	1.0000
Range	20.000	20.000	20.000	20.000	20.000	20.000	20.000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	Q1.2257	1.0693	.87312	.92737	.88668	9.3712	.46233
SDev	.0612	.0379	.06318	.00288	.00253	.2755	.00290
%RSD	4.9901	3.5455	7.2365	.31012	.28550	2.9400	.62717
#1	Q1.2871	1.1228	.91827	.92708	.88643	9.4427	.46002
#2	Q1.2685	1.0574	.93407	.93012	.89014	9.7310	.46490

Analysis	Report	QC Standard		05/25	658 58' page 2			
#3 #4	1.1837 1.1636	1.0633 1.0336	.80280 .83736	.92880	.88609 .88407	9.1603 9.1506	.45963 .46478	
Errors Value Range	QC Fail, 1.0000 20.000	QC Pass 1.0000 20.000	QC Pass 1.0000 20.000	QC Pass 1.0000 20.000	QC Pass 1.0000 20.000	QC Pass 10.000 20.000	QC-Pass .50000 20.000	
Elem Units Avge SDev %RSD	ZN ppm .95889 .00811 .84544							
#1 #2 #3 #4	.95463 .97085 .95329 .95676							
Errors Value Range	QC Pass 1.0000 20.000							

STL Pittsburgh

6071

Method: QUANMET Sample Name: DDLFVB Run Time: 05/25/00 08:09:15 Operator: MTW

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

Elem	AG	AL	AS	B_	ArBA	BE	CA
Units	ppm	ppm	ppm	ppm	prppm	ppm	ppm
Avge	00233	.02608	03098	.00002	00012	00005	.08819
SDev	.00076	.01797	.04311	.00001	.00036	.00007	.01912
%RSD	32.677	68.908	139.15	48.725	299.71	134.02	21.681
#1	00193	.05128	.02272	.00003	.00014	00009	.11422
#2	00196	.02520	02323	.00003	00062	.00005	.09075
#3	00196	.01833	04244	.00002	00014	00008	.07527
#4	00347	.00954	08099	.00001	.00014	00010	.07250
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.30000	.20000	.20000	.00500	5.0000
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_ppm22742 .13933 61.266	LI
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	.00024	.00038	00074	00190	.01257		00103
SDev	.00382	.00122	.00174	.00085	.00598		.00060
%RSD	1563.3	324.78	236.16	44.540	47.590		58.289
#1	.00201	.00187	.00103	00063	.01824	04437	00175
#2	00369	00112	00192	00232	.01611	36239	00101
#3	.00470	.00036	00251	00232	.01116	30323	00028
#4	00205	.00038	.00045	00232	.00478	19969	00110
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.05000	.01000	.02500	.10000	5.0000	.05000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.03269	00026	.00000	.00952	.00006	.01588	02878
SDev	.01996	.00061	.00490	.00379	.00529	.02865	.03020
%RSD	61.057	234.04	260770.	39.783	8787.7	180.44	104.94
#1	.06081	00079	00640	.01381	.00253	.00192	L06537
#2	.02943	.00027	.00384	.00809	00674	.00987	02364
#3	.01373	00079	00128	.01114	00111	00602	03400
#4	.02681	.00027	.00384	.00505	.00556	.05773	.00788
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.0000	.01500	.04000	5.0000	.04000	.10000	.06000
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00384	.02224	00231	.00009	00042	01749	00516
SDev	.04349	.03187	.00813	.00024	.00019	.03941	.00296
%RSD	1133.2	143.29	351.31	283.07	46.188	225.30	57.258
#1	.05832	.03417	.00898	.00040	00025	.02011	00270
#2	04266	.04006	00174		00059	00300	00767

Analysis	Report			05/25,	/00 08:12:2	1 AM	:658:589 page 2
#3 #4	01161 01940	02538 .04012	00834 00815	00010 00010	00025 00059.		00777 00251
Errors High Low	LC Pass .25000 25000	LC Pass .50000	LC Pass .10000 10000	LC Pass .05000 05000	LC Pass 1 .0500005000	.30000	LC Pass .05000 05000
Elem Units Avge SDev %RSD	ZN ppm .00398 .00098 24.538		,	J			
#1 #2 #3 #4	.00416 .00473 .00447 .00256						
Errors High Low	LC Pass .02000 02000						

Method: QUANMET Sample Name: DDLFVC Operator: MTW

Run Time: 05/25/00 08:12:23

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1 đŝ

	•						
Elem	AG	AL /	AS	B <u>1</u> -	BA / ppm / 1.9324 .0120 .61878	BE	CA
Units	ppm	ppm	ppm	ppm-		ppm	ppm
Avge	.04870	1.9855	1.9646	.98088		.04992	42.536
SDev	.00194	.0129	.0315	.02033		.00017	.287
%RSD	3.9942	.65128	1.6032	2.0731		.34706	.67451
#1	.04678	2.0028	1.9510	1.0100	1.9420	.05013	42.545
#2	.04831	1.9715	1.9358	.96262	1.9293	.04985	42.255
#3	.04831	1.9838	1.9627	.97544	1.9415	.04972	42.416
#4	.05141	1.9837	2.0089	.97544	1.9167	.04998	42.928
Errors	LC Pass	LC Pass	LC Pass	NOCHECK	LC Pass	LC Pass	LC Pass
High	.06000	2.4000	2.4000		2.4000	.06000	60.000
Low	.04000	1.6000	1.6000		1.6000	.04000	40.000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.04761	.49581	.19829	.24324	1.0583	40.771	.95544
SDev	.00591	.00313	.00317	.00069	.0094	.406	.01442
%RSD	12.410	.63147	1.5965	.28447	.89024	.99470	1.5090
#1	.04526	.49506	.19652	.24324	1.0688	40.876	.96086
#2	.05260	.49204	.19652	.24239	1.0461	40.551	.95256
#3	.04034	.49657	.19711	.24409	1.0574	41.291	.97125
#4	.05224	.49956	.20302	.24325	1.0610	40.366	.93711
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	NOCHECK
High	.06000	.60000	.24000	.30000	1.2000	60.000	
Low	.04000	.40000	.16000	.20000	.80000	40.000	
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	42.456	.50384	.00528	40.750	.51000	.54378	L01153
SDev	.140	.00265	.00490	.524	.01205	.02481	.01356
%RSD	.32956	.52697	92.864	1.2856	2.3629	4.5625	117.58
#1	42.629	.50464	.00400	41.018	.52105	.53979	L.00433
#2	42.287	.50039	.00912	40.614	.51058	.53172	L02723
#3	42.457	.50358	00112	41.285	.49310	.52391	L00644
#4	42.451	.50676	.00912	40.082	.51526	.57970	L01678
Errors	LC Pass	LC Pass	NOCHECK	LC Pass	LC Pass	LC Pass	LC Low
High	60.000	.60000		60.000	.60000	.60000	.60000
Low	40.000	.40000		40.000	.40000	.40000	.40000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	2.0157	.01213	00530	.97341	00228	2.0864	.48430
SDev	.0494	.00296	.01664	.00485	.00055	.0557	.00264
%RSD	2.4521	24.432	313.81	.49799	24.192	2.6704	.54454
#1	2.0429	.01657	02541	.97810	00295	2.0341	.48298
#2	2.0623	.01063	01247	.97075	00228	2.1503	.48308

Analysis	Report			05/25,	658 591 page 2		
#3 . #4	1.9497	.01062 .01069	.00727 .00941	.97684, .96796 <u>:</u>	00228 00160		.48288 .48825
Errors High Low -		NOCHECK	NOCHECK	NOCHECK	NOCHECK	LC Pass 2.4000 1.6000	LC Pass .60000 .40000
Elem Units Avge SDev %RSD	ZN ppm .51527 .00586 1.1375						
#1 #2 #3 #4	.50874 .51365 .51586 .52285						
Errors High Low	LC Pass .60000 .40000						

Operator: MTW Method: QUANMET Sample Name: DDK1J (QC)

Run Time: 05/25/00 08:15:36

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

nouc.	COME COLL						
Elem Unit Avge SDev %RSD	s ppm 00448 .00147	AL ppm 00170 .00413 242.98	AS ppm 00598 .03134 523.66	B_ ppm .28514 .00002 .00830	BA ppm .29196 .00159 .54341	BE ppm .00001 .00007 1002.5	CA ppm 134.06 .42 .31630
#1	00410	00427	01752	.28514	.29079	.00004	134.16
#2	00563	00432	.01329	.28518	.29384	.00004	134.57
#3	~.00564	.00437	04458	.28513	.29269	.00004	133.54
#4	00257	00258	.02488	.28512	.29051	00009	133.97
Erro		LC Pass					
High		600.00	100.00	100.00	100.00	15.000	600.00
Low		20000	30000	20000	20000	00500	-5.0000
Elem Unit Avge SDev %RSD	s ppm 00111 .00258	CO ppm .00137 .00190 138.24	CR ppm 00266 .00122 45.869	CU ppm .00333 .00081 24.318	FE ppm 4.5998 .0132 .28737	K_ ppm 5.1179 .1896 3.7050	LI ppm .02193 .00087 3.9580
#1	00020	.00175	00251	.00396	4.5986	4.9330	.02079
#2	00350	.00175	00251	.00227	4.6177	5.3028	.02285
#3	00286	.00325	00133	.00396	4.5972	5.2584	.02226
#4	.00212	00127	00429	.00311	4.5858	4.9774	.02183
Erro		LC Pass					
High		100.00	100.00	100.00	400.00	1000.0	20.000
Low		05000	01000	02500	10000	-5.0000	05000
Elem Unit Avge SDev %RSI	s ppm 26.310 .130	MN ppm .94480 .00219 .23193	MO ppm .00197 .00296 150.29	NA ppm 105.99 1.47 1.3848	NI ppm 00759 .01054 138.92	PB ppm .01493 .02546 170.47	SB ppm .00781 .02569 328.97
#1	26.251	.94613	00059	104.44	.00095	.04082	.00787
#2	26.436	.94719	.00453	107.36	.00104	00691	.03927
#3	26.397	.94294	.00453	107.13	01179	00695	02366
#4	26.156	.94294	00059	105.04	02055	.03277	.00776
Erro		LC Pass					
High		100.00	50.000	400.00	100.00	100.00	100.00
Low		01500	04000	-5.0000	04000	10000	06000
Elem Unit Avge SDev %RSI	e00843 .02164	SI ppm 7.4987 .0156 .20864	SN ppm 00452 .01662 368.16	SR ppm .41486 .00192 .46205	TI ppm 00861 .00042 4.9345	TL ppm .03611 .04116 113.99	V_ ppm 00255 .00006 2.3103
#1	01038	7.5061	.01022	.41413	00869	.01293	00260
#2	.01300	7.5002	00709	.41666	00869	.07072	00250

658 5	9	3
-------	---	---

05/25/00 08:18:41 AM

#3 #4	03757 .00123	7.4764 7.5121	00571 02689	.41616 .41250	00903 00802	.07090 01012	00250 00260
Errors High Low	LC Pass, 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000-	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .41555 .00280 .67384						
#1 #2 #3 #4	.41790 .41519 .41738 .41174						
Errors High Low	LC Pass 100.00 02000						

Method: QUANMET Sample Name: DDK1JP5 (QC)
Run Time: 05/25/00 08:18:44 Operator: MTW

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E 5~

Elem	AG ppm00097 .00199 206.13	AL	AS	B_	BA	BE	CA
Units		ppm	ppm	ppm	ppm-	ppm	ppm
Avge		00653	01467	.06344	.05924	00010	26.372
SDev		.00819	.02974	.02083	.00024	.00011	.071
%RSD		125.41	202.78	32.831	.40175	104.57	.27077
#1	00175	00433	.01429	.03874	.05936	00023	26.329
#2	.00135	.00087	.00644	.08813	.05936	00011	26.435
#3	00019	00442	03207	.06986	.05888	00011	26.430
#4	00327	01824	04733	.05705	.05936	.00003	26.294
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem Units Avge SDev %RSD	CD ppm 00015 .00151 978.26	CO ppm 00040 .00260 646.25	CR ppm 00044 .00102 230.67	CU ppm .00050 .00042 85.429	FE ppm .92673 .00547 .59043	K_ppm 1.0410 .4421 42.472	LI ppm .00449 .00040 8.9492
#1	.00171	.00034	00074	.00029	.91859	.70999	.00414
#2	00158	.00185	.00103	.00113	.92850	1.6493	.00488
#3	00118	00416	00074	.00028	.92992	.71739	.00414
#4	.00043	.00035	00133	.00029	.92992	1.0872	.00479
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.1605	.19130	.00142	20.809	.00582	.00974	.00790
SDev	.0237	.00053	.00296	.418	.00190	.01454	.00857
%RSD	.45966	.27670	208.35	2.0082	32.662	149.22	108.39
#1	5.1429	.19156	.00398	21.038	.00592	.02567	00266
#2	5.1560	.19156	00114	20.338	.00520	00612	.00795
#3	5.1481	.19156	00114	20.598	.00381	.00168	.00799
#4	5.1952	.19050	.00398	21.262	.00835	.01774	.01833
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.03349	1.4412	00196	.08364	00160	.02630	.00067
SDev	.01661	.0260	.03552	.00022	.00028	.05305	.00242
%RSD	49.598	1.8006	1808.7	.26802	17.189	201.76	360.32
#1	.01113	1.4262	.03127	.08397	00160	.03510	00250
#2	.04612	1.4323	01670	.08357	00127	.01175	.00256

Analysis	Report			05/25,	658 595 page 2		
#3 #4	.03059 .04612	1.4798 1.4263	04507 .02264	.08346 .08357	00160 00194	.09296 03462	.00256 .00007
Errors High Low	LC Pass 100.00 25000-	LC Pass 20.000 -:50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .08434 .00218 2.5892						
#1 #2 #3 #4	.08750 .08401 .08322 .08263						
Errors High Low	LC Pass 100.00 02000						

Operator: MTW

Method: QUANMET Sample Name: DDK1JS (QC)

Run Time: 05/25/00 08:21:52

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Mode: CONC Corr. Factor: 1

	iouc. coi			•	· ·			·-
_	Elem Units Avge SDev %RSD	AG ppm .04687 .00154 3.2781	AL ppm 2.0280 .0071 .35213	AS ppm 2.0095 .0373 1.8549	B_ -ppm 1.2650 .0083 .65701	BA ppm 2.2096 .0044 .20104	BE ppm .04969 .00017 .33709	CA ppm 180.50 .76 .42155
	#1	.04610	2.0219	2.0491	1.2623	2.2128	.04972	180.45
	#2	.04613	2.0358	1.9602	1.2582	2.2138	.04984	181.36
	#3	.04607	2.0220	2.0222	1.2623	2.2074	.04973	179.52
	#4	.04918	2.0322	2.0066	1.2771	2.2045	.04945	180.69
	Errors High Low	LC Pass 2.0000 01000	LC Pass 600.00 20000	LC Pass 100.0030000	LC Pass 100.00 20000	LC Pass 100.00 20000	LC Pass 15.000 00500	LC Pass 600.00 -5.0000
	Elem Units Avge SDev %RSD	CD ppm .04795 .00414 8.6307	CO ppm .49305 .00413 .83665	CR ppm .19474 .00174 .89368	CU ppm .24993 .00049 .19598	FE ppm 5.4749 .0142 .25922	K_ppm 51.617 .744 1.4407	LI ppm 1.0030 .0044 .43744
	#1	.05149	.49492	.19475	.24951	5.4699	52.044	1.0002
	#2	.05151	.49792	.19533	.25036	5.4954	52.111	1.0065
	#3	.04501	.48893	.19238	.24950	5.4628	50.520	.99827
	#4	.04377	.49043	.19652	.25035	5.4713	51.793	1.0069
	Errors	LC Pass                                  LC Pass	LC Pass					
	High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
	Low	00500	05000	01000	02500	10000	-5.0000	05000
	Elem	MG	MN	MO	NA	NI	PB	SB
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	73.215	1.4287	00046	150.72	.49348	.54670	.01456
	SDev	.172	.0033	.00591	.57	.01519	.01838	.01199
	%RSD	.23470	.23119	1281.0	.38095	3.0771	3.3616	82.358
	#1	73.195	1.4271	.00466	150.91	.50306	.53085	.02505
	#2	73.446	1.4335	00558	151.16	.48682	.56273	.00408
	#3	73.190	1.4260	00558	149.87	.50861	.56250	.00427
	#4	73.030	1.4282	.00466	150.92	.47541	.53072	.02484
	Errors	LC Pass                                  LC Pass	LC Pass					
	High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
	Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
	Elem	SE	SI	SN	SR	TI	TL	V_
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	1.9493	7.5331	01468	1.3753	01063	2.0576	.48289
	SDev	.0408	.0381	.01443	.0033	.00051	.0361	.00422
	%RSD	2.0923	.50621	98.314	.23802	4.7619	1.7531	.87341
	#1	1.9347	7.5004	.00174	1.3755	01105	2.0519	.48299
	#2	1.9698	7.5719	00708	1.3799	01038	2.0400	.48795

Analysis Report				05/25	658 597 page 2		
#3 #4	1.9930 1.8998	7.5004 7.5599		1.3734 1.3725	01105 !01004		.47763 .48299
Errors High Low		LC Pass 20.000 50000	LC Pass 100.00 10000	50.000	, LC Pass 1, 50.000 05000	100.00	
Elem Units Avge SDev %RSD	ZN ppm .92177 .00479 .51912				2.1		
#1 #2 #3 #4	.91950 .92853 .91754 .92151						
Errors High Low	LC Pass 100.00 02000						

Operator: MTW

Sample Name: DDK1JD (QC) Method: QUANMET

Run Time: 05/25/00 08:24:59

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E 1 Corr. Factor: 1 Mode: CONC CA BE В BA AS Elem AG AL ppmppm ppm mqq Units ppm ppm mqq 182.12 .05765 2.5043 2.3507 2.3253 1.4130 .05726 Avge .00019 1,25 .0041 .0123 SDev .00126 .0122 .0361 .68663 .33272 .16350 .52059 1.5504 .87363 %RSD 2.1953 181.37 1.4240 2.5067 .05765 2.3726 .05573 2.3376 #1 180.78 2.5086 .05751 1.4081 2.3429 2.3302 #2 .05726 .05751 182.91 2.5024 1.3979 .05727 2,3601 2.3107 #3 183.43 2.4996 .05792 2.2876 1.4221 2.3620 .05881 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors LC Pass 15.000 600.00 100.00 100.00 High 2.0000 600.00 100.00 -5.0000 -.20000 -.00500 -.20000 -.30000 -.20000 -.01000 Low CU FE $K_{\underline{\phantom{a}}}$ LICR CD CO Elem ppm ppm mqq ppm ppm Units mqq mag 1.1398 54.492 5.5823 .22767 .28803 .05515 .57175 Avge .582 .0195 .00049 .00436 .0262 .00256 SDev .00554 1.7088 1.0682 .46940 .17001 %RSD 10.038 .44838 1.9134 1.1489 54.633 .28761 .22309 5.5761 .05153 .56838 #1 54.810 5.5499 1.1583 .28845 .57289 .22486 #2 .05007 1.1387 .28761 5.5910 54.891 .23078 .57136 #3 .06225 53.634 1.1132 5.6123 .28846 .23196 #4 .05676 .57438 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20.000 400.00 1000.0 100.00 100.00 100.00 High 100.00 -.05000 -.10000 -5.0000 -.01000 -.02500 -.00500 -.05000 Low SB PΒ NA NIElem MG MN MO ppm ppm ppm ppm Units ppm ppm ppm .00253 .57730 .62628 76.149 -.00173 150.19 1.4916 Avge .01019 .03075 1.90 .02183 .00490 .048 .0069 SDev 402.00 3.7806 4.9091 1.2636 284.14 .45933 %RSD .06317 -.00551 .64410 .55206 76.177 1.4887 -.00045 151.10 #1 .01574 .60445 151.98 .57884 76.130 1.4834 -.00557 #2 -.00547 .57320 .59640 .00468 150.08 1.4961 #3 76.090 .66018 .00539 .60510 147.59 1.4982 -.00556 #4 76.198 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 100.00 100.00 100.00 400.00 50.000 High 600.00 100.00 -.06000 -.10000 -.04000 -5.0000 -.01500 -.04000 Low -5.0000 V TL TI SI SN SR Elem SE ppm ppm ppm Units ppm ppm ppm ppm 2.4036 .56034 1.5168 ~.01029 7.4003 .00657 2.2896 Avge .00032 .0633 .00010 .02182 .0011 SDev .0165 .0119 .01718 3.1391 2.6328 .07326 332.32 %RSD .72237 .16076

.00162

-.02012

7.4062

7,4062

1.5174

1.5180

.56036

.56026

2.3399

2.4909

-.01072

-.01038

2.3119

2.2924

#1

#2

Analysis	Report			05/25,	$058_{page}599$		
#3 #4	2.2770 2.2770	7.3824 7.4062	.03218	1.5156 1.5162	01004 01004	2.3862 2.3975	.56047 .56027
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000-		LC Pass 50.000 05000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .99118 .00095 .09592						
#1 #2 #3 #4	.99016 .99063 .99225 .99166						
Errors High Low	LC Pass 100.00 02000						

Operator: MTW

Method: QUANMET Sample Name: DDKA2F

Run Time: 05/25/00 08:28:07

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

							C.D.
Elem Units Avge SDev	AG ppm 00125 .00320	AL -ppm .01604 .01563	AS ppm 00803 .01731	B_ ppm .05708 .00461	.06519 .00069	BE -ppm 00006 .00007	CA ppm 39.811 .118 .29600
%RSD	254.78	97.441	215.69	8.0838	1.0552	110.53	.29600
#1	.00258	.03213	00624	.06328	.06574	00010	39.982
#2	00509	00266	00982	.05436	.06582	00010	39.712
#3	00049	.02514	.01310	.05778	.06459	00010	39.786
#4	00203	.00956	02915	.05290	.06459	.00004	39.765
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00200	.00073	.00015	.00330	1.6349	2.4295	.00025
SDev	.00233	.00309	.00267	.00109	.0084	.2693	.00017
%RSD	116.65	425.02	1774.5	33.061	.51311	11.084	66.832
#1	00098	.00335	.00163	.00457	1.6404	2.5515	.00040
#2	L00520	00264	00369	.00287	1.6418	2.5515	.00037
#3	00204	.00336	.00045	.00203	1.6340	2.0264	.00003
#4	.00024	00116	.00222	.00372	1.6234	2.5885	.00022
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	7.7120	2.3891	.00409	14.769	.00548	.00956	02354
SDev	.0581	.0080	.00418	.317	.00590	.03182	.01909
%RSD	.75400	.33348	102.37	2.1477	107.83	332.77	81.114
#1	7.7454	2.3992	.00409	14.644	.00995	00627	00255
#2	7.7768	2.3918	.00409	15.237	.00086	00646	03399
#3	7.6591	2.3833	.00921	14.530	.01117	00632	04443
#4	7.6669	2.3822	00104	14.667	00008	.05730	01318
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	02024	.86109	.00730	.03858	00270	.03138	00218
SDev	.04362	.02790	.01829	.00033	.00058	.06513	.00064
%RSD	215.51	3.2398	250.34	.86620	21.348	207.55	29.603
#1	00954	.84324	00133	.03853	00262	.08644	00250
#2	05226	.83136	00802	.03904	00329	00635	00122

 #3 #4	05617 .03701	.88488 .88488	.00502	.03823	00194 00295	.08642
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 1 LC Pass 100.00 100.00 -2.000005000
Elem Units Avge SDev %RSD	ZN ppm .01636 .00161 9.8152		,			
#1 #2 #3 #4	.01730 .01487 .01515 .01814					
Errors High Low	LC Pass 100.00 02000					

Method: QUANMET Sample Name: DDKA7F Run Time: 05/25/00 08:31:14 Operator: MTW

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Mode: CONC Corr. Factor: 1

Elem	AG	AL	AS	B_	BA	BE	CA
Units	-ppm	ppm	ppm		ppm	ppm	ppm
Avge	00075	.06844	00932		.04477	00004	30.532
SDev	.00147	.01056	.06064		.00037	.00008	.217
%RSD	196.16	15.426	650.62		.83437	191.22	.71193
#1	00190	.05623	02753	.05531	.04432	00011	30.285
#2	00037	.07540	.07639	.04250	.04460	.00003	30.608
#3	.00117	.07891	06626	.05530	.04508	00011	30.791
#4	00190	.06321	01988	.05531	.04508	.00003	30.443
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00147	.00036	.00103	.00106	.02195	1.4976	.00108
SDev	.00210	.00174	.00251	.00069	.00089	.2998	.00057
%RSD	142.10	483.30	242.47	65.297	4.0621	20.021	53.168
#1	00082	00114	00015	.00021	.02178	1.2573	.00040
#2	00437	.00187	.00340	.00106	.02320	1.6862	.00083
#3	.00061	.00186	.00281	.00190	.02178	1.8194	.00143
#4	00133	00114	00192	.00106	.02107	1.2277	.00165
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	7.0784	.00133	.00384	10.055	.00789	.02784	.00792
SDev	.0582	.00000	.00418	.254	.00296	.01770	.01707
%RSD	.82240	.11801	108.77	2.5267	37.533	63.582	215.56
#1	7.0496	.00133	.00896	10.170	.00951	.03378	.00789
#2	7.0104	.00133	.00384	9.7053	.00418	.04184	.02883
#3	7.1229	.00133	00128	10.048	.00695	.03385	.00794
#4	7.1307	.00133	.00384	10.296	.01089	.00190	01299
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI ppm00143 .00019 13.585	TL	V_
Units	ppm	ppm	ppm	ppm		ppm	ppm
Avge	00283	2.4034	00705	.12839		.04614	.00266
SDev	.05338	.0341	.01040	.00117		.05787	.00008
%RSD	1884.6	1.4201	147.57	.91196		125.40	2.9552
#1	.06222	2.3544 2.4079	.00059	.12738	00127	01472	.00275
#2	.01950		01896	.12738	00127	.08961	.00266

Analysis	Report			05/25	658 603 page 2		
#3 #4	04653 04653	2.4198	01250 .00268	.12940 .12940	00160 :2:00160	.10122 .00848	.00256 .00265
Errors High Low		LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	-	100.00	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .01003 .00167 16.662				-		
#1 #2 #3 #4	.00879 .01208 .00855 .01070						
Errors High Low	LC Pass 100.00 02000						

Analysis Report

Method: QUANMET Sample Name: CCV2-1 0014-087-7 Operator: MTW

Run Time: 05/25/00 08:34:22

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

							•
Elem	AG	AL	AS ppm 5.0112 .1157 2.3082	B_	BA	BE	CA
Units	ppm	ppm		ppm	ppm	ppm	ppm
Avge	1.0036	49.678		4.9598	4.8757	4.9347	50.562
SDev	.0026	.218		.0104	.0313	.0115	.112
%RSD	.26059	.43816		.20997	.64131	.23323	.22175
#1	1.0024	49.877	5.1425	4.9650	4.9097	4.9360	50.444
#2	1.0009	49.813	5.0736	4.9650	4.8888	4.9371	50.523
#3	1.0070	49.392	4.9038	4.9442	4.8364	4.9190	50.711
#4	1.0039	49.631	4.9248	4.9651	4.8678	4.9466	50.567
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	1.1000	55.000	5.5000	5.5000	5.5000	5.5000	55.000
Low	.90000	45.000	4.5000	4.5000	4.5000	4.5000	45.000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.0618	4.9636	4.9540	4.9139	51.503	50.042	4.8260
SDev	.0060	.0050	.0103	.0271	.039	.846	.0857
%RSD	.11824	.09994	.20842	.55127	.07492	1.6908	1.7764
#1	5.0643	4.9628	4.9421	4.9331	51.499	50.483	4.8774
#2	5.0536	4.9629	4.9486	4.9331	51.505	51.016	4.9168
#3	5.0614	4.9584	4.9611	4.8756	51.457	49.337	4.7320
#4	5.0677	4.9704	4.9640	4.9137	51.551	49.330	4.7778
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.5000	5.5000	5.5000	5.5000	55.000	55.000	5.5000
Low	4.5000	4.5000	4.5000	4.5000	45.000	45.000	4.5000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	50.021	4.9568	4.9328	49.811	4.9717	5.0419	5.0356
SDev	.145	.0028	.0254	.770	.0277	.0582	.0657
%RSD	.28934	.05631	.51566	1.5464	.55614	1.1533	1.3053
#1	50.152	4.9528	4.9482	50.317	4.9841	5.0855	5.0254
#2	50.050	4.9591	4.9021	50.585	4.9626	5.0458	5.1089
#3	49.814	4.9570	4.9226	48.939	4.9381	5.0776	4.9516
#4	50.068	4.9581	4.9584	49.405	5.0022	4.9585	5.0566
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	55.000	5.5000	5.5000	55.000	5.5000	5.5000	5.5000
Low	45.000	4.5000	4.5000	45.000	4.5000	4.5000	4.5000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.1140	4.9933	5.0010	4.8729	4.9058	9.7687	4.9431
SDev	.0573	.0069	.0539	.0259	.0112	.1653	.0017
%RSD	1.1206	.13756	1.0785	.53189	.22794	1.6919	.03361
#1	5.0431	4.9874	4.9382	4.9004	4.9148	9.9717	4.9434
#2	5.1480	4.9993	5.0696	4.8841	4.9104	9.8325	4.9451

. #3 . #4 	5.1711 5.0938	4.9874 4.9992	5.0038	. 4.8396 . 4.8677	4.8895 4.9084	9.6590 9.611 <b>6</b>	4.9430 4.9411
Errors High Low	LC Pass 5.5000 4.5000	LC Pass 5.5000 . 4.5000	LC Pass 5.5000	LC Pass	LC Pass 5.5000 4.5000	LC Pass 11.000 9.0000	LC Pass 5.5000 4.5000
Elem Units Avge SDev %RSD	ZN ppm 4.9904 .0109 .21751						
#1 #2 #3 #4	4.9762 4.9890 5.0018 4.9946						
Errors High Low	LC Pass 5.5000 4.5000						

۔ ۽ ټ

Operator: MTW Sample Name: CCB1 Method: QUANMET

Run Time: 05/25/00 08:37:30

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

ac. Mode: CONC Corr. Factor: 1 CA BA. TBE В Elem ΑG ALAS ppmppm mqq mqq Units mqq maga ppm -.00099 .00002 .00027 .01068 -.00001 -.00662 Avge -.00116 .00013 .00218 .00024 .00000 .01924 SDev .00199 .00589 23.558 220.38 48.723 1133.3 172.17 89.035 180.24 %RSD .00119 -.00001 -.00001 .00014 .00016 -.00449 #1 .00117 .00045 -.00049 .00014 -.00000 -.00620 .03864 #2 -.00193 .00031 -.00402 -.00034 -.00001 -.00347 -.01483-.00369 #3 -.00065 .00018 -.00095 .00776 -.00001 .00014 -.00040 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors LC Pass .00500 5.0000 .30000 .20000 .01000 .20000 .20000 High -5.0000 -.00500 -.30000 -.20000 -.20000 -.01000 -.20000 Low K_ LI CU FECR CD CO Elem ppmppm ppm ppm mqq Units ppm ppm .00031 .03513 -.00029 -.00084 -.00248.00038 Avge -.00107 .00068 .00017 .00081 .15518 .00177 SDev .00129 .00000 56.722 27.395 441.73 607.46 .90654 95.763 120.83 %RSD .00046 -.00063 -.00301 .18489 .00037 -.00074 .00085 #1 .14052 .00016 .00021 -.00159 #2 -.00198 .00038 -.00251 .00016 -.00148 -.00301 -.14792 .00038 .00045 #3 -.00151 -.03698 -.00230 .00046 -.00148 -.00164 .00038 .00163 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors .05000 .10000 .01000 .02500 5.0000 High .00500 .05000 -.05000 -.10000 -5.0000 -.01000 -.02500 -.00500 -.05000 Low SB PB NI MN MO NΆ MG Elem ppm ppm ppm ppm Units ppm ppm ppm .00250 .02191 .01536 .00381 .00183 .00000 .00654 Avge .00605 .00190 .00333 .02942 .00392 .00256 .00053 **SDev** 134.29 241.85 49.917 181.93 16.668 %RSD 60.000 11831. .00774 .00201 -.00079 .01408 .00657 .00169 .00327 #1 .00773 -.00595 .00238 -.00036 .00027 .01920 #2 .00850 -.00268 .00658 .03385 .00352 .01408 #3 .01112 .00027 .05772 -.00279 -.00059 .00276 #4 .00027 .01408 .00327 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors .10000 .06000 .04000 5.0000 High 5.0000 .01500 .04000 -.06000 -.10000 -.04000 -.04000 -5.0000 Low -5.0000 -.01500 V TLsnSR TI SE SI Elem mqq ppmppm ppm ppm Units mqq mqq .00051 .01453 -.00099 .00026 -.02530 .01911 Avge -.03205.04686 .00256 .00042 .00003 .00917 .00023 SDev .02183 257.92 83.887 322.61 87.566 47.966 %RSD 68.105 .12933 .00285 .00015 .00042 .02030 -.01943 -.02525 .02459 #1 -.00221 .07831 .00042

.00931

-.02531

.00040

#2

-.00777

page 2

			•			
#3 #4	05050 05050	02531 02531	.01363	:00000 .00051	.00008	0144500231 02605 -000231
Errors High Low	LC Pass .25000 25000	LC Pass .50000 50000	LC Pass .10000 10000	LC Pass .05000 05000	LC Pass .05000 05000	LC Pass & LC Pass .30000
Elem Units Avge SDev %RSD	ZN ppm .00039 .00128 326.31					
#1 #2 #3 #4	00149 .00121 .00063 .00122					
Errors High Low	LC Pass .02000 02000					

Method: QUANMET Sample Name: DDK9T Run Time: 05/25/00 08:41:52 Operator: MTW

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Elem Units = Avge SDev %RSD	AG 00723 .00148 20.455	AL ppm .00635 .01071 168.72	AS ppm 02131 .04650 218.22	B_ ppm .01139 .00172 15.115	BA ppm .27885 .00511 1.8328	BE ppm .00003 .00000 7.1176	CA ppm S4114.5 2162.5 52.558
#1	00917	00616	.03857	.01098	.28650	.00003	\$7358.2
#2	00607	.00414	06177	.00977	.27623	.00003	\$3033.2
#3	00607	.00761	00783	.01382	.27662	.00003	\$3033.3
#4	00760	.01981	05419	.01099	.27603	.00003	\$3033.2
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00144	.00083	00857	.01563	.00696	221.35	.00655
SDev	.00285	.00075	.00089	.00081	.00274	5.70	.00348
%RSD	197.84	90.443	10.344	5.1745	39.304	2.5732	53.160
#1	00198	.00046	00902	.01458	.00430	229.64	.00966
#2	.00056	.00046	00902	.01627	.00856	216.65	.00156
#3	.00475	.00044	00902	.01627	.00502	219.28	.00728
#4	.00245	.00196	00724	.01542	.00997	219.85	.00771
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	4.1647	5.4544	.01536	53.130	.00708	01191	.01599
SDev	.0489	.0396	.00490	1.482	.00852	.03920	.02325
%RSD	1.1750	.72667	31.913	2.7893	120.33	329.22	145.36
#1	4.2379	5.5062	.00896	55.288	00307	06167	.00811
#2	4.1359	5.4499	.01921	51.912	.00777	00593	.02908
#3	4.1411	5.4521	.01920	52.614	.01772	01388	.03960
#4	4.1437	5.4096	.01408	52.705	.00592	.03385	01282
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00968	1.7223	00270	4.4547	L13661	.05093	.00254
SDev	.02116	.0396	.01248	.0713	.00158	.04931	.00073
%RSD	218.54	2.2974	461.60	1.5997	1.1588	96.820	28.747
#1	03494	1.7594	01201	4.5612	L13864	.08605	.00145
#2	00385	1.7535	01410	4.4186	L13594	.09727	.00293

Analysis	Report		05/25	5/00 08:44:58 AM	658 609 page 2
#3 #4		1.6881		L1349300705 L13695 .02744	.00293 .00284
Errors High Low	100.00	LC Pass 20.000 150000		LC Low LC Pass 50.000 100.00 05000 -2.0000	100.00
SDev	ZN ppm .00603 .00093 15.388		•		
#1 #2 #3 #4	.00524 .00577 .00573 .00737				
Errors High Low	LC Pass 100.00 02000				

Analysis Report

Method: QUANMET Sample Name: DDLFVC RERUN CA, K Operator: MTW

Run Time: 05/25/00 08:45:05

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Elem Units Avge SDev %RSD	AG ppm .05064 .00199 3.9317	AL ppm 1.9783 .0075 .38083	AS ppm	B_ ppm .97455 .02121 2.1763	BA ppm 1.9141 .0127 .66321	BE ppm .05025 .00018 .36242	CA ppm — 42.989 .196 .45526
#1	.05138	1.9683	1.9667	.97339	1.8981	.04999	42.965
#2	.05297	1.9770	2.0551	.96465	1.9127	.05037	43.270
#3	.04987	1.9822	1.9973	1.0045	1.9169	.05025	42.893
#4	.04833	1.9856	2.0243	.95570	1.9288	.05038	42.827
Errors	LC Pass	LC Pass	LC Pass	NOCHECK	LC Pass	LC Pass	LC Pass
High	.06000	2.4000	2.4000		2.4000	.06000	60.000
Low	.04000	1.6000	1.6000		1.6000	.04000	40.000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.05033	.50445	.20036	.23459	1.0541	L39.497	.91662
SDev	.00289	.00413	.00202	.00857	.0043	.421	.01418
%RSD	5.7472	.81833	1.0082	3.6541	.40462	1.0648	1.5474
#1	.04791	.49958	.20007	.22635	1.0511	L39.316	.90669
#2	.05415	.50857	.20124	.22805	1.0596	L39.013	.90288
#3	.05098	.50707	.20243	.24156	1.0553	L39.686	.92422
#4	.04827	.50257	.19770	.24240	1.0503	L39.974	.93269
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Low	NOCHECK
High	.06000	.60000	.24000	.30000	1.2000	60.000	
Low	.04000	.40000	.16000	.20000	.80000	40.000	
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	42.167	.50702	00496	L39.272	.50050	.53012	L.00680
SDev	.274	.00219	.00256	.485	.01080	.01210	.03952
%RSD	.65018	.43170	51.590	1.2359	2.1571	2.2822	581.21
#1	41.782	.50463	00624	L38.872	.49506	.51600	L03778
#2	42.255	.50994	00624	L38.919	.50688	.54025	L.05653
#3	42.203	.50676	00112	L39.388	.48821	.54015	L.01448
#4	42.428	.50676	00624	L39.911	.51183	.52407	L00604
Errors	LC Pass	LC Pass	NOCHECK	LC Low	LC Pass	LC Pass	LC Low
High	60.000	.60000		60.000	.60000	.60000	.60000
Low	40.000	.40000		40.000	.40000	.40000	.40000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	2.0507	.01515	01177	.96431	00169	2.0052	.48798
SDev	.0542	.00298	.03479	.00578	.00032	.0949	.00421
%RSD	2.6425	19.637	295.64	.59914	19.149	4.7344	.86375
#1	2.1206	.01657	00161	.95630	00160	1.9183	.48279
#2	2.0662	.01670	.01630	.96477	00194	1.9645	.49311

STL Pittsburgh

#3

#4

Errors

High

Low

.51431 .51663

LC Pass

.60000

.40000

Method: QUANMET Sample Name: CCV2-2 Operator: MTW

Run Time: 05/25/00 08:48:19

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: C	JNC COII.	ractor. 1	•				
Elem	AG	AL	AS	B_	BA	BE	CA
Units	ppm	ppm -	ppm	ppm	ppm	ppm-	ppm
Avge	.99961	49.485	4.9496	4.9648	4.8665	4.9279	50.218
SDev	.00678	.150	.0771	.0003	.0172	.0136	.263
%RSD	.67822	.30318	1.5577	.00565	.35263	.27548	.52438
#1	.98987	49.468	4.8540	4.9645	4.8716	4.9150	49.835
#2	1.0055	49.577	5.0217	4.9651	4.8762	4.9443	50.429
#3	1.0023	49.281	5.0016	4.9647	4.8410	4.9187	50.278
#4	1.0008	49.615	4.9213	4.9649	4.8771	4.9336	50.332
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	1.1000	55.000	5.5000	5.5000	5.5000	5.5000	55.000
Low	.90000	45.000	4.5000	4.5000	4.5000	4.5000	45.000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.0250	4.9529	4.9316	4.9056	51.368	49.398	4.7983
SDev	.0314	.0150	.0192	.0154	.160	.353	.0422
%RSD	.62560	.30377	.38978	.31411	.31076	.71399	.87950
#1	4.9837	4.9376	4.9037	4.9162	51.182	49.389	4.8444
#2	5.0292	4.9600	4.9457	4.9078	51.539	49.078	4.7617
#3	5.0267	4.9435	4.9344	4.8832	51.296	49.234	4.7633
#4	5.0602	4.9704	4.9427	4.9154	51.455	49.892	4.8237
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.5000	5.5000	5.5000	5.5000	55.000	55.000	5.5000
Low	4.5000	4.5000	4.5000	4.5000	45.000	45.000	4.5000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	49.880	4.9390	4.9238	49.502	4.9396	4.9779	4.9963
SDev	.098	.0173	.0174	.414	.0432	.0321	.0262
%RSD	.19584	.35053	.35429	.83626	.87552	.64499	.52387
#1	49.843	4.9155	4.9072	49.900	4.8918	4.9576	4.9622
#2	49.953	4.9549	4.9226	49.183	4.9465	4.9820	4.9937
#3	49.759	4.9368	4.9174	49.109	4.9250	5.0216	5.0250
#4	49.966	4.9485	4.9482	49.818	4.9950	4.9505	5.0044
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	55.000	5.5000	5.5000	55.000	5.5000	5.5000	5.5000
Low	45.000	4.5000	4.5000	45.000	4.5000	4.5000	4.5000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.1417	4.9649	4.9785	4.8537	4.8878	9.7992	4.9274
SDev	.0202	.0458	.0555	.0151	.0132	.0950	.0144
%RSD	.39205	.92325	1.1152	.31158	.27058	.96946	.29306
#1	5.1585	4.8977	4.9096	4.8554	4.8774	9.8012	4.9077
#2	5.1598	4.9873	4.9992	4.8653	4.9027	9.9017	4.9403

Analysis	Report			05/25,	/00 08:51:	24 AM	658 611	3
#3 #4	5.1239 5.1245	4.9753 4.9992	4.9645 5.0407	4.8319 4.8622	4.8760 4.8952	9.6724 9.8213	4.9260 449357	
Errors High Low	LC Pass 5.5000 4,.5000	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000	LC Pass 11.000 9.0000	LC Pass 505000 4 <u>~</u> 5000	
Elem Units Avge SDev %RSD	ZN ppm 4.9611 .0178 .35915							
#1 #2 #3 #4	4.9356 4.9750 4.9624 4.9715							
Errors High Low	LC Pass 5.5000 4.5000							

Method: QUANMET Sample Name: CCB2 Operat Run Time: 05/25/00 08:51:27 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Mode: CONC Corr. Factor: 1

Elem Units Avge SDev %RSD	AG ppm =00040 .00177 447.29	AL ppm 00358 .00696 194.17	AS ppm 00378 .01753 463.72	B_ ppm 00001 .00001 95.859	BA ppm 00034 .00000	BE ppm .00014 .00017 120.49	CA ppm 00425 .00220 51.789
#1 #2 #3 #4	.00114 00193 .00114 00193	.00245 00451 .00075 01303	.00773 .01165 02695 00755	00001 .00000 00001 00001	00034 00034 00034	00010 .00018 .00031 .00018	00212 00733 00391 00364
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.30000	.20000	.20000	.00500	5.0000
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00032	00075	00044	00106	00443	12388	.00002
SDev	.00106	.00355	.00123	.00084	.00116	.14648	.00072
%RSD	334.34	472.81	281.14	79.894	26.135	118.24	4420.2
#1	00164	00112	00014	.00021	00584	.05177	.00061
#2	00030	00563	.00104	00148	00442	22927	.00037
#3	00026	.00188	00192	00148	00301	25885	.00009
#4	.00094	.00188	00074	00148	00443	05917	00101
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.05000	.01000	.02500	.10000	5.0000	.05000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00131	.00000	.01536	.00581	00273	.01191	01062
SDev	.00447	.00102	.00490	.00218	.00726	.03065	.00995
%RSD	341.56	26250.	31.916	37.479	265.91	257.39	93.761
#1	.00327	.00027	.01920	.00847	00446	.00196	00282
#2	00196	00079	.01408	.00657	01098	.05755	01332
#3	00719	00079	.01920	.00467	00205	00592	00277
#4	.00065	.00133	.00896	.00352	.00657	00594	02356
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.0000	.01500	.04000	5.0000	.04000	.10000	.06000
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	05051	02531	.01305	.00016	.00034	.02616	00228
SDev	.04628	.00000	.00331	.00012	.00042	.05562	.00009
%RSD	91.636	.00474	25.371	73.105	125.83	212.61	4.1208
#1	01944	02531	.01581	.00025	.00042	03760	00221
#2	10100	02531	.00921	.00025	.00076	.06678	00231

#3 #4	00389 07769	02531 02531	.01581	.00000 .00015	.00042 00025	00287 c07833	00221 00241
Errors High Low	LC Pass .25000 25000	LC Pass .50000 50000	LC Pass . .10000 10000	LC Pass .05000 05000	LC Pass .05000 05000	LC Pass 630000 5.30000	LC Pass .05000 05000
Elem Units Avge SDev %RSD	ZN ppm 00068 .00136 201.89						
#1 #2 #3 #4	.00122 00203 00094 00096						
Errors High Low	LC Pass .02000 02000						

Operator: MTW Method: QUANMET Sample Name: DDLA7B

Run Time: 05/25/00 08:54:35

· (3 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1 <u>-Ū-</u>

Elem	AG	AL	AS	B1	BA	BE	CA ppm ppm .02584
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00078	00955	02300	.00000	00029	00010	
SDev	.00147	.00512	.03097	.00000	.00035	.00000	
%RSD	188.41	53.606	134.64	60.084	122.73	.00885	
#1 #2 #3 #4	.00114 00040 00193 00193	01478 00260 01129 00955	01525 .01548 03455 05770	.00000 .00000 .00000	00014 .00014 00062 00053	00010 00010 00010 00010	.02449 .03112 .02536 .02238
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.30000	.20000	.20000	.00500	5.0000
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_ppm01849 .15891 859.45	LI
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	00105	00112	00133	00063	.00018		00041
SDev	.00183	.00123	.00160	.00000	.00071		.00046
%RSD	173.78	109.06	120.59	.18309	402.44		112.97
#1	00280	00262	00192	00064	00018	11833	00043
#2	00172	.00038	.00104	00063	.00124	.17010	.00024
#3	00117	00112	00192	00063	00018	17750	00064
#4	.00149	00113	00251	00063	00018	.05177	00080
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.05000	.01000	.02500	.10000	5.0000	.05000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00392	00053	.00384	00076	00104	.01390	00529
SDev	.01357	.00053	.00000	.00240	.00750	.01897	.01780
%RSD	345.88	100.27	.00276	314.58	717.53	136.52	336.41
#1	.00589	00079	.00384	.00200	00731	.00195	.01818
#2	.00589	00079	.00384	00295	00622	.03384	00272
#3	02289	00079	.00384	00257	.00036	.02583	01311
#4	00458	.00027	.00384	.00048	.00899	00603	02352
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.0000	.01500	.04000	5.0000	.04000	.10000	.06000
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem Units Avge SDev %RSD	SE ppm 01553 .03416 219.87	SI ppm 02383 .00297 12.483	SN ppm .01144 .00892 77.968	SR ppm .00000 .00000	TI ppm 00025 .00028 108.87	TL ppm .01452 .03606 248.40	V_ ppm 00251 .00000 .12639
#1	00000	02532	.01809	.00000	00025	.05512	00251
#2	.02331	01937	.00272		.00008	00290	00250

6100

Analysis	Report			05/25	/00 08:57:	41 AM	658 61° page 2
#3 #4	03107 05437	02532 02532	.00485 .02008	.00000	₹.00025 ₹.00059		00251 00251
Errors High Low	LC Pass .25000 25000	LC Pass .50000	LC Pass .10000 10000	LC Pass .05000 05000	LC Pass 2005000 2.05000	.30000	LC Pass .05000 05000
Elem Units Avge SDev %RSD	ZN ppm .00175 .00040 22.589						
#1 #2 #3 #4	.00179 .00203 .00201 .00118						
Errors High Low	LC Pass .02000 02000						

Method: QUANMET Sample Name: DDLA7C Operator: MTW

Run Time: 05/25/00 08:57:43 -

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Elem	AG	AL	AS	B_	BA	BE	CA
Units	ppm	ppm	_ppm	ppm	ppm	ppmt	ppm
Avge	.04563	1.9300	1.9998	.95333	1.9317	.04860	49.132
SDev	.00147	.0079	.0323	.00281	.0088	.00006	.242
%RSD	3.2291	.41124	1.6176	.29503	.45441	.12431	.49346
#1	.04522	1.9406	1.9901	.95024	1.9407	.04851	48.821
#2	.04679	1.9232	1.9979	.95571	1.9201	.04863	49.158
#3	.04371	1.9317	1.9669	.95572	1.9306	.04863	49.137
#4	.04679	1.9247	2.0441	.95166	1.9353	.04863	49.413
Errors	LC Pass	LC Pass	LC Pass	NOCHECK	LC Pass	LC Pass	LC Pass
High	.06000	2.4000	2.4000		2.4000	.06000	60.000
Low	.04000	1.6000	1.6000		1.6000	.04000	40.000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.04775	.48221	.19281	.24175	1.0376	48.524	.96706
SDev	.00439	.00398	.00353	.00106	.0025	1.356	.01941
%RSD	9.2010	.82629	1.8288	.43920	.23921	2.7952	2.0070
#1	.05335	.47844	.19090	.24322	1.0345	50.003	.98987
#2	.04568	.48748	.19208	.24154	1.0402	47.607	.94888
#3	.04883	.48296	.19799	.24154	1.0367	47.163	.95315
#4	.04315	.47997	.19030	.24069	1.0388	49.322	.97634
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	NOCHECK
High	.06000	.60000	.24000	.30000	1.2000	60.000	
Low	.04000	.40000	.16000	.20000	.80000	40.000	
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	49.328	.49036	.97186	48.927	.48248	.52619	.48664
SDev	.093	.00219	.01254	.941	.01636	.01505	.01307
%RSD	.18757	.44697	1.2907	1.9230	3.3900	2.8609	2.6848
#1	49.411	.48797	.95650	50.068	.50254	.52409	.48424
#2	49.294	.49009	.96674	48.044	.47065	.51639	.48399
#3	49.213	.49010	.98210	48.278	.48900	.54809	.47356
#4	49.393	.49328	.98210	49.318	.46773	.51621	.50476
Errors	LC Pass	LC Pass	NOCHECK	LC Pass	LC Pass	LC Pass	LC Pass
High	60.000	.60000		60.000	.60000	.60000	.60000
Low	40.000	.40000		40.000	.40000	.40000	.40000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	1.9554	9.6555	1.9662	.96912	.95849	1.9620	.48490
SDev	.0409	.0435	.0159	.00309	.00178	.0594	.00278
%RSD	2.0923	.45086	.80707	.31911	.18523	3.0295	.57421
#1	2.0117	9.6837	1.9859	.97162	.9569 <b>7</b>	1.9998	.48073
#2	1.9535	9.6183	1.9597	.96477	.95765	1.9300	.48609

Analysis	Report			05/25,	658 619 page 2			
#3 #4	1.9418 _1.9147	9.6183 9.7016	1.9487	.96908 .97100	.95832 .96102	2.0229 1.8953	.48640 .48638	
Errors High Low	LC Pass 2.4000 1.6000	NOCHECK	NOCHECK	NOCHECK	NOCHECK	LC Pass 2.4000 1.6000	LCEPass .60000 .40000	
Elem Units Avge SDev %RSD	ZN ppm .49357 .00398 .80738							
#1 #2 #3 #4	.48785 .49534 .49416 .49695							
Errors High Low	LC Pass .60000 .40000							

Method: QUANMET Sample Name: DDK90 Operator: MTW

Run Time: 05/25/00 09:00:51

Q 1, Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Elem	AG ppm00138 .00077 55.540	AL	AS	B_	BA	BE	CA
Units		ppm	ppm	ppm	ppm -	ppm	ppm
Avge		7.0141	02262	.03153	.20787	.00020	38.091
SDev		.0121	.04665	.00686	.00064	.00008	.137
%RSD		.17236	206.20	21.748	.30566	38.628	.36001
#1	00177	7.0119	.02463	.03654	.20777	.00027	38.015
#2	00023	7.0257	01405	.03799	.20845	.00013	37.938
#3	00177	6.9981	08704	.02373	.20702	.00014	38.229
#4	00176	7.0207	01403	.02786	.20825	.00027	38.181
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem Units Avge SDev %RSD	CD ppm 00177 .00204 115.37	CO ppm 00077 .00151 196.25	CR ppm .00635 .00236 37.227	CU ppm .01660 .00042 2.5461	FE ppm 6.8685 .0160 .23261	K_ppm 4.1361 .1636 3.9565	LI ppm .00524 .00000
#1 #2 #3 #4	00300 .00024 00033 00397	00001 00303 00002 00001	.00753 .00280 .00753	.01681 .01681 .01597 .01682	6.8575 6.8710 6.8554 6.8901	4.0159 3.9789 4.3117 4.2378	.00524 .00524 .00524 .00524
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem Units Avge SDev %RSD	MG ppm 5.4960 .0056	MN ppm .07984 .00053 .66679	MO ppm .00359 .00490 136.66	NA ppm 1.1973 .0112 .93445	NI ppm .01167 .00475 40.723	PB ppm .02659 .02095 78.792	SB ppm .00500 .01786 357.54
#1	5.5012	.07957	.00487	1.1983	.01230	.03660	.02848
#2	5.4960	.08064	.00999	1.2085	.00841	.02848	01337
#3	5.4986	.07957	00026	1.2005	.01814	.04454	.00771
#4	5.4881	.07958	00025	1.1819	.00783	00326	00282
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	03995	14.923	.00559	.44206	.17838	.02511	.01298
SDev	.01463	.036	.02053	.00160	.00175	.04285	.00009
%RSD	36.634	.24221	367.07	.36082	.98167	170.66	.69833
#1	02931	14.931	.03190	.44034	.17627	.04261	.01301
#2	06033	14.954	.00987	.44334	.17965	03868	.01310

Analysis	Report
----------	--------

05/25/00 09:03:56 AM

page 2

#3 #4	02931 04084	14.937 14.871	00313 01627	.44106 .44349	.17762 .17999	.04263 .0 <u>5</u> 387	.01291 .01291
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC, Pass 100.00 -250000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .04907 .00177 3.5979						
#1 #2 #3 #4	.04885 .04670 .04995 .05078						
Errors High Low	LC Pass 100.00 02000						

Method: QUANMET Sample Name: DDK90P5

Run Time: 05/25/00 09:03:59

Ti. Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Elem	AG	AL	AS	B:	BA	BE	CA
Units	ppm	ppm	ppm	ppm+.	ppm	ppm	ppm
Avge	00004	1.4046	.00950	.00268	.04139	00004	7.7222
SDev	.00217	.0030	.03376	.00001	.00024	.00008	.0339
%RSD	5364.0	.21486	355.46	.20378	.57500	191.00	.43889
#1	00158	1.4002	.03267	.00268	.04175	00011	7.6977
#2	00004	1.4071	.02104	.00269	.04127	.00003	7.7566
#3	.00303	1.4055	04062	.00268	.04127	00011	7.7457
#4	00158	1.4055	.02491	.00268	.04127	.00003	7.6890
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00126	00008	.00370	.00370	1.3965	.83572	00015
SDev	.00300	.00256	.00267	.00000	.0032	.21341	.00017
%RSD	238.68	3364.5	72.175	.06706	.22870	25.536	109.03
#1	00047	00121	.00399	.00370	1.3919	.56208	00021
#2	00034	00271	.00518	.00370	1.3969	1.0798	00028
#3	.00136	.00330	.00577	.00371	1.3990	.88010	.00009
#4	L00558	.00031	00015	.00370	1.3983	.82093	00021
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	1.0979	.01603	.00533	.23422	00417	.00492	00018
SDev	.0034	.00061	.00490	.00601	.00419	.01525	.01012
%RSD	.30756	3.8282	91.985	2.5654	100.47	310.13	5703.7
#1	1.0992	.01550	.00917	.24079	00952	.00089	01341
#2	1.0940	.01656	.00917	.23584	00109	.01679	.00764
#3	1.0966	.01656	.00405	.22632	00549	.01695	00278
#4	1.1018	.01550	00107	.23394	00058	01497	.00784
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem Units Avge SDev %RSD	SE ppm 02305 .02296 99.576	SI ppm 3.0206 .0000	SN ppm .01214 .02794 230.15	SR ppm .08841 .00043 .48208	TI ppm .03578 .00064 1.7858	TL ppm .02334 .08118 347.81	V_ ppm .00269 .00010 3.6664
#1	02987	3.0206	.04646	.08889	.03620	00560	.00277
#2	04538	3.0206	.02037	.08798	.03485	.11033	

Analysis	Report			05/25/	658 623 page 2		
,,		3.0206 3.0206		.08813	.03620 .035 <u>86</u>	.06388 _ <del>-</del> .07525	.00267 .00256
High _	LC Pass 100.00 25000		LC Pass 100.00 10000	LC Pass 50.000 05000	50.000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD							
#1 #2 #3 *#4	.01142 .00844 .01197 .00923						
Errors High Low	LC Pass 100.00 02000						

17.

Sample Name: DDK90S Method: QUANMET

Run Time: 05/25/00 09:07:07 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Corr. Factor: 1 Mode: CONC

- CA BEBA В ALAS Elem AG  $mqq_c$ ppm maga ppm ppm mqq Units mqq 84.288 .04715 .95688 2.0708 1.9474 .04561 9.9358 Avge .0085 .00011 .491 .00216 .0317 .0689 .00194 SDev .23139 .58243 .41276 3.5375 .22578 .31953 4.2509 %RSD 83.670 2.0726 .04702 .95432 1.9111 9.9144 .04367 #1 84.414 .04714 2.0794 .95869 2.0029 .04525 9.9783 #2 84.216 .04715 2.0720 9.9417 1.8684 .95865 .04522 #3 .04729 84.854 2.0590 2.0074 .95586 9.9089 .04830 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 15.000 600.00 100.00 600.00 100.00 100.00 High 2.0000 -5.0000 -.00500 -.20000 -.30000 -.20000 -.20000 -.01000 Low K LI CU FΕ CR CO Elem CD ppm mag ppm mqq ppm Units ppm ppm .94083 51.767 7.5233 .19977 .25641 .46811 .04287 Avge .01675 .964 .00155 .0253 .00605 .00324 .00259 SDev 1.7805 1.8616 .33615 1.6223 .60317 6.0291 1.2936 %RSD .94921 52.222 .25810 7.4932 .19503 .47525 .04050 #1 .95551 7.5435 52.784 .25726 .20213 .47072 #2 .04579 .94137 51.512 7.5116 . 25556 .20036 .04091 .46173 #3 .91725 7.5449 50.550 .25472 .46473 .20154 .04430 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20.000 1000.0 400.00 100.00 100.00 100.00 High 100.00 -.05000 -5.0000 -.02500 -.10000 -.01000 -.00500 -.05000 Low SB PB NI NA MO MN MG Elem mqq ppm ppmppm mqq Units ppm mqq .51414 .46822 48.769 .48105 .95747 .54884 Avge 53.217 .02631 .00476 .00808 .766 .01107 .180 .00202 SDev 5.6182 1.5720 1.5714 .98999 .36775 1.1556 %RSD .33898 .44216 .51829 49.151 .48365 .54591 .94210 53.225 #1 .46295 .51816 .48600 49.503 .95747 53.468 .55017 #2 .46294 .50202 .47525 48.688 .54911 .96771 53,110 #3 .51809 .50484 .47929 47.734 .96259 .55018 #4 53.065 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors LC Pass 100.00 100.00 100.00 50.000 400.00 100.00 600.00 High -.06000 -.10000 -.04000 -5.0000 -.01500 -.04000 -5.0000 Low V TLTI SNSR SI SE Elem ppm ppm ppm mqq ppm ppm Units ppm .48173 1.0522 1.9274 1.3574 1.9179 H24.466 Avge 1.8976 .00292 .1098 .0027 .0417 .0043 .056 .0372 SDev .60561 5.6992 .25797 .31430 2.1719 1.9595 .22857 %RSD .47917 1.8638 1.0491 1.9538 1.3571 H24.396 #1 1.9111 .48593 1.8054 1.0555 1.9539 1.3625

#2

1.8569

H24.532

					To the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se				
	Analysis	: Report			05/25	5/00/09:10:	12 AM	658 62 page 2	5
<u>.</u>	#3 #4 	1.8801 1.9423	H24.467 H24.467	1.8775. 1.8865	1.3581 1.3521	,0511 1.0528	2.0145 2.0258	.48096 .48087	
F .	Errors High Low	LC Pass 100.00 25000	LC High 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000	LC Pass~ 100.00 05000	
	Elem Units Avge SDev %RSD	ZN ppm .52314 .00202 .38701		1 ;					· ,
	#1 #2 #3 #4	.52413 .52415 .52010		,					-

Errors High Low LC Pass 100.00 -.02000

Analysis Report

Method: QUANMET Sample Name: DDK90D Operation Time: 05/25/00 09:10:20 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

C	Comment:	STL PITTS! C Corr.	Factor: 1	4521-YDD 1771	} ~			
1*:	io <u>ue</u> :			7.0	B_,	BA	BE	CA
	Elem	AG	AL	AS	pprh	ppm —	ppm	ppm
	Units	ppm —	ppm	ppm	97676	2.1210	.04870	87.465
•	Avgè	.04807	10.439	1.9753		.0196	.00035	.450
	SDev	.00318	.071	.0367	.02196		.72345	.51434
		6.6089-	.68238	1.8556	2.2486	.92182	./23=3	,51151
_	%RSD			•		0.0040	04970	87.472
-	u -	.04997	10.339	1.9300	.95630	2.0949	.04819	88.089
	#1_	.05156	10.436	2.0138	.99648	2.1172	.04899	
	#2	.04538	10.493	1.9941	.99300	2.1360	.04874	87.056
	#3	.04538	10.486	1.9634	.95924	2.1360	.04887	87.241
	#4	.04530	20,200					
_		T.C. Docc	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	Errors	LC Pass	600.00	100.00	100:00	100.00	15.000	600.00
_	High	2.0000	20000	30000	20000	-,20000	00500	-5.0000
	Low	01000	20000	50000				
			<i>a</i> 0	CR	CU	FE	K_	LI
	Elem	CD	CO		ppm	ppm	ppm	ppm
سد	Units	ppm	ppm	ppm .20435	,26553	7.8399	52.477	.95122
-	Avge	.04333	.48369		.00223	.0387	.963	.02591
	SDev	.00447	.00430	.00346		.49388	1.8355	2.7241
	_%RSD	10.326	.88814	1.6947	.83898	.49300	1.0000	<b></b>
_			~		0.6035	m moco	52.000	.93180
	#1	.04424	.47809	.20627	. 26235	7.7868	51.541	.92760
	<u>#</u> 2	.04419	.48707	.20627	. 26575	7.8796	53.767	.98149
مهير	<b>プ</b> #3.	.04779	-,48705	.19917	.26744	7.8484		.96399
	#4	.03712	.48257	.20568	.26659	7.8449	52.599	. 30333
		\ <u>,</u>						T.C. Door
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	100.00	100.00	100.00	100.0ก	400.00	1000.0	20.000
	Low	00500	05000	01000	025.0	10000	-5.0000	05000
		-	وتتسبب ين	* p.m.	,			<b>~</b>
	Elem	MG	MN	MO~	NA.	NI	PB	SB
	Units	ppm -'	ppm	<ppm< td=""><td>ppm</td><td>ppm</td><td>ppm</td><td>ppm</td></ppm<>	ppm	ppm	ppm	ppm
	Avge	54.418	.56618	.98312	49.325	.48586	.55807	.50983
	SDev	.415	.00230	.01724	1.075	.00786	.01456	.02501
	%RSD	.76261	.40663	1,7537	2.1793`	1.6184	2.6084	4.9057
	ONDD	.,0202		<u>ت</u>	•			
	#1	53.866	.56404 /	.97799	48.420	.48837	.56596	.52559
	#2	54.355	.56937	.98825		.49042	.57410	.52548
	π2 #3	54.823	.56617		50.641	.49049	.54221	.51522
	#3 #4	54.627	.56512	1 0036 3	49.767	.47415	.55001	.47303
	##	54.627	.50512	1.0050 5	45.707		•	
	Til seese a seese	T C Dagg	LC Pass	T.C Dagg	LC Pass	LC Pass	LC Pass	LC Pass
	Errors	LC Pass	100.00	50.000	400.00	100.00	100.00	100.00
	High	600.00		04000	±5.0000	04000	10000	06000
	Low	-5.0000	01500	04000	- 3 · 5 · 0 · 0 · 0 · 0	04000	. 20000	
			O.T.	CM	SR	^I TI	TL	v_
	Elem	SE	SI	SN			ppm	ppm
	Units	ppm	ppm	ppm	ppm	ppm	2.0341	.49804
	Avge	1.9725	H26.532	1.9462	1.3968	1.\1503	.0646	.00267
	SDev	.0850	.153	.0288	.0113	. 0060		.53599
	%RSD	4.3087	.57810	1.4816	.80959	.52401	3.1748	
						- L	1 0/10	.49665
	#1	1.8617	H26.305	1.9300	1.3810	1.1413	1.9419	.50201
	#2	1.9902	H26.567	1.9757	1.3964	1.15:38	2.0453	.50201
						•		

Analysis	Report			05/25	/00 09:13:	25 AM	658 62	7
#3 # <b>4</b>	2.0677 1.9706	H26.633 H26.621		1.4044 1.4056	1.1531 1.1531	2.0 <u>5</u> 72 2.0 <u>9</u> 21	.49634 .49715	
Errors High Low	LC Pass 100.00 25000	20.000	100.00	LC Pass 50.000 05000	LC Pass 50.000 05000		LC Pass 100.00 05000	
Elem Units Avge SDev %RSD	ZN ppm .52938 .00209 .39411	,	5.0					
#1 #2 #3 #4	.52630 .53013 .53010 .53096							
Errors High Low	LC Pass 100.00 02000							

Operator: MTW Method: QUANMET Sample Name: CCV2-3

Run Time: 05/25/00 09:13:32

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Elem	AG	AL	AS	B_m	BA	BE	CA
Uniţs	ppm	ppm	ppm	ppm==	ppm	ppm	ppm
Avge	1.0104	49.693	5.0628	5.0124	4.8740	4.9779	51.098
SDev	.0022	.224	.0798	.0065	.0228	.0154	.214
%RSD	.22149	.45177	1.5761	.12918	.46721	.30924	.41901
#1	1.0104	49.960	5.1713	5.0072	4.9013	4.9859	50.977
#2	1.0072	49.784	4.9999	5.0208	4.8807	4.9548	50.859
#3	1.0120	49.577	5.0742	5.0074	4.8671	4.9865	51.251
#4	1.0119	49.452	5.0059	5.0143	4.8472	4.9842	51.304
Errors	LC Pass                                 LC Pass	LC Pass					
High	1.1000	55.000	5.5000	5.5000	5.5000	5.5000	55.000
Low	.90000	45.000	4.5000	4.5000	4.5000	4.5000	45.000
Elem Units Avge SDev %RSD	CD ppm 5.0938 .0154 .30243	CO ppm 5.0105 .0124 .24667	CR ppm 5.0050 .0144 .28747	CU ppm 4.9106 .0273 .55495	FE ppm 51.956 .118 .22788	K_ppm 49.086 1.234 2.5145	LI ppm 4.7226 .1203 2.5476
#1	5.0774	5.0214	4.9959	4.9366	51.961	50.247	4.8013
#2	5.1048	4.9928	4.9900	4.9281	51.788	50.025	4.8417
#3	5.0842	5.0124	5.0131	4.9011	52.025	48.294	4.6652
#4	5.1089	5.0153	5.0208	4.8766	52.051	47.777	4.5821
Errors	LC Pass                                 LC Pass	LC Pass					
High	5.5000	5.5000	5.5000	5.5000	55.000	55.000	5.5000
Low	4.5000	4.5000	4.5000	4.5000	45.000	45.000	4.5000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	50.127	5.0031	4.9738	49.029	5.0198	5.0968	5.0461
SDev	.112	.0113	.0293	1.020	.0218	.0189	.0306
%RSD	.22425	.22625	.58871	2.0810	.43489	.37050	.60611
#1	50.267	5.0039	4.9841	49.866	5.0470	5.0710	5.0046
#2	50.133	4.9868	4.9431	49.913	5.0273	5.0943	5.0568
#3	50.115	5.0113	4.9585	48.452	4.9987	5.1109	5.0773
#4	49.992	5.0103	5.0097	47.886	5.0061	5.1110	5.0456
Errors	LC Pass                                 LC Pass	LC Pass					
High	55.000	5.5000	5.5000	55.000	5.5000	5.5000	5.5000
Low	45.000	4.5000	4.5000	45.000	4.5000	4.5000	4.5000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.1885	5.0414	5.0366	4.8732	4.9249	9.8332	4.9792
SDev	.0633	.0357	.0354	.0181	.0091	.1016	.0088
%RSD	1.2195	.70718	.70264	.37094	.18551	1.0331	.17737
#1	5.1497	4.9879	4.9839	4.8964	4.9357	9.7113	4.9842
#2	5.1723	5.0591	5.0519	4.8753	4.9138	9.7945	4.9666

Analysis Report		05/25/	658 629 page 2		
#3 5.1499 #4 ÷ 5.2820		4.8684 4.8528 # -	4.9273 4.9229		4.9863 4.9796
Errors LC Pass High 5.5000 Low -4.5000	5.5000	LC Pass 5.5000 4.5000	5.5000	11.000	5.5000
Elem ZN Units ppm Avge 5.0154 SDev .0153 %RSD .30586					
#1 5.0138 #2 4.9951 #3 5.0316 #4 5.0211					
Errors LC Pass High 5.5000 Low 4.5000					

Analysis Report

Operator: MTW

Method: QUANMET Sample Name: CCB3
Run Time: 05/25/00 09:16:40

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Elem	AG	AL	AS	B_	BA	BE	CA
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00231	00185	01249	00000	.00002	.00038	00372
SDev	.00194	.01012	.02146	.00000	.00033	.00023	00511
%RSD	83.688	547.46	171.88	280.78	1571.5	62.151	137.40
#1 #2 #3 #4	00501 00191 00040 00193	00449 01319 .01123 00095	02690 .01936 02318 01922	00000 00001 .00000	00034 .00042 .00014 00014	.00004 .00044 .00058 .00045	01097 00223 .00103 00272
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.30000	.20000	.20000	.00500	5.0000
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00073	00150	.00119	00085	00248	20708	00013
SDev	.00225	.00225	.00257	.00106	.00286	.43141	.00048
%RSD	307.29	149.72	216.63	125.81	115.26	208.33	369.53
#1	.00170	00413	00133	00233	00585	73958	00064
#2	.00345	.00037	.00459	.00021	00372	.23666	00036
#3	00129	.00038	.00163	00063	.00053	.02958	.00003
#4	00093	00263	00014	00064	00089	35500	.00046
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.05000	.01000	.02500	.10000	5.0000	.05000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00327	00026	.01280	.00038	.00573	.01387	01838
SDev	.01227	.00106	.00490	.00225	.00435	.02481	.01343
%RSD	375.23	405.25	38.296	590.90	75.796	178.90	73.080
#1	01504	00079	.01408	00295	.01015	00613	03399
#2	.00850	00079	.01920	.00124	.00410	.04977	00277
#3	.01112	.00133	.00896	.00200	.00826	.00196	02355
#4	.00850	00079	.00896	.00124	.00043	.00986	01319
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.0000	.01500	.04000	5.0000	.04000	.10000	.06000
Low	-5.0000	~.01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00389	02530	.00864	.00044	.00008	.00294	00136
SDev	.04563	.00003	.01501	.00013	.00055	.02223	.00202
%RSD	1172.2	.10202	173.65	28.571	653.20	754.72	148.39
#1	05051	02531	00834	.00025	00059	.02040	00231
#2	.00775	02526	.02236	.00051	.00008	02607	.00167

-.00240 -.00241 LC Pass

.05000

	<b>.</b>					
#3 #4	.05438 02719	02531 02531	.00043 .	.00051	.00076	.02031 00286
Errors High Low	LC Pass .25000 25000	LC Pass .50000 '		LC Pass .05000 05000	LC Pass .05000 05000	LC Pass .30000 30000
Elem Units Avge SDev %RSD	ZN ppm .00044 .00168 382.81					
#1 #2 #3 #4	00153 .00009 .00254 .00065					
Errors High Low	LC Pass .02000 02000					

Operator: MTW Method: QUANMET Sample Name: DDL6CB

Run Time: 05/25/00-09:38:49

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Elem	AG	AL	AS	B_		BE	CA
Units	ppm	ppm	ppm	ppm		-ppm	ppm
Avge	00116	00038	.00100	.00001		.00001	.02652
SDev	.00266	.00986	.03359	.00001		.00007	.00279
%RSD	228.64	2564.8	3343.8	68.698		991.91	10.520
#1 #2 #3 #4	.00114 00040 00501 00040	.00785 .00265 01471 .00267	.04623 .00002 03453 00769	.00001 .00000 .00001	.00006 .00014 00034 00014	.00004 00010 .00004 .00004	.02840 .02906 .02297 .02563
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.30000	.20000	.20000	.00500	5.0000
Low	01000	20000	~.30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00013	.00113	00148	00084	.00531	~.07950	00029
SDev	.00136	.00194	.00057	.00042	.00168	.20040	.00028
%RSD	1010.5	172.41	38.344	50.126	31.549	252.07	95.701
#1	.00132	.00037	00074	00148	.00762	05177	.00003
#2	00055	.00338	00133	00063	.00407	.07396	00034
#3	.00122	00113	00192	00063	.00407	.02958	00021
#4	00145	.00188	00192	00063	.00549	36979	00064
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.05000	.01000	.02500	.10000	5.0000	.05000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem Units Avge SDev %RSD	MG ppm 00131 .01054 806.23	MN ppm 00053 .00053	MO ppm .00000 .00256 322280.	NA ppm .00914 .00514 56.250	NI ppm 00058 .00508 869.90	PB ppm .01396 .01889 135.26	SB ppm .00263 .02769 1054.7
#1	.01373	00079	00128	.01342	.00097	.00205	.03928
#2	00719	.00027	.00384	.01228	00424	.00209	.00778
#3	00196	00079	00128	.00200	00498	.04174	02356
#4	00981	00079	00128	.00885	.00592	.00998	01300
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.0000	.01500	.04000	5.0000	.04000	.10000	.06000
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem Units Avge SDev %RSD	SE ppm 02134 .04804 225.08	SI ppm 02383 .00297 12.482	SN ppm 00326 .00932 285.86	SR ppm .00000 .00000	TI ppm 00008 .00065 765.94	TL ppm .04634 .07712 166.43	V_ ppm 00258 .00005 1.9228
#1	08542	01937	01019	.00000	.00076	.11300	00261
#2	.01555	02532	.00932		00059	.08982	00251

Analysis	Report			05/25,	/00 09:41:5	54 AM	658 633 page 2
#3 #4	03106 .01556	02532 02532	01048 00170	.00000	00059 .00008	06090 .04343	00261 00261
Errors High Low	LC Pass .25000 25000	LC Pass .50000 50000	LC Pass .10000 10000	LC Pass .05000 05000	LC Pass .05000 05000	LC Pass .30000 30000	LC Pass .05000 05000
Elem Units Avge SDev %RSD	ZN ppm .01024 .00225 21.913						
#1 #2 #3 #4	.00800 .00882 .01290 .01126						
Errors High Low	LC Pass .02000 02000						

Method: QUANMET Sample Name: DDL6CC

Run Time: 05/25/00 09:41:57 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

-- <u>ተ</u> Mode: CONC Corr. Factor: 1

Elem	AG	AL	AS	B	BA	BE	CA
Units —	-ppm	ppm	ppm		ppm	ppm	ppm
Avge	.04796	1.9415	1.9899		1.9379	.04899	50.082
SDev	.00148	.0115	.0570		.0052	.00019	.265
%RSD	3.0773	.59061	2.8667		.26707	.39905	.52997
#1	.04833	1.9386	2.0170	.95431	1.9363	.04876	49.746
#2	.04989	1.9436	2.0554	.95577	1.9380	.04915	50.336
#3	.04682	1.9558	1.9589	.95574	1.9448	.04915	50.247
#4	.04679	1.9282	1.9284	.99372	1.9325	.04890	49.999
Errors	LC Pass	LC Pass	LC Pass	NOCHECK	LC Pass	LC Pass	LC Pass
High	.06000	2.4000	2.4000		2.4000	.06000	60.000
Low	.04000	1.6000	1.6000		1.6000	.04000	40.000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.04204	.48745	.19843	.24260	1.0543	48.501	.95249
SDev	.00275	.00535	.00387	.00081	.0055	.725	.01613
%RSD	6.5376	1.0973	1.9523	.33498	.52567	1.4939	1.6934
#1	L.03829	.48747	.19267	.24323	1.0495	49.396	.97192
#2	.04402	.47993	.20094	.24154	1.0587	47.644	.93356
#3	.04417	.49195	.19976	.24324	1.0594	48.346	.94754
#4	.04168	.49047	.20036	.24239	1.0495	48.620	.95696
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	NOCHECK
High	.06000	.60000	.24000	.30000	1.2000	60.000	
Low	.04000	.40000	.16000	.20000	.80000	40.000	
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	49.926	.49594	.99619	48.846	.49666	.52435	.49697
SDev	.126	.00221	.00490	.708	.00925	.00933	.01784
%RSD	.25206	.44589	.49225	1.4502	1.8626	1.7797	3.5891
#1	49.780	.49329	.99235	49.629	.49815	.51636	.47353
#2	50.010	.49860	.99747	47.918	.49406	.51618	.49421
#3	50.050	.49648	1.0026	48.815	.50833	.53244	.50488
#4	49.864	.49541	.99235	49.022	.48610	.53243	.51527
Errors	LC Pass	LC Pass	NOCHECK	LC Pass	LC Pass	LC Pass	LC Pass
High	60.000	.60000		60.000	.60000	.60000	.60000
Low	40.000	.40000		40.000	.40000	.40000	.40000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	2.0244	9.8429	2.0006	.97512	.97630	1.9531	.48925
SDev	.0448	.0676	.0279	.00233	.00401	.0613	.00307
%RSD	2.2122	.68642	1.3940	.23862	.41040	3.1389	.62745
#1	2.0468	9.7492	1.9901	.97354	.97149	1.8720	.48658
#2	2.0041	9.8980	2.0339	.97582	.97925	1.9879	.49186

Analysis	Report			05/25,	658 635 page 2		
#3 #4	2.0740. 1.9730	9.8385 9.8860	2.0099 1.9685	.97810 .97303	.97993 .97453	2.0110	.49196 .48660
Errors High Low	LC Pass 2.4000 ⁻¹ 1.6000 ₋₁	NOCHECK	NOCHECK	NOCHECK	NOCHECK	LC Pass 2.4000 1.6000	LC Pass .60000 .40000
Elem Units Avge SDev %RSD	ZN ppm .50243 .00284 .56472						
#1 #2 #3 #4	.49820 .50368 .50362 .50424						
Errors High Low	LC Pass .60000 .40000						

Analysis Report

Operator: MTW Method: QUANMET Sample Name: DD3QM Run Time: 05/25/00 09:45:05

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

•	1040. 00-			•				
	Elem	AG	AL	AS	B_	BA	BE	CA
	Units	ppm	ppm	ppm -	ppm	ppm	ppm	ppm.
	Avge	00265	.01985	02641	.01090	.04193	00003	38.829
	SDev	.00090	.01012	.02807	.00476	.00028	.00007	.112
	%RSD	34.045	50.964	106.28	43.711	.67293	205.17	.28771
	#1	00187	.02851	06218	.01070	.04194	.00003	38.801
	#2	00187	.02855	00051	.01759	.04155	.00003	38.917
	#3	00343	.00945	00797	.00663	.04203	00010	38.916
	#4	00343	.01290	03498	.00867	.04222	00010	38.683
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
	Low	01000	20000	30000	20000	20000	00500	-5.0000
	Elem	CD	CO	CR	CU	FE	K_	LI
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	00280	00076	.00429	.00234	.17124	.97439	.00982
	SDev	.00133	.00334	.00515	.00085	.00058	.38327	.00092
	%RSD	47.476	437.70	119.93	36.248	.33804	39.334	9.3612
	#1	00227	00264	00074	.00276	.17125	1.0946	.01113
	#2	00392	.00337	.00872	.00276	.17054	1.3534	.00919
	#3	00384	.00037	.00873	.00276	.17124	1.0058	.00977
	#4	00117	00415	.00045	.00107	.17195	.44375	.00919
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
	Low	00500	05000	01000	02500	10000	-5.0000	05000
	Elem	MG	MN	MO	NA	NI	PB	SB
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	14.800	.00722	.00899	5.0266	.00630	.02782	.01566
	SDev	.052	.00061	.00418	.0814	.00526	.01646	.02622
	%RSD	.34932	8.4739	46.524	1.6201	83.470	59.162	167.47
	#1	14.776	.00774	.00387	5.0349	.00968	.04173	.04976
	#2	14.739	.00775	.00899	4.9115	00154	.04182	01319
	#3	14.828	.00669	.01411	5.1012	.00871	.01791	.01823
	#4	14.855	.00669	.00899	5.0586	.00834	.00980	.00783
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
	Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
	Elem	SE	si	SN	sr	TI	TL	V_
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.00548	4.3071	.00393	1.2530	00186	.03597	.00018
	SDev	.03494	.0331	.00428	.0077	.00058	.04489	.00292
	%RSD	637.41	.76859	108.76	.61781	31.051	124.82	1604.8
	#1	01491	4.3294	.00955	1.2515	00127	.08815	.00265
	#2	.05500	4.3235	.00052	1.2434	00194	.05332	.00277

page 2

#302268	4.3175	.00067	1.2551	00262	.01858	00229
#4 = .00451	4.2580	.00499	1.2620 =	00160	01618	00241
Errors LC Pass High 100.00 Low25000	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	20.000	100.00	50.000	50.000	100.00	100.00
	50000	10000	05000	05000	-2.0000	05000
Elem ZN Units ppm Avge .07469						

Elem ZN Units ppm Avge .07469 SDev .00137 %RSD 1.8298 #1 .07511 #2 .07267 #3 .07565 #4 .07534

Errors LC Pass High 100.00 Low -.02000 Method: QUANMET Sample Name: DD3QN Run Time: 05/25/00 09:48:13 Operator: MTW

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Mode: CONC Corr. Factor: 1

1	node. con	.,с сотт.	1400021 =					
	Elem	AG	AL	AS	B_	BA	BE	CA
	Units	ppm	ppm-	ppm	ppm	ppm	ppm	ppm
	Avge	.00202	71.913	01073	.31870	.96663	.00345	93.533
	SDev	.00194	.145	.01662	.02494	.00261	.00008	.161
	%RSD	95.905	.20120	154.86	7.8267	.26970	2.2572	.17239
	#1	.00165	71.847	02663	.30660	.96711	.00352	93.746
	#2	.00007	71.845	.00832	.30625	.96568	.00339	93.447
	#3	.00166	72.130	00210	.35611	.96997	.00352	93.377
	#4	.00470	71.830	02252	.30583	.96378	.00339	93.564
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
	Low	01000	20000	30000	20000	20000	00500	-5.0000
	Elem	CD	CO	CR	CU	FE	K_	LI
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	00068	.04893	.10477	.06819	109.92	13.586	.12650
	SDev	.00268	.00123	.00184	.00001	.11	.162	.00210
	%RSD	392.84	2.5229	1.7545	.01187	.09874	1.1935	1.6602
	#1	00149	.04894	.10624	.06820	109.97	13.675	.12545
	#2	00090	.04894	.10506	.06818	109.79	13.741	.12545
	#3	.00301	.04742	.10211	.06820	110.04	13.556	.12965
	#4	00335	.05044	.10565	.06819	109.89	13.372	.12545
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
	Low	00500	05000	01000	02500	10000	-5.0000	05000
	Elem	MG	MN	MO	NA	NI	PB	SB
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	48.928	1.0546	.01132	31.526	.07993	.12588	.01818
	SDev	.182	.0009	.00257	.173	.01537	.01008	.03735
	%RSD	.37120	.08483	22.732	.54941	19.231	8.0070	205.48
	#1	48.815	1.0546	.01004	31.425	.08676	.12389	00271
	#2	48.849	1.0535	.01002	31.520	.07834	.13983	01330
	#3	49.200	1.0557	.01517	31.772	.05933	.11574	.01804
	#4	48.849	1.0546	.01003	31.387	.09527	.12405	.07068
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
	Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
	Elem	SE	SI	SN	SR	TI	TL	V_
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.18821	H74.496	.00943	.25055	.32462	.05832	.11654
	SDev	.06537	.142	.02729	.00067	.00089	.09479	.00005
	%RSD	34.730	.19082	289.58	.26609	.27509	162.52	.03964
	#1	.26606	H74.499	.01807	.25049	.32445	.10712	.11652
	#2	.18384	H74.380	.04418	.25023	.32344	.13218	.11651

Analysis Report					05/25/	658 639 page 2			
	#3 #4		H74.696 H74.410		.25150 .24998	.32512 .32546	07915 .07314	.11661 .11652	
	Errors High Low	LC Pass 100.00 25000		100.00	LC Pass 50.000 05000		LC Pass 100.00 -2.0000	LC Pass 100.00 05000	
	Elem Units Avge SDev %RSD	ZN ppm .28639 .00254 .88596	. `				-		
	#1 #2 #3 #4	.28968 .28349 .28624 .28614							
	Errors High Low	LC Pass 100.00 02000							

Operator: MTW Method: QUANMET Sample Name: DD3QQ

Run Time: 05/25/00 09:51:26 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

Elem	AG ppm00093 .00333 358.97	AL	AS	B_	BA	BE	CA
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		25.207	.04032	.04037	.29396	.00127	37.232
SDev		.107	.03204	.01000	.00184	.00011	.321
%RSD		.42321	79.452	24.776	.62535	8.6701	.86249
#1	.00085	25.115	.07814	.04077	.29289	.00141	36.884
#2	.00251	25.216	.04583	.04361	.29336	.00126	37.443
#3	.00403	25.144	.00021	.05044	.29289	.00126	37.560
#4	00368	25.354	.03711	.02666	.29670	.00114	37.041
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00131	.02165	.03014	.03061	44.395	5.7336	.08158
SDev	.00316	.00151	.00228	.00081	.199	.2441	.00257
%RSD	241.25	6.9598	7.5748	2.6367	.44882	4.2578	3.1510
#1	.00214	.02090	.03117	.03080	44.097	5.8205	.08368
#2	.00534	.02089	.03235	.02998	44.522	5.6652	.07935
#3	00190	.02391	.02999	.03167	44.485	6.0128	.07935
#4	00034	.02091	.02703	.02998	44.475	5.4359	.08392
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	23.937	1.4784	00104	46.801	.02993	.03508	.02085
SDev	.097	.0078	.00647	.553	.00787	.03256	.01979
%RSD	.40400	.52924	620.52	1.1806	26.311	92.810	94.914
#1	23.876	1.4675	01005	47.318	.03380	.03516	.00783
#2	23.996	1.4835	.00026	46.482	.03636	.03501	.00782
#3	23.836	1.4846	.00537	46.188	.01859	.07496	.01812
#4	24.040	1.4782	.00025	47.215	.03096	00480	.04962
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.06131	H38.886	.00393	.07870	.21686	.02776	.04681
SDev	.03265	.120	.00697	.00047	.00175	.05374	.00273
%RSD	53.248	.30833	177.49	.60328	.80749	193.57	5.8384
#1	.08352	H38.739	.00600	.07850	.21475	04459	.04502
#2	.06177	H38.906	00266	.07839	.21846	.07865	.04909

	· <b>65</b> 8.	641
MA	page	2

Analysis Report	05/25/00	09:54:31	AM
ž ~	· · / = = / · · ·		

#3 #4	.08494 H38.870 .01499 H39.031	00044 .01281	.07850 .07940	.21813 .21610 ·	.02103	.04919 .04392
Errors High Low	LC Pass LC High 100.00 20.000 2500050000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .10041 .00173 1.7270	·				
#1 #2 #3 #4	.09798 .10091 .10208 .10067		,			
Errors High Low	LC Pass 100.00 02000					

Method: QUANMET Sample Name: DD3QR

Run Time: 05/25/00 09:54:39

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Mode: CONC Corr. Factor: 1

Elem	AG	AL	AS	B_	BA	BE	CA
Units	ppm	ppm	ppm -	ppm	ppm	ppm	ppm —
Avge	00116	00306	01636	.00008	00003	00006	.02710
SDev	.00198	.00460	.03012	.00001	.00034	.00007	.00270
%RSD	171.58	150.45	184.08	6.0093	1200.0	110.98	9.9490
#1 #2 #3 #4	00346 00192 .00115 00039	00962 00083 00266 .00087	.02706 02698 02311 04241	.00009 .00008 .00008	00053 .00014 .00014 .00014	.00004 00009 00010 00009	.02645 .02357 .02889 .02949
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00296	00337	00192	00106	.03860	08320	.00028
SDev	.00291	.00194	.00097	.00049	.00068	.23677	.00036
%RSD	98.296	57.399	50.385	46.188	1.7521	284.57	129.75
#1	L00625	00562	00192	00064	.03878	01479	.00031
#2	.00014	00413	00311	00148	.03949	25146	00006
#3	00129	00112	00074	00063	.03807	.22187	.00076
#4	00446	00262	00192	00148	.03807	28843	.00009
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00654	.00001	.00129	.01552	.00172	.02776	00263
SDev	.00250	.00053	.00661	.00627	.00816	.01770	.02706
%RSD	38.297	4568.1	514.07	40.398	475.07	63.774	1027.9
#1	.00327	00078	.00385	.00885	00242	.03366	01314
#2	.00589	.00027	00640	.01152	00748	.00182	03407
#3	.00850	.00028	.00897	.02142	.01054	.04176	.00791
#4	.00850	.00028	00127	.02028	.00623	.03379	.02878
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem Units Avge SDev %RSD	SE ppm .01665 .02525 151.65	SI ppm .05202 .00841 16.175	SN ppm .00818 .01582 193.30	SR ppm .00000 .00000	TI ppm 00076 .00058 76.980	TL ppm 00615 .03590 583.61	V_ ppm 00256 .00013 5.0613
#1	.05063	.04607	.00268	.00000	00127	.04314	00251
#2	.01956	.04607	.01350		00127	03804	00271

Analysis	Report			05/25/00 09:57:45 AM			658 643 page 2
#3 #4	.00402	.06392 .05202	01032 .02688	*00000	00025 00025	00326 02644	00241 00261 7
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 005000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000	LC Pass L. 100.00 5 05000
Elem Units Avge SDev %RSD	ZN ppm .01417 .00153 10.812		()	<i></i>			,
#1 #2 #3 #4	.01560 .01210 .01500 .01398						
Errors High Low	LC Pass 100.00 02000						

Method: QUANMET Sample Name: DD3QT Operator: Name: 05/25/00 09:57:47
Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Mode: CONC Corr. Factor: 1

Mode: CO	NC COII.	ractor: 1				. •	
Elem	AG	AL	AS	B_	BA	BE	CA
Units	ppm	ppm —	ppm	ppm	ppm	ppm	ppm
Avge	00084	43.897	.01580	.08806	.37895	.00290	60.254
SDev	.00080	.169	.06686	.00031	.00184	.00007	.189
%RSD	94.838	.38541	423.28	.35050	.48555	2.2644	.31405
#1	00121	43.835	.10583	.08817	.37828	.00286	60.376
#2	00125	44.016	00341	.08802	.38019	.00287	60.085
#3	.00036	44.050	.01523	.08839	.38066	.00286	60.454
#4	00127	43.686	05447	.08766	.37666	.00299	60.099
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00055	.02771	.04566	.04580	67.883	9.4259	.05667
SDev	.00328	.00193	.00149	.00049	.160	.2255	.00177
%RSD	593.99	6.9795	3.2607	1.0634	.23513	2.3923	3.1249
#1	00170	.02847	.04536	.04538	67.943	9.1264	.05586
#2	00429	.02547	.04536	.04537	67.859	9.4962	.05933
#3	.00030	.02696	.04418	.04624	68.054	9.6663	.05565
#4	.00348	.02996	.04773	.04621	67.675	9.4148	.05586
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	33.656	2.1545	.01143	30.021	.03927	.09573	.00777
SDev	.096	.0035	.00294	.383	.00455	.03933	.10285
%RSD	.28606	.16464	25.754	1.2751	11.584	41.085	1323.7
#1	33.598	2.1564	.01400	29.686	.03814	.04387	L10730
#2	33.689	2.1521	.00887	30.520	.04029	.09954	03413
#3	33.776	2.1585	.00890	30.118	.03386	.13954	.13326
#4	33.561	2.1510	.01396	29.759	.04479	.09997	.03924
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.07726	H58.466	.03090	.22618	.16269	.11650	.05837
SDev	.02948	.197	.02274	.00076	.00127	.03777	.00261
%RSD	38.149	.33754	73.602	.33828	.78318	32.418	4.4788
#1	.09690	H58.371	00292	.22605	.16379	.06079	.05971
#2	.06941	H58.645	.04106	.22655	.16379	.13128	.05445

Analysis	Report			05/25,	658 645 page 2		
#3 #4	.03905 .10369	H58.615 H58.234	.04625	.22696 .22518	.16176 .16142	.12925 .14469	0.05961
Errors High Low	LC Pass 100.00 25000	LC High 20.000 50000	LC Pass 100.00 -10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000	CLC Pass 0100.00
Elem Units Avge SDev %RSD	ZN ppm .27256 .00299 1.0969						
#1 #2 #3 #4	.27148 .27170 .27692 .27013						
Errors High Low	LC Pass 100.00 02000						

Analysis Report

Method: QUANMET Sample Name: DD3QV Run Time: 05/25/00 10:01:00 Operator: MTW

Comment: STL-PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Elem	AG ' ppm00029 .00218 755.76	AL	AS	B_	BA	BE	CA
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.03514	.01149	.01774	.30027	.00001	46.913
SDev		.00654	.01731	.00218	.00126	.00007	.182
%RSD		18.598	150.63	12.284	.41939	1000.5	.38892
#1	00337	.02692	01344	.01517	.29908	00009	46.678
#2	.00125	.03735	.02109	.01955	.30193	.00004	46.926
#3	00029	.04248	.01334	.01669	.30050	.00004	46.926
#4	.00125	.03381	.02497	.01955	.29955	.00004	47.124
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00059	00015	.00237	00069	7.2001	1.6178	.00200
SDev	.00265	.00075	.00155	.00081	.0279	.1217	.00088
%RSD	451.70	510.33	65.690	117.28	.38731	7.5244	43.801
#1	.00124	.00023	.00458	00175	7.1587	1.4865	.00156
#2	00394	00127	.00163	00090	7.2132	1.6567	.00172
#3	00145	.00023	.00104	00006	7.2097	1.5605	.00141
#4	.00180	.00022	.00222	00006	7.2189	1.7676	.00330
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	21.726	.36078	.00108	67.680	.00118	.01628	.01044
SDev	.055	.00160	.00490	1.130	.00870	.01720	.01572
%RSD	.25183	.44302	455.45	1.6702	740.72	105.65	150.61
#1	21.652	.35892	00021	68.965	01112	00759	00278
#2	21.762	.36211	00532	67.762	.00870	.01623	00257
#3	21.773	.35999	.00492	67.785	.00155	.03223	.02874
#4	21.718	.36212	.00492	66.209	.00557	.02426	.01837
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.03118	6.0442	.00143	.07498	00245	.06976	00255
SDev	.01742	.0132	.01790	.00040	.00044	.06968	.00009
%RSD	55.865	.21825	1255.8	.53225	17.807	99.886	3.6899
#1	.04559	6.0308	.00845	.07444	00295	00520	00258
#2	.04579	6.0605	.01719	.07535	00194	.11023	00268

658	647
page	2

05/25/00	10:04:06	AM
----------	----------	----

Analysis Report

*t*, '

#3 #4	.02247 .01085	6.0367 6.0486	.00424 02418	.07520 .07495	00262 00228	02907 :::14495	00248 00248
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	@LC Pass	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .04684 .00159 3.3938						
#1 #2 #3 #4	.04811 .04476 .04806 .04645						
Errors High Low	LC Pass 100.00 02000						

page 1

Operator: MTW Method: QUANMET Sample Name: DD3QX

Wo.

Run Time: 05/25/00 10:04:08

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

				-			
Elem	AG	AL	AS	B_	BA	BE	CA F: ppm
Units	ppm	ppm	ppm	-ppm	ppm	ppm	
Avge	00095	58.747	.02264	.04287	.53491	.00294	
SDev	.00239	.074	.04023	.00504	.00171	.00007	
%RSD	251.21	.12615	177.71	11.752	.31979	2.4007	
#1	00296	58.773	.02959	.03835	.53574	.00289	99.682
#2	00292	58.787	.00619	.04537	.53527	.00287	99.659
#3	.00025	58.636	02000	.03902	.53241	.00299	100.57
#4	.00183	58.790	.07476	.04875	.53622	.00301	100.81
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00259	.03266	.06544	.05852	92.202	6.9631	.09813
SDev	.00198	.00275	.00410	.00081	.301	.3683	.00247
%RSD	76.324	8.4054	6.2593	1.3883	.32608	5.2897	2.5124
#1	00379	.03567	.06426	.05914	91.938	7.0556	.10012
#2	00059	.02965	.06189	.05745	91.993	6.5822	.10042
#3	00126	.03416	.07135	.05917	92.286	7.4327	.09600
#4	00471	.03116	.06426	.05834	92.590	6.7819	.09600
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	51.800	2.1776	.00611	102.28	.05165	.09851	.01300
SDev	.071	.0087	.00495	1.16	.00451	.03279	.02493
%RSD	.13775	.39868	81.030	1.1385	8.7413	33.286	191.81
#1	51.718	2.1693	.00223	102.91	.04696	.11850	01317
#2	51.868	2.1715	.00223	103.60	.04952	.07057	00271
#3	51.763	2.1822	.00740	101.35	.05268	.07076	.02864
#4	51.852	2.1876	.01257	101.25	.05744	.13422	.03924
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.09237	H67.359	.00664	.22097	.30850	.08837	.10604
SDev	.03871	.072	.01088	.00063	.00194	.15372	.00426
%RSD	41.913	.10757	163.85	.28474	.62771	173.96	4.0183
#1	.07587	H67.265	00936	.22159	.30757	11768	.10080
#2	.10326	H67.384	.01035	.22078	.30690	.22967	.10596

#3 #4	.04995 .14040	H67.349 H67.438	.01055 .01501	.22017	1.31128	.06429	.11124 .10616	
Errors High Low	LC Pass 100.00 25000	LC High 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	.cLC Pass	LC Pass 100.00 -2.0000	LC Pass 100.00 05000	
Elem Units Avge SDev %RSD	ZN ppm .16091 .00226 1.4036				- *			
#1 #2 #3 #4	.16109 .15943 .16404 .15910	*						
Errors High Low	LC Pass 100.00 02000							

Analysis Report

-.04000

.06388

.00091

1.4309

.06455

.06253

TL

ppm

.06582

.02125

32.285

.04208

.07845

TI

ppm

Operator: MTW

,<del>.</del> . -

1--

Sample Name: DD3QXP5 Method: QUANMET

-.01500

SI

mqq

13.591

.38403

13.610

13.515

.052

-5.0000

.02335

.05224

223.69

.04783

-.04207

SE

ppm

-.04000

.01323

.00806

60.966

.02364

.01261

SN

ppm

-5.0000

.04559

.00015

.33408

.04573

.04563

SR

maga

Run Time: 05/25/00 10:07:21

Comment: STL PITTSBURGH ICP-METALS ANALYSIS-INSTRUMENT JA61E

Corr. Factor: 1 Mode: CONC

CA BA BE ALAS В Elem AG ppm ppm mqq ppm Units ppm ppm T ppm .00063 20.576 .10898 .00921 .00080 11,826 -.00525 Avge .176 .00007 .00014 .016 .01365 .00536 .00150 SDev .85473 10.506 58.123 ,12845 260.08 .13929 188.42 %RSD .00066 20.639 .10905 .00221 .00485 11.850 .00119 #1 20.334 .00053 .10877 .00651 .00455 -.00039 11.821 #2 20.583 .00066 .01221 .10905 -.02437 #3 -.00037 11.814 20.749 .01524 .10905 .00065 11.819 -.00535 #4 .00275 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 600.00 15.000 100.00 100.00 100.00 600.00 2.0000 High -.00500 -5.0000 -.20000 -.20000 -.30000 -.20000 -.01000 Low LI ĸ FE CU CO CR Elem CD ppm ppm ppm mqq Units ppm ppm ppm .02096 1.4829 19.403 .01128 .00698 .01581 -.00150 Avge .00129 .079 .2393 .00282 .00081 .00150 .00119 SDev 16.138 6.1651 7.2052 .40890 17.811 %RSD 79.322 21.499 .02254 19.459 1.7602 .01191 .01758 -.00328 .00623 #1 1.1759 .01964 19.302 .01021 .00623 .01640 #2 -.00093 .02023 1.4865 19.378 .01191 -.00101 .00623 .01758 #3 1.5087 .02144 .01107 19.473 .01167 -.00078.00923 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors LC Pass 1000.0 20.000 400.00 100.00 100.00 100.00 High 100.00 -.05000 -5.0000 -.02500 -.10000 -.05000 -.01000 -.00500 Low SB PB NI NA MO MN Elem MG ppm mqq ppm ppm Units ppmppm maga -.01051 .03138 20.526 .01404 .00034 10.612 .45215 Avge .02156 .00999 .00473 .00490 .365 .039 .00281 SDev 95.081 68.702 33.705 .62217 1438.6 1.7760 %RSD .37053 -.00273 .00936 .03931 20.495 -.00349 .45349 #1 10.664 -.02359 .03933 20.972 .01528 .00161 #2 10.620 .44814 -.00046 -.00268 .01141 -.00350 20.557 .45241 #3 10.578 -.01303 .04735 .02011 20.081 .00675 .45456 #4 10.586 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 100.00 100.00 100.00 50.000 400.00 100.00 High 600.00 -.06000 -.10000

STL Pittsburgh

Low

Elem

Avge

SDev

%RSD

#1

#2

Units

V

ppm

.01939

.00266

13.707

.01803

.01813

Analysis	Report			05/25	658 651 page 2		
#3 #4	.00870 .07895	13.604 13.634	.01271 .00395	.04538	.06421 .06421	.05450 .08825	.01803
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000			LC Pass 100.00 Ec 05000
Elem Units Avge SDev %RSD	ZN ppm .03343 .00172 5.1473						
#1 #2 #3 #4	.03520 .03329 .03113 .03408						
Errors High Low	LC Pass 100.00 02000						

Ť

Operator: MTW Method: QUANMET Sample Name: CCV2-4

Run Time: 05/25/00 10:10:29

Run Time: 05/25/00 10:10:29 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENTŢJA61E

Mode: CONC Corr. Factor: 1

Elem	AG ppm 1.0119 .0046 .45192	AL	AS	B_	BA	BE	CA
Units		ppm	ppm	ppm	ppm —	ppm	ppm
Avge		50.062	5.0784	5.0730	4.9291	5.0601	51.646
SDev		.104	.0928	.0089	.0145	.0127	.362
%RSD		.20796	1.8272	.17457	.29487	.25042	.70064
#1	1.0090	50.003	5.0044	5.0597	4.9357	5.0482	51.249
#2	1.0107	50.071	5.2037	5.0773	4.9252	5.0580	51.633
#3	1.0187	50.204	5.0936	5.0779	4.9445	5.0781	52.126
#4	1.0092	49.969	5.0119	5.0771	4.9107	5.0563	51.575
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	1.1000	55.000	5.5000	5.5000	5.5000	5.5000	55.000
Low	.90000	45.000	4.5000	4.5000	4.5000	4.5000	45.000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.1361	5.0632	5.0437	4.9698	52.526	49.204	4.7839
SDev	.0158	.0302	.0263	.0078	.230	.501	.0512
%RSD	.30845	.59615	.52235	.15784	.43881	1.0181	1.0701
#1	5.1304	5.0332	5.0160	4.9814	52.327	49.921	4.8423
#2	5.1211	5.0572	5.0427	4.9654	52.494	49.167	4.7931
#3	5.1583	5.1052	5.0793	4.9646	52.856	48.916	4.7179
#4	5.1347	5.0572	5.0367	4.9679	52.427	48.812	4.7822
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.5000	5.5000	5.5000	5.5000	55.000	55.000	5.5000
Low	4.5000	4.5000	4.5000	4.5000	45.000	45.000	4.5000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	50.598	5.0584	5.0443	49.789	5.0590	5.1219	5.1007
SDev	.099	.0268	.0207	.421	.0490	.0102	.0247
%RSD	.19527	.53004	.40984	.84525	.96893	.19867	.48335
#1	50.547	5.0337	5.0200	50.299	4.9904	5.1112	5.0978
#2	50.536	5.0539	5.0559	49.881	5.0740	5.1357	5.1190
#3	50.745	5.0965	5.0662	49.285	5.1062	5.1210	5.1192
#4	50.565	5.0497	5.0354	49.692	5.0654	5.1198	5.0669
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	55.000	5.5000	5.5000	55.000	5.5000	5.5000	5.5000
Low	45.000	4.5000	4.5000	45.000	4.5000	4.5000	4.5000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.2556	5.0732	5.1257	4.9426	4.9822	10.027	5.0274
SDev	.0788	.0126	.0655	.0148	.0163	.094	.0231
%RSD	1.4989	.24754	1.2770	.30035	.32652	.93749	.46004
#1	5.3452	5.0595	5.0498	4.9457	4.9749	9.8930	5.0043
#2	5.2254	5.0717	5.1896	4.9386	4.9735	10.030	5.0231

Analysis	Report			05/25,	658 653 page 2		
#3 #4	5.2889 5.1630	5.0900 5.0717	5.1699 5.0933	4.9609 4.9253	5.0066 4.9739	10,096	5.0595 5.0227
Errors High Low	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000		LC Pass 5.5000 4.5000	LCaPass 11:000 9.0000	5.5000
Elem Units Avge SDev %RSD	ZN ppm 5.0462 .0221 .43761						
#1 #2 #3 #4	5.0190 5.0382 5.0684 5.0591						
Errors High Low	LC Pass 5.5000 4.5000						

page 1

Operator: MTW Method: QUANMET Sample Name: CCB4

Run Time: 05/25/00 10:13:37 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

Elem	AG	AL	AS	B <u>1</u>	BA	BE	CA B ppm .00039 .00645 1637.2
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	.00038	.00159	01541	.00001	.00012	.00041	
SDev	.00089	.01064	.03276	.00000	.00032	.00013	
%RSD	236.63	670.95	212.60	56.914	266.46	30.620	
#1 #2 #3 #4	00040 .00114 .00116 00040	00282 .01107 .00947 01138	.00778 .00765 06178 01528	.00001 .00000 .00000	00034 .00034 .00034 .00014	.00031 .00031 .00057 .00045	00619 .00320 .00804 00348
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.30000	.20000	.20000	.00500	5.0000
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00030	00225	.00030	00064	.00053	01294	.00029
SDev	.00109	.00448	.00122	.00069	.00322	.27918	.00053
%RSD	365.55	199.04	404.44	109.18	605.61	2157.0	182.99
#1	00027	00864	00073	00149	00372	34021	.00009
#2	.00075	00113	00073	00063	.00124	.33281	.00061
#3	.00013	.00188	.00163	.00021	.00408	.03698	.00083
#4	00181	00112	.00104	00063	.00053	08135	00036
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.05000	.01000	.02500	.10000	5.0000	.05000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00131	.00001	.01536	.00238	.00169	.02180	01846
SDev	.00781	.00053	.00644	.00508	.00520	.01899	.00603
%RSD	597.22	10242.	41.943	213.47	307.05	87.087	32.680
#1	00458	00079	.01408	00409	.00138	.00968	02374
#2	.00065	.00027	.02432	.00809	00549	.04970	01332
#3	.00850	.00027	.00896	.00390	.00621	.01794	01315
#4	00981	.00027	.01408	.00162	.00467	.00989	02363
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.0000	.01500	.04000	5.0000	.04000	.10000	.06000
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	02719	02530	.02556	.00048	.00025	.03481	00132
SDev	.02595	.00002	.01409	.00042	.00080	.01985	.00186
%RSD	95.468	.09366	55.123	86.762	317.40	57.011	141.17
#1	02332	02531	.04191	.00000	00059	.05520	00231
#2	05049	02531	.02013	.00051	.00076	.00871	00211

Analysis Report				05/25,	<b>658 65</b> 5 page 2			
#3 <del></del> #4 ^E	04271 .00777	02526 02531	.03104 .00917	.00101	.00110	.03182 .04351	.00147 00231	. <u>Ā</u> r
Errors High Low	LC Pass .25000 25000	LC Pass .50000 50000	LC Pass .10000 10000	LC Pass .05000 05000	LC Pass .05000 05000	LC Pass .30000 30000	LC Pass .05000 05000	E a a c
Elem Units Avge SDev	ZN ppm .00093 .00090		÷ (, )	<del>д</del> н Б (, т				

STL Pittsburgh

%RSD

#1 #2

#3

#4

High

Low

97.118

-.00015 .00067

.00200

.02000

Errors LC Pass

page 1

Analysis Report

Method: QUANMET Sample Name: DD3QXS

ample Name: DD3QXS Operator: MTW

Run Time: 05/25/00 10:16:45 -

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

Elem	AG	AL	AS	B_	BA		CA
Units	ppm	ppm	Tppm	ppm	ppm		-ppm
Avge	.04883	95.909	1.9941	.99932	2.4647		151.91
SDev	.00147	.308	.0582	.01112	.0089		.47
%RSD	3.0170	.32148	2.9196	1.1131	.36212		.30955
#1	.04767	95.710	2.0103	.98768	2.4608	.05087	151.82
#2	.04917	95.734	2.0565	1.0102	2.4602	.05074	151.54
#3	.05078	95.826	1.9166	.99204	2.4597	.05074	152.59
#4	.04771	96.365	1.9930	1.0074	2.4781	.05101	151.69
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.04640	.51369	.27628	.30879	94.144	59.257	1.0515
SDev	.00448	.00626	.00363	.00081	.160	.359	.0093
%RSD	9.6592	1.2185	1.3139	.26284	.16992	.60584	.88239
#1	.04266	.51521	.27302	.30900	94.091	58.841	1.0404
#2	.04255	.51220	.28071	.30814	93.943	59.100	1.0531
#3	.05135	.52119	.27361	.30818	94.249	59.432	1.0496
#4	.04903	.50616	.27776	.30986	94.295	59.654	1.0628
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem Units Avge SDev %RSD	MG ppm 102.31 .31	MN ppm 2.6750 .0047 .17404	MO ppm .97042 .00726 .74773	NA ppm 150.61 .99 .65442	NI ppm .54677 .01196 2.1881	PB ppm .62570 .03105 4.9631	SB ppm .41080 .02253 5.4856
#1	102.25	2.6758	.97041	149.79	.53515	.61395	.44209
#2	102.07	2.6683	.96527	150.10	.54559	.66159	.38989
#3	102.17	2.6790	.96532	150.53	.54289	.63786	.41081
#4	102.76	2.6769	.98069	152.02	.56344	.58938	.40043
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	2.1511	H93.920	1.9201	1.1809	1.2997	1.9047	.60986
SDev	.0466	.601	.0229	.0037	.0025	.0911	.00051
%RSD	2.1668	.63951	1.1951	.31421	.19259	4.7822	.08408
#1	2.2121	H94.548	1.9388	1.1802	1.2975	1.9429	.61017
#2	2.1378	H93.292	1.9036	1.1779	1.2996	2.0140	.61009

Analysis	Report			05/25,	658 65 <b>7</b> page 2		
#3	2.1000	Н93.536	1.9409	1.1792	1.2986	1.8137	.61008
#4	2.1546	Н94.304		1.1863	1.3033	1.8481	ភ្60909
Errors	LC Pass	LC High	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	100.00	50.000	50.000	100.00	100.00
Low	25000	50000	10000	05000	05000	-2.0000	±.05000
Elem Units Avge SDev	ZN ppm .66571 .00463	, s c					

%RSD

#1 #2

#3 #4

Errors

High

Low

.69555

.66406 .67004 .65994

.66881

LC Pass

100.00

Operator: MTW Sample Name: DD3QXD Method: QUANMET

Run Time: 05/25/00 10:19:58 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1 ,<u>T</u>~

Elem Units Avge SDev %RSD	AG ppm04993 .00125 2.5056	AL ppm 92.859 .517 .55675	AS ppm 2.0423 .0720 3.5275	B_ ppm 1.0027 .0060 .59591	BA ppm	BE ppm .05083 .00023 .44651	CA ppm 151.31 .36 .23549
#1	.04986	92.107	2.0490	1.0035	2.4335	.05063	151.17
#2	.05153	92.935	2.0761	.99895	2.4583	.05102	151.71
#3	.04988	93.177	1.9397	.99761	2.4571	.05063	150.90
#4	.04847	93.218	2.1045	1.0108	2.4668	.05102	151.47
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.04097	.50956	.27199	.30621	90.868	59.100	1.0523
SDev	.00576	.00257	.00369	.00218	.265	1.117	.0190
%RSD	14.052	.50480	1.3562	.71339	.29162	1.8905	1.8077
#1	.03914	.51221	.26711	.30365	90.599	57.938	1.0306
#2	.03699	.50618	.27539	.30537	91.061	58.848	1.0461
#3	.04950	.50916	.27421	.30873	90.683	60.623	1.0759
#4	.03825	.51068	.27125	.30707	91.127	58.989	1.0567
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	101.67	2.6614	.96097	150.66	.54252	.59609	.41333
SDev	.46	.0078	.00489	2.22	.00965	.03207	.02618
%RSD	.45519	.29451	.50841	1.4731	1.7785	5.3803	6.3351
#1	101.03	2.6547	.96477	147.86	.54214	.57667	.37928
#2	101.71	2.6665	.96484	150.18	.54634	.63973	.44219
#3	101.79	2.6547	.95966	153.13	.52943	.59994	.42097
#4	102.14	2.6697	.95461	151.45	.55218	.56800	.41087
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	2.0770	H97.003	1.9550	1.1778	1.3104	1.9965	.60225
SDev	.0252	.260	.0381	.0067	.0046	.1246	.00296
%RSD	1.2127	.26753	1.9479	.56711	.34940	6.2406	.49084
#1	2.0479	Н97.242	1.9837	1.1686	1.3050	2.0833	.59973
#2	2.1039	Н96.874	1.9055	1.1803	1.3131	1.8119	.60491

Analysis	Report			05/25,	<b>65</b> 8 659 page 2		
#3 #4	2.0909 2.0653	Н96.701 Н97.195	1.9861 1.9446	1.1782 1.1843	1.3083 1.3151	2,0361 2 <u>1</u> 0547	.59965 .60470
Errors High Low	LC Pass 100.00 25000	LC High 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2-0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .67925 .00271 .39952	-				-	
#1 #2 #3 #4	.67714 .67734 .67955 .68298						
Errors High Low	LC Pass 100.00 02000						

Operator: MTW Method: QUANMET Sample Name: DD3R0

Œ

Run Time: 05/25/00 10:23:11 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

								-
Elem	AG	AL	AS	B <u>1</u> e	BA	BE	CA	<u> </u>
Units	ppm	ppm	ppm	ppm-	ppm	ppm	ppm	
Avge	00163	27.671	.00685	.03622	.33584	.00169	111.27	
SDev	.00149	.086	.03135	.02295	.00117	.00007	.46	
%RSD	91.377	.31028	457.97	63.361	.34970	3.9346	.41018	
#1	00204	27.557	02677	.06042	.33430	.00165	111.37	
#2	00048	27.681	00864	.04374	.33600	.00166	110.95	
#3	00357	27.765	.01774	.00561	.33715	.00166	110.88	
#4	00044	27.683	.04505	.03513	.33592	.00179	111.87	
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00	
Low	01000	20000	30000	20000	20000	00500	-5.0000	
Elem	CD	CO	CR	CU	FE	K_	LI	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00174	.01777	.02821	.05269	64.366	6.7172	.11036	
SDev	.00133	.00123	.00551	.00069	.123	.2366	.00303	
%RSD	76.358	6.9110	19.513	1.3138	.19088	3.5225	2.7502	
#1	00136	.01626	.02644	.05268	64.267	6.7819	.10778	
#2	00298	.01777	.03590	.05354	64.365	6.4417	.11220	
#3	00003	.01777	.02289	.05184	64.293	6.6414	.11367	
#4	00257	.01927	.02762	.05271	64.540	7.0038	.10778	
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000	
Low	00500	05000	01000	02500	10000	-5.0000	05000	
Elem	MG	MN	MO	NA	NI	PB	SB	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	59.566	1.7932	.00834	99.236	.03445	.09681	00277	
SDev	.206	.0054	.00592	1.355	.01519	.03283	00017	
%RSD	.34528	.30179	70.964	1.3653	44.098	33.912	6.1610	
#1	59.264	1.7906	.00321	97.807	.05113	.09288	00255	
#2	59.665	1.7916	.00322	99.443	.02209	.09283	00296	
#3	59.719	1.7895	.01345	101.00	.02107	.06096	00282	
#4	59.617	1.8012	.01349	98.690	.04352	.14059	00275	
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00	
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000	
Elem	SE	SI	SN	SR	TI	TL	V_	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	.04596	H44.760	01010	.20561	.28622	.11610	.05376	
SDev	.01916	.107	.02332	.00078	.00194	.08778	.00075	
%RSD	41.691	.23874	230.83	.38095	.67657	75.608	1.3953	
#1	.02132	H44.605	02322	.20454	.28800	.03884	.05430	
#2	.06440	H44.771	.00954	.20581	.28597	.22338	.05303	

658	66	1
page	2	

05/25/00 10:26:16 AM

Analysis Report

#3 #4	.04084 .05727	H44.831 H44.831	03630 .00957	.20642	.28361 .28732	.05016 .15202	.05320 .05450
Errors High Low	LC Pass 100.00 25000	LC High 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 205000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .13834 .00109 .78767						
#1 #2 #3 #4	.13778 .13753 .13811 .13994						
Errors High Low	LC Pass 100.00 02000						

Operator: MTW Method: QUANMET Sample Name: DD4WA

Run Time: 05/25/00 10:26:24

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Mode: CONC Corr. Factor: 1

Mode: (		Factor: 1					<del></del>
Elem	AG	AL	AS ppm00650 .04366 671.66	B_	BA	BE	aCA
Units	ppm	ppm		ppm	ppm	ppm	ppm
Avge	00038	14.118		.04531	.17945	.00066	46.262
SDev	.00090	.064		.00289	.00091	.00001	312
%RSD	233.26	.45544		6.3814	.50788	1.2335	.67532
#1	00116	14.054	06661	.04154	.17874	.00065	45.927
#2	.00037	14.100	00916	.04857	.17874	.00066	46.185
#3	00116	14.207	.01687	.04580	.18064	.00066	46.255
#4	.00042	14.110	.03291	.04533	.17969	.00065	46.680
Errors	s LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00079	.00755	.01581	.01402	16.749	9.1892	.07819
SDev	.00484	.00300	.00097	.00145	.076	.1881	.00156
%RSD	615.58	39.777	6.1162	10.328	.45109	2.0472	1.9930
#1	.00740	.00603	.01581	.01422	16.662	9.2891	.07693
#2	00423	.00606	.01581	.01338	16.725	9.2077	.07935
#3	00015	.00604	.01462	.01254	16.768	8.9193	.07972
#4	.00012	.01205	.01699	.01593	16.842	9.3409	.07678
Error	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	18.603	1.2935	.00250	16.518	.01427	.03679	.01286
SDev	.068	.0066	.00875	.255	.00661	.01365	.01817
%RSD	.36430	.50917	349.33	1.5417	46.340	37.102	141.29
#1	18.511	1.2857	.00121	16.489	.01982	.02285	00274
#2	18.592	1.2921	.00634	16.614	.01858	.03875	.00759
#3	18.660	1.2943	00901	16.786	.01340	.03076	.03913
#4	18.647	1.3017	.01148	16.183	.00527	.05480	.00747
Error	CS LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.03987	H25.281	.02561	.10310	.15096	.01387	.02072
SDev	.03766	.122	.02390	.00037	.00282	.04925	.00307
%RSD	94.468	.48433	93.305	.36251	1.8707	354.98	14.815
#1	.07645	H25.145	.01189	.10283	.15028	.08720	.02328
#2	.03007	H25.228	.04688	.10274	.14725	00615	.01822

Analysis	Report			05/25,	658 663 page 2		
#3 # <b>4</b>	00861 .06157	H25.318 H25.431	00101 .04470	.10350 .10334	.15298 .15332	00657 01898	.01792 .02348
Errors High Low	LC Pass 100.00 25000				LC Pass 50.000 05000		LC Pass 100:00 - 05000
Elem Units Avge SDev %RSD	ZN ppm .06329 .00116 1.8308						
#1 #2 #3 #4	.06343 .06285 .06207 .06481						
Errors High Low	LC Pass 100.00 02000						

Analysis Report

Operator: MTW

Method: QUANMET Sample Name: DD4WG

Run Time: 05/25/00 10:29:37

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Corr. Factor: 1 Mode: CONC pr BE CA BA В AG ΑL AS Elem -<u>‡</u>₁ ppm ppm mqq ppm ppm Units -ppm ppm 55.400 .27346 -.00000 .00052 .01157 .13046 -.00050 Avge .306 .00202 .00168 .00006 .05126 .00537 SDev .00089 23973. .55280 .61471 9770.1 17.443 178.81 4.1175 %RSD 55.280 .00003 -.00145 .01178 ,27318 .13089 -.00125 #1 55.295 .00004 .00892 .27556 .12753 .01409 #2 -.00128 55.172 .27365 -.00010 .01384 .05649 #3 .00026 .12560 .00003 55.852 .27147 .13782 -.06703 .01176 .00028 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 15.000 600.00 100.00 100.00 100.00 High 2.0000 600.00 -5.0000 -.00500 -.20000 -.20000 -.20000 -.30000 Low -.01000 CU FEK_ LI CR CO Elem CD ppm mqqppmppm mqq Units ppm ppm .00615 1.7824 3.1698 .00068 -.00014 .00858 Avge -.00025 .00048 .2782 .00140 .00042 .0058 .00449 SDev .00347 7.7804 15.610 .18160 16.308 62.913 3305.0 1396.7 %RSD 1.5975 .00555 3.1684 .00872 .00046 .00096 -.00127 #1 .00613 3.1663 1.6788 L-.00539 .00176 .00754 .00047 #2 1.6567 .00672 .00046 3.1783 -.00577 .01050 .00128 #3 .00620 3.1663 2.1965 .00131 .00754 .00474 #4 .00215 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20.000 1000.0 100.00 400.00 100.00 High 100.00 100.00 -5.0000 -.05000 -.10000 -.01000 -.02500 Low -.00500 -.05000 SB ₽B NI NA MG MN MO Elem ppm ppm ppm ppm mqq Units mag ppm -.00008 .02310 59.805 .00415 .50290 .00431 22.895 Avge .01320 .00228 .02473 1.309 .160 .00134 .00591 SDev 16841. 2.1880 107.05 55.005 137.06 %RSD .70065 .26580 .01827 .02509 -.00081 59.132 .00096 .50104 #1 22.819 -.00259 61.493 .00607 .00922 -.00081 .50316 #2 23.096 -.00277 60.108 .00410 .00105 .00944 .50317 #3 22.939 .05705 -.01323.00548 58.485 .00944 22.725 .50422 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors LC Pass 100.00 100.00 100.00 400.00 High 100.00 50.000 600.00 -.06000 -.10000 -.04000 -5.0000 -.04000 Low -5.0000 -.01500 V TLTISI SN SR SE Elem  $\overline{pqq}$ ppm mqq ppm ppm Units mqq ppm .01069 .00010 .19793 -.00110 5.1295 .00988 -.01851 Avge .00298 .00128 .00044 .08544 .02763 .0324 SDev .01323 799.23 2971.1 .64781 39.723 279.57 .63114 %RSD 71.479 .00258 .07157 .19761 -.00093 -.00313 -.00784 5.0968 #1

#2

-.02338

5,1741

-.00258

.09481

-.00160

.19938

-.01414

page 2

#3 #4	00780 03503	5.1265 5.1206	.00769 .04911	.19837 .19634	00059 00127	0 <u>7</u> 921 04441	00238 .00278
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Ēass 100a00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .06414 .00122 1.9064	i.					
#1 #2 #3 #4	.06534 .06282 .06339 .06500						
Errors High Low	LC Pass 100.00 02000						

Ī

Operator: MTW Method: QUANMET Sample Name: DD4WH

Run Time: 05/25/00 10:32:45

Comment: STL PITTSBURGH ICP METALS ANALYSIS INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1 <u>.</u>

Elem	AG	AL	AS	B_	BA	BE	CA
Units	ppm	ppm	ppm	ppm s	ppm	ppm	ppm
Avge	00027	4.3956	03245	.01320	.18386	.00008	73.090
SDev	.00230	.0292	.02658	.00005	.00060	.00008	.444
%RSD	846.99	.66425	81.923	.37161	.32575	96.437	.60716
#1	.00241	4.4230	.00013	.01316	.18398	.00001	72.799
#2	00219	4.4126	03071	.01327	.18398	.00015	73.697
#3	00219	4.3899	03432	.01319	.18445	.00015	72.723
#4	.00088	4.3571	06489	.01320	.18302	.00001	73.142
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00100	.00316	.00621	.00858	6.8786	2.1170	.01196
SDev	.00273	.00174	.00405	.00042	.0269	.0393	.00166
%RSD	272.04	54.941	65.262	4.9578	.39048	1.8568	13.846
#1	00271	.00167	.00458	.00837	6.8522	2.1004	.01445
#2	.00145	.00467	.01108	.00922	6.9160	2.1744	.01113
#3	.00387	.00164	.00162	.00837	6.8707	2.0856	.01113
#4	.00141	.00467	.00754	.00837	6.8756	2.1078	.01113
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	35.285	2.0661	.00231	42.916	.01168	.01013	02373
SDev	.146	.0074	.00661	.930	.00584	.02640	.01487
%RSD	.41499	.35963	286.35	2.1659	50.019	260.76	62.665
#1	35.272	2.0589	00538	43.938	.00900	.01408	00276
#2	35.389	2.0759	00025	42.788	.00686	.04596	03430
#3	35.397	2.0621	.00999	43.223	.01074	00983	03429
#4	35.083	2.0674	.00487	41.717	.02011	00971	02354
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	02632	11.904	.06150	.30214	.07400	.04490	.00780
SDev	.03741	.035	.03871	.00121	.00391	.07759	.00013
%RSD	142.16	.29247	62.942	.40111	5.2797	172.82	1.6001
#1	.00951	11.891	.05832	.30181	.07265	.06544	.00765
#2	03298	11.956	.08657		.07097	.12283	.00776

Analysis	Report			05/25,	05/25/00 10:35:50 AM			
#3 # <b>4</b>	07586 00594	11.885 11.885	.09308	.30283 .30059	.07974 .07265	06230 .05362	.00794 .00785	
Errors High Low		LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50:000 - :05000			
Elem Units Avge SDev %RSD	ZN ppm .05961 .00174 2.9175							
#1 #2 #3 #4	.05759 .05894 .06030 .06163							
Errors High Low	LC Pass 100.00 02000							

Operator: MTW

Analysis Report

Sample Name: DD4WJ Method: QUANMET

Run Time: 05/25/00 10:35:52 --

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

Mode: CO	NC Corr.	Factor: 1	-				-
Elem	AG	AL	AS	B_	BA	BE	CA
Units	ppm	ppm	ppm ⁻	ppm	ppm	ppm	DPPM
Avge	00237	95.354	.00518	.03007	.79529	.00524	H753.05
SDev	.00085	.509	.05319	.01642	.00466	.00001	1.34
%RSD	36.041	.53376	1027.6	54.617	.58606	.12803	.17781
#1	00316	95.069	.03659	.05436	.79251	.00525	H752.96
#2	00162	95.409	05104	.02578	.79641	.00524	H753.18
#3	00304	96.045	.06248	.02063	.80136	.00524	H751.40
#4	00164	94.891	02732	.01950	.79089	.00524	H754.67
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00143	.08472	.09379	.16642	212.50	30.106	1.0127
SDev	.00158	.00075	.00305	.00050	.26	.468	.0159
%RSD	110.40	.88279	3.2562	.30078	.12276	1.5557	1.5737
#1	.00050	.08434	.09261	.16599	212.46	29.701	1.0008
#2	00092	.08434	.09734	.16683	212.39	30.478	1.0186
#3	00216	.08584	.09024	.16687	212.88	30.545	1.0325
#4	00316	.08435	.09497	.16598	212.29	29.701	.99876
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem Units Avge SDev %RSD	MG ppm 431.87 1.46 .33861	MN ppm 10.607 .009	MO ppm .02154 .00491 22.779	NA ppm 15.345 .231 1.5083	NI ppm .13961 .00064 .45910	PB ppm .32425 .01036 3.1955	SB ppm .00939 .04042 430.56
#1	431.09	10.610	.02537	15.151	.14045	.31245	.00681
#2	431.72	10.599	.02536	15.448	.13915	.32827	.04862
#3	433.98	10.619	.02031	15.624	.13907	.31987	.02769
#4	430.71	10.600	.01510	15.159	.13977	.33640	04557
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.23309	H87.204	.51291	.40622	.77640	.51038	.18251
SDev	.06017	.336	.02528	.00219	.00193	.11297	.00253
%RSD	25.815	.38497	4.9294	.54044	.24847	22.134	1.3883
#1	.20961	H87.118	.48779	.40558	.77707	.41234	.17871
#2	.31810	H87.172	.49452	.40558	.77538	.66809	.18388

High

Low

100.00

-.02000

#40 L

16

.18377

.18368

LC Pass 100.00 -.05000

#3 #4"	.22670 .1 <u>77</u> 93	H87.665 H86.862	.53380 .53554	.40939 .40432	.77876 .77437	.51232 .44875
Errors High Low	LC Pass 100.00 25000	LC High 20.000 -:50000	LC Pass 100.00 10000	LC- Pass 50, 000 - ;05000		LC Pass 100.00 -2.0000
Elem Units Avge SDev %RSD	ZN ppm .43630 .00653 1.4975			*		
#1 #2 #3 #4	.44430 .43834 .42910 .43347					
Errors	LC Pass					

Operator: MTW Method: QUANMET Sample Name: DD4WK

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E
Mode: CONC Corr Factor: 1

Comment: Mode: CON		Factor: 1	METALS ANA	FISTS-INST	ROMENI OA	34.	
Elem	AG	AL	AS	B_ ppm	BA ppm	r,BE <del>D</del> ppm	CA ppm
Units	ppm	ppm .27481	ppm 00540	.01272	.05269	00006	42.063
Avge	.00058	.00755	.04786	.00341	.00000	00013	.184
SDev %RSD	153.50	2.7480	885.72	26.800	.00000	199.52	.43827
#1	00021	.26624	.04292	.00860	.05269	.00004 00011	41.814 42.144
#2	00018	.27133	.01580	.01551	.05269	.00011	42.048
#3	.00135	.28340	01127	.01552	.05269	.00017	42.246
#4	.00136	.27825	06906	.01124	.05269		
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
row Train	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	СО	CR	CU	FE	K_	LI ppm
Units	ppm	ppm	ppm	ppm	ppm	ppm 20.004	.04059
Avge	00040	00003	.00813	.00155	.88195	.353	.00087
SDev	.00246	.00189	.00108	.00109	.00248 .28065	1.7663	2.1402
%RSD	613.91	5920.0	13.281	70.420			
#1	.00082	.00034	.00695	.00113	.87894	20.013	.04118
#2	00409	.00035	.00754	.00028	.88460	19.569	.04066
#3	.00099	00266	.00873	.00197	.88318	20.434	.04118
#4	.00067	.00184	.00932	.00282	.88106	19.998	.03934
7	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
Errors	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
High Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	26.045	.08993	.00525	16.906	.00432	.01957	.00776 .00847
SDev	.076	.00053	.00490	.190	.00831	.01990 101.67	109.14
%RSD	.29169	.59115	93.342	1.1246	192.49		
#1	25.950	.08966	00115	17.002	.00959	00628	.00779
#2	26.033	.08966	.00397	16.890	00789	.01761	.01813
#3	26.133	.09073	.00909	17.085	.00600	.02547	.00775
#4	26.065	.08966	.00909	16.647	.00958	.04150	00262
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00		06000
Low	-5.0000	01500	04000	-5.0000	04000		
Elem	SE	sı	SN	SR	TI	TL	V
Units	ppm	ppm	ppm	ppm	ppm	ppm	pbui
Avge	00260	6.0308	.01110	.17347	.00388	.01748	.00109 .00252
SDev	.01967	.0404	.01805	.00036	.00184	.05802	232.07
%RSD	756.05	.66953	162.54	.20667	47.296	331.83	232.01
			00045	.17321	.00650	.08132	00259
#1	.00321	5.9713 6.0606	.03347 .01388	.17347	.00380	05794	.00267
#2	01619	6.0606	.01300	/ U = /			
CUL Diffe	hurah						615

Analysis	Report			05/25,	658 671 page 2		
#3 #4	02007 .02264	6.0487 6.0427	.00729 0 <u>102</u> 2	.17397 .17321	.00245	.01170 .03486	.00148
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000		LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .06668 .00171 2.5613						
#1 #2 #3 #4	.06687 .06855 .06689 .06441						
Errors High Low	LC Pass 100.00 02000						

Operator: MTW

Method: QUANMET Sample Name: DD4WL

Run Time: 05/25/00 10:42:14

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

P	loge: cor	AC COTT.	raccor. I			•		
	Elem	AG	AL	AS	B_	arBA	BE	CA
	Units	ppm	ppm	ppm	ppm	prppm	ppm	ppm
	Avge	.00021	29.101	02597	.05450	.27437	.00138	52.867
	SDev	.00147	.150	.01433	.00019	.00163	.00012	225
	%RSD	702.09	.51539	55.177	.34525	.59254	8.9280	.42477
	#1	.00140	29.044	03721	.05462	.27365	.00154	53.162
	#2	.00132	28.918	00495	.05424	.27270	.00142	52.802
	#3	00172	29.251	03106	.05451	.27651	.00129	52.622
	#4	00016	29.192	03065	.05465	.27461	.00129	52.880
	Errors High Low	LC Pass 2.0000 01000	LC Pass 600.00 20000	LC Pass 100.00 30000	LC Pass 100.00 20000	100.00	LC Pass 15.000 00500	LC Pass 600.00 -5.0000
	Elem	CD	CO	CR	CU	FE	K_	LI
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	00180	.01563	.02837	.03079	33.472	12.628	.16220
	SDev	.00123	.00397	.00233	.00137	.100	.207	.00269
	%RSD	68.082	25.422	8.2282	4.4573	.29731	1.6388	1.6615
	#1	00272	.01638	.03117	.03079	33.536	12.721	.16063
	#2	00214	.01188	.02940	.03246	33.329	12.772	.16022
	#3	00235	.02088	.02644	.03079	33.479	12.699	.16610
	#4	.00000	.01337	.02644	.02910	33.544	12.321	.16184
	Errors High Low	LC Pass 100.00 00500	LC Pass 100.00 05000	LC Pass 100.00 01000	LC Pass 100.00 02500	400.00	LC Pass 1000.0 -5.0000	LC Pass 20.000 05000
	Elem	MG	MN	MO	NA	NI	PB	SB
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	24.835	1.4787	.00501	15.792	.03248	.06913	.00247
	SDev	.106	.0040	.00257	.233	.01188	.03465	.02764
	%RSD	.42507	.26711	51.283	1.4755	36.569	50.121	1119.6
	#1	24.791	1.4824	.00886	15.589	.04675	.09903	.00783
	#2	24.707	1.4738	.00370	15.641	.01996	.09899	01332
	#3	24.938	1.4771	.00373	16.104	.03715	.03532	02362
	#4	24.904	1.4813	.00374	15.835	.02606	.04318	.03898
	Errors High Low	LC Pass 600.00 -5.0000	LC Pass 100.00 01500	LC Pass 50.000 04000	LC Pass 400.00 -5.0000	100.00	LC Pass 100.00 10000	LC Pass 100.00 06000
	Elem	SE	SI	SN	SR	TI	TL	V_
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.07187	H46.247	00322	.10971	.23686	.01598	.04015
	SDev	.03040	.179	.02144	.00051	.00167	.04047	.00263
	%RSD	42.305	.38662	666.35	.46201	.70294	253.26	6.5598
	#1 #2	.04880 .04416	H46.223 H46.003	01574 02242	.10963 .10902	.23770 .23602	.02980 00282	.04410
								C10

Analysis	Report		05/25/	/00 10:45:1	L9 AM	658 673 page 2
#3 #4	.10685 - H46.377 .08767 H46.383	00062 .02589	.11003 .11014	.23872	.06515	.03883
Errors High Low	LC Pass LC High 100.00 20.000 2500050000	10000	05000	50.000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .11155 .00213 1.9075					
#1 #2 #3 #4	.11199 .11151 .11392 .10877					
Errors High Low	LC Pass 100.00 02000					

Method: QUANMET Sample Name: DD4WM Run Time: 05/25/00 10:45:27 Operator: MTW

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

	.,.						•
Elem `Units Avge SDev %RSD	AG / ppm 00231 .00317 137.41	AL ppm 00304 .00755 248.28	AS ppm	B_ ppm .00781 .01554 199.08	BA ppm 00003 .00037 1334.1	BE ppm .00000 .00007 1575.7	CA ppm— .20650 .00736 3.5646
#1	00500	00433	.07330	.00004	00034	00009	.20100
#2	00037	.00438	00008	.00003	.00042	.00003	.21480
#3	.00114	.00080	.00772	.03112	.00014	.00004	.21056
#4	00500	01302	00372	.00004	00034	.00004	.19965
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00177	00112	.00192	00063	.01788	.01849	.00019
SDev	.00228	.00324	.00258	.00120	.00092	.38950	.00055
%RSD	128.68	289.35	134.05	189.15	5.1211	2106.6	279.97
#1	00477	00262	.00340	00148	.01753	24406	.00024
#2	00153	.00339	.00281	.00106	.01824	.38458	.00044
#3	.00076	00113	.00340	00063	.01895	.31802	.00068
#4	00153	00413	00192	00148	.01682	38458	00058
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.01504	.00027	.00128	.04266	.00329	.00593	00785
SDev	.01767	.00000	.00512	.00370	.00776	.01903	.01815
%RSD	117.53	.68022	399.17	8.6681	235.94	320.96	231.15
#1	.00850	.00027	00128	.03932	.00307	.00986	01308
#2	.03727	.00027	00128	.04732	00204	.01802	.01833
#3	.01896	.00027	.00896	.04389	.01433	.01786	01304
#4	00458	.00027	00128	.04008	00221	02203	02363
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	01159	.06988	.00106	.00035	00068	.00564	00158
SDev	.02517	.00002	.01788	.00031	.00042	.03051	.00191
%RSD	217.24	.03480	1685.8	86.316	62.915	541.49	120.31
#1	.01172	.06987	00606	.00051	00059	.02015	00260
#2	04654	.06992	01464	.00051	00059	.00847	.00127

page 2

#3									
High 100.00 20.000 100.00 50.000 50.000 100.00 100.00 Low25000500000500005000 -2.000005000 Elem ZN Units ppm Avge .01851 SDev .00153 %RSD 8.2562 #1 .01695 #2 .02049 #3 .01883 #4 .01777 Errors LC Pass High 100.00									
Elem ZN Units ppm Avge .01851 SDev .00153 %RSD 8.2562  #1 .01695 #2 .02049 #3 .01883 #4 .01777  Errors LC Pass High 100.00	High	100.00	20.000	100.00	50.4000 05000	50.000	100.00	100.00	Ç
#2 .02049 #3 .01883 #4 .01777 Errors LC Pass High 100.00	Units Avge SDev	ppm .01851 .00153		,					-
High 100.00	#2 #3	.02049 .01883							
	High	100.00							

Operator: MTW

Analysis Report

Method: QUANMET Sample Name: CCV2-5

Run Time: 05/25/00 10:48:35

Run Time: 05/25/00 10:48:35 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Mode: CONC Corr. Factor: 1 . C

Mode: C	ONC COLL.	raccor. 1	•				
Elem	AG	AL	AS	B_	BA	BE	CA
Units	ppm	ppm	ppm	ppm	ppm	5ppm	ppm
Avge	1.0131	49.604	5.0561	5.0437	4.8661	5.0477	52.267
SDev	.0037	.124	.0464	.0298	.0197	.0184	.305
%RSD	.36578	.24945	.91727	.59031	.40440	.36525	.58294
#1	1.0107	49.632	5.0031	5.0184	4.8694	5.0302	52.055
#2	1.0185	49.426	5.0736	5.0188	4.8377	5.0339	52.719
#3	1.0123	49.649	5.1106	5.0773	4.8828	5.0671	52.127
#4	1.0108	49.711	5.0369	5.0601	4.8744	5.0597	52.167
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	1.1000	55.000	5.5000	5.5000	5.5000	5.5000	55.000
Low	.90000	45.000	4.5000	4.5000	4.5000	4.5000	45.000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.1682	5.0883	5.0713	4.8938	52.561	48.873	4.6764
SDev	.0290	.0121	.0213	.0273	.091	.750	.0823
%RSD	.56058	.23798	.42027	.55701	.17368	1.5354	1.7609
#1	5.1466	5.0708	5.0427	4.9054	52.440	49.988	4.7777
#2	5.2110	5.0976	5.0923	4.8531	52.662	48.368	4.5760
#3	5.1577	5.0947	5.0811	4.9105	52.570	48.620	4.6749
#4	5.1576	5.0902	5.0693	4.9063	52.572	48.516	4.6770
Errors	s LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.5000	5.5000	5.5000	5.5000	55.000	55.000	5.5000
Low	4.5000	4.5000	4.5000	4.5000	45.000	45.000	4.5000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	50.142	5.0739	5.0507	48.982	5.0743	5.1467	5.0458
SDev	.132	.0166	.0209	.669	.0321	.0210	.1270
%RSD	.26408	.32780	.41392	1.3660	.63227	.40865	2.5169
#1	50.123	5.0603	5.0507	49.861	5.0720	5.1363	5.1193
#2	49.963	5.0975	5.0508	48.235	5.0328	5.1448	4.8672
#3	50.262	5.0646	5.0764	48.871	5.0819	5.1767	5.0456
#4	50.220	5.0731	5.0251	48.962	5.1104	5.1289	5.1510
Error	s LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	55.000	5.5000	5.5000	55.000	5.5000	5.5000	5.5000
Low	45.000	4.5000	4.5000	45.000	4.5000	4.5000	4.5000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.2111	5.1685	5.1413	4.8984	4.9581	10.012	5.0343
SDev	.0482	.0209	.0803	.0170	.0073	.198	.0071
%RSD	.92556	.40409	1.5618	.34646	.14815	1.9792	.14160
#1	5.2368	5.1372	5.0718	4.8997	4.9479	9.8219	5.0269
#2	5.2454	5.1790	5.2518	4.8741	4.9580	10.051	5.0437
יתיד דים דיתי	taburah						616

Analysis	Report			05/25/	/00 10:51:4	40 AM	658.677 page 2
#3 #4	5.1402 5.2218	5.1789 ₃ 5.1789	5.1478 5.0938	4.9123 4.9073	4.9648 4.9617	10.273 9.9016	5.0352 5. <u>03</u> 16
Errors High Low	LC Pass 5.5000 4.5000	LC Pass 5,5000 4.5000E	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000	LC Pass 11.000 9.0000	LC Pass 5.5000 4.5000
Elem Units Avge SDev %RSD	ZN ppm 5.0483 .0129 .25636	-					
#1 #2 #3 #4	5.0371 5.0629 5.0376 5.0555	•					
Errors High Low	LC Pass 5.5000 4.5000						

Operator: MTW

Method: QUANMET Sample Name: CCB5

Run Time: 05/25/00 10:51:43

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

Elem	AG	AL	AS		BA	BE	CA
Units	ppm	ppm	ppm		-ppm	ppm	ppm
Avge	00040	.00073	02309		.00038	.00051	00282
SDev	.00126	.00617	.03373		.00028	.00032	.00240
%RSD	317.74	846.48	146.05		72.703	63.143	84.892
#1	.00114	.00416	.02699	00000	.00014	.00031	00429
#2	00039	00446	04620	00001	.00014	.00017	00081
#3	00194	00447	03845	.00000	.00062	.00072	00543
#4	00039	.00769	03472	.00001	.00062	.00085	00076
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.30000	.20000	.20000	.00500	5.0000
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE ppm00053 .00335 631.74	K_	LI
Units	ppm	ppm	ppm	ppm		ppm	ppm
Avge	00010	00075	.00282	00085		15161	.00012
SDev	.00176	.00189	.00281	.00081		.17138	.00034
%RSD	1743.1	251.80	99.978	95.504		113.04	274.06
#1	.00151	00263	.00459	.00021	00301	.08875	.00024
#2	00102	.00188	.00459	00148	00301	22187	00028
#3	00211	00112	00132	00148	00018	31062	.00001
#4	.00122	00113	.00341	00063	.00408	16271	.00053
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.05000	.01000	.02500	.10000	5.0000	.05000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00392	.00027	.01792	.00838	.00117	.00795	.00773
SDev	.00751	.00000	.00256	.00684	.00357	.01008	.01912
%RSD	191.49	.16021	14.283	81.597	304.36	126.75	247.42
#1	.00589	.00027	.01920	.00200	00373	00604	00282
#2	00981	.00027	.01920	.00581	.00155	.01801	.02867
#3	00196	.00027	.01920	.00771	.00482	.00990	01316
#4	00981	.00027	.01408	.01800	.00206	.00994	.01821
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.0000	.01500	.04000	5.0000	.04000	.10000	.06000
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00874	.04459	00269	.00064	.00034	.04062	00223
SDev	.02137	.00298	.00671	.00030	.00058	.05386	.00106
%RSD	244.49	6.6952	249.06	46.257	170.78	132.60	47.534
#1 #2 STL Pitts	00389 02331 sburgh	.04608 .04609	.00053 01242	.00040	.00008	.04356 01447	00220 00091 6162

Analysis	Report			05/25,	/00 10:54:4	18 AM	658 679 page 2
#3 #4	02719 · .01943 <u>.</u>		.00267 00156	.00076 .00101	00025 .00110	.02033 .11 <u>305</u>	00350 00230
Errors High Low	LC Pass .25000 25000	LC Pass .50000 50000	.10000	LC Pass .05000 05000	.05000	.30000	LC Pass .05000 05000
Elem Units Avge SDev %RSD	ZN ppm .00121 .00104 85.970				-		
#1 #2 #3 #4	.00146 .00258 .00040 .00041						
Errors High Low	LC Pass .02000 02000						

Method: QUANMET Sample Name: DD50E Run Time: 05/25/00 10:54:51 Operator: MTW

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Mode: CONC Corr. Factor: 1

			~				
Elem	AG	AL	AS	B_	BA	BE	CA
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00138	.02114	.00430	.00379	.42093	00000	46.652
SDev	.00147	.00475	.04287	.00067	.00253	.00006	.447
%RSD	107.05	22.442	996.20	17.692	.60046	1534.3	.95892
#1	00329	.01808	04388	.00330	.41846	.00003	46.790
#2	00178	.01645	.01791	.00388	.42445	00010	45.993
#3	00022	.02327	.05630	.00328	.42064	.00003	46.836
#4	00022	.02676	01312	.00471	.42017	.00003	46.988
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00266	.00055	.00119	.00050	.97100	1.7121	.00076
SDev	.00120	.00225	.00074	.00042	.00626	.2851	.00025
%RSD	45.198	409.89	62.742	84.741	.64446	16.650	33.269
#1	00441	00132	.00222	.00029	.97667	1.4348	.00098
#2	00172	00133	.00045	.00029	.96250	1.6936	.00083
#3	00214	.00167	.00104	.00029	.97030	1.6123	.00040
#4	00234	.00318	.00104	.00114	.97455	2.1078	.00083
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	28.558	.39296	.01039	44.633	00311	.02168	.00518
SDev	.165	.00201	.00490	1.182	.00448	.01899	.01316
%RSD	.57801	.51199	47.208	2.6472	144.10	87.557	254.16
#1	28.364	.39322	.00911	43.242	00189	.03359	.01835
#2	28.767	.39003	.00398	46.122	00074	.00171	01308
#3	28.537	.39428	.01423	44.459	00973	.00978	.00774
#4	28.565	.39428	.01423	44.710	00007	.04166	.00771
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem Units Avge SDev %RSD	SE ppm 00810 .01954 241.13	SI ppm 4.7339 .0000	SN ppm 01452 .03357 231.23	SR ppm .68243 .00291 .42660	TI ppm00245 .00065 26.412	TL ppm .04146 .03955 95.407	V_ ppm .00149 .00266 178.42
#1	03527	4.7340	04938	.67963	00262	.05880	.00276
#2	00425	4.7339	01897	.68652	00329	01061	00250

.01936

100.00 -.02000

Errors LC Pass

#4

High

Low

page 2

#3 #4	01131	4.7340 4.7340	02105 .03133	.68166 .68191	00194 00194	.08204	.00286 .00286
Errors High Low	LC Pass 100.00 a25000	LC Pass 20.000; 50000	LC Pass 100.00 10000	LC Pass , 50.00005000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .01900 .00059 3.1254			-			
#1 #2 #3	.01825 .01958 .01883						

Operator: MTW

Method: QUANMET Sample Name: DD50N

Run Time: 05/25/00 10:57:59

Mode:	CONC Corr.	Factor: 1				- <del> </del>		
Elem	AG	AL	AS	B_	BA	BE	CA	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00046	9.5555	01323	.03648	1.2267	.00104	63.439	
SDev	.00231	.0555	.04110	.00235	.0099	.00000	.451	
%RSD	506.24	.58127	310.75	6.4442	.80379	.01265	.71109	
#1	.00148	9.6027	03587	.03990	1.2304	.00104	63.447	
#2	.00146	9.4762	.03852	.03489	1.2128	.00104	63.943	
#3	00317	9.5819	00081	.03617	1.2359	.00104	62.847	
#4	00160	9.5612	05475	.03497	1.2278	.00104	63.520	
Error:	s LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00	
Low	01000	20000	30000	20000	20000	00500	-5.0000	
Elem	CD	CO	CR	CU	FE	K_	LI	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	.00067	.01146	.01241	.03034	33.209	4.7370	.04954	
SDev	.00162	.00124	.00201	.00110	.064	.2765	.00025	
%RSD	241.74	10.809	16.224	3.6077	.19135	5.8369	.50462	
#1	.00202	.01144	.01049	.02992	33.269	4.7037	.04976	
#2	00120	.01298	.01522	.03076	33.203	5.1253	.04976	
#3	.00204	.00995	.01167	.02906	33.123	4.4744	.04932	
#4	00017	.01147	.01226	.03161	33.242	4.6445	.04932	
Error	s LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000	
Low	~.00500	05000	01000	02500	10000	-5.0000	05000	
Elem	MG	MN	MO	NA	NI	PB	SB	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	38.586	.37339	.01265	55.248	.02813	.05947	.00510	
SDev	.229	.00202	.00256	1.071	.00282	.01192	.01786	
%RSD	.59242	.54195	20.219	1.9387	10.039	20.041	350.03	
#1	38.703	.37368	.01394	55.304	.02890	.05346	.00778	
#2	38.280	.37472	.01393	53.994	.03175	.05357	00277	
#3	38.805	.37045	.01391	56.605	.02649	.05349	.02861	
#4	38.554	.37473	.00881	55.089	.02538	.07734	01321	
Error	ES LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00	
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000	
Elem	SE	SI	SN	SR	TI	TL	V_	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	.04566	19.620	.01491	.38081	.19391	.00969	.02865	
SDev	.03247	.110	.02024	.00235	.00701	.03901	.00005	
%RSD	71.104	.56311	135.79	.61663	3.6133	402.74	.17365	
#1	.02064	19.732	01348	.38187	.20328	.00327	.02867	
#2	.08254	<b>1</b> 9.506	.03454	.37742	.18775	.00395	.02868	

#3	.01622	19.696	.01936	.38274	.19518	.06276	.02868
#4	.06326	19.547 <u>î</u>	.01921	.38122	.18944	03123	.02858
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	100.00	50.000	50.000	100.00	100.00
Low	25000	50000	10000	05000	05000	-2.0000	05000

Elem	ZN
Units	ppm
Avge	.13424
SDev	.00093
%RSD	.68901
#1	.13295
#2	.13430
#3	.13514
#4	.13456
Errors	LC Pass
High	100.00
Low	02000

Operator: MTW Method: QUANMET Sample Name: CCV2-6

Run Time: 05/25/00 11:01:07 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1 Çı.

	-						
Elem	AG ppm 1.0134 .0041 .40115	AL	AS	B_	BA	BE	CA
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		49.579	5.0641	5.0141	4.8573	5.0332	52.379
SDev		.095	.0826	.0096	.0185	.0076	.224
%RSD		.19226	1.6307	.19052	.38055	.15116	.42739
#1	1.0138	49.594	4.9916	5.0222	4.8537	5.0358	52.474
#2	1.0153	49.523	5.1659	5.0082	4.8501	5.0227	52.423
#3	1.0169	49.492	5.0964	5.0222	4.8415	5.0407	52.564
#4	1.0076	49.707	5.0025	5.0037	4.8840	5.0337	52.055
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	1.1000	55.000	5.5000	5.5000	5.5000	5.5000	55.000
Low	.90000	45.000	4.5000	4.5000	4.5000	4.5000	45.000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.1711	5.0955	5.0736	4.8797	52.575	49.274	4.6632
SDev	.0331	.0128	.0170	.0237	.071	.658	.0732
%RSD	.64086	.25159	.33434	.48636	.13427	1.3353	1.5706
#1	5.1857	5.1022	5.0823	4.8733	52.623	49.234	4.6578
#2	5.1703	5.0887	5.0710	4.8632	52.521	49.500	4.6390
#3	5.2027	5.1097	5.0900	4.8674	52.648	48.398	4.5912
#4	5.1255	5.0813	5.0509	4.9147	52.509	49.966	4.7647
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.5000	5.5000	5.5000	5.5000	55.000	55.000	5.5000
Low	4.5000	4.5000	4.5000	4.5000	45.000	45.000	4.5000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	50.094	5.0792	5.0636	49.125	5.0913	5.1489	5.0877
SDev	.105	.0128	.0122	.629	.0180	.0240	.0572
%RSD	.20905	.25194	.24076	1.2802	.35390	.46663	1.1252
#1	49.984	5.0879	5.0508	49.129	5.0957	5.1849	5.1191
#2	50.029	5.0741	5.0559	48.937	5.0837	5.1369	5.1504
#3	50.152	5.0911	5.0764	48.463	5.1141	5.1374	5.0564
#4	50.209	5.0635	5.0712	49.970	5.0719	5.1364	5.0249
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	55.000	5.5000	5.5000	55.000	5.5000	5.5000	5.5000
Low	45.000	4.5000	4.5000	45.000	4.5000	4.5000	4.5000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.1082	5.1401	5.1617	4.8885	4.9517	10.061	5.0272
SDev	.0413	.0402	.0436	.0153	.0039	.132	.0051
%RSD	.80890	.78239	.84549	.31360	.07799	1.3138	.10066
#1	5.0977	5.0836	5.1919	4.8859	4.9536	10.168	5.0282
#2	5.0973	5.1490	5.1964	4.8810	4.9462	10.181	5.0232

STL Pittsburgh

Analysis Report				05/25	658 685 page 2	
#3 #4	5.0706 5.1672	5.1789 5.1490	5.1567 5.1019	4.8763 4.9107	4.9519 - 9.9240 4.9550 5.9.9719	
Errors High Low	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000		LC Pass 5.5000 4.5000	LC Pass L LC Pass 5.5000 5 11.000 4.5000 9.0000	5.5000
Elem Units Avge SDev %RSD	ZN ppm 5.0348 .0110 .21775	1		`		
#1 #2 #3 #4	5.0459 5.0266 5.0425 5.0243					
Errors High Low	LC Pass 5.5000 4.5000					

Analysis Report

Operator: MTW

page 1

£¥5

----

Sample Name: CCB6 Method: QUANMET

Run Time: 05/25/00 11:04:15

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC- Corr. Factor: 1

ł	loae: Cur	MG COLL.	ractur: 1		- 14[( >1			
	Elem Units Avge SDev %RSD	AG ppm 00154 .00146 94.715	AL ppm 00102 .00492 481.82	AS ppm 00287 .04893 1706.3	B_ ppm 00777 .01555 199.95	BA ppm .00014 .00049 349.10	BE ppm .00038 .00018 48.050	CA ppm0021300151 70.740
	#1	00344	00454	02314	00001	00053	.00016	00326
	#2	00040	.00592	03856	.00000	.00014	.00031	00299
	#3	00193	00451	.06945	.03109	.00062	.00058	.00005
	#4	00040	00095	01923	.00001	.00034	.00045	00234
	Errors	LC Pass	LC Pass	LC Pass				
	High	.01000	.20000	.30000	.20000	.20000	.00500	5.0000
	Low	01000	20000	30000	20000	20000	00500	-5.0000
	Elem	CD	CO	CR	CU	FE	K_	LI
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.00027	00075	.00237	00085	.00106	.00555	00029
	SDev	.00045	.00144	.00257	.00127	.00291	.06868	.00026
	%RSD	165.76	191.13	108.44	149.88	274.19	1238.3	90.191
	#1	.00068	.00038	.00281	00148	00230	.07396	00006
	#2	.00028	00113	00132	00232	.00054	.04437	00034
	#3	.00049	.00037	.00341	.00021	.00478	08135	00012
	#4	00036	00263	.00459	.00021	.00124	01479	00064
	Errors	LC Pass	LC Pass	LC Pass				
	High	.00500	.05000	.01000	.02500	.10000	5.0000	.05000
	Low	00500	05000	01000	02500	10000	-5.0000	05000
	Elem	MG	MN	MO	NA	NI	PB	SB
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	00654	.00001	.01792	.00590	.00254	.02387	.00509
	SDev	.00781	.00053	.00644	.00310	.00949	.01004	.01313
	%RSD	119.44	8507.4	35.952	52.512	372.83	42.076	257.94
	#1	00981	00079	.01920	.00238	00233	.02591	.01814
	#2	00458	.00027	.01920	.00467	00834	.02585	.00759
	#3	01504	.00027	.02433	.00695	.01177	.03383	01317
	#4	.00327	.00027	.00896	.00962	.00907	.00989	.00781
	Errors	LC Pass	LC Pass	LC Pass				
	High	5.0000	.01500	.04000	5.0000	.04000	.10000	.06000
	Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
	Elem	SE	SI	SN	SR	TI	TL	V_
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.01068	.02825	.01476	.00061	.00008	.03769	00094
	SDev	.02227	.03566	.01107	.00012	.00073	.04074	.00260
	%RSD	208.48	126.25	74.993	20.372	864.10	108.08	276.85
	#1	.02329	02525	.01155	.00051	00059	.06668	.00296
	#2	.00777	.04608	.03114	.00051	.00110	00288	00221

<del>ivije se -</del> -

#4 .03108 .04607 .00713 .00076 .000025 .0783000  Errors LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass L	<b>658 687</b> page 2	
ELICIA DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886 DE 1886	0210 0240	
HIGH 123000 130000 120000 1	Pass 000 5000	
Elem ZN Units ppm Avge .00357 SDev .00142 %RSD 39.879		
#1 .00205 #2 .00341 #3 .00549 #4 .00334		
Errors LC Pass High .02000 Low02000		

STL Pittsburgh 6171

.00089

175.33

-.00093

-.00127

137.74

-.02599

.05523

.00012

804.14

.00015

-.00010

Sample Name: DDL76BF Operator: MTW Method: QUANMET

Run Time: 05/25/00 11:07:23 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E ME <u>---</u> Corr. Factor: 1-Mode: CONC _L CA BEBA -AS В ALElem AG ppm _ppm mag ppm_ppm Units ppm ppm .02242 -.00029 -.00006--.00001 -.00955 -.00481 -.00117 Avge .00407 .00007 .00010 .01842 .00001 .01133 .00321 SDev 18.175 79.059 112.09 34.146 275.58 235.42 193.01 %RSD .02504 -.00034 -.00011 -.00000 .00004 -.00625 -.00038 #1 .01705 -.00034 -.00008 -.00000 -.01127 #2 -.00503 -.01816 -.00010 .02607 -.00014 .00765 -.00001 .00950 #3 .00268 .02151 .00004 -.00034 -.00001 -.03460 #4 -.00193 -.00435LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors .00500 5.0000 .20000 .20000 .30000 .01000 .20000 High -5.0000 -.20000 -.00500 -.20000 -.30000 -,20000 -.01000 Low LI FE K CU CR CO Elem CD ppm mqq ppm Units ppm ppm mqq ppm -.14792 -.00021 -.00567 -.00169 -.00225 -.00103 Avge -.00191 .00069 .36746 .00187 .00333 .00177 .00107 .00136 SDev 248.43 336.66 32.908 171.94 62.938 148.06 70.889 %RSD .05177 .00037 -.00656 -.00148 -.00251 -.00158 -.00563 #1 -.00095 -.68041 -.00585 -.00014 -.00317-.00383 -.00412 #2 .00040 .13312 -.00301 -.00063 -.00251 #3 -.00064 .00188 -.00064 -.09615 -.00726 -.00148 .00104 -.00112 #4 -.00159 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass' Errors LC Pass .05000 5.0000 .01000 .02500 .10000 .05000 .00500 High -.05000 -5.0000 -.02500 -.10000 -.01000 -.05000 Low -.00500 PΒ SB ΝI MO NA MN Elem MG ppm ppm ppm  $\mathfrak{p}\mathfrak{p}\mathfrak{m}$ ppm Units ppm ppm -.00009 -.00486 -.00404 .00133 .00512 -.00719 -.00053 Avge .00392 .00520 .00746 .00195 .00053 .00490 SDev .01089 6089.2 153.35 96.974 146.39 100.25 95.761 151.39 %RSD -.00277 .00184 -.00900 .00314 -.00079 .00896 #1 .00589 -.00256 -.00608 .00519 -.00128 -.00143 -.00080 #2 -.02027 .00771 -.00591 -.01177 .00200 .00896 .00027 #3 -.00458 -.00272 -.00600 -.00388 .00162 -.00981 -.00080 .00384 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors .10000 .06000 .04000 .04000 5.0000 .01500 High 5.0000 -.06000 -.10000 -5.0000 -.04000 -.01500 -.04000 -5.0000 Low V_ TLTI SR SI snSE Elem ppm ppm ppm ppm ppm Units mag ppm -.00248 .02618 -.00051 -.00001 .00109 .04756 Avge -.04566 .00389 .03606

STL Pittsburgh

SDev

%RSD

#1

#2

.02716

59.483

-.01944

-.05051

.00751

15.796

.04612

.04006

.01441

1319.7

.01145

-.01911

156.46

.00146

-.00777

658	689
page	2

## 05/25/00 11:10:29 AM

Analysis Report

#3 #4	08157 03110	.05799 .04607	.00058 .01145	.00000	.00076	.03192 .04358	7.00112 21.00250	
Errors High Low	LC Pass, .25000	LC Pass .50000 50000	LC Pass .10000 10000	LC Pass .05000 05000	LC Pass .05000 05000	LC Pass .30000	LC Pass	
Elem Units Avge SDev %RSD	ZN ppm .00253 .00100 39.619							
#1 #2 #3 #4	.00182 .00254 .00182 .00395							
Errors High Low	LC Pass .02000 02000							

Operator: MTW Method: QUANMET Sample Name: DDL76CF Run Time: 05/25/00 11:10:31

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

N	1ode: CO	NG Corr	Factor: 1	NA.		<u> </u>		
	Elem Units Avge SDev %RSD	AG ppm .04718 .00148 3.1377	AL ppm 1.9157 .0136 .70894	AS ppm 1.9487 .0726 3.7235	B_ppm .95413 .00273 .28613	BA ppm 1.9070 .0137 .71687	BE ppm .04954 .00023 .47049	CA ppm 50.742 .379 .74641
	#1 #2 #3 #4	.04525 .04679 .04833 .04835	1.8972 1.9230 1.9282 1.9144	2.0174 1.8861 1.8860 2.0055	.95569 .95630 .95430 .95023	1.9087 1.9054 1.9235 1.8902	.04930 .04957 .04985 .04943	50.355 50.567 50.806 51.238
	Errors High Low	LC Pass .06000 .04000	LC Pass 2.4000 1.6000	LC Pass 2.4000 1.6000	NOCHECK	LC Pass 2.4000 1.6000	LC Pass .06000 .04000	LC Pass 60.000 40.000
	Elem Units Avge SDev %RSD	CD ppm .04334 .00207 4.7711	CO ppm .49349 .00123 .24954	CR ppm .19637 .00131 .66702	CU ppm .23796 .00243 1.0200	FE ppm 1.0424 .0098 .94406	K_ppm 47.205 1.303 2.7609	LI ppm .92033 .02812 3.0559
	#1 #2 #3 #4	.04070 .04498 .04499 .04268	.49351 .49199 .49348 .49501	.19445 .19740 .19681 .19681	.23648 .23732 .24155 .23648	1.0346 1.0332 1.0509 1.0509	47.259 47.340 48.701 45.521	.93003 .92254 .94756 .88118
	Errors High Low	LC Pass .06000 .04000	LC Pass .60000 .40000	LC Pass .24000 .16000	LC Pass .30000 .20000	LC Pass 1.2000 .80000	LC Pass 60.000 40.000	NOCHECK
	Elem Units Avge SDev %RSD	MG ppm 49.188 .244 .49582	MN ppm .49806 .00281 .56484	MO ppm .98723 .01106 1.1206	NA ppm 47.807 1.223 2.5588	NI ppm .49612 .01206 2.4304	PB ppm .51258 .03282 6.4038	SB ppm .48392 .02254 4.6577
	#1 #2 #3 #4	49.124 49.155 49.527 48.946	.49434 .49753 .50072 .49966	.97186 .99234 .99747 .98723	48.227 47.978 48.946 46.079	.48244 .49464 .49560 .51182	.51660 .51652 .54840 .46879	.50491 .48390 .49423 .45266
	Errors High Low	LC Pass 60.000 40.000	LC Pass .60000 .40000	NOCHECK	LC Pass 60.000 40.000	LC Pass .60000 .40000	LC Pass .60000 .40000	LC Pass .60000 .40000
	Elem Units Avge SDev %RSD	SE ppm 1.9671 .0543 2.7587	SI ppm 9.8191 .0899 .91536	SN ppm 2.0317 .0307 1.5094	SR ppm .96520 .00556 .57596	TI ppm .96541 .00284 .29390	TL ppm 1.9938 .0488 2.4476	V_ ppm .48778 .00259 .53096
	#1 #2	1.9069 1.9418	9.7076 9.8206	1.9991 2.0142	.96501 .96400	.96237 .96440	2.0576 1.9765	.48619 .48659

STL Pittsburgh

Analysis Report	05/25/00 11:13:37 AM	658,691 page 2

#3 #4	1.9885 2.0312	9.9277 9.8207	2.0666	.97262 .95918	.96912 .96575	1.9995 1:9415	.48669 .49165
Errors High Low	LC Pass 2.4000 1.6000	NOCHECK	NOCHECK	NOCHECK	NOCHECK	LC Pass 2.4000 1.6000	LC Pass .60000 .40000
Elem Units Avge SDev %RSD	ZN ppm .49382 .00299 .60638						
#1 #2 #3 #4	.49285 .49009 .49686 .49549						
Errors High Low	LC Pass .60000 .40000						

٠**٠** 

Operator: MTW Sample Name: DD3QMF Method: QUANMET

Run Time: 05/25/00 11:13:40

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Mode: CONC Corr. Factor: 1 QС CA  $_{
m BE}$ BA B₁€ AS ALAG Elem ppm ppm ppm bbw ppm Units ppm mag 37.376 .00001 .03908 -.00385 .01038 .00384 -.00155 Avge .261 .00007 .00023 .00488 .00170 .04699 .00077 SDev .69731 1051.7 47.057 .59477 1220.0 44.239 49.577 %RSD 37.508 .00004 .01383 .03937 -.04626 -.00193 .00429 #1 -.00010 37.208 .03889 .01038 -.00384 .00252 -.00193 #2 37.114 .00004 .00347 .03917 .00250 -.02697 -.00193 #3 37.675 .00004 .03889 .01383 .06166 .00605 #4 -.00040 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 600.00 100.00 15.000 100.00 100.00 600.00 2.0000 High -5.0000 -.20000 -.00500 -.30000 -.20000 -.20000 -.01000 Low LI FE K CU CO CR CD Elem ppm mqq ppmmag ppm ppm Units mqq .00569 1.1574 .00584 -.00127 -.00044 -.00032 -.00189 Avge .00032 .1497 .00106 .00212 .00262 .00195 .00194 SDev 5.5632 12.933 36.398 83.911 596.03 102.46 612.05 %RSD .00607 1.1907 .00831 .00021 .00045 .00036 -.00004 #1 .00583 .96145 .00690 -.00233 -.00310 -.00265 #2 .00228 .00546 1.1537 .00406 -.00148 -.00192 -.00127 -.00414 #3 .00540 1.3238 .00407 -.00148 -.00114 .00281 -.00225 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20,000 1000.0 400.00 100.00 100.00 100.00 High 100.00 -.05000 -.10000 -5.0000 -.02500 -.05000 -.01000 -.00500 Low SB PB NA NI MO MN Elem MG ppm ppm mqq ppmmag ppm Units ppm -.01058 .00192 -.00472 .00768 4.8169 14.446 .00531 Avge .02325 .02763 .0673 .00847 .00053 .00256 .048 SDev 219.77 1438.6 179.24 1.3981 33.332 9.9781 .33561 %RSD .01826 .04182 .00549 4.8491 .00896 #1 14.504 .00452 -.03417 -.00609 -.01523 4.8110 .00896 #2 .00558 14.454 -.02369 -.00612 -.00484 4.8818 .00558 .00896 14.439 #3 -.00272 -.02193 -.004324.7257 .00384 .00557 14.386 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 100.00 100.00 100.00 400.00 50.000 100.00 600.00 High -.06000 -.10000 -.04000 -5.0000 -.04000 ~.01500 -5.0000 Low V TLTI SR SN SI Elem SE ppm ppm ppm mag ppm ppm Units ppm -.00243 .02320 -.00236 1.2043 .00869 4.2297 -.00775 Avge .00005 .00051 .06720 .01167 .0036 .0327 .03805 SDev 1.8609 289.70 .29866 21.429 134.21 .77356 491.25 %RSD -.00241.02025 1.2054 -.00262 .01810 4.2580 -.03881 #1

STL Pittsburgh

.03886

#2

4.1985

-.00241

-.00262

1.2067

-,00615

.00870

Analysis Report				05/25	<b>658 69</b> 3 page 2		
#3 #4	03882 .00778	4.2044 4.2580	.01791 .00491	1.2062 1.1990	00262 č-:00160		00241 00250
Errors High Low	LC Pass 100.00	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	(LC Pass 1050.000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .00890 .00066 7.3635				u		
#1 #2 #3 #4	.00878 .00942 .00938 .00802						
Errors High Low	LC Pass 100.00 02000						

Operator: MTW Method: QUANMET Sample Name: DD3QNF Run Time: 05/25/00 11:16:48

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

Mode: Co	MC COII.	raccor.	-			~.	
Elem	AG	AL	AS	B_	BA	BE ppm .00003	CA
Units	ppm	ppm	—ppm	ppm	ppm		ppm
Avge	00252	.00083	00570	.30166	.18678		80.597
SDev	.00077	.00816	.02909	.02299	.00050		.185
%RSD	30.577	981.78	510.01	7.6217	.26741		.22956
#1	00290	.00260	04621	.28179	.18711	.00003	80.578
#2	00137	.01127	.01540	.28177	.18636	.00003	80.715
#3	00290	00275	.01551	.32325	.18731	.00003	80.343
#4	00292	00780	00751	.31981	.18636	.00004	80.752
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm '
Avge	00224	00196	00281	00146	2.8532	4.8516	.00350
SDev	.00231	.00313	.00171	.00144	.0086	.3250	.00035
%RSD	102.90	159.83	60.693	98.712	.30274	6.6992	10.078
#1	00193	00121	-:00133	00294	2.8517	4.7259	.00304
#2	00303	.00180	-:00133	.00044	2.8447	5.3323	.00377
#3	.00074	00572	-:00429	00210	2.8510	4.6150	.00340
#4	00476	00270	-:00429	00125	2.8652	4.7333	.00377
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	36.313	.67871	00085	28.071	00176	.01522	00262
SDev	.034	.00137	.00418	.245	.00298	.02869	.01477
%RSD	.09343	.20156	489.84	.87209	169.64	188.51	564.19
#1	36.315	.68030	00597	28.365	00146	.00928	.00786
#2	36.297	.67924	00085	27.918	00505	.05711	00267
#3	36.360	.67712	.00427	28.174	.00211	00680	02348
#4	36.281	.67819	00085	27.828	00263	.00128	.00782
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	02161	6.2480	.00819	.18512	00481	00534	.00127
SDev	.01962	.0114	.01709	.00036	.00058	.06491	.00258
%RSD	90.802	.18205	208.76	.19214	12.155	1216.1	203.72
#1	.00266	6.2569	.01424	.18508	00532	09810	.00246
#2	01679	6.2450	.02292	.18473	00430	.00631	.00256

#3 #4	02842 04390	6.2331 6.2568	01647 .01206	.18559 .18508	00532 00430	.05268 .01776	.00265 -300261
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .01189 .00130 10.927						about.
#1 #2 #3 #4	.01024 .01184 .01207 .01341					•	
Errors High Low	LC Pass 100.00 02000						

Analysis Report

Method: QUANMET Sample Name: DD3QQF

Operator: MTW

Run Time: 05/25/00 11:19:56

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Mode: CONC Corr. Factor: 1

1	node: Col	NC COLL.	IUCCOI. I			<b>-</b> -		
	Elem Units Avge SDev %RSD	AG ppm 00065 .00090 137.00	AL -ppm .000 <b>0</b> 5 .00570 1188 <b>7</b> .	AS ppm 02529 .01203 47.580	B_ ppm .01423 .00194 13.663	BA ppm	BE ppm .00000 .00007 1973.7	CA ppm 35.932 .099 .27641
	#1 #2 #3 #4	.00011 00143 00143	00425 .00095 00427 .00776	01173 03875 01945 03122	.01168 .01574 .01575 .01374	.09906 .09839 .09858 .09858	.00004 00009 .00004 .00003	35.926 35.807 35.945 36.049
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
	Low	01000	20000	30000	20000	20000	00500	-5.0000
	Elem	CD	CO	CR	CU	FE	K_	LI
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	00128	.00334	00015	00144	3.1277	1.1574	.00091
	SDev	.00139	.00123	.00153	.00042	.0086	.1251	.00118
	%RSD	108.13	36.718	1040.9	29.334	.27460	10.812	129.19
	#1	00270	.00334	00192	00123	3.1224	1.2277	.00009
	#2	.00042	.00333	.00044	00123	3.1195	1.2869	.00211
	#3	00078	.00484	00074	00207	3.1301	1.0058	00028
	#4	00207	.00184	.00163	00123	3.1386	1.1094	.00174
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
	Low	00500	05000	01000	02500	10000	-5.0000	05000
	Elem	MG	MN	MO	NA	NI	PB	SB
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	18.695	1.1970	.00175	44.984	.00238	.02328	.01044
	SDev	.018	.0028	.00296	.124	.00235	.01992	.02157
	%RSD	.09523	.23342	169.21	.27598	98.591	85.559	206.67
	#1	18.702	1.1972	00081	44.884	.00190	00660	01311
	#2	18.681	1.1930	00081	45.148	.00022	.03323	.00784
	#3	18.718	1.1983	.00431	44.892	.00572	.03331	.03922
	#4	18.681	1.1994	.00431	45.011	.00169	.03318	.00781
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
	Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
	Elem	SE	SI	SN	SR	TI	TL	V_
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	00896	6.1721	.02248	.06558	00236	.07010	00126
	SDev	.02963	.0029	.01106	.00019	.00032	.10989	.00262
	%RSD	330.81	.04766	49.182	.28965	13.678	156.75	208.17
	#1	01966	6.1736	.03165	.06531	00262	.08756	00260
	#2	00025	6.1736	.00991	.06557	00194	.21513	00260

Analysis	Report			05/25/	65d 697 page 2		
#3 #4	.02698 04290	6.1736 6.1677	.03189 .01647	.06572 .06572	00262 00228	.01790 - <u>:</u> 04018	00250 .00267
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC, Pass 100.00 -2 _v 0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .01212 .00145 11.965						
#1 #2 #3 #4	.01233 .01394 .01176 .01044						
Errors High Low	LC Pass 100.00 02000						

STL Pittsburgh 6181

:Ē-

Method: QUANMET Sample Name: DD3QRF Run Time: 05/25/00 11:23:04 Operator: MTW

٠ د

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC -- Corr. Factor: 1

4							
Elem Units Avge SDev %RSD	AG ppm 00192 .00127 65.823	AL ppm .00301 .00786 260.96	AS ppm .03082 .03132 101.61	B_@m ppmtz 00000 .00001 125.56	BA ppm 00034 .00000	BE ppm 00007 .00006 93.992	CA ppm .01946 .00376 19.325
#1	00037	.01292	.01912	00000	00034	.00003	.02439
#2	00347	.00087	00767	00001	00034	00010	.01689
#3	00194	00598	.05023	00001	00034	00009	.01618
#4	00191	.00423	.06160	.00000	00034	00011	.02037
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00190	00038	.00385	.00127	00247	.06656	00040
SDev	.00175	.00194	.00122	.00160	.00089	.50979	.00059
%RSD	92.169	513.92	31.708	126.19	36.202	765.89	150.29
#1	00078	00113	.00517	.00359	00229	.82833	.00031
#2	00006	.00037	.00459	.00021	00371	22927	00110
#3	00309	.00188	.00281	.00021	00229	12573	00058
#4	00366	00263	.00281	.00105	00158	20708	00021
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00458	00027	.00256	.00762	00053	.00397	00012
SDev	.01376	.00061	.00256	.00100	.00743	.01005	.01794
%RSD	300.57	231.09	100.01	13.150	1399.9	253.12	15160.
#1	.02419	.00027	.00384	.00847	.00834	.00197	.00782
#2	00719	.00027	.00384	.00771	00974	00599	02378
#3	.00327	00080	00128	.00619	.00058	.01796	00272
#4	00196	00080	.00384	.00809	00131	.00194	.01821
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	02817	.06692	.02563	00005	.00388	01447	00027
SDev	.02381	.00597	.00894	.00006	.00058	.04338	.00343
%RSD	84.534	8.9179	34.875	115.47	14.851	299.86	1291.4
#1	01166	.06993	.01803	.00000	.00447	01448	.00266
#2	04662	.05797	.03098	00010	.00312	02604	00250

#3 #4	00389 05050	.06985	.03544 .01808	.00000	.00413 . <u>0</u> 0380	06085 .04350	00389 .00266
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC.Pass 50:000 05000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .00405 .00056 13.787						
#1 #2 #3 #4	.00470 .00396 .00336 .00419						
Errors High Low	LC Pass 100.00 02000						

Method: QUANMET Sample Name: DD3QTF Operator: MTW

Run Time: 05/25/00 11:26:12

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E ATC

Mode: CONC Corr. Factor: 1

Ţv	iode: Cui	COPP.	ractor: 1	•		•		
	Elem	AG	AL	AS	B_	BA	BE	CA
	Units	ppm	ppm	ppm-	ppm	ppm	ppm	.ppm
	Avge	00085	.00744	00942	.05116	.09717	.00004	48.738
	SDev	.00126	.00534	.03362	.00280	.00070	.00001	.274
	%RSD	149.40	71.710	357.07	5.4812	.72141	18.332	.56241
	#1	00086	.00440	.01958	.04882	.09648	.00004	48.493
	#2	.00071	.01478	03461	.05032	.09668	.00003	48.867
	#3	00085	.00273	.01957	.05027	.09763	.00004	48.529
	#4	00238	.00786	04221	.05524	.09791	.00004	49.062
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
	Low	01000	20000	30000	20000	20000	00500	-5.0000
	Elem	CD	CO	CR	CU	FE	K_	LI
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	00253	.00372	.00118	00102	5.6702	4.6371	.00077
	SDev	.00336	.00144	.00366	.00069	.0283	.2488	.00019
	%RSD	132.68	38.601	309.17	67.730	.49879	5.3661	24.705
	#1	00199	.00184	00074	00103	5.6385	4.5558	.00053
	#2	.00047	.00484	.00103	00102	5.6810	4.7481	.00098
	#3	L00733	.00336	00192	00187	5.6576	4.3339	.00083
	#4	00128	.00484	.00636	00017	5.7037	4.9108	.00074
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
	Low	00500	05000	01000	02500	10000	-5.0000	05000
	Elem	MG	MN	MO	NA	NI	PB	SB
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	22.850	1.3473	00043	27.758	.00519	.00678	00258
	SDev	.139	.0056	.00418	.369	.00097	.02783	.01479
	%RSD	.60965	.41933	967.78	1.3279	18.600	410.55	572.30
	#1	22.659	1.3412	00044	27.210	.00490	.04057	00258
	#2	22.892	1.3497	00043	27.921	.00585	.01674	01297
	#3	22.858	1.3444	00556	27.894	.00396	02305	.01833
	#4	22.992	1.3540	.00469	28.007	.00607	00714	01312
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
	Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
	Elem	SE	SI	SN	SR	TI	TL	V_
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.00422	5.1741	.01035	.16552	00321	01329	00130
	SDev	.01666	.0412	.01883	.00103	.00058	.07390	.00258
	%RSD	394.65	.79670	181.89	.62282	17.977	556.04	199.17
	#1	.00119	5.1146	.01035	.16398	00262	.05081	00259
	#2	.01688	5.1861	01370	.16612	00295	07721	.00257

Analysis	Report			05/25,	/00 11:29:	18 AM	658 701 page 2
#3 #4	01816 .01697	5.1860 5.2098	.03228	.16586 .16612	00329 00397	.05062 07738	00269 00248
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000	LC ₁ Pass 100,00 05000
Elem Units Avge SDev %RSD	ZN ppm .00954 .00216 22.637						
#1 #2 #3 #4	.00744 .00937 .00880 .01254						

Errors LC Pass High 100.00 Low -.02000

Operator: MTW Method: QUANMET Sample Name: DD3QVF

Run Time: 05/25/00 11:29:20

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

Mode: CO	NC Corr	Factor:		-	· · · -		
Elem	AG	AL	AS	B_	BA ppm 26932 - F .00202 .74986	BE	CA
Units	ppm	ppm	ppm	ppm		ppm	ppm
Avge	00172	.00172	00653	.01231		00003	46.376
SDev	.00148	.00672	.05400	.00142		.00007	.116
%RSD	86.370	.391.11	827.11	11.499		207.65	.25078
#1	.00021	.00952	.01553	.01301	.26699	.00003	46.487
#2	00288	.00434	08457	.01019	.27155	00009	46.331
#3	00288	00609	.03887	.01302	.27032	00010	46.233
#4	00132	00089	.00405	.01302	.26842	.00003	46.452
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00139	00088	.00030	00126	2.7584	1.3091	.00078
SDev	.00380	.00144	.00498	.00154	.0040	.3974	.00021
%RSD	274.05	164.35	1682.8	122.62	.14582	30.358	27.062
#1	00163	.00025	.00517	00041	2.7526	1.6567	.00083
#2	00052	00276	00370	00211	2.7618	.94666	.00098
#3	.00290	00127	00429	00295	2.7597	.98364	.00048
#4	L00629	.00026	.00399	.00043	2.7597	1.6493	.00083
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	21.048	.35526	.00041	63.304	.00094	.01529	.00784
SDev	.078	.00102	.00256	.753	.00597	.01992	.01703
%RSD	.37203	.28611	620.77	1.1890	637.42	130.33	217.05
#1	20.944	.35446	00087	62.681	.00543	.00938	.02869
#2	21.119	.35659	00087	64.335	.00022	.01722	.00791
#3	21.095	.35447	.00425	63.386	.00533	00664	01302
#4	21.032	.35553	00087	62.812	00724	.04119	.00780
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.01105	5.7200	.00385	.07277	00278	.04890	.00001
SDev	.02401	.0374	.03206	.00029	.00019	.06656	.00296
%RSD	217.18	.65370	833.71	.39679	6.9982	136.10	34616.
#1	.04502	5.6917	.05142	.07241	00262	.14460	.00257
#2	.01010	5.7631	01634	.07307	00295	.04021	00260

65 <i>8</i>	703
page	2

05/25/00	11:32:26	ΑM
----------	----------	----

Analysis	Report
----------	--------

#3 #4	00156 00933	5.7393 5.6858	00553 01416	.07292 .07266	00262 00295	.01702 - <u>:0</u> 0622	00251 .00257
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LG Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .00911 .00097 10.649						
#1 #2 #3 #4	.00910 .00774 .00989 .00970						
Errors High Low	LC Pass 100.00 02000						

1.4

Method: QUANMET Sample Name: DD3QXF Operator:
Run Time: 05/25/00 11:32:29
Comment: STL PITTSBURGH ICP METALS ANALYSISTINSTRUMENT JA61E
Mode: CONC Corr. Factor: 1 Operator: MTW

ľ	Mode:_COI	NC COII.	Factor: I		1, 2			
	Elem Units- Avge SDev %RSD	AG ppm 00052 .00076 145.95	AL ppm .00171 .00416 243.51	AS ppm .01629 .02960 181.75	B_ 1 ppm := 00166 .00006 3.3148	BA ppm .19604 .00096 .48961	BE ppm .00004 .00000	CA ppm 81.259 .088 .10848
	#1	00091	.00432	02709	00168	.19683	.00004	81.182
	#2	00091	.00261	.02301	00164	.19635	.00004	81.375
	#3	.00062	.00432	.03847	00173	.19464	.00004	81.279
	#4	00090	00442	.03075	00160	.19635	.00004	81.200
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
	Low	01000	20000	30000	20000	20000	00500	-5.0000
	Elem	CD	CO	CR	CU	FE	K_	LI
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	00051	.00104	00103	00095	11.830	1.1038	.00322
	SDev	.00190	.00261	.00244	.00049	.026	.1406	.00037
	%RSD	372.47	251.06	236.52	51.044	.22195	12.741	11.429
	#1	00181	.00329	.00104	00137	11.823	1.2499	.00304
	#2	00141	00121	00251	00053	11.841	1.1907	.00377
	#3	00113	.00329	.00104	00053	11.798	1.0280	.00304
	#4	.00231	00122	00369	00138	11.859	.94666	.00304
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
	Low	00500	05000	01000	02500	10000	-5.0000	05000
	Elem	MG	MN	MO	NA	NI	PB	SB
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	36.156	1.2934	.00817	93.618	.00092	.03122	.01566
	SDev	.157	.0010	.00512	1.207	.01236	.03841	.01801
	%RSD	.43394	.07886	62.665	1.2891	1341.0	123.05	115.01
	#1	36.174	1.2921	.01073	94.262	00673	00059	00280
	#2	36.211	1.2942	.00049	93.880	00804	.01522	.00778
	#3	35.936	1.2931	.01073	91.846	.01874	.02336	.03939
	#4	36.305	1.2942	.01074	94.483	00028	.08688	.01825
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
	Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
	Elem	SE	SI	SN	SR	TI	TL	V_
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.00052	7.2920	.00616	.18239	00515	.00400	00242
	SDev	.03544	.0137	.01788	.00090	.00019	.07247	.00010
	%RSD	6752.3	.18840	290.27	.49346	3.7859	1812.2	4.1639
	#1	.03934	7.2801	.02681	.18270	00498	.02144	00237
	#2	.01998	7.3039	.00503	.18270	00532	.09089	00258

Analysis	Report			05/25,	658 705 page 2		
#3 #4	01901 03821	7.2801 7.3039	01666 .00945	.18107 .18310	00498	01308 08325	00237 00238
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 2505000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .00943 .00133 14.081			,			
#1 #2 #3 #4	.00959 .00959 .01087 .00765						
Errors High Low	LC Pass 100.00 02000						

Sample Name: DD3QXFP5 Method: QUANMET

Run Time: 05/25/00 11:35:37

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

 $T^{\Lambda^{\dagger}}$ 

Operator: MTW

Comment: Mode: CO		Factor: 1	MEIVID WAY				
Elem	AG	AL	AS	В_	BA	BE	\SCA
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm =16 926
Avge	00100	00478	00223	.01015	.03984	.00003	10.020
SDev	.00194	.01106	.00472	.00786	.00000	.00011	.070
%RSD	193.65	231.44	212.13	77.390	.00000	311.28	.41770
#1	.00170	.00948	.00435	.01896	.03984	.00003 .00004	16.925 16.760
#2	00294	01650	00690	.00066	.03984	.00016	16.813
#3	00138	00263	00325	.01343	.03984	00009	16.806
#4	00140	00947	00310	.00755	.03984		
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass 600.00
High	2.0000	600.00	100.00	100.00	100.00	15.000	-5.0000
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	СО	CR	CÜ	FE	K	LI ppm
Units	ppm	ppm	ppm	ppm	ppm 2.4575	ppm .33466	00064
Avge	.00082	.00111	.00030	00107	.0063	.16782	.00000
SDev	.00096	.00398	.00257	.00043	.25839	50.148	.00000
%RSD	117.05	359.02	867.05	39.759	,25033		
#1	.00185	00265	.00222	00128	2.4657	.49552	00064
#2	.00001	00114	00192	00128	2.4593	.22927	00064
#3	.00142	.00636	.00281	00043	2.4515	.45854	00064
#4	00001	.00186	00192	00128	2.4536	.15531	00064
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	7.4426	.26921	.00293	18.938	.00197	.02334	01312 .01903
SDev	.0207	.00102	.00490	.260	.00624	.04653 199.32	145.01
%RSD	.27876	.37734	167.43	1.3727	317.08		
#1	7.4367	.27054	00091	18.643	00190	.07300	00277
#2	7.4707	.26842	.00421	18.986	00219	.04919	.00779
#2 #3	7.4420	.26842	.00933	19.265	.00087	.00158	02359
#4	7.4210	.26947	00091	18.858	.01110	03039	03392
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
rom 11131	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	sī	SN	SR	TI	TL	ν~~ V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm .00006
Avge	01335	1.4962	.02169	.03766	00160	.03991	.00301
SDev	.03299	.0157	.02302	.00015	,00062	.05221 130.80	5274.7
%RSD	247.16	1.0482	106.13	.40445	38.437		
11 7	03759	1.5096	.05557	.03788	00093	.04275	.00257
#1 #2	04538	1.4798	.00979	.03752	00194	00356	00250
π4	.01555	<del>-</del> -					

	Analysis	Report			05/25	658 707		
<i>t</i> .	#3 #4	.02061	1.5096 1.4857	.00527	.03762 .03762	00127 00228	.00802 .11244	.00277 0 <u>0</u> 260
	Errors High Low	LC Pass 100.00 25000,	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000	LC Pass 100,000 05000
	Elem Units Avge SDev %RSD	ZN ppm .02943 .00093 3.1674						
	#1 #2 #3 #4	.02898 .02896 .02897 .03083						
	Errors High Low	LC Pass 100.00 02000						

Operator: MTW Method: QUANMET Sample Name: CCV2-7

Run Time: 05/25/00 11:38:45

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

	Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E  Mode: CONC Corr. Factor: 1										
Elem Units Avge SDev %RSD		AL —ppm -48.891 .100 .20361	AS ppm 4.9834 .1302 2.6136	B_ ppm 5.0225 .0002 .00433	BA - ppm 4.80770084 .17533	BE ppm 5.0930 .0084 .16511	CA ppm 52.693 .247 .46883				
#1	1.0062	48.930	4.9045	5.0222	4.8125	5.0867	52.389				
#2	1.0125	48.918	5.1737	5.0227	4.8128	5.1019	52.861				
#3	1.0156	48.971	4.9613	5.0226	4.8104	5.0850	52.925				
#4	1.0109	48.746	4.8942	5.0223	4.7951	5.0983	52.598				
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass				
High	1.1000	55.000	5.5000	5.5000	5.5000	5.5000	55.000				
Low	.90000	45.000	4.5000	4.5000	4.5000	4.5000	45.000				
Elem	CD	CO	CR	CU	FE	K_	LI				
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm				
Avge	5.1976	5.1131	5.0929	4.8282	52.799	46.135	L4.3875				
SDev	.0251	.0165	.0135	.0108	.128	.567	.0578				
%RSD	.48266	.32245	.26597	.22315	.24215	1.2293	1.3181				
#1	5.1951	5.0902	5.0740	4.8421	52.652	46.327	L4.4495				
#2	5.2187	5.1187	5.1018	4.8286	52.919	46.312	L4.3579				
#3	5.2135	5.1292	5.1036	4.8261	52.893	46.593	L4.4204				
#4	5.1632	5.1143	5.0923	4.8159	52.732	45.306	L4.3225				
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Low				
High	5.5000	5.5000	5.5000	5.5000	55.000	55.000	5.5000				
Low	4.5000	4.5000	4.5000	4.5000	45.000	45.000	4.5000				
Elem	MG	MN	MO	NA	NI	PB	SB				
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm				
Avge	49.730	5.1055	5.0879	46.789	5.0829	5.1338	5.0927				
SDev	.113	.0143	.0179	.497	.0369	.0326	.0767				
%RSD	.22665	.28097	.35256	1.0632	.72587	.63461	1.5069				
#1	49.775	5.0880	5.0610	47.307	5.0361	5.1371	5.0558				
#2	49.812	5.1167	5.0969	46.642	5.1188	5.1379	5.1085				
#3	49.770	5.1178	5.0969	47.042	5.1048	5.0905	5.1922				
#4	49.563	5.0997	5.0969	46.166	5.0719	5.1696	5.0142				
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass				
High	55.000	5.5000	5.5000	55.000	5.5000	5.5000	5.5000				
Low	45.000	4.5000	4.5000	45.000	4.5000	4.5000	4.5000				
Elem	SE	SI	SN	SR	TI	TL	V_				
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm				
Avge	5.1760	5.0541	5.1591	4.8651	4.9476	9.8122	5.0461				
SDev	.0992	.0452	.0407	.0085	.0117	.0928	.0106				
%RSD	1.9162	.89336	.78871	.17433	.23718	.94537	.20927				
#1	5.3037	4.9885	5.1524	4.8665	4.9378	9.7037	5.0323				
#2	5.0677	5.0602	5.1919	4.8719	4.9604	9.7704	5.0537				

Analysis	Report			05/25,	658 709 page 2		
#3 #4	5.1919 5.1408	5.0840 5.0838 f	5.1879 5.1042	4.8693 4.8528	4.9546 4.9374	9.9097 9.8651	5.0550 5.0433
Errors High Low	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000	LC Pass 5.5000	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000	LC Pass 11.000 9.0000	LC Pass 5.5000 4.5000
Elem Units Avge SDev %RSD	ZN ppm 5.0327 .0157 .31202	·				·	
#1 #2 #3 #4	5.0117 5.0450 5.0445 5.0297						
Errors High Low	LC Pass 5.5000 4.5000						

Operator: MTW

Analysis Report

Method: QUANMET Sample Name: CCB7

Run Time: 05/25/00 11:41:59

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Comment: Mode: COM	Comment: STL PITTSBURGH TCP METALS ANALISTS INSTRUMENT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE									
Elem Units	AG ppm 00155	AL ppm 00228	AS ppm 01921	B_ ppm .00777	BA ppm .00012	BE ppm .00068 .00056	CA ppm 00064 .00644			
SDev %RSD	.00077 49.591	.00886 389.13	.02116	.01556 200.13	.00058 489.57 00053	.00036	1009.0			
#1 #2 #3 #4	00193 00040 00193 00193	00093 00622 .00938 01133	03078 .01166 03475 02299	00001 00001 .03111 .00000	00033 00014 .00081 .00034	.00031 .00140 .00085	00489 .00695 .00234			
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass			
High	.01000	.20000	.30000	.20000	.20000	.00500	5.0000			
Low	01000	20000	30000	20000	20000	00500	-5.0000			
Elem	CD	CO	CR	CU	FE	K_ ppm	ppm			
Units	ppm	ppm	ppm	ppm	ppm	02404	00063			
Avg <b>e</b>	00004	00113	.00089	.00021	00018	.13152	.00015			
SDev	.00233	.00001	.00248	.00069	.00752	547.18	24.117			
%RSD	5608.6	.55720	277.97	328.30	4268.5					
#1	.00259	00113	00014	.00021	00514	07396	00064			
#2	00169	00112	00014	00064	00584	.14052	00043			
#3	.00122	00113	.00459	.00021	.01045	.00740	00064			
#4	00229	00112	00074	.00106	00018	17010	00080			
Errors High Low	LC Pass .00500	LC Pass .05000 05000	LC Pass .01000 01000	LC Pass .02500 02500	LC Pass .10000 10000	LC Pass 5.0000 -5.0000	LC Pass .05000 05000			
Elem	MG	MN	MO	NA	NI	PB	SB			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avge	.00392	.00000	.01408	.00781	.00162	.02384	01055			
SDev	.00720	.00102	.00591	.00955	.00564	.01990	.00520			
%RSD	183.59	21933.	41.992	122.27	347.60	83.486	49.287			
#1	00458	.00027	.00896	00181	00074	.03379	01311			
#2	.00850	00079	.01920	.00847	.00387	00601	01312			
#3	.01112	.00134	.01921	.02066	.00819	.03379	00275			
#4	.00065	00079	.00896	.00390	00483	.03379	01323			
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass			
High	5.0000	.01500	.04000	5.0000	.04000	.10000	.06000			
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000			
Elem	SE	SI	SN	SR	TI	TL	V_			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avge	.00097	.04013	.00050	.00071	.00025	.00583	00231			
SDev	.01860	.00486	.02270	.00066	.00085	.06655	.00012			
%RSD	1916.9	12.108	4580.8	92.799	335.55	1142.4	5.0877			
#1	.01552	.03418	01916	.00000	00059	02601	00241			
#2	00391	.04608	01916	.00040	.00008	00282	00221			

page 2

#3 #4	.01557 02330	.04013	.02017 .02013	.00152 .00091	.00143	04936 .10149	00220 00241
Errors High Low	LC Pass .25000 25000	LC Pass .50000 50000	LC Pass .10000 10000	LC Pass .05000 05000	LC Pass .05000 05000	LC Pass .30000 30000	LC Pass .05000 05000
Elem Units Avge SDev %RSD	ZN ppm .00188 .00147 77.925						
#1 #2 #3 #4	.00177 .00040 .00390 .00146						
Errors High Low	LC Pass .02000 02000						

Operator: MTW

Method: QUANMET Sample Name: DD3QXSF Operat Run Time: 05/25/00 11:46:53 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Run Time: Comment: Mode: COM	: 05/25/00 STL PITTS NC Corr	11:46:53 BURGH ICP Factor: 1	METALS ANA	LYSIS-INST	RUMENT JA6	1.E	., <b>g</b> t
Mode: Cor	AC COLT.	ruccor					~-
777	AG	AL	AS	B	BA	BE	CA
Elem			ppm	ppm	ppm	ppm	ppm
Units	ppm	ppm	2.0127	.98531	2.1062	.05012	134-28
Avge	.04785	1.9455		.01624	.0034	.00011	. 63
SDev	.00125	.0052	.0673		.16347	.22061	.46960
%RSD	2.6102	.26876	3.3457	1.6480	.1034/	.22001	
				0775	2.1019	.05012	134.78
#1	.04786	1.9403	2.0474	.97353		.04998	133.38
#2	.04784	1.9455	2.0899	1.0079	2.1086	.05012	134.32
#3	.04938	1.9527	1.9664	.97345	2.1050	.05012	134.63
#4	.04632	1.9437	1.9472	.98637	2.1093	.05025	134.00
				·	TC Dece	LC Pass	LC Pass
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	15.000	600.00
High	2.0000	600.00	100.00	100.00	100.00		-5.0000
Low	01000	20000	30000	20000	20000	00500	-5.0000
						v	LI
Elem	CD	CO	CR	CU	FE	K_	ppm
Units	ppm	ppm	$\mathbf{p}\mathbf{p}_{m}$	ppm	ppm	ppm	.90926
Avge	.04478	.49153	.19370	.24061	13.045	47.693	.01529
SDev	.00543	.00466	.00196	.00126	.047	.821	
%RSD	12.116	.94859	1.0096	.52485	.35999	1.7218	1.6816
						47 074	.89415
#1	.04021	.49192	.19622	.23998	13.071	47.074	.92912
#2	.05070	.48889	.19148	.24166	12.982	48.782	
#3	.04014	.49792	.19326	.23913	13.037	47.873	.91271
#4	.04807	.48738	.19385	.24166	13.089	47.044	.90108
						IO Dogg	LC Pass
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	20.000
High	100.00	100.00	100.00	100.00	400.00	1000.0	05000
Low	00500	05000	01000	02500	10000	-5.0000	05000
						777	CD.
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	, ppm	ppm	ppm
Avge	87.207	1.8167	,99542	146.33	.49092	.52178	.51005
SDev	.050	.0055	.00875	1.84	.01620	.01459	.02007
%RSD	.05735	.30378	.87892	1.2596	3.3005	2.7967	3.9346
01(1)1							E 7 E 4 7
#1	87.196	1.8191	1.0044	144.45	.50 <b>687</b>	.50588	.51541
#2	87.261	1.8085	.99413	148.72	.48821	.51374	.49424
#3	87.227	1.8191	.98390	146.71	.46950	.53791	.53619
#3 #4	87.144	1.8202	.99927	145.44	.49911	.52960	.49435
#4	0/.133	1.0202	*****				
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
_	-5.0000	01500	04000	-5.0000	04000	10000	06000
Low	-5.0000	.01500					
Elem	SE	sı	SN	SR	TI	$\mathtt{TL}$	v_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
		17.153	2.0183	1.1545	.95512	1.9411	.48664
Avge	2.0285		.0374	.0012	.00178	.0804	.00017
SDev	.0780	.026	1.8552	.10419	.18588	4.1447	.03522
%RSD	3.8457	.15380	1.0004				
#1	2.0596	17.144	1.9949	1.1532	.95529	1.9756	.48682
#1 #2	2.0787	17.132	2.0646	1.1539	. 95259	1.8257	.48662
π Δ	2.0.07						

658	7	1	3
baqe	2		

.48642 .48<u>6</u>72

LC Pass 100600 -.05000

#3 #4	2.0634 1.9121	17.144 17.191	1.9819 2.03197	1.1550 1.1560	.95596 .95664	1.9527 2.0102
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000
Elem Units Avge SDev %RSD	ZN ppm .49876 .00367 .73582					
#1 #2 #3 #4	.49781 .49436 .50314 .49975					
Errors High Low	LC Pass 100.00 02000					

Operator: MTW

Analysis Report

Method: QUANMET Sample Name: DD3QXDF

Run Time: 05/25/00 11:50:01

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

<u>a</u>c∵ Corr. Factor: 1 Mode: CONC CA BA BE В AS ALElem AG ...ppm mag mqq ppm mqq ppm Units ppm ...05103 136.86 2.1184 2.0286 1.0132 1.9710 Avge .05022 .50 .00019 .0107 .0388 .0071 .00152 .0128 SDev .36200 .50593 .37613 .70546 1.9138 3.0332 .65018 %RSD 136.13 .05102 2.1328 2.0624 1.0150 1.9643 .04794 #1 137.23 .05092 2,1119 1.0066 2.0549 1.9578 .05096 #2 137.10 .05089 2.1088 1.9775 1.0225 1.9749 .05101 #3 136.97 .05131 2.1200 1.0087 2.0198 1.9870 .05099 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors LC Pass 15.000 600.00 100.00 100.00 100.00 2.0000 600.00 High -5.0000 -.00500 -.20000 -,20000 -.30000-.20000 -.01000 Low  $\Gamma$ I FE K CR CU CO Elem CD ppm ppm ppm ppm ppm ppm Units ppm .89810 47.928 .24379 13.085 .19918 .04157 .50765 Avge .01106 .006 .174 .00161 .00251 .00513 .00692 SDev 1.2312 .36309 .04687 .66237 1.2596 16.638 1.0095 &RSD .91379 48.146 .24590 13.081 .50238 .19681 .04008 #1 .88885 47.828 13.079 .24253 .20036 .51440 .04599 #2 .89757 47.984 .24252 13.086 .19740 .50543 .03244 #3 .89220 47.754 13.093 .24422 .20213 .50838 .04777 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20.000 1000.0 400.00 100.00 100.00 100.00 100.00 High -5.0000 -.05000 -.10000 -.02500 -.05000 -.01000 -,00500 Low SB PB NI NΑ MO MN MG Elem ppm ppm ppm ppm ppm ppm Units ppm .53617 .56005 .50630 144.18 1.0172 1.8345 87.815 Avge .02267 .01262 .01767 1.44 .0028 .0066 .264 SDev 4,2272 3.1558 2.4918 .99918 .15312 .64993 %RSD .30119 .53625 .56986 .50886 146.24 1.8318 1.0249 88.172 #1 .52551 .57814 .49788 142.91 1.0146 1.8350 87.643 #2 .51527 .55399 .49539 1.0095 143.98 1.8329 #3 87.588 .56765 .53821 .52306 143.60 1.0198 1.8382 87.858 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 100.00 100.00 100.00 400.00 50.000 100.00 High 600.00 -.06000 -.10000 -.04000 -5.0000 -.04000 -.01500 Low -5.0000  $V_{-}$ TL TI SR SN SI SE Elem ppm ppm mag ppm mqq ppm Units mqq .49869 .97689 1.9347 2.0527 1.1624 17.383 Avge 2.0840 .00496 .0935 .00226 .0424 .0047 .0288 .041 SDev 4.8325 .99382 .40065 .23092 2.0670 .23419 1.3810 %RSD .50270 .97858 1.9754 1.1682 2.0145 17.322 2.0480 #1 .49219 .97588 1.8826 1.1585 2.1083 17.406 2.1140 #2

High

Low

100.00

-.02000

Operator: MTW

Method: QUANMET Sample Name: DD3R0F Operate Run Time: 05/25/00 11:53:10 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Mode: CONC Corr. Factor: 1

				-	T 7	BE	CA
Elem	AG	AL ppm	AS ppm	B_ ppm	BA ppm	ppm	ppm
Units <u>:</u> Avge	- ppm 00077	.00000	01669	.00897	.15406	.00004	86.420
SDev	.00077	.00097	.02364	.00004	.00054	.00000 .62436	.360 .41660
%RSD	99.667	67875.	141.60	.47106	.35255	. 52435	.41000
Ща	00116	.00082	02919	.00892	.15332	.00004	86.061
#1 #2	00116	00080	.01320	.00894	.15399	.00004	86.185
#3	00116	00087	04080	.00900	.15447	.00004 .00004	86.600 86.835
#4	.00038	.00086	~.00999	.00901	.15447	.00004	00.033
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00 -5.0000
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00229	.00144	00088	00110	4.6702 .0227	.99473 .22018	.00221 .00193
SDev	.00335	.00144 99.663	.00101 114.29	.00069 62.752	.48681	22.135	87.533
%RSD	146.41	99.003	114.20	02.702			
#1	00106	.00031	00133	00195	4.6439	.73218	00064 .00267
#2	L00632	.00183	00074	00110 00110	4.6588 4.6850	.90968 1.1020	.00340
#3	00332	.00032 .00331	00192 .00045	00110	4.6928	1.2351	.00340
#4	.00156	.00331	.00045	.00020			
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass 1000.0	LC Pass 20.000
High	100.00	100.00	100.00	100.00 02500	400.00 10000	-5.0000	05000
Low	00500	05000	01000	02500	.1000		
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	.00308	ppm .02686	ppm .00788
Avge	38.605	1.6867 .0053	.00582 .00490	95.961 .323	.00308	.02627	.01481
SDev %RSD	.093 .24180	.31446	84.260	.33640	89.213	97.795	188.09
91(0)	. 2 1 2 0 0				00200	.02487	.02882
#1	38.478	1.6827	.00966 00058	95. <b>965</b> 9 <b>5.954</b>	.00309 00081	.00895	00260
#2 #3	38.599 38.648	1.6816 1.6922	.00454	96.359	.00490	.06462	00261
#3 #4	38.695	1.6901	.00966	95.568	.00512	.00900	.00789
			r G. Dogg	LC Pass	LC Pass	LC Pass	LC Pass
Errors	LC Pass 600.00	LC Pass 100.00	LC Pass 50.000	400.00	100.00	100.00	100.00
High Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
			C) T	CD.	TI	TL	v_
Elem	SE	SI	SN ppm	SR ppm	ppm	ppm	ppm
Units Avge	ppm 00041	ppm 6.7699	00888	.19944	00548	.05406	00247
SDev	.05841	.0462	.01698	.00027	.00019	.05296	.00010 3.8570
%RSD	14414.	.68208	191.27	.13394	3.5529	97.980	3.03/0
#1	05293	6.7328	02461	.19943	00565	.03982	00240
#2	03346	6.7328	00293	.19907	00532	.06284	00259

Analysis	Report			05/25	658 717 page 2		
#3 #4	.07927 .00550	6.7863 6.8279	.01236 02033	.19968 .19958	00565 -:00532	00694 .12051	00250 00239
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 ~.50000	LC Pass 100.00	LC Pass 50.000 05000	LCaPass 50:000 - :05000		100.00
Elem Units Avge SDev %RSD	ZN ppm .01256 .00223 17.757						
#1 #2 #3 #4	.00971 .01299 .01241 .01512						
Errors High Low	LC Pass 100.00 02000						

STL Pittsburgh

Operator: MTW

ΔM

Method: QUANMET Sample Name: DD4WAF

Run Time: 05/25/00 11:56:18

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

CA ΒE BA AS • В ALElem AG mqq ppm mag ppm . ppmppm ___ Units mqq 40.213 .00007 .01955 .07440 .01013 .00691 -.00037 Avge .092 .00034 .00007 .00086 .02062 .00645 .00125 SDev .22811 91.115 4,4023 .45821 203.51 93.476 %RSD 341.98 .00004 40.269 .07411 .01873 .03320 -.00190 .01474 #1 .00018 40.080 .07411 .01935 .00252 .02173 -.00037 #2 40.226 .00004 .02076 .07478 .00956 -.00916 #3 .00117 40.278 .07459 .00004 .01935 -.00524 .00080 -.00037 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 600.00 15.000 100.00 100.00 100.00 600.00 High 2.0000 -5.0000 -.00500 -.20000 -.20000 -.20000 -.30000 -.01000 Low LI FEK CU CR CO CD Elem mqq ppm mag mqq ppm Units ppm maga .00045 5.1382 1.0794 -.00097 -.00041 -.00177 Avge -.00113 .2547 .00123 .0020 .00049 .00030 .00466 .00195 SDev 4.9561 273.88 .18560 50.288 479.62 16.725 410.92 %RSD 5.4063 .00226 -.00055 1.0780 -.00192 .00035 #1 -.00188 -.00049 1.0780 4.7925 -.00139 -.00133 -.00266 -.00078 #2 1.0794 5.1844 -.00006 -.00139 .00186 -.00192 #3 L-.00661 .00009 5.1696 1.0822 -.00192 -.00055 -.00117 .00474 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20.000 1000.0 400.00 100.00 100.00 100.00 100.00 High -5.0000 -.05000 -.10000 -.02500 -.01000 -.05000 -.00500 Low SB PB NΙ NA MO Elem MG MN ppmppm ppm mqq ppm ppm Units ppm -.00524 .01765 .00161 15.706 12.128 1.1319 .00656 Avqe .01004 .03621 .00225 .00296 .156 .0023 .034 SDev 205.23 191.71 .99270 139.72 45.054 .28084 .20262 %RSD .06543 -.00260 15.667 -.00037 1.1308 .00400 12.082 #1 -.01309 ,00962 .00424 15.636 .00912 1.1298 #2 12.124 .00786 .01772 .00271 15.587 1.1319 .00400 #3 12.155 -.01311 -.02219 -.00015 .00912 15.935 1.1351 12.153 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 100.00 100.00 100.00 400.00 100.00 50,000 600.00 High -.10000 -.06000 -.04000 -5.0000 -.04000 -5.0000 -.01500 Low V_ TLTΙ SR SN SI Elem SE ppm ppm ppm ppm mqq Units ppmppm -.00246 .04164 -.00253 .09442 -.00527 3.8118 .00200 Avge .00006 .01110 .00017 .00039 .00723 .03495 .0347 SDev 2.3386 6.6667 26.665 .40885 137.24 .91003 %RSD 1744.1 -.00251 -.00228 .02715 .09396 3.7821 -.01453 #1 .05055 .05036 -.00241 -.00262 -.00367 .09426 3.7821 .00394 #2

<u>.</u> . ;	#3 #4	01936 02711	3.8475 3.8356	.00298 .09472 00585 E :09476	00262 00262	.05032 .03873	00251 0024 <u>1</u> -
1	Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass LC Pass 100.00 50.0001000005000	50.000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
1	Elem Units Avge SDev %RSD	ZN ppm .00999 .00129 12.944			· •		
	#1 #2 #3 #4	.01142 .01061 .00845 .00950					
	Errors High Low	LC Pass 100.00 02000					

Operator: MTW Sample Name: DD4WGF Method: QUANMET

Run Time: 05/25/00 11:59:26

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA6LETT

Comment: Mode: CO		Factor: 1	MEIANS WWW			<u> </u>	<del></del> -
Elem	AG	AL	AS	B_	BA	DE ppm	CA
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	00024	.00428	.00828	.01065	.24726		54.308
SDev	.00127	.00677	.01019	.00112	.00129		.109
%RSD	520.11	158.07	123.06	10.514	.52312		.19982
#1	.00131	.01119	00147	.00967	.24538	.00003	54.469
#2	00028	00433	.00269	.01151	.24823	.00005	54.277
#3	00022	.00247	.01015	.01172	.24747	.00003	54.234
#4	00179	.00781	.02176	.00969	.24795	.00004	54.253
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00103	00312	00162	00034	1.0192	1.6844	.00441
SDev	.00298	.00144	.00141	.00106	.0041	.1716	.00019
%RSD	291.09	46.138	86.497	309.55	.40530	10.187	4.3283
#1	00150	00124	00015	.00114	1.0156	1.9377	.00444
#2	00396	00424	00310	00056	1.0156	1.6345	.00460
#3	.00314	00426	00074	00140	1.0220	1.5605	.00414
#4	00178	00274	00251	00055	1.0234	1.6049	.00444
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	22.201	.47681	.00271	56.285	00561	.01760	.00259
SDev	.102	.00053	.00256	.712	.00861	.02342	.01346
%RSD	.45996	.11140	94.367	1.2647	153.35	133.09	520.06
#1	22.068	.47601	.00399	55.234	.00497	00626	01297
#2	22.217	.47707	.00399	56.461	00219	.00167	.01830
#3	22.202	.47707	.00399	56.723	01309	.04145	.00773
#4	22.317	.47707	00113	56.724	01214	.03352	00271
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	100.00	LC Pass
High	600.00	100.00	50.000	400.00	100.00		100.00
Low	-5.0000	01500	04000	-5.0000	04000		06000
Elem	SE	SI	SN	SR	TI		V_
Units	ppm	ppm	ppm	ppm	ppm		ppm
Avge	01666	4.6536	01615	.18913	00338		00124
SDev	.03564	.0259	.01399	.00137	.00051		.00495
%RSD	213.87	.55707	86.579	.72608	15.000		399.08
#1	.03478	4.6447	03424	.18720	00295	_	.00266
#2	03124	4.6386	01881	.18944	00397		00767

Analysis	Report			05/25/	/00 12:02:3	31 PM	658 721
#3 _ #4	-,04675 02345	4.6388 4.6922	01013 00144	.18944	00295 00363	-	.00266 00261
Errors High Low		LC Pass 20.000 50000	100.00		50.000	100.00	
_	ZN ppm .00589 .00139 23.601						
#1 #2 #3 #4	.00519 .00517 .00797 .00523						
Errors High Low	LC Pass 100.00 02000						

Operator: MTW Method: QUANMET Sample Name: DD4WHF

Run Time: 05/25/00 12:02:34 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1 יאַכּ

Mode: COI	COII.	ractor: 1		ĴW.			
Elem	AG	AL	AS	B_	BA	BE	CA
Units	-ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00071	.00778	.01413	.00121	.14451	00004	71.289
SDev	.00001	.00243	.02585	.00103	.00028	.00008	.488
%RSD	1.5708	31.205	182.86	84.917	.19016	222.83	.68410
#1	00073	.00616	.03830	.00034	.14475	.00004	70.664
#2	00070	.00601	01190	.00177	.14427	.00003	71.440
#3	00071	.00771	00418	.00035	.14427	00011	71.219
#4	00070	.01123	.03431	.00238	.14475	00011	71.832
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00064	.00069	.00000	00020	.18080	1.2998	.00300
SDev	.00424	.00256	.00322	.00049	.00091	.3626	.00031
%RSD	661.58	372.98	1726500.	248.91	.50549	27.899	10.336
#1	00337	.00332	00251	00062	.18115	.97624	.00340
#2	.00141	.00031	00192	.00023	.17974	1.1833	.00304
#3	00489	00268	00015	00062	.18044	1.2203	.00267
#4	.00428	.00180	.00458	.00023	.18186	1.8194	.00288
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	32.757	1.8618	.00259	39.856	.00288	.01989	.01309
SDev	.092	.0089	.00256	.279	.00042	.02634	.01808
%RSD	.28059	.47922	98.954	.69906	14.408	132.42	138.17
#1	32.763	1.8522	00125	40.060	.00315	.00205	.00797
#2	32.756	1.8629	.00387	39.507	.00241	.01787	00259
#3	32.643	1.8586	.00387	40.100	.00330	.00188	.00779
#4	32.868	1.8735	.00387	39.756	.00265	.05777	.03917
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00357	5.1444	.00884	.29235	00430	00878	.00102
SDev	.03523	.0049	.02390	.00064	.00028	.07111	.00249
%RSD	985.66	.09455	270.34	.21746	6.4039	809.50	245.06
#1	02264	5.1444	02338	.29324	00464	06392	00261
#2	01488	5.1504	.00495	.29197	00397	.06370	.00265

Analysis	Report			05/25,	658 723 page 2		
#3 #4	00322 .05504	5.1385 5.1444	.02901 .02479	.29182 .29237	00430 غن 00430	07545 .04053	.00136
Errors High Low	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 2005000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .01125 .00098 8.6801						
#1 #2 #3 #4	.01069 .01208 .01207 .01016	,					
Errors High Low	LC Pass 100.00 02000						

Operator: MTW

ΔVI

Method: QUANMET Sample Name: DD4WJF

Run Time: 05/25/00 12:05:42

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

CA BE BA AS ₿ ΑL Elem AG ppm mqqppm ppm --ppm mqq Units ppm75.032 -.00003 .26961 .00714 -.02225 -.00135 .00168 Avge .00008 .090 .00040 .00001 .03833 .00218 .00127 SDev 222.39 .11974 .16797 .14989 172.30 129.57 93.499 %RSD 74.969 .26917 .00003 .00713 .02590 .00424 #1 -.00135 -.00011 75.118 .26937 -.05118 .00713 .00019 -.00083 #2 75.100 -.00010 .27004 .00715 -.05497 .00251 #3 -.00290 74.941 .00003 .26985 -.00875 .00715 -.00135 .00081 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 600.00 15.000 100.00 100.00 100.00 600.00 2.0000 High -5.0000 -.00500 -.20000 -.20000 -.30000 -.20000 -.01000 Low LI CU FE CO CR Elem CD ppm mqq ppm mqq ppm ppm Units ppm .00221 1.0613 3.7161 -.00076 -.00503 -.00125 Avge -.00107 .1705 .00196 .0052 .00085 .00442 .00243 .00057 SDev 88.585 .14040 16.068 111.54 48.409 53.360 353.14 %RSD .00377 1.0946 3.7096 -.00034 -.00192 -.00172 -.00275 #1 .00304 .96145 3.7167 -.00033 -.00725 -.00083 .00476 #2 .00267 .90228 3.7160 -.00203 -.00429 -.00576 -.00041 #3 -.00064 3.7223 1.2869 -.00034 -.00125 -.00665 -.00133 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20.000 400.00 1000.0 100.00 100.00 100.00 100.00 High -.05000 -5.0000 -.10000 -.02500 -.05000 -.01000 -.00500 Low SB PB NI NA MO MN Elem MG mag mqq ppm ppm mqq ppm Units mqq .00261 .01505 -.00399 15.141 .00312 30.280 1.5946 Avge .01353 .00923 .03589 .202 .00256 .0016 .076 SDev 517.60 238.50 231.61 1.3323 .09989 82,166 .25060 &RSD .00783 .01701 .00117 15.308 .00440 1.5922 30.260 #1 -.00268 .01720 -.01712 15.023 -.00072 1.5954 30.195 #2 -.01306 -.03087 -.00352 15.314 .00440 1.5954 30.378 #3 .01836 .05686 .00352 14.917 1.5954 .00440 30.286 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 100.00 100.00 100.00 400.00 50.000 100.00 600.00 High -.06000 -.10000 -.04000 -5.0000 -.04000 -.01500 -5.0000 Low  $\mathtt{TL}$ V TI SR SN Elem SE SI mag ppm ppmppm mqq ppm Units ppm .00037 .03730 -.00481 .17734 -.00254 5.6545 .00970 Avge .00217 .00034 .06060 .00030 .0331 .01808 .01584 SDev 581.78 162.49 7.0175 712.31 .17177 .58537 %RSD 163.32 .00137 .08374 -.00464 .17706 .01004 .02133 5.6798 #1 .00255 .02564 -.00464 .17727 .00344 5.6858 .02524 #2

-.00250

.00007_

LC Pass

100.00.

-.0500<u>0</u>.

-.00532

-.00464

LC Pass

50.000

-.05000

-.04381

LC Pass

100.00

-2.0000

.08363

Low

-.02000

- #3 #4	00195 00581	5.6322 5.6203	02935 ,17778 .00572
Errors High	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass . LC Pass 100.00 50.000 1000005000
Elem Units Avge SDev %RSD	ZN ppm .00467 .00166 35.548	C	
#1 #2 #3 #4	.00438 .00364 .00710 .00356		
Errors High	LC Pass		

Analysis Report

Method: QUANMET Sample Name: DD4WKF

Operator: MTW

Run Time: 05/25/00 12:08:50

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E-

Corr. Factor: 1 <u> 36</u> Mode: CONC CA BA LT BE AS В ALAG Elem <u>⊸r</u>ppm ppm mqq ppm ppm Units ppmppm 7.00007 37.561 .04572 .01202 -.01449 .01044 Avge -.00041 .087 ..00013 .00022 .00213 .00177 .00329 .02837 SDev .23070 173.89 .49244 17.712 195.77 31.537 434.65 %RSD 37.523 .00004 .04575 .01096 -.01163 .00113 .01296 #1 37.570 .04555 .00018 .01380 -.05011 .00610 -.00195 #2 37.676 .04555 .00018 .00954 .01922 .01303 .00113 #3 -.00009 37.473 .04603 -.01544 .01379 .00968 -.00195 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 600.00 100.00 15.000 100.00 600.00 100.00 2.0000 High -,00500 -5.0000 -.20000 -.30000 -.20000 -.20000 -.01000 Low LI  $\mathbf{K}_{-}$ FE CU CR CD CO Elem ppm mqq ppm ppmppm ppm Units ppm .03513 18.756 -.00639 .00429 -.00021 .00036 -.00213 Avge .00020 .324 .00049 .00134 .00156 .00213 .00233 SDev .55669 1.7296 21.019 231.10 587.37 36.479 109.77 %RSD 18.452 .03499 -.00444 -.00063 .00340 .00036 -.00240 #1 .03493 18.541 -.00727 .00458 -.00064 -.00115 #2 .00041 .03529 19.162 .00021 -.00656 .00636 -.00135 -.00114 #3 .03529 18.867 -.00727 .00281 .00021 .00337 L-.00516 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20.000 1000.0 400.00 100.00 100.00 100.00 High 100.00 -.05000 -5.0000 -.10000 -.02500 -.01000 -.05000 -.00500 Low SB PB NI NA MO MN MG Elem ppmppm ppm ppm ppm Units ppm ppm .00782 .03186 .00216 -.00000 16.199 23.997 .04802 Avge .02260 .01356 .00712 .179 .00644 .107 .00000 SDev 42.566 288.87 329.49 1.1079 675100. .44626 .00512 %RSD -.01312.04974 15.968 .00687 .00896 23.842 .04802 #1 .03917 .03385 -.00781 16.145 -,00128 .04802 #2 24.067 -.00268 .02584 .00190 16.345 .04802 -.00128 24.069 #3 .00792 .01801 .00768 16.336 -.00640 .04802 24.012 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 100.00 100.00 100.00 400.00 50.000 100.00 High 600.00 -.06000 -.10000 -.04000 -5.0000 -.04000 Low -5.0000 -.01500 V TL TI SR SI SN SE Elem ppm mqq ppm ppm ppm ppm mqq Units -.00257 .06993 -.00278 .14161 5.4136 .00277 -.00779 Avge .04272 .00012 .00044 .00067 .01470 .02127 .0268 SDev 4.8359 61.096 15.648 .47340 .49450 530.13 273.01 %RSD -.00240 .12499 -.00228 .00922 .14060 5.4002 #1 -.01944-.00260 .06705 -.00329 .14197 -.01891 5.4537 #2 -.02333

-.00259 -.00270

LC Pass 100.00 -.05000

Analysis	Report			05/25/	00 12:11:3	o Fri
 #3 _ #4	01168 .02328	5.4002 5.4002		.14187	00295 00262	.02066 .06702
High	LC Pass 100.00 25000	20.000	LC Pass 100.00 	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000-
Elem Units Avge SDev %RSD	ZN ppm .02498 .00188 7.5166					
#1 #2 #3 #4	.02269 .02434 .02590 .02700					
Errors High Low	LC Pass 100.00 02000					

Operator: MTW Sample Name: DD4WLF Method: QUANMET

Run Time: 05/25/00 12:11:58

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Corr. Factor: 1 Mode: CONC. CA В_ BEAS 3cBA AG ALElem mag mqq<del>qg</del> mqq ppm mqq ppm Units mag 41.737 ..07773 .00014 .01930 -.00430 .00001 .00480 Avge .368 . .00044 .00007 .00203 .03287 .00713 .00318 SDev .88162 47.464 .56829 10.517 148.48 763.98 27074. %RSD 41.296 .00018 .02072 .07792 .02175 .00440 -.00345 #1 .00004 41,578 .07716 .01787 -.05142 -.00433 -.00038 #2 42.085 .00016 .07764 -.00155 .01727 .01301 .00426 #3 41.992 .00018 .02135 .07820 .01401 -.00038 .00614 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 600.00 15.000 100.00 100.00 100.00 600.00 2.0000 High -5.0000 -.00500 -.20000 -.20000 -.30000 -.20000 -.01000 Low LI FE $K_{-}$ CU CO CR CD Elem ppm ppmmag mag mag ppm Units mqq .00094 5.3545 1.0608 -.00118 .00030 .00147 Avge -.00170 .00198 .2128 .00154 .0056 .00112 .00257 .00178 SDev 3.9744 209.67 .52977 94.650 519.02 174.23 104.43 %RSD -.00021 5.2732 1.0567 -.00133 -.00139 .00185 -.00316 #1 .00031 5.1401 1.0553 -.00055 -.00192 .00035 #2 -.00333 .00388 5.6430 1.0645 .00199 .00044 -.00007 .00485 #3 -.00021 5.3619 1.0666 .00114 -.00192 -.00116 -.00027 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors LC Pass 20.000 1000.0 400.00 100.00 100.00 100.00 100.00 High -.05000 -5.0000 -.10000 -.02500 -.00500 -.05000 -.01000 Low SB PB NI NA MO MN MG Elem mag ppm ppm ppm mag Units mqq ppm -.00784 .00376 .01969 15.660 .00016 12.157 1.1666 Avge .02765 .00083 .03751 .132 .00490 .026 .0056 **SDev** 352.42 190.52 .84350 22.133 .48360 3090.6 .21551 &RSD -.00268 -.00616 15.854 .00366 1.1595 -.00112 12.166 #1 -.03396 -.00624 15.634 .00496 .00400 1.1648 #2 12.163 .02875 .01784 .00338 .00400 15.571 1.1712 #3 12.119 .07333 -.02350 .00306 1.1712 15.582 -.00624 #4 12.179 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 100.00 100.00 100.00 400.00 50.000 100.00 High 600.00 -.06000 -.10000 -.04000 -5.0000 -.01500 -.04000 -5.0000 Low V TL TI SR SNSI Elem SE ppm ppm  $\mathfrak{m}$ qq mqq Units ppm ppm ppm -.00129 -.00270 .04780 .09298 -.02622 3.7955 .01982 Avge .00263 .08056 .00042 .00046 .02525 .0268 .01630 SDev 204.21 168.52 15.729 127.38 .49870 .70504 %RSD 62.150 -.00260 -.00329 -.06526 .09350 .05095 -.02721 3.7821 #1 -.00251 -.00262 .12034 .09259 -.00813 -.04275 3.7821 #2

658	729
pa	age 2

05/25/00 12:15:04 PM

#3 #4	00388 - 3.7821 03106 - 3.8356	.02708	.09259 .09324	00228 00262	.08542	.00266 00270
Errors High Low	LC Pass   LC Pass   100.00   20.000  25000  50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000	LC Pass 100.00 05000
Elem Units Avge SDev %RSD	ZN ppm .00613 .00192 31.308			•		
#1 #2 #3 #4	.00573 .00381 .00654 .00844		,			
Errors High Low	LC Pass 100.00 02000					

Operator: MTW Method: QUANMET Sample Name: DD4WMF

Run Time: 05/25/00 12:15:07 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

			•				İ
Elem Units Avge SDev %RSD	AG ppm 00001 .00193 15448.	AL ppm .00346 .00771 222.73	AS ppm	B_ ppm .03885 .00173 4.4424	BA ppm 00017 .00023 134.03	BE ppm 00003 .00008 282.66	CA - ppm05006 .00132 2.6298
#1	00194	00435	.00395	.03798	00034	.00004	.04883
#2	00039	00090	03465	.03798	00034	00010	.05013
#3	.00267	.00607	.03469	.04143	.00014	00010	.04942
#4	00040	.01303	01933	.03799	00014	.00004	.05187
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00064	00075	.00636	00042	00602	.03143	00058
SDev	.00251	.00075	.00084	.00042	.00274	.10741	.00037
%RSD	393.14	99.040	13.143	99.638	45.445	341.72	62.808
#1	00019	00112	.00518	.00021	00868	08135	00108
#2	00215	00112	.00695	00064	00726	.17750	00051
#3	.00384	.00037	.00636	00063	00584	.01479	00019
#4	.00106	00113	.00695	00063	00230	.01479	00056
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00196	00027	.00256	.06151	.00069	.01192	00268
SDev	.00623	.00061	.00256	.00265	.00397	.02285	.01479
%RSD	317.40	230.12	100.02	4.3011	571.65	191.70	552.75
#1	00458	00080	.00384	.05760	00367	.01786	02360
#2	.00850	00080	.00384	.06294	00161	00598	.00774
#3	.00589	.00026	.00384	.06332	.00461	00596	00268
#4	00196	.00026	00128	.06217	.00344	.04177	.00783
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00775	.06095	00492	.00010	00034	.01748	00220
SDev	.04337	.00595	.01604	.00018	.00064	.03464	.00066
%RSD	559.91	9.7551	325.67	180.38	189.30	198.22	30.236
#1	.02716	.05797	02576	.00025	00127	.06679	00250
#2	01556	.05799	.00276	00010	.00008	01441	00120

50.000

Ļ٠

-505000

50.000

-.05000

Elem	ZN
Units	ppm
Avge	.00487
SDev	.00187
%RSD	38.515
#1	.00633
#2	.00338
#3	.00663
#4	.00312
Errors	LC Pass
High	100.00
Low	02000

100.00

-.25000

High

Low

20.000

-.50000

100.00

-.10000

100.00

-.05000

西島二

100.00

-2.0000

Operator: MTW

Method: QUANMET Sample Name: CCV2-8

Run Time: 05/25/00 12:18:15

RUN TIME: U5/25/UU 12:18:15 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor: 1

Mode: CO	NC Corr.	Factor: 1				Ğ.	
Elem	AG	AL ppm = 49.161 .213 .43311	AS	B_	BA	BE	CA
Units	ppm		ppm	ppm	ppm	ppm-	ppm
Avge	1.0170		5.1435	5.0492	4.8282	5.1527	53.456
SDev	.0018		.0812	.0341	.0340	.0221	.153
%RSD	.18169		1.5790	.67630	.70424	.42950	.28661
#1	1.0174	49.209	5.2162	5.0165	4.8239	5.1494	53.615
#2	1.0144	49.431	5.2102	5.0788	4.8750	5.1765	53.283
#3	1.0174	49.075	5.0863	5.0786	4.8203	5.1609	53.552
#4	1.0188	48.930	5.0612	5.0230	4.7936	5.1240	53.376
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	1.1000	55.000	5.5000	5.5000	5.5000	5.5000	55.000
Low	.90000	45.000	4.5000	4.5000	4.5000	4.5000	45.000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.2842	5.1789	5.1506	4.8502	53.306	46.852	L4.3835
SDev	.0126	.0121	.0108	.0367	.129	.405	.0541
%RSD	.23760	.23305	.20899	.75764	.24128	.86489	1.2337
#1	5.2799	5.1831	5.1621	4.8329	53.347	46.978	L4.3765
#2	5.2720	5.1905	5.1414	4.8997	53.421	47.355	L4.4619
#3	5.3016	5.1800	5.1574	4.8540	53.335	46.652	L4.3526
#4	5.2831	5.1621	5.1414	4.8143	53.122	46.423	L4.3432
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Low
High	5.5000	5.5000	5.5000	5.5000	55.000	55.000	5.5000
Low	4.5000	4.5000	4.5000	4.5000	45.000	45.000	4.5000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	50.071	5.1595	5.1494	47.233	5.1757	5.1195	5.1191
SDev	.270	.0116	.0206	.465	.0202	.0442	.0668
%RSD	.53915	.22497	.40093	.98462	.38943	.86381	1.3042
#1	50.047	5.1635	5.1738	47.268	5.1568	5.0997	5.1397
#2	50.379	5.1657	5.1277	47.873	5.2038	5.0759	5.1299
#3	50.131	5.1667	5.1584	46.969	5.1750	5.1792	5.0248
#4	49.725	5.1422	5.1379	46.822	5.1673	5.1233	5.1818
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	55.000	5.5000	5.5000	55.000	5.5000	5.5000	5.5000
Low	45.000	4.5000	4.5000	45.000	4.5000	4.5000	4.5000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.2623	5.0964	5.2459	4.9110	4.9818	10.093	5.0961
SDev	.0969	.0323	.0534	.0299	.0178	.146	.0134
%RSD	1.8418	.63424	1.0181	.60842	.35819	1.4431	.26224
#1	5.2984	5.0727	5.1898	4.9123	4.9833	10.148	5.0991
#2	5.3803	5.1442	5.3185	4.9505	5.0022	10.240	5.1098

4.5000

Low

Method: QUANMET Sample Name: CCB8 Operator: MTW

Run Time: 05/25/00 12:21:28

Comment: STE PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC - Corr. Factor: 1

Mode. co.	r corr				~~ <u>*</u>		
Elem	AG	AL	AS	B_	BA	BE	CA
Units	ppm ⁻	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00193	00267	02403	.00777	00012	.00035	00255
SDev	.00125	.00739	.04628	.01554	00004	.00020	.00280
%RSD	64.905	276.60	192.64	199.99	35.294	58.972	109.64
#1 #2 #3 #4	00347 00193 00040 00193	00782 00794 .00779 00271	05771 .02324 .00769 06932	.03108 00001 .00000	00014 00014 00006 00014	.00018 .00018 .00058 .00045	00391 00559 .00081 00152
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.30000	.20000	.20000	.00500	5.0000
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem	CD	CO	CR	CU	FE	K_	LI
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00157	00075	00162	00106	00195	03513	00081
SDev	.00091	.00257	.00059	.00109	.00359	.19195	.00034
%RSD	58.126	340.17	36.387	103.32	184.21	546.39	41.448
#1	.00051	.00188	00192	00063	00301	08135	00101
#2	.00199	.00037	00192	00148	00655	19229	00116
#3	.00117	00113	00074	.00021	.00053	.24406	00043
#4	.00258	00414	00192	00233	.00124	11094	00064
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.00500	.05000	.01000	.02500	.10000	5.0000	.05000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00262	00026	.01024	.00638	00198	.02585	00013
SDev	.01740	.00061	.00644	.00577	.00527	.02339	.01577
%RSD	665.21	233.96	62.913	90.476	266.95	90.466	12473.
#1	.00065	00079	.00896	.00314	00358	00591	.00774
#2	00719	.00027	.01920	.00276	00498	.02587	01333
#3	.01896	00079	.00384	.01495	.00586	.04974	.01828
#4	02289	.00027	.00896	.00467	00520	.03370	01320
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.0000	.01500	.04000	5.0000	.04000	.10000	.06000
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	02137	.03715	.02237	.00028	00017	00866	00239
SDev	.01436	.00343	.01754	.00033	.00032	.04288	.00012
%RSD	67.191	9.2422	78.399	118.63	191.49	495.42	5.1853
#1	01943	.03418	.01586	00010	00059	07245	00241
#2	02333	.03418	.04632	.00015	00025	.02038	00221

	_ `
page	2

#3 #4	00388 03883	.04012	.02246	.00066 .00040	.00008 .00008	.00871	00251 00241
Errors High Low	LC Pass .25000	LC Pass .50000 50000	LC Pass .10000 10000	LC Pass .05000 05000	LG Pass .05000 - <u>a</u> 05000	LC Pass .30000 30000	LC Pass .05000 05000
Elem Units Avge SDev %RSD	ZN ppm 00014 .00099 710.32						•
#1 #2 #3 #4	00014 .00067 00153 .00044						

-.02000

Errors LC Pass High .02000 Low -.02000

Operator: MTW

 Elem Units Avge SDev %RSD	AG ppm 00161 .00076 47.040	AL ppm 00010 .00728 7484.0	AS ppm	B_ -ppm .00091 .00103 113.22	BA ppm .42609 .00339 .79581	BE ppm .00006 .00006 101.02	CA ppm = 48.942 .136 .27781
#1	00198	.00767	01556	.00146	.42140	.00003	48.904
#2	00198	.00425	00012	.00005	.42588	.00016	48.901
#3	00199	00794	.05012	.00208	.42901	.00003	48.826
#4	00047	00436	00381	.00004	.42806	.00004	49.139
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
Low	01000	20000	30000	20000	20000	00500	-5.0000
Elem Units Avge SDev %RSD	CD ppm 00406 .00115 28.413	CO ppm .00130 .00075 57.662	CR ppm00103 .00123 119.22	CU ppm 00063 .00000 .11203	FE ppm .02425 .00092 3.7734	K_ ppm 1.8989 .1017 5.3533	LI ppm .00064 .00031 48.918
#1 #2 #3 #4	00235 00450 00450 00489	.00168 .00168 .00018	.00045 00133 00074 00251	00063 00063 00063 00063	.02319 .02532 .02390 .02461	1.9969 1.9451 1.8933 1.7602	.00098 .00083 .00037 .00037
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
Low	00500	05000	01000	02500	10000	-5.0000	05000
Elem	MG	MN	MO	NA	NI	PB	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	29.500	.41046	.01153	44.793	00469	.03982	00792
SDev	.202	.00137	.00296	.548	.01147	.00399	.01816
%RSD	.68562	.33384	25.651	1.2225	244.81	10.018	229.24
#1	29.217	.40887	.01409	44.065	.00454	.04185	.01828
#2	29.528	.40993	.00897	44.959	01062	.03384	02366
#3	29.695	.41205	.01409	45.377	.00526	.04178	01304
#4	29.559	.41099	.00897	44.770	01793	.04182	01327
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
Elem	SE	SI	SN	SR	TI	TL	V_
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00397	4.8038	00602	.70999	00295	.03103	.00119
SDev	.03058	.0467	.01324	.00499	.00028	.06380	.00247
%RSD	769.88	.97152	219.83	.70276	9.3314	205.59	207.94
#1	01157	4.7340	.00283	.70350	00295	01247	.00285
#2	.04670	4.8232	00173	.70872	00262	02408	.00275

.00156

-.00241

LC Pass

100.00

-.05000

Pass

page 2

1911年10日

#3 #4	.00397	4.8291 4.8291	02569 .00050	.71455 .71318	00329 00295	
	LC Pass 100.00 25000	LC Pass 20.000 50000	LC Pass 100.00 10000	LC Pass 50.000 05000	LC Pass 50.000 05000	LC Pass 100.00 -2.0000
Elem Units Avge SDev %RSD	ZN ppm .01517 .00154 10.136			t ·		
#1 #2 #3 #4	.01537 .01294 .01616 .01621					
Errors High Low	LC Pass 100.00 02000					

Method: QUANMET Sample Name: DD50NF Operator: MTW

Run Time: 05/25/00 12:27:45

Comment: STL PITTSBURGH-ICP METALS ANALYSIS-INSTRUMENT JA61E

<u>: 0:</u> Corr. Factor: 1 Mode: CONC CA BE BA AS В Elem AG ALppm ppm ppm ppm ppm 💳 ppm Units mqq 37.964 .00004 1.0810 -.03677 .01408 -.00009 -.00192 Avge .130 .00000 .00000 .0074 .03751 .00251 .01063 SDev .34208 .68766 8.1718 .01054 102.03 130.36 11230. %RSD 38.149 .00003 1.0745 -.07350 .01408 .00946 -.00192 #1 37.845 .00004 1.0902 .01409 -.01310 .01153 -.00500 #2 37.922 .00004 .01408 1.0838 -.02719 .00767 -.00193 #3 37.942 1.0754 .00004 .01409 -.00441 -,05792 .00115 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors LC Pass 600.00 100.00 15.000 100.00 100.00 2.0000 600.00 High -.00500 -5.0000 -.20000 -.20000-.20000 -.30000 Low -.01000 LI K CU FE CR CO CD Elem ppmmag mqq mqq ppm ppm ppm Units 1.5069 .00147 .13688 -.00063 -.00133 -.00279 -.00154 Avge .1824 .00079 .00136 .00324 .00069 .00075 .00227 SDev 53.984 12.104 .99012 110.33 26.853 243.98 148.07 %RSD .00265 1.7306 .13582 .00340 .00022 -.00316 -.00173 #1 .00098 1.2869 -.00063 .13724 -.00310 -.00316 -.00465 #2 .00120 1.5309 -.00147 .13582 -.00192 -.00317 #3 -.00027 .00104 1.4792 -.00062 .13866 -.00369 -.00167 .00051 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20.000 1000.0 400.00 100.00 100.00 100.00 High 100.00 -.05000 -.10000 -5.0000 -.02500 -.01000 -.05000 -.00500 Low SB PB NI NA MO MN MG Elem ppm ppm mqq ppm mag mag Units ppm .00785 -.00534 -.00423 54.094 .00898 .13934 21.621 Avge .01880 .00518 .00501 .00418 .796 .123 .00086 SDev 97.032 239.63 1.4706 118.49 46.551 .62109 %RSD .57025 -.00280 .03371 -.00710 53.215 .00386 21.527 .14039 #1 .00982 -.01310 -.00820 .13934 .00898 55.124 21.775 #2 -.00278 -.00610 -.00454 54.185 .01410 .13934 #3 21.665 -.00267 -.00605 .00292 53.854 .00898 21.516 .13827 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors LC Pass 100.00 100.00 100.00 400.00 50.000 600.00 100.00 High -.06000 -.10000 -.04000 -5.0000 -.04000 -.01500 Low -5.0000 V TLTI SN SR SI Elem SE ppm mqq ppm ppm ppm Units mag ppm .03420 -.00176 .37205 -.00287 .00547 4.6417 Avge .00924 .00123 .00058 .00239 .05389 .0142 .03127 .02754 SDev 69.792 157.59 20.092 .64166 .30524 571.79 %RSD 298.02 .00008 .05450 -.00228 .02676 .37036 4.6506 -.01504 #1 -.00241 -.01509 -.00363 .37497 -.04095 4.6447 #2 -.01115

.00258

.00391

100.00

Errors LC Pass

#3

#4

High

Low

Method: QUANMET Sample Name: DD3QXFP5 RERUN ZN_ Operator: MTW

Run Time: 05/25/00 12:30:53

Run Time: 05/25/00 12:30:53 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC - Corr. Factor: 1

٠.	.ouc. 001	.,0				-		
	Elem	AG	AL	AS	B_	BA	BE	CA
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.00015	.00175	.00638	.00343	-04060	.00010	16.769
	SDev	.00218	.00574	.03283	.00315	-00023	.00007	.083
	%RSD	1446.5	328.31	514.84	92.031	.57242	71.024	.49481
	#1	.00014	.00265	00709	.00415	.04079	.00004	16.818
	#2	00138	00607	.00835	.00758	.04032	.00017	16.697
	#3	00139	.00266	.05073	.00128	.04079	.00004	16.700
	#4	.00324	.00776	02649	.00070	.04051	.00016	16.860
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	2.0000	600.00	100.00	100.00	100.00	15.000	600.00
	Low	01000	20000	30000	20000	20000	00500	-5.0000
	Elem Units Avge SDev %RSD	CD ppm 00200 .00056 28.120	CO ppm 00039 .00087 223.08	CR ppm00000 .00233 381530.	CU ppm 00086 .00049 56.700	FE ppm 2.4712 .0081 .32637	K_ ppm .26440 .23210 87.786	LI ppm 00064 .00000
	#1	00237	.00036	00192	00128	2.4784	00000	00064
	#2	00156	.00036	.00281	00128	2.4657	.14052	00064
	#3	00147	00114	.00103	00044	2.4629	.43635	00064
	#4	00258	00114	00192	00044	2.4777	.48072	00064
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	100.00	100.00	100.00	100.00	400.00	1000.0	20.000
	Low	00500	05000	01000	02500	10000	-5.0000	05000
	Elem	MG	MN	MO	NA	NI	PB	SB
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	7.4446	.27081	00219	18.909	.00084	.01733	01043
	SDev	.0541	.00160	.00256	.256	.00673	.02156	.01576
	%RSD	.72629	.58882	116.90	1.3545	804.67	124.43	151.08
	#1	7.4734	.27267	00091	19.193	.00445	.00937	02356
	#2	7.3635	.26948	00091	18.624	00886	.04918	02360
	#3	7.4707	.26948	00603	19.043	.00615	.00141	.00790
	#4	7.4707	.27160	00091	18.778	.00161	.00935	00247
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	600.00	100.00	50.000	400.00	100.00	100.00	100.00
	Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
	Elem	SE	SI	SN	SR	TI	TL	V_
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	02689	1.4917	00558	.03772	00127	.01950	00004
	SDev	.01463	.0129	.03221	.00034	.00039	.07026	.00237
	%RSD	54.411	.86254	577.56	.91197	30.792	360.33	5610.3
	#1	03755	1.4857	.02929	.03823	00093	07333	00260
	#2	01429	1.4798	01655	.03752	00160	.00794	.00128

<b>65</b> 8	74	1
pag	e 2	

05/25/00 12:33:59 PM

Analysis Report

#3	01430 ₇	1.4917	.00979	.03752	00160	.08917	00140
# <b>4</b>	04143 <u>-</u>	1.509 <u>6</u>	04483	.03762	000 <u>9</u> 3		.00256
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	100.00	50.000	50.000	100.00	100.00
Low	25000	50000	10000	05000	05000	-2.0000	05000

Elem ZN Units ppm.00364 Avge SDev .00175 %RSD 48.199 #1 .00232 #2 .00621 .00287 #3 .00314 #4

Errors LC Pass High 100.00 Low -.02000

STL Pittsburgh

6226

Operator: MTW Sample Name: CCV2-9mf-_-Method: QUANMET Run Time: 05/25/00 12:34:02 **Ž**∷-Run Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E Corr. Factor: 1 Mode: CONC <u>^</u> ÷ CA BE В ΒA AL AS AG Elem ppm ppm ppm **⊞pp**m FLE) mqq Tunits ppm ppm 53.137 5.1836 5.1398 4.8441 5.0698 49.161 Avge 1.0104 .322 .0233 .0021 -.0081 .0033 .209 .0450 SDev .04042 .60659 .16066 .48009 .42437 .87558 .32373 %RSD 52.889 5.0644 4.8405 5.1814 5.1254 49.082 #1 1.0065 5.1824 53.250 4.8294 5.0750 5.1915 48.987 #2 1.0096 5.1844 52.868 4.8780 5.0784 5.1567 49.463 1.0112 #3 53.543 5.1861 5.0858 5.0615 4.8285 #4 1.0144 49.110 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 55.000 5.5000 5.5000 55.000 5.5000 5.5000 High 1.1000 45.000 4.5000 4.5000 4.5000 4.5000 45.000 .90000 Low FΕ  $\mathbf{K}_{\underline{\phantom{a}}}$ LI CU CR CO CD Elem ppm ppm ppm ppm maga mqq Units mqq L4.4051 46.395 53.222 5.1263 4.8808 5.2455 5.1644 Avge .1046 .723 .0332 .133 .0189 .0285 .0182 SDev 2.3737 1.5593 .25003 .68121 .36904 .35189 %RSD .54291 L4.3857 46,224 4.8819 53.086 5.1148 5.1486 5.2415 #1 L4.3337 53.239 46.031 4.8574 5.1450 5.1727 #2 5.2228 4.5582 47.459 4.9275 53.165 5.1059 5.1501 #3 5.2312 45.869 L4.3428 53.399 4.8566 5.1396 5.2867 5.1860 #4 LC Low LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 5.5000 55.000 55.000 5.5000 5.5000 5.5000 5.5000 High 45.000 4.5000 4.5000 45.000 4.5000 4.5000 4.5000 Low SB PB NI NA MO MN Elem MG ppm ppm ppmppm ppm ppm Units mag 5.0993 5.1612 47.514 5.1871 5.1366 5.1463 Avge 50.213 .0353 .0232 .0317 .843 .0282 .0154 SDev .211 .68299 .45531 1.7746 .61077 .54867 %RSD .41952 .29993 5.1715 5.0830 5.0969 47.326 5.1417 50.110 5.1305 #1 5.1193 5.1155 46.917 5.1975 5.1430 5.1529 #2 50.073 5.2032 5.1940 5.1227 48.753 5.1430 #3 50.526 5.1369 5.0760 5.1509 5.2152 47.061 5.1635 5.1646 50.141 #4 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 5.5000 5.5000 5.5000 55.000 5.5000 5.5000 High 55.000 4.5000 4.5000 4.5000 45.000 45.000 4.5000 4.5000 Low V TLSR TI SN SE SI Elem mqqppm ppm ppm mqq Units ppm mqq 5.0900 4.9800 9.9552 4.9301 5.2407 5.2261 5.0815 Avge .0818 .0099 .0073 .0192 .0204 .0060 SDev .0688 .19415 .14705 .82189 .41410 .36695 &RSD 1.3161 .11841 9.9654 5.0821 4.9247 4.9715 5.0724 5.2467 #1 5.2664 5.0843 9.8826 4.9762 5.2378 4.9167 5.2048 5.0844 #2

• • • • • • • • • • • • • • • • • • • •	-5.2939 5.1394	5.0844 5.0846	5.2621 5.2161	4.9603 7th 4.9187 =	9.9066 10.066	5.0894 5.1041
High	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000	LC Pass 5.5000 4.5000	LC Pass 11.000 9.0000	LC Pass 5.5000 4.5000
Elem Units Avge SDev %RSD	ZN ppm 5.0308 .0152 .30310	( ) ( ) ( )				
#1 #2 #3 #4	5.0211 5.0379 5.0156 5.0487					
Errors High Low	LC Pass 5.5000 4.5000					

Operator: MTW

Analysis Report

Method: QUANMET Sample Name: CCB9

Run Time: 05/25/00 12:37:15

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT JA61E

Mode: CONC Corr. Factor:-1

Units I Avge SDev	AG ppm .00037 .00089 238.78	AL ppm =	AS ppm 00485 .01704 351.48	B_ ppm 00000 .00000 143.42	BA .ppm . .00002 .00024 1133.3	BE ppm <u>*</u> .00038 .00026 68.458	CA ppm 00172 .00351 203.64
#2 #3	00040 00040 .00114	.01121 .00423 .00938 .00945	.00766 02312 .01152 01546	00000 00001 .00000 00000	00034 .00014 .00014	.00018 .00018 .00072 .00045	00489 00375 .00304 00130
High	LC Pass	LC Pass	LC Pass				
	.01000	.20000	.30000	.20000	.20000	.00500	5.0000
	01000	20000	30000	20000	20000	00500	-5.0000
Units Avge SDev	CD	CO	CR	CU	FE	K_	LI
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	00185	00075	.00267	00021	00212	.02589	00104
	.00132	.00075	.00283	.00049	.00227	.23763	.00069
	71.116	100.80	106.18	230.29	106.80	918.00	66.152
#2 #3	00122 00031 00310 00279	00112 00113 00112 .00038	.00281 00133 .00518 .00400	00064 00064 .00021 .00021	00372 00443 00018 00018	13312 03698 .37718 10354	00181 00129 00019 00086
High	LC Pass	LC Pass	LC Pass				
	.00500	.05000	.01000	.02500	.10000	5.0000	.05000
	00500	05000	01000	02500	10000	-5.0000	05000
Units Avge SDev	MG ppm 00458 .00979 213.81	MN ppm .00053 .00053 99.345	MO ppm .01408 .00418 29.693	NA ppm .00790 .00486 61.528	NI ppm .00106 .00554 522.82	PB ppm .00197 .01454 739.25	SB ppm 00011 .00531 4635.2
#1	01504	.00027	.00896	.00086	00359	.00991	00278
#2	00719	.00027	.01408	.00885	.00907	01395	.00785
#3	.00850	.00027	.01920	.01000	00000	00601	00283
#4	00458	.00133	.01408	.01190	00124	.01792	00269
Errors	LC Pass	LC Pass	LC Pass				
High	5.0000	.01500	.04000	5.0000	.04000	.10000	.06000
Low	-5.0000	01500	04000	-5.0000	04000	10000	06000
	SE	SI	SN	SR	TI	TL	V_
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	00486	.03566	.00382	.00048	.00008	.08122	00230
	.03178	.00297	.02327	.00017	.00039	.07716	.00008
	653.47	8.3400	609.37	34.748	461.88	95.002	3.5979
#1	05050	.03418	.02018	.00051	00025	.10153	00240
#2	.00387	.040 <b>1</b> 3	.00058	.00025	00025	.17112	00231

Analysis	Report
----------	--------

05/25/00 12:40:21 PM

page 2

#3 #4	.02330 .00388	.03418 cm:	02236 02784	.00066	.00042	.06671.	00220 0 <u>02</u> 30
Errors High Low	LC Pass .25000 25000	LC Pass: .50000	LC Pass .10000 10000	LC Pass .05000 05000	LC Pass .05000 05000	LC Pass .30000 30000	LC Pass .05000 05000
Elem Units Avge SDev %RSD	ZN ppm 00055 .00111 201.36	•	, e	٠.			
#1 #2 #3 #4	00149 00154 .00041 .00041						,
Errors High Low	LC Pass .02000 02000						

(COE220195						
Analysis Report (d) Ave	erages	(	05/26/00 1	0:40:32	AM	page 2
Dipula Sud	57600					
# # Sample Name	AG	AS	A game CD	CR	PB	SB
# bampie name				<u></u>		~~~
<b>60</b>			~			
1 STD1	.00151 10.6819	01357 5.37795	.00132 [:] 12.2999	.0009		
2 STD6 = 3 STD7 ==	10.0019	5.37795	12.2999	11.2538		
4 ICV3-1 0014-079-6	.49956	.25039	.24523~-	1.0079	.25042	.24808
5 ICB1	00023	.00000	.00016	.00021	00126	00059
6 ICSA 0014-088-12	00003	00040	.00244	.00163	00035	00023
7 ICSAB 0014-075-12	1.1144	1.0179	.93364	.50976	1.0284	1.0511
8 DDP6PB 9 DDP6PC	.00007 .04544	00024 1.8135	.00014 .04559	.00058 .18797	.00066 .45645	.00040 .44808
10 DDNMX	.00008	.00312	.00105	.02276	.09107	.00279
11 DDNMXP5	00012	.00039	.00022	.00485	.01867	.00014
12 DDNMXS	.05253	2.0454	.05177	.24461	.63759	.45645
13 DDNMXD	.04855	1.9003	.04821	.23030	.60026	.47524
14 DDNN3	.00015	.00426	.00090	.01735 .01845	.12028 .07628	.00397
15 DDNN5 16 CCV3-1 0014-110-3	00033 1.0370	.00259 .51696	.00060 .50391	2.0718	.51883	.00203 .51347
17 CCB1	00024	00054	.00009	.00008	.00000	.00032
18 DDLA7B	00040	00022	.00000	00022	00026	00019
19 DDLA7C	.05093	1.9916	.04880	.20364	.51377	.49634
20 DDK90	00003	.00637	00005	.01006	.02245	.00149
21 DDK90P5	00004	.00113	00003	.00183	.00507	00193
22 DDK90S 23 DDK90D	.04951 .05136	1.9337 2.0070	.04686 .04868	.20502 .21556	.51554 .53738	.47651 .50006
23 DDR90D 24 CCV3-2	1.0332	.51662	.50464	2.0694	.52226	.51899
25 CCB2	00060	.00014	00002	.00009	00088	.00035
26 DDLFVB	00013	00031	00014	.00008	00148	00046
27 DDLFVC	.05100	2.0154	.04993	.20378	.51917	L00090
28 DDK1J	00012	.00900	.00009	.00031	.00027	.00043
29 DDK1JP5	00012 .05138	.00184 2.0810	.00013 .04937	.00009 .20478	00069 .53002	.00132 00134
30 DDK1JS 31 DDK1JD	.05931	2.4121	.05679	.23678	.61215	00088
32 DDCJW	.00004	.00382	.00181	.03729	.08296	.00364
33 DDCV1	00056	.00221	.00072	.01532	.03903	00038
34 DDCVF	00021	.00102	.00040	.00185	.01305	.00000
35 DDCVJ	00054	.02407	.00767 .51412	.11868 2.1035	.10384 .53162	.00629 .52608
36 CCV3-3 37 CCB3	1.0422 $.00004$	.52518 .00017	00004	.00038	.00064	.00053
38 DDCVK	00045	.00568	.00362	.04317	.07652	.00202
39 DDCVM	00018	.00231	.00044	.00782	.00713	00003
40 DDCVW	00009	.00026	.00000	.00147	.00221	00024
41 DDK9N	00032	.00428	.00122	.01655	.00952	.00002
42 DDK9T	.00006	.00030	.00035 .50647	.00210 2.0847	00269 .52580	00116 .52502
43 CCV3-4 44 CCB4	1.0495 00032	.51991 00031	.00002	.00032	00034	
44 (CD4	00032	.00031	.00002	.00032	.00051	.00200
# Sample Name	SE	TL .				
1 STD1		04246				
2 STD6		3.99103				
3 STD7		,,,,,,				
4 ICV3-1 0014-079-6	.25101	.50774				
5 ICB1	00079	00391				

page 3

Analysis Report Averages 05/26/00 10:40:32 AM

#	Sample Name	SE	TL		
		<u> </u>			
	ICSA 0014-088-12	- 00850	00123	Ğυ [*]	<del></del>
	ICSAB 0014-075-12	1.0320	1.0973	đô	
				an	
	DDP6PC	1.8097	1.8335	80	
	DDNMX	00023	00150		
	DDNMXP5	00234	00431	ar	
	DDNMXS	2.0274	2.1624		
	DDNMXD	00089 1.8097 00023 00234 2.0274 1.8889 00180 .00045 .51895	1.9920		
	DDNN3	00180	00285		
	DDNN5	.00045	00228		
	CCV3-1 0014-110-3	.51895	1.0714		
17	CCB1	.00070	00013		
18	DDLA7B	.00024	00288		
19	DDLA7C	2.0342	2.1498		
20	DDK90	.00024 2.0342 .00016	00017		
21	DDK90P5	00006	00055		
	DDK90S	1.9496	2.0835		
	DDK90D	2.0285	2.1584		
		.52443			
	CCB2	00085	.00000		
	DDLFVB	00079 2.1878	.00525		
	DDLFVC	2.1878	2.0052		
	DDK1J	.00118	.00244		
		00107			
	DDK1JS	2.1498	2.2195		
	DDK1JD	2.5190	2.5891		
	DDCJW	.00265	.00777		
	DDCV1	.00265 .00081 00108 .00131	.00331		
	DDCVF	00108	.00052		
	DDCVJ	.53558	.00810 1.0855		
	CCV3~3	00008			
	CCB3 DDCVK	00041			
	DDCVM	00175			
	DDCVM	.00035	.00700		
	DDK9N	.00447	.00333		
	DDK9T	.00486	.01633		
	CCV3-4	.53157			
	CCB4	00229			

Analysis Report Summary

page 1

05/26/00 10:40:32 AM

				407 W	OU -			
#	Sample Name	File	-Method	Date	Time	OpID	Type	Mode.
			<u></u>					
			₩					•
1		T00526A	METTRA	05/26/00	07:31		X	IR †
2	STD6	T00526A	METTRA	05/26/00	07:36		X	IR
3	STD7	T00526A		05/26/00	07:40		X	IR
4	ICV3-1 0014-079-6	T00526A	METTRA	05/26/00	07:43		S	CONC
5	ICB1	T00526A	METTRA	05/26/00	07:48		S	CONC
6	ICSA 0014-088-12	T00526A	METTRA	05/26/00	07:52		Q	CONC
7	ICSAB 0014-075-12	T00526A	METTRA	05/26/00	07:56		Q	CONC
8	DDP6PB	T00526A	METTRA	<b>05/</b> 26/00	08:02	RJG	S	CONC
9	DDP6PC	T00526A	METTRA	05/26/00	08:06		S	CONC
10	DDNMX	T00526A	METTRA	05/26/00	08:11	RJG	S	CONC
11	DDNMXP5	T00526A	METTRA	05/26/00	08:15		S	CONC
12	DDNMXS	T00526A	METTRA	05/26/00	08:19		S	CONC
13	DDNMXD	T00526A	METTRA	05/26/00	08:23		S	CONC
14	DDNN3	T00526A	METTRA	05/26/00	08:27		S	CONC
15	DDNN5	T00526A	METTRA	05/26/00	08:31		S	CONC
16	CCV3-1 0014-110-3	T00526A	METTRA	05/26/00	08:36		S	CONC
17	CCB1	T00526A	METTRA	05/26/00	08:40		S	CONC
18	DDLA7B	T00526A	METTRA	05/26/00	08:44		S	CONC
19	DDLA7C	T00526A	METTRA	05/26/00	08:48		S	CONC
20	DDK90	T00526A	METTRA	05/26/00	08:52		S	CONC
21	DDK90P5	T00526A	METTRA	05/26/00	08:56		S	CONC
22	DDK90S	T00526A	METTRA	05/26/00	09:00		S	CONC
23	DDK90D	T00526A	METTRA	05/26/00	09:05		S	CONC
	CCV3-2	T00526A	METTRA	05/26/00	09:09		S	CONC
25	CCB2	T00526A	METTRA	05/26/00	09:13		S	CONC
26	DDLFVB	T00526A	METTRA	05/26/00	09:18		S	CONC
27	DDLFVC	T00526A	METTRA	05/26/00	09:22		S	CONC
28	DDK1J	T00526A	METTRA	05/26/00	09:26		S	CONC
29	DDK1JP5	T00526A	METTRA	05/26/00	09:30		S	CONC
30	DDK1JS	T00526A	METTRA	05/26/00	09:34		S	CONC
31	DDK1JD	T00526A	METTRA	05/26/00	09:39		S	CONC
32	DDCJW	T00526A	METTRA	05/26/00	09:43		S	CONC
	DDCV1	T00526A	METTRA	05/26/00	09:47		S	CONC
	DDCVF	T00526A	METTRA	05/26/00	09:51		S	CONC
	DDCVJ	T00526A	METTRA	05/26/00	09:55		S	CONC
	CCV3-3	T00526A	METTRA	05/26/00	09:59		S	CONC
37	CCB3	T00526A	METTRA	05/26/00	10:03		S	CONC
	DDCVK	T00526A	METTRA	05/26/00	10:08		S	CONC
	DDCVM	T00526A	METTRA	05/26/00	10:12		S	CONC
	DDCVW	T00526A	METTRA	05/26/00	10:16		S	CONC
	DDK9N	T00526A	METTRA	05/26/00	10:20		S	CONC
	DDK9T	T00526A	METTRA	05/26/00	10:24		S	CONC
43	CCV3-4	T00526A	METTRA	05/26/00	10:28		S	CONC
44	CCB4	T00526A	METTRA	05/26/00	10:33	RJG	S	CONC

i ş

Method: METTRA	Standard:	STD1
Run Time: 05/26/00	07:31:50	

Run Time:	05/26/00	07:31:50				سنشب	
Elem Avge SDev %RSD	AG .00152 .00041 27.284	.13588	AS01357 .01088 80.141	BA .00111 .00011 10.038	BE07280 .00006 .08523	CA .00316 .00001 .21060	CD .00133 .00192 144.86
#1	.00122	.13616	02127	.00119	07275	.00316	00003
#2	.00181	.13560	00588	.00103	07284	.00317	.00268
Elem	CO	CR	CU	FE	MG	MN	MO
Avge	00195	.00090	.01205	00216	00107	.00200	.00123
SDev	.00084	.00064	.00000	.00031	.00023	.00000	.00037
%RSD	43.054	70.553	.02129	14.567	21.633	.21061	29.974
#1	00255	.00135	.01205	00238	00090	.00200	.00097
#2	00136	.00045	.01205	00194	00123	.00200	.00149
Elem	NI	PB/1	PB/2	SB/1	SB/2	SE/1	SE/2
Avge	00010	.05586	01136	03676	.01854	11933	.09230
SDev	.00014	.00409	.00007	.02292	.01817	.00367	.01215
%RSD	141.42	7.3179	.59293	62.354	98.025	3.0784	13.164
#1	.00000	.05297	01141	05297	.03138	12192	.08371
#2	00019	.05875	01131	02055	.00569	11673	.10089
Elem Avge SDev %RSD	TL 04246 .00356 8.3872	V .00016 .00005 28.082	ZN 00056 .00002 4.2510				
#1 #2	04498 03994	.00019 .00013	00055 00058				

658 750

Standardization Rpt.

05/26/00 07:35:59 AM

page 2

IntStd Mode	1 Counts	2 NOTUSED	3 NOTUSED	<u>4.</u> NOTUSED E∵	5 NOTUSED	6 NOTUSED	7 NOTUSEI	D Ž.
Elem	<u>Y</u>	⁻	<b>-</b> -		<del>-</del>		~ ~	
Wavlen	371.030			ME		<b></b>		<u> </u>
Avge	15495			æ√"				<u>**</u>
~SDev	32.63325			SI	- <del>-</del>			
%RSD	.2106068		<b>-</b> →	<b>≠</b> *			- *	٠
13	25520					<del></del>		
#1	15518	<b>-</b>		-				
#2	15472				<b>-</b>	<b></b>		

05/26/00 07:40:09 AM page 1 Standard: STD6 Method: METTRA Run Time: 05/26/00 07:36:03 /<del>*2</del>.0. AG PB/2 -SB/1 SB/2 AS PB/1 CD Elem 10.018 6.4939 6-,6489 , 12,300 5.1422 5.3780 10.682 Avqe *α-*0035 .0047 .0014 .021 .002 .0023 .010 SDev .05274 .20999 .07302 .01669 .02781 .04330 .089.06 %RSD 6,.6514 10.003 6.4972 12,298 5.1433 5.3796 10.689 #1 6.4905 5.1412 6.6465 10.033 12.301 5.3763 10.675 #2 TLSE/2 SE/1 Elem 3.9910 5.1284 5.2752 Avge .0137 .0230 .0000 SDev .43662 .34432 .00024 %RSD 3.9813 5.2915 5.1284 #1 4.0007 5.1284 5.2589 #2 7 6 5 4 2 3 IntStd 1 NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED Counts Mode Elem Y Wavlen 371.030 _ -15455 --Avge - -_ -27.40039 SDev _ _ .1772946 %RSD

_ -

_ _

_ _

STL Pittsburgh

#1

#2

15435

15474

_ _

658 751

- -

05/26/00 07:43:50 AM

page 1

Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method	METTRA : 05/26/00	Standar 07:40:14	d: STD7	0014 081 Rui	1.9		eribe i
Elem Avge SDev -%RSD	AL 6.8554 .0157 .22831	BA 13.389 .044 .32743	BE 11.095 .020 .18119	A.3248002706306	-CO 2.8597 .0029 .09979	CR 11.254 .015 .13005	CU 3.5323
#1 #2	6.8665 6.8443	13.420 13.358	11.109 11.081	4.3267 4.3229	2.8618 2.8577	11.264 11.243	3.5393 3.5253
Elem Avge SDev %RSD	FE 3.8213 .0029 .07610	MG 13.583 .031 .22795	MN 9.7426 .0192 .19742 9.7562	MO 2.1442 .0014 .06694 2.1432	NI 2.3260 .0017 .07499	V .80843 .00162 .20030	ZN 2.9159 .0056 .19069 2.9198
#1 #2	3.8234 3.8192	13.605 13.562	9.7290	2.1452	2.3248	.80728	2.9119
IntStd Mode Elem Wavlen Avge SDev %RSD	1 Counts Y 371.030 15334 46.45705 .3029765	2 NOTUSED    	3 NOTUSED    	4 NOTUSED    	5 NOTUSED    	6 NOTUSED    	7 NOTUSED    
#1 #2	15301 15366						

Standardization Report

Method:	METTRA	Slo	pe = Conc	(SIR)/IR		"
77.7	_			\$7. <u></u>	** !	enger Name and and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
Element		High std	Low std	Slope	Y-intercept	Date Standardized
AG	328.068	STD6	STD1	AC .187259	000284	05/26/00 07:40:14
$\mathtt{AL}$	308.215	STD7	STD1	7.46063	-1.01377	05/26/00 07:40:14
AS	189.042	STD6	STD1	77.185476	.002518	05/26/00 07:40:14
ΒÃ	493.409	STD7	STD1	良本.298784	000333	05/26/00 07:40:14
$\mathtt{BE}$	313.042	STD7	STD1	.355197	.025858	05/26/00 07:40:14
CA	317.933	STD7	STD1	·· 23.1394	073175	05/26/00 07:40:14
CD	226.502	STD6	STD1	.081310	000108	05/26/00 07:40:14
CO	228.616	STD7	STD1	1.39777	.002728	05/26/00 07:40:14
CR	267.716	STD7	STD1	.355289	000321	05/26/00 07:40:14
CU	324.753	STD7	STD1	1.13629	013695	05/26/00 07:40:14
FE	271.441	STD7	STD1	13.1701	.028469	05/26/00 07:40:14
MG	279.078	STD7	STD1	7.36133	.007841	05/26/00 07:40:14
MN	257.610	STD7	STD1	.410652	000822	05/26/00 07:40:14
MO	202.030	STD7	STD1	1.86658	002290	05/26/00 07:40:14
NI	231.604	STD7	STD1	1.71845	.000167	05/26/00 07:40:14
PB/1	220.351	STD6	STD1	.196603	010983	05/26/00 07:40:14
PB/2	220.352	STD6	STD1	.150143	.001705	05/26/00 07:40:14
PB	220.353	NONE	NONE	.000000	.000000	*NOT STANDARDIZED
SB/1	206.831	STD6	STD1	.099453	.003656	05/26/00 07:40:14
SB/2	206.832	STD6	STD1	.154432	002862	05/26/00 07:40:14
SB	220.353	NONE	NONE	.000000	.000000	*NOT STANDARDIZED
SE/1	196.021	STD6	STD1	.190558	.022738	05/26/00 07:40:14
SE/2	196.022	STD6	STD1	.192942	017809	05/26/00 07:40:14
SE, C	220.353	NONE	NONE	000000	.000000	*NOT STANDARDIZED
TL	190.864	STD6	STD1	.495848	.021055	05/26/00 07:40:14
v	292.402	STD7	STD1	4.92728	000795	05/26/00 07:40:14
$z\overline{\overline{N}}$	213.856	STD7	STD1	1.37997	.000779	05/26/00 07:40:14

page 1

Method: METTRA Sample Name: ICV3-1 0014-079-6 Operator: RJG

Run Time: 05/26/00 07:43:55

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1

ĮV.	iode: Cor	COII.	ractor. I				्र इ.स.	$Q_{\alpha}$
	Elem Units Avge SDev %RSD	AG ppm .49956 .00087 .17483	AL ppm 11.798 .005 .04528	AS ppm .25039 .00032 .12810	BA ppm .98557 .00066 .06724	BE ppm .98880 .00176 .17785	CA prppm -24.853 .070 .28298	CD 5:00 ppm .24524 .00011 .04467
	#1 #2	.50018 .49894	11.802 11.794	.25062 .25016	.98604 .98510	.99004 .98756	24.903 24.803	.24516 .24531
	Errors High Low	LC Pass .55000 .45000	LC Pass 13.750 11.250	LC Pass .27500 .22500	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 27.500 22.500	LC Pass .27500 .22500
	Elem Units Avge SDev %RSD	CO ppm 1.0006 .0007	CR ppm 1.0079 .0016 .15848	CU ppm .95452 .00241 .25275	FE ppm 12.286 .018 .14792	MG ppm 23.720 .036 .15314	MN ppm .98457 .00079 .08062	MO ppm 1.0085 .0010 .09864
	#1 #2	1.0011	1.0091 1.0068	.95622 .95281	12.299 12.273	23.746 23.694	.98513 .98401	1.0078 1.0092
	Errors High Low	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	LC Pass 13.750 11.250	LC Pass 27.500 22.500	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000
	Elem Units Avge SDev %RSD	NI ppm .99773 .00825 .82707	PB/1 ppm .25085 .00284 1.1338	PB/2 ppm .25021 .00115 .45996	PB ppm .25042 .00171 .68472	SB/1 ppm .24902 .00273 1.0951	SB/2 ppm .24762 .00081 .32631	SB ppm .24808 .00037 .14880
	#1 #2	1.0036 .99190	.25286 .24884	.25102 .24940	.25164 .24921	.25095 .24709	.24704 .24819	.24834 .24782
	Errors High Low	LC Pass 1.1000 .90000	NOCHECK	NOCHECK	LC Pass .27500 .22500	NOCHECK	NOCHECK	LC Pass .27500 .22500
	Elem Units Avge SDev %RSD	SE/1 ppm .24700 .00241 .97620	SE/2 ppm .25301 .00162 .63934	SE ppm .25101 .00188 .74972	TL ppm .50775 .00519 1.0221	V_ ppm .98974 .00128 .12937	ZN ppm 1.0314 .0041 .39563	
	#1 #2	.24871 .24530	.25416 .25187	.25234 .24968	.51142 .50408	.99065 .98884	1.0343 1.0286	
	Errors High Low	NOCHECK	NOCHECK	LC Pass .27500 .22500	LC Pass .55000 .45000	LC Pass 1.1000 .90000	LC Pass 1.1000 .90000	

Analysis Report

IntStd Mode	1 Counts	2 NOTUSED	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSEL	 ) <u>美</u> 近	7 NOTUSED
Elem	Y					·		
Wavlen	371.030						٠	<del>-</del> -
Avge	15690						٠	
SDev	11.52570						<u> 3</u>	<b></b>
%RSD	.0734596						-	
#1	15698							
#2	15682	<b>-</b> -		n -				

Sample Name: ICB1 Method: METTRA

Operator: RJG

Run Time: 05/26/00 07:48:05

Run Time: 05/26/00 07:48:05 05.
Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CO	NC Corr.	Factor: 1					
Elem	AG	AL	AS	BA	∴ BE	CA	CD
Units	ppm	ppm	ppm	ppm	∴ ppm	ppm	ppm
Avge	00023	.00998	.00001	.00048	.00117	.01220	.00017
SDev	.00040	.00507	.00202	.00030	.00027	.00824	.00012
%RSD	171.62	50.764	34315.	62.066	23.042	67.530	69.511
#1	00051	.01357	.00143	.00027	.00098	.00638	.00025
#2	.00005	.00640	00142	.00068	.00136	.01803	.00009
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.01000	.20000	.00500	5.0000	.00500
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00150	.00021	00018	.00069	.01299	.00047	.00365
SDev	.00085	.00046	.00029	.00350	.00529	.00031	.00068
%RSD	56.508	218.99	165.70	510.82	40.750	66.333	18.577
#1	.00090	00012	00038	00179	.00925	.00025	.00413
#2	.00211	.00054	.00003	.00316	.01673	.00069	.00317
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.05000	.01000	.02500	.10000	5.0000	.01500	.04000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00115	00081	00149	00127	00145	00016	00059
SDev	.00046	.00118	.00131	.00049	.00285	.00057	.00133
%RSD	40.250	146.04	87.984	38.363	196.66	353.89	225.52
#1	.00082	00164	00056	00092	.00057	.00024	.00035
#2	.00148	.00003	00242	00161	00346	00057	00153
Errors High Low	LC Pass .04000 04000	NOCHECK	NOCHECK	LC Pass .00300 00300	NOCHECK	NOCHECK	LC Pass .06000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00053	00093	00080	00391	.00030	.00251	
SDev	.00020	.00128	.00092	.00321	.00067	.00046	
%RSD	37.926	138.01	115.95	82.039	220.01	18.395	
#1 #2	00039 00067	00002 00184	00014 00145	00164 00618		.00218 .00283	
Errors High Low	NOCHECK	NOCHECK	LC Pass .00500 00500	LC Pass .01000 01000	.05000	LC Pass .02000 02000	

_ <b></b>	IntStd Mode Elem	1 Counts Y	2 NOTUS	SEĎ.	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED	•=
	Wavlen	371.030								
	Avge	15718		٠,				<b></b> **		
	SDev	15.87468		<u></u> ).				<u>AE</u>		
	%RSD	.1009941						<del>-</del>		
	It a	1 = 2 0 5								
	#1	15707								
	#2	15730			<b></b>	<del>-</del> -				

Operator: RJG

Method: METTRA Sample Name: ICSA 0014-088-12

Run Time: 05/26/00 07:52:14

Run Time: 05/26/00 07:52:14 in Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1 Ħ.

MOGE. COI	AC COLL.	140001		JC.			74
Elem	AG	AL	AS	BA	BE	CA	CD \$\frac{1}{200}\$ .00245 .00014 5.6328
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00004	520.52	00040	.00180	00121	488.61	
SDev	.00007	1.51	.00085	.00004	.00008	1.79	
%RSD	193.40	.29050	212.20	2.0687	6.8866	.36579	
#1	00009	519.45	.00020	.00183	00115	487.35	.00235
#2	.00001	521.59	00100	.00178	00127	489.87	.00255
Errors Value Range	NOCHECK	QC Pass 500.00 20.000	NOCHECK	NOCHECK	NOCHECK	QC Pass 500.00 20.000	NOCHECK
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00116	.00163	00116	206.56	534.49	.00767	00126
SDev	.00010	.00005	.00018	.81	1.54	.00005	.00127
%RSD	8.4267	2.8551	15.283	.39269	.28751	.59687	101.05
#1	.00109	.00166	00128	205.99	533.41	.00764	00036
#2	.00123	.00160	00103	207.14	535.58	.00771	00216
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass 200.00 20.000	QC Pass 500.00 20.000	NOCHECK	NOCHECK
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00284	00780	.00337	00035	.00071	00071	00024
SDev	.00009	.00314	.00243	.00057	.00144	.00330	.00172
%RSD	3.2447	40.251	71.993	163.45	204.09	462.98	716.58
#1	.00277	00558	.00165	00075	00031	.00162	.00098
#2	.00290	01002	.00508	.00005	.00172	00304	00146
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK
Elem Units Avge SDev %RSD	SE/1 ppm 00384 .00001	SE/2 ppm 01084 .00147 13.566	SE ppm 00851 .00098 11.567	TL ppm 00123 .00035 28.313	V_ ppm .00785 .00015 1.9073	ZN ppm .00172 .00002 1.2264	
#1	00383	00980	00781	00099	.00796	.00174	
#2	00385	01188	00921	00148	.00775	.00171	
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	

Analysis	Report	QC Stand	dard	05/26/	00 07:56:20	MA C	page 2
IntStd Mode	1 Counts	n2 Inotused	3 _NOTUSED	4 NOTUSED _	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Y	~,~ -			<del></del>		
Wavlen	371.030						
Avge	14478						
SDev	43.87584						
%RSD	.3030617					<b></b>	
		, <u>*</u>			.*		
#1	14509						

#1 #2

14446

Method: ME		Sample Nam		014-075-12	2 Oper	rator: RJG	4
Run Time: Comment: S Mode: CONC	TL PITTSE	URGH ICP M Factor: 1	iet <u>als</u> anai	ysis-insti	RUMENT TRAC	CEICP	12
Units p Avge 1 SDev	AG opm 1.1144 .0008 .07209	AL ppm 524.46 .29 .05606	AS - ppm- 1.0179 .0045 .44426	BA ppm .53323 .00057 .10698	BE ppm .49756 .00167 .33606	CA ppm 488.99 1.11 .22716	CD ppm :93364 :(00325 .34762
–	L.1150 L.1139	524.25 524.67	1.0211 1.0147	.53364 .53283	.49874 .49638	489.78 488.21	.93594 .93135
Value 1	QC Pass 1.0000 20.000	QC Pass 500.00 20.000	QC Pass 1.0000 20.000	QC Pass .50000 20.000	QC Pass .50000 20.000	QC Pass 500.00 20.000	QC Pass 1.0000 20.000
Units p Avge SDev	CO ppm .50046 .00078 .15497	CR ppm .50977 .00063 .12310	CU ppm .55670 .00026 .04677	FE ppm 207.73 .18 .08491	MG ppm 535.44 .40 .07472	MN ppm .51771 .00042 .08138	MO ppm .99752 .00305 .30560
—	.50101 .49991	.51021 .50932	.55688 .55652	207.85 207.60	535.72 535.15	.51801 .51742	.99968 .99536
Value	QC Pass .50000 20.000	QC Pass .50000 20.000	QC Pass .50000 20.000	QC Pass 200.00 20.000	QC Pass 500.00 20.000	QC Pass .50000 20.000	QC Pass 1.0000 20.000
Units ] Avge SDev	NI ppm 1.0153 .0029 .28907	PB/1 ppm 1.0418 .0074 .70781	PB/2 ppm 1.0217 .0081 .79545	PB ppm 1.0284 .0079 .76589	SB/1 ppm 1.0488 .0093 .88959	SB/2 ppm 1.0523 .0011 .10786	SB ppm 1.0511 .0039 .36761
	1.0173 1.0132	1.0471 1.0366	1.0274 1.0159	1.0340 1.0228	1.0554 1.0422	1.0531 1.0515	1.0538 1.0484
Value	QC Pass 1.0000 20.000	NOCHECK	NOCHECK	QC Pass 1.0000 20.000	NOCHECK	NOCHECK	QC Pass 1.0000 20.000
Units	SE/1 ppm 1.0257 .0002 .01928	SE/2 ppm 1.0351 .0027 .26355	SE ppm 1.0320 .0019 .18270	TL ppm 1.0973 .0034 .31031	V_ ppm .52256 .00365 .69850	ZN ppm 1.0668 .0026 .24673	
• • • • • • • • • • • • • • • • • • • •	1.0258 1.0255	1.0371 1.0332	1.0333	1.0997 1.0949	.52514 .51998	1.0687 1.0650	
Errors Value Range	NOCHECK	NOCHECK	QC Pass 1.0000 20.000	QC Pass 1.0000 20.000	QC Pass .50000 20.000	QC Pass 1.0000 20.000	

658 761

Analysis Report QC Standard 05/26/00 08:00:30 AM

IntStd 1 Mode FCounts —	2 _ NOTUSED	3 NOTUSED	4 NOTUS	⇒1 5 ED∵ NOTUSED	6 NOTUSED	7 NOTUSED
Elem -Y				<del>→</del>		
Wavlen 371.030				, <del></del>		
Avge14432						
Avge 14432 SDev -45.32527				114		
%RSD .3140522						
				•		
#1 14400						<del></del>
#2 14464	<del>-</del> -					

Sample Name: DDP6PB Operator: RJG Method: METTRA

Run Time: 05/26/00 08:02:50 2:5.

Comment: STL PITTSBURGH-ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Comment: Mode: CO		Factor: 1		11010_11101	IOIIDII II	OI.	
Elem	AG	AL ppm = .05881 .00326 5.5466	AS	BA	BE	CA	CD
Units	ppm		ppm	ppm	ppm	ppm	ppm
Avge	.00007		00025	.00106	.00050	.37114	.00015
SDev	.00015		.00162	.00005	.00003	.00754	.00008
%RSD	222.07		658.76	4.5908	6.0766	2.0328	55.681
#1	00004	.06112	.00090	.001 <b>0</b> 2	.00048	.36581	.00009
#2	.00018	.05651	00139	.00109	.00052	.37648	.00020
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.01000	.20000	.00500	5.0000	.00500
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00022	.00058	.00023	.05767	.07600	.00103	.00179
SDev	.00110	.00020	.00006	.01205	.00612	.00004	.00026
%RSD	494.61	33.749	23.466	20.898	8.0540	3.7221	14.482
#1	00055	.00044	.00019	.04915	.07167	.00100	.00160
#2	.00100	.00072	.00027	.06619	.08032	.00105	.00197
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.05000	.01000	.02500	.10000	5.0000	.01500	.04000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00073	.00308	00054	.00067	00060	.00090	.00040
SDev	.00190	.00037	.00134	.00102	.00195	.00054	.00101
%RSD	261.61	11.997	249.39	153.17	326.23	59.967	250.68
#1	00062	.00334	.00041	.00139	00198	.00052	00031
#2	.00207		00149	00006	.00078	.00129	.00112
Errors High Low	LC Pass .04000 04000	NOCHECK	NOCHECK	LC Pass .00300 00300	NOCHECK	NOCHECK	LC Pass .06000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00707	.00219	00089	00496	.00003	.01541	
SDev	.00042	.00134	.00075	.00115	.00023	.00009	
%RSD	5.8925	60.988	84.312	23.168	810.34	.56944	
#1	00736	.00314	00036	00415	00014	.01535	
#2	00677	.00125	00142	00577	.00019	.01547	
Errors High Low	NOCHECK	NOCHECK	LC Pass .00500 00500	LC Pass .01000 01000	LC Pass .05000 05000	LC Pass .02000 02000	

658 763

Analysis Report

05/26/00 08:06:56 AM

IntStd	1 -Counts -	2 'NOTUSED	3 NOTUSED	NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUS	EĎ
Elem	Y			7° k ~~i== m				
Wavlen	371.030			· <del>_</del>				2
	15337			<b>'</b>	<del>-</del> -	<b></b>		
_Avge	2.651650	<b>-</b> -				<b></b>		
_SDev _%RSD	.0172891					<del></del>		-
								•
#1	15339							
#2	15335							

Sample Name: DDP6PC Method: METTRA

Operator: RJG

Run Time: 05/26/00 08:06:59

Comment: STL PITTSBURGH_ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1 OT -

Mode: coi	ve corr.	raccox			01		
Elem Units Avge SDev %RSD	AG ppm	AL ppm 1.7525 .0062 .35393	AS ppm 1.8135 .0055 .30518	BA ppm 1.7795 .0018 .10040	BE ppm . 04749 . 00004 . 07969	CA ppm L.32674 .00950 2.9090	CD ppm .04560 .00029 .63238
#1	.04530	1.7481	1.8096	1.7807	.04746	L.32002	.04539
#2	.04560	1.7569	1.8174	1.7782	.04751	L.33346	.04580
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Low	LC Pass
High	.06000	2.4000	2.4000	2.4000	.06000	60.000	.06000
Low	.04000	1.6000	1.6000	1.6000	.04000	40.000	.04000
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.47072	.18797	.21891	.95013	L.06644	.46136	.94469
SDev	.00050	.00068	.00023	.01689	.01131	.00152	.00520
%RSD	.10547	.36394	.10382	1.7777	17.017	.32829	.55032
#1	.47037	.18749	.21907	.93818	L.05845	.46028	.94101
#2	.47107	.18845	.21875	.96207	L.07444	.46243	.94836
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Low	LC Pass	LC Pass
High	.60000	.24000	.30000	1.2000	60.000	.60000	1.2000
Low	.40000	.16000	.20000	.80000	40.000	.40000	.80000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.46796	.45984	.45476	.45645	.44206	.45109	.44808
SDev	.00120	.00225	.00279	.00261	.00434	.00649	.00577
%RSD	.25616	.48968	.61363	.57204	.98157	1.4384	1.2883
#1	.46880	.45824	.45279	.45460	.43899	.44650	.44400
#2	.46711	.46143	.45673	.45830	.44513	.45568	.45217
Errors High Low	LC Pass .60000 .40000	NOCHECK	NOCHECK	LC Pass .60000 .40000	NOCHECK	NOCHECK	LC Pass .60000 .40000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	1.8059	1.8116	1.8097	1.8335	.45509	.49082	
SDev	.0069	.0068	.0068	.0041	.00114	.00203	
%RSD	.37986	.37369	.37574	.22267	.25170	.41304	
#1	1.8011	1.8068	1.8049	1.8307	.45428	.48939	
#2	1.8108	1.8164	1.8145	1.8364	.45590	.49226	
Errors High Low	NOCHECK	NOCHECK	LC Pass 2.4000 1.6000	LC Pass 2.4000 1.6000	LC Pass .60000 .40000	LC Pass .60000 .40000	

658 765

Analysis Report

05/26/00 08:11:05 AM

IntStd Mode	1 Counts	2 NOTUSED	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	-7 _NOTUSED
Elem	Y						
Wavlen	371.030						
Avge SDev	15391						
SDev	38.50210	<del>-</del> -					***
%RSD	.2501538		<b></b>				Text and
#1	15419		- <b>-</b>				<b></b>
#2	15364						

High

Low

Operator: RJG

-.02000

-.05000

page 1

Sample Name: DDNMX Method: METTRA

Run Time: 05/26/00 08:11:08 Time

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP .7 Corr. Factor: 1 Mode: CONC BA ____ CA CD BE AS AG ALElem_ ppm mqq mqq ppm-mqq ppm mqq Units .06784 .00075 318.04 .00105 .00312 .00008 17.688 Avge .42 .00006 .00088 .00016 .00004 .008 .00020 SDev .13303 5.9013 5.7430 .23843 .04653 28.038 248.51 %RSD .00110 .00078 318.34 .06795 .00374 17.682 #1 -.00006 317.74 .00101 .00072 .06772 .00250 .00022 17.694 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 5.0000 10.000 10.000 600.00 10.000 600.00 High 2.0000 -.00500 -5.0000 -.00500 -.20000 -.01000-.20000 Low -.01000 ИM MO MG CU FΕ CR CO Elem ppm ppm ppm mqq ppm ppm Units mag .01023 9.5573 .04714 4.4155 .00250 .01343 .02276 Avge .00010 .0256 .0010 .00003 .00028 .00005 .00006 SDev .05485 .96751 .02308 .40336 .26760 1.2172 2.6071 %RSD .04716 .01030 4.4148 9.5754 .00254 .02257 .01339 #1 .01016 .04712 4.4162 .01347 9.5392 .02296 .00245 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20.000 600.00 10.000 500.00 10.000 20.000 100.00 High -.04000 -.10000 -5.0000 -.01500 -.02500 -.01000 -.05000 Low SB/2 SB PB SB/1 PB/2PB/1Elem NI mag ppm mag mqq mqq Units ppm mag .00296 .00280 .00249 .09107 .09440 .08941 .00908 Avge .00152 .00125 .00205 .00063 .00017 .00032 .00023 SDev 54.152 42.265 82.432 .18888 .35485 .66972 2.5596 %RSD .00387 .00394 .00384 .09130 .08953 .09485 .00892 #1 .00173 .00207 .09084 .00104 .08929 .00925 .09396 #2 LC Pass NOCHECK LC Pass NOCHECK NOCHECK NOCHECK LC Pass Errors 10.000 5.0000 High 100.00 -.06000 -.00300 -.04000 Low ZN  $\mathtt{TL}$ V SE/2 SE SE/1 Elem ppm ppm ppm ppm mqq Units mqq .13694 .02566 -,00150 -.00024 .00405 -.00882 Avge .00007 .00257 .00003 .00143 .00291 .00154 SDev .04861 .11940 72.017 602.82 171.39 %RSD 17.446 .13689 .02568 .00032 .00199 -.00125 #1 -.00773 .02564 .13698 .00077 -.00332 .00611 -.00990 #2 LC Pass LC Pass LC Pass LC Pass NOCHECK NOCHECK Errors 50.000 5.0000

6250 STL Pittsburgh

10.000

-.01000

10.000

-.00500

658 767

05/26/00 08:15:14 AM

Analysis Report

IntStd Mode	1 Counts	2 NOTUSED_	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Y						
Wavlen	371.030				<del></del>		
Avge	15134						
SDev	14.21326		·				
%RSD	.0939170						
#1	15124						
#2	15144						

Sample Name: DDNMXP5 Operator: RJG Method: METTRA

Run Time: 05/26/00 08:15:17

Comment STL PITTSBURGH ICP METALS ANALYSIS INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1

Elem	AG	AL	AS	BA	BE	CA	CD
Units	ppm	ppm	ppm	ppm =-	ppm	ppm	ppm
Avge	00013	3.3519	.00039	.01327	.00087	64.623	.00022
SDev	.00002	.0066	.00297	.00002	.00001	.054	.00002
%RSD	13.819	.19758	757.96	.16247	1.4895	.08325	7.0871
#1	00011	3.3566	00171	.01326	.00088	64.661	.00023
#2	00014	3.3472	.00250	.01329	.00086	64.585	.00021
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00153	.00486	.00132	1.9030	.86367	.00952	.00256
SDev	.00016	.00002	.00024	.0003	.00688	.00006	.00018
%RSD	10.401	.49021	18.186	.01795	.79636	.63556	6.9735
#1	.00164	.00487	.00115	1.9028	.85881	.00948	.00268
#2	.00141	.00484	.00148	1.9032	.86853	.00956	.00243
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00257	.01951	.01825	.01867	00146	.00094	.00014
SDev	.00103	.00039	.00211	.00128	.00090	.00115	.00106
%RSD	40.090	1.9792	11.534	6.8322	61.518	121.53	738.21
#1	.00329	.01978	.01676	.01777	00082	.00176	.00090
#2	.00184	.01924	.01974	.01957	00209	.00013	00061
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00413	00146	00235	00432	.00211	.03179	
SDev	.00084	.00105	.00042	.00145	.00000	.00180	
%RSD	20.425	72.115	17.877	33.551	.14714	5.6519	
#1	00473	00071	00205	00534	.00211	.03052	
#2	00353	00220	00264	00329	.00211	.03306	

658 769 page 2

05/26/00 08:19:23 AM

Analysis Report

IntStd Mode	1 Counts	[⊣] 2 {notused	3 NOTUSED	4 NOTUSED	5 NOTUSED T	6 NOTUSED	7 NOTUSED
Elem	Y					. <del></del>	
Wavlen	371.030	<b></b>	••		<b>→</b> →		
Avge	15405						
SDev	22.16752	1-1				<b></b>	
%RSD	.1438980	<b>*</b>			'		
		<u>-</u>			-		
#1	15389			<del>-</del> -			
#2	15421					<del>-</del>	

05/26/00 08:23:31 AM page 1 Analysis Report

Operator: RJG

M.

<u>.</u>

Method: METTRA Sample Name: DDNMXS

Run Time: 05/26/00 08:19:26

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

- Mode: CONC Corr. Factor: 1

Mode: CON	ic corr.	ractor: 1					***** ^* ****
Elem	AG	AL	AS	BA	BE	CA	CD
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm <u>.</u>
Avge	.05253	28.047	2.0454	2.1191	.05494	130.93	.05178
SDev	.00031	.016	.0030	.0043	.00019	.40	.00011
%RSD	.59560	.05602	.14866	.20298	.34532	.30766	.21918
#1	.05231	28.058	2.0475	2.1222	.05508	131.22	.05170
#2	.05275	28.036	2.0432	2.1161	.05481	130.65	.05186
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem Units Avge SDev %RSD	CO ppm .53247 .00057 .10800	CR ppm .24462 .00023 .09403	CU ppm .27441 .00007 .02696	FE ppm 10.359 .005	MG ppm 2.6247 .0076 .28835	MN ppm .56512 .00080 .14195	MO ppm 1.0271 .0010 .09662
#1	.53288	.24478	.27436	10.356	2.6301	.56569	1.0264
#2	.53206	.24446	.27446	10.362	2.6194	.56455	1.0278
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.53987	.64750	.63265	.63759	.44741	.46097	.45645
SDev	.00591	.00228	.00253	.00093	.00360	.00059	.00159
%RSD	1.0948	.35148	.40027	.14605	.80345	.12796	.34844
#1	.54405	.64911	.63086	.63693	.44487	.46055	.45533
#2	.53569	.64589	.63444	.63825	.44995	.46138	.45758
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	2.0216	2.0302	2.0274	2.1624	.55266	.69958	
SDev	.0046	.0179	.0135	.0147	.00046	.00240	
%RSD	.22839	.88289	.66556	.67781	.08390	.34368	
#1	2.0184	2.0175	2.0178	2.1727	.55233	.70128	
#2	2.0249	2.0429	2.0369	2.1520	.55299	.69788	
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	LC Pass 50.000 05000	LC Pass 5.0000 02000	

658 771 page 2

05/26/00 08:23:31 AM

Analysis Report

4 6 7 IntStd 17 **∽**5 2 3 _NOTUSED NOTUSED ONOTUSED NOTUSED NOTUSED NOTUSED Mode Counts ___ --Elem Y = - == -7 = -Wavlen 371.030 ----- ---15180 --Avge --SDev 37:93586 --, --.2498991 --___ %RSD - -#1 15154 _ _ ___ - ---15207 _ _ #2

Operator: RJG

Method: METTRA Sample Name: DDNMXD Run Time: 05/26/00 08:23:35

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1

Mode: CON	Corr.	Factor: 1				3 Braybons	
Elem Units Avge SDev %RSD	AG ppm .04855 .00029 .59008	AL ppm ===================================	AS ppm 1.9003 .0021 .10861	BA ppm 1.9464 .0032 .16469	BE ppm .05104 .00001 .02175	CA ppm = 82.677 .218 .26394	CD ppm .04822 .00045 .93242
#1	.04835	29.715	1.8988	1.9487	.05104	82.523	.04790
#2	.04876	<b>29.</b> 700	1.9017	1.9442	.05105	82.831	.04854
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.49607	.23031	.25328	11.348	1.9173	.53028	1.0835
SDev	.00146	.00125	.00023	.050	.0007	.00083	.0051
%RSD	.29374	.54271	.09003	.43683	.03521	.15666	.47325
#1	.49504 ·	.22942	.25344	11.313	1.9169	.52970	1.0799
#2	.49710	.23119	.25312	11.383	1.9178	.53087	1.0871
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.50469	.60654	.59714	.60027	.46949	.47812	.47525
SDev	.00073	.00012	.00622	.00419	.00379	.00109	.00199
%RSD	.14457	.02019	1.0425	.69850	.80681	.22771	.41821
#1	.50520	.60645	.59274	.59730	.46681	.47735	.47384
#2	.50417	.60663	.60154	.60323	.47217	.47889	.47665
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	1.8714	1.8976	1.8889	1.9920	.51628	.66698	
SDev	.0043	.0135	.0104	.0019	.00098	.00097	
%RSD	.23051	.71008	.55186	.09471	.19042	.14479	
#1	1.8684	1.8881	1.8815	1.9907	.51698	.66630	
#2	1.8745	1.9072	1.8963	1.9933	.51559	.66766	
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	LC Pass 50.000 05000	LC Pass 5.0000 02000	

IntStd Mode T	1 Counts -	2 NOTUSED	NOTUSED	4 Ed NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED	邮字
Elem '	Y							
Wavlen	371.030		<b></b> -	eu				<u></u>
Avge	15278			'				-
SDev	38.11333						~ =	1
%RSD	.2494695							•
#1	15305	<del>-</del> -						
#2	15251			<del></del>			<del>-</del> -	

Sample Name: DDNN3 Method: METTRA

08.

Operator: RJG

Run Time: 05/26/00 08:27:43 Comment: STL PITTSBURGH ICP_METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1 7

Elem	AG	AL	AS	BA	-	CA	CD
Units	ppm	ppm	ppm	ppm		ppm	ppm
Avge	.00015	12.725	.00427	.03851		22.694	.00091
SDev	.00029	.079	.00122	.00029		.135	.00000
%RSD	190.71	.62144	28.702	.75497		.59410	.44419
#1	00005	12.669	.00340	.03831	.00141	22.598	.00090
#2	.00036	12.781	.00513	.03872	.00136	22.789	.00091
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00218	.01736	.01165	6.1248	.52065	.02232	.00516
SDev	.00026	.00012	.00008	.0321	.00551	.00011	.00110
%RSD	11.806	.69033	.70037	.52440	1.0592	.48041	21.268
#1	.00237	.01727	.01159	6.1021	.51675	.02225	.00593
#2		.01744	.01171	6.1475	.52455	.02240	.00438
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00641	.12230	.11927	.12028	.00236	.00478	.00398
SDev	.00014	.00129	.00077	.00008	.00118	.00147	.00138
%RSD	2.2486	1.0587	.64539	.06840	50.213	30.846	34.670
#1	.00651	.12139	.11982	.12034	.00319	.00583	.00495
#2	.00631	.12322	.11873	.12022	.00152	.00374	
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00728	.00092	00181	00286	.02149	.10280	
SDev	.00354	.00103	.00049	.00255	.00040	.00089	
%RSD	48.602	110.95	27.330	89.366	1.8469	.86262	
#1	00978	.00165	00216	00105	.02177	.10217	
#2	00478	.00020	00146	00466	.02121	.10342	
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	LC Pass 50.000 05000	LC Pass 5.0000 02000	

658 775

Analysis Report

05/26/00 08:31:49 AM

IntStd Mode_	1 Counts	2 NOTUSED	3 NOTU	ısēd	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Y			Profes	- <del>-</del>		<b>~</b> -	
Wavlen	371.030							<del>-</del> -
Avge	15410	<b></b>						¹
SDev	33.76435		<u></u>	\$				<b>-</b> - <u>-</u> <u>-</u> <u>-</u> .
%RSD	.2191028							
#1	15434							
#2	15386							

157%

Operator: RJG Sample Name: DDNN5 Method: METTRA

Run Time: 05/26/00 08:31:52

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC - Corr. Factor: 1

Mode: Cui	AC COII.	ractor. I			<del>-7</del> -		
Elem	AG	AL	AS	BA	BE	CA	CD
Units	ppm-	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00033	15.806	.00259	.04130	.00169	18.801	.00061
SDev	.00041	.042	.00026	.00007	.00012	.062	.00014
%RSD	123.74	.26851	9.9296	.16551	7.2767	.33205	22.998
#1	00004	15.836	.00241	.04135	.00161	18.845	.00051
#2	00062	15.776	.00278	.04126	.00178	18.757	.00070
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00214	.01845	.01047	8.2957	.50085	.02330	.00518
SDev	.00000	.00028	.0008	.0125	.00218	.00001	.00003
%RSD	.12135	1.5054	.77414	.15122	.43580	.05591	.63825
#1	.00214	.01865	.01052	8.3046	.50239	.02331	.00521
#2	.00214	.01826	.01041	8.2869	.49931	.02329	.00516
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00799	.07929	.07478	.07628	.00188	.00211	.00204
SDev	.00052	.00217	.00023	.00056	.00164	.00099	.00011
%RSD	6.4409	2.7314	.31391	.74012	87.254	46.701	5.5194
#1	.00763	.08082	.07462	.07668	.00072	.00281	.00212
#2	.00836	.07776	.07495	.07589	.00304	.00142	.00196
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00516	.00325	.00045	00228	.02247	.07577	
SDev	.00014	.00145	.00092	.00096	.00010	.00012	
%RSD	2.6604	44.456	203.16	42.029	.42081	.15447	
#1	00506	.00223	00020	00160	.02253	.07586	
#2	00526	.00428	.00110	00296	.02240	.07569	
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	50.000	LC Pass 5.0000 02000	

05/26/00 08:35:58 AM

Analysis Report

<b>-</b> -	IntStd Mode	1 Counts	2 NOTUSE	, D开 。	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOT	USED	7 NOTUSED	
	Elem	Y									_
	Wavlen	371.030				- <del>-</del>				***	
	Avge	15484		T		<del></del>			<u>1</u> L		
	SDev	68.55345		<u>,</u>					-42/-		
	%RSD	.4427352		*					•		
				:					:		
	#1	15436									
	#2	15533									

page 1

Sample Name: CCV3-1 0014-110-3 Operator: RJG Method: METTRA Run Time: 05/26/00 08:36:01  $\tilde{n}$ П Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP Æ Corr. Factor: 1 Mode: CONC ∍de∵ <u>.</u>... BE CA CD ≥7 BA ALAS Elem AG ppm mag maq ppm 鄞山 ppm ppm Units mqq 51.747 .50392 1, 9853 2.0753 24.068 .51697 1.0370 Avge .00103 .118 .200 .00343 ap 0161 .0058 .0060 SDev .22839 .20376 .28052 .66268 .81343 .83061 %RSD .57431 51.664 .50319 2.0712 1.9739 23.927 .51455 1.0328 #1 .50464 2.0794 51.831 .51939 1.9967 24.209 1.0412 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 55.000 .55000 2.2000 2.2000 27.500 .55000 1.1000 High 45.000 .45000 1.8000 22.500 .45000 1.8000 .90000 Low MG MN MO FECU CR CO Elem ppm ppm ppm ppm mqq Units mqq ppm 2.0754 2.0442 25.392 49.738 2.0670 2.0718 1.9574 Avge .0095 .259 .0145 .0145 ,162 .0097 **SDev** .0106 .46251 .70075 .51989 .63795 .74311 .46868 .51520 %RSD 2.0651 49.555 2.0375 25,277 1.9471 2.0649 2.0594 #1 2.0509 2.0857 49.921 1.9677 25.506 2.0786 2.0745 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 2.2000 2.2000 55.000 27,500 2.2000 2.2000 2.2000 High 1.8000 1.8000 45.000 22.500 1.8000 1.8000 1.8000 Low SB SB/2 SB/1 PB PB/2PB/1 Elem NI ppm ppm ppm ppm maga ppm Units ppm .51347 .51260 .51522 .51857 .51884 .51937 2.0623 Avge .00112 .00097 .00514 .00422 .00264 .00052 SDev .0054 .18871 .21745 .50858 .99811 .81321 .10065 %RSD .26385 .51279 .51339 .51158 .51697 .51974 .51559 2.0585 #1 .51182 .51416 .52070 .51885 .52155 .51900 2.0662 #2 LC Pass NOCHECK LC Pass NOCHECK NOCHECK NOCHECK LC Pass Errors .55000 .55000 2,2000 High .45000 .45000 1.8000 Low ZNTL V SE SE/2 Elem SE/1 mqq ppm mag ppm ppm Units mqq 2,1002 2.0408 1.0714 .51897 .51895 .51891 Avqe .0057 .0075 .0073 .00009 .00020 .00067 SDev .27085 .35690 .01712 .69800 .03922 %RSD .12998 2.0356 2.0962 1.0661 .51902 .51883 .51939 #1 2.1043 2.0459 1.0766 .51889 .51912 .51844 #2 LC Pass LC Pass LC Pass NOCHECK LC Pass NOCHECK Errors 2.2000 2.2000 1.1000 .55000 High 1.8000 1.8000 .90000 .45000 Low

658 779

05/26/00 08:40:07 AM

Analysis Report

IntStd Mode	1 Counts	≒2 ⊭NOTUSED	3 NOTUSED	4 NOTUSED	5 yz NOTUSED:	6 NOTUSED	7 NOTUSED
Elem	Y						
Wavlen	371.030				-		
Avge	15499						
SDev	20.82443	15					
%RSD	.1343588	}					
		1					
#1	15514						
#2	15484						

Operator: RJG _. Sample Name: CCB1 Method: METTRA

Run Time: 05/26/00 08:40:10

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1

Mode. co.	.,,	<del></del>	-				
Elem Units Avge SDev %RSD	AG ppm 00024 .00018 74.460	AL ppm .06365 .01169 18.371	AS ppm	BA ppm .00030 .00007 22.716	BE ppm .00179 .00002 .87687	CA ppm .01059 .00195 18.386	CD ppm .00010 .00008 85.430
#1	00011	.07192	00039	.00025	.00178	.00922	.00004
#2	00037	.05538	00070	.00034	.00181	.01197	.00016
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.01000	.20000	.00500	5.0000	.00500
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00124	.00008	00220	.00751	.00927	.00032	.00483
SDev	.00025	.00018	.00050	.00415	.00000	.00003	.00138
%RSD	20.422	217.02	22.569	55.289	.03087	11.020	28.553
#1	.00142	.00021	00255	.01044	.00927	.00029	.00581
#2	.00106	00004	00185	.00457	.00927	.00034	.00386
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.05000	.01000	.02500	.10000	5.0000	.01500	.04000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00045	00158	.00078	00001	00050	.00074	.00033
SDev	.00008	.00098	.00165	.00078	.00077	.00168	.00086
%RSD	17.487	62.313	211.99	13573.	152.94	226.01	263.45
#1	.00039	00088	00039	00055	00105	.00193	.00094
#2		00228	.00195	.00054	.00004	00044	00028
Errors High Low	LC Pass .04000 04000	NOCHECK	NOCHECK	LC Pass .00300 00300	NOCHECK	NOCHECK	LC Pass .06000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	.00139	.00036	.00070	00013	.00016	.00316	
SDev	.00014	.00071	.00052	.00213	.00000	.00028	
%RSD	9.9441	198.17	74.013	1629.9	2.0582	8.8305	
#1	.00130	00014	.00034	.00138	.00017	.00296	
#2	.00149	.00086	.00107	00164	.00016	.00336	
Errors High Low	NOCHECK	NOCHECK	LC Pass .00500 00500	LC Pass .01000 01000	LC Pass .05000 05000	LC Pass .02000 02000	

Analysis Report 05/26/00

05/26/00 08:44:16 AM

IntStd 12 Mode = Counts	2 _NOTUSED	3 NOTUSED	4 NOTUSE	5 Di NOTUSED	6 NOTUSED	7 NOTUSED	
Elem Y				<del>-</del> Y			
Wavlen 371.030				- · -3			
Avge <u>1</u> 5469	<del></del>			7			
SDev =31.00705	<b></b>		<u></u>				
%RSD .2004506							
#1 15447				<del>-</del> <del>-</del>		<del>-</del> -	
#2 15491				<b></b>			

Operator: RJG

Method: METTRA Sample Name: DDLA7B Run Time: 05/26/00 08:44:19 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor:-1

M	lode: CON	NC Corr.	Factor:-I				<del></del> 1	
	Elem Units Avge SDev %RSD	AG ppm 00040 .00015 37.914	AL ppm .06453 .01312 20.330	AS ppm 00023 .00133 584.69	BA ppm .00004 .00005 132.99	BE ppm .00182 .00006 3.5787	CA ppm03301 .00069 2.0953	CD ppm .00001 .00011 1354.1
	#1 #2	00051 00030	.07381 .05525	00117 .00071	.00007	.00177 .00186	.03252 .03350	00007 .00009
	Errors High Low	LC Pass .01000 01000	LC Pass .20000 20000	LC Pass .01000 01000	LC Pass .20000 20000	LC Pass .00500 00500	LC Pass 5.0000 -5.0000	LC Pass .00500 00500
	Elem Units Avge SDev %RSD	CO ppm .00075 .00012 15.938	CR ppm 00023 .00016 70.641	CU ppm 00296 .00040 13.596	FE ppm .01191 .00784 65.800	MG ppm .00430 .00101 23.610	MN ppm 00002 .00002 89.621	MO ppm .00178 .00018 10.268
	#1 #2	.00084 .00067	00011 00034	00324 00267	.00637 .01745	.00358 .00501	00003 00001	.00191 .00165
	Errors High Low	LC Pass .05000 05000	LC Pass .01000 01000	LC Pass .02500 02500	LC Pass .10000 10000	LC Pass 5.0000 -5.0000	LC Pass .01500 01500	LC Pass .04000 04000
	Elem Units Avge SDev %RSD	NI ppm .00028 .00062 225.61	PB/1 ppm 00006 .00243 3761.9	PB/2 ppm 00037 .00006 -17.462	PB ppm 00027 .00077 289.16	SB/1 ppm 00051 .00152 300.51	SB/2 ppm 00003 .00077 2308.8	SB ppm 00019 .00001 5.5991
	#1 #2	00016 .00072	00178 .00165	00032 00041	00081 .00028	00158 .00057	.00051 00058	00018 00020
	Errors High Low	LC Pass .04000 04000	NOCHECK	NOCHECK	LC Pass .00300 00300	NOCHECK	NOCHECK	LC Pass .06000 06000
	Elem Units Avge SDev %RSD	SE/1 ppm 00249 .00013 5.1789	SE/2 ppm .00160 .00337 210.31	SE ppm .00024 .00221 912.79	TL ppm 00289 .00152 52.480	V_ ppm 00016 .00000 .37993	ZN ppm .00509 .00008 1.4827	
	#1 #2	00258 00240	.00399 00078	.00180 00132	00182 00396	00016 00016	.00504 .00515	
	Errors High Low	NOCHECK	NOCHECK	LC Pass .00500 00500	LC Pass .01000 01000	LC Pass .05000 05000	LC Pass .02000 02000	

IntStd Mode	1 .Counts	2 NOTUSED	3 NOTUSED	MOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED点
Elem	Y	<b></b> -		E			
Wavlen	371.030			w -			
Avge	15581			<u>-</u> -	<b></b>		
SDev	52.60833		<b></b>	- <del></del>			
%RSD	.3376365			<u></u>		<del></del>	
#1	15544						
#2	15619						

Operator: RJG

∵ਹਿਲ.

Method: METTRA Sample Name: DDLA7C

Run Time: 05/26/00 08:48:29

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1 Ţ.

Elem	AG	AL	AS	BA	BE ppm	CA	CD
Units	ppm	-ppm	ppm	ppm		ppm	ppm
Avge	.05093	2.0607	1.9916	1.9517		50.378	.04881
SDev	.00094	.0682	.0424	.0367		.997	.00095
%RSD	1.8524	3.3078	2.1277	1.8822		1.9790	1.9442
#1	.05160	2.1089	2.0216	1.9777	.05294	51.083	.04948
#2	.05026	2.0125	1.9616	1.9257	.05207	49.673	.04814
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.06000	2.4000	2.4000	2.4000	.06000	60.000	.06000
Low	.04000	1.6000	1.6000	1.6000	.04000	40.000	.04000
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.50646	.20364	.24334	.90219	48.714	.50231	1.0171
SDev	.01054	.00399	.00498	.02800	.961	.00970	.0179
%RSD	2.0802	1.9612	2.0456	3.1031	1.9728	1.9311	1.7628
#1	.51391	.20647	.24686	.92199	49.393	.50916	1.0298
#2	.49901	.20082	.23982	.88240	48.034	.49545	1.0045
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.60000	.24000	.30000	1.2000	60.000	.60000	1.2000
Low	.40000	.16000	.20000	.80000	40.000	.40000	.80000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.50709	.51905	.51114	.51377	.48992	.49956	.49635
SDev	.01049	.01130	.01196	.01174	.00922	.01080	.01027
%RSD	2.0684	2.1775	2.3391	2.2847	1.8815	2.1623	2.0700
#1	.51450	.52704	.51959	.52207	.49643	.50720	.50361
#2	.49967	.51105	.50268	.50547	.48340	.49192	.48908
Errors High Low	LC Pass .60000 .40000	NOCHECK	NOCHECK	LC Pass .60000 .40000	NOCHECK	NOCHECK	LC Pass .60000 .40000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	2.0251	2.0387	2.0342	2.1498	.49443	.52890	
SDev	.0312	.0483	.0426	.0409	.00970	.01141	
%RSD	1.5425	2.3688	2.0949	1.9021	1.9608	2.1576	
#1	2.0472	2.0728	2.0643	2.1787	.50129	.53697	
#2	2.0030	2.0045	2.0040	2.1209	.48758	.52083	
Errors High Low	NOCHECK	NOCHECK	LC Pass 2.4000 1.6000	LC Pass 2.4000 1.6000	LC Pass .60000 .40000	LC Pass .60000 .40000	

05/26/00 08:52:35 AM

Analysis Report

7 -6 4 5 3 *** 2 IntStd 1 NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED Mode- Counts _ -Elem Y Wavlen 371.030 - -Avge 15524 275.6301 " --SDev %RSD 1.775521 ___ #1 15329 - -#2 15719

page 1

Method: METTRA Sample Name: DDK90 Operator: RJG 

Run Time: 05/26/00 08:52:39
Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1 ·C-

Mode: CON	c Corr.	Factor: 1		.6-			
Units Avge SDev	AG ppm 00004 .00014 386.91	AL ppm 6.3031 .0154 .24461	AS ppm .00638 .00044 6.9845	BA 30 ppm 20369 .00016 .07696	BE ppm .00212 .00009 4.0844	CA ppm 38.692 .022 .05703	CD ppm 00005 .00009 176.07
#1	.00006	6.3140	.00669	.20358	.00218	38.676	.00001
#2	00014	6.2922	.00606	.20381	.00206	38.708	00012
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00223	.01007	.01999	6.5145	5.1910	.08145	.00533
SDev	.00026	.00023	.00047	.0016	.0123	.00006	.00109
%RSD	11.422	2.2478	2.3373	.02413	.23722	.06997	20.465
#1	.00241	.00991	.01966	6.5156	5.1823	.08141	.00610
#2		.01023	.02032	6.5133	5.1997	.08149	.00456
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00824	.02475	.02131	.02246	.00184	.00132	.00149
SDev	.00046	.00105	.00063	.00007	.00015	.00191	.00132
%RSD	5.5387	4.2337	2.9475	.31231	8.2987	144.64	88.611
#1	.00856	.02549	.02087	.02241	.00195	.00267	.00243
#2	.00791	.02401	.02176	.02251	.00174	00003	.00056
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00213	.00131	.00017	00018	.01447	.05687	
SDev	.00145	.00224	.00101	.00319	.00002	.00025	
%RSD	68.222	170.74	609.55	1800.3	.13992	.44021	
#1	00110	00027	00055	.00208	.01446	.05669	
#2	00316	.00289	.00088	00243	.01449	.05704	
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	LC Pass 50.000 05000	LC Pass 5.0000 02000	

IntStd _Mode	1 Counts	2 NOTUSED	3 NOTUSED	4. NOTUSED	5 NOTUSED	6 NOTUSED	5- 7 ₩ NOTUSED
Elem	Y						*
Wavlen	371.030			<del>-</del> -			. <del></del>
Avge	15549						
SDev	24.88961						
%RSD	.1600726		<b></b>				÷
			•				•
#1	15567						<b>→ -</b>
#2	15531						

Method: METTRA Sample Name: DDK90P5 Operator: RJG

Run Time: 05/26/00 08:56:48

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1 JON.

Elem Units Avge SDev %RSD	AG ppm00004 .00007 165.76	AL ppm 1.2853 .0051 .39536	AS ppm .00113 .00213 188.12	BA ppm	BE ppm .00182 .00015 8.0397	CA ppm 7.7714 .0116 .14946	CD ppm 00003 .00003 98.861
#1	00009	1.2889	00037	.04048	.00192	7.7797	00005
#2	.00001	1.2817	.00264	.04044	.00172	7.7632	00001
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00171	.00183	.00140	1.3166	1.0272	.01633	.00158
SDev	.00010	.00002	.00010	.0048	.0020	.00002	.00001
%RSD	5.6955	1.0479	7.0137	.36214	.19359	.14232	.33217
#1	.00178	.00182	.00133	1.3132	1.0287	.01631	.00157
#2	.00164	.00184	.00147	1.3199	1.0258	.01634	.00158
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00178	.00487	.00518	.00508	00034	00273	00193
SDev	.00023	.00012	.00014	.00014	.00022	.00156	.00097
%RSD	13.134	2.5333	2.7215	2.6614	63.820	57.206	50.178
#1	.00195	.00478	.00508	.00498	00019	00384	00262
#2	.00162	.00496	.00528	.00517	00049	00163	00125
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00180	.00081	00006	00055	.00062	.01512	
SDev	.00357	.00222	.00029	.00442	.00000	.00021	
%RSD	199.06	275.08	475.83	802.43	.47618	1.3864	
#1	.00073	00076	00026	00368	.00062	.01497	
#2	00432	.00237	.00014	.00257	.00062	.01527	

IntStd Mode Elem	l Counts_ Y	2 NOTUS	ED	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Wavlen	371.030	<b></b>						
Avge	15446							
SDev	20.93008		- T					<del>-</del> -
%RSD	.1355036	<u></u>	-					
			•				4	
#1	15461	<b></b>		<del></del>			<b></b>	
#2	15431							

-R	Method: Metun Time: Comment: Mode: COM	05/26/00 STL PITTS	09.00.58	me: DDK90S	rais-inst	Ope	rator: RJG CEICP	Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Si
<u>,</u>	Elem Units Avge SDev %RSD	AG ppm .04951 .00008 .16535	AL ppm 10.093 .009	AS ppm 1.9337 .0053 .27470	BA ppm 2.0657 .0007 .03603	BE ppm .05131 .00008 .15991	CA ppm 85.604 .178 .20749	CD ppm
	#1	.04957	10.100	1.9374	2.0662	.05137	85.729	.04727
	#2	.04946	10.086	1.9299	2.0652	.05125	85.478	.04646
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
	Low	01000	20000	01000	20000	00500	-5.0000	00500
	Elem	CO	CR	CU	FE	MG	MN	MO
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.48809	.20502	.25587	7.2666	52.364	.56073	.98132
	SDev	.00044	.00027	.00003	.0250	.054	.00065	.00236
	%RSD	.09061	.13164	.01113	.34394	.10289	.11688	.24090
	#1	.48778	.20521	.25585	7.2843	52.402	.56119	.97965
	#2	.48840	.20483	.25589	7.2489	52.325	.56026	.98299
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
	Low	05000	01000	02500	10000	-5.0000	01500	04000
	Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.49080	.52196	.51233	.51554	.47366	.47794	.47651
	SDev	.00141	.00044	.00443	.00281	.00539	.00268	.00001
	%RSD	.28762	.08354	.86362	.54429	1.1370	.56095	.00107
	#1	.49180	.52165	.51546	.51752	.47747	.47604	.47652
	#2	.48980	.52227	.50920	.51356	.46985	.47983	.47651
	Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
	Elem Units Avge SDev %RSD	SE/1 ppm 1.9385 .0015 .07940	SE/2 ppm 1.9552 .0095 .48648	SE ppm 1.9496 .0069 .35169	TL ppm 2.0835 .0197 .94554	V_ ppm .49607 .00085 .17232	ZN ppm .56033 .00262 .46794	
	#1 #2	1.9395 1.9374	1.9619 1.9484	1.9544 1.9447	2.0974 2.0696	.49668 .49547	.56219 .55848	
	Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	LC Pass 50.000 05000	LC Pass 5.0000 02000	

7 1 27 2 Counts NOTUSED 1.3 4 6 5 NOTUSED IntStd NOTUSED NOTUSED NOTUSED / NOTUSED Mode Elem Y -j --_ _ Wavlen 371.030 --15649 ³ Avge -- 剪 54.97755 SDev - -%RSD .3513139 15610 - -#1 --_ -___ #2 15688

## Analysis Report

Method: METTRA Sample Name: DDK90D Operator:
Run Time: 05/26/00 09:05:07
Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP Operator: RJG ·

Comment:	STL PITTS	BURGH ICP	METALS ANA	LYSIS-INST	RUMENT TRA	CEICP	M.
Mode: CON		Factor: 1					-mr 
Elem	AG	AL	AS	BA	BE	CA	~ CD
Units	ppm	ppm	ppm	ppm	ppm	ppm	——ppm
Avge	.05137	10.683	2.0070	2.1429	.05340	89.962	г.04869
SDev %RSD	.00007	.060 .55790	.0054 .27082	.0128 .59902	.00028	.382	r. 00022 · . 46006
#1 #2	.05142 .05132	10.640 10.725	2.0031 2.0108	2.1339 2.1520	.05320 .05359	89.692 90.232	.04853
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.50988	.21557	.26882	7.6705	54.495	.58596	1.0287
SDev	.00323	.00075	.00130	.0282	.279	.00316	.0044
%RSD	.63247	.34669	.48320	.36811	.51286	.53934	.42685
#1	.50760	.21504	.26790	7.6505	54.298	.58372	1.0256
#2	.51216	.21610	.26974	7.6904	54.693	.58819	1.0318
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.51788	.54147	.53534	.53738	.49787	.50117	.50007
SDev	.00305	.00046	.00149	.00084	.00258	.00133	.00175
%RSD	.58991	.08536	.27772	.15589	.51869	.26522	.34925
#1	.51572	.54180	.53429	.53679	.49604	.50023	.49883
#2	.52004	.54114	.53639	.53798	.49969	.50211	.50130
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	2.0126	2.0364	2.0285	2.1584	.51190	.57584	
SDev	.0067	.0126	.0106	.0026	.00287	.00257	
%RSD	.33051	.61961	.52410	.11944	.56094	.44579	
#1	2.0079	2.0275	2.0210	2.1566	.50987	.57402	
#2	2.0173	2.0453	2.0360	2.1602	.51393	.57765	
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	LC Pass 50.000 05000	LC Pass 5.0000 02000	

05/26/00 09:09:13 AM

Analysis Report

IntStd Mode	1 Counts	2 NOTUSED	3 NOTUSED	4 NOTU	J <u>SED</u>	5 NOTUSED	6 NOTUSED	7 NOTUSED	· 基
Elem 27					÷		<b>-</b>		134,
Wavlen	371.030				14				.i.,
	15496	<del></del>						<b></b>	•
Avge SDev 74	18.63268				226			<del></del>	~~~
%RSD	.1202401				<del></del>			***	
					,				-
#1	15509								ļ
#2	15483						<del></del>		

Operator: RJG

Sample Name: CCV3-2 Method: METTRA

Run Time: 05/26/00 09:09:16

Run Time: 05/26/00 09:09:16 Comment: STL PITTSBURGHTICP METALS ANALYSIS-INSTRUMENT TRACETCP

Mode: CONC Corr. Factor: 1

I	Mode: COM	C Corr.	Factor: 1				102	
	Elem Units Avge SDev %RSD	AG ppm 1.0332 .0005	AL ppm ===================================	AS ppm .51663 .00190 .36839	BA ppm 1.9571 .0023 .11622	BE ppm 2.0779 .0034 .16335	CA ppm 51.760 10.123 .23849	CD ppm .50464 .00084 .16649
	#1	1.0329	23.759	.51528	1.9555	2.0803	51.847	.50524
	#2	1.0335	23.765	.51797	1.9587	2.0755	51.673	.50405
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	1.1000	27.500	.55000	2.2000	2.2000	55.000	.55000
	Low	.90000	22.500	.45000	1.8000	1.8000	45.000	.45000
	Elem	CO	CR	CU	FE	MG	MN	MO
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	2.0624	2.0694	1.9396	25.211	49.679	2.0406	2.0829
	SDev	.0049	.0027	.0005	.016	.036	.0024	.0040
	%RSD	.23719	.12967	.02587	.06453	.07262	.11988	.19371
	#1	2.0659	2.0713	1.9392	25.200	49.705	2.0424	2.0800
	#2	2.0590	2.0675	1.9399	25.223	49.654	2.0389	2.0857
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	2.2000	2.2000	2.2000	27.500	55.000	2.2000	2.2000
	Low	1.8000	1.8000	1.8000	22.500	45.000	1.8000	1.8000
	Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	2.0591	.51986	.52346	.52226	.52192	.51754	.51900
	SDev	.0069	.00169	.00064	.00013	.00093	.00203	.00166
	%RSD	.33594	.32536	.12289	.02569	.17726	.39263	.32051
	#1	2.0640	.52106	.52300	.52235	.52257	.51897	.52017
	#2	2.0542	.51866	.52391	.52217	.52126	.51610	.51782
	Errors High Low	LC Pass 2.2000 1.8000	NOCHECK	NOCHECK	LC Pass .55000 .45000	NOCHECK	NOCHECK	LC Pass .55000 .45000
	Elem Units Avge SDev %RSD	SE/1 ppm .52174 .00049 .09448	SE/2 ppm .52578 .00074 .14097	SE ppm .52444 .00033 .06297	TL ppm 1.0756 .0021 .19606	V_ ppm 2.0346 .0015 .07487	ZN ppm 2.0955 .0052 .25005	
	#1 #2	.52209 .52139	.52526 .52631	.52420 .52467	1.0741 1.0771	2.0356 2.0335	2.0992 2.0918	
	Errors High Low	NOCHECK	NOCHECK	LC Pass .55000 .45000	LC Pass 1.1000 .90000	LC Pass 2.2000 1.8000	LC Pass 2.2000 1.8000	

658 795 page 2

05/26/00 09:13:22 AM

Analysis Report

7 5 6 4 3 <del>''</del> IntStd 1 NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED Mode___ Counts - ~ Y Elem - -Wavlen 371.030 _ _ 15395 Avge =--- ==== SDev 32.24448 - -_ _ .2094437 %RSD **-** ---- --15372 #1 _ _ - -#2 15418

٠, ,

£* .

(<u>)</u>

Operator: RJG

Analysis Report

Sample Name: CCB2 Method: METTRA

Run Time: 05/26/00 09:13:25

Run Time: 05/26/00 09:13:25 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1

Elem	AG ppm00061 .00003 4.4689	AL	AS	BA	BE.	CA	CD
Units		ppm	ppm	ppm	ppm:	ppm	ppm
Avge		.09821	.00015	.00039	.00249	.01161	00003
SDev		.00193	.00012	.00009	.00011	.00353	.00004
%RSD		1.9652	78.301	23.633	4.4959	30.398	140.66
#1	00059	.09957	.00023	.00032	.00257	.00912	00006
#2	00063	.09684		.00045	.00241	.01411	00000
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.01000	.20000	.00500	5.0000	.00500
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00128	.00010	00347	.00488	.01119	.00040	.00515
SDev	.00001	.00003	.00012	.00655	.00406	.00008	.00125
%RSD	.46523	35.431	3.4590	134.06	36.320	19.907	24.327
#1	.00128	.00007	00356	.00025	.00832	.00035	.00604
#2	.00127	.00012	00339	.00952	.01406		.00427
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.05000	.01000	.02500	.10000	5.0000	.01500	.04000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00050	00082	00092	00088	.00002	.00051	.00035
SDev	.00016	.00192	.00078	.00012	.00207	.00021	.00083
%RSD	31.157	235.16	84.920	13.643	8502.8	40.227	235.42
#1	.00061	.00054	00147	00080	00144	.00037	00023
#2	.00039	00218	00037	00097	.00149	.00066	.00094
Errors High Low	LC Pass .04000 04000	NOCHECK	NOCHECK	LC Pass .00300 00300	NOCHECK	NOCHECK	LC Pass .06000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00258	.00001	00085	.00001	.00017	.00330	
SDev	.00041	.00322	.00228	.00524	.00001	.00017	
%RSD	15.992	33950.	267.97	98639.	3.7535	5.0966	
#1 #2	00287 00229	00226 .00228	00247 .00076	00370 .00371	.00016 .00017	.00319	
Errors High Low	NOCHECK	NOCHECK	LC Pass .00500 00500	LC Pass .01000 01000	LC Pass .05000 05000	LC Pass .02000 02000	

05/26/00 09:17:31 AM

Analysis Report

IntStd Mode	1 Counts	2 NOTUS	ED.	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Y		-				<del>-</del> -	
Wavlen	371.030							
Avge	15420						***	~ ~
SDev	63.18041							
%RSD	.4097190							
			, ,					
#1	15465							
#2	15376							

- 17

Operator: RJG Sample Name: DDLFVB Method: METTRA

Run Time: 05/26/00 09:18:15

ime. Comment: STL PITTSBURGH ICP METALS ANALYSIS INSTRUMENT TRACEICP

Mode: -CONC Corr. Factor: 1 ≟Œ′.

Mode. cor				•			
Elem	AG	AL	AS	BA ppm 5 .00007 .00004 60.376	BE	CA	CD
Units-	ppm	ppm	ppm		ppm	ppm	ppm
Avge	00013	.14788	00031		.00354	.04825	00014
SDev	.00053	.07215	.00085		.00180	.00661	.00004
%RSD	399.92	48.785	268.79		50.777	13.698	25.897
#1	00051	.19890	00091	.00004	.00481	.04358	00012
#2	.00024	.09687	.00028		.00227	.05292	00017
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.01000	.20000	.00500	5.0000	.00500
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00181	.00009	00557	.00471	.00831	00003	.00022
SDev	.00009	.00048	.00298	.00126	.00266	.00008	.00001
%RSD	5.1024	541.32	53.513	26.823	32.058	230.67	3.0894
#1	.00175	00025	00767	.005 <b>60</b>	.01019	00009	.00021
#2	.00188	.00043	00346	.00381	.00642	.00002	.00022
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.05000	.01000	.02500	.10000	5.0000	.01500	.04000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00011	00448	.00001	00149	.00056	00097	00046
SDev	.00054	.00169	.00032	.00078	.00115	.00357	.00199
%RSD	511.03	37.658	3428.6	52.345	207.20	368.04	432.72
#1	00049	00567	00022	00204	.00137	00349	00187
#2	.00028	00329	.00024	00094	00026	.00155	.00095
Errors High Low	LC Pass .04000 04000	NOCHECK	NOCHECK	LC Pass .00300 00300	NOCHECK	NOCHECK	LC Pass .06000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	.00376	00307	00079	.00526	.00063	.00572	
SDev	.00109	.00001	.00036	.00774	.00022	.00024	
%RSD	28.850	.17127	45.116	147.21	35.106	4.1712	
#1	.00453	00307	00054	H.01073	.00078	.00589	
#2	.00299	00306	00105	00022	.00047	.00556	
Errors High Low	NOCHECK	NOCHECK	LC Pass .00500 00500	LC Pass .01000 01000	LC Pass .05000 05000	LC Pass .02000 02000	

05/26/00 09:22:21 AM

Analysis Report

IntStd Mode -	1 — Counts Æ	_	3 NOTUSED	4 NOTUSED	5 ±	6 NOTUSED	7 NOTUSED
Elem	Υ			<b>-</b> -	<del>-</del> <u>-</u>		
Wavlen	371.030						
Avge	15627						
SDev	$42.1080\overline{7}^{21}$				72	<del></del>	
%RSD	.2694507						
#1	15657						<del></del>
#2	15598			<del>-</del> -			
ζ* (	<b>,</b>						

Operator: RJG Method: METTRA Sample Name: DDLFVC

Run Time: 05/26/00 09:22:25

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

- Mode: CONC Corr. Factor: 1

P	iode: cor	AC COLT.	140001. 1	- <del>-</del>				
-	Elem Units Avge SDev %RSD	AG ppm .05100 .00014 .26508	AL ppm 2.0928 .0066 .31423	AS ppm 2.0154 .0065 .32379	BA ppm 1.9125 .0028 .14656	BE ppm .05409 .00005 .09269	CA ppm 42.433 .007 .01641	CD ppm = .04993 .00002 .04625
	#1	.05110	2.0882	2.0108	1.9105	.05413	42.438	.04992
	#2	.05091	2.0975	2.0200	1.9145	.05406	42.428	.04995
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
	High	.06000	2.4000	2.4000	2.4000	.06000	60.000	.06000
	Low	.04000	1.6000	1.6000	1.6000	.04000	40.000	.04000
	Elem	CO	CR	CU	FE	MG	MN	MO
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.51179	.20379	.23431	.92325	40.517	.50336	L.00041
	SDev	.00176	.00045	.00054	.00111	.023	.00003	.00059
	%RSD	.34470	.22191	.23047	.11970	.05686	.00497	144.46
	#1	.51054	.20411	.23392	.92247	40.501	.50335	L.00083
	#2	.51304	.20347	.23469	.92403	40.534	.50338	L00001
	Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Low
	High	.60000	.24000	.30000	1.2000	60.000	.60000	1.2000
	Low	.40000	.16000	.20000	.80000	40.000	.40000	.80000
	Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Avge	.51330	.51839	.51956	.51917	00117	00077	L00091
	SDev	.00171	.00167	.00093	.00007	.00078	.00046	.00057
	%RSD	.33230	.32141	.17992	.01323	66.919	59.606	62.755
	#1	.51209	.51957	.51890	.51912	00062	00045	L00050
	#2	.51451	.51721	.52023	.51922	00173	00110	L00131
	Errors High Low	LC Pass .60000 .40000	NOCHECK	NOCHECK	LC Pass .60000 .40000	NOCHECK	NOCHECK	LC Low .60000 .40000
	Elem Units Avge SDev %RSD	SE/1 ppm 2.1990 .0130 .59171	SE/2 ppm 2.1822 .0013 .06164	SE ppm 2.1878 .0034 .15704	TL ppm 2.0052 .0014 .06765	V_ ppm .49433 .00023 .04645	ZN ppm .53852 .00076 .14016	
	#1 #2	2.1898 2.2082	2.1831 2.1812	2.1854 2.1902	2.0043 2.0062	.49449 .49417	.53905 .53798	
	Errors High Low	NOCHECK	NOCHECK	LC Pass 2.4000 1.6000	LC Pass 2.4000 1.6000	LC Pass .60000 .40000	LC Pass .60000 .40000	

05/26/00 09:26:30 AM

Analysis Report

IntStd Mode	1 Counts:	2 NOTUSED	3 NOTUSED	4 NOTUSED	5 NOTUSE	- 25	6 NOTUSED	7 NOTUSED
Elem	Y	~ = =				÷.		<del>-</del> -
Wavlen	371.030							
Avge	15564		<del></del>			-		<del>-</del> -
SDev	20.93008					· East		
%RSD	.1344741				<b>⊶</b> ∸	-		<b>-</b>
#1	15579		<b></b>					
#2	15550							

Operator: RJG Method: METTRA Sample Name: DDK1J

Run Time: 05/26/00 09:26:34 =

Run Time: 05/26/00 09:26:34 To Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1-

nouc. co.	.,.						
Elem	AG	AL	AS	BA	BE	CA ppm 331.28 .47 .35716	CD
Units	ppm	ppm	-ppm	ppm	ppm		ppm
Avge	00013	.10509	.00900	.29279	.00252		.00009
SDev	.00029	.00626	.00079	.00116	.00005		.00004
%RSD	223.27	5.9549	8.7256	.39555	1.8994		46.301
#1	.00007	.10951	.00845	.29361	.00256	131.61	.00006
#2	00033	.10066	.00956	.29197	.00249	130.95	.00012
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00139	.00031	.00067	4.4146	25.114	.94809	00027
SDev	.00006	.00016	.00042	.0108	.091	.00314	.00067
%RSD	4.3991	51.275	62.179	.24473	.36237	.33120	251.40
#1	.00143	.00043	.00037	4.4222	25.178	.95031	00074
#2	.00135		.00096	4.4069	25.050	.94587	.00021
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00104	00523	.00302	.00027	.00077	.00027	.00044
SDev	.00108	.00085	.00147	.00070	.00056	.00062	.00023
%RSD	103.84	16.200	48.610	255.95	73.135	229.20	51.990
#1	.00028	00463	.00198	00022	.00037	.00071	.00060
#2	.00181	00583	.00405	.00076	.00117	00017	.00028
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	.00924	00283	.00119	.00245	.00075	.43938	
SDev	.00226	.00313	.00133	.00023	.00000	.00160	
%RSD	24.469	110.43	112.21	9.4538	.50523	.36505	
#1	.00764	00062	.00213	.00261	.00075	.44051	
#2	.01084	00504	.00025	.00229	.00074	.43824	
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	LC Pass 50.000 05000	LC Pass 5.0000 02000	

Analysis Report 05/26/00 09:30:40 AM

IntStd Mode	- _1' JCounts	2 _NOTUSED	3 _ NOTUSED	4 NOTUSE	· 加 D按	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	-Y							
Wavlen	371.030				ت			
Avge	15683							
SDev	21.60197						- ~	
%RSD	.1377402		- <del>-</del>		•			
#1	15668							
#2	15698							

Operator: RJG Sample Name: DDK1JP5 Method: METTRA

Run Time: 05/26/00 09:30:43

- Comment: STL-PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1 -

Elem Units Avge SDev %RSD	AG ppm 00013 .00010 80.419	AL ppm .10314 .01132 10.977	AS -pom .00185 .00057 31.067	BA ppm .05831 .00170 2.9137	BE ppm .00261 .00006 2.4732	CA 7 ppm 26.381 .562 2.1285	CD .ppm .00013 .00003 24.187
#1	00006	.11115	.00144	.05711	.00265	25.984	.00016
#2	00020	.09513	.00226	.05951	.00256	26.778	.00011
Elem Units Avge SDev %RSD	CO ppm .00147 .00006 4.0752	CR ppm .00009 .00007 72.316	CU ppm 00316 .00000	FE ppm .88068 .02095 2.3785	MG ppm 4.8570 .1132 2.3315	MN ppm .19145 .00479 2.5002	MO ppm .00041 .00009 22.610
#1	.00151	.00014	00316	.86587	4.7769	.18807	.00047
#2	.00143	.00004	00317	.89549	4.9370	.19484	.00034
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00066	00231	.00011	00070	.00084	.00156	.00132
SDev	.00039	.00055	.00137	.00073	.00104	.00018	.00023
%RSD	58.583	23.770	1296.9	104.78	124.25	11.256	17.369
#1	.00039	00192	00086	00122	.00157	.00144	.00148
#2		00270	.00108	00018	.00010	.00169	.00116
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	.00094	00208	00108	.00128	.00347	.09104	
SDev	.00198	.00411	.00340	.00257	.00023	.00171	
%RSD	209.98	197.05	315.49	200.53	6.5657	1.8809	
#1	00046	00499	00348	00054	.00363	.08983	
#2	.00234	.00082	.00133	.00310	.00331	.09225	

05/26/00 09:34:48 AM

Analysis Report

IntStd Mode	1 Counts -	2 NOTUSED	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED	产
Elem	Y			<del>Si</del> ir.				· 建二
Wavlen	371.030	<b></b> -		^1				ي. سائد
Avge	15563							
SDev	44.47729	<b></b>		- <del> </del>				-
%RSD	.2857933			<del>-</del>			<b></b>	-
#1	15531	<b>-</b> -						
#2	15594							

Operator: RJG Sample Name: DDK1JS Method: METTRA

Run Time: 05/26/00 09:34:52

Run Time: 05/26/00 09:34:52
Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1 T:

Mode: Cor	MC COTT.	raccor. I			į.		
Elem Units Avge SDev %RSD	AG ppm .05139 .00016 .30366	AL -ppm 2.2406 .0152 .67621	AS ppm 2.0810 .0051 .24678	BA ppm 2.2431 .0087 .38886		CA 178.06 .61 .34509	CD ppm .04937 .00011 .22521
#1	.05128	2.2513	2.0846	2.2492	.05430	178.50	.04945
#2	.05150	2.2299	2.0774	2.2369	.05387	177.63	.04929
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.51136	.20478	.25133	5.3177	72.278	1.4632	00011
SDev	.00088	.00031	.00034	.0263	.227	.0041	.00034
%RSD	.17176	.15282	.13344	.49454	.31430	.28250	310.12
#1	. <b>5</b> 1199	.20500	.25157	5.3363	72.439	1.4662	00035
#2	.51074	.20456	.25109	5.2991	72.117	1.4603	.00013
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.51534	.53132	.52937	.53002	00016	00193	00134
SDev	.00074	.00019	.00309	.00199	.00075	.00108	.00097
%RSD	.14293	.03664	.58346	.37646	458.83	56.060	72.471
#1	.51586	.53119	.53156	.53143	.00037	00116	00065
#2	.51482	.53146	.52719	.52861	00070	00269	00203
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	2.1438	2.1528	2.1498	2.2195	.49818	.96568	
SDev	.0034	.0024	.0004	.0079	.00004	.00270	
%RSD	.16049	.11087	.02076	.35725	.00792	.28014	
#1	2.1414	2.1544	2.1501	2.2251	.49821	.96759	
#2	2.1463	2.1511	2.1495	2.2139	.49815	.96376	
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	LC Pass 50.000 05000	LC Pass 5.0000 02000	

05/26/00 09:38:58 AM

Analysis Report

IntStd Mode —	1 -Counts	2 NOTUSED	3 NOTUS	; E <u>D</u>	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Y			<u>*</u>	<del></del>		<b></b>	
Wavlen	371.030	- <i>-</i>						
Avge	15413				<b></b>			<b></b> ,
SDev	14.95558			<u> </u>	·			<u>T</u>
%RSD	.0970349	<del>-</del> -					<del>-</del>	*
				•				u u
#1	15402	<del></del>						
#2	15423							

Operator: RJG T-Sample Name: DDK1JD Method: METTRA

Run Time: 05/26/00 09:39:01 05, Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC - Corr. Factor: 1 

Mode: CON	C→ Corr.	Factor: 1			7		
Elem Units Avge SDev %RSD	AG ppm .05931 .00028 .47371	AL ppm 2.5839 .0128 .49526	AS ppm 2.4121 .0022 .09288	BA ppm 2.5503 .0000	BE 	CA ppm 178.68 .20 .10939	CD ppm .05679 .00061 1.0776
#1	.05911	2.5930	2.4105	2.5503	.06241	178.54	.05636
#2	.05951	2.5749	2.4137	2.5503	.06239	178.82	.05722
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.59176	.23678	.29261	5.4098	75.411	1.5247	00017
SDev	.00056	.00092	.00020	.0058	.033	.0019	.00009
%RSD	.09508	.38757	.06868	.10692	.04392	.12184	53.775
#1	.59216	.23614	.29276	5.4058	75.387	1.5234	00023
#2	.59136	.23743	.29247	5.4139	75.434	1.5260	00010
Errors	LC Pass	LC Pass	LC Pass	LC Pass	600.00	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00		10.000	20.000
Low	05000	01000	02500	10000		01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.59489	.61293	.61176	.61215	.00128	00197	00088
SDev	.00004	.00352	.00156	.00221	.00003	.00107	.00070
%RSD	.00609	.57397	.25456	.36106	2.2563	54.437	79.651
#1	.59486	.61542	.61286	.61372	.00130	00272	00138
#2	.59492	.61045	.61066	.61059	.00126	00121	00039
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300		NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	2.5180	2.5195	2.5190	2.5891	.58013	1.0421	
SDev	.0093	.0030	.0051	.0032	.00101	.0003	
%RSD	.37106	.12035	.20381	.12433	.17327	.02975	
#1	2.5114	2.5173	2.5153	2.5914	.58085	1.0418	
#2	2.5246	2.5216	2.5226	2.5869	.57942	1.0423	
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 0100	50.000	LC Pass 5.0000 02000	

05/26/00 09:43:06 AM

Analysis Report

IntStd Mode	1 Counts	2 - NOTUSED	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 S NOTUSED	7 NOTUSED
Elem	Y	<b></b> -					
Wavlen	371.030					<b></b>	
Avge	15376	3.78	- **	<del></del>		( _m ==	<b>→ →</b>
SDev	21.38998			100 100			
%RSD	.1391089		<b></b>		<del>-</del> -		
		-					
#1	15392						<b>-</b> -
#2	15361						

page 1

Operator: RJG Sample Name: DDCJW -Method: METTRA Run Time: 05/26/00 09:43:10 Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP í. " :Ai Corr. Factor: 1 ÷. Mode: CONC đe CD CA : Z<u>s</u> BE BA ALAS AG Elem ppm mag )Din ppm ppm-maga mqq Units mgq 76.085 .00181 į. .00249 .00383 .07354 5.9414 .00004 Avqe .00005 .00010 .169 .00007 ij. .00023 .0115 .00002 SDev 2.6215 4.0910 .22160 .09766 5.9752 .19274 42.044 %RSD 75.966 .00178 .00256 .07360 .00399 5.9333 .00003 #1 76,205 .00185 .00242 .07349 .00367 5.9495 #2 .00006 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 5.0000 600.00 10.000 10.000 600.00 10.000 2.0000 High -.00500 -5.0000 -.00500 -.01000 -.20000 -,20000 -.01000 Low MO MG MN FE CU CR CO Elem ppm ppm ppm ppm ppm mqq Units ppm .00152 .22198 11.644 12.686 .03729 .04757 .00685 Avge .00007 .00059 .034 .007 .00025 .00030 .00046 SDev 4.7054 .05592 .26583 .26508 .52640 6.7665 .80596 %RSD .00157 .22156 11.639 .04739 12.662 .03708 #1 .00652 .00147 .22240 12.710 11.648 .04775 .00718 .03751 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 10.000 20.000 600.00 10.000 500.00 20.000 100.00 High -.04000 -.01500 -5.0000 -.10000 -.02500 -.01000 -.05000 Low SB SB/2 SB/1 PB PB/2PB/1NIElem mqq ppm ppm ppm mgq ppm Units ppm .00365 .00274 .00547 .08509 .08296 .07872 .04105 Avge .00006 .00005 .00029 .00050 .00075 .00111 .00002 **SDev** 1.7271 1.7637 5.2627 .60674 .02473 .87557 2.7046 %RSD .00369 .00270 .00567 .08456 .08261 .07870 .04183 #1 .00277 .00360 .00527 .08332 .08561 .07873 .04026 #2 LC Pass LC Pass NOCHECK NOCHECK NOCHECK NOCHECK LC Pass Errors 10.000 5.0000 100.00 High -.06000 -.00300 -.04000 Low ZN V TLSE SE/2 SE/1 Elem mag mqq ppm ppm mqq Units maga .03494 .56630 .00777 .00265 .00039 .00718 Avge .00135 .00479 .00013 .00039 .00072 .00262 SDev .23858 61.597 .36173 14.856 36.401 183.75 %RSD .56534 .03485 .00439 .00089 .00237 .00534 #1 .56726 .03502 .00293 .01116 -.00012 #2 .00903 LC Pass LC Pass LC Pass LC Pass NOCHECK NOCHECK Errors 5.0000 50.000 10.000 10.000 High -.02000 -.05000 -.01000 -.00500 Low

05/26/00 09:47:16 AM

Analysis Report

IntStd Mode	1 Counts	2 NOTUSED	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Υ ==-		<u> </u>				
Wavlen	371.030	<b>-</b> -					
Avge	15427						
Avge SDev	56.49742		±		15		
%RSD	.3662219				5	<del></del>	
	1.				,		
#1	15467	H =					
#2	15387						

Operator: RJG 🗼

Method: METTRA Sample Name: DDCV1

Run Time: 05/26/00 09:47:19
Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP
Mode: CONC Corr. Factor: 1

Mode: CON	Corr.	Factor: 1	ing -				<del></del>
Elem	AG	AL	AS	BA	BE	CA	CD
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	00056	2.5802	.00221	.02912	.00256	29.102	.00072
SDev	.00017	.0098	.00011	.00026	.00016	.078	.00019
%RSD	30.288	.37817	4.9805	.89777	6.2070	.26649	26.505
#1	00044	2.5871	.00229	.02894	.00267	29.157	.00086
#2	00068	2.5733	.00213	.02931	.00245	29.048	.00059
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00336	.01533	.01488	5.1392	4.3395	.09866	.00044
SDev	.00006	.00055	.00003	.0188	.0042	.00006	.00024
%RSD	1.8205	3.5571	.18705	.36565	.09564	.06507	56.096
#1	.00332	.01571	.01490	5.1525	4.3425	.09870	.00026
#2	.00341	.01494	.01486	5.1260	4.3366	.09861	.00061
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.01339	.03774	.03968	.03903	.00094	00104	00038
SDev	.00093	.00040	.00224	.00163	.00033	.00119	.00069
%RSD	6.9363	1.0734	5.6356	4.1667	35.277	114.90	179.96
#1	.01404	.03745	.03810	.03788	.00117	00188	00087
#2	.01273		.04126	.04018	.00070	00020	.00010
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm.	ppm	ppm	ppm	ppm	
Avge	.00711	00233	.00081	.00332	.01459	.20559	
SDev	.00516	.00079	.00224	.00396	.00075	.00066	
%RSD	72.494	33.751	275.80	119.47	5.1245	.32038	
#1	.01076	00178	.00240	.00612	.01512	.20606	
#2	.00347	00289	00077	.00052	.01406	.20512	
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	LC Pass 50.000 05000	LC Pass 5.0000 02000	

Analysis Report

05/26/00 09:51:25 AM

; page 2

IntStd Mode	力 一 Counts	2 NOTUSED	3 NOTUSED	4 NOTUS	ED _{EC}	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	≃-Y				ترتيخ			
Wavlen	371.030		<del>-</del> -		<u></u>			
Avge	15408		<b></b>		7			
SDev	<del>7</del> 71.24101							
%RSD	4623705		<b>→</b> •					
	k				ŧ,			
#1	15357	<b></b> ,	<del>, -</del>				<del>-</del> -	
#2	15458							

Operator: RJG Sample Name: DDCVF Method: METTRA

Run Time: 05/26/00 09:51:29

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Corr. Factor: 1 -Mode: CONC CD CA BEBA AS AL AG Elem ppm ppm_ ppm ppm 🏯 mqq ppm Units ppm 15.943 .00040 .01420 .00263 .49548-.00103 -.00021 Avge .00013 .010 .00002 .00001 .00118 .00127 .00017 SDev 33.254 .06425 .58597 .06774 115.10 .25571 80.633 %RSD 15.936 .00031 .00262 .01420 .00019 .49458 -.00009 #1 .00050 15.950 .00264 .01421 .00187 .49637 -.00033 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors LC Pass 5.0000 600.00 10.000 10.000 10.000 600.00 2.0000 High -.00500 -5.0000 -.20000 -.00500 -.01000 -.20000 -.01000 Low MN MO MG FECU CR CO Elem ppm mqq ppm ppm mag ppm mqq Units .00048 1.7982 .03300 .68381 .00673 .00167 .00185 Avge .00034 .00011 .0017 .00672 .00014 .00006 .00010 SDev 71.849 .32069 .09391 .98324 2.0827 3.3955 5.6733 %RSD .00072 .03293 1.7971 .67905 .00663 .00181 .00174 #1 .00023 .03307 .68856 1.7994 .00683 .00190 .00160 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20.000 10.000 600.00 500.00 10.000 20.000 100.00 High -.04000 -.01500 -5.0000 -.10000 -.02500 -.01000 -.05000 Low SB SB/2 SB/1PB/2PB PB/1 Elem NI ppm mqqppm mqq ppm ppm ppm Units -.00001 -.00080 .00158 .01305 .01458 .01000 .00410 Avge .00013 .00034 .00108 .00149 .00370 .00039 .00148 SDev 41.976 1738.6 68.221 11.408 2.6504 36.974 36.228 %RSD -.00010 -.00056 .00082 .01411 .01485 .01262 .00305 #1 -.00104 .00009 .00234 .01200 .01431 .00739 .00515 #2 LC Pass NOCHECK NOCHECK LC Pass NOCHECK LC Pass NOCHECK Errors 10.000 5.0000 100.00 High -.06000 -.00300 Low -.04000 ZNV_ TLSE/2 SE SE/1 Elem mag ppm mqq ppm ppm Units mgq .14660 .00500 .00053 -.00108 -.00321 .00317 Avge .00026 .00023 .00069 .00081 .00121 .00001 SDev .17816 4,5255 132.06 74.631 37.829 .19170 %RSD .14641 .00516 .00003 -.00051 -.00235 .00317 #1 .14678 .00484 .00102 -.00165 -.00406 .00318 #2 LC Pass LC Pass LC Pass LC Pass NOCHECK Errors NOCHECK 5.0000 50.000 10.000 10.000 High -.02000 -.05000 -.01000 -.00500 Low

Analysis Report

IntStd Mode	1 Counts	2 NOTUSED	3 NOTUSED	NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED	鞭
Elem	Y	<del>-</del> -		-131°e-	<del></del>	~ <u>-</u>		<u> </u>
Wavlen	371.030			TE"			-~	#5~
Avge	15523			1 <del>11</del> 7			<del></del>	The
SDev	11.52570			530	·	-		· 10 10 .
%RSD	.0742485			F				
				•				
#1	15515			~ ~				
#2	15531	<del>-</del> -				<b>-</b> →		

Operator: RJG Sample Name: DDCVJ Method: METTRA

Run Time: 05/26/00 09:55:38

Run Time: 05/26/00 09:55:38

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Corr. Factor: 1 医蛋白 Mode: CONC CD CA BEBA AS ALAG Elem ppm ppmppm Line ppm mqq ppmUnits mag 45.998 .00768 .00451 .15743 .02407 10.511 -.00054 Avge .00007 .317 .00022 .00114 .00145 .086 .00026 SDev .90800 .68968 .72708 4.9628 6.0088 48.545 .82213 %RSD .00763 .00467 45.774 .15662 .02510 10.450 -.00073 #1 .00772 46.222 .00435 .15824 .02305 10.572 -.00036 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 5.0000 600.00 10.000 10.000 10.000 600.00 2.0000 High -.00500 -5.0000 -.00500 -.01000 -.20000 -.20000 -.01000 Low OM MN MG FECU CR CO Elem ppm ppm ppm mqq ppm ppm Units mqq .00409 .88697 13.612 99.672 .11869 .05993 .01746 Avge .00648 .00032 .088 .761 .00112 .00175 .00050 SDev 7.7745 .73030 .64749 .76316 1.8612 1.4740 2.8533 %RSD .00431 .88239 13.549 .05914 99,134 .11745 #1 .01711 .00386 .89155 13.674 100.21 .06072 .11992 .01781 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 10.000 20.000 600.00 500.00 10,000 20.000 100.00 High -.04000 -.01500 -5.0000 -.10000 -.02500 -.01000 -.05000 Low SB SB/2 SB/1 PBPB/2PB/1 NI Elem ppm mqq mqq ppm ppmppm Units mqq .00630 .00629 .00630 .10385 .10565 .10022 .06481 Avge .00033 .00108 .00118 .00003 .00014 .00048 .00034 SDev 5.2363 17.166 18.698 .02378 .12744 .34308 .73378 %RSD .00607 .00554 .00713 .10386 .10556 .10046 .06515 #1 .00653 .00546 .00707 .10383 .10575 .09998 .06447 #2 LC Pass NOCHECK LC Pass NOCHECK NOCHECK NOCHECK LC Pass Errors 10.000 5.0000 100.00 High -.06000 -.00300 -.04000 Low ZNTL V SE SE/2 SE/1 Elem ppm mqq ppm ppm ppm mqq Units .82534 .08863 .00810 .00131 -.00300 .00996 Avge .00533 .00001 .00224 .00052 .00015 .00125 SDev .64534 .01131 27.659 39.337 5.0378 12.548 %RSD .82157 .08863 .00969 .00095 -.00311 .00907 #1 .82910 .08864 .00652 .00168 -.00289 .01084 #2 LC Pass LC Pass LC Pass LC Pass NOCHECK NOCHECK Errors 5.0000 50.000 10.000 10.000 High -.02000 -.05000 -.01000 -.00500 Low

05/26/00 09:59:44 AM

Analysis Report

IntStd Mode	1 Counts	2 NOTUSED	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Ý	·					<del></del>
Wavlen	371.030						
Avge	15514	5.	<b>-</b> -				
SDev	54.97755	77				<u></u>	
%RSD	.3543664	<b></b>	<b></b>				
	•				•	-7-	
#1	15553	<del>-</del> -			<del>-</del> - ,		<b></b>
#2	15475	<b></b>					<b></b>

<u>.''</u>]

Operator: RJG

Sample Name: CCV3-3 Method: METTRA

Run Time: 05/26/00 09:59:48

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP Mode: CONC Corr. Factor: 1

				<b>.</b>	•		
Elem	AG	AL	AS	mag mag	BE	CA	CD
Units	ppm	ppm	ppm		5ppm	ppm	ppm
Avge	1.0422	23.549	.52519		2.1193	52.730	.51413
SDev	.0002	.034	.00039		.0014	.075	.00002
%RSD	.01515	.14376	.07478		.06725	.14255	.00464
#1	1.0421	23.573	.52491	1.9534	2.1203	52.784	.51415
#2	1.0423	23.525	.52547	1.9501	2.1183	52.677	.51411
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	1.1000	27.500	.55000	2.2000	2.2000	55.000	.55000
Low	.90000	22.500	.45000	1.8000	1.8000	45.000	.45000
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	2.0905	2.1035	1.9415	25.410	50.450	2.0678	2.1220
SDev	.0017	.0007	.0006	.052	.021	.0018	.0059
%RSD	.08078	.03402	.03302	.20577	.04120	.08638	.27886
#1	2.0916	2.1040	1.9420	25.447	50.465	2.0691	2.1178
#2	2.0893	2.1030	1.9411	25.373	50.436	2.0665	2.1262
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.2000	2.2000	2.2000	27.500	55.000	2.2000	2.2000
Low	1.8000	1.8000	1.8000	22.500	45.000	1.8000	1.8000
Elem Units Avge SDev %RSD	NI ppm 2.1064 .0007	PB/1 ppm .52778 .00401 .75956	PB/2 ppm .53354 .00179 .33627	PB ppm .53162 .00253 .47620	SB/1 ppm .53136 .00195 .36655	SB/2 ppm .52345 .00083 .15788	SB ppm .52608 .00010 .01851
#1	2.1059	.52495	.53227	.52983	.52999	.52403	.52602
#2	2.1069	.53062	.53481	.53341	.53274	.52286	.52615
Errors High Low	LC Pass 2.2000 1.8000	NOCHECK	NOCHECK	LC Pass .55000 .45000	NOCHECK	NOCHECK	LC Pass .55000 .45000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	.53140	.53767	.53558	1.0855	2.0600	2.1255	
SDev	.00097	.00204	.00169	.0056	.0017	.0019	
%RSD	.18255	.37996	.31474	.51811	.08194	.08885	
#1	.53209	.53911	.53677	1.0815	2.0612	2.1268	
#2	.53072	.53622	.53439	1.0894	2.0588	2.1242	
Errors High Low	NOCHECK	NOCHECK	LC Pass .55000 .45000	LC Pass 1.1000 .90000	LC Pass 2.2000 1.8000	LC Pass 2.2000 1.8000	

05/26/00 10:03:54 AM

Analysis Report

IntStd Mode	1 Counts	2 NOTUSED	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Y	_7. 5		ضد نيب			
Wavlen	371.030			<b>-</b> -			<del></del>
Avge	15203	<u> </u>				<u>-</u>	
SDev	19.16301					Zave 2	
%RSD	.1260509	,	- <i>-</i>		<b>-</b> -	- =_	<b></b>
01(02	, ,	+					
#1	15189						
#2	15216	<del></del>					

Sample Name: CCB3 Operator: RJG Method: METTRA

. 1

Run Time: 05/26/00 10:03:58

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Mode: CONC Corr. Factor: 1

				***				*****
<del>-</del>	Elem Units Avge SDev %RSD	AG ppm .00005 .00026 565.88	AL ppm .14803 .00328 2.2136	AS ppm .00017 .00095 540.93	BA ppm .00018 .00012 66.526	BE ppm .00370 .00015 4.0729	CA ppm .00615 .00082 13.381	CD ppm
	#1 #2	.00023 00014	.15035 .14571	.00084 00049	.00027 .00010	.00380 .00359	.00673 .00557	00012 .00004
	Errors High Low	LC Pass .01000 01000	LC Pass .20000 20000	LC Pass .01000 01000	LC Pass .20000 20000	LC Pass .00500 00500	LC Pass 5.0000 -5.0000	LC Pass .00500 00500
	Elem Units Avge SDev %RSD	CO ppm .00140 .00026 18.682	CR ppm .00039 .00015 38.458	CU ppm 00527 .00060 11.440	FE ppm .00428 .00968 225.97	MG ppm .00928 .00407 43.920	MN ppm .00064 .00002 3.6710	MO ppm .00502 .00118 23.577
	#1 #2	.00159 .00122	.00028	00570 00485	00256 .01112	.01216 .00640	.00062 .00066	.00586 .00418
	Errors High Low	LC Pass .05000 05000	LC Pass .01000 01000	LC Pass .02500 02500	LC Pass .10000 10000	LC Pass 5.0000 -5.0000	LC Pass .01500 01500	LC Pass .04000 04000
	Elem Units Avge SDev %RSD	NI ppm .00090 .00119 132.66	PB/1 ppm 00034 .00349 1040.6	PB/2 ppm .00114 .00160 141.22	PB ppm .00065 .00009 14.187	SB/1 ppm 00048 .00137 288.32	SB/2 ppm .00104 .00269 259.37	SB ppm .00053 .00134 250.77
	#1 #2	.00006 .00174	.00213 00280	.00000 .00227	.00071 .00058	00145 .00050	.00295 00087	.00148 00041
	Errors High Low	LC Pass .04000 04000	NOCHECK	NOCHECK	LC Pass .00300 ~.00300	NOCHECK	NOCHECK	LC Pass .06000 06000
	Elem Units Avge SDev %RSD	SE/1 ppm .00179 .00221 123.41	SE/2 ppm 00102 .00095 93.079	SE ppm 00009 .00137 1604.4	TL ppm 00126 .00350 279.05	V_ ppm .00017 .00001 3.7038	ZN ppm .00350 .00003 .85903	
	#1 #2	.00336	00035 00170	.00088 00106	.00122 00373	.00017 .00018	.00352 .00348	
	Errors High Low	NOCHECK	NOCHECK	LC Pass .00500 00500	LC Pass .01000 01000	LC Pass .05000 05000	LC Pass .02000 02000	

page 2

05/26/00 10:08:03 AM

Analysis Report

IntStd Mode Elem	1 Counts Y	2 NOTUSED	3 NOTUSED	4 NOTUSED 	5 NOTUSED	6 NOTUSED	7 NOTUSED 
Wavlen	371.030	<del></del>			g-2.		
Avge	15315						
SDev	47.44659	<del></del>			46:	<del></del>	
%RSD	.3098118				<del>-</del>	<b>-</b>	<b>-</b>
	•_				•_		
#1	15348				<u>.</u>		<del></del>
#2	15281	<b></b> –					

Operator: RJG Sample Name: DDCVK Method: METTRA

Run Time: 05/26/00 10:08:07
Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Comment: Mode: CON	STL PITTSI IC Corr.	BURGH ICP I Factor: 1	METALS ANA	LYSIS-INSI	-		<u> </u>
Elem	AG	AL	AS	BA	BE	CA AS ppm 48.417	CD
Units	ppm	ppm	-ppm	ppm	ppm		ppm
Avge	00046	4.4580	00568	.07423	.00459		.00362
SDev	.00006	.0033	.00131	.00019	.00020		.00006
%RSD	13.104	.07501	23.125	.25162	4.2934		1.7426
#1	00042	4.4556	.00476	.07410	.00473	48.447	.00358
#2	00050	4.4603	.00661	.07437	.00445	48.387	.00367
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00883	.04317	.02689	23.619	13.902	.29506	.00258
SDev	.00005	.00035	.00030	.035	.008	.00036	.00010
%RSD	.52753	.80595	1.1349	.14954	.05537	.12150	3.7481
#1	.00880	.04292	.02667	23.594	13.896	.29480	.00252
#2	.00887	.04342	.02710	23.644	13.907	.29531	.00265
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.03274	.07327	.07815	.07653	.00307	.00150	.00202
SDev	.00008	.00134	.00046	.00014	.00048	.00116	.00061
%RSD	.24019	1.8308	.58650	.18417	15.741	77.194	30.189
#1	.03269	.07422	.07783	.07663	.00342	.00068	.00159
#2	.03280	.07232	.07848	.07643	.00273	.00232	.00246
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	.00736	00430	00042	.00546	.03795	.44009	
SDev	.00188	.00062	.00104	.00177	.00009	.00048	
%RSD	25.531	14.322	249.17	32.390	.22647	.10861	
#1	.00869	00386	.00032	.00421	.03788	.44043	
#2	.00603	00473	00115	.00671	.03801	.43976	
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	LC Pass 50.000 05000	LC Pass 5.0000 02000	

Analysis Report

IntStd Mode	1 Counts	2 NOTUSED	3 NOTUSED	4 Notiused	5 NOTUSED	6 NOTUSED	7 NOTUSED	क्रिंग:
Elem	Υ			- 5			. ==	- Address of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
Wavlen	371.030	<b></b>		TV				Fig
Avge	15512			TE:				re-
SDev	37.44144			<b>De</b> v				100
%RSD	.2413712	<b></b>		- <del>T</del> (:				/ t
								1
#1	15538					<b>-</b> -		
#2	15486	- <del>-</del>						

Operator: RJG

Analysis Report

Sample Name: DDCVM Method: METTRA

Run Time: 05/26/00 10:12:16

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

<u>ਜ਼ੂਨ</u>; Corr. Factor: 1 Mode: CONC CD CA ΒE BA AS Elem AG ALppm .. ppm ppm mqq ppm --maga Units ppm .00044 18: 425 .77954 .02188 .00350 .00232 -.00019 Avge ,,018 .00021 .00028 .00009 .00002 .00719 .00077 SDev 48.272 .39027 8.1043 .09520 .75673 .92210 %RSD 413.10 .00029 .00370 18.412 .02182 .78462 .00233 -.00073 #1 .00060 18.437 .00330 .00230 .02194 .77445 .00036 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 10.000 600.00 5.0000 10.000 10.000 600.00 2.0000 High -5.0000 -.00500 -.20000 -.00500 -.01000 -.20000 -.01000 Low MO ΜN FEMG CU CO CR Elem ppm mag mgq mqq ppm ppm Units ppm .07941 .00139 3.2850 .00783 .00274 4.7916 .00295 Avge .00059 .00019 .0143 .00037 .0123 .00013 .00006 SDev 42.498 .24185 .25611 .43516 13.317 1.6263 2.1767 %RSD .07927 .00181 3.2749 4.7829 .00774 .00249 .00291 #1 .00097 .07954 3.2951 4.8002 .00300 .00792 .00300 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20.000 10.000 600.00 10.000 500.00 20,000 100.00 High -.04000 -.01500 -5.0000 -.10000 -.02500 -.01000 -.05000 Low SB/2 SB SB/1 PB PB/2 PB/1NI Elem ppm mqq mag mag maga ppm Units ppm -.00080 -.00003 .00152 .00713 .00329 .00906 .00989 Avqe .00092 .00051 .00112 .00126 .00205 .00032 .00025 SDev 2950.5 138.97 17.686 33.762 22.629 9.5778 2.5497 %RSD .00062 -.00001 .00803 .00188 .01050 .00307 .00971 #1 -.00068 -.00160 .00116 .00624 .00761 .01007 .00351 #2 LC Pass NOCHECK NOCHECK LC Pass NOCHECK LC Pass NOCHECK Errors 10,000 5.0000 100.00 High -.06000 -.00300 -.04000 Low  $V_{-}$ ZNTLSE SE/2 SE/1 Elem mqq ppm ppm mag mag Units ppm .01060 .08150 .00245 -.00176 -.00659 .00793 Avge .00026 .00020 .00366 .00044 .00262 .00418 SDev .32042 1.9307 17.948 208.44 63.380 %RSD 33.041 .08132 .01074 .00276 .00083 -.00364 .,00979 #1 .08168 .01045 .00214 -.00434 -.00955 .00608 #2 LC Pass LC Pass LC Pass LC Pass NOCHECK NOCHECK Errors 5.0000 10.000 50.000 10.000 High -.02000 -.05000 -.01000 -.00500 Low

	IntStd - Mode	1 Counts	2 NOTUSED	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTU	sÉD-	) ) )
٠.	: Elem -	X			<u> </u>		<del></del>		- 📆 . –	$\alpha$
	Wavlen	371.030		~		~ ~	<del></del>			~
	Avge	15466			, <u></u>				, -	C
	- SDev	26.16295	<b>-</b>	<b></b>					-	
	%RSD	.1691681		<b></b>						
	#1	15484		<del>-</del> -	·	<b></b>			~	
	#2	15447								

Operator: RJG

Method: METTRA Sample Name: DDCVW Operator: Run Time: 05/26/00 10:16:26
Comment: STL-PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Comment: Mode: CON	STLEPITTS! VC \(\frac{1}{2}\)Corr.	BURGH ICP 1 Factor: 1	METALS ANA	LYSIS-INST · -	RUMENT TRA	CEICP	
Elem Units Avge SDev %RSD	AG  ppmcs00010 .00007 71.134	AL ppm .27927 .00333 1.1936	AS ppm .00027 .00109 407.23	BA ppm .05695 .00034 .59729	BE ppm .00289 .00023 8.0146	CA ppm 74.736 .180 .24095	CD ppm00001 .00007 836.52
#1	00015	.28163	00050	.05671	.00305	74.609	00006
#2	00005	.27691	.00104	.05719	.00272	74.864	.00004
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00169	.00147	.03807	1.3416	41.994	.00875	.12938
SDev	.00022	.00002	.00048	.0044	.162	.00011	.00103
%RSD	13.103	1.5963	1.2635	.32453	.38573	1.2246	.79858
#1	.00154	.00149	.03773	1.3385	41.879	.00867	.12865
#2	.00185	.00146	.03841	1.3446	42.108	.00882	.13011
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00491	00035	.00349	.00221	.00152	00113	00025
SDev	.00018	.00003	.00073	.00047	.00217	.00064	.00029
%RSD	3.7582	9.6761	20.866	21.448	142.35	56.545	118.25
#1	.00478	00032	.00297	.00188	00001	00068	00046
#2	.00504	00037		.00255	.00305	00159	00004
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	.00694	00293	.00036	.00701	.00227	.08883	
SDev	.00158	.00304	.00256	.00167	.00047	.00049	
%RSD	22.775	104.07	713.28	23.748	20.877	.55219	
#1	.00805	00077	.00217	.00819	.00193	.08849	
#2	.00582	00508	00145	.00583	.00260	.08918	
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	LC Pass 50.000 05000	LC Pass 5.0000 02000	

05/26/00 10:20:31 AM

Analysis Report

IntStd Mode	1 Counts	2 NOTUSED	3 <del></del> NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSE <u>D</u> 🛴	7 NOTUSED -
Elem	Y		<u> </u>	<u></u>		':::-	
Wavlen	371.030			<del></del>			- m
Avge	15212				<del></del>		
SDev	79.26708	<del>-</del> -				<b>-</b> -	. <del></del>
%RSD	.5210894		1			<u> </u>	
#1	15268			<del>-</del> -			<b></b>
#2	15156				<del></del>		

+

Operator: RJG Sample Name: DDK9N Method: METTRA

Run Time: 05/26/00 10:20:35

RUN Time: 05/20/00 10:20:35 Comment: STL PITTSBURGH ICP METALS ANALYSIS INSTRUMENT TRACEICP

Corr. Factor: 1 Mode: CONC CDCA BE BA AS Elem : ALAG ppm ppm ppm_<u>s____</u> .08450 mqq mqq mqq Units mqq .00122 .00341 29.206 ,00429 1.8752 -.00032 Avge--.00003 .00034 .052 .00023 .00181 .0069 .00002 SDev 2.3841 .17645 10.092 .26949 42.152 .36755 5.3625 %RSD 29.242 .00124 .00365 .08434 .00301 -.00033 1.8703 #1 .00120 .00317 29.169 .08466 1.8801 .00557 -.00031 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 5.0000 600.00 10.000 10.000 10.000 600.00 2.0000 High -5.0000 -.00500 -.00500 -.20000 -.01000 -.20000 -.01000 Low MO MN MG CU FE CR CO Elem ppm mag mqq mqq mqq ppm ppm Units .03074 .13700 10.148 6.5140 .01656 .08859 .00307 Avge .00028 .00040 .015 .0018 .00031 .00066 .00016 SDev .92668 .14773 .29113 .02826 .74226 1.8715 5.2282 %RSD .03094 10.138 .13671 6.5153 .08813 .01678 .00319 #1 .13728 .03054 10.159 6.5127 .08906 .01634 .00296 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 20.000 10.000 600.00 10.000 500.00 20.000 100.00 High -.01500 -.04000 -5.0000 -.10000 -.02500 -.01000 -.05000 Low SB SB/2 SB/1 PB PB/2PB/1 NI Elem ppm ppm ppm mag mqq ppm Units ppm .00002 .00524 -.00258 .00953 .01293 .00271 .01220 Avge .00167 .00116 .00014 .00097 .00137 .00019 .00009 SDev 64.817 4982.6 2.5968 10.239 10.590 6.8928 .70984 %RSD -.00080 -.00377 .00515 .01390 .01022 .00284 .01214 #1 .00084 -.00140 .00534 .00884 .01196 .00258 .01226 #2 LC Pass NOCHECK NOCHECK LC Pass NOCHECK NOCHECK Errors LC Pass 10.000 5.0000 100.00 High -.06000 -.00300 -.04000 Low ZNSE TLSE/2 SE/1 Elem ppm ppm ppm ppm ppm Units ppm 3.3533 .00148 .00334 .00448 -.00024 .01393 Avge .0020 .00000 .00196 .00126 .00127 SDev .00130 .05941 .04343 58.836 28.375 516.22 9.3097 %RSD 3.3548 .00148 .00472 .00358 -.00113 .01301 #1 3.3519 .00148 .00195 .00537 .00065 .01485 #2 LC Pass LC Pass LC Pass LC Pass NOCHECK NOCHECK Errors 5.0000 10.000 50.000 10.000 High -.02000 -.05000 -.01000 -.00500 Low

Analysis Report

IntStd Mode	1 Counts	2 NOTUSED	3 NOTUSED	4 NOTUSED	5 NOTUSED T	6 YNOTUSED 🐺	7 NOTUSED
Elem	Y	<u>-</u> -				- <del></del>	
Wavlen	371.030			'		. <del></del>	
Avge	15144			'	′ <b></b>		<b>-</b> -
SDev	109.1416					. <del></del>	
%RSD	.7206793		<b></b> ■		-# <i>-</i>		
		_					
#1	15221						
#2	15067	<b>-</b> -					

Analysis Report

Operator: RJG

Method: METTRA Sample Name: DDK9T Run Time: 05/26/00 10:24:44

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP Mode: CONC Corr. Factor: 1

Mode: CON	Corr.	Factor: I	- <del></del> -v				**************************************
Elem Units Avge SDev %RSD	AG ppm .00006 .00005 78.582	AL ppm .13065 .02390 18.296	AS ppm	BA ppm .31101 .00436 1.4031	BE ppm .00399 .00020 5.1030	CA ppm H1668.3 11.9 .71035	CD ppm .00036 .00012 34.683
#1	.00003	.14756	.00109	.31409	.00385	H1676.7	.00027
#2	.00010	.11375	00048	.30792	.00414	H1659.9	.00044
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass
High	2.0000	600.00	10.000	10.000	10.000	600.00	5.0000
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00354	.00210	00101	.00937	4.4303	5.9244	.01129
SDev	.00010	.00027	.00020	.00756	.0630	.0634	.00071
%RSD	2.9449	12.737	19.415	80.664	1.4209	1.0699	6.2925
#1	.00361	.00229	00088	.00403	4.4749	5.9692	.01179
#2	.00347	.00191	00115	.01471	4.3858	5.8795	.01079
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	100.00	20.000	10.000	500.00	600.00	10.000	20.000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00422	00785	00012	00270	.00148	00249	00117
SDev	.00005	.00041	.00059	.00025	.00148	.00111	.00025
%RSD	1.2271	5.2242	470.09	9.4519	99.714	44.528	21.244
#1	.00418	00756	00054	00288	.00044	00171	00099
#2	.00426	00814	.00029	00252	.00252	00328	00134
Errors High Low	LC Pass 100.00 04000	NOCHECK	NOCHECK	LC Pass 5.0000 00300	NOCHECK	NOCHECK	LC Pass 10.000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	.01385	.00037	.00486	.01633	00063	.01075	
SDev	.00082	.00005	.00024	.00559	.00023	.00001	
%RSD	5.9511	12.207	5.0233	34.213	36.674	.06997	
#1 #2	.01327 .01444	.00040	.00469 .00503	.01238 .02029	00046 00079		
Errors High Low	NOCHECK	NOCHECK	LC Pass 10.000 00500	LC Pass 10.000 01000	LC Pass 50.000 05000	5.0000	

Analysis Report

IntStd Mode	1 Counts	2 NOTUSED	3 NOTUSED	4 NOTUSED	5 NÕTUSED	6 NOTUSED	7 NOTUSED
Elem	Υ*	·					
Wavlen	371.030			· · · · · · · · · · · · · · · · · ·	<del></del>	<b>~ ~</b>	
Avge	15056				75-	<del>-</del> -	
SDev	107 <u>-</u> 1971					_ = =	
%RSD	.7120129	<b></b>					<b>-</b>
#1	14980						<b>-</b>
#2	15131						

٦,٠

Operator: RJG Sample Name: CCV3-4 Method: METTRA

Run Time: 05/26/00 10:28:53

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICE 

Corr. Factor: 1 Mode: CONC CDCA BE AS BA ALElem AG ppm ppm ppm _ ppm ppm Units ppm mqq 23.619 .50648 52,179 1.9509 2.0912 .51992 1.0495 Avge .106 .00138 .0016 .0017 .00021 .007 .0018 SDev .20368 .27354 .08001 .04044 .08163 .03026 .17102 %RSD .50746 52.254 1.9498 2.0924 .51977 1.0508 23,624 #1 52.104 .50550 2.0901 1.9520 23.614 .52006 1.0483 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors .55000 2,2000 55.000 2.2000 .55000 27.500 1.1000 High 45.000 .45000 1.8000 1.8000 .45000 .90000 22.500 Low MO MNFEMG CU CR CO Elem ppm ppm mag mqq mqq ppmmqq Units 2.1132 50.451 2.0477 25.111 2.0847 1.9487 2.0748 Avge .0030 .0098 .043 .052 .0017 .0048 .0047 SDev .46182 .14677 .08562 .20685 .08580 .22326 %RSD .23201 50.482 2.0498 2.1063 25.148 1.9475 2.0880 2.0782 #1 2.0455 2.1201 50.421 25.075 1.9498 2.0814 2.0714 #2 LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass Errors 2.2000 2.2000 55.000 2.2000 27,500 2.2000 2.2000 High 1.8000 1.8000 45.000 22.500 1.8000 1.8000 1.8000 Low SBSB/1 SB/2 PB PB/2 PB/1 NI Elem ppm ppm ppm mag mqq mag Units ppm .52261 .52987 .52502 .52580 .52714 .52312 2.0569 Avge .00360 .00287 .00139 .00151 .00193 .00277 .0013 SDev .54633 .68957 .26337 .28616 .36673 .06463 .52934 %RSD .52705 .52515 .53085 .52821 .52717 2.0578 .52508 #1 .52300 .52444 .52006 .52888 .52608 2.0559 .52116 #2 LC Pass NOCHECK NOCHECK LC Pass NOCHECK NOCHECK LC Pass Errors .55000 .55000 High 2.2000 .45000 .45000 1.8000 Low ZN٧__ SE TL SE/2SE/1 Elem ppm ppm ppm ppm mqq Units ppm 2.1178 1.0378 2.0321 .53157 .53221 .53029 Avge .0017 .0015 .00431 .0188 .00458 .00376 SDev .06875 1.8071 .08481 .81059 .86069 .70988 %RSD 2.0333 2.1189 1.0245 .53545 .53462 .53295 #1 2.0309 2.1168 .52852 1.0511 .52897 .52763 #2 LC Pass LC Pass LC Pass LC Pass NOCHECK NOCHECK Errors 2,2000 1.1000 2.2000 .55000 High 1,8000 1.8000 .90000 .45000 Low

05/26/00 10:32:59 AM

Analysis Report

page 2

IntStd Mode	1 Counts	2 NOTUSED	3 NOTUSED	4 NOTUSED	5 NOTUSED	, NOTUSED -	7 NOTUSED
Elem	Y .		<del></del>			<b>-</b> -	
Wavlen	371.030	II,					
Avge	14981	P 1					
SDev	12.6222' .084256'	7 <del>-1,,</del>	' ·, _		5.	<del></del>	
%RSD	.084256	7					
		<del></del>			+		
#1	14972	T					
#2	14990			<del>-</del>			

Operator: RJG Method: METTRA Sample Name: CCB4 Run Time: 05/26/00 10:33:03

Comment: STL PITTSBURGH ICP METALS ANALYSIS-INSTRUMENT TRACEICP

Comment: Mode: COM	STL PITTS Corr.	BURGH ICP   _Factor:-1	METALS ANA	- FASIR-INSI	KOMENI, TŘV		- <b>-</b>
Elem Units Avge SDev %RSD	AG ppm 00032 .00055 171.31	AL ppm 16538 .01110	AS ppm 00032 .00041 128.31	BA ppm .00036 .00015 41.286	BE A ppm .00362 .00021 5.7572	CA ppm .11835 .03581 30.261	CD ppm .00003 .00007 268.99
#1	00071	.17322	00003	.00026	.00377	.14367	.00008
#2	.00007	.15753	00061	.00047		.09302	00002
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.01000	.20000	.01000	.20000	.00500	5.0000	.00500
Low	01000	20000	01000	20000	00500	-5.0000	00500
Elem	CO	CR	CU	FE	MG	MN	MO
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00144	.00032	00465	.02438	.01500	.00124	.00497
SDev	.00004	.00071	.00075	.01185	.00036	.00000	.00069
%RSD	2.4796	218.25	16.025	48.612	2.4216	.33027	13.960
#1	.00146	00018	00518	.01600	.01474	.00124	.00546
#2	.00141	.00083	00412	.03276	.01525	.00125	.00448
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.05000	.01000	.02500	.10000	5.0000	.01500	.04000
Low	05000	01000	02500	10000	-5.0000	01500	04000
Elem	NI	PB/1	PB/2	PB	SB/1	SB/2	SB
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.00005	00059	00022	00034	.00149	.00238	.00208
SDev	.00081	.00153	.00115	.00127	.00137	.00097	.00110
%RSD	1580.4	259.46	520.46	371.02	91.931	40.702	52.906
#1	.00063	.00049	.00059	.00056	.00246	.00306	.00286
#2	00052	~.00167	00103	00124		.00169	.00130
Errors High Low	LC Pass .04000 04000	NOCHECK	NOCHECK	LC Pass .00300 00300	NOCHECK	NOCHECK	LC Pass .06000 06000
Elem	SE/1	SE/2	SE	TL	V_	ZN	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avge	00308	00190	00229	.00878	.00054	.00401	
SDev	.00160	.00057	.00091	.00094	.00047	.00020	
%RSD	52.100	29.984	39.888	10.719	88.512	5.1041	
#1	00195	00149	00164	.00945	.00020	.00387	
#2	00421	00230	00294	.00812	.00087	.00416	
Errors High Low	NOCHECK	NOCHECK	LC Pass .00500 00500	LC Pass .01000 01000	LC Pass .05000 05000	LC Pass .02000 02000	

IntStd Mode	1 Counts	2 NOTUSED	3. NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 MO NOTUSED
Elem	Y		*				and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th
Wavlen	371.030		<b>~</b> -		<del></del>		
Avge	14918		<del></del>				<i>⊒</i>
SDev	29.66327						
%RSD	.1988371		<del>-</del>				<del>*</del> - • -
#1	14939	<b></b>					
#2	14897						

Log Metals Preparation Digesta

Matrix		Start Tity	е:	SDG:		Bal	Balance#		Reavents:			
	Totale:		Lot Number:		Lab Lot No. (book, page, line)	(book,page,	line) ao14	-010-)	3 1 1 1 1 V	HOUZ		COH-OR-3
O. Deur	Date:		Č		MS-A		3	vs-chiv				
( I Windows	Init Wt/Vol	Final Vol	3	Comments		Color		Clarity	Tex	Texture	Artifacts	Artifact Codes
ampie iu	g/mL	mL				Pre f	Post F	ore Post	Pre	Post		C-Chape
රි	50~	5021			SO-LICE	-	-		+			O=Organic
502		-	14-81 W-DO-4	1235-54 HE-SIKEL WE-SEED	150		1		+			(plant mat'l)
C			TO SALUCA, AS GIVEN / BEELV	S-CHEST ST	100		-					W=free H2O
7 6	1		ナバルルード	11 St. 45. 15. 10	3							G=Glass
		\(\lambda\)										M=Metal Frgmts
												H=Hubber/Plastic
							-					P=Paper
				'		1	-	,				l=Insects
						+		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0		
		1	300					0	1			
		ノノンエ										
		411/4				-			9			
		(						1				
							1					
4so-4) by 1st												
						+	-					
							-					
-	Disastria	c) Passingd		<i>D</i> .	Dieestate(s) Relinauished	linouished		Hot plate		Correction		Color
tate(s)	Time	Majust	l ocation	Date Time	e , An	alyst	_		am	Factor		
nation of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat	1455 5	01/201	- 1	쒸	2	Mun D. Jane J	1/et-1 (%	Ţ	e	~0,80	R=Red	
2000				2	3	nough.	451-1 C	,			BL=Blue	
not show	075 700	Waria	nemos e	51:40 00:12	MITTEL ST	VINION	METICO	7		Clarity	BH=Brown BLK=Black	lack GY=Gray ^O
		·						F=Fine	ine	C=Clear	Y=Yellow	
								M=Medium	dium	CL=Cloudy	O=Orange	CHCOlone
								C=Coarse	arse	O=Opaque		t

STL Pittsburgh 450 William Pitt Way Pittsburgh, PA 15238 412-820-8380

6320

PAGE 55 of 100

N \QA\FORMS\METALS_PREP

LOGBOOK # IP-00-0036

STL Pi

PSR024

5/24/00

5:38:03 MT

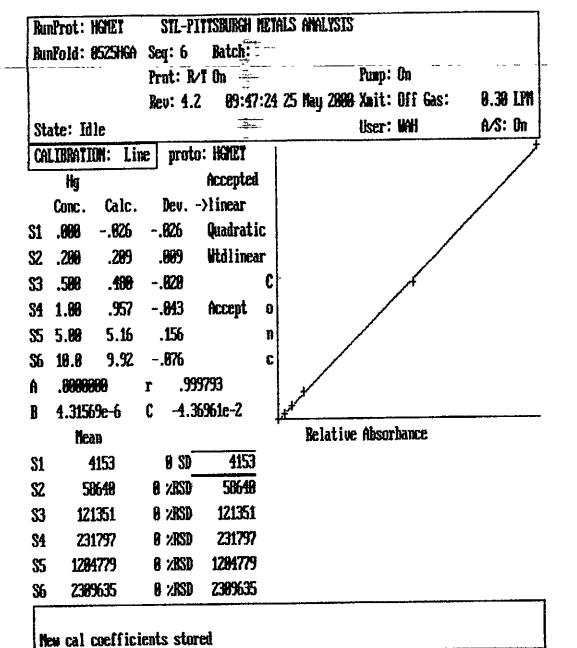
SAMPLE CUSTODIAN REMOVAL REQUEST

REQUESTED BY: FAUSTG

 METHOD: QM	Inductively Coup	led Plasma_(6	∰. 5010B Trace	›	<b>-</b>				JUE			
STORAGE LOCATION	WORK ORDER #	PICKED CNTR#	CONTROL #	CLIENT #	<u>ANALYSIS</u>	<u>LOTID</u>	SMP#	SFX	MATRIX 1		ITY Q	
4A	DDGT8		- 236290	054156	A-46-QM (	C0E200139	001	SOLID		0	1	1
4A	DDGTN		236291	0541 <b>5</b> 6	A-46-QM (	0E2 <b>0013</b> 9	002	SOLID	1.	0	1	1
4A	DDGTQ		236292	054156	A-46-QM (	C0E200139	003	SOLID		0	1	1
4A	DDGTW		236293	054156	A-46-QM (	0E200139	004	SOLID		0	1	1
4F	DDK90		236294	399411	I-05-QM (	C0E230195	001	WATER		0	9	1

Leoffey Sraust	Leoffey O. Saust Leoffey O. Braust	5-24-00 0745 5-24-00 0910

STL-Pittsburgh Atomic	Absorption Data for Mercury
Instrument: PS200HG	Analyst Name: #18 June Analysis: 5. 35-00
File ID: <u>052546A</u>	
Matrix: WATER	
Lot Number/SDG	Method
<u> </u>	<u> </u>
<u> COE 23 0195</u>	


658 839

Folder: 0525HGA Page 899 09:37:08 25 May 2000 Protocol: HGMET Line Conc. Units SD/RSD ____1 __ 2 ___ 3 ___ 4 Seq: 0 09:37:08 25 May 2000 HG *** Standard: 1 Rep: 1 .000 ppb 4153 Ha Seq: 1 09:39:12 25 May 2000 HG *** Standard: 2 Rep: 1 Hg .200 ppb 58640 0014-109-7 Seq: 2 09:41:06 25 May 2000 HG *** Standard: 3 Rep: 1 0014-109-8 Hg .500 ppb 121351 Seq: 3 09:43:05 25 May 2000 HG *** Standard: 4 Rep: 1 0014-109.9 Hg 1.00 ppb 231797 Seq: 4 09:45:00 25 May 2000 HG *** Standard: 5 Rep: 1 0014-109-10 Hg 5.00 ppb 1204779 Seq: 5 09:47:04 25 May 2000 HG *** Standard: 6 Rep: 1

Hg 10.0 ppb 2309635 0014.109-11

三江

F -



Page 900

Folder: 0525HGA

09:49:45 25 May 2000 Protocol: HGMET

__SD/RSD __1 __2 ___ 3 ____ 4 ___ -Line -Conc: Units-09:49:45 25 May 2000 HG *** Sample_ID: ICV5-1 Seq: 6 Hg 2.56 ppb 603299 0014-109-12 Seq: 7 09:51:35 25 May 2000 HG *** Sample ID: ICB1 Hg .024 ppb 15603 Seq: 8 09:53:23 25 May 2000 HG *** Sample ID: CCV5-1 Hg 5.13 ppb 1198304 0014-109-13 Seq: 9 09:55:21 25 May 2000 HG *** Sample ID: CCB1 Hg -.033 ppb 2553 Seq: 10 09:57:21 25 May 2000 HG *** Sample ID: DDLPFB Ha -.019 ppb 5735 Seq: 11 09:59:09 25 May 2000 HG *** Sample ID: DDLPFC Hg 2.59 ppb 610562 0014-109-14 Seq: 12 10:01:01 25 May 2000 HG *** Sample ID: DD3QM Hg .025 ppb 15950 10:02:54 25 May 2000 HG Seq: 13 *** Sample ID: DD3QN Hg .239 ppb 65423 10:04:48 25 May 2000 HG Seq: 14 *** Sample ID: DD3QQ Hg -.001 ppb 9942 10:06:40 25 May 2000 HG Seq: 15 *** Sample ID: DD3QR Hg .075 ppb 27438 10:08:33 25 May 2000 HG Seq: 16 *** Sample ID: DD3QT Hq .136 ppb 41641 Seq: 17 10:10:23 25 May 2000 HG *** Sample ID: DD3QV Hg -.012 ppb 7271

342	10:13:21 25 May 2000		Folder: 05 Protocol: H0	525HGA BMET		Page 90	)1
	Line_ Conc. Units	SD/RSD	<u>1</u>	_2	3 4	5	
	*** Sample ID: DD3QX	م پر	•	18	10:13:21 25 M	ay 2000 HG 🕏	
	Hg .185 ppb	53038 -	<b></b>	10	10.15.29 25 M	- av 2000 HB - c.0	
	*** Sample ID: DD3QXS		seq:	19	10.10.23 25	ay 2000 HG 50.860	lo
	Hg 1.16 ppb	278007			40 47-47 OF N		
	*** Sample ID: CCV5-2		Seq:	20	10:17:17 25 M	ay 2000 nd	
	Hg 5.09 ppb	1189941					
	*** Sample ID: CCB2		Seq:	21	10:20:26 25	ay 2000 Hb	
	Hg .006 ppb	11506					
	*** Sample ID: DD3QXD		Seq:	22	10:22:14 25	1ay 2000 HG 59.RE	c. elo
	Hg 1.08 ppb	261451				-3*	,-
	*** Sample ID: DD3RO		Seq:	23	10:24:14 25	1ay 2000 HG	
	Hg .223 ppb	61881					
	*** Sample ID: DD4WA		Seq:	24	10:26:06 25	May 2000 HG	
	Hg014 ppb	6956					
	*** Sample ID: DD4WG		Seq:	25	10:28:00 25	May 2000 HG	
	Hg066 ppb	-5260					
	*** Sample ID: DD4WH		Seq:	26	10:29:49 25	May 2000 HG	
	Hg .102 ppb	33680					
	*** Sample ID: DD4WJ		Seq:	27	10:31:39 25	May 2000 HG	
	Нд .190 ррь	54248					
	*** Sample ID: DD4WK		Seq:	28	10:33:43 25	May 2000 HG	
	Hg .020 ppb	14685				t	
	*** Sample ID: DD4WL		Seq	29	10:36:22 25	May 2000 HG	
	Hg .044 ppb	20285					

Page 902

Folder: 0525HGA 10:38:54 25 May 2000

Protocol: HGMET

		•	re.						-1a
Line-	Conc	-Units	SDZRSD	_1	_ 2	_ 3	4	5	<del>/</del> k
*** 9	ample ID	: DD4WM		Seq:	30	10:38:54	25 May		ĤG
Hg	.035	bbp	18275						<i>y</i>
*** 5	Sample ID	): DD50E		Seq:	31	10:40:46	25 May	2000	HG
Hg	042	ppb	300						
*** 5	Sample II	): CCV5-3		Seq:	32	10:42:39	25 <b>M</b> ay	2000	HG
Hg	5.02	ppb	1173677						
*** 9	Sample II	o: CCB3		Seq:	33	10:44:39	25 May	2000	HG
Hg	007	ppb	8552						
*** 5	Sample II	D: DD50N		Seq:	34	10:46:54	25 May	2000	HG
Hg	.007	ppb	11741						
***	Sample II	D: DDLQ8B		Seq:	35	10:48:43	25 May	2000	HG
Hg	008	ррь	8221						
***	Sample II	D: DDLQ8C		Seq:	36	10:51:04	25 May	2000	HG
Hg	2.44	ррь	576450	0014-	109-15				
***	Sample I	D: DD3QMF		Seq:	37	10:53:07	25 May	/ 2000	HG
Hg	.082	<b>Б</b> РР	29011						
***	Sample I	D: DD3QNF		Seq:	38	10:55:01	25 May	/ 2000	HG
Hg	.084	ppb	29672						
***	Sample I	D: DD3QQF		Seq:	39	10:57:16	25 May	y 2000	HG
Hg	.009	ррь	12186						
***	Sample I	D: DD3QRF		Seq:	40	10:59:37	' 25 Mag	y 2000	HG
Hg	.014	ppb	13470						
***	Sample 1	D: DD3QTF		Seq:	41	11:01:30	) 25 Ma	y 2000	HG
Hg	·		15994						
_		• •							

ნეგ	844		E-14 053	5HGA		Page 903
	11:03:30 25 May 2000	alian or	Protocol: HGM			=
	LineConc. Units			23	_4	<u>5                                    </u>
	*** Sample ID: DD3QVF		Seq: 4	2 11:03:30	25 May 20	000 HG
	Hg .015 ppb	13594				•
	*** Sample ID: DD3QXF	-	Seq: 4	3 11:05:21	25 May 2	000 HG
	Hg028 ppb	3679				
	*** Sample ID: CCV5-4		Seq: 4	4 11:07:47	25 May 2	000 HG
	Hg 5.12 ppb	1197108				
	*** Sample ID: CCB4		Seq: 4	11:09:39	+ 25 May 2	000 HG
	Hg .018 ppb	14256				
	*** Sample ID: DD3QXSF		Seq: 4	11:11:33	25 May 2	- ~ U ~
	Hg .878 ррb	213633				88 10
	*** Sample ID: DD3QXDF		Seq: 4	17 11:13:27	25 May 2	~0 D~
	Hg .869 ppb	211374				870%
	*** Sample ID: DD3R0F		Seq: 4	48 11:15:31	25 May 2	2000 HG
	Hg .032 ppb	17483				
	*** Sample ID: DD4WAF		Seq: 4	49 11:17:26	5 25 May 2	2000 HG
	Hg .035 ppb	18310				
	*** Sample ID: DD4WGF		Seq:	50 11:19:28	3 25 May 2	2000 HG
	Hg004 ppb	9266				
	*** Sample ID: DD4WHF		Seq:	51 11:21:3	4 25 May 3	2000 HG
	Hg .025 ppb	15836				
	*** Sample ID: DD4WJF		Seq:	52 11:23:2	8 25 May	2000 HG
	Hg .021 ppb	14983				
	*** Sample ID: DD4WKF		Seq:	53 11:25:4	0 25 May	2000 HG
	Hg .019 ppb	14494				

Folder: 0525HGA Page 904 11:28:23 25 May 2000 Protocol: HGMET SD/RSD --Conc. Units Line *** Sample ID: DD4WLF Seq: 54 11:28:23 25 May 2000; HG .100 Hq ppb 33254 *** Sample ID: DD4WMF Sea: 55 11:30:45 25 May 2000 HG -.034 2246 Ha ppb *** Sample ID: CCV5-5 Seq: 56 11:33:28 25 May 2000 HG Hg 5.18 ppb 1210016 *** Sample ID: CCB5 Seq: 57 11:36:04 25 May 2000 HG Hg -.029 3457 ppb *** Sample ID: DD50EF Seq: 58 11:38:11 25 May 2000 HG Hg .103 ppb 34035 *** Sample ID: DD50NF Seq: 59 11:40:25 25 May 2000 HG 4403 -.025 Hg ppb *** Sample ID: DDLR3B 11:42:20 25 May 2000 HG Seq: 60 .028 16598 Hg ppb *** Sample ID: DDLR3C Seq: 61 11:44:37 25 May 2000 HG 2.60 612220 ppb 0014-109-16 Hg *** Sample ID: DDK90 Seq: 62 11:46:35 25 May 2000 HG 14772 .020 Ha opb *** Sample ID: DDK90S Seq: 63 11:48:29 25 May 2000 HG Hq 1.20 ppb 288740 *** Sample ID: DDK90D Seg: 64 11:50:23 25 May 2000 HG 112% Ha 1.12 ppb 270658 *** Sample ID: CCV5-6 Seq: 65 11:52:20 25 May 2000 HG

Hg 5.14 ppb

1200142

Folder: 0525HGA Page 905

11:54:14 25 May 2000 Protocol: HGMET

Line Conc. Units SD/RSD 1 2 3 4 5

*** Sample ID: CCB6 Seq: 65 11:54:14 25 May 2000 HG

Hg .065 ppb 25201 END OF ANALYSIS

WAH
5-25-00

Cell down mode Ins to switch

			1831-185 1		
RunProt: HGMET RunFold: 10525HGA	STL-PITTSBURGH ME Seq: 0 Batch: Prnt: R/T On Rev: 4.2 08:39:4	TALS ANALYSIS 8 25 May 2000	Pump: Off Xmit: Off User: WAH	Gas: A/S	LPM : On
1 ICV5-1 2 ICB1 3 CCV5-1 4 CCB1 5 DDLPFB 6 DDLPFC 7 DD3QM 8 DD3QN 9 DD3QQ 10 DD3QR 11 DD3QT 12 DD3QV 13 DD3QX 14 DD3QXS	ended id Weight 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	ht Volume Mac 00 1.0000 00 1.0000 00 1.0000 00 1.0000 00 1.0000 00 1.0000 00 1.0000 00 1.0000 00 1.0000 00 1.0000 00 1.0000 00 1.0000 00 1.0000 00 1.0000	ro che	ecK macros	
15 CCV5-2	1.00	,,,,,			PgDn

Cup 1 ID: ICV5-1

RunProt: HGMET RunFold: 0525HGA State: Idle	Rev: 4.2 08:41:13 25 May 2000 Xmit: Off Gas: User: WAH A/S:	
	Rek Edit rack: RACK1 Rended id Weight Volume Macro check macros 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	PgDn
Cup 16 ID: CCB2	Cell down mode Ins to swi	tch

PgDn

```
STL-PITTSBURGH METALS ANALYSIS.
RunProt: HGMET_
RunFold: 0525HGA
                   Seq: 0
                              Batch:
                                                  ि Pump: Off
                   Prnt: R/T On
                                08:41:16 25 May 2000 Xmit: Off Gas:
                   Rev: 4.2
                                                                               LPM
                                                  केल User: WAH
                                                                          A/S: On
State: Idle
AUTOSAMPLER:
               Rack Edit
                            rack: RACK1
                                                                               PgUp
              Extended id
                                   Weight Volume Macro
                                                             check macros
cup. ID
31 DDLQ8C
                                   1.0000 1.0000
                                   1.0000 1.0000
32 DD3QMF
                                   1.0000 1.0000
33 DD3QNF
                                   1.0000 1.0000
34 DD3QQF
                                   1,0000 1.0000
35 DD3QRF
                                   1.0000 1.0000
36 DD3QTF
                                   1.0000 1.0000
37 DD3QVF
38 DD3QXF
                                   1.0000 1.0000
                                   1.0000 1.0000
39 CCV5-4
                                   1.0000 1.0000
40 CCB4
                                   1.0000 1.0000
41 DD3QXSF
                                   1.0000 1.0000
42 DD3QXDF
                                   1.0000 1.0000
43 DD3R0F
                                   1.0000 1.0000
44 DD4WAF
```

Cup 31 ID: DDLQBC Cell down mode Ins to switch

STL-PITTSBURGH METALS ANALYSIS ₹<u>.</u> RunProt:-HGMET Batchiij. Seq: 0 RunFold: 0525HGA Pump: Off Prnt: R/T On 08:45:55 25 May 2000 Xmit: Off Gas: LPM: Rev: 4.2 A/S: Onto User: WAH State: Idle rack: RACK2 Rack Edit AUTOSAMPLER: check macros Weight Volume Macro Extended id cup ID 1.0000 1.0000 1 DD4WGF 1.0000 1.0000 2 DD4WHF 1.0000 1.0000 3 DD4WJF 1.0000 1.0000 4 DD4WKF 1.0000 1.0000 5 DD4WLF 1.0000 1.0000 6 DD4WMF 1.0000 1.0000 7 CCV5-5 1.0000 1.0000 8 CCB5 1.0000 1.0000 9 DD50EF 1.0000 1.0000 10 DD50NF 1.0000 1.0000 11 DDLR3B 1.0000 1.0000 12 DDLR3C 1.0000 1.0000 13 DDK90 1.0000 1.0000 14 DDK90S 1,0000 1,0000 15 DDK90D PgDn Cell down mode Ins to switch Cup 1 ID: DD4W6F

```
RunProt: HGMET STL-PITTSBURGH METALS ANALYSIS
RunFold: 0525HGA Seq: 0 Batch: Pump: Off
Prnt: R/T On Pump: Off
Rev: 4.2 08:45:57 25 May 2000 Xmit: Off Gas: LPM
State: Idle User: WAH A/S: On
```

AUTOSAMPLER:	Rack Edit	rack: RACK2 F	Pgtip
cup ID	Extended id	Weight Volume Macro che	cK macros
16 CCV5-6	<b>-</b>	1.0000 1.0000	
17 CCB6		1.0000 1.0000	
18		1.0000 1.0000	
19		1.0000 1.0000	
20		1.0000 1.0000	
21		1.0000 1.0000	
22		1.0000 1.0000	
23		1.0000 1.0000	
24		1.0000 1.0000	
25		1.0000 1.0000	
26		1.0000 1.0000	
27		1.0000 1.0000	
28		1.0000 1.0000	
29		1.0000 1.0000	
30		1.0000 1.0000	- <del>-</del>
JV			PqDn

Cup 16 ID: CCV5-6 Cell down mode Ins to switch

6335

Hg Digestion Log

QUA-4169

Quanterra Incorporated 450 William Pitt Way Pittsburgh, Pennsylvania 15238 412/826-5477 FAX: 412/826-5571

658 852			(Record line number from above)	Extract(s)	K2S204	KMNO4	H ₂ SO ₄	HNO3	Rea		23 DD4WA				19 DD3QX	18 DD3QV	17 DD3QT	16 DD3QR	15 DD 300	14 DDBQM	13. DD3QM	12 DOLPFC	11 DOLPEB	0	9 CCV	8 ICB		6. 16571)58	5. 5.04	4. 5703	३ डाम्प्र	2 5701	1. STD0	Sample ID
			Date Ti		8.001	15.001	5.0ml	2.501		<del>&lt;</del>	5-12-00	+									5-11-00	<b>+</b>											ρίν	Date Rec'd
			Time	Extract(					Vol (mL)	+																							8-25-00	Prep Date
	MAH S-22		Analyst	Extract(s) Received			me	Aur.		*																							WAH	Prepared By
	1		Location		11-050-1100	8-650-4100	- 1	1		¥ 004									+														100ml	WL/Vol
			Date	-			5551 N37402	- 1	9	Vimber ←	-																						WATER	Sample Type
			Hine	$\frac{1}{2}$	Cuting	Moct-	אוכנים					    -							-					+		-							5-25-00	Run Date
			, a may ye	Anahet	Water Ballinguished	Moct-MHaon - Cos - Cor	27677 - Cols. 014 -10	Total		Method		N/n	101 6100 101	ľ	4/21 00111-1082						14/11	# 11.7915 8100	100 m	N/H	2014-104-12	WIN	0014 . 105.12	17.501-15700	0014-105-10	2.601.4.00	8-501-1100	0014-105-7	N/A	Comments
SI		Pi	W	Location		rg	h	3.051																										

658 852

> Environmental Services 6336

ianterra

100 Book Number 576 08:05 + 08:00

Hg Digestion Log

Wuanterra
Environmental
Services

073 96-WT-576 08:05-08-06

Quanterra Incorporated 450 William Pitt Way Pittsburgh, Pennsylvania 15238 412/826-5477 FAX: 412/826-5571

ST			-    1	WHI				١
			00-563	1.771				(
P					7 1110	Date	(Record line number from above)	(R
Analyst	Time	Date	Location	Analyst		-	Extract(s)	ì
1	Extract			Extract(s) Received	Extract	8.0m1	V2020#	
200			11-050-1100			<i>a</i> , ,	Kanada	1
	Macr. V		R-650 - 1100			15001	KMNO ₄	
gh		ACHIEN 1 CGC	١.	B		5.pml	H ₂ SO ₄	
10		- 1	١	<u> </u>		2.5m1	HNO3	
AUTECLAVE ISPSI 130°S	74704	2303511	- / // // / / ·		VOI (mL)		Reagents	-
Method		Ref. Number	Ref. N	-	*	۴	DDYWMF	25
	•	•					DDYWLF.	24.
				<del>-</del>			DDYWKF	23
							JEMADO	22.
							DDHWHF	21
							Day Wer	20.
						5-12.00	DDYWAF	19
						<	DD'3 AOF	18.
							DP3QXPF	17.
ļ							DOBOXSE	16.
+101 0014-108-3							DDBOXE	15
							DOSCHE	14
							DD3 QTF	13
					-		DD3 ARF	12.
							DD3005	11
							DD3QNF	10
						5-11-00	DD3QmF	9.
NA						•	DDLOSGE	8
0014-109-15						NJA	DDL 088F	7
<		-				*	DD5 ON	6.
		-					1	Çı
	<u> </u>		+	-				4
			<del> </del>				JWH act	3
							DDYWK	2
777	20.00	WATER	10001	WAH	5.25-00	5.12-00	DWKAO	1
21/0	C 16 CO	Sample Type	WUVOI	Prepared By	Prep Date	Date Rec'd	Sample ID	-
Comments								QUÁ;4169

Quanterra Incorporated 450 William Pitt Way Pittsburgh, Pennsylvania 15238 412/826-5477 FAX: 412/826-5571

		/Record	6	\$ 6	3	85	4		25	24.	23	22	21.	20	19	18.	17	16.	15.	14	13	12.	11	10.	9	8	7	6.	5.	4	3.	2	1.	
		(Record line number from above)	Extract(s)	K2S2O4	KMNO ₄	H ₂ SO ₄	HNO3	Reagents	-			_				-		_				-			_		DDKSOD	HodeDDKS05 1.	PDKS6	DD183c	DOLASB	DDSONF	DD50EF	Sample ID
		Date Tir		8.021	15.001	5.0 ml	2.5ml					-\															-		5.23-00	<b>(</b>	Alla		5-12-00	Date Rec'd
		Time	Extract(s					Vol (mL)																			¢-						5-25-00	Prep Date
WAH 5-35-00		Analyst	Extract(s) Received			mA.	3										N. T.	100.96.5 HV									*						WВН	Prepared By
-05.00		Location		11-060-1500	8-560 - 4100	1	'	Ret. A										100									4						10:01	WWVol
		Date T				5557 N37A02	<b>.</b>	Number																			¥						WATER	Sample Type
		Time	Extract		Hack W																						*	-					5-25-00	Run Date
		Analyst	Extract(s) Relinquished	HAM	Mach WHACH : DOIN - OTI-1	SUSTA - 0014-04-10		S	Mathod																		+/m1 0014-108-3	1	NIA	0014-109-16	4		WIN	Comments
	Pi	Location	sì	AH 5-35-CC	111		15PSI 130°C	- 1																				3						nts

PSR024 5/24/00 10:57:59 MT SAMPLE CUSTODIAN REMOVAL REQUEST PAGE 001 REQUESTED BY: HOYLEY Mercury (7470A, Cold Vapor) - Liquid METHOD: 08 201 ي .: <u> 1</u> PICKED MATRIX --QTY QTY STORAGE LOCATION WORK ORDER # CNTR# CONTROL # CLIENT # ANALYSIS LOTID SMP# SFX DESCRIPTION N.P. RCVD REQD 4F DDK90 236409 399411 I-19-08 COE230195 001 WATER

RELINQUISHED BY	RECEIVED BY	<u>DATE/TIME</u>
Hellerm a Hoyle	William a Hoyle	<u> 5.35.00</u> 06:00
Illiam a Noyle	Asleam a Hoyle	5-25-00 07:16
	**************************************	

# **GENERAL CHEMISTRY DATA**

### UKB INTERNATIONAL

# Client Sample ID: DF/S1/0137/WA/001

adadan Nija <del>Maran</del> Maran	General Chemistry	adhabhana yan ( t - agaann
Lot-Sample #: C0E230195 = 001	Work Order #: DDK90	Matrix 00 WATER
Date Sampled: 05/22/00	Date Received: 05/23/00	7

Date Sampled: (	5/22/00	Date Receive	<b>d:</b> 05/23/00	; 23	
PARAMETER	<del></del>	RL UNITS		PREPARATION- ANALYSIS DATE	PREP BATCH #
рн	8.3 ½ Dilution F	NO Un actor: 1	its SW846 9040 IS Run #: 0144116	05/23/00 	0144271
Cyanide, Total	ND : Dilution F	10.0 ug/L actor: 1 M	SW846 9012A IS Run #: 0147046	05/26-05/27/00	0147147
Flashpoint	> <b>200</b> Dilution F	deg F	<b>SW846 1010</b> IS Run #: 0148031	05/27/00	0148128
Total Sulfide	183 : Dilution F	1.0 mg/L actor: 1	MCAWW 376.1 IS Run #: 0147031	05/26/00	0147129

### METHOD BLANK REPORT

### General Chemistry

Client Lot #:	C0E230195		discuss a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Matr	ix WA	TER
PARAMETER Cyanide, Total	RESULT ND	REPORTING LIMIT Work Order 10.0 ution Factor: 1	ÜNITS	METHOD MB Lot-Sample #: SW846 9012A	PREPARATION- ANALYSIS DATE C0E260000-147- 05/26-05/27/00	PREP BATCH #
Total Sulfide	ND Dil	Work Order 1.0 ution factor: 1	#: DDR42101 mg/L	MB Lot-Sample #: MCAWW 376.1	C0E260000-129 05/26/00	0147129
NOTE (S):						

Calculations are performed before rounding to avoid round-off errors in calculated results

# LABORATORY CONTROL SAMPLE EVALUATION REPORT

			uliberius.			
# ± -	<del></del>	Geg	<u>neral Chēmist</u>	ry j		
48- GL						· ·
Client Lot #	: C0E2301	95	<b>☆13</b> -		Matrix	: WATER
. 4.	PERCENT	RECOVERY			PREPARATION-	PREP
PARAMETER	RECOVERY	LIMITS	METHOD		ANALYSIS DATE	BATCH #
рH		Work Order	#: DDK4K101	LCS	Lot-Sample#: C0E230000	-271
	100	(85 - 115) Dilution Factor: 1	SW846 9040		05/23/00	0144271
Cyanide, Total	100		SW846 9012A		Lot-Sample#: C0E260000 05/26-05/27/00	0-147 0147147
Flashpoint	99			LCS	Lot-Sample#: COE270000	
	99	(85 - 115) Dilution Factor: 1	SW846 1010		05/27/00	0148128
Total Sulfide		Work Order	#: DDR42102	LCS	Lot-Sample#: C0E260000	-129
	105	(75 - 125) Dilution Factor: 1	MCAWW 376.1		05/26/00	0147129
NOTE (S) :						

Calculations are performed before rounding to avoid round-off errors in calculated results

#### MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry											
			جنسقت بعد ب	-	•	دو سقال					
Client Lot #	: C0E2			مال على المواري المالة	Matrix WATER	₹.=					
Date Sampled	05/2	<del>2</del> /00 - 1	Date Receive	ed: 05/24/00	4						
_						;					
	PERCENT	RECOVERY	R₽Ď≟		PREPARATION- PREP	) <u>.</u>					
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	S METHOD	ANALYSIS DATE BATCH	11:					
Cyanide, Tot	al	WO#:	DDM11105-M	S/DDM11106-MSD	MS Lot-Sample #: C0E240195	-001					
	102	(75 - 125)		SW846 9012A	05/26-05/27/00 014714	7					
	101	(75 - 125)	0.95 (0-20)	SW846 9012A	05/26-05/27/00 014714	7					
-											
				- /	NO 7-1- G	001					
Total Sulfid	e	WO#:	DDNNK10G-M	S/DDNNK10H-MSD							
	93	(75 - 125)		MCAWW 376.1	05/26/00 014712	9					
	101	(75 - 125)	8.0 (0-20	) MCAWW 376.1	05/26/00 014712	9					
Dilution Factor: 1											
		MS Run #	: 0147031								

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

### SAMPLE DUPLICATE EVALUATION REPORT

### General Chemistry

Client_Lot #:	C0E230195	Work Or	der :	#:⊅DDI	K1J-SMF	Matr	ix WATER	,
Date Sampled:	05/22/00				K1J-DUP		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
PARAM-RESULT	DUPLICATE RESULT	UNITS R	PD	RPD LIMIT-		ı	PREPARATION- ANALYSIS DATE	PREP :
рН - 7.2	7.2 Dilu	No Units 0	.28	(0-20)	SD Lot SW846	_	C0E230164-001 05/23/00	0144271
	Prep	Date: 0144	116	Analysis Da	te:	Prep Ba	tch #:	

#### General Chemistry -

Work Order # ...: DDK90-SMP Matrix....: WATER Client Lot #...: C0E230195 DDK90-DUP Date Received..: 05/23/00 Date Sampled...: 05/22/00 PREPARATION-PREP RPD ۔ چینے۔۔۔ DUPLICATE Q. ANALYSIS DATE BATCH # <u>LIM</u>IT METHOD PARAM RESULT RESULT UNITS RPD SD Lot-Sample #: C0E230195-001 Flashpoint 0148128 (0-20) SW846 1010 05/27/00 >200 >200 deg F 0.0

Dilution Factor: 1

Prep Date....: 0148031 Analysis Date..:

Prep Batch #...:

COEZHOIST & TOLOR OITCITE

しのだしろうといろと てったる ロリナナルケ

COE240157} Total 0147145

LOEZSOIZZE TOLOL 2412410

LOE230195) Total COE240195) Water 0177147

COE24019 St Free 0147148 COEZHOI9S/ Amerabia 6147149

658 864			
	Total (M-	Handmenable CM	(A) eddanemA:
Sample 7	A 1 h	K.C. N	NA
103			Range 131.95
COE 24 01 93.60	34.2	1103.4	1 47 7 7 m.1
100 1 45,001)	ال الاستادات	,0202	0140
	.0342	.0120	· 0773 453"
ac marce	1		
	:		
Note: The	i hornore fratu	Sar The Sar	1000 2 200
	Logs Than T	he haportiling to	4 of 0.0; NW
,			
	1		·
	ì		,
			<u> </u>
		1	
	1	5.57.00	
	1		
STL Pittsburgh			7009

Run Results Report
Results: C:\FLOW_4\052700A.RST
Results completed: 08:57 May 27, 2000. Operator: P.JOHNSON J. Johnson J. 27.00

		<b>_</b>		CYANIDE		
ime	Cup	Name	Height	Calc.	Flags	
		User request:			dre.	
6:00	0	CARRYOVER	710	0.001550	<b>V</b> EI¹	
6:01	0	CARRYOVER	77	0.000192	· VEF.	-
	Ĭ.	Mean & RSD:	394	0.000871	Norsd 📆	
06:03	0	READ BASELIN	0	0.000026	BL 🛼	
06:04		0.500 PPM ST	234566	0.503230	HI	
06:05		0.500 PPM ST	234145	0.502327	HI	
06:06		0.500 PPM ST	235174	0.504535	HI	
		Mean & RSD:	234628	0.503364	.221%	
06:07		0.400 PPM ST	187214	0.401648		
06:08		0.400 PPM ST	187327	0.401890		
06:10		0.400 PPM ST	186450	0.400008		
,0.10		Mean & RSD:	186997	0.401182	. 255%	
06:11		0.300 ppm ST	139426	0.299130		
06:12		0.300 ppm ST		0.303236		
06:13		0.300 ppm ST	139936	0.300235		
, ,		Mean & RSD:	140234	0.300864	.707%	
06:14		0.200 PPM ST	93333	0.200249		
06:15		0.200 PPM ST	93437	0.200472		
06:17		0.200 PPM ST	91986	0.197360		
00.17		Mean & RSD:	92919	0.199360	.871%	
06:18		0.100 PPM ST		0.098553		
06:10 06:19		0.100 PPM ST	46499			
06:20		0.100 PPM ST	46053	0.098821		
00.20		Mean & RSD:	46160	0.099051	.651%	
06:21		0.050 PPM ST	23023	0.049416	.0310	
06:21 06:22		0.050 PPM ST		0.049134		
06:22 06:24		0.050 PPM ST				
V6:24		Mean & RSD:	22942	0.049243	.308%	
06:25					.5000	
06:26		0.010 PPM ST			OL	
06:27		Mean & RSD:	4937		2.9%	
06:28				0.000044	4.30	
06:20 06:29		0.000 PPM ST		0.000044		
					LO OL	
06:31		Mean & RSD:	-16		343%	
06-20			77070		1 6 3 . My.	
06:32			20		1 - 2 - 4 1.	
06:33			30			
06:34						
06:35			48237		103.59.	
06:36			21		זמ	
06:38			0		BL	
06:39	102	DDNHE101B	850	0.092445	malka	
_	11				ノフ	
Page	#1	s Report				

Run Results Report

Results: C:\FLOW_4\052700A.RST

Results completed: 08:57 May 27, 2000.

Soperator: P.JOHNSON 1. Ophnson 5.2700

သ			<u></u>	changing transfer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				NIDE -
Time	Cup	Name	- Hēight	Calc. Flags
$\omega_{06:40}$	103	DDNHE102C	117984	126.565834 mg/kg harge 51-1-138 153.49.
06:41	104	DDLJF10W	2174	0.234441
06:42	105	DDLJL10W	15 <u>-28</u> -	0.165161
06:43	106	DDLJM10W	1643	• • • · · · · · · · · · · · · · · · · ·
06:45	107	DDLJN10W	1800	0.194421
06:46	108	DDLJQ12M	1661	0.179448
06:47	109	DDLJQ12PX	1768	0.190949 malka 0.6%. RDS
06:48	0	BLANK	-32	-0.000042 LO)
06:49	2	CCV 7209510	48376	0.103804 53.55.
06:50	0	CCB	-10	0.000005
06:52	Ŏ	BASELINE	0	0.000026 BL
06:53	110	DDLJQ12NS	44812	4.808002 malke quity.
06:54	111	DDLJV10W	2386	0.257274
06:55	112	DDLJW10W	2141	0.230932
06:56	113	DDLK010W	2390	0.257636
06:57		DDLK110W	2561	0.275974
06:59		DDLKJ10W	2334	0.251694 mg/Kg
07:00		BLANK	-24	-0.000027 LO)
07:01		CCV 7209510	48766	0.104642 ا حثم الحم
07:02		CCB	-8	0.000009
07:03		BASELINE	0	0.000026 BL
07:04		ICA	75251	0.161458 ! O O . G 7.
07:06		ICB	10	0.000047
07:07		BLANK	1	0.000028
07:08		CCV 7209510	48485	0.104039 104.07.
07:09		CCB	12	0.000051
07:10	_	BASELINE	0	0.000026 BL
07:11		DDR5X101B	920	0.100014 mg/kgp (11.142/42/42/4
07:13		DDR5X102C	109557	117.526466 Renga SI-6-148 142.54
07:14		DDKF1101	4460	0.479735
07:15		DDKF2101	3531	0.380023
07:16		DDKF4101	2841	0.306061
07:1	_	DDKF5101	4874	0.524097
07:18		DDKF6101	1607	0.173678
07:20		DDKF8101	5793	0.622723 mg/kg
07:2	1 0		-11	0.000003
07:23	2 2	CCV 7209510	48673	0.104442 1 0
07:2	3 0	CCB	10	0.000048 0.000026 BL
07:2		BASELINE	0	0.000026 BL
07:2			12179	1.307687 mg//2
07:2			12159	1.305518) O. Z.Y. RPS
07:2			38423	4.122693 4 5-37. SanAnchilicae
07:2		DDKFD101	6200	1.307687 mg/kg 1.305518 4.122693 0.666370 mg/kg 0.000020
07:3		BLANK	-3	0.000020
)

Page #2 Run Results Report Run Results Report

Results: C:\FLOW_4\052700A.RST Results completed: 08:57 May 27, 2000.

Operator: P.JOHNSON

1. Johnson 5. 2700

		<u></u>	/)		\$\tau_{\text{\tin}\text{\te}\tint{\text{\tin}\tint{\text{\text{\ti}\tint{\text{\text{\text{\texi}\text{\text{\texit{\text{\texi}\text{\text{\text{\texi}\text{\texi}\tint{\text{\texi}\text{\texint{\texit{\text{\texi{\text{\texi}\tint{\text{\texit{\texi{\texi}	
			CYA	NIDE		-
Time	Cup	Name	Height	Calc.	Flags	
07:31	2	CCV 7209510	48214	0.103458	193.59.	
07:31	0	CCB	5	0.000036	dir-	
	Ö	BASELINE	0	0.000026	BLogg	
07:34	129	DDR61102C	74066	0.158917	9-9-39.	
07:35		ICB	2	0.000030		
07:36	0	BLANK	1	0.000027	d^{2}	
07:37	0	CCV 7209510	49022	0.105191	105.27.	
07:38	2		28	0.000087		
07:39	0	CCB BASELINE	0	0.000026	BL	
07:41	0	DDR61101B	\$2.7 ∞ _{1.1256}		Air Soils, Sue Ro-Analy (, "	
07:42	-130 -	DDR61103L	74503	0.159853	Air Spiles, Sussker Analysi's	
07:43	131		440	0.000970	1, 1, 1, 2, 2, 1, 1, 1, 2	
07:44	132	DDLKT10V	20	0.000069		
07:45	0	BLANK CCV 7209510	48643	0.104379	104.47.	
07:46	2		11	0.000051	, , , , , , , , , , , , , , , , , , ,	
07:48	0	CCB BASELINE	0	0.000026	BL	
07:49	0	.05 7209503	21894	0.046994	9 m. 64.	
07:50	133	.40 7209504	192644	0.413297	163.34.	
07:51	134		33	0.000098	1 - 3,31.	
07:52	0	BLANK	48377		1010	
07:53	2	CCV 7209510	19	0.000068	163.87.	
07:55	0	CCB	0	0.000026	BL	
07:56	0	BASELINE	1000	0.108522	melko.	
07:57	_	DDR63101B	109679	117.657753	Marka Bar Silvina 1420	1
07:58		DDR63102C	16718	1.794489	1 10000 21.21.40 1.44	
07:59		DDNNA10W	49217	5.280433	1. 69.33	
08:00		DDNNA112S	50693	5.438787		
08:02		DDNNA113D	7	0.000041	majk 35-62. 3.02-822	
08:03		BLANK	48254	0.103544	102.00	
08:04		CCV 7209510	-17	-0.000010	103. 2).	
08:05		CCB	0	0.000026	BL	
08:06		BASELINE	1250	0.002708		
08:07		DDR65101B	74934	0.160779	100.5)	
08:09		DDR65102C	1487	0.003216		
08:10		DDK9010W DDM11103	15948	0.034239		
08:11		DDM11103	63576	0.136413	1 - 2. 2).	
08:12		DDM111055	62977	0.135128		
08:13		BLANK	37	0.000106		
08:14		CCV 7209510	49029	0.105206		
08:16			15025	0.000026		
08:17		CCB BASELINE	ŏ	0.000026		
08:18		DDR68101B	1055	0.002290		
08:19			78248	0.167889		
08:20			4178	0.008988	· - 10.00 %	
08:21	1 148	DDMITTOR				

Page #3 Run Results Report

Run Results Report

Results: C:\FLOW_4\052700A.RST

∞Results completed: 08:57 May 27, 2000.

DOPERATOR: P.JOHNSON J. & of war J. L. J. O.O.

~								
ິດ				C	YANIDE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		:
Time	Cup	Name	. .	Height	Calc.	Flags		
08:23	149	DDM11107S	•	49520	0.106258	104.33	;	
08:24	150	DDM11108D	÷,	50152	0.107614	104.37	1.24.223	
08:25	0	BLANK		2	0.000030			
08:26	2	CCV 7209510	-4-	48317	0.103678	103.77.		
08:27	0	CCB		- 5	0.000015			
08:28	0	BASELINE		0	0.000026	\mathtt{BL}		
08:30	151	DDR69101B		1123	0.002435	1		
08:31	152	DDR69102C		135780	0.582617	,	. د	
08:32	153	DDR69102C		47961	0.102915	° Sieu Ati	rached Shoo nonable CH	بحر
08:33	154	DDM11101		9412	0.020218	For An	nunable i N	
08:34	155	DDM11109X		5564	0.011962,		stakions.	
08:35	0	BLANK		-11	0.000002			
08:37	2	CCV 7209510		48623	0.104334	104.34.		
08:38	0	CCB		-4	0.000018	 ,		
08:39	0	BASELINE		0	0.000026	\mathtt{BL}_{\ldots}		
08:45	* 156	DDKFC102A		32824	3.522042	udlya B	8.6%	
08:46	"130	DDR61101B		2096	0.004523	ノ) ~		
08:48	0	BLANK		4	0.000034			
08:49	2	CCV 7209510		48397	0.103850	163.89		
08:50	0	CCB		8	0.000044	,,		
08:51	. 0	BASELINE		0	0.000026	BL		

FOO. 2120/2302 edinos ind aside coessosis. 00 f wedness of const HJ masor for emptilia COESJOSIS. TV. 2. 5 mg/Kg

Page #4

CYANIDE: Calibration, Peak 5-144

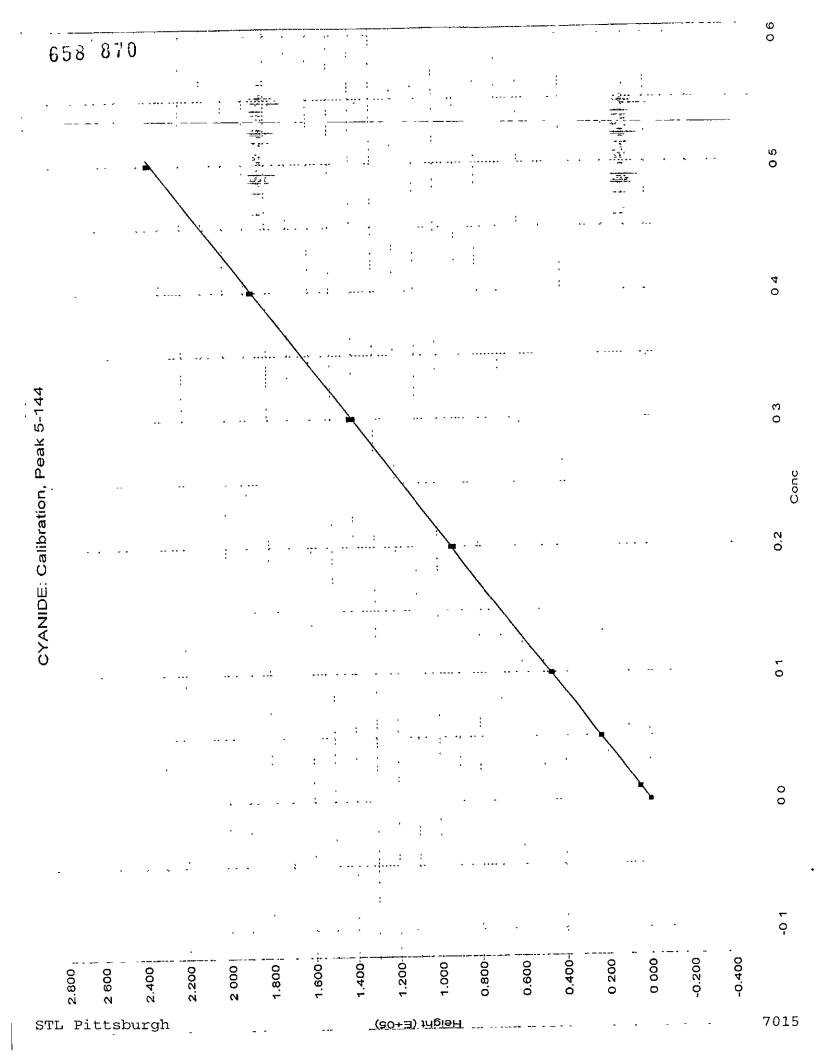
658 669

File name: C:\FLOW_4\052700A.RST Date: May 27, 2000 Operator: P.JOHNSON

		
*=Name	Conc	Height
* 0.500 PPM STD	0.500000	234565.85 ₃ 9375
* 0.500 PPM STD	0.500000	234144.75,0000
*T0.500 PPM STD	0.500000	235174.342500
* 0.400 PPM STD	0.400000	187213.859375
* 0.400 PPM STD	0.400000	187326.687500
* 0.400 PPM STD	0.400000	186449.703125
* 0.300 ppm STD	0.300000	139425.593750
* 0.300 ppm STD	0.300000	141339.812500
* 0.300 ppm STD	0.300000	139936.140625
* 0.200 PPM STD	0.200000	93333.109375
* 0.200 PPM STD	0.200000	93436.734375
* 0.200 PPM STD	0.200000	91986.281250
* 0.100 PPM STD	0.100000	45927.753906
* 0.100 PPM STD	0.100000	46499.164062
* 0.100 PPM STD	0.100000	46052.796875
* 0.050 PPM STD	0.050000	23022.816406
* 0.050 PPM STD	0.050000	22891.642578
* 0.050 PPM STD	0.050000	22911.708984
* 0.010 PPM STD	0.010000	4934.362793
* 0.010 PPM STD	0.010000	4939.477539
* 0.010 PPM STD	0.010000	4689.104492
* 0.000 PPM STD	0.000000	8.610161
* 0.000 PPM STD	0.00000	-1.279019
* 0.000 PPM STD	0.00000	-16.380140

æ

Calib Coef:


y=bx+a

a: (intercept) -1.2106e+01 4.6614e+05 b:

Corr Coef: 0.999976

0.154% Carryover:

No Drift Peaks

ار ام

ا ف

15.

18.

Ç

21.

ଷ୍ଟ

2 2 2 3 8

118 829

	4	
n n	7	

Cyanide Distillation Worksheet	\$ 1047407	157 Toke	The transfer of Sturr St		STL Pittsburgh 450 William Pitt Way Pittsburgh, PA 15238 412-820-8380) <i>L</i> [[
7	Date COST	Heagent /Std Book ID:	िर्म्ह विर्		1.450-4-1	1
7 016	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Sample	Sample Description (CLP Samples Unity)	mples Unity) Fxniration Date	i
111	-Initial	Final	Before Distillation		1	[]
70119111	- Sod CiS	- Acros >		[]	7	1
2 - 2 - 1 - 2 - 2		}	Q'N	AII	HA .	i
4.4.4.4.	San C)	Jay O	- Apranjara_	Taply and		1 1
5.) 2		~				[
9						ł
- 0						1
0						1
10.						1
11.						ļ
12						1
13.						i
14.						l
15						1
16.						1
1,1		(O O : 1				l
10		·				1
20						
21						<u> </u>
22.						1
23						
24 41 Grave Franch 4 644 11	44					1
25.						ł
26.	179770	Distillato(e) Decembed		te(s)	70	1
Distillate(s)	Date Time	•	Location Date	Time	7	ł
(Hecord line Humber	0-78	1 ACARACT C	00447	000	1	1
<i>f</i>		A John A	100 (1) Se Se	0 20	British & Cooky do	L I
_		,				ļ.
		3 760 . ~ 5	10.250 16		ĮD:	, <u>k</u>
Comments				Date: 5-26-07	7	ا ہا۔
Reviewed by:						.
					1 7	· ~ ~ -
N:\QA\LOGBOOKS\CN_DISTILLATION	NOI	Log Book ID : IP-00-0030	IP-00-0030		Page 21 of 100	, o
		ı			S	ــ

Distillate(s)
A(Record line number from Cyanide Distillation 9. 14 15 16 16 17 17 18 19 20 20 20 22 23 25 3 3 3 10. Worksheet Reviewed by N./OA/FOGBOOKS/CN-DISTIFFATION Sample 1D المالية والمالية المعالمة + 1 ナロイナ Initial ŧ Date 941 this gord (8105730) 0.10 1.000 8 600 000 Distillation Final Distillate(s) Received Time Analyst traposon Log Book iD : IP-00-0030 Reagent /Std Book ID: 1.450 Location TO SERVICE STATES Before Distillation Committed To Eurer Studens SOF Sample Description (CLP Samples Only) 0 6 6 0 After Distillation Distillate(s) Relinquished
Time Analyst STL Pittsburgh 450 William Pitt Way Pittsburgh, PA 15238 412-820-8380 Expiration Date Page 22 of 100 Though. Location Ö 7019

658 875

N QAILOGBOOKSICN_DISTRIL ATION

Log Book ID: IP-00-0030

Page 23 of 10<u>ମ</u> ୍ର

65 Comments Distilled by: Cyanide Distillation Worksheet 5 Distillate(s)
(Record line number from Reviewed by: Sample ID Initial Date COELADIAS From pitting ملحمون 0 Date: Distillation Distillate(s) Received
Time Analyst 5 Final Analyst 401000 **D** 0 Reagent /Std Book ID: 1625125 100 H Location 69888 1000 - Cal Before Distillation 80.43 (1) Date 00 Sample Description (CLP Samples Only) o Your Structs Date: Y-2 1000 After Distillation Distillate(s) Relinquished
Time Analyst 400 06 STL Pittsburgh 450 William Pitt Way Pittsburgh, PA 15238 412-820-8380 10000 Expiration Date Page 24 of 100 Location Ø b 7021

N \QA\LOGBOOKS\CN_DISTILLATION

Log Book ID: IP-00-0030

F 658 877

Cyanide Distillation Worksheet	6.047 Jan		ANERS SILVANA	Committeed to Your Success	STL Pittsburgh 450 William Pitt Way Pittsburgh, PA 15238 412-820-8380
	A. C. L. L. S. S. C. Date:	Reagent/Sid Book ID:	15.56/25.71		
1' 2			- Y	e Des	Samples Only)
Sample ID	Initial	Final	Before Distillation	After Distillation	Expiration Da
17 1500000000000000000000000000000000000	Jan (3)	(0)			
377 60 00 77 6	7				4.7
13011005)) 			200
5-15 molling x	100g				
7.					
- α ο					
10.					
11.					
12.					
13					
15.					
16		*			
17.		85	7	00 97	
19.					
20.					
21.					
23.					
25	1,				
				(Sietillate(s)	Distillate(s) Relinguished
Distillate(s)	Date Time	Distillate(s) Received Time Analyst Loc	Location Date		Analyst Location
*	36 8 00 57.8	1	30 17:34	0 5 8 0	Proposer A 195 Tole
)			2		<u> </u>
Comments.	800.5F 12998	3.00	To the		
Reviewed by:		KU	whilak	Date: 5-26"	0 D D D D D D D D D D D D D D D D D D D
			,		; 1 :

Log Book ID: IP-00-0030

N'\QA\LOGBOOKS\CN_DISTILLATION

Method:

History & Grance

ANALYST:	DATE: 5-27-90
BATCH: (00£230 195-0148128	TIME: 1/8-02-
27605 170158, 606 170160 - 014 8127	J.
SAMPLE ID	RESULT-
p-XYlave	80°F
COE 230195-001	NO > 200'F
Co 6 170 152-00 2	YES 170'F
COE 170158-002	/ У
POE 170160-002	> 200°P
COU230195-001 DUP	NO > 200°F
COE170152-002 DUP	172°F
	1/1/
	1, 1,
	4/

Quanterra Environmental Services pH LOG SHEET

pH Meter Calibration

Reading	Buffer	Lot No.	Rec'd	Expire
7.00	7.0	LABCHEM 9291-13	2-29-00	11-12-01
4.00	4.0	1 9167-08	5-9-00	6-25-01
10.00	10.0	0010-07	2-29-00	1-11-01

LCS ID No.: 342-155-10

Relative Percent Difference =

Range = \pm .05 pH units

$ X_1 - X_2 $	X₁ =Original Result
$\frac{\left X_1 - X_2\right }{\left(\frac{X_1 + X_2}{}\right)} \times 100$	$X_2 = Duplicate$
2	

Sample ID	pH Reading
LCS	7.01
CDE 220108-001	6.93 (195)
-toIDup	6.82/1.6%
-002	7.43
-03	7.99
-004	7, 38
-005	7,20
-co6	8.05
	745
- 	7.59
7009	7.48
KU	6.99
-010	6.37
-011	7.60
-012	8.42 8.43 (553-ev
7)/3	n.44 553-20
-014	8,4
	7.61
7/6	7.67
77	7.18
LCS 0195300	6.99
-019	7.65
(20	540
-D1	7.30\ KPD
OLIDIP	7.30 KPD31/ 7.42 1.631/
-022	7.28
-223	7.54

216

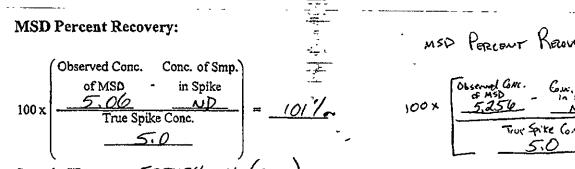
::---

Quanterra Environmental Services ph log sheet

Lot No.	Batch No.	SDG No.	Ingludes att Analyst: Date: Start Time:	5-23-	Page of
pH Meter Calibra	Buffe 7.0 4.0 10.0		Manf. Lot No.	Rec'd	
LCS ID No.: Range = ± .05 pH	units		$\frac{\left X_{1}-X_{2}\right }{\left(\frac{X_{1}+X_{2}}{2}\right)}$	x 100	X_1 =Original Result X_2 = Duplicate

Sample ID	pH Reading
CS = 30108-024	7.49
-025	7.54
-026	7.40
-027	7.63
LCS	7.00
-028	7.36
-629	7.53
-03 <i>0</i>	9.33
-03 1	8.27
-032	7.43
<i>-0</i> 33	7.52
-034	3,98
-(35	4.91
-036	3.72
LCS	6.99
	5,30
-038	10.26
<i>-</i> 039	4.08
4)40	6.19
-041	6.24 RTD 6.25 1.66
-04/Dep	6.25
-092	6.50
-043	4.21
-044	4.16
605	6,99
-045,	2.80 5.85
-046	
-047	6.65

Quanterra Environmental Services pH LOG SHEET


COE 220108	Batch No. SDG N	Analys Date:	st: <u>ZRZC </u>	
-pH Meter Calibration Reading	Buffer 7.0 4.0	Manf. Lot No.	Rec'	d Expire
LCS ID No.:	10.0 ts	Relativ $\frac{ X_1 - X_2 }{ X_1 + X_2 }$	e Percent Differ $\frac{X_2}{X_2}$ x 100	rence = $X_1 = \text{Original Result}$ $X_2 = \text{Duplicate}$

Sample ID	pH Reading
CS 7300 (OE220108-048	6.88
049	7.27.
-050	7.98
7051	5.94
-052	7.28
7053	7.38
X(t)	6.99
7054	6.30
-005	6.31
-076	6.94
-057	4.74
-0)8	7.12
-059	7.18
-060	7.46
105	6.99
-D(0/	6.90 , 490
-t/0/Dup	7.04/2:01
-062	7.18)
-Dh3	7,49
064	7.35
-065	7.31
76)	7.00
INFLUENT COE 230164 -002	7.21
EFFLUENT -001	7.16 (RPD
Effector Dun -001 De	7.16 (RPD 7.18).28%
LCS	7.00
LC3 C0E230195-601	8,26
LCS	7.00

Quanterra Environmental Services

630	004	Ž	SULFIDE	LOG SHEET			
	ang Banda Ang ang ang Ang ang Ang ang Ang ang	-			-		
TOTAL {	Lot No. <u>COE 230 195</u> <u>COE 250134</u>	Batch No.	SDG No.		hment(s)	WESOLOSKI	
Passeud	COE 250134->	0147130		Start Time:	07:00		
	Stock Std. ID No.:	2071 - <u>004</u> -	/3 True Va Prep	lue <u>2005pm</u> 5-26-00	Exp	0-2-00	
	LCS 5	mL of 20	Oppm (ID No.: Range	0071-004 +L 25%	<u>- /3</u>)=_	200 ppm	_
	Calculations: Sulfide mg/L =	(20 mL of Iodi	ine x N Iodine) - mL	(mL Na₂S₂0₃ x Sample	N Na ₂ S ₂ 0 ₃)] x	16,000	
	Iodine Standardi .0246 N Iod	zation ID No.: ine = $\frac{20.1}{}$	007/- 003 mL Na ₂ S ₂ 0 ₃)(20.0 mL of Iod	ine Solution	1 1 2 2 1 2 1	~	. •
	Sodium Thiosulf ID No. <u>007/</u>	ate Standardiza - 003	ation	Relative Percel	nt Difference = 0E250134 - 001	DISSOLVED - O	//
	Titration mLs 1 /22		·	$\frac{ X_1 - X_2 }{\left(\frac{X_1 + X_2}{2}\right)} \times$	$X_{1} = 0$ $X_{2} = D$ $MS \text{ Recent}$	Recovery	•
	(10 mL of KH(IC mL	$(0.025N \text{ K})^2$) $(0.025N \text{ K})$ of $(0.025N \text{ K})$	H(IO ₃) ²)		100 X 123.00	True Spile Gue. 5.0	0:
	Concentration of	f Sample in Spi	ike:	MS Percent Recover	rv:	250134-00 (Dzssou	E
	Orig. Smp. Conc.	Vol. of Smp. in Spike 200 Orig. Smp. Vol. 200	= <u>NO</u>	Observed Conc. of MS 4.668 True Spi	Conc. of Smp. in Spike NO ke Conc.	= <u>93%</u>	
	Sample ID:			Sample ID:	<u> </u>	OTAL)	
	Onig. Smy. Couc.	VOL. OF SAME VOL. OF SAME 200 Orig. Samp. Vol. 200	. NP	- E : K	1 Mh 26-00	ill.	

Quanterra Environmental Services SULFIDE LOG SHEET

	Sample ID	Sample mL	N = .0346 mL of Iodine	mL of N = 0.0245	Conc.	LDL	
<u>_</u>	MB	200 ne	E 4-9 20.2	Na ₂ S ₂ 0 ₃	ND	1.0	
	LCS	1	20nl	17.4	5.256		
-)[COE230195-001		100 ml	7.2	182.688	1.0	
TOTAL 5	COE250 134 -001		20ml	20.0	dia	111	_
(-	-001 ms		20~1	17.7.	4.668	93%	7 RPD 7 8.04%
<u> </u>	-001msb		20ml	17.5	5.06	101%	> 8.04.
()-	WB		5549.7×20.1	19.7	UD		
, · · · }	LCS	1	20-1	17.5	5.06		
DESSOLVEDS	(05250134-001		20nl	20.1 17.4	5.256	1.0	Zaph
(-001 ms -001 msD		20.ml	17.4		105%	<pre> </pre>
4	¥ -00 (7/3)				3.000	100%) W.
			· · · · · · · · · · · · · · · · · · ·				
L			·····				
<u> </u>							
<u> </u>							
-			CAN-	<i>a</i> D			
-			6,00				
-		<u> </u>	6.50				
-		 			 	 	
<u> </u>							
F							
<u> </u>					1		
			·		ļ		
<u>\</u>					 		

REQUESTED BY: J	OHNSONP						**************************************				
METHOD: QP	Cyanide Total		-					MATRIX	QTY	QTY	-
STORAGE LOCATION	-	PICK ED CNTR#	CONTROL #	CLIENT #	ANALYSIS	LOTID	SMP#JESFX		RCVD		
4F	DDK90_1-0W		236909	399411	I-06-QP	COE230195	001৻⊷	WATER	9	,	1
6A CLP1	DDM11-1-03		236910	097631	1-06-QP	COE240195	001	₩ATER	4	į.	1
6C	HO-1-ANNGD		236911	054156	A-06-QP	COE250133	001	SOLID	3	;	1

RELINQUISHED BY	RECEIVED BY	DATE/TIME 5.26.00 03.6

PSR024 5/27/00 11:50:18 MT SAMPLE CUSTODIAN REMOVAL REQUEST PAGE 001 REQUESTED BY: GROVEP Flash Point (1010, Closed Cup) METHOD: AE PICKED CNTR# STORAGE LOCATION WORK ORDER # CONTROL # CLIENT # ANALYSIS LOTID SMP# SFX DD9NN-1-0T 5A-CLPT 5A CLP1 DD9NT-1-01 237003 416241 N-88-AE COE170152 002 WASTE 5A CLP1 DD9PE-1-01 237004 416241 N-88-AE COE170158 002 WASTE 237001 416241 I-88-AE COE170159 001 WATER 18 SA-CLPT TO-1-04 5A CLP1 DD9PX-1-01 237005 416241 N-88-AE COE170160 002 WASTE WATER

237002 399411 I-88-AE COE230195 001

RELINQUISHED BY	RECEIVED BY	DATE/TIME 5-27-00	14:00
-frif	(Em Maust	<u>5-27-00</u> <u>5-27-00</u>	20:30

DDK90-1-0X

4F

4:00:13 MT

REQUESTED BY: WESOLOSE # Sulfide (376.1) METHOD: CT PICKED MATRIX QTY QTY STORAGE LOCATION WORK ORDER # CONTROL # CLIENT # ANALYSIS LOTID DESCRIPTION CNTR# RCVD REQD 236878 399411 1-88-CT COE230195 0011-1-WATER DDK90-1-10 4F 75 ---DDNNK-1-0C 236879 059184 I-88-CT C0E250134 001 WATER 11 6C

Cu-1. Malli	Cu I. Maly.	5/26/00 (06:00) 5/26/00 (08:25)
•		

7032

Request So William Pi Way C C So Third Pions So Printing Pints P	COC/Sample	Quanterra Inco	orporated	>	~ (0 <	~	<i>(Wuali</i>	nterra
Pristopregh, Pennsylvania 1528 4 12/826-5471 FAX: 412/826-5571 571 572 574 12/826-5571 572 573 12/826 577 FAX: 412/826-5571 572 573 12/826 577 FAX: 412/826-5571 572 573 12/826 577 FAX: 412/826-5571 572 573 12/826 577 FAX: 412/826-5571 572 573 12/826 577 FAX: 412/826-5571 572 573 12/826 577 FAX: 412/826-5571 572 573 12/826 577 FAX: 412/826-5571 572 573 12/826 577 FAX: 412/826-5571 572 573 12/826 577 FAX: 412/826-5571 572 573 12/826 577 FAX: 412/826-5571 572 573 12/826 577 FAX: 412/826-5571 572 572 572 572 572 572 572 572 572 572		Building 6. Th	it Way	0525	0(7))	~	Environment
Color Colo		Pittsburgh, Per	onsylvania 15238				,	-
Lot Number/Sample Nomed: Analysis Matrix Ma	- QUA-4186	412/826-54//	FAX: 412/820-35/1				•	· · · · · · · · · · · · · · · · · · ·
Lot Number/Sample Nimber 1. COL 230 195 -001 3. 4 5. 6. 7 8. 9 10 11. 12 13. 14. 15 15. 16. 17 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19						Site	D Fald	
1. (OE 230 95 - 00	Lot Number/Sample Number			···				
3. 4 5. 6. 7. 8. 9. 10 11. 12 13. 14. 15 16. 17 18. 19. 20. 21 22. 23. 24. 25 26 37. 26. 29 30. Raw Sample (Record line number from above) (Record line number	CAF 230 195 001		Aitalysis	-			W- C)
3. 4	1. (VE25/15-40)		P-11				/120	1 4
4 5. 6. 7. 8. 9. 10 10 11 12 13. 14. 15 16. 17 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	2				· · · · · · · · · · · · · · · · · · ·			7 =
6. 7. 8. 9. 10 11. 12 13. 14. 15 16. 17 18. 19. 20. 21 22. 23. 24. 25 28. 29. 30 Raw Sample Raw Resinquished by Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Raw Raw Raw Raw Raw Raw Raw Raw	3.							
6. 7. 8. 9. 10 11. 12 13. 14. 15 16. 17 18. 19. 20. 21 22. 23. 24. 25 28. 29. 30 Raw Sample Raw Resinquished by Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Raw Raw Raw Raw Raw Raw Raw Raw	4							
6. 7. 8. 9. 10 11. 12 13. 14. 15 16. 17 18. 19 20. 21 22 23. 24. 25 26. 27 28. 29 30 Raw Sample (Record line number from above) (107.4 fb) (107.5 (27.4 fb))	5.							
7. 8. 9. 10 11. 12 13. 14. 15 16. 17 18. 19. 20. 21 22. 23. 24. 25 26. 27. 28. 29 30 Raw Sample (Record line number from above) Date Time Analyst Location D		1		···				
9. 10 11. 12 13. 14. 15 16. 17 18. 19. 20. 21 22. 23. 24. 25 26. 37. 28. 29 30 Raw Sample (Record line number from above) Date Time Analyst Location Date Ti					<u></u>	+		
9. 10 11. 12 13. 14. 15 16. 17 18. 19. 20. 21 22. 23. 24. 25 26. 37. 28. 29 30 Raw Sample Raw Refinquished by Raw Received by Raw Raw Received	7.				/	<u>- </u>		
10 11. 12 13. 14. 15 16. 17 18. 19. 20. 21 22. 23. 24. 25 26. 27 28. 29 30 Raw Sample (Record line number from above) Date Time Analyst Location Date Time Analyst Date Time Date Time Analyst Date Time Date Time Date Time Date Time Date Time Date Time Date	8.	<u> </u>	<u> </u>	$- \leftarrow$	/			
11. 12 13. 14. 15 16. 17 18. 19. 20. 21 22. 23. 24. 25 26 27 28. 29 30 Raw Sample Raw Relinquished by Raw Received by Date Time Analyst Location Date Time A	9.	<u> </u>		\ \/		_1,	\	
12 13. 14. 15 16. 17 18. 19. 20. 21 22. 23. 24. 25 26. 29. 30 Raw Sample Raw Resinquished by Raw Received by Date Time Analyst Location Date Time Analyst Lo	10		M		(M^{-}	/	
12 13 14. 15 16. 17 18. 19. 20. 21 22. 23. 24. 25 26. 27. 28. 29 30 Raw Sample Raw Relinquished by Raw Received by Date Time Analyst Location Date Time Anal	11,			S	_ / \			
13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. Raw Sample Raw Relinquished by Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Raw Raw Raw Raw Raw Raw Raw Raw				1				
14. 15 16. 17 18. 19. 20. 21 22. 23. 24. 25 26. 27 28. 29 30 Raw Sample Raw Relinquished by Raw Received by Raw Received by Raw Received by Raw Sample (Record line number from above) Date Time Analyst Location Date Time Analyst Location Date Time Analyst Location Raw Received by Raw Received by Core Analyst Location Date Time Date Time Analyst Location Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Tim		 	\ //	(1)			· · · · · · · · · · · · · · · · · · ·	
15 16. 17 18. 19. 20. 21 22. 23. 24. 25 26. 28. 29 30 Raw Sample Raw Relinquished by Raw Received by Raw Received by Raw Sample Raw Relinquished by Raw Sample Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Raw Raw Raw Raw Raw Raw Raw Raw			— // — /					
16. 17 18. 19. 20. 21 22. 23. 24. 25. 26. 27. 28. 29 30 Raw Sample Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Raw Raw Raw Raw Raw Raw Raw Raw	14.					_	<u> </u>	
17 18. 19. 20. 21 22. 23. 24. 25 26. 27. 28. 29 30 Raw Sample Raw Relinquished by Raw Received by Record line number from above) Raw Sample Raw Relinquished by Raw Relinquished by Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Raw Raw Raw Raw Raw Raw Raw Raw	15		_/_/_	V				
18. 19. 20. 21 22. 23. 24. 25. 26. 27. 28. 29. 30 Raw Sample Raw Relinquished by Raw Received by Record line number from above) (Record line number from above) (A3. AB) (C. C. C. AMI) (C. C. C. C. C. C. C. C. C. C. C. C. C. C	16.							
18. 19. 20. 21 22. 23. 24. 25. 26. 27. 28. 29. 30 Raw Sample Raw Relinquished by Raw Received by Record line number from above) (Record line number from above) (A3. AB) (C. C. C. AMI) (C. C. C. C. C. C. C. C. C. C. C. C. C. C	17	/						
19. 20. 21 22. 23. 24. 25 26. 27. 28. 29 30 Raw Sample Raw Relinquished by Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Raw Raw Raw Raw Raw Raw Raw Raw								
20. 21 22. 23. 24. 25 26. 28. 29 30 Raw Sample Raw Relinquished by Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Raw Raw Raw Raw Raw Raw Raw Raw								
22. 23. 24. 25. 26. 27. 28. 29. 30. Raw Sample Raw Relinquished by Raw Received by Record line number from above) (Record line number from above) Date Time Analyst // Location Date Time Analyst Location Control of the Control of		/	·····					
22. 23. 24. 25. 26. 27. 28. 29. 30. Raw Sample Raw Relinquished by Raw Received by Raw Raw Received by Raw Raw Received by Raw Raw Raw Raw Raw Raw Raw Raw Raw Raw	20.	<u> </u>						
23. 24. 25 26. 28. 29 30 Raw Sample (Record Irne number from above) Date Time Analyst Location Date Ti	21	ļ		· · · · · · · · · · · · · · · · · · ·		_		
24. 25 26. 27. 28. 29 30 Raw Sample Raw Relinquished by Raw Received by (Record line number from above) Date Time Analyst Location Date Time Analyst Location C32-00 (52-00 Mb) SR	22.	<u> </u>						
25 26. 27. 28. 29 30 Raw Sample Raw Relinquished by Raw Received by Raw Received by Raw Received by Raw Received by Raw Received by Raw Received by Raw Received by Raw Received by	23.							
25 26. 28. 29 30 Raw Sample Raw Relinquished by Raw Received by (Record line number from above) Date Time Analyst Location Date Time Analyst Location 1.73 - 0.0 (24.							
26. 28. 29 30 Raw Sample Raw Relinquished by Raw Received by (Record line number from above) Date Time Analyst Location Time Analyst Location Fax. 40 (5.05)				· · · · · · · · · · · · · · · · · · ·				·····
28. 29 30 Raw Sample Raw Relinquished by Raw Received by (Record line number from above) Date Time Analyst Location Date Time Analyst Location Date Time Analyst Section S					·			
28. 29 30 Raw Sample Raw Relinquished by Raw Received by (Record line number from above) Date Time Analyst Location Time Analyst Section Date Time Analyst Section Sec	26./	1						
Raw Sample Raw Relinquished by Raw Received by (Record line number from above) Date Time Analyst Location Date Time Analyst Location (73-40) 15 05 624 0 1/4/4 5 8 5-23-40 45 05 64-14 1/4/4 5 8	2 t	<u> </u>					·	
Raw Sample Raw Relinquished by Raw Received by (Record line number from above) Date Time Analyst Location Date Time Analyst Location Tag AD 15 05 624 0 1444 5 8 523 0 5305 645 1444 5 8	/28.							
Raw Sample Raw Relinquished by Raw Received by (Record line number from above) Date Time Analyst Location Date Time Analyst Location 1.73-00 1.505 607-00 1.006 5-23-00 5-33-00	29							
Raw Sample Raw Relinquished by Raw Received by (Record line number from above) Date Time Analyst Location Date Time Analyst Location 1.33-00 1.505 6-23-00 5-23-0	30							
1 122-00 15 05 6°2.0 Mills CP 523.00 5.05 Cm 1/10 Mills SR	Raw Sample		····					4
1 523-00 15:10 E-Z-Nelli WC 5-23-00 15:30 Z-Z-Nelli SR	(Record line number from above)		me Analyst	Location				Location
			10 6 Z- NAM	w.c	5-23-10	15:30	P. J. Inlille	1 38
						···.		_
		 			 			1

FINAL PAGE

PART I

ADMINISTRATIVE RECORD

PART I

FINAL PAGE