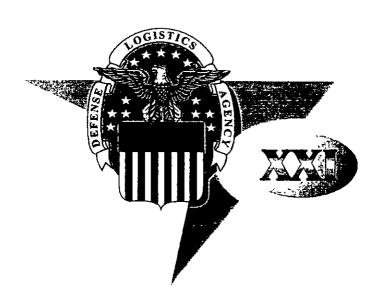
488 0 File: 541.460.000n D.C.

THE MEMPHIS DEPOT **TENNESSEE**


ADMINISTRATIVE RECORD COVER SHEET

AR File Number 488

FINAL

Memphis Depot Main Installation Remedial Investigation Report

Volume III (Appendices A – M)

January 2000

U.S. Army Engineering and Support Center, Huntsville

Memphis Depot

Main Installation Remedial Investigation Report

Volume III (Appendices A - M)

Prepared for Defense Logistics Agency

January 2000

U.S. Army Engineering and Support Center Contract No. DACA87-94-D-0009 Delivery Order No. 11 THIS PAGE INTENTIONALLY LEFT BLANK.

Contents

The appendices are as follows (the current volume appendices appear bolded):

Volume III

- Appendix A Project Technical Memorandums, Meeting Minute, and Staff
- Appendix B Well Construction and Stratigraphy
- Appendix C Quality Assurance/Quality Control
- Appendix D COPC Selection for All FUs/Surrogate Sites
- Appendix E Preliminary Risk Evaluation for All Surface Soils NOTE: FULL APPENDIX INCLUDED ON ENCLOSED CD-ROM.
- Appendix F Relative Exposure Comparisons for Potential Worker Scenarios
- Appendix G Supporting Information for Exposure Factors Development
- Appendix H UCL 95% Calculation Methodology
- Appendix I Risk & Hazard Estimations for All FUs/Surrogate Sites
- Appendix J Supplementary Toxicity Material
- Appendix K Site Photographs
- Appendix L Detected Parameters in FU1
- Appendix M Detected Parameters in FU2

Volume IV

- Appendix N Detected Parameters in FU3
- Appendix O Detected Parameters in FU4
- Appendix P Detected Parameters in FU5
- Appendix Q Detected Parameters in FU6
- Appendix R Detected Parameters in FU7
- Appendix S Ecological Assessment Checklists
- Appendix T Letters Supporting Ecological Risk Assessment
- Appendix U Raw Data for FU1
- Appendix V Raw Data for FU2 NOTE: FULL APPENDIX INCLUDED ON ENCLOSED CD-ROM.
- Appendix W Raw Data for FU3 NOTE: FULL APPENDIX INCLUDED ON ENCLOSED CD-ROM.
- Appendix X Raw Data for FU4 NOTE: FULL APPENDIX INCLUDED ON ENCLOSED CD-ROM.
- Appendix Y Raw Data for FU5
- Appendix Z Raw Data for FU6
- Appendix AA Raw Data for FU7 NOTE: FULL APPENDIX INCLUDED ON ENCLOSED CD-ROM.
- Appendix BB Comment Response Table

THIS PAGE INTENTIONALLY LEFT BLANK.

TAB

Appendix A

TAB

Project Technical Memorandums, Meeting Minutes, and Staff

APPENDIX A

Project Technical Memorandums, Meeting Minutes, and Staff

Appendix A contains the following:

- Records Search Technical Memorandum
- Meeting Minutes for EPA Meeting, November 1998, in Atlanta
- Meeting Minutes from February 9, 1999, Meeting to discuss EFU
- Human Health and Ecological Risk Assessment Approach Memphis Depot Main Installation
- Results of Pesticide Vertical Profile Sampling TM
- Major Project Staff
- TDEC Letter, October 16, 1985–Meeting Summary
- Draft Final Basis for NFA Recommendations

THIS PAGE INTENTIONALLY LEFT BLANK.

Results of Records Search for Industrial Facilities Surrounding the Memphis Depot

PREPARED FOR

U.S. Army Engineering and Support Center, Huntsville

PREPARED BY

CH2M HILL

COPIES

The Memphis Depot

DATE

April 12, 1999

Background

In October 1992, the former Defense Distribution Depot, hereafter referred to as the Memphis Depot, was placed on the National Priorities List (NPL) by the U.S. Environmental Protection Agency (EPA). A remedial investigation/feasibility study (RI/FS) is being prepared to assess the nature and extent of contamination, to evaluate the risk to human health and the environment, and to screen potential cleanup actions. The Memphis Depot is surrounded by industrial facilities that may have had contaminant releases in the past. The purpose of this technical memorandum is to present a preliminary assessment for the potential of contaminant migration onto the Memphis Depot from the surrounding industrial facilities.

Approach

On December 16, 1994, a tour of facilities around the perimeter of the Memphis Depot was conducted with Ulysses Truitt, a former employee of the Memphis Depot. The tour revealed three dry cleaning facilities, two paint shops, two junk yards, two electric shops, one printer, three gas stations, two equipment repair shops, and one salvage business.

On December 12, 1994, Agency Information Consultants (AIC) conducted a records search of industrial facilities for 13 zip codes surrounding the Memphis Depot. The search revealed 388 industries. Industries located within 3 miles of the Memphis Depot were selected for a records search conducted at the Tennessee Department of Environment and Conservation (TDEC).

On the basis of the AIC search, 35 facilities within the 3-mile radius were recommended for further investigation. TDEC had existing files for 22 of the facilities. The files were copied and a summary for each site was prepared and is included herein.

On January 30 and 31, 1995, a records search was conducted at the Region IV EPA building in Atlanta, Georgia, of the 35 facilities mentioned above. The EPA had files on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites

surrounding the Memphis Depot. The information was copied and added to the existing data collected at TDEC.

Table 1 presents the facilities encountered on the tour of the Memphis Depot perimeter Table 2 presents the information concerning the facilities for which a records search was conducted at TDEC and Region IV EPA. Figure 1 shows the approximate location of most of the industrial facilities listed in Tables 1 and 2.

Summary Paragraphs

Gould, Inc.

Gould, Incorporated, a manufacturer of lead acid automotive batteries, is located 0.4 mile north of the Memphis Depot. Hazardous wastes generated by the plant are lead, cadmium, arsenic, and sulfuric acid rinse water. A routine inspection of the facility in September 1981 indicated that the rinse water was being neutralized and released into the sewer system, and that the sludge was removed via a septic tank pump and discharged into the sewer. A closed loop recycling system was then implemented to reduce the amount of sludge released into the sewer and to meet TDEC's regulatory requirements. An inspection the following year (1982) showed the facility to be in compliance with state regulations. Also in 1982, 3 feet of soil below an old acid farm were removed because of contamination and sent to a hazardous waste landfill.

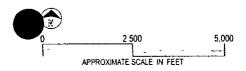
During May 1994, three monitoring wells (MWs) were installed and sampled. Samples from all three wells contained metals. Groundwater samples from upgradient well MW-1 contained several chlorinated organic compounds. The final conclusion from the September 1994 Halliburton NUS site investigation (SI) report was to further investigate the groundwater because of the high levels of cadmium present.

Old Estech General Chemical

Old Estech General Chemical is located about a mile northeast of Dunn Field. During the 1950s and 1960s, this corporation manufactured organic phosphate and chlorinated hydrocarbon pesticides. According to interviews with employees who worked at the facility, the only contamination present would be from accidental spills around the facility.

During the week of August 9, 1993, the B&V Waste Service and Technology Corporation (BVWST) field team took six surface soil samples around the facility. The soils contained polynuclear aromatic hydrocarbon (PAH) and pesticide contamination. No groundwater studies were performed because of the depth to the surficial aquifer. However, the Cochran Corporation has an on-site well that is 590 feet deep. This well is tested periodically, and no contaminants are present. All spills were reported and cleaned up; all of the SIs were found to require no further action when closure was complete.

It is unlikely that soil contamination at this facility has affected the Memphis Depot. The low mobilities of PAHs and pesticides from soil to groundwater, combined with the distance from the Memphis Depot, preclude any effects from operations at Old Estech General Chemical to the Memphis Depot.


Summary of Industrial Factities Adjacent to Memphis Depot Memphis Depot Main Installation RI TABLE 1

			W				
		Approximate Location		Suspected	Type of	Last Known	
Site	Address	Relative to DDMT	Areas of Concern	Contaminants	Investigation	Status	Map ID
Bellevue Rally Service Station	2100 Elvis Presley Blvd	0 75 mi west	UST Lines Leaking	BTX and TPH	Monitoring Wells Soil Borings	11/94 Recommended for cleanup	-
ong Co	2400 Firsco Ave	0.4 mr East	Spillage	Naphthalene	Walkthrough	NFA	2
	2295 Park Ave	t 0 ms Northeast	UST Removal	None	Excavation Samples	Final Closure Granted	3
Vickers Gas Station	2986 Lamar Ave	1 5 mi East	Gas Line Leak	Benzene TPHs	Monitoring Wells Soil Borings	9/93 Wells with Product Skimmers	4
Forest Hilf Cemetery	1661 Elvis Presley Blvd	t 0 mi Northwest	UST Removal	Mg,Fe and TPHs	Monitoring Wells Soil Borings	Product Bailed Weekly Nia	2
	2630 Midfand Ave	2 25 mi Northeast	UST Removal	TPHs	Monitoring Wells Soil Borings	NFA (10/91)	9
	Person Ave	0.4 mi North	Battery Acid Waste Sludges	BTX and TPH	Montoring Wells Soil Borings	Action Recommended (9/94)	7
Bulk Mail Center	1921 Elvis Presley Blvd	0.5 mr West	UST Removal	BTX and TPH	Excavation Samples	NFA (3/92)	8
ncals	221 Deadnck Ave	t 0 mi Northeast	UST Removal	PAHs and pesticides	Surface Soil Samples	Action Recommended (2/94)	6
	1471 Rozelle	0 5 mi North	UST Removal	TPHs	Excavation Samples	NFA (7/93)	9
	1700 Dunn Ave	SW comer Dunn Field	Broken Fuel Line	TPHs	Excavation Samples	NFA (8/93)	7
Coca Cola Bottling Co	299 S Hoflywood St	2 25 mi Northeast	Broken Fuel Line	TPHs	Excavation Samples	NFA (1988)	12
Keltoqa Co	2168 Frsco Ave	0 25 mi North	Data Not Available	Data Not Available	Site Inspection	NFA	13
Memphis Board of Education	1363 E Person Ave	10 mi West	Data Not Available	Data Not Available	Site Inspection	NFA	4
Direct Motor Express	2100 Kellogg Ave	05 m East	Data Not Available	Data Not Available	None	Waste Generator Number	15
	2000 Latham ST	10 mi, West	Non-halogenated Solvent Storage	Non halogenated Solvents	Site Inspection	Groundwater Inspection Recommended	
Shop	2435 Frisco Ave	0.5 mi East	Data Not Available	Data Not Available	None	Waste Generator Number	17
	2227 Deadrick Ave	1 0 mi Northeast	Data Not Available	Data Not Available	None	NPDES Permit (1993)	8
Raiston Purina	1725 Airways Bhd	0 75 North	Data Not Available	Data Not Available	None	Existing Fuel Tank	19
Tension Envelope	3058 Southwall St	15 m East	22 Drums stored	Hazardous Substances	Drum Charactenzation	Drums Still Present	20
Enpack Inc	1699 Airways Blvd	0 75 mi North	Damaged Drums	Lead Oxide	Data Not available	Corrective Action Plan (8/94)	21
ough Health Care Products	3030 Jackson Ave	Data Not Available	Data Not Available	Data Not Available	Data Not available	Data Not Available	

- 1

TABLE 2
Summary of Industrial Facilities Adjacent to Memphis Depot Investigated During Tour Memphis Depot Main Installation RI

Site	Address	Comments	Map ID
Sunshine Uniform Co.	1835 Mclean St		23
Bensons Body Shop	2008 Person Ave.		24
Previous Gulf Service Station	1731 Castaila Rd		25
Pigue Tire Shop	1701 Castaila Rd		26
Contract Painting and Sandblasting Co.	2213 Filmore		27
Electric Repair Shop	Alcy Rd		28
Shaof Motor Corporation	2261 Airways Blvd.	Heavy equipment repair shop	29
Kerr McGee Corporation	2236 Airways Blvd.		30
Chezita Gardens Laundry	2113 Alcy Rd	Former Dry Cleaners	31
Scipio's Grocery and Gas Station	1578 Person Ave.		32
Automotive and Radiator Shop	1580 B Person Ave		33
Junkyard	Rozelle and Person Ave		34
QO Grain Processing	Rozelle at I C & G RR		35
MLG&W Asset Reclamation Yard	1629 Rozelle Rd	Stored transformers	36
Production Specialty Inc.	1782 E Person Ave	Retrofit street lights	37
General Machine Works Inc	2001 Wabash		38
Kellogg Inc	2168 Frisco Ave	Burns propane	39
Nahunal	2129 Frisco Ave.	Manufactures and fabricates propane tanks	40
Bar-H Body Shop	2199 Frisco Ave.		41
Leath Painting Co	2203 Freemont Ave		42
JRP Painting	2308 Freemont Ave		43
Jaco Bryant Printers	2214 Freemont Ave		44
Choctaw Construction Co	2193 Freemont Ave.	Existing gas tank	45
Diamond Steel	2217 Freemont Ave	Existing Kerosene tank	46
Junkyard	2160 Dunn Road		47
Magnetic Electric Co.	1992 Airways Blvd .		48
A-1 Tire and Alignment	2030 Airways Blvd.	Formerly Exxon	49
Mobile Process Technology	Airways Blvd	Formerly Frito-Lay	50
Unnamed Dry Cleaners	1574 Alcy Rd	Closed for about 20 years	51

The Rexham Corporation, located 1 mile west of the Memphis Depot, manufactures flexible food wrappers. Waste generated during the manufacturing process includes non-halogenated solvents and inks. The facility reported that it uses approximately 110,000 pounds (lbs) of solvents annually. Records indicate that no waste was stored at the site for longer than 90 days.

Groundwater flow from the Rexham Corporation is south toward Nonconnah Creek. The closest drinking water well is 0.75 mile east of the site, located in the Allen Well Field. Because of the proximity of the Allen Well Field, further groundwater investigation was recommended by Halliburton NUS in a September 1993 SI Report. However, because the groundwater flow direction from the site is toward the south, the Rexham Corporation poses no threat of leaching onto the Memphis Depot.

Enpack, Inc.

Enpack, Inc., is located 0.75 mile north of the northeastern corner of the Memphis Depot boundary. On August 24, 1994, Enpack was issued a Corrective Action Order by TDEC to address the problem of lead oxide contamination. Before 1975, lead oxide was delivered to the facility by rail car, where it was unloaded manually. Drums often were broken during transport and off loading, spilling the contents onto the ground. Cleanup procedures were not adopted and the Corrective Action Plan was not available at the time of the TDEC and EPA record search. Because of the lack of cleanup procedures and the unavailability of a corrective action plan as follow-up to TDEC's Corrective Action Order, it is not known if cleanup of this site has been sufficient. Because of this situation and because of the proximity to the Memphis Depot, this facility could be a potential contributor to contamination at Dunn Field.

Memphis Furniture Manufacturing Company

The Memphis Furniture Manufacturing Company has been in operation since 1892. In 1980, there was evidence of spillage onto concrete and bare ground from drums containing materials used in the painting process and general machinery maintenance. On the basis of this information, the potential contaminants were determined to be naphthalene and trichloroethylene (TCE).

The site is located 0.4 mile east of the Memphis Depot boundary. Black & Veatch Waste Science, Inc., investigated the site in 1994 and found it to be a low-exposure risk along surface water and surface soil pathways. The groundwater pathway was designated as the area of greatest concern, but the depth to the Memphis Sand Aquifer is large enough to minimize the effects of release. On the basis of this information, no further action was recommended for the Memphis Furniture Manufacturing Company. However, no investigation was conducted regarding the possibility of a release to the shallow Fluvial Aquifer, which is not a source of drinking water. Because of the proximity of the Memphis Furniture Manufacturing Company to the Memphis Depot, the known potential for contamination, and the absence of substantial sampling information, this site cannot be ruled out as a possible contributor to groundwater contamination.

Auto Zone

The Auto Zone at 1471 Rozelle is located 0.5 mile north of the Memphis Depot. In July 1993, Murphy Environmental Services, Incorporated, performed an underground storage tank (UST) closure at this site. During tank removal, "obvious contamination" was encountered. Laboratory results indicated total petroleum hydrocarbon (TPH) levels of 3.16 milligrams per kilogram (mg/kg) and 10.0 mg/kg. Contaminated soils were disposed off-site at the North Shelby Landfill in Millington, Tennessee.

The Auto Zone at 1700 Dunn Avenue is located on the southwestern corner of the Operable Unit (OU)-1 boundary to the Memphis Depot. During the installation of a UST at this location on October 16, 1978, a line was broken, spilling approximately 300 to 500 gallons of diesel fuel. Spillage was contained in the excavation site. The area was sandbagged and plans were made to begin pumping spillage out of the excavation site the next day.

In July 1993, the UST was removed and the excavated soil tested above state limits for TPH. The soil was disposed off-site at the North Shelby Landfill in Millington, Tennessee.

Because of the removal efforts at both Auto Zone locations, it is unlikely that the threat of leaching exists associated with the two incidents.

Goodyear Tire and Rubber Company

The Goodyear Tire and Rubber Company is located about 1 mile northeast of Dunn Field. The site contained a 550-gallon steel tank that contained waste oil and was removed in December 1990. The soil samples taken from the UST excavation did not indicate any soil contamination (TPH). As of October 2, 1991, Goodyear requested that TDEC grant final closure for this location. The UST appears to have been removed appropriately and without release to the underlying soil. It is therefore believed that this site has had no effect on the Memphis Depot.

Memphis Coca Cola Bottling Company

The Memphis Coca Cola Bottling Company is located 2¼ miles northeast of the Memphis Depot. In November 1988, a diesel line leak occurred. Laboratory testing indicated TPH levels above state cleanup levels. Excavation was performed, and no further action was recommended. An SI conducted later by EPA found and documented only empty drums containing broken glass around the excavation site. On the basis of the removal efforts and the SI results, there is no evidence of contamination at this site.

Serv-O-Matic

Serv-O-Matic, 2630 Midland Avenue, is located 2¼ miles northeast of the Memphis Depot. In February 1990, samples collected from soil borings around a UST indicated TPH levels in excess of state contamination cleanup levels. Further investigation included the installation of four monitoring wells and four additional borings. The reported contamination appeared to be the result of improper drilling, equipment decontamination, or sample collection. No further action was recommended for the site. On the basis of this information and the distance of the site from the Memphis Depot boundary, this UST site should have no effect on the Memphis Depot.

Bellevue Rally Service Station

Bellevue Service Station is located 0.75 mile west of the Memphis Depot. The facility contained three diesel USTs and two gasoline USTs. The tanks were removed from the site in July 1990. The tank lines contained holes that leaked product into the surrounding soils and groundwater. Soil borings and wells were installed at the site, and one monitoring well was installed off-site, hydrologically upgradient from the property. The contaminated soils from the tank excavations were stockpiled on plastic at the site to be aerated.

The northwest tank pit soils contained benzene, toluene, ethyl benzene, and xylene (BTEX) and TPH at concentrations above state cleanup levels. Excavation activities were limited by the building foundation. Therefore, the pit had to be filled even though the existing contaminant levels exceeded the state cleanup criteria. The wells on-site contain levels of BTEX and TPHs above the state cleanup criteria. As of November 15, 1994, the environmental assessment had been issued to TDEC for recommended cleanup procedures.

The service station possibly is hydrologically upgradient to the Memphis Depot. The absence of any petroleum hydrocarbons in groundwater samples from upgradient wells on the western boundary of the Memphis Depot suggests that contamination from the service station has not affected groundwater flowing beneath the Memphis Depot.

Bulk Mail Center

The Bulk Mail Center is located about 0.5 mile west of the Memphis Depot. During the week of March 4, 1992, four tanks were removed from the site. During the excavation, 250 cubic yards (yd³) of soil were removed. No groundwater was encountered during the excavation activities.

The soil around the tank pit was over excavated horizontally until no contaminants were detected by laboratory analyses. The vertical extent of sampling was conducted until the tank anchoring pad was encountered; the pad was removed and the soils beneath the pad showed no contamination. The pit was then filled. The excavated soil showed moderate levels of BTEX and TPH contamination. An aeration basin was constructed on-site and the excavated soil was allowed to aerate until the soils showed no detection of contaminants. The soil was then graded in place. It is therefore unlikely that the Memphis Depot has been affected by the leaking tanks.

Forest Hill Cemetery

Environmental assessment activities were conducted at Forest Hill Cemetery, approximately 1 mile northwest of the Memphis Depot. After the removal of two USTs in March 1991, the assessment isolated petroleum contaminant effects on site soils and groundwater above the state regulatory limits. Analytical results of groundwater sampling also indicated iron and manganese levels in excess of secondary standards for drinking water. Over excavation was used as a partial solution along only the northern boundary. Alternative methods proposed to remove the TPH contamination were pump and treat, vapor extraction, or bioremediation.

During routine groundwater level measurements in February 1994, free product was detected in the northernmost Recovery Well. Product was bailed and drummed on a weekly

basis. In August 1994, samples collected were below detection levels for BTEX and TPH. No further action was recommended for the site.

This cemetery is not upgradient to the Memphis Depot and its closest edge is 1 mile from the facility. Therefore, it is unlikely that the cemetery poses a threat of leaching onto the Memphis Depot boundary.

Vickers Gas Station

Vickers Service Station, located 1.5 miles east of the Memphis Depot, reported a gas line leak on July 31, 1989. A leak detector tripped and shut the pumping system off; therefore, it was suspected that only minor amounts of product had been released. However, although the soils around the line were excavated, free product flowed into the excavation pit. Wells and soil borings were installed around the facility in the shallow (approximately 20-foot) and deep (approximately 35-foot) aquifers.

The environmental assessment activities conducted at the service station have isolated petroleum contamination above regulatory limits for groundwater, but not for soils. The state regulatory limits for benzene and TPHs were exceeded in groundwater samples These parameters extend in an irregular circular pattern within a 100-foot radius only in the shallow aquifer. The wells, which had free product layers of 0.5 to 1.5 inches, were bailed and the product was taken off-site to a recycling facility. As of September 1993, two wells still contain product and skimmers have been placed in the wells to continuously remove the product.

Because of the distance of Vickers Service Station from the Memphis Depot (1.5 miles) and the size of the contamination plume (200 feet in diameter), it is doubtful that this incident has affected groundwater at the Memphis Depot.

Tension Envelope Corporation

The Tension Envelope Corporation is 1.5 miles east of the southeastern corner of the Memphis Depot and is an inactive hazardous substance site. During October 1986, O. H. Materials sampled and over packed 22 drums located at the facility. The results of the drum sampling indicated that the drums contained hazardous substances. One well (Brooks Well) located on the property also was sampled. The groundwater sample revealed that no contamination was present. As of 1986, no further information about the drums is known. Because of the lack of information pertaining to any releases at this location, its effect on the Memphis Depot cannot be evaluated.

Other Facilities

The remaining seven facilities—including Charlie Brown Body Shop and Sales, Buckeye Memphis South, Ralston Purina, Schering-Plough Health Care Products, Direct Motor Express, Memphis Board of Education, and Kellogg USA—have EPA generator numbers assigned to them and are subject to site inspection. Records indicate that there is no reason to suspect that these locations have affected environmental conditions at the Memphis Depot.

Former Businesses

During the perimeter drive-by inspection, the locations of two former dry cleaning businesses were identified. One is located at 2113 Alcy Road, approximately 2,000 feet southwest of the southeastern corner of the Memphis Depot; this business is now a coin-operated laundry. Dry cleaning activities ceased approximately 9 years ago. A second dry cleaning business was located at 1574 Alcy Road, approximately 1,200 feet south-southeast of the southwestern corner of the Memphis Depot. It was estimated that this business has been closed for nearly 20 years. Chlorinated solvents commonly are used in the dry cleaning industry. Chlorinated solvents have been detected in groundwater samples collected from monitoring wells in the vicinity of these former businesses; therefore, they cannot be ruled out as a possible source of volatile organic compound (VOC) contamination.

Conclusions

Activities at some industrial facilities neighboring the Memphis Depot have affected the environment to the extent of requiring cleanup measures. The records indicate that contamination has been local and, in most instances, well defined. The likelihood of these locations contributing to soil contamination at the Memphis Depot is low. Groundwater at some locations also has been affected; however, the plumes have been confined to a small geographic area at the facilities upgradient of the Memphis Depot and groundwater plumes have not been established. The potential effect on groundwater from former activities (such as dry cleaning businesses) is unknown.

Memphis Depot Main Installation Risk Assessment ... Approach Meeting

ATTENDEES:

Ted Simon/USEPA

Turpin Ballard/USEPA
Ruth Chen/TDEH
Jordan English/TDEC
Shawn Phillips/DDSP-FE
Dorothy Richards/CEHNC

Scott Bradley/CEHNC

John Martin/CH2M HILL

Vijaya Mylavarapu/CH2M HILL Leslie Shannon/CH2M HILL Greg Underberg/CH2M HILL

COPIES:

Sharon Thoms/USEPA

Sue Freiberger/CH2M HILL

Sharon Belser/CH2M HILL

Betsey Garland/CH2M HILL

TO:

Project File

FROM:

Leslie Shannon/CH2M HILL Greg Underberg/CH2M HILL Vijaya Mylavarapu/CH2M HILL

DATE.

November 17, 1998

A meeting was held at the U.S. EPA offices in Atlanta on November 16, 1998 to discuss and agree upon the risk assessment approach for the Memphis Depot Main Installation. Topics discussed during the meeting are summarized below according to Action Items, Decisions Made, and Other Issues.

Action Items

- The meeting minutes and phone call logs will be included as an appendix to the RI
 Report. The purpose of including the minutes is to provide the EPA contractors that will
 review the report an understanding of the decisions made that influenced preparation of
 the report.
- CH2M HILL will redo the RI Report outline, based on a functional unit rather than
 operable unit (OU) subdivision, and submit to EPA for a preliminary review. EPA and
 TDEC will determine what administrative changes, if any, need to occur to shift from
 OU to functional unit groupings.
- The Natural Resource Trustees (e.g. U.S. Fish and Wildlife Service) will be notified in writing of all meetings and the proposed screening levels. This needs to be accomplished now. Shawn Phillips and John Martin will contact the involved parties and prepare a letter of information necessary.

- CH2M HILL will involve Jordan English in the screening process to select the surrogate site for each functional unit and each exposure scenario, at his request.
- Dr. Vijaya Mylavarapu agreed to fax the new Interim Guidance on Toxicity Equivalency Factors to Drs. Simon and Chen, who will then have a conference call with Dr. Mylavarapu. Their decision on how to handle the PAHs will then be appended to the meeting minutes, and included in the RI Report.
- Dr. Simon will provide Drs. Vijaya Mylavarapu and Chen with a copy of the new draft
 national guidance on dermal toxicity criteria. Newer guidance modifies the intake
 estimates through adjustment of the adherence or adsorption factors, which will be
 implemented in the dose calculations. These three individuals will then hold a
 conference call and relay their decisions, which will be appended to these meeting
 minutes.
- The site lead target concentrations will be determined by an IEUBK model for an adult. Dr. Simon provided CH2M HILL with a copy of the guidance.
- Dr. Simon strongly urged CH2M HILL to submit the interim deliverables now from the
 ecological risk assessment, and get the agreement of the Natural Resource Trustees for
 the first Scientific Management Decision Point (SMDP), otherwise the RI process could
 be slowed down.
- Dr. Simon will send John Martin a copy of the latest guidelines or information regarding ecological soil benchmarks. These included the Canadian and Dutch soil values.
- Jordan English will determine who from TDEC will review the Ecological Risk Assessment, and provide this name to CEHNC.
- Shawn Phillips will send a copy of the base Reuse Plan to Vijaya Mylavarapu.
- CH2M HILL will send a copy of the Background Report to Dr. Chen.
- Jordan English will provide a letter on TDEC letterhead that identifies the background levels of arsenic in western Tennessee. This letter will be provided to EPA to support selection of a Memphis Depot-specific arsenic background level. If available, the analytical data will be provided which will be included the arsenic background statistics.
- Greg Underberg will provide documentation of derivation of the existing 20 mg/kg of arsenic background value.

Issues Discussed and Decisions Made

General Issues

EPA indicated that risk communication issues will be dealt with after the risk
assessment is conducted. We will prepare the risk assessment following established
guidelines and procedures and manage communication to the public later.

- Dr. Simon mentioned that there is a new document in progress entitled "Process for Ecological Assessments at Federal Facilities in Region IV", but it is not yet available.
- Regarding ecological risk, Dr. Simon mentioned that the COPCs are typically negotiated at the second SMDP (in Step 3).
- EPA indicated that the purpose of the OU is to facilitate risk reduction. CH2M HILL proposed using Functional Units (FUs) in place of OUs to represent the contaminant nature and extent and risk evaluations from BRAC parcels, and individual RI and SS sites. Therefore, the RI Report will be reorganized around functional units as chapters.
- The RI sites within a functional unit will be evaluated and prioritized in terms of human health risk using the Preliminary Risk Evaluation (PRE) methodology reported in the Final Preliminary Risk Evaluation (CEHNC; April, 1998). CH2M HILL will evaluate the site(s) with the highest PRE risk that also cover the contaminants of concern identified by the PRE methodology for all sites within the functional unit. To reduce the number of site-specific risk assessments, baseline risk assessment will be performed only on the worst site(s) thus providing a conservative surrogate risk for the remaining sites.
- PRE results will be included as an appendix to the RI Report.
- The Exposure Point Concentration (EPC) will be calculated for a functional unit, and for the site listed as highest priority in the PRE for scenario-specific intake estimated.
- A residential scenario should be evaluated. Institutional controls will not be invoked during the risk assessment. Region IV and TDEC assume that there are no institutional controls in place.
- At sites that have already been remediated, CH2M HILL will conduct a residual risk
 assessment using post-remediation sampling data only. The report will clearly state that
 this risk assessment represents post-removal conditions.
- Groundwater at the site will be evaluated as one site with multiple plumes. Organic chemicals will be evaluated as plumes and inorganic chemicals, if they do not occur as plumes, will be evaluated as one site and estimate the 95% UCL for exposure quantitation.
- EPA Region IV and TDEC both agree that the RAGS Part D format <u>will not be</u> implemented in this Baseline Risk Assessment or RI Report.
- Since lead has no toxicity factor, it will be screened against the screening criteria for
 residential and industrial receptor protective values. High lead sites will be evaluated
 using IEUBK model for adult receptors.
- The new dermal guidance scheduled to be out shortly lowers some of the dermal exposure factors such as the adherence factor, resulting in lower intake through dermal exposure pathway. EPA recommends using this newer guidance at Memphis Depot. After CH2M HILL reviews the guidance, a conference call may be scheduled to discuss.
- CH2M HILL will add a child exposure scenario to the Exposure Factor Table 3.

Conceptual Site Model

- The conceptual site model will be a flow chart similar to the one presented at the meeting. An example of the flow chart will be included with the Example Functional Unit document.
- The CSM will present the potentially complete pathways based on the information available on a site to date. EPA suggested adding/keeping the incomplete pathways on the figure to indicate all the pathways have been considered in the evaluation. Ecological and human receptors will be presented in the same flow chart.

Guidance to be followed for RA

- The latest available guidance will be followed.
- No Tennessee risk assessment guidance exists. Tennessee follows the EPA Region IV guidance. TDEC indicated that the project should follow the EPA risk assessment guidance.

Data Evaluation

- All the analytical data collected by CH2M HILL will be used for COPC selections and quantitative evaluations.
- Historical data collected in 1990 by Law Engineering will not be used in the risk
 assessment due to the lack of supporting QA/QC data. Also because CH2M HILL could
 not confirm the previously reported concentrations by Law through resampling.

Exposure Assessment

- Exposure pathways to be evaluated include a worker scenario for the current land use, evaluating a current maintenance worker exposure. Future exposure scenarios will include a default worker and resident.
- When exposure factor exposure time (ET) is modified for smaller sites, EPA suggested using the fraction ingested (FI) term for ingestion, provided an explanation of how the number was derived is given in the text. Other similar terms will be included for dermal and inhalation pathways with proper explanation.
- The dermal exposures should be estimated using the latest adherence/adsorption
 factors which results in dermal intakes lower than oral intakes. The new draft national
 guidance on dermal exposure will be used in this risk assessment, as soon as it is
 available.
- Exposures will be evaluated for a maintenance worker from a FU, and from a site listed with high potential risks from PRE results. Future worker and residential scenarios will also be evaluated for the FU and 'worst-case' site. This selected site conservatively represents the worst-case exposures from a FU, to account for potential higher concentration areas within the FU. Dr. Chen expressed concern that the risk assessment

should consider multiple exposures – for example, a golfer at Memphis Depot may also be an employee that works in one of the parcels. Other multiple exposure scenarios include the worker/resident or resident/ballplayer scenarios. The exposure assessment discussion should include these scenarios.

- The site management decisions will be based on future land use, which is likely to be industrial. The proposed future land use will be documented using the existing Base Reuse Plan.
- A future residential land use will also be evaluated and included in the report. The
 narrative should state that this scenario was included for comparison purposes only.
 Fugitive dust exposure to offsite residents will be evaluated for sites near the perimeter
 of Memphis Depot.
- Exposure point concentrations are the UCL95% concentration on the mean. For
 groundwater, the EPCs are the average the well concentrations from center of the plume
 (i.e., well with the highest total contamination) for organic constituents and UCL95%
 estimates of all well concentrations within the aquifer for the inorganic chemicals. Each
 contaminant plume will be evaluated separately.

Toxicity Assessment

- Toxicity factors will be obtained from EPA databases (EPA Region IV does not prefer the values from EPA Region III RBC Tables).
- PAHs are proposed to be evaluated by applying the TEF factors to the concentrations, pending EPA's final decision on this issue.

Remedial Goal Options

RGOs will be calculated for both industrial and residential scenarios following the EPA Region IV guidance.

Ecological Risk Assessment

- CH2M HILL will use exclusively the EPA Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, June 1997 Interim Final for preparing the ecological risk assessment.
- Steps 1, 2, and 3 will be conducted as necessary for the RFI. Steps 4 through 8 will not be conducted.
- An environmental checklist will be completed that is based on a site visit and existing site-specific information.
- The screening benchmark levels proposed for the ecological risk assessment are:
 - -Surface Water EPA Region IV, TN Surface Water Quality Standards
 - -Sediment EPA Region IV guidelines

-Surface Soil - Canadian Soil Quality Criteria, Dutch Soil Cleanup Criteria

- The Screening Level Risk Calculation Results include: COPCs with HQs ≥ 1 will be
 considered in Step 3; COPCs with HQs < 1 will no longer be considered COPCs, and
 COPCs without benchmarks will be considered in Step 3. If the screening benchmarks
 were based on detection limits, these COPCs will also be carried forward into Step 3.
- Step 3 allows for risk management decisions to be made regarding COPCs, whereas in Steps 1 and 2 risk management is not involved.
- The group is in general agreement that there is minimal ecological habitat at the facility.

General Site-wide Issues Discussion and Decisions Made

- The site PAHs are widely distributed at the Main Installation and appear to be from non-point sources. The documentation and site management decisions should be based on PAH levels in background and potential source material such as asphalt.
- Railroad tracks and general low levels along the roadways are considered non-point sources.
- Based on PAH levels in the asphalt sample and railroad ties wood samples from other sites, PAHs detected at the site may not be site-related. It was decided that the occurrence of PAHs at railroad yards will be included in the risk assessment uncertainty discussion to provide a perspective for the risk managers. New samples collected for asphalt will be used to determine if the site PAH data appear to be similar to these source material PAH contents.
- PAHs in the background comparisons should be included as part of nature and extent and possibly in the uncertainty section of the RA
- Arsenic is a naturally occurring inorganic typically observed in the background above health-based criteria. Single background concentration value comparisons may be exceeded at some of the sampling location, thus selecting arsenic as a COPC for the site. CH2M HILL proposed to evaluate the distribution of the arsenic data and identify elevated concentrations that are associated with a suspected arsenic source or are indicative of a release as identified via spatial co-location of elevated concentrations above background. These values will be removed from the onsite population of arsenic values. This trimmed onsite and the background arsenic population will be tested statistically to determine if the onsite population, less elevated concentrations associated with specific CERCLA sites, is significantly different from background. If the test does not show that the onsite dataset is statistically different from background, then risk assessment will not be included as arsenic at that location is not a COPC.

EPA (Dr. Simon) suggested to consider using two tests to conduct the onsite to background statistical evaluation. For each COPC, both the Gehan test (a version of the Wilkoxson test corrected for nondetects) and a nonparametric tolerance interval of the lower concentration level at the 5th percentile lower confidence limit of the 0.9 quartile would be used. If either of these tests is positive, then it cannot be shown that the onsite data are from the same distribution as the background data. Outliers could be discussed in the uncertainty section of the risk assessment.

- Dr. Simon indicated he could accept a population test for arsenic, provided an adequate documentation of the decisions made was maintained, particularly documenting the elevated levels of arsenic due to pesticide applications across the west Tennessee region. Dr. Simon requested that TDEC provide a letter, on TDEC letterhead, documenting the background levels of arsenic found in western Tennessee. He also requested that if the analytical data was available, it be tested against the 22-sample Memphis Depot dataset and, if the populations were determined to be the same, they be combined into one background dataset to improve the power of the background to onsite population tests.
- The derivation of the arsenic background value developed by CH2M HILL will be attached to these meeting minutes.
- The following decisions regarding sitewide dieldrin were either made or reiterated:
 - -The Region III industrial land use criteria of 360 ug/kg (ppb) is essentially a surrogate background value for dieldrin derived from the BCT evaluation of the dieldrin population testing.
 - -Any detected dieldrin concentration above 360 ppb is a COPC and subject to risk assessment, anything below 360 ppb is a not a COPC.
 - -With regard to functional units and pesticide management sites, if the UCL is greater than 360 ppb, then more risk assessment or other investigation is needed. If the UCL is less than 360 ppb, this site is finished and may go to No Further Action. Text describing this issue should be placed in the RI Report.
 - Because of its ubiquitous application at Memphis Depot, dieldrin will be evaluated as a site-wide constituent with the exception of those sites where dieldrin was specifically handled or stored.

.

THIS PAGE INTENTIONALLY LEFT BLANK.

Memphis Depot Example Functional Unit Review Meeting Minutes

ATTENDEES:

Shawn Phillips/DDSP-FE (901)

544-0611

Turpin Ballard/USEPA (404)

562-8553

Jordan English/TDEC-DSF (901)

368-7953

Ted Simon/UEPA (404) 562-8642 Brian Deeker/TDEC-DSF (901)

368-7955

Ruth Chen/TDEC

Dorothy Richards/CEHNC (256)

895-1463

FROM:

Greg Underberg

DATE:

February 20, 1999

Scott Bradley/CEHNC (256) 895-

1637

Kurt Braun/CESAM (334) 690-

3415

Vijaya Mylavarapu/CH2M HILL

(352) 335-5877

Leslie Shannon/CH2M HILL

(334) 271-1444

Greg Underberg/CH2M HILL

(423) 483-9032

Vijaya Mylavarapu opened the session with a discussion of the surrogate site selection process. She said that the highest risk site was selected in each Functional Unit (FU) based on the original Preliminary Risk Evaluation (PRE). Remedial Goal Options applicable to the entire FU will be calculated based on a surrogate, highest risk site.

There was some discussion about the use of tables for selection of constituents of potential concern (COPC). Ted Simon commented that the tables that were presented did not follow the guidance offered by EPA Region IV. Table 11-4 should show the maximum, minimum, average, and number of detects for all chemicals that were detected. Tables supporting the discussion of nature and extent should address all chemicals, not just those that exceed screening criteria. It was determined that these tables should consist of the right section of Table 11-4 combined with the left section of the Appendix A Tables. Ted Simon referred to the tables identified in the EPA guidance.

The nature and extent discussion should address all chemicals. There was some discussion that the screening criteria were needed to focus the nature and extent, particulary since the Main Installation has numerous sites to address. However, Ted Simon said that EPA guidance requires all chemicals to be considered in the nature and extent section.

Ted Simon and Turpin Ballard said that the figures provided in the EFU presented too much information and were difficult to review. They suggested use of more figures, colors, contouring and other techniques to reduce the data clutter. It was suggested that the text bridge tabular presentation of all the data with the graphics.

The chemical concentrations presented in Section 7.4.4.1 (Page 7-16) should not be referred to as the Reasonably Maximum Expected (RME) Concentration. The term RME refers to the scenario that produced the Exposure Point Concentrations (EPC), not the concentration itself.

Ted Simon said that it is EPA Region IV's policy to be conservative and therefore the maximum rather than average concentrations should be used for exposure calculations.

The methodology for calculating the residential exposure was discussed. It was determined that within each FU, the maximum risk sample would be identified based on a rerun of the PRE methodology including new data. Exposure concentrations would be calculated based on the COPC concentrations within this maximum sample. The maximum risk sample would be representative of the RME for a typical residential lot. A ½ acre lot would be placed over the sample, but this would be for presentation purposes and would not affect the calculations.

The RGO will be based on the UCL95 (average) of the site and therefore will not be interpreted as a maximum, not to exceed criteria.

The industrial risk will be calculated on the FU and the surrogate site basis. The surrogate site industrial risk will be based on the maxium risk site, considering all samples as determined in the PRE rerun. The FU-level industrial risk will consider all samples within the area of the FU.

The PRE will have to be rerun to include new data. The PRE tables and discussion should be included as an appendix in the RI.

The number of exposure scenarios listed in Figures 11-9 and 11-21 was reduced. Two residential land use scenarios will be evaluated: the Onsite Maintenance Worker, including groundskeeper factors, and the hypothetical Onsite Resident. Two industrial land use scenarios will be evaluated: the Onsite Industrial Worker and the Onsite Utility Worker.

A risk assessment will be performed only for the surrogate RI site in Parcel 3, the golf course and recreational areas. The streamlined risk assessment performed as part of the Parcel 3 EE/CA is acceptable as the FU level risk assessment.

Ted Simon suggested that little maps showing the exposure units should be imbedded in the text to enhance readability. Ted Simon also suggested that only one to two authors have responsibility for the text to prevent it from being segmented and choppy.

Calculation of groundwater risk was discussed. For parameters that occur in a plume (organics at the Main Installation), the Region IV guidance will be followed that uses the average concentration from approximately 3 wells located in the highest concentrated region of the plume as the EPC. In the case of the Main Installation, the well with the highest organic concentrations in each of the three areas of organic contamination will be averaged as representative of organic constituents across the Main Installation. The EPC for constituents that do not occur as a plume, principally inorganics, will be represented as the UCL95 concentration. Greg Underberg discussed the sporatic nature of inorganic contamination observed in wells over the five time periods of sampling. Ted Simon said to perform the UCL95 calculation with time varying data, but to discuss the nature of

488

inorganic contamination in the uncertainty section. It should be discussed in the text that the UCL95 calculation incorporates uncertainty in well location.

Ted Simon does not like the nature and extent discussion to make a distinction between organic and inorganic groundwater contamination. Both residential and industrial uses of groundwater should be considered in the risk assessment.

Jordan English said that the City of Memphis has a covenant preventing drilling of a fluvial aquifer well for drinking water purposes. Greg Underberg will talk to Carter Gray regarding the enforceability of this restriction. Jordan English later said that the City will not permit a well for drinking water purposes if there is a City water drinking supply available within 300 feet.

Groundwater risk should be included in each FU risk assessment.

Ted Simon suggested that because of the unique characteristrics of the Memphis Depot risk assessment, Vijaya Mylavarapu stay in contact with him and RC throughout the risk assessment development.

Data from offsite drainages, railroad tracks, and grassy areas will be included in each FU risk assessment. Therefore, there will not be separate chapters for sitewide constituents.

Turpin Ballard, LS, and Greg Underberg discussed the organization of the nature and extent sections. CH2M HILL had proposed providing nature and extent sections for each site, as was performed in the Letter Report submissions. Turpin Ballard suggested that a better approach would be to organize nature and extent along FUs and not each screening or RI site. It was agreed that this would be a better way to organize the document and CH2M HILL would reorganize nature and extent discussions to an FU-wide basis.

The group discussed if the changes proposed during the EFU review could be incorporated and still meet the May 14th milestone for delivery to EPA/TDEC/Memphis Depot for review. Greg Underberg replied that CH2M HILL would have to meet and discuss the implications of these changes on the schedule. Turpin Ballard allowed that a partial deliverable consisting of Chapters 1-7, the groundwater FU, and one soil FU could be submitted, with the other 5 FUs submitted at a later date.

THIS PAGE INTENTIONALLY LEFT BLANK.

Human Health and Ecological Risk Assessment Approach Memphis Depot Main Installation

1.0 Introduction

A baseline human health and ecological risk assessment will be conducted at the Main Installation of Memphis Depot, following EPA and State of Tennessee guidance. The risk assessment will document the potential adverse effects to human health and the environment, under both current and future land use conditions. The results of this risk assessment will serve as the basis for site decisions by the site risk managers. A RAGS Part D formatting for human health risk tables will not be implemented at this site.

2.0 Human Health Risk Assessment Approach

The following documentation discusses the general approach for the human health risk assessment to be conducted at each of the RI sites, screening sites, and the Functional units that include groups of BRAC Parcels. The specific details of the exposure scenarios, complete pathways, exposure assumptions, land use, acceptable risk levels etc., will be discussed with the regulatory agencies prior to implementing in the risk assessment. The risk assessment will use methods recommended by the EPA guidance as listed in the following and other applicable regional EPA (Region IV) and Tennessee state guidances:

- United States Environmental Protection Agency, 1989. Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual (Part A). EPA/540/1-89/002.
- United States Environmental Protection Agency. 1989) Risk Assessment Guidance for Superfund (RAGS), Volume II, Environmental Evaluation Manual. EPA-540/1-89/001.
- United States Environmental Protection Agency. 1990. Guidance for Data Usability in Risk Assessment. EPA/540/G-90/008.
- United States Environmental Protection Agency. 1997. Exposure Factors Handbook. August 1997. //www.epa.gov/ncea/exposfac.htm.
- United States Environmental Protection Agency. 1989. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments). Publication 9285.7-01D, January, 1998.

The human health risk assessment will include the four major components in the evaluation process:

- Identification of COPCs
- Exposure assessment
- Toxicity assessment and
- Risk characterization

A conceptual site model will be developed for an overview of site conditions, potential migration pathways, receptors and exposure routes identification purposes. This will serve as the basis for the exposure pathway evaluations in the human health (and ecological risk) assessments.

As appropriate, a discussion of remedial goal options (RGOs) will be included for the sites presenting excess risk or hazard, for risk management decision purposes.

2.1 Identification of Constituents of Potential Concern

Existing analytical data from each of the sites will be evaluated for a quantitative risk assessment. Data are assumed to be in electronic form and have been through a data quality evaluation process. The constituents of potential concern (COPCs) that represent site conditions will be selected using the monitoring data from each site. The selection process will include chemicals that are a direct exposure concern and chemicals that may be of interest from migration to groundwater, air and/or surface water bodies. The screening process conducted for PRE estimations will be used as the basis for COPC selection.

The groundwater data from unfiltered samples will be used for quantitative risk assessment. Any filtered samples will be used to assess the potential migration in the aquifer.

2.2 Exposure Assessment

An exposure assessment will evaluate the potential exposure to the site media and identify the potential receptor population for each site. The exposure assessment will be conducted to identify potential exposure pathways for human receptors, assess the potential routes of exposure, and document the behavior of the assumed receptor into exposure factors for quantitation of the potential exposure. The specific assumptions will be discussed with the risk assessors from reviewing agencies prior to inclusion in the quantitative risk assessments, preferably in a meeting. A conceptual site model will be developed to identify the source, migration pathways and the potential receptors at each site.

Site and its surrounding land use will be documented in the best possible manner, as the onsite land use is subject to change in the near future due to the property leasing that is underway. The offsite well information will be document based on the available information for the local government records. Land use assumptions for current and future land uses at each site and area surrounding Main Installation will be discussed. Since the future land use may be unlimited, a default residential scenario will be evaluated for each site. Although a residential scenario will be evaluated, its applicability for the site management decisions shall be carefully assessed. Since the majority of the MI is industrial, a default future industrial scenario will also be evaluated.

Tables 1, 2 and 3 present a preliminary list of the default exposure factors that will be used in the future industrial and residential exposure scenario risk estimations. Additionally, current exposure scenarios will include a site-specific most likely use scenario and will be evaluated for each site, as appropriate. For areas that may involve recreational use, a recreational scenario will be evaluated (e.g. Ponds at Site 25 and 26). Site visit notes and photographs will be consulted in determining current and possible future land uses for the sites.

Exposure Factors for Soil Memphs Depot Man Installation RI

:						Future					
			-		Т			Onsite		Onsite	
el compare	o d	Maintenance		Utility Worker		Industrial Worker		Resident (Adult)		Resident (Child)	
RW	Body Weight (kg)	20	-	02	<u>ه</u>	70	-	٩	æ	15	-
ht Fi	Inhalation Rate (m³/day)	50	85	20	6	50	æ	50		15	8
IR frth adi	Inhalation Rate age-adjusted	N/A		N/A		A/A		12.86	E	N/A	
AT C	Averaging Time - Carcinogenic	70x365	n	70x365	=	70x365	n	70×365	В	N/A	۳
AT NC	Averaging Time - Noncardinogenic	25x365	45	25x365	n	25×365	8	30×365	В	6x365	9
	Solls										
Fit fro	Incidental Incestion Rate (mg/day)	20	۵	100	۵	90	ď	100	۵	200	٩
IR ad Ing	Age adjusted Incidental Ingestion Hate (mg/day)	N/A		N/A	Г	N/A	Ц	114 29	uф	N/A	
Ξ	Fraction Ingested	0.5	۵	0.5	Ф	-	۰	-	q	,	٥
SA	Skin Surface Area (cm²)	2,679	υ	2 679	ç	2 679	o	5 049	P	2 351	۰
SA ad	Age-adjusted Skin Surface Area (cm²)	N/A	Г	N/A		N/A		2 671	oʻp	N/A	
Ą	Adherence Factor for dry sof (mg/cm²)	0 03	+	10	6	0 03	-	0 03	-	0 15	_
PEF	Particulate Emission Factor (m/kg)	1 32E+09	-	1 32E+09	F	1 32E+09	_	1 32E+09	-	1 32E+09	_
ET	Exposure Time (hours/day)	8	e	8	a	æ	æ	4	-	4	
ä	Exposure Frequency (days/year)	90	¥	24	_	250	В	350	æ	320	_
ED	Exposure Duration (years)	25	æ	25	e	25	8	30	æ	9	E.

ביצורי שוני ביצורי ביצורים ביצו	All current scenario exposure factors are subject to reevaluation based on site-specific information	

Default exposure factors adapted from EPA. Human Health Evaluation Manuat. Supplemental Guidance. "Standard Default Exposure Factors

OSWER Directive 9285 6-03, March 25 1991

Fraction injested assumed by the nature of the activity

Worker sol exposure is adapted from EPA Exposure Factor Handbook. August 1997 & is protective of 1/2 head (face). Hands & forearms (see Appendix L.). Residential adult soil exposure is adapted from EPA Exposure Factor Handbook. August 1997 & is protective of 1/2 head (face), hands, forearms

& lower legs (see Appendix L)

Hesidential child soil exposure is adapted from EPA Exposure Factor Handbook, August 1997 & is protective of 1/2 head (face), hands forearms, lower legs

& feet (see Appendix L)
0.03 = Groundskeeper No 2 (exposure scenaros similar to urban horiculture center campus grounds, arbonetum) AFs chosen from Soil Loading calculations (see Appendix L.)

0.1 = Construction Worker (heavy digging exposure to mixed bare earth. concrete surfaces, dust & debris) AFs chosen from Soil Loading

calculations (see Appendix L)

0.15 = Daycare Kids No.1b (indoor exposure to lineleum outdoor exposure to grass, bare earth no shoes) AFs chosen from Soil Loading calculations (see Appendix L)

PEF adapted from EPA 1996, Soil Screening Guidance. Technical Background Document. 4 hours soil exposure are assumed for residential dermal contact and inhalation exposure time.

Worker soil exposure is assumed to be once a week per year, minus vaction time Worker soil exposure is assumed to be twice a month

+ IB Inha x (EDa_EDc) = BWa 19 tnhad≱ = LR-Inbc.xEDc Age-adjusted inhalation rate for residential adult

12.86 (m³-year)/(kg-day) 114 29 (mg-year)/(kg-day) 2671 (cm² -year)/(kg)

= 15x6 + 20x(30-6) = 15 = 200x6 + 100x(30-6) = 15

+ IBa x (EDa - EDc)

5049.x.(30<u>.6)</u> 70

= 2351x6 +

fRc_x_EDc BWc SAC X EDC lRad ≈ SAadj = Age adjusted dermal contact for residential adult Age-adjusted ingestion rate for residential adult

Ingestion rates adapted from EPA Supplemental Gurdance to RAGS Region 4 Bultetins. Human Health Risk Assessment Interim. November 1995 BWa + SAa x (EDa_EDc) BWc

hours per day days per year

centimeters squared

cubic meters per day kilograms

cubic meters per kilogram p cm² days/year hours/day kg m³/day m³/kg mg/cm² mg/cm²

miligrams per centimeters squared miligrams per day Not applicable for this receptor

ď,

		I	В			ø			Ø			ס		9	а	В
	Onsite Resident	(Cnila)	15	•	N/A	6x365			-		N/A	6,557	N/A	0 007	350	9
Ons	7	a		в	а			а		a,f	၁	c,g	е	а	B	
	Onsite Residen	(Adult)	70	•	70x365	30x365			2		11	20,000	9480	0 007	350	30
		ē	В	_	а	a	-		æ			q		ə	а	а
	100	Industrial Worker	70	*	70x365	25x365			1		N/A	2679	N/A	200 0	250	25
		Parameter	Body Weight (kg)	Inhalation Rate (m³/day)	Averaging Time - Carcinogenic	Averaging Time - Noncarcinogenic		Groundwater	Ingestion Rate of Water (L/day)	Age-adjusted Incidental Ingestion Rate	(Uday)	Skin Surface Area (cm²)	Age-adjusted Skin Surface Area (cm²)	Exposure Time (hours/day)	Exposure Frequency (days/year)	Exposure Duration (years)
		Symbols	BW	IR_Inh	AT_C	AT_NC			IR_Ing		IR_adj_Ing	SA	SA_adj	ET	EF	ŒЭ

		o.		tix L)				1 09 (L-year)/(kg-day)	= 9480 (cm²-year)/(kg)
		Directive		Append	_			09 (L-y	80 (cm
		WERI		(see	ndix L	ndix [_)		=	58
		sure Factors* OS		nands & forearms	parts (see Appe	parts (see Apper		$2 \times (30-6)$	$15 70$ = $6557 \times 6 + 20000 \times (30-6)$ 15 70
		Expos		ace), t	l body	body		+	+
	licy	d Default		2 head (f	ctive of al	strve of all	ıt/day	1 x 6	15 6557.x.6 15
	<u>8</u> ≥	andar		9 of 1/	prote	protec	ever	II	
	as per EPA Region	ental Gurdance "Sta		from EPA Exposure Factor Handbook, August 1997 & is protective of 1/2 head (face), hands & forearms (see Appendix L)	is adapted from EPA Exposure Factor Handbook, August 1997 & is protective of all body parts (see Appendix L)	t, August 1997 & IS	3y/24 hours = 0 007	+ $IBax(EDa-EDc) \approx 1x6$	BWa SAax (EDa.EDc) BWa
sment	sarres	pleme		gust	dpool	dbook	× 1 ds	+	+
health risk assess	he ingestion expor	lation Manual, Sup		ctor Handbook, Au	posure Factor Han	osure Factor Han	1 hour/60 minutes	IRC X EDC	BWc SAc_x_EDc BWc
In the human	r are equal to t	n Health Evalu		Exposure Fa	I from EPA Ex	from EPA Exp	inute event x	IRadj =	SAadj ≖
Exposure factors shown here reflect what was used in the human health risk assessment	inhalation exposures to volatiles in the groundwater are equal to the ingestion exposures as per EPA Region IV policy	Default exposure factors adapted from EPA, Human Health Evaluation Manual, Supplemental Gurdance "Standard Default Exposure Factors" OSWER Directive	9285 6-03, March 25, 1991	Worker groundwater exposure is adapted from EPA	Residential adult total body surface area is adapted	Residential child total body surface area is adapted from EPA Exposure Factor Handbook, August 1997 & is protective of all body parts. (see Appendix L.)	Calculation for Shower dermal exposure time 10 minute event x 1 hour/60 minutes x 1 day/ 24 hours = 0 007 event/day	Age-adjusted ingestion rate for residential adult	Age-adjusted dermal contact for residential adult
Notes		ĸ		.0	O	p	ø	_	50

centimeters squared
days per year
hours per day
kilograms
liters per day
cubic meters per day
Not applicable for this receptor days/year hours/day kg L/day m³/day N/A

Exposure Factors for Sediment and Surfacewater Memphis Depot Main Installation RI

_					Ξ	Future			
						Residential/		Residential/	
Symbols	Parameter	Maintenance Worker		Industrial Worker		Recreational (Adult)		Recreational (Youth)	
Т	Body Weight (kg)	70	е	70	a	70	a	45	a
۲	Inhalation Rate (m³/day)	20	ę	20	В	20	а	50	æ
П	Averaging Time - Carcinogenic	70x365	е	70×365	а	70x365	е	70x365	B
Г	Averaging Time - Noncardinogenic	25x365	а	25x365	а	30x365	В	10x365	P
57	Surface Water								_
IR Ing w	Incidental Ingestion - Wading (L/hour)	001	q	100	۵	N/A		N/A	Ц
1	Incidental Ingestion - Swimming (L/hour)	N/A		N/A		0 05	υ	0 05	υ
	Skin Surface Area - Wading (cm²)	2 679	Р	2,679	ρ	N/A		N/A	
Г	Skin Surface Area -Swimming (cmf)	N/A		W/N		20,000	ө	13,118	-
ET	Exposure Time (hours/day)	4	6	7	9	9	ч	9	-
Γ	Exposure Frequency (days/year)	12	-	250	a	45	ļį	45	_
03	Exposure Duration (years)	25	е	25	а	30	a	10	
									4
ľ	Sediments								_
FI Ing	Incidental Ingestion - Wading (mg/day)	20	×	50	¥	100	×	100	*
ī.	Fraction Ingested	-		1	-	1	-	-	_
SA	Skin Surface Area - Wading (cm²)	2,679	₽	5,679	ъ	5,671	٤	4,785	_
AF A	Adherence Factor for wet soil (mg/cm²)	0.1	0	10	0	0.1	0	0.1	٥
ET	Exposure Time (hours/day)	4	6	7	9	9	ħ	9	드
EF	Exposure Frequency (days/year)	12	1	520	в	45	1.	45	긔
C.D	Exposure Duration (years)	25	,	56	"	30	-	10	_

Exposure factors shown here reflect what was used in the human health risk assessment Notes

All current scenario exposure factors are subject to re-evaluation based on site-specific information

Defautt exposure factors adapted from EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991

Surface water ingestion white swimming adapted from Supplemental Guidance to RAGS. Region 4 Builetins, Human Health Risk Assessment, Interim, November 1995 Surface water ingestion white wading adapted from Supplemental Guidance to RAGS. Region 4 Bulletins, Human Health Risk Assessment, Inferim, November 1995.

Worker surface water/sediment exposure is adapted from EPA Exposure Factor Handbook, August 1997 & is protective of 1/2 head (face), hands & forearms (see Appendix L).
Recreational adult total body surface area is adapted from EPA Exposure Factor Handbook. August 1997 & is protective of all body parts. (see Appendix L).
Recreational youth total body surface area is adapted from EPA Exposure Factor Handbook, August 1997 & is protective of all body parts. (see Appendix L).

4 hours surface water/sediment exposure are assumed for workers based on the nature of the activities яд o ф = Ф = - - - - - - - Е

6 hours surface water/sediment exposure are assumed for recreational adults/youths based on the nature of the activities

Worker surface water/sediment exposure is assumed to be once a month

Recreational factors adapted from Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

Sediment ingestion rates adapted from Supplemental Guidance to RAGS. Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995 Fraction injested assumed by the nature of the activity

Recreational adult sediment exposure is adapted from USEPA Exposure Factor Handbook, August 1997 & is protective of hands, forearms, lower legs & feet (see Appendix L) Recreational youth sediment exposure is adapted from USEPA Exposure Factor Handbook, August 1997 & is protective of hands, forearms, lower legs & feet (see Appendix L)

0.1 = Construction Worker (heavy digging, exposure to mixed bare earth, concrete surfaces, dust & debris) AFs chosen from Soil Loading calculations. (see Appendix L.) ့ ဝ **ိ**ह

centimeters squared

hours per day days per year

iters per hour kilograms

cubic meters per kilogram cubic meters per day

miligrams per centimeters squared mıllıgrams per day days/year hours/day kg Lhour m³/day m³/kg mg/cm² mg/cday

Not applicable for this receptor

et. 5

THIS PAGE INTENTIONALLY LEFT BLANK.

- 38

A minimum of one site-specific and one default future exposure scenario will be evaluated using the site-specific land use information for each site. Fate and transport of the COPCs identified for each media will be evaluated, and discussions will be provided. Much of the fate and transport discussions will be qualitative, and no quantitative modeling is currently identified as needed for the site media at the Main Installation.

The dose (chronic daily intakes [CDIs]) will be estimated using exposure point concentrations for each receptor and exposure route for the identified complete exposure pathways. Exposure pathways for risk assessment will be selected based on the site activities and surrounding area and the site conceptual model developed prior to risk assessment. Exposure pathways to be quantified will be determined based on the United States Environmental Protection Agency (EPA) guidance and will include the direct exposure pathways to soil, groundwater, sediments, and surface water as appropriate. Appropriate representative exposure pathways will be included for quantitative analysis and other potentially complete less–conservative pathways will be discussed qualitatively.

The exposure point concentrations will be the upper 95% confidence limit estimates on the mean concentrations (UCL95%). The non-detect samples will be included at half the detection limit levels in these UCL95% estimates. These estimations will be performed using the underlying data distributions (normal versus log-normal), according to the EPA guidance. The lower of the maximum detected concentration and the UCL95% estimated will be selected as the exposure point concentrations. For groundwater, an average of the three highest detected concentrations will be selected as the exposure point concentration. For downgradient locations, individual well concentrations may be used as exposure point concentrations on a site-specific basis. Groundwater is currently not in use. Future potential use will be evaluated.

A fate and transport evaluation will include discussion of environmental behavior of the COPCs identified during the nature and extent investigations in the surface and subsurface soils, sediment, and surface water, and potential impacts to site groundwater. The behavior of the chemicals shall be determined by both individual chemical properties, as well as by facility characteristics including water flow velocity, soil permeability, infiltration, temperature, and presence of conditions that support microbial population. Potential pathways—including air emissions, transport, or persistence—shall be assessed based on site-specific information and chemical properties. Fate and transport evaluation will include potential offsite impacts from the site contaminants by evaluating the site COPCs and their potential for offsite migration through groundwater or surface runoff or volatilization from the site media. This will be a qualitative evaluation. The groundwater monitoring data will serve as the indicator for quantitative assessment of the potential migration. No quantitative modeling will be performed as part of this fate and transport evaluation.

2.3 Toxicity Assessment

The human health evaluation will include a toxicity assessment section that compiles the toxicity criteria for risk and hazard index estimates. The toxicity criteria will be obtained from the EPA toxicity databases (e.g., IRIS, and HEAST). Any interim values from EPA available through other sources (e.g. EPA Region III RBC tables) will be used in the absence of a value in the EPA toxicity databases. Uncertainties associated with the toxicity criteria estimations will be discussed. The target organs for the selected toxicity factors will be selected from the existing toxicity databases, as suggested by EPA. The toxicity equivalency factors (TEFs) will be

used for PAHs and dioxins as appropriate. For PCBs three sets of toxicity factors are available. The conservative set of toxicity factors will be used for risk estimations.

2.4 Risk Characterization

The exposure and toxicity information from the previous sections will be integrated in this section to estimate the potential risks and HIs. The estimated risks and HIs represent the site (unit) being investigated, for site-specific risk management decisions. The cumulative risks and HIs will be compared against the acceptable risk ranges. Summary and conclusions will be provided for each of the receptor populations and sites. Risks will be totaled by medium and combined risks across media and pathways will be presented as appropriate.

3.0 Ecological Risk Assessment Approach

An ecological risk assessment (ERA) will be conducted to document the potential adverse effects to the environment as a result of contamination present at the Memphis Depot Main Installation. The EPAs program guidance for ecological risk assessments, *Ecological Risk Assessment Guidance for Superfund, Process for Designing and Conducting Ecological Risk Assessments*. Interim Final, June 5, 1997 (EPA 540-R-97-006), will be the primary ERA guidance. The stepwise process outlined in this guidance will serve as the basic framework for the ERA portion of the RFI. Steps 1, 2, and 3 of the guidance will be followed in the RFI, and are outlined below.

3.1 Step 1 - Screening Level Problem Formulation and Ecological Effects Evaluation

The screening level problem formulation and ecological effects evaluation are part of the initial stage of the ecological risk screening assessment. This step includes all the functions of a problem formulation, but at a screening level.

The screening level problem formulation will include the development of a conceptual site model. The model will include; (1). A description of the environmental setting and contaminants known to exist at the site, (2). Contaminant fate and transport mechanisms that might exist at the site, (3). Categories of ecological receptors and the mechanisms of ecological toxicity associated with the contaminants, (4). Identifies complete exposure pathways, and (5) selects endpoints to screen for ecological risk.

The environmental setting will include a land use map that illustrates the land use characteristics on and near the Memphis Depot facility. Land use types may include industrial, residential, undeveloped, and natural habitats. Observed or potentially occurring plant and animal species will be identified, as well as potentially occurring protected species or critical habitats. Contaminants identified in site media will also be presented.

Potential contaminant migration pathways, such as stormwater runoff, will be addressed. For the screening level risk assessment, the maximum contaminant concentrations measured at the site will be documented for each medium.

An understanding of the toxic mechanisms of the contaminants will be developed to evaluate the importance of potential exposure pathways and focus the selection of assessment endpoints for the ERA. For example, some chemicals may affect vertebrate animals and not terrestrial plants.

Identification of exposure pathways is one of the primary tasks of the screening ERA. For an exposure pathway to be complete, a contaminant must be able to travel from the source to ecological receptors and be taken up by the receptors. Identifying complete exposure pathways allows the ERA to focus on only those contaminants that may reach ecological receptors. It may be possible to determine that present and future ecological impacts are negligible since complete exposure pathways do not exist and could not exist in the future.

Assessment and measurement endpoints will be defined. Assessment endpoints are those environmental values to be protected and can represent any adverse effects on ecological receptors, where receptors are plant and animal populations, communities, habitats, and sensitive environments. Measurement endpoints will be based on available literature regarding toxicity and will be used to establish screening ecotoxicity values.

The preliminary ecological effects evaluation involves the identification of conservative screening ecotoxicity values. The ecotoxicity values chosen for the screening level assessment are those that have recently been recommended by EPA Region 4. For surface soil, these criteria include the Canadian Soil Quality Criteria and the Dutch Government soil cleanup values. For surface water, criteria will include Tennessee freshwater chronic criteria, Region IV water quality criteria, and Federal ambient water quality criteria. For sediment, the Florida sediment quality criteria and the NOAA effects-range-low values will be used. For terrestrial wildlife (i.e. birds and mammals), screening ecotoxicity values will be those that represent no-observed-adverse-effect-levels (NOAEL) as reported in various literature sources.

Uncertainty Assessment

Uncertainty is inherent in each step of the screening level ecological risk assessment. Professional judgement will be used to determine the uncertainty associated with information taken from the literature and any extrapolations used in developing screening ecotoxicity values.

3.2 Step 2 - Screening Level Exposure Estimate and Risk Calculation

This step includes estimating contaminant exposure levels and screening them against the previously identified ecotoxicity values to determine the potential for ecological risk. The process concludes with a scientific/management decision point that identifies the adequacy of the information and the level of ecological risk.

3.2.1 Screening Level Exposure Estimates

To ensure that potential ecological threats are not missed, the exposure estimates used for the screening process will be the maximum detected contaminant values in site media. These media will include only those for which a complete exposure pathway has been identified.

3.2.2 Screening Level Risk Calculation

A quantitative screening level risk will be estimated using the maximum exposure concentrations and the screening ecotoxicity values previously outlined. Comparisons to screening ecotoxicity values will be in a step-wise hierarchy, and will follow the same order presented previously. For example, maximum surface soil concentrations will first be compared to the Canadian guidelines, followed by the Dutch guidelines if Canadian guidelines are not available.

The hazard quotient (HQ) approach, which compares point estimates of screening ecotoxicity values and exposure values, will be used to estimate screening-level ecological risk. Thus, for each contaminant, the HQ can be expressed as the estimated environmental concentration divided by the screening ecotoxicity value. An HQ less than one indicates that the contaminant alone is unlikely to cause adverse ecological effects. An HQ of one is the threshold level at which effects may occur.

All contaminants with an HQ greater than 1 will be considered COPCs and carried forward into the Step 3 of the ERA process. In addition, any contaminant for which a screening ecotoxicity value does not exist will also be carried forward to Step 3 as COPCs. Risk management information such as other screening ecotoxicity values, frequency of detection, and background comparisons will not be considered within Step 2, but will be considered in Step 3 as part of the refinement of COPCs.

3.2.3 Scientific Management Decision Point (SMDP)

At the end of Step 2, the results of the preliminary ERA are presented to the risk manager. A decision will then be made regarding whether the information available is adequate to make a risk management decision. The three possible decisions at this point are as follows;

- 1. There is adequate information to conclude that ecological risks are negligible and therefore no need for remediation on the basis of ecological risk.
- 2. The information is not adequate to make a decision at this point, and the ecological risk assessment process will continue to Step 3.
- The information indicates a potential for adverse effects, and a more thorough assessment is warranted.

3.3 Step 3 Baseline Risk Assessment Problem Formulation

Step 3 refines the screening level problem formulation phase of the ERA, and with input from the stakeholders and other involved parties, expands on the ecological issues of concern at the site. In the screening level assessment, conservative assumptions were used where site-specific information was lacking. In Step 3, the screening assessment results and additional site-specific information are used to determine the scope and goals of the baseline ERA.

The first activity in Step 3 is the refinement of preliminary contaminants of ecological concern. In Steps 1 and 2, it is likely that several contaminants were eliminated from further consideration. Because of the conservative nature of the screening process, some contaminants carried forward into Step 3 may also pose negligible risk. Therefore more realistic assumptions will be considered, such as reasonable maximum or average exposure concentrations, frequency of detection, background concentrations, and terrestrial wildlife site usage factors. For those contaminants for which the HQ drops to near or below 1, agreement between the risk assessor and risk manager may lead to dropping the affected COPCs from further consideration.

In Step 3, information gathered in the screening level assessment is expanded upon. A literature search will be conducted to fill in data gaps regarding identification of NOAELs, lowest-observed-adverse-effect-levels (LOAELs), exposure-response functions, and mechanisms of toxic responses. Exposure pathways and the ecosystems associated with the assessment

endpoints that were retained in the screening risk assessment are evaluated in more detail. Refined evaluations are conducted of fate and transport mechanisms, ecological setting, magnitude and extent of contamination, and reconsideration of complete exposure pathways. Finally, a formal identification of assessment endpoints based is conducted.

Within Step 3, it is possible that the refinement of COPCs has lead to a recommendation for no further action. If COPCs are identified to be carried through the baseline risk assessment, Step 3 will be completed. At the conclusion of Step 3, the problem formulation will have been defined. A SMDP will then be required and will consist of an agreement on four items; contaminants of concern, assessment endpoints, exposure pathways, and risk questions or testable hypotheses. The results of the SMDP will indicate how the baseline risk assessment is to progress, however this additional work (Steps 4 through 7) is not part of the existing scope of work.

4.0 Remedial Goal Options (RGOs)

The remedial goal options (RGOs) will be estimated for the pathway and the receptor that is identified to have excessive risks. Media with risks and HIs below the acceptable levels will not be further evaluated in this section. A Remedial Goal Option (RGO) will be estimated for media presenting excess risk (e.g. $>10^{-4}$) or an unacceptable HI (>1.0). A quantitative cleanup level will not be estimated for the media presenting low human health or ecological risks. Concentrations will be compared with available ARARs, and discussion of remedial options by media for each site will be provided.

4.1 Applicable or Relevant and Appropriate Requirements (ARARs) and To Be Considered (TBC) Requirements

The existing ARARs and TBC requirements will be reviewed and modified, as necessary. ARARs and TBCs will be used to evaluate subsequent proposed remedial actions. Location-specific ARARs and activity-specific ARARs will be developed. Applicability of the ARARs and TBCs for these RCRA sites will determined by site risk managers.

4. 2 Risk Based RGOs

For sites presenting excess human health or ecological risk, remedial goal options will be developed as per EPA Region IV guidance. A quantitative RGO will be calculated for those media and chemicals presenting excess cancer risk or HI above an acceptable risk range or HI value. Chemicals and media that represent low risks and HIs will not be included for an RGO estimation.

THIS PAGE INTENTIONALLY LEFT BLANK.

Results of Pesticide Vertical Profile Sampling

PREPARED FOR:

Shawn Phillips/DDSP-FE

Ramon Torres/EPA Region IV

Jordan English/TDEC
Dorothy Richards/CEHNC
Scott Bradley/CEHNC

PREPARED BY:

Greg Underberg/ORO

Justin Treadwell/ORO

COPIES:

Vijaya Mylavarapu/GNV

Randy Underwood/GNV Leslie Shannon/MGM

DATE:

May 18, 1998

Introduction

Previous surface soil sampling at the Defense Depot Memphis, Tennessee (DDMT) has indicated that pesticide concentrations, particularly dieldrin, exceed risk-based human health criteria across the DDMT Main Installation. As a result, soil removal may be required in numerous locations. However, samples collected before the Pesticide Vertical Profile Sampling were composited from the 0-1 foot interval. As a result, it was not established how deep the pesticides actually penetrated into the soil column. It was believed that the pesticides were sorbed onto only the upper few inches of organic rich soil, which would result in significant cost savings if soil removal was required. On February 11th, 1998, a discussion between staff from the Defense Depot Susquehanna, Pennsylvania; the Corps of Engineers Huntsville Division; and CH2M HILL indicated the need to characterize the vertical concentration of dieldrin in surface soil.

Soil samples were collected at DDMT from March 30, 1998 through April 1, 1998. Sampling was performed in three areas with a history of distinct soil management practices. The three groups identified within the Main Installation of DDMT were: 1) the Golf Course Area where pesticides were likely applied in broadcast fashion; 2) the Warehouse Areas where pesticides were likely applied in around the perimeter of buildings; and 3) the Open Grassy Areas where pesticides were likely applied in broadcast fashion, but were not subject to the same degree of spray irrigation as the Golf Course Area.

Within each of the three groups, two sample locations were selected for vertical profiling. The locations were adjacent to previously sampled areas so that the initial pesticide concentrations were known. Dieldrin was the primary pesticide of concern and was used as a primary criterion for selecting the locations of the vertical profiling. However, one of the two sample locations was partially based on the known concentrations of DDT and its degradation products DDE and DDD. The dieldrin-only locations were analyzed for dieldrin using modified SW-846 Method 8081. Samples from the dieldrin/DDT borings

were analyzed for the complete list of SW-846 Method 8081 organochlorine pesticides (Pesticide Suite). To evaluate other soil properties that might influence vertical transport of pesticides, samples were also analyzed for pH, total organic carbon (TOC), moisture content, and clay content (fraction passing a #200 sieve) (clay content not yet available).

Samples were collected with a Shelby tube that was inserted by either pounding or augering. The root zone was removed and analyzed as the uppermost sample of the profile. Samples were collected below the root zone at 4 inch intervals for the uppermost foot. These samples characterized the vertical profile of pesticides within the top foot the surface soil. When possible, a composite sample was collected from 12-24" interval. This sample represented concentrations that would be left in-situ if the top foot of soil were to be removed. Samples from the 8-12" and 12"-24" sample intervals were only analyzed if significant concentrations were detected in shallower samples.

Summary of Field Sampling

Soil samples were collected at the DDMT from March 30, 1998 through April 1, 1998. The soil samples were analyzed for dieldrin, pesticides, moisture content, clay content, total organic carbon (TOC), and pH. The following locations, identified in Figure 1, were sampled.

Location:

S(3.5)V

Golf Course Area

Sampled:

3/30/98 - 16:40

Samples were located approximately 150 feet south of the intersection of K Street and 2nd Street on the west side of 2nd Street. Because of the density of the soil, a maximum depth of 12 inches was achieved with the hand auger; therefore, the bottom 1 foot composite sample was not obtained. Two holes were augered to provide enough root zone material, and one of these holes was used for the remainder of the samples. All of the samples were grab samples from the specified intervals except for the 8-12" interval, which was a composite sample. The following samples were collected at this location.

Depth Interval	Sample ID	Analyses
0 – 2"	S35V1	Pesticide Suite
(D. a. 1. 7. a. a.)		Moisture Content
(Root Zone)		Clay Content
		TOC
		pН
2 – 4"	S35V2	Pesticide Suite
		Moisture Content
		Clay Content
		TOC
		рН
4 – 8"	S35V3	Pesticide Suite
		Moisture Content
		Clay Content
		TOC
		pН
8 – 12"	S35V4	Pesticide Suite
		Moisture Content
		Clay Content
		TOC
		pH
12 - 14"	S35V5	Pesticide Suite
]		Moisture Content
		Clay Content
		TOC
		pH

Location:

B(3.5)V

Golf Course Area

Sampled:

3/31/98 – 17:40

Samples were located approximately 30 feet west of 1st Street on the golf course, near the edge of the DDMT reservation. A hand auger was used and samples were collected to a depth of 21 inches. Four holes were augered to provide enough root zone material, and one of these holes was used for the remainder of the samples. All of the samples were grab samples from the specified intervals except for the 12–21" interval, which was a composite sample. The following samples were collected at this location.

Depth Interval	Sample ID	Analyses
0 – 2" (Root Zone)	B35V1 B35V1D B35V1MS B35V1MSD	Dieldrin Moisture Content Clay Content TOC pH
0 – 4"	B35V2	Dieldrin Moisture Content Clay Content TOC pH
4-8"	B35V3	Dieldrin Moisture Content Clay Content TOC pH
8 – 12"	B35V4	Dieldrin Moisture Content Clay Content TOC pH
12 – 21"	B35V5	Dieldrin Moisture Content Clay Content TOC pH

Location:

A(10.2)V

Warehouse Areas

Sampled:

4/1/98 - 09:15

Samples were located approximately 45 feet south of E Street and 150 feet east of 5th Street next to building 549. A hand auger was used and samples were collected to a depth of 24 inches. Two holes were augered to provide enough material for the root zone sample and the 0–4" sample, and one of these holes was used for the remainder of the samples. All of the samples were grab samples from the specified intervals except for the 12–24" interval, which was a composite sample. The following samples were collected at this location.

Depth Interval	Sample ID	Analyses
0 – 2" (Root Zone)	A102V1	Pesticide Suite Moisture Content Clay Content TOC pH
0-4"	A102V2 A102V2D A102V2MS A102V2MSD	Pesticide Suite Moisture Content Clay Content TOC pH
4 – 8"	A102V3	Pesticide Suite Moisture Content Clay Content TOC pH
8 – 12"	A102V4	Pesticide Suite Moisture Content Clay Content TOC pH
12 – 24″	A102V5	Pesticide Suite Moisture Content Clay Content TOC pH

Location:

A(15.6)V

Warehouse Areas

Sampled:

4/1/98 – 11:30

Samples were located approximately 50 feet north of the railroad tracks which are north of buildings 529 and 429. A hand auger was used and samples were collected to a depth of 23.5 inches. Two holes were augered to provide enough material for the root zone sample, and one of these holes was used for the remainder of the samples. All of the samples were grab samples from the specified intervals except for the 12–23.5" interval, which was a composite sample. The following samples were collected at this location.

Due to the previous day's rain, there was some standing water on the surface.

Sampling at this location was video taped by DDMT personnel.

Depth Interval	Sample ID	Analyses
0 – 2" (Root Zone)	A156V1	Dieldrin Moisture Content Clay Content TOC pH
0 – 4"	A156V2	Dieldrin Moisture Content Clay Content TOC pH
4 – 8" (2-photos taken)	A156V3	Dieldrin Moisture Content Clay Content TOC pH
8 – 12"	A156V4	Dieldrin Moisture Content Clay Content TOC pH
12 – 23.5″	A156V5	Dieldrin Moisture Content Clay Content TOC pH

Location:

A(2.7)V

Open Grassy Areas

Sampled:

3/31/98 – 17:40

Samples were located approximately 10 feet southwest of the front porch of the west unit in the northern most row of housing units. A hand auger was used and samples were collected to a depth of 23 inches. Two holes were augered to provide enough root zone material, and one of these holes was used for the remainder of the samples. All of the samples were grab samples from the specified intervals except for the 12–23" interval, which was a composite sample. The following samples were collected at this location.

Depth Interval	Sample ID	Analyses
0-2"	A27V1	Pesticide Suite
(Root Zone)		Moisture Content
(Root Zone)		Clay Content
		TOC
		pН
0-4"	A27V2	Pesticide Suite
		Moisture Content
		Clay Content
		TOC
		pН
4 – 8"	A27V3	Pesticide Suite
		Moisture Content
1		Clay Content
		TOC
		pН
8 – 12"	A27V4	Pesticide Suite
		Moisture Content
		Clay Content
		TOC
40 00%		pH
12 – 23"	A27V5	Pesticide Suite
		Moisture Content
		Clay Content
		TOC
		pH

Location:

J(3.5)V

Open Grassy Areas

Sampled:

3/30/98 - 17:35

Samples were located approximately 90 feet east of 1st Street and near L Street. A hand auger was used and samples were collected to a depth of 24 inches. Two holes were augered to provide enough root zone material, and one of these holes was used for the remainder of the samples. All of the samples were grab samples from the specified intervals except for the 12–24" interval, which was a composite sample. The following samples were collected at this location.

Depth Interval	Sample ID	Analyses
0 – 2″ (Root Zone)	J35V1	Dieldrin Moisture Content Clay Content TOC pH
0 – 4"	J35V2	Dieldrin Moisture Content Clay Content TOC pH
4 – 8"	J35V3	Dieldrin Moisture Content Clay Content TOC pH
8 – 12"	J35V4	Dieldrin Moisture Content Clay Content TOC pH
12 – 24"	J35V5	Dieldrin Moisture Content Clay Content TOC pH

Vertical Profile Results

The analytical results of the Pesticide Vertical Profile Sampling are presented in Table 1. Dieldrin, DDT, DDE, and DDD were detected in the samples collected during the investigation. Samples from the Golf Course Area contained detectable concentrations of dieldrin, DDT, DDE, and DDD. Samples from the Warehouse and Open Grassy Areas contained detectable concentrations of dieldrin, DDT, and DDE.

As shown in the Table 1, the pesticide results were compared to the EPA Region III Risk-Based Concentrations (RBCs) dated April 15, 1998 for soil at an industrial site. Dieldrin was the only analyzed constituent which exceeded a RBC. The concentrations in eight samples collected from the Golf Course Area and Open Grassy Areas exceeded the RBC for dieldrin of 360 μ g/kg: S(3.5)V (0-2"), S(3.5)V (8-12"), J(3.5)V (0-2"), B(3.5)V (0-2"), B(3.5)V (0-2") Duplicate, B(3.5)V (0-4"), B(3.5)V (4-8"), A(2.7)V (0-2"). No concentration from a sample collected in the Warehouse Areas exceeded a RBC.

The vertical profile of the concentrations varied between areas and is described below:

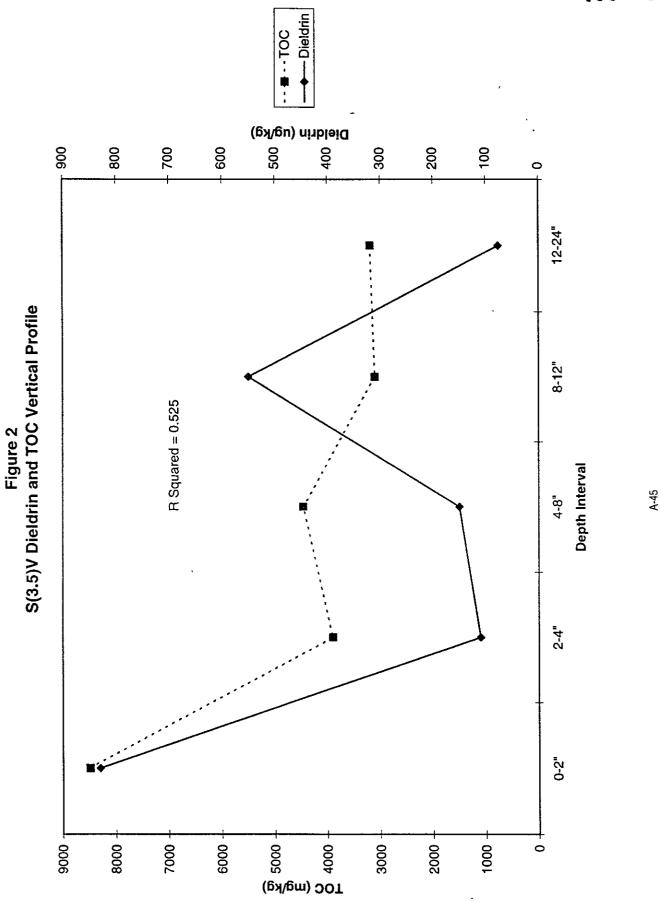
Golf Course Area - The concentrations of the dieldrin, DDT, DDE, and DDD show an overall decrease below the 0-2" sample interval. However, dieldrin, DDT, and DDD are consistently detected throughout the 14" and 21" inch sample depths.

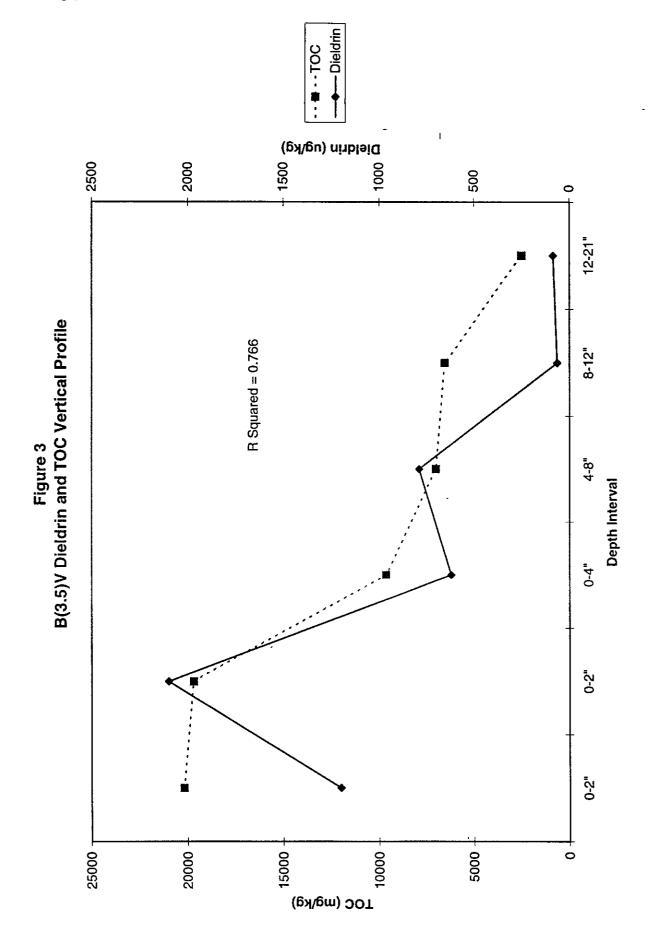
The vertical profile of the dieldrin, DDT, DDE, and DDD concentrations for S(3.5) V is shown in Figure 1 and a dieldrin and TOC vertical profile for S(3.5) V is shown in Figure 2. Dieldrin concentrations in the 0-2" and 8-12" sample intervals exceeded the RBC for dieldrin. Dieldrin concentrations show an initial decrease in S(3.5)V below the 0-2" sample interval. However, a possibly anomalous concentration of 550 μ g/kg exists in the 8-12" interval. This concentration is located beneath a concentration of 150 μ g/kg in the 4-8" interval and above a concentration of 76 μ g/kg in the 12-24" interval. This increased value at the 8-12" interval can possibly be attributed to sample cross-contamination with the upper 0-2" sample interval resulting from the use of a hand auger in the relatively stiff clay

Dieldrin concentrations in B(3.5)V decreased below the 0-2" sample interval. However, the concentrations in the samples from the 0-4" and 4-8" sample intervals remained above the RBC for dieldrin. Sample concentrations from the 8-12" and 12-21" intervals were detected but decreased below the RBC. A Dieldrin and TOC Vertical Profile for B(3.5)V is shown in Figure 3.

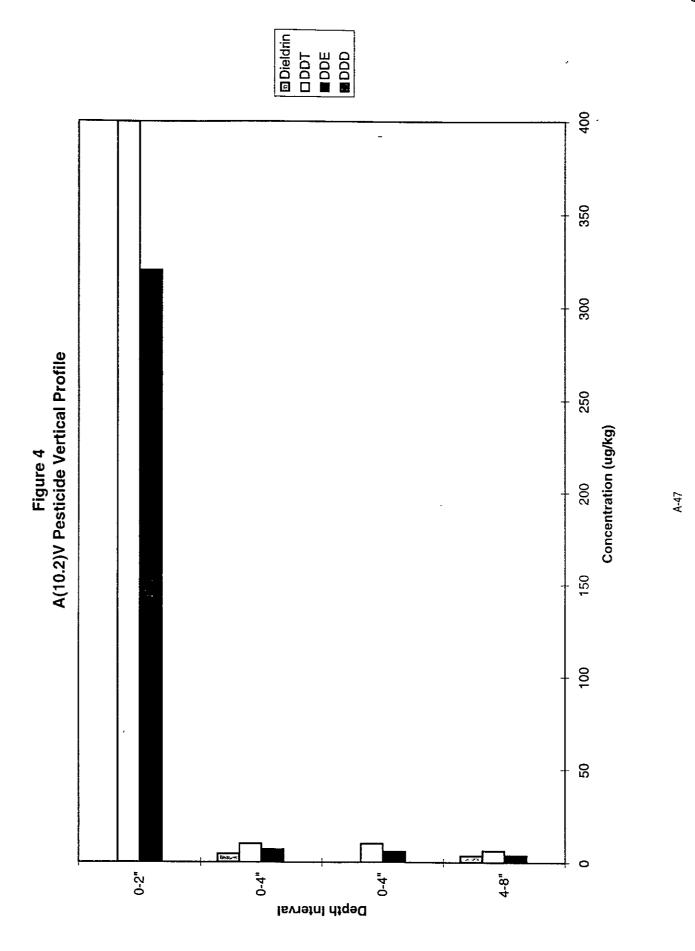
Based on the sample results from B(3.5)V and S(3.5)V, the dieldrin concentrations in the Golf Course Area may exist at levels exceeding the RBC to a depth of 8-12". However, due to the sampling method, cross-contamination may have existed between the upper root zone and the lower zones.

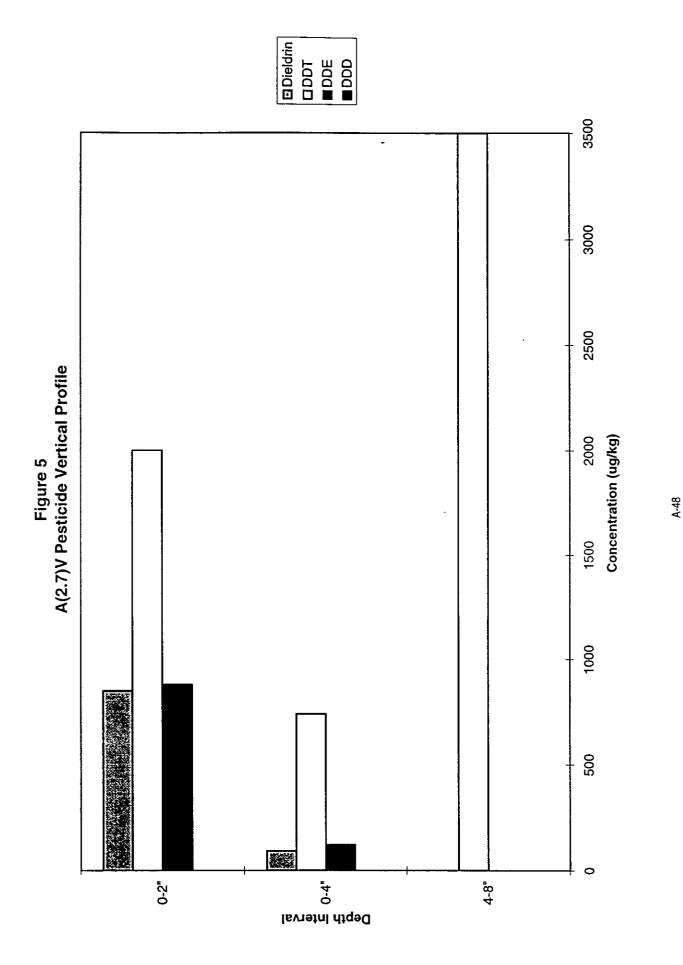

<u>Warehouse Areas</u> - The concentrations of dieldrin, DDT, and DDE decreased significantly below the 0-2" sample interval. The vertical profile of the dieldrin, DDT, DDE, and DDD concentrations for A(10.2) V is shown in Figure 4. The aforementioned pesticides were detected throughout the sample intervals to a depth of 4-8". However, the highest concentrations were limited to the 0-2" sample interval which corresponded with high TOC concentrations (46,200 mg/kg and 31,400 mg/kg). No sample concentrations exceeded a RBC in the Warehouse Areas.

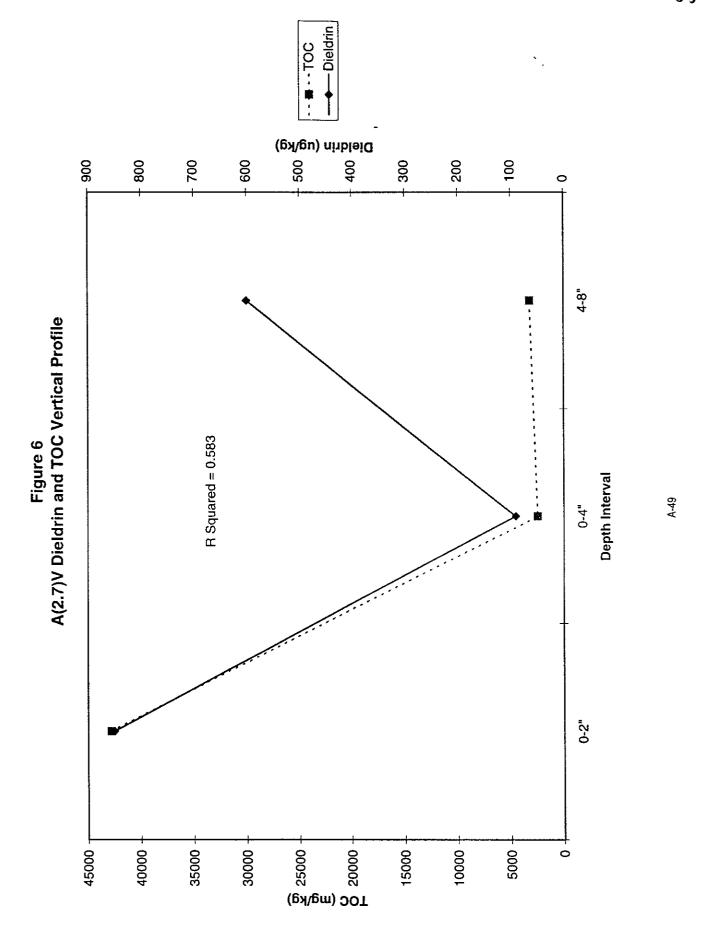

Open Grassy Areas - As observed in the Warehouse Areas, the detected concentrations of dieldrin, DDT, and DDE decreased significantly below the 0-2" sample interval which contained significantly higher TOC concentrations (42,800 mg/kg and 22,600 mg/kg). The vertical profile of the dieldrin, DDT, DDE, and DDD concentrations for A(2.7) V is shown in Figure 5 and a dieldrin and TOC vertical profile for A(2.7)V and J(3.5)V are shown in Figures 6 and 7, respectively. One anomalous DDT concentration of 3,500 μ g/kg was observed in the sample from A(2.7)V 4-8". This concentration was located below the 2-4" interval DDT concentration of 740 μ g/kg. Two dieldrin concentrations of 850 μ g/kg and 980 μ g/kg exceeded the RBC for dieldrin of 360 μ g/kg but were limited to the 0-2" sample interval.

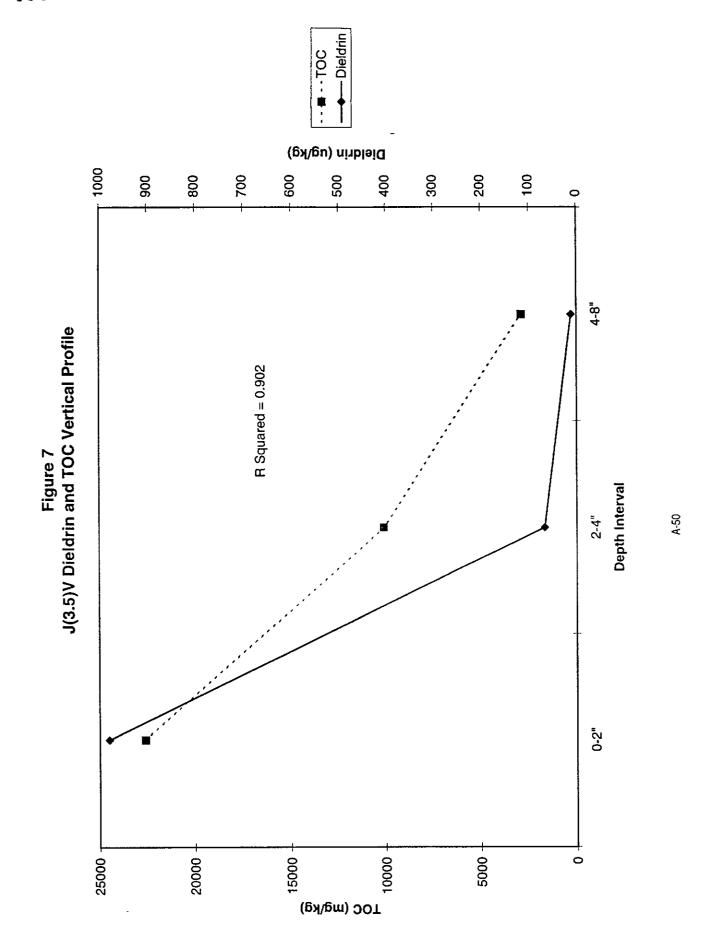

Conclusions

Dieldrin, DDT, DDE, and DDD were detected in soil samples collected during the investigation. In general, the higher dieldrin, DDT, DDE, DDD concentrations were limited to the 0-2" sample intervals corresponding to the highly organic root zone. As shown in Table 1, many of the aforementioned pesticides were detected at the lowest depths of the investigation. However, the concentrations of each pesticide decrease significantly below the 0-2" sample interval. No DDT, DDE, or DDD concentration was detected above its respective RBC. No dieldrin concentration was detected above its RBC in samples collected in the Warehouse Areas. Dieldrin concentrations were detected above the RBC in samples collected from the 0-2" interval of the Open Grassy Areas. Samples collected from the Golf Course Area suggest that the dieldrin concentration in soil in the Golf Course Area may exceed the RBC for dieldrin to a depth of 8-12". However, this conclusion may be influenced by possible cross-contamination resulting from the type of investigation method (hand augering) and the consistency of the soil material (stiff clay).


			Pe	Ta Pesticide Vertical Profile Sampling Defense Depot Memphis Tennessee	al Prof Memph	ile Samp is Tenne	ling ssee			
						TOC	Dieldrin	4,4' - DDT	4,4' - DDE	4,4' - DDD
Area	Location Depth	Depth Interval	Sample ID	% Moisture	$^{ m pH}$	те⁄ке	ug/kg	ug/kg	ug/kg	ug/kg
	EPA Region	EPA Region III RBC (Industrial)	strial)					17000	17000	24000
Golf Course	S(3.5)V	0-2"	S35V1	15	68		4	350 J	089	140 J
			S35V2	17	7.0		110	110	120	13 J
			S35V3	34	68			93	110	17 J
			S35V4	18	68		**************************************	220	480	67 J
		12-14"	S35V5	19	7.3	3190	9/	380	120	61 U
	B(3.5)V		B35V1	24	6.0	20200				
		0-2"	B35V1D	23	5.9	19700	128 52 2100 E			
		0-4"	B35V2	18	6.0	9650	P/4			
			B35V3	18	5.9	7010	**************************************			
			B35V4	19	52					
			B35V5	19	5.0	2500	85			
Warehouse	A(10.2)V	0-2"	A102V1	20	6.5	46200	820 U	400 J	320 J	820 U
			A102V2	91	6.7	3230	20 U	10 J	5.9 J	20 U
		0-4"	A102V2D	16	69	2020	4.6 J	10 J	711	16 U
			A102V3	18	6.8	1720	3.7 J	6.4 J	3.9 J	· 16 U
		8-12"	A102V4				NA	NA	NA	NA
		12-24"	A102V5				NA	NA	NA	NA
	A(15.6)V	0-2"	A156V1	23	6.5	31400	240			
		0-4"	A156V2	21	68	7630	20			,
		4-8"	A156V3	19	69	2570	3.1 J			
			A156V4				NA			
		12-23.5"	A156V5				NA			
Open Grassy	A(2.7)V	0-2"	A27V1	23	5.7	42800		2000	880	430 U
			A27V2	18	6.0	2470	91 J	740	120 J	160 U
			A27V3	18	5.9	3210	O 009	3500	009 O	600 U
			A27V4				NA	ΑΝ	Y'N	NA
		12-23"	A27V5				NA	NA	NA	NA
	J(3.5)V		J35V1	27	19	22600	MIN'S			
		2-4"	J35V2	15	62	1	29			
			J35V3	17	6.5	2880	11			
			J35V4				NA			
		12-24"	J35V5				NA			
Notes: NA = Not anal	lyzed due to	Notes: NA = Not analyzed due to low concentrations in samples at shallower depths	ns in samples at	shallower dep	sths					
KBC = Kisk-Based Concentration Shaded values exceeded the RBC.	ased Concenexced	rration RBC,								







A-46

CH2MHIL!

A-51

MAP SCALE

Major Project Staff for Memphis Depot Main Installation RI Report

The following CH2M HILL staff, in alphabetical order, had significant, specific input into the preparation or review of this report:

Staff Member	Title	Office Location
Sharon Belser	Project Engineer	SAN
Rick Dobbins '	Project Chemist	GNV
David Dunagan	Editor	ATL
Elizabeth Garland	Risk Assessor	GNV
Ed Leach	Sr. Risk Assessor	SEA
Dan Marion	Hydrogeologist	ATL
John Martin	Ecologist	GNV
Ron McComb	Hydrogeologist	ORO
Cherie Montague	CAD/Graphics	RDD
Vijaya Mylavarapu	Sr. Risk Assessor	GNV
Vicky Potter	Editor	ATL
Jimmy Scott	Project Engineer	MGM
Leslie Shannon	Project Manager	MGM
Ed Svastits	Sr. Chemist	GNV
Greg Underberg	Program Manager	ORO

THIS PAGE INTENTIONALLY LEFT BLANK.

TENNESSEE DEPARTMENT OF HEALTH AND ENVIRONMENT Bureau of Environment Room 1101, State Office Building 170 North Mid America Mail Memphis, Tennesee 38103

October 16, 1985

Corlyn J. Troyer, Colonel
United States Air Force
Commander, Defense Logistics Agency
Defense Depot Memphis
2163 Airways Boulevard
Memphis, Tennessee 38114

Dear Colonel Troyer:

This letter shall document the meeting held on October 1, 1985 at the Defense Logistics Agency - Memphis. The subject of that meeting was to discuss the dioxin contaminated areas on the Defense Logistics Agency - Memphis property as referenced in my September 26, 1985 letter along with a review of the proposed remedial action plan for the contaminated sites. Those in attendance were:

Jack Heller - US Army Environmental Hygiene Agency James E. Fleming - Tennessee Department of Health and Environment Paul Patterson - Tennessee Department of Health and Environent Ulysses Truitt - Defense Logistics Agency Lt. Colonel John Krosnes - Defense Logistics Agency Curt Gionther - Defense Logistics Agency Terri Kirby - Defense Logistics Agency Rick Bowlus - US Army Environmental Hygiene Agency Doug Lamothe - Defense Logistics Agency Cheryl Poirier- Memphis Shelby County Health -Department Bob Cibulskis - US Environmental Protection Agency -Jane Rogers - US Environmental Protection Agency -Region IV

The remedial action as planned for the areas exhibiting levels of 2,3,7,8 tetrachlorodibenzo-dioxin (TCDD) below the EPA action level (5-6 ppb) consisted of covering the areas with 6-8" of soil and stabilization. This proposal was discussed in detail and evaluated based upon the levels of TCDD present and the potential for harm to the public health and environment. Basically the group agreed that the plan was more than sufficient to eliminate any potential problems from the site. A-55

Corlyn J. Troyer, Colonel Defense Depot Memphis Page two

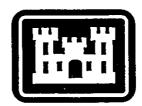
Representatives from the Defense Logistics Agency - Memphis, however, did request consideration for approval of an alternate Lt. Colonel John Krosnes and Major Doug Lamothe remedial plan. placement of 6-8" of compacted gravel in those suggested the areas which exhibited levels below the EPA action level. action would be more suitable in the event the Defense Logistics Agency wishes to concrete the area for future storage capacity. In consideration of the pathways for exposure (dermal and/or inhalation) their request was approved with the following conditions:

- 1. The graveled area must be placed "off limits" to any and all vehicular traffic.
- The area must be indicated as a "non-use" area on the facility development plat. i to the same
- 3. Future plans for utilization of the area must be
- 4. Prior to placement of gravel, the entire area should be sprayed with water to prevent dusting.

Therefore, please accept this letter as written approval to implement the previously referenced remedial actions. If you have any questions concerning this letter or if I may be of further assistance, please do not hesitate to contact me at (901) 529-6695.

Sincerely.

Paul Patterson


Division of Solid Waste Management

DRAFT FINAL

Basis for NFA Recommendations

The Memphis D∋pot Memphis, Tennessee

PREPARED FOR

U.S. Army Engineering and Suppo.t Center

Huntsville, Alabama

Contract No. DACA87-94-D-0009 Delivery Order 0011

PREPARED BY CH2M HILL

147543 RD 01

SEPTEMBER 1999

TECHNICAL MEMORANDUM

CH2MHILL

PREPARED FOR:

Memphis Depot Caretaker Division

U.S. Environmer tal Protection Agency, Region IV

Tennessee Department of Environment and Conservation

U.S. Army Eng neering and Support Center

PREPARED BY:

CH2M HILL

DATE:

September 14 1999

SUBJECT:

Main Installa ion–Sites Proposed for NFA as of September 1998

Executive Summary

The Memphis Depot was a major field installation of the Defense Logistics Agency (DLA), U.S. Department of Defense (DOD). Its primary mission was to provide material support to all U.S. military services and some civil agencies. The Memphis Depot was engaged in a variety of operations dealing with hazardous substance transportation, shipment, and disposal.

As a result of past practices and environmental contamination, the Memphis Depot was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on October 14, 1992 (199 Federal Register 47180). This action followed the issuance of a Resource Conservation and Recovery Act (RCRA) Part B Permit (No. TN4 210 020 570) to the facility on September 28, 1990. As an enforcement activity of the RCRA permit, a RCRA Facility Assessment (RFA) was conducted in January 1990 by the U.S. Environmental Protection Agency (EPA) (A. T. Kearney, Subcontractor). Other activities conducted under regulatory jurisdiction include the following:

Activity	Company	Dates
PCP Dip Vat Remediation Remedial Investigation	O. H. Materials Law Environmental	February 1996 August 1990
Feasibility Study	Law Environmental	September 1990
Groundwater Removal	Engineering Science, Inc.	July 1994
Engineering Report		
Groundwater Removal	Engineering Science, Inc.	August 1993
Engineering Assessment Screening Sites Investigation Remedial Investigation/Feasibility Study	CH2M HILL CH2M HILL	March 1998 May 1998-present

During the above-mentioned investigations and enforcement activities, individual sites that pose no threat to human health and the environment were identified by operable unit (OU). This technical memorandum (TM) describes the sites identified in OUs-2, 3, and 4 within the Main Installation of the Memphis Depot that pose no environmental threats based on the investigations conducted as of September 1998. Table ES-1 presents a summary of the sites proposed for no further action (NFA). This decision is the only remedial action identified for the sites.

Additional TMs documenting other sites that qualified for NFA after September 1998 will be provided in the future. The additional TMs will discuss the screening sites that were sampled previously during the Screening Sites Investigation, but for which additional sampling was required to further characterize the site and to provide sufficient data to support the proposed NFA status for the site. Furthermore, upon completion of the Remedial Investigation/Feasibility Study (RI/FS), historical RI sites probably could be proposed for NFA.

TABLE ES-1
Sites Recommended for No Further Action
Memphis Depot Main Installation NFA

Site No.	Description	Document Supporting NFA Recommendation
30	Paint Spray Booths	1
40	Safety Kleen Locations	1
41	Satellite Drum Accumulation Areas	1
44	Former WWTU Area	1
45	Former Contaminated Soil Staging Area	1, 2
47	Former Contaminated Soil Drum Staging Area	1, 2
49	Expired Medical Supplies Storage Area	1
53	X-25 Flammable Solvents Storage Area	1
69	Flamethrower Liquid Fuel	3
74	Flammables and Toxics	3
76	Unknown Wastes Near Building 690	3
81	Building 765, Fuel Oil AST	3

Notes:

Supporting documents are as follows.

- 1-RCRA Facility Assessment conducted by A. T. Kearney (January 1990)
- 2-Dip Vat Remediation Report by O. H. Materials (February 1986)
- 3-Screening Sites Letter Report, CH2M HILL (March 1998)

On the basis of the information provided in this report, it was determined that the proposed NFA remedy for the 12 identified sites is protective of human health and the environment and that no unacceptable short-term risks are caused. Therefore, the selected remedial alternative for the sites is intended to be NFA. This alternative will consist of leaving the sites as they are. No additional sampling or monitoring will be necessary (under CERCLA), because the conditions at the sites are protective of human health and the environment. This remedial alternative will have no remedial action or assessment costs associated with it.

Contents

Execu	itive Su	ımmary	11
10	T (J	11
1.0	Intro	ductionFacility Description and History	
	1.1	History of CERCLA Activities at the Memphis Depot	
2.0	OU-2	2 Proposed NFA Soil Sites	2-1
	2.1	NFA Summary for Site 30-Paint Spray Booths	2-1
	2.2	NFA Summary for Site 40-Safety-Kleen Locations	2-3
	2.3	NFA Summary for Site 41-Satellite Drum Accumulation Areas	2-3
	24	NFA Summary for Site 47-Contaminated Soil Drum Storage Area	
3.0	OU-	3 Proposed NFA Soil Sites	3-1
	3.1	NFA Summary for Site 30-Paint Spray Booths	3-1
	3.2	NFA Summary for Site 40-Safety-Kleen Locations	3-1
	3.3	NFA Summary for Site 41-Satellite Drum Accumulation Areas	
	3.4	NFA Summary for Site 49-Expired Medical Supplies Storage Area	3-4
	3.5	NFA Summary for Site 69-Flamethrower Liquid Fuel	
	3.6	NFA Summary for Site 76–Unknown Wastes Near Building 690	3-7
4.0	OU-	4 Proposed NFA Soil Sites	4-1
	4.1	NFA Summary for Site 41-Satellite Drum Accumulation Areas	
	4.2	NFA Summary for Site 44-Former Wastewater Treatment Unit	4-1
	4.3	NFA Summary for Site 45-Contaminated Soil Staging Area	4-4
	4.4	NFA Summary for Site 53-Flammable Solvents Storage Area	
	4.5	NFA Summary for Site 74-Flammables and Toxics	4-8
	4.6	NFA Summary for Site 81–Building 765, Fuel Oil AST	4-8
5.0	Refe	erences	5-1
Tab	les		
ES-1	Sites	s Recommended for No Further Action	iii
1-1	Prop	posed NFA Sites Identified during the 1990 RFA	1-7
1-2	Prop	posed NFA Sites Identified during the Initial Screening Sites Investigation	on,
	1996	through 1997	1-8

Figures

1-1	Facility Location Map	1-3
1-2	Site Locations Map (by OU)	1-9
2-1	Site 30-Paint Spray Booths	2-2
2-2	Site 40-Safety-Kleen Locations	2-4
2-3	Site 41–Satellite Drum Accumulation Area	
2-4	Site 47–Former Contaminated Soil Drum Staging Area	
3-1	Site 30-Paint Spray Booths	3-2
3-2	Site 40-Safety-Kleen Locations	3-3
3-3	Site 41–Satellite Drum Accumulation Area	
3-4	Site 49-Expired Medical Supplies Storage Area	
3-5	Site 69-Flamethrower Liquid Fuel Application	3-8
3-6	Site 76–West Ending Building 319	3-9
4-1	Site 41–Satellite Drum Accumulation Area	4-2
4-2	Site 44-Former WWTU Area	
4-3	Site 45-Former Contaminated Soil Staging Area	
4-4	Site 53–X-25 Flammable Solvents Storage Area	4-7
4-5	Site 74–Unknown Wastes near Building 690	
4-6	Site 81–Building 765, Fuel Oil AST	

Acronyms

AOC Area of concern

AST Aboveground storage tank BCT BRAC Cleanup Team

BRAC Base Realignment and Closure

CERCLA Comprehensive Environmental Response, Compensation,

and Liability Act

CFR Code of Federal Regulations
DLA Defense Logistics Agency
DOD Department of Defense

DRMO Defense Reutilization and Marketing Organization

EPA U.S. Environmental Protection Agency

FFA Federal Facilities Agreement
FOSL Finding of Suitability to Lease
FOST Finding of Suitability to Transfer

FR Federal Register

ft Feet

IRP Installation Restoration Program

NCP National Oil and Hazardous Pollution Contingency Plan

NFA No Further Action
NPL National Priorities List

OU Operable unit

PAH Polycyclic aromatic hydrocarbon

PCP Pentachlorophenol

POL Petroleum, oil, and lubricants
POTW Publicly owned treatment works
PRE Preliminary risk evaluation

RCRA Resource Conservation and Recovery Act

RFA RCRA Facility Assessment RFI RCRA Facility Investigation

RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

SWMU Solid waste management unit

TDEC Tennessee Department of Environment and Conservation

TM Technical memorandum

USAESCH U.S. Army Engineering and Support Center

WWTU Wastewater treatment unit

1.0 Introduction

This technical memorandum (TM) has been prepared to propose a list of sites in the Main Installation of the Memphis Depot that do not present a significant risk to human health or the environment. This document is not intended to provide a formal Record of Decision (ROD) for these sites, although it does provide most of the necessary information for developing a ROD. The information and recommendations documented herein formalize the intention of the Memphis Depot Base Realignment and Closure (BRAC) Cleanup Team (BCT) that these sites will not require further action under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The sites will be formally proposed for no further action (NFA) status under CERCLA during the proposed planning and ROD processes, which include public review and comment, at a later date.

The proposed NFA recommendation is made for these sites because the sites are already in a protective state, meaning that they do not pose a current or potential threat to human health or the environment. Preliminary assessments and site investigations were conducted at some of the sites by the U.S. Environmental Protection Agency (EPA) and Law Environmental in 1990 and by CH2M HILL from 1996 through 1997; the investigations concluded that no remedial actions were necessary at the sites herein proposed for NFA. It is intended that other TMs will be provided for additional sites intended for NFA as additional data and the results of risk-based analyses become available.

In cases where environmental sampling was performed at proposed NFA sites, the NFA recommendations in this document are based on the results of soil, surface water, and sediment analyses. The NFA recommendation does not include the potential for groundwater contamination below the NFA-candidate sites, either from the site itself or from upgradient sources of groundwater contamination. Groundwater contamination from the site itself is unlikely, considering the lack of evidence of a contaminant release to the environment from the proposed NFA sites. Groundwater contamination from upgradient sources is being evaluated under the site-wide groundwater monitoring program currently ongoing in Operable Unit (OU)-4 (Operable Unit 4 Field Sampling Plan, U.S. Army Engineering and Support Center [USAESCH], September 1995) and the CH2M HILL Remedial Investigation/Feasibility Study (RI/F). NFA recommendations within this document are based on an evaluation of the surface soil, surface water, and sediment environmental pathways. Groundwater evaluation is ongoing and will be reported in the Main Installation RI Report. The ongoing evaluation of subsurface soil data has not identified potential subsurface sources to groundwater contamination.

1.1 Facility Description and History

This subsection describes the location and characteristics of the Memphis Depot facility and the history of CERCLA activities at the Memphis Depot.

1.1.1 Memphis Depot Facility Description and Location

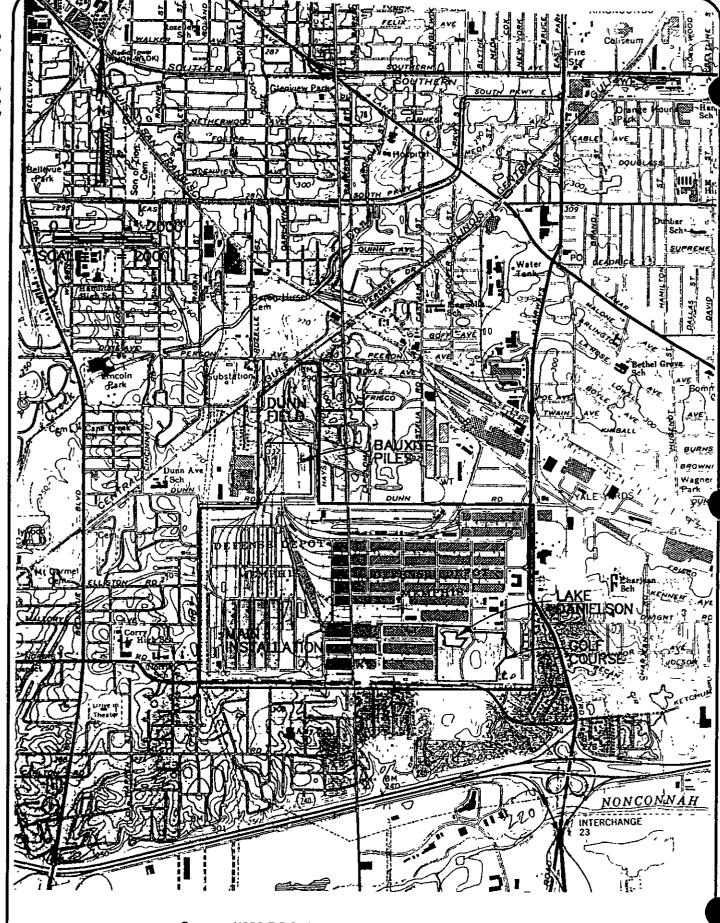
488

75

The Memphis Depot covers 642 acres of land in Memphis, Tennessee (Shelby County), in the extreme southwestern portion of the state. The installation contains approximately 118 buildings, 26 miles of railroad track, and 28 miles of paved streets, the majority of which lie within the Main Installation. Approximately 5.5 million square feet (ft) are covered storage space and approximately 6.0 million square ft are open storage space. The land and buildings are owned by the U.S. Army and were leased by the Defense Logistics Agency (DLA).

The DLA, an agency of the U.S. Department of Defense (DOD), provides logistics support to military services. The Memphis Depot is a major field installation of the DLA. The former duties of the Memphis Depot were to receive, warehouse, and distribute supplies common to all U.S. military services and some civil agencies located primarily in the southeastern United States, Puerto Rico, and Panama. Supplies for storage and distribution included food, clothing, electronic equipment, petroleum products, construction materials, and industrial, medical, and general supplies. Figure 1-1 presents the facility location map.

The Memphis Depot is located approximately 5 miles east of the Mississippi River and just northeast of the Interstate 240–Interstate 55 junction. The Memphis Depot is in the south-central section of Memphis, approximately 4 miles southeast of the Central Business District and 1 mile northwest of Memphis International Airport. Airways Boulevard borders the Memphis Depot on the east and provides primary access to the installation. Dunn Avenue, Ball Road, and Perry Road serve as the northern, southern, and western boundaries, respectively.


The Memphis Depot is divided into four OUs for CERCLA evaluation purposes. Dunn Field is designated as OU-1 and the Main Installation consists of OUs-2, 3, and 4 Again, this TM only focuses on the proposed NFA sites in OUs-2, 3, and 4 (the Main Installation) as of September 1998. Sites within OU-1 will be evaluated for NFA after RIs in Dunn Field are complete.

1.1.2 Facility Characteristics

1.1.2.1 Physiography and Climatology

The Memphis Depot and eastern Memphis are situated within the Gulf Coastal Plain Subdivision of the Atlantic Coastal Plain Physiographic Province. This area is characterized by dissected loess-covered uplands and generally lacks distinct features. The erosion-controlled land surface appears nearly level with local slopes, ranging from level to approximately 10 percent.

The Main Installation consists primarily of highly developed, urban land that has been graded, paved, and built on, with the major exception of the facility's golf course. Undeveloped areas are used for open storage of equipment.

Source:: USGS 7.5 Series Topographic Quadrangle Maps - South West Memphis Tenn. - Ark. and Southeast Memphis, Tenn,.

FIGURE 1-1
FACILITY LOCATION MAP
MEMPHIS DEPOT MAIN INSTALLATION NFA

2717_99 (boarder/title)

· CH2MHILL ·

The Memphis Depot is located in the West Tennessee Climatic Division, with a typical climate of humid, warm summers and cold winters. The annual mean temperature is 62 degrees Fahrenheit; the daily mean temperature ranges from approximately 40 degrees in January to 82 degrees Fahrenheit in July. The area receives an average of 50 inches of precipitation a year, with the heaviest periods during the winter and early spring; thunderstorms are typical during late spring and early summer. The net annual precipitation (rainfall-evaporation) estimated for the Memphis area is 9 inches. Prevailing winds are from the south at less than 11 miles per hour.

1.1.2.2 Soils and Stratigraphy

The predominant surface soil association found in the Memphis Depot site before its development was the Memphis-Granda-Loring Association, characterized by yellow-brown to dark brown color. The association is generally sloping, well-drained to moderately well-drained, and has silt deposits varying in thickness from 6 to 8 inches. Construction of the facility resulted in an altering of the surface soil to a type classified as graded land with silty materials. Exceptions include the northeastern corner of Dunn Field and the southeastern corner of the golf course.

The facility is located in the north-central part of the Mississippi embayment, which is a broad trough or geosyncline. The axis of the trough roughly parallels the Mississippi River and plunges to the south. The sediments in the study area are primarily Tertiary and Quaternary unconsolidated sands, silts, and clays, with minor amounts of lignite. The uppermost geologic unit is loess. Loess is an eolian deposit consisting of silt, silty clay, sand, or a mixture of the materials The deposits at the Memphis Depot range from 6 to 40 ft.

Quaternary and possibly Tertiary-age fluvial deposits underlie the loess throughout the facility beneath the upland areas and the valley slopes. The deposits consist primarily of sand and gravel, with lenses of clay. The fluvial deposits range in thickness from approximately 45 ft to 98 ft at the Memphis Depot.

The Jackson formation and the upper part of the Claiborne Group lie beneath the fluvial deposits. These units consist primarily of clay, silt, and fine sands, with minor lenses of lignite. The clays are primarily montmorillonitic. The Jackson formation and the upper Claiborne Group form a regionally significant confining unit for the underlying Memphis Sand, which is an important drinking water aquifer in the region.

1.1.2.3 Groundwater

The facility is underlain by a layer of loess that varies in thickness. Terrace deposits underlie the loess. The lower, saturated portion of the terrace deposits is referred to as the fluvial aquifer, which is the uppermost aquifer beneath the installation. Perched groundwater also exists in the terrace deposits above small clay lenses at elevations above the fluvial aquifer. However, these perched water zones are temporal and are not considered part of the fluvial aquifer. The fluvial aquifer is not used as a drinking water source within the City of Memphis. The Memphis Sand Aquifer underlies the fluvial aquifer and is the primary source of drinking water for the City of Memphis. Additional discussions of groundwater flow and the extent of contamination are provided in the *Groundwater Monitoring Report* (USAESCH, March 1998).

1.1.2.4 Surface Water

Most of the facility is level with or above the surrounding terrain, and therefore, receives little or no runoff from adjacent properties. Stormwater drainage from Dunn Field is mainly through overland flow to the north and west or through a concrete-lined storm sewer (which also conveys stormwater from an adjacent, upgradient residential neighborhood) that directs flow northward to Cane Creek, a tributary of the Nonconnah Creek. The Main Installation's drainage is through overland flow into a storm drainage system. The system directs flow into several outfalls to one perennial and two intermittent streams that drain to Nonconnah Creek (0.75 mile south). Nonconnah Creek, in turn, discharges into McKellar Lake (approximately 4 miles from the creek), which empties directly into the Mississippi River.

In addition, there are two permanent surface waters at the Memphis Depot–Lake Danielson and the Golf Course Pond. Lake Danielson is a 4-acre lake that receives a significant amount of stormwater runoff. The lake overflows intermittently through a concrete-lined channel at the dam and, as with the overflow from the Golf Course Pond, is directed through an unnamed tributary to Nonconnah Creek. Conversations with facility personnel indicate that overflows occur when net precipitation is above normal.

No surface water intakes are located within 15 miles downstream of the facility; however, the streams and lake are used for recreational purposes. The facility is not located in the 100-year floodplain and no portions are subject to flooding.

1.2 History of CERCLA Activities at the Memphis Depot

As a result of past practices and environmental contamination, the Memphis Depot was placed on the CERCLA National Priorities List (NPL) on October 14, 1992 (199 Federal Register [FR] 47180). Moreover, CERCLA NPL sites must undergo necessary corrective action processes to protect human health and the environment. The Memphis Depot has entered into a Federal Facilities Agreement (FFA) under CERCLA that provides the basis for implementing corrective action processes at the Memphis Depot. As established in the National Oil and Hazardous Pollution Contingency Plan (NCP) (40 Code of Federal Regulations [CFR] Part 300.120), the DOD is the lead agency at NPL sites involving federal facilities. Accordingly, EPA and the Tennessee Department of Environment and Conservation (TDEC) have been identified as support agencies in this process. This subsection further describes the designation of the Memphis Depot as an NPL site, the FFA that governs corrective actions at The Memphis Depot, and the NFA site classification process.

1.2.1 RCRA Part B Permit and Designation as an NPL Site

In 1989 and 1990, as a part of the DOD Installation Restoration Program (IRP), The Memphis Depot initiated an RI/FS of several known and suspected sources of contamination. This study was performed by Law Environmental through a contract with the USAESCH. The final work plan for this effort was provided to EPA in April 1989. The study was performed in two phases, referred to as Phase I (primarily activities in 1989) and Phase II (primarily activities in 1990). The final *Remedial Investigation Report* was provided to EPA in August 1990, and the final *Feasibility Study Report* was submitted in September 1990. The Memphis

Depot was issued a Resource Conservation and Recovery Act (RCRA) Part B permit (No. TN4 210 020 5, 0) by EPA, Region IV, and TDEC on September 28, 1990. Subsequently, EPA added the Meniphis Depot to the NPL by publication in the *Federal Register*, 199 FR 47180, on October 14, 1992.

1.2.2 Federal Facilities Agreement

The Memphis Depot entered into an FFA among the DLA of the DOD, EPA, and TDEC on March 6, 1995. The agreement establishes a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Memphis Depot in accordance with existing regulations and with achieving RCRA/CERCLA integration. Because of the Memphis Depot's status as an NPL site, it was agreed that the investigation of all applicable sites (those requiring RI) would proceed under the CERCLA process for remediation (which includes RI, FS, proposed plan and ROD, remedial design, and remedial action) and that this process would meet RCRA requirements.

For NFA sites—those sites in which no action is required to protect human health and the environment from past activities—the FFA integrates both CERCLA and RCRA and requires that adequate written documentation be submitted by DLA to support NFA decisions. Sections 2, 3, and 4 of this TN present this information for the OUs-2, 3, and 4 proposed NFA sites, respectively.

1.2.3 Base Realignment and Closure

The decision to close the Memishis Depot was made as part of the Base Realignment and Closure Act of 1995 (BRAC 95, Subsequently referred to as BRAC). The facility was closed as of September 17, 1997. As part of the BRAC process, the equipment and supplies, including the material stockpiles, have been removed from the Memphis Depot.

The facility was divided into 35 p arcels based on the environmental condition of the property. The properties defined so BRAC parcels are being transferred from government control to other private- and public sector uses. Data and information gathered from the CERCLA-governed screening sites and RIs have been organized and presented by BRAC parcel to support parcel leasing. The facility must complete the investigations and cleanup under CERCLA and other environmental programs before the facilities can be transferred to new owners. Early risk-based evaluation of BRAC parcel and CERCLA site environmental data is needed to establish a Finding of Suitability to Lease (FOSL) or Finding of Suitability to Transfer (FOST), which permits the lease or transfer of parcels and buildings. The decision for NFA, when final, means that no further action under CERCLA is necessary for the identified sites. However, there may be other sites that require further action within a parcel or other compliance actions necessary to complete the BRAC process for a parcel.

1.2.4 Site Classification to NFA

Several reports document the sites when past waste disposal activities have occurred at the Memphis Depot. The RCRA Facility Assissment (RFA), which was performed by EPA in 1990, identified 49 solid waste management units (SWMUs) and 8 areas of concern (AOCs) at the Memphis Depot. The RFA was performed subsequent to the Memphis Depot's application for a RCRA Part B permit. Upon completion, the RFA specified the level of additional investigation necessary for each SWMU and AOC (for example, NFA, RCRA

Facility Investigation [RFI], and Preliminary RFI/Confirmatory Samplin;). Eight sites were identified in 1990 during the RFA that posed no threat to human health and the environment; subsequently, these sites were identified and recommended as NFA sites. The eight sites are listed in Table 1-1.

TABLE 1-1Proposed NFA Sites Identified During the 1990 RFA *Memphis Depot Main Installation NFA*

Site 30-Paint Spray Booths	Site 45-Former Contraninated Soil Staging Area
Site 40-Safety-Kleen Locations	Site 47-Former Con'aminated Soil Drum Area
Site 41-Satellite Drum Accumulation Areas	Site 49-Expired Me ical Supplies Storage Area
Site 44-Former WWTU Area	Site 53-X-25 Flam able Solvents Storage Area

In 1990, an RI conducted by Law Environmental, Inc., identifie 75 sites of potential contamination and some general storage sites. In 1995, CH2M ILL began planning for another RI to investigate the sites that were not investigated p eviously and to fill data gaps at sites previously investigated by Law Environmental. The sites with known releases were identified as RI sites and those sites where hazardous materia is may have been managed and a release had been suspected, but not confirmed, were classified as screening sites. The 1997 CH2M HILL investigations at screening sites resulted either in the site being elevated to RI status or being proposed for NFA status.

Soil, surface water, and sediment environmental sampling to support RI and screening site characterization was performed between December 5, 199, and January 23, 1997. Additional soil samples were taken with BRAC parcels from October 15 through October 19, 1996, to evaluate the environmental condition of the parcel; however, these data points are not associated with sites defined under CERCLA.

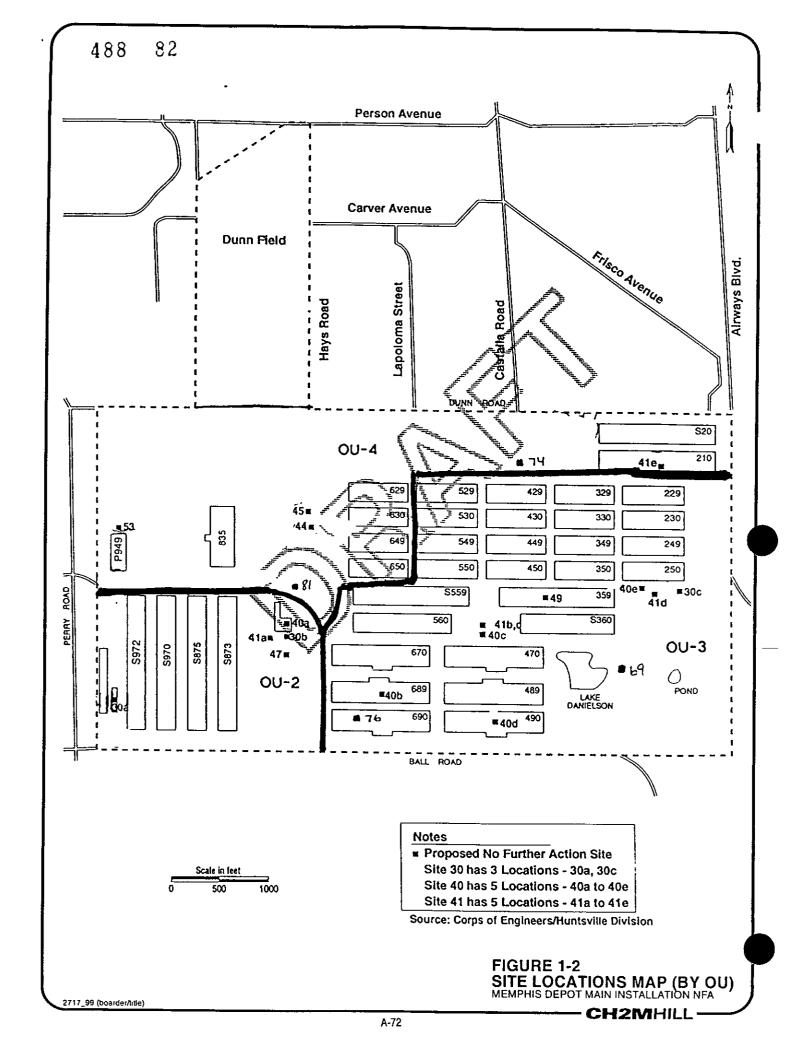

Summary reports were prepared to present the data and the rationale for further RI/FS activities, if needed (*Screening Sites Letter Reports*, CH2N HILL, March 1998; *Remedial Investigation Letter Reports*, CH2M HILL, May 1998; and *BRAC Parcel Summary Reports*, CH2M HILL, April, 1998). Data collected for both the ERCLA and BRAC programs were reviewed by the BCT during meetings in July, Augus and October 1997. A preliminary risk evaluation (PRE) also was performed using the data from the CH2M HILL field investigations to evaluate potential risks posed by contaminants that have been found in soil, surface water, and sediment within each BRAC parcel and CERCLA site. As a result of this data evaluation and preliminary risk assessment, four screening sites were identified and recommended as NFA sites, as shown in Table 1-2.

TABLE 1-2
Proposed NFA Sites Identified During the Screening Sites Investigation, 1996 through 1997
Memphis Depot Main Installation NFA

Site 74-Flammables and Toxics Storage	Site 69-Flamethrower Liquid Fuel
Site 81-Fuel Oil Building 765	Site 76-Unknown Wastes near Building 690

The following sections provide a description for each proposed NFA site by OU and discuss the rationale for designating the sites for NFA. In some cases, the proposed NFA site consists of a number of buildings that perform the same types of operations. As a result, the site is located in more than one OU. In such cases, the site will be discussed in all OUs that contain a building listed under that site.

The proposed NFA sites as of September 1998 are shown on Figure 1-2 by OU.

2 0 OU-2 PROPOSED NFA SOIL SITES

2.0 OU-2 Proposed NFA Soil Sites

OU-2 is located in the southwestern quadrant of the Main Installation at the Memphis Depot and consists of about 108 acres. It is bounded by G Street on the north, 6th Street on the east, Ball Road on the south (installation boundary), and Perry Road on the west (installation boundary). OU-2 is characterized as an industrial area where maintenance and repair activities have taken place (see Figure 1-2 for the location of OU-2).

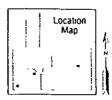
Sites in OU-2 proposed for NFA status as of September 1998 include Sites 30, 40, 41, and 47. These sites were designated as NFA sites during the 1990 RFA. The following subsections describe the sites in OU-2 that have been designated for NFA and provide supporting information.

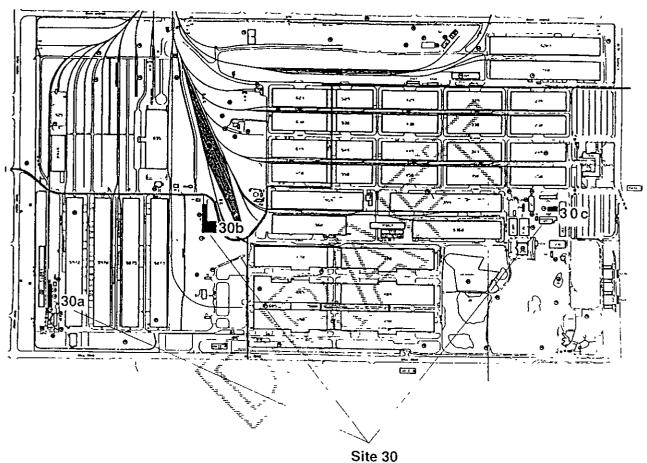
2.1 NFA Summary for Site 30-Paint Spray Booths

2.1.1 Site Name, Location, and Description

Site 30 consisted of three Paint Spray Booths located in Buildings 1086 (OU-2), 770 (OU-2), and 260 (OU-3) (see Figure 2-1 for the site locations). Emissions from the areas were controlled by filters located on the back or side walls of the booths, which range in size from 8 ft \times 10 ft to 24 ft \times 10 ft. Paint from spraying operations passed through the filters as a fan, located on the opposite side of the filter, and forced air into a vent system.

2.1.2 Site History and Enforcement Activities


A variety of paints have been used in the Paint Spray Booths, which have been used for an unknown period of time. Discarded filters are placed in dumpsters and disposed as nonhazardous waste. No evidence of release has been identified at the sites of the paint booths.


The site was evaluated during the RFA conducted in 1990, with the results indicating that the potential for release from all release pathways was low. During the RFA, there was no evidence of leaks or spills noted, and the site was designated for NFA. Additionally, the site has been designated for NFA in the FFA.

There are no analytical data associated with Site 30.

2.1.3 Summary of Site 30 Risks

Because of the pollution control equipment used at the site (filters) and the lack of hazardous or toxic materials released at the site, there appears to be no significant risk to human health or the environment from the site. Therefore, it is concluded that no remedial actions are necessary for the protection of human health or the environment.

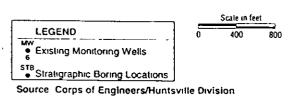


FIGURE 2-1 SITE 30, PAINT SPRAY BOOTHS MEMPHIS DEPOT MAIN INSTALLATION NFA

85

2.2 NFA Summary for Site 40-Safety Kleen Locations

2.2.1 Site Name, Location, and Description

Site 40 was comprised of nine locations where Safety-Kleen solvent parts cleaning stations were located. The units consist of steel holding tanks supported by steel legs, ranging in size from 20 to 40 gallons. The units were located in buildings and were self-contained. Five units were located in Building 770 (OU-2) and one unit was located in each of Buildings 689 (OU-3), 490 (OU-3), 253 (OU-3), and 469 (OU-3) (see Figure 2-2 for the site locations).

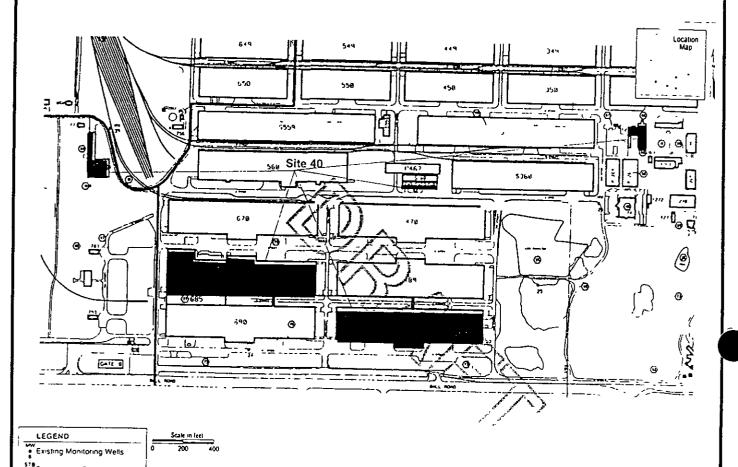
The Safety-Kleen units were used for carburetor and cold parts cleaning. New cleaning material contained 11.9 percent cresylic acids, 31.7 percent methylene chloride, and 81.3 percent ortho-di-chlorobenzene. Used material generally was contaminated with various oils and greases from the parts themselves. A vendor, Safety-Kleen, supplied the units, brought in the cleaning solutions, periodically returned to remove the used material, and provided new solution. Safety-Kleen handled the manifesting, transporting, and recycling of the material. Unusual material, by loss or gain of volume, color or odor change, or other physical change, was noted and investigated by Safety-Kleen.

2.2.2 Site History and Enforcement Activities

Safety-Kleen Corporation leased and maintained the units, which were used since 1985 in various locations within the Main Installation.

The site was evaluated during the RFA conducted in 1990, with the results indicating that the potential for release from all pathways was low. There was no history or evidence of uncontrolled leaks or spills, the units appeared to be in good condition, and the site was designated for NFA. Additionally, the FFA designates this site as an NFA site.

There are no analytical data available for Site 40.


2.2.3 Summary of Site 40 Risks

A minimal level of risk exists because hazardous materials were handled in these units These risks were controlled through the design and handling criteria regulated under RCRA. Because of the equipment design and procedural controls, there is no significant risk to human health or the environment.

2.3 NFA Summary for Site 41–Satellite Drum Accumulation Areas

2.3.1 Site Name, Location, and Description

Five satellite drum storage areas made up Site 41, the Satellite Drum Accumulation Areas. The areas had been used since 1985 to store drums of waste materials. The units varied in the number and size of drums they contained, but all of the units were located on concrete floors near Buildings 770 (OU-2), 210 (OU-4), 260 (OU-3), and 469 (OU-3) (see Figure 2-3 for site locations).

Source Corps of Engineers/Huntsville Division

FIGURE 2-2 SITE 40, SAFETY KLEEN LOCATIONS MEMPHIS DEPOT MAIN INSTALLATION NFA

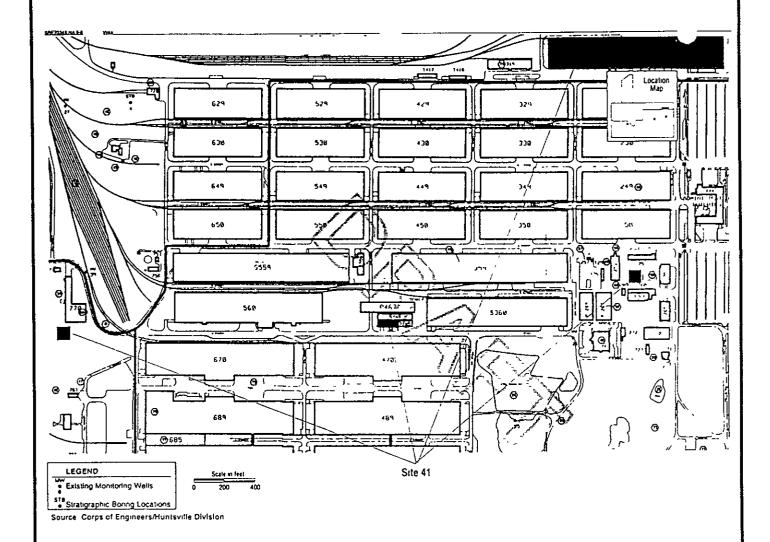


FIGURE 2-3
SITE 41, SATELLITE DRUM ACCUMULATION AREA
MEMPHIS DEPOT MAIN INSTALLATION NFA

The drums and areas were maintained in good condition and were regulated. All wastes collected in these areas were transported to the Defense Reutilization and Marketing Office (DRMO) before off-site disposal.

2.3.2 Site History and Enforcement Activities

The areas had been used since 1985 to store drums of waste materials.

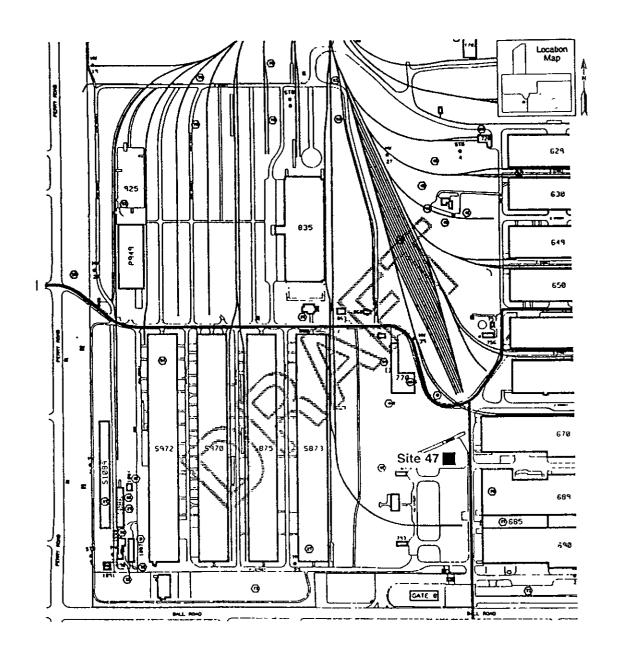
The site was evaluated during the RFA conducted in 1990, with the results indicating that the potential for release from all pathways was low. There was no history or evidence of uncontrolled leaks or spills, the units appeared to be in good condition, and the site was designated for NFA in the RFA.

No analytical data are available for this site.

2.3.3 Summary of Site 41 Risks

A minimal level of risk existed from the handling of hazardous materials in these units. During the operation of the drum storage area, releases to the environment were prevented through the design and handling criteria regulated under RCRA. Because of the design and procedural controls governing the operation of the facility, there is no significant risk to human health or the environment. Therefore, it is concluded that no remedial actions are necessary for the protection of human health or the environment.

2.4 NFA Summary for Site 47–Contaminated Soil Drum Storage Area


2.4.1 Site Name, Location, and Description

Site 47, the Former Contaminated Soil Drum Storage Area, was a temporary drum storage/staging area. The unit is located in the southwestern part of the Main Installation, approximately 300 ft west of Building 689. Figure 2-4 presents the site location.

The site was used to store approximately 800 drums of various materials. Most of the drums were filled with material from remedial activities from Sites 42, 43, and the associated treatment units. This material included contaminated soil (containing pentachlorophenol [PCP], dioxin, and furan), sludge from the bottom of the vat and storage tank, and contaminated carbon from a temporary treatment unit (Site 44) before shipment to an off-site facility for final disposal.

2.4.2 Site History and Enforcement Activities

The former contaminated soil drum storage area was a temporary drum storage/staging area used from 1986 to the spring of 1988 to hold materials from the remedial activities at Sites 42 and 43. The unit consisted of a dirt-covered, concrete igloo building normally used for explosives storage. The igloo has a concrete floor and all drainage exits were sealed.

Source Corps of Engineers/Huntsville Division

FIGURE 2-4 SITE 47, FORMER CONTAMINATED SOIL DRUM STAGING AREA MEMPHIS DEPOT MAIN INSTALLATION NFA The site was evaluated during the RFA conducted in 1990, with the results indicating that the potential for release from all pathways was low. There was no history or evidence of uncontrolled leaks or spills, the units appeared to be in good condition, and the site was designated for NFA. In addition, this site has been listed for NFA under the FFA.

2.4.3 Summary of Site 47 Risks

Although contaminated materials were stored in Site 47, there is no evidence that a release occurred or the building containment was otherwise compromised. On the basis of the lack of a potential source or contaminants released to the environmental media, there is no risk to human health and the environment from this site. Therefore, it is concluded that no remedial actions are necessary for the protection of human health or the environment.

3.0 OU-3 Proposed NFA Soil Sites

OU-3 consists of approximately 320 acres and is located in the southeastern quadrant of the Main Installation at the Memphis Depot. It is bounded by C Street on the north, 5th and 6th Streets on the west, Ball Road on the south (installation boundary), and Airways Boulevard on the east (installation boundary) (see Figure 1-2 for the location of OU-3).

Sites in OU-3 currently proposed as NFA are Sites 30, 40, 41, 49, 69, and 76. Sites 30 through 49 were identified as NFA sites during the 1990 RFA. Sites 69 and 76 were proposed as NFA from the screening site investigation. The following subsections describe each one of the sites in OU-3 that has been proposed for NFA and provides supporting information. Note that descriptions and supporting information for NFA Sites in OU-3 that have buildings located in OU-2 are discussed in Section 2.

3.1 NFA Summary for Site 30-Paint Spray Booths

3.1.1 Site Name, Location, and Description

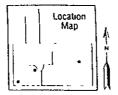
Site 30 consisted of three Paint Spray Booths located in Buildings 1086 (OU-2), 770 (OU-2), and 260 (OU-3). Detailed information about this site is provided in Section 2.1.1 through 21.3 (see Figure 3-1 for site locations).

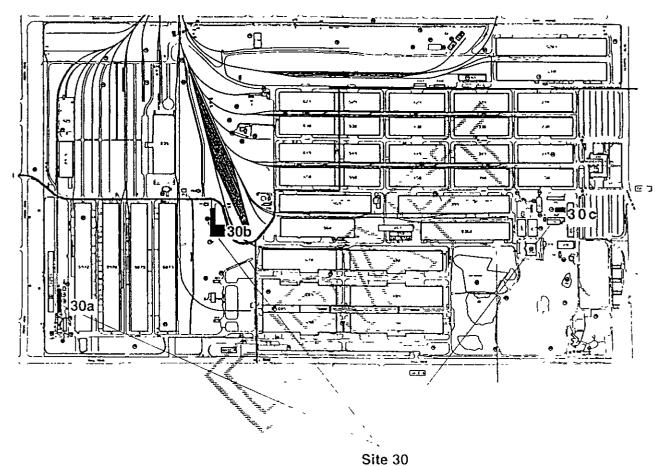
3.1.2 Site History and Enforcement Activities

See Section 2.1 2.

3.1.3 Summary of Site 30 Risks

See Section 2.1.3.


3.2 NFA Summary for Site 40-Safety Kleen Locations


3.2.1 Site Name, Location, and Description

Site 40 is comprised of nine locations where Safety-Kleen solvent parts cleaning stations were located. The units consisted of steel holding tanks supported by steel legs, ranging in size from 20 to 40 gallons. The units were located in buildings and are self-contained. Five units are located in Building 770 (OU-2), and one unit is located in each of Buildings 689 (OU-3) 490 (OU-3), 253 (OU-3), and 469 (OU-3). Detailed information about this site is provided in Sections 2.2.1 through 2.2.3 (see Figure 3-2 for site locations).

3.2.2 Site History and Enforcement Activities

See Section 2.2.2.

LEGEND 0 400 800

MAY
Existing Monitoring Wells
STB Stratigraphic Boring Locations

Source Corps of Engineers/Huntsville Division

FIGURE 3-1 SITE 30, PAINT SPRAY BOOTHS MEMPHIS DEPOT MA 1 INSTALLATION NFA

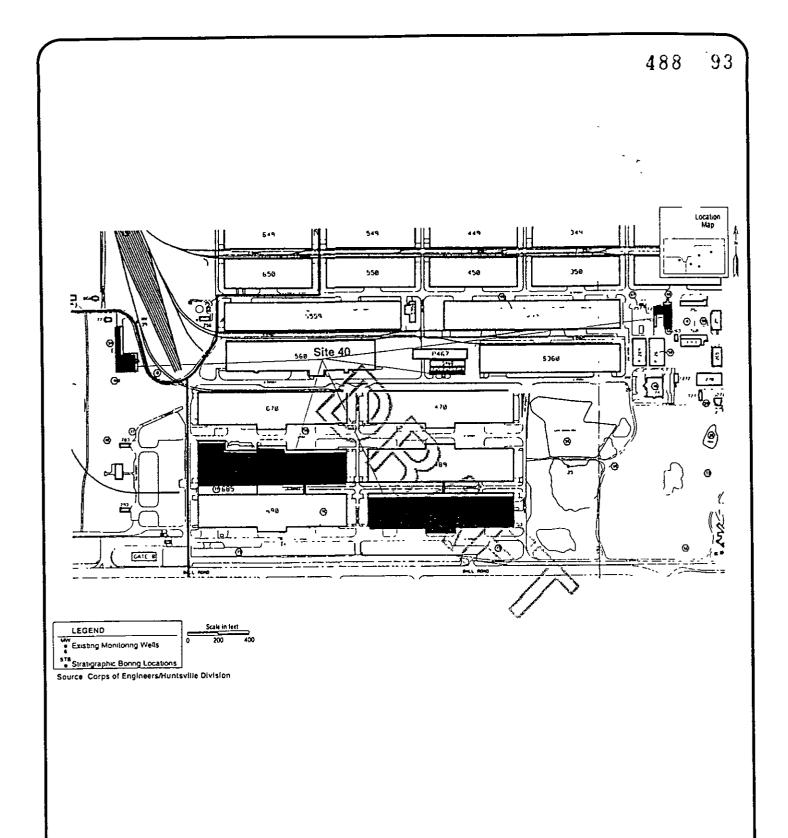


FIGURE 3-2 SITE 40, SAFETY KLEEN LOCATIONS MEMPHIS DEPOT MAIN INSTALLATION NFA

3.2.3 Summary of Site 40 Risks

See Section 2.2.3.

3.3 NFA Summary for Site 41–Satellite Drum Accumulation Areas

3.3.1 Site Name, Location, and Description

Five satellite drum storage areas made up Site 41, Satellite Drum Accumulation Areas. The areas have been used since 1985 to store drums of waste materials. The units vary in the number and size of drums they contain, but all units are located on concrete floors within Buildings 770 (OU-2), 210 (OU-4), 260 (OU-3), and 469 (OU-3). Detailed information about this site is provided in Sections 2.3.1 through 2.3.3 (see Figure 3-3 for site locations).

3.3.2 Site History and Enforcement Activities

See Section 2.3.2.

3.3.3 Summary of Site 41 Risks

See Section 2.3.3.

3.4 NFA Summary for Site 49–Expired Medical Supplies Storage Area

3.4.1 Site Name, Location, and Description

The Expired Medical Supplies Storage Area is a warehouse storage area. The unit is located near the center of Building 359 and consists of a concrete-floored storage bay (approximately 50 ft by 30 ft) (see Figure 3-4). Materials are stored in the manufacturer's containers, on pallets or shelves throughout the unit, until transported or disposed.

3.4.2 Site History and Enforcement Activities

The Expired Medical Supplies Storage Area is a warehouse storage area that was used from an unknown date through the base closure for medical supplies with an expired shelf life.

The site was evaluated during the RFA conducted in 1990, with the results indicating that the potential for release from all pathways was low. There was no history or evidence of uncontrolled leaks or spills, the units appeared to be in good condition, and the site was designated for NFA. In addition, this site has been listed for NFA under the FFA.

No analytical data are available for Site 49.

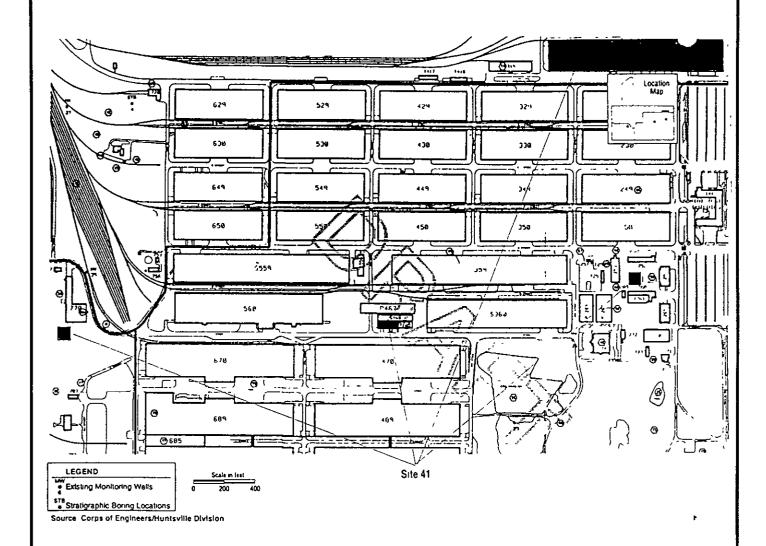
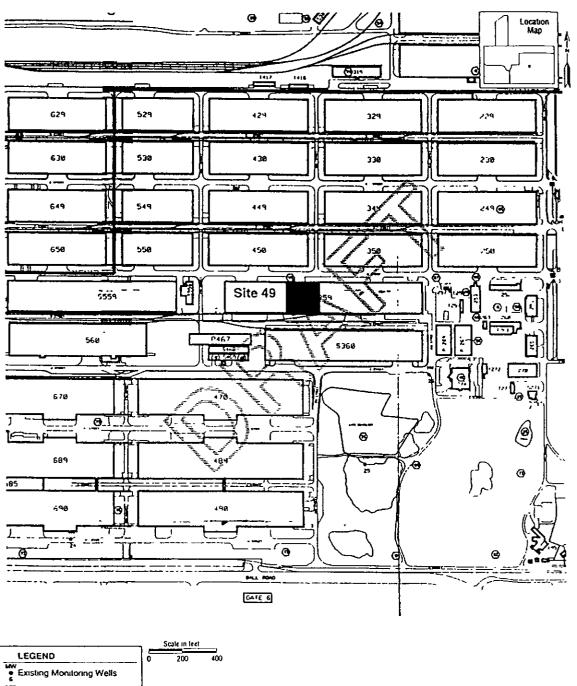



FIGURE 3-3
SITE 41, SATELLITE DRUM
ACCUMULATION AREA
MEMPHIS DEPOT MAIN INSTALLATION NFA

STB Stratigraphic Boring Locations Source: Corps of Engineers/Huntsville Division

FIGURE 3-4 SITE 49, EXPIRED MEDICAL SUPPLIES STORAGE AREA MEMPHIS DEPOT MAIN INSTALLATION NFA

97

3.4.3 Summary of Site 49 Risks

Because of the lack of hazardous or toxic materials disposed or released at the site, there is no source area of contamination at the site. On the basis of the lack of a potential source or contaminants in a media, there is no risk to human health and the environment from this site. Therefore, it is concluded that no remedial actions are necessary for the protection of human health or the environment.

3.5 NFA Summary for Site 69-Flamethrower Liquid Fuel

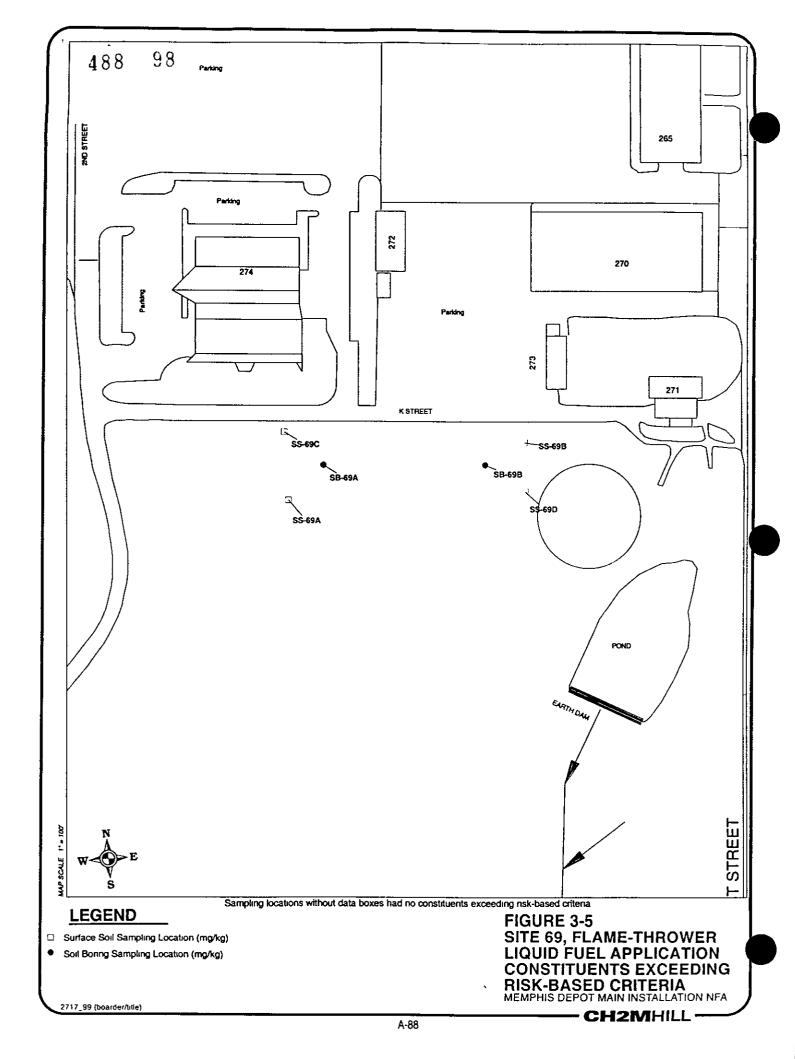
3.5.1 Site Name, Location, and Description

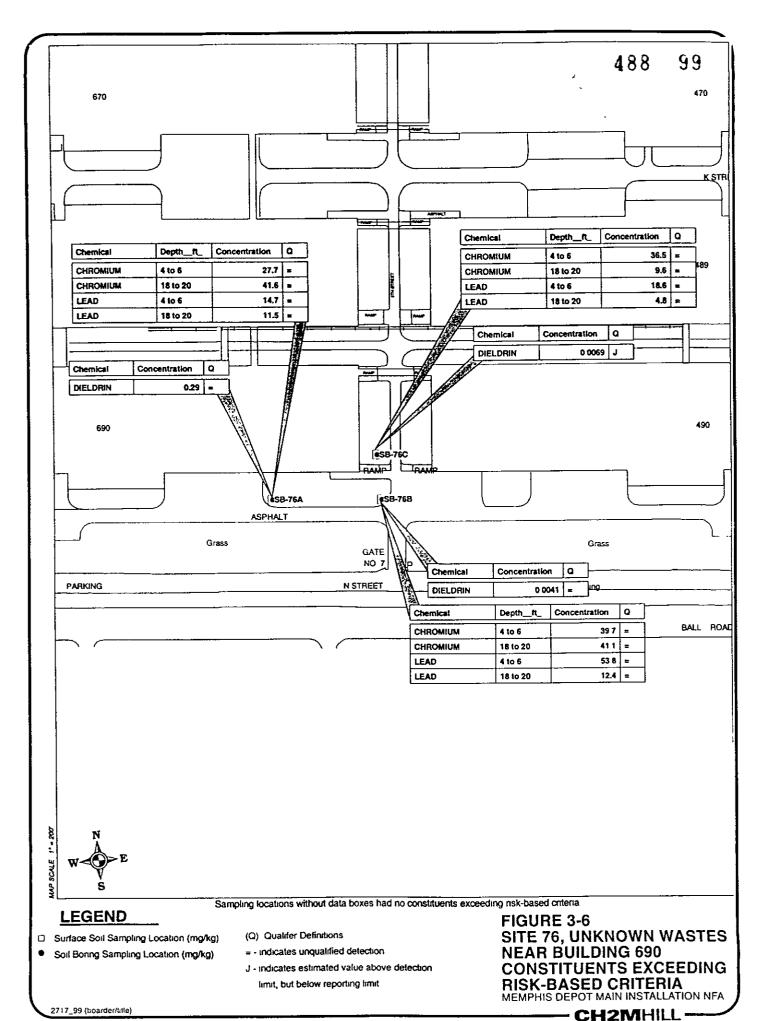
Screening Site 69–Flamethrower Liquid Fuel Application is located within Parcel 3 on the eastern side of the installation, approximately 100 ft east of Lake Danielson (see Figure 3-5). The site currently is used as a golf course.

3.5.2 Site History and Enforcement Activities

Screening Site 69 primarily was used to test flamethrower fuels. Flamethrowers were tested using diesel fuel. Fire fighting techniques also were practiced at this site after surface ignition of the fuel. The site currently comprises part of the Memphis Depot golf course.

Site 69 previously was investigated as a screening site. According to the March 1998 Screening Sites Letter Reports (CH2M HILL), the pesticide dieldrin and the polycyclic aromatic hydrocarbon (PAH) benzo(a)pyrene were found in surface soil at concentrations similar to those observed across the Main Installation, resulting from the facility-wide application of pesticides and PAH residual from the railroad tracks. The risks from these contaminants are being addressed on a facility-wide basis.


3.5.3 Summary of Site 69 Risks


There do not appear to be risks associated with Screening Site 6, and NFA is proposed. However, dieldrin and benzo(a)pyrene were found in surface site soil and risks are being addressed on a facility-wide basis. Because of the absence of any other contaminant levels above background, no risks or systemic toxicity ratios were estimated (USAESCH, 1998). Therefore, NFA is recommended at this site.

3.6 NFA Summary for Site 76–Unknown Wastes Near Building 690

3.6.1 Site Name, Location, and Description

Screening Site 76, Building 690, was used to store hazardous materials before shipment. The building was constructed in 1953 and includes 218,000 square ft of space. The building is located in the southwestern portion of OU-3, near 5th and M Streets (see Figure 3-6 for the site location). Building 690 is used to store material-handling equipment and materials awaiting shipment.

3.6.2 Site History and Enforcement Activities

At times in the past, unknown wastes and vehicle maintenance supplies were stored in the warehouse. No enforcement activities have taken place at this site.

Site 76 previously was investigated as a screening site. According to the March 1998 Screening Sites Letter Reports (CH2M HILL), dieldrin was detected at an elevated concentration in surface soil, and lead and chromium were detected at elevated concentrations in the subsurface soil. Risks from dieldrin are being addressed on a facility-wide basis. The levels of lead and chromium are representative of natural conditions.

3.6.3 Summary of Site 76 Risks

There do not appear to be risks associated with Screening Site 76, and NFA is proposed. However, dieldrin was found in surface site soil and risks are being addressed on a facility-wide basis. In accordance with the PRE, there are no human health risks of concern for this site (USAESCH, 1998).

4.0 OU-4 Proposed NFA Soil Sites

OU-4 consists of approximately 168 acres and is located in the north-central section of the Main Installation at the Memphis Depot (see Figure 1-2 for its location). OU-4 includes former and current hazardous materials storage buildings and the DRMO buildings and stock yards. The former PCP Dip Vat area sites also are located in OU-4.

Sites in OU-4 currently proposed for NFA status are Sites 41, 44, 45, 53, 74, and 81. Sites 41, 44, 45, and 53 were identified as NFA sites during the 1990 RFA. Sites 74 and 81 were proposed as NFA sites after the screening site investigation. The following subsections describe those sites in OU-4 that have been proposed for NFA and provide supporting information. Note that descriptions and supporting information for proposed NFA sites in OU-4 that have buildings located in OU-2 are discussed in Section 2.

4.1 NFA Summary for Site 41–Satellite Drum Accumulation Areas

4.1.1 Site Name, Location, and Description

Five satellite drum storage areas make up Site 41, Satellite Drum Accumulation Areas. The areas have been used since 1985 to store drums of waste materials. The units vary in the number and size of drums they contain, but all units are located on concrete floors within Buildings 770 (OU-2), 210 (OU-4), 260 (OU-3), and 469 (OU-3). Detailed information about this site is provided in Sections 2.3.1 through 2.3.3 (see Figure 4-1 for the site locations).

4.1.2 Site History and Enforcement Activities

See Section 2.3.2.

4.1.3 Summary of Site 41 Risks

See Section 2.3.3.

4.2 NFA Summary for Site 44–Former Wastewater Treatment Unit

4.2.1 Site Name, Location, and Description

The former Wastewater Treatment Unit (WWTU) Area was the location of a temporary wastewater treatment unit used in the remediation of Sites 42 and 43 in 1986. The unit was located just west of Building S-737. The sump, located adjacent to the pesticide storage building, was used as a holding basin until enough wastewater was retained for treatment. Figure 4-2 illustrates the site location. The WWTU consisted of a 12,000-gallon portable pool with vinyl liner, pumps, medium capacity carbon cell, and associated piping on a concrete pad

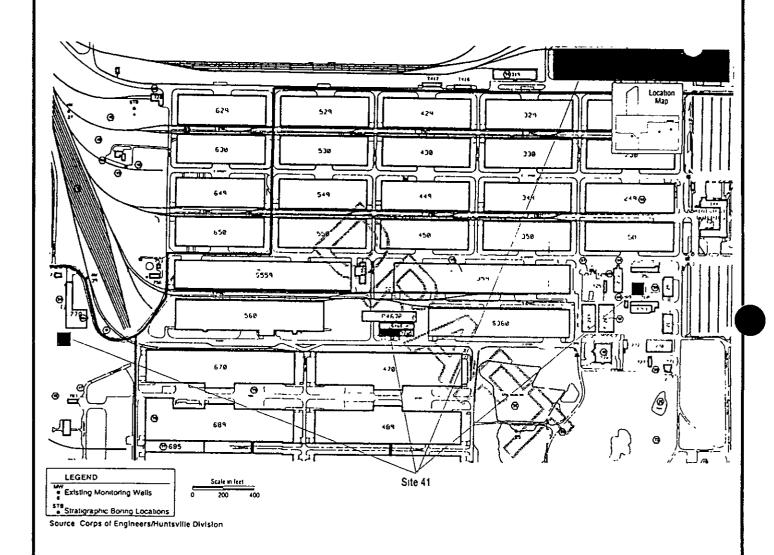


FIGURE 4-1 SITE 41, SATELLITE DRUM ACCUMULATION AREA MEMPHIS DEPOT MAIN INSTALLATION NFA

2717_99 (boarder/title)

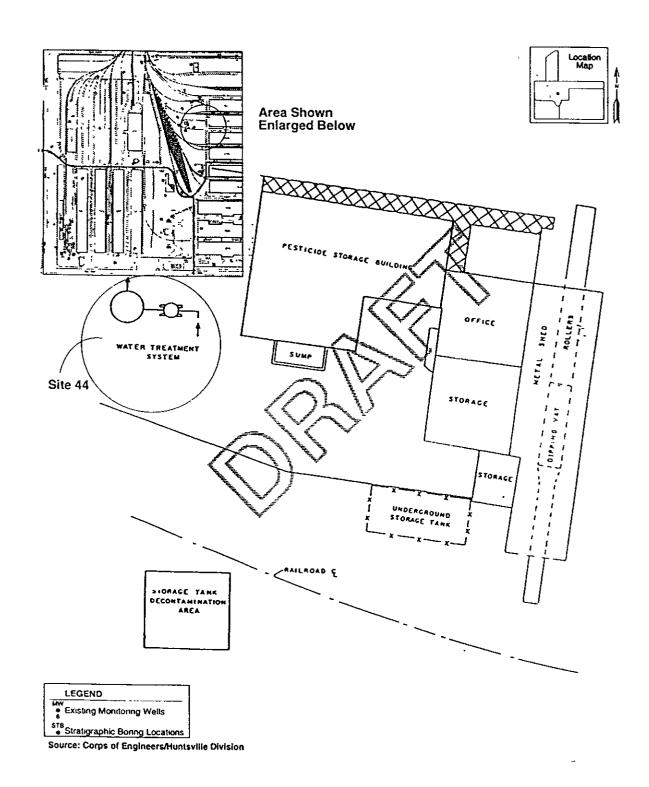


FIGURE 4-2 SITE 44, FORMER WWTU AREA MEMPHIS DEPOT MAIN INSTALLATION NFA

4.2.2 Site History and Enforcement Activities

The WWTU was used to treat rainwater mixed with PCP-contaminated oil and rinse waters from equipment decontamination during remedial actions and cleanup operations of the pesticide shop. Sample results of the treated wastewater held in the portable pool were below allowable levels for sewer discharge, and 8,000 gallons of water was discharged to the publicly owned treatment works (POTW) operated by the City of Memphis Public Works Department. Upon completion of the water treatment, 27 drums of contaminated carbon were removed. After treatment was completed, the unit was dismantled and removed.

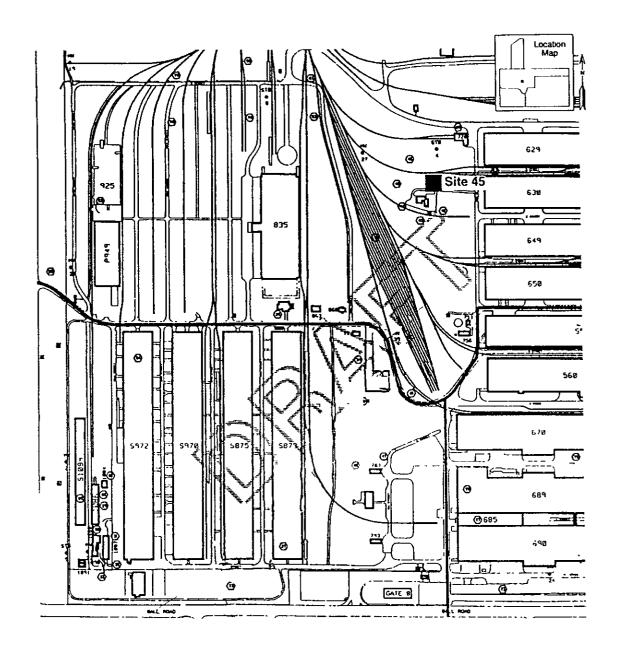
The site was evaluated during the RFA conducted in 1990, with the results indicating that the potential for release to all environmental pathways was low. There was no history or evidence of uncontrolled leaks or spills, the units appeared to be in good condition, and the site was designated for NFA.

4.2.3 Summary of Site 44 Risks

Because of the lack of hazardous or toxic materials disposed or released at the site, there is no source area or contamination at the site to cause releases to the environment. Therefore, there is no risk to human health and the environment from Site 44.

4.3 NFA Summary for Site 45–Contaminated Soil Staging Area

4.3.1 Site Name, Location, and Description


The former Contaminated Soil Staging Area was a temporary storage area used from 1986 through 1988 to hold waste from the PCP tank and vat area remediation while it awaited off-site transportation and disposal. The location was a gravel area to the northwest of Building S-737 that measured approximately 200 ft by 100 ft. Figure 4-3 presents the site location.

Roll-off containers were stored in the area. The containers were prepared to receive contaminated soil by having the seams filled with a foam material and being lined with plastic. After each container was filled with contaminated soil, it was covered with plastic.

4.3.2 Site History and Enforcement Activities

Up to 39 roll-off containers, each with a capacity of 24 to 30 cubic yards, were placed in the area. The containers were filled with contaminated soil (containing PCP, dioxin, and furan) from Sites 42 and 43 before shipment to a final off-site disposal facility.

The site was evaluated during the RFA conducted in 1990, with the results indicating that the potential for release from all pathways was low. There was no history or evidence of uncontrolled leaks or spills, the units appeared to be in good condition, and the site was designated for NFA.

Source Corps of Engineers/Huntsville Division

FIGURE 4-3 SITE 45, FORMER CONTAMINATED SOIL STAGING AREA MEMPHIS DEPOT MAIN INSTALLATION NFA

4.3.3 Summary of Site 45 Risks

Because of the lack of hazardous or toxic materials disposed or released at the site, there is no source area or contamination at the site to cause releases to the environment. Therefore, there is no risk to human health or the environment from Site 45.

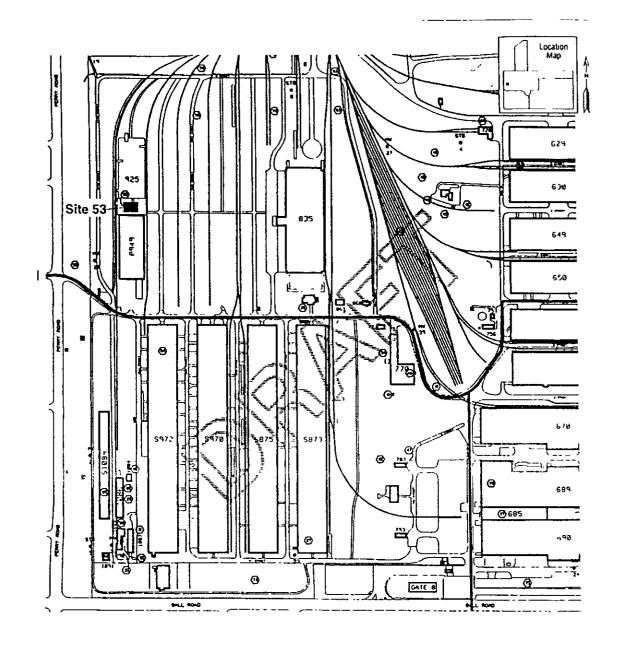
4.4 NFA Summary for Site 53–Flammable Solvents Storage Area

4.4.1 Site Name, Location, and Description

The X-25 Flammable Solvents Storage Area Site is the result of a product storage area spill. The spill occurred in the northernmost petroleum, oil, and lubricants (POL) concrete-bermed storage area, located in the northwestern section of the Main Installation. The area measures approximately 175 ft by 125 ft. The unit is designed with a concrete floor that slopes to the south to retain material. The site location is illustrated on Figure 4-4.

The containment unit was designed specifically to contain spills from the operational units in the storage area. The spill was cleaned up, with material recovered as soon as possible, at the time it occurred.

4.4.2 Site History and Enforcement Activities


The 36,000-gallon spill occurred on January 19, 1988. The spill occurred inside the containment unit and consisted of a mixture of highly flammable solvents, including xylene and toluene. The spill was cleaned up, with material recovered as soon as possible, at the time it occurred.

The site was evaluated during the RFA conducted in 1990, with the results indicating that the potential for release from all pathways was low. At the time of the site visit, the unit appeared to be in good condition with no evidence of soil staining or stressed vegetation near the unit. On the basis of the response action and the recorded history, the site was designated for NFA.

No analytical data are available for this site.

4.4.3 Summary of Site 53 Risks

Because the release was in a unit designed to contain such a release and the proper response actions were taken at the time of the release to recover and remove the material, there is no indication of a release to the environment. Therefore, there is no risk to human health or the environment from this site.

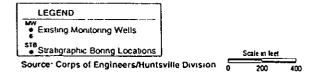


FIGURE 4-4
SITE 53, FLAMMABLE SOLVENTS
STORAGE AREA
MEMPHIS DEPOT MAIN INSTALLATION NFA

4.5 NFA Summary for Site 74–Flammables and Toxics

4.5.1 Site Name, Location, and Description

Screening Site 74, the Flammables and Toxics Area, is located on the western end of Building 319, off of C Street (see Figure 4-5). Screening Site 74 was used for the storage of flammable and toxic materials.

4.5.2 Site History and Enforcement Activities

Site 74 previously was investigated as a screening site. According to the March 1998 *Screening Sites Letter Reports* (CH2M HILL), lead and chromium were detected in the subsurface soil. However, the concentrations were representative of natural conditions.

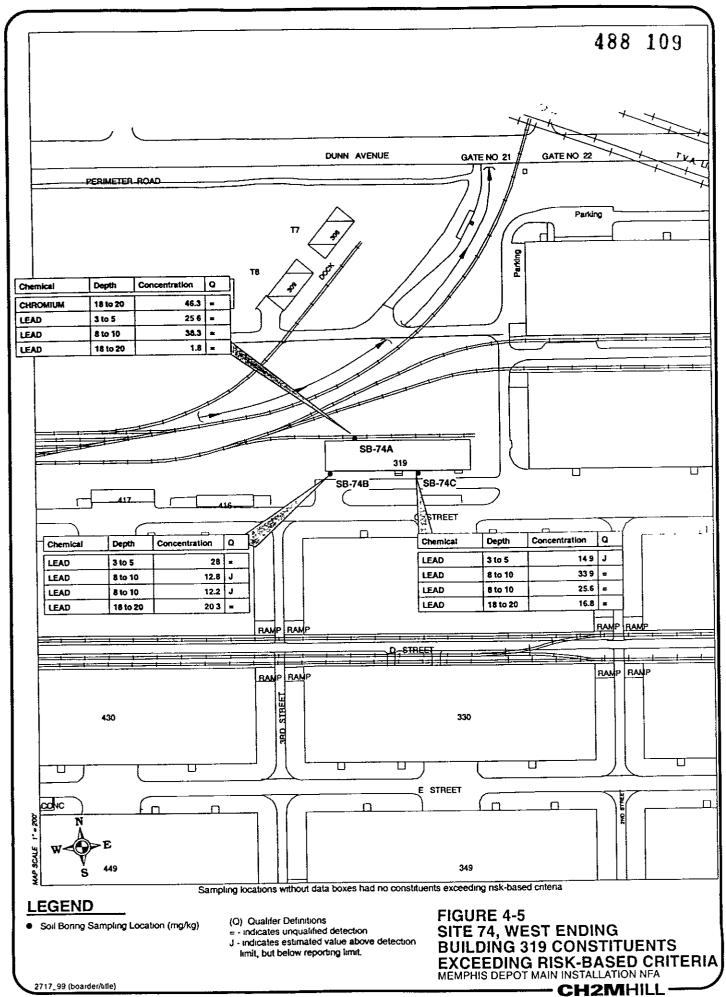
No enforcement activities have taken place at this site.

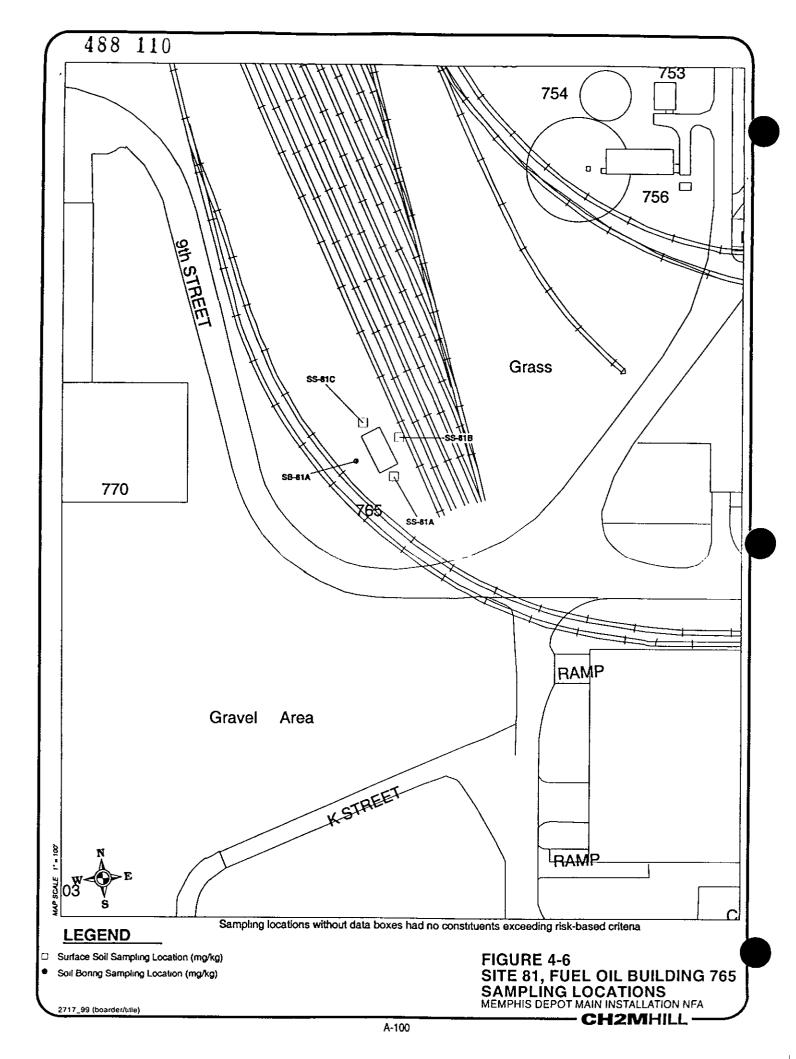
4.5.3 Summary of Site 74 Risks

Lead and chromium were detected in the subsurface soil at Site 74 at concentrations above the groundwater protection values. However, the detected levels appear to be naturally occurring at these depths across the Memphis Depot. There were no other chemicals detected at Screening Site 74 above the background levels. Because the site is free of any measurable contamination, NFA is recommended for this site.

4.6 NFA Summary for Site 81-Building 765, Fuel Oil AST

4.6.1 Site Name, Location, and Description


Screening Site 81, Building 765, is approximately 2,200 ft east of the western boundary and 1,350 ft south of the northern boundary of the installation (shown on Figure 4-6). Building 765 contained an aboveground fuel oil storage tank. Building 765 and the aboveground storage tank (AST) have been removed.


4.6.2 Site History and Enforcement Activities

Site 81 previously was investigated as a screening site; according to the March 1998 Screening Sites Letter Reports (CH2M HILL), PAH compounds were found in surface soil. The risks from these contaminants are associated with railroad operations and will be addressed on a facility-wide basis. There were no other contaminants detected at Site 81 above background levels.

4.6.3 Summary of Site 81 Risks

There were no contaminants detected at Site 81 that are attributable to the site. The PRE risk ratios at the site were below risk levels for both the residential and industrial scenario, because none of the chemicals exceeded background (USAESCH, 1998). Therefore, NFA is recommended at this site.

488 111

5.0 References

CH2M HILL. May 1997. Remedial Investigation Letter Reports. Draft. Prepared for U.S. Army Engineering and Support Center, Huntsville, Alabama.

CH2M HILL. September 1994. No Further Action Report. Draft. Prepared for U.S. Army Engineering and Support Center, Huntsville, Alabama.

CH2M HILL. September 1995. Screening Sites Field Sampling Plan. Prepared for U.S. Army Engineering and Support Center, Huntsville, Alabama.

CH2M HILL. September 1995. Operable Unit 4 Field Sampling Plan. Prepared for U.S. Army Engineering and Support Center, Huntsville, Alabama.

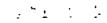
CH2M HILL. April 1997. Final BRAC Parcel Summary Reports. Prepared for U.S. Army Engineering and Support Center, Huntsville, Alabama.

CH2M HILL March 1998. Screening Sites Letter Reports. Final. Prepared for U.S. Army Engineering and Support Center, Huntsville, Alabama.

CH2M HILL. April 1998. Preliminary Risk Evaluation. Final. Prepared for U.S. Army Engineering and Support Center, Huntsville, Alabama.

Law Environmental. August 1990. Remedial Investigation at DDMT.

O. H. Materials (OHM) Company. February 1986. On-Site Remedial Activities at the Defense Depot Memphis, Tennessee. Summary Report.


U.S Army Engineering and Support Center (USAESCH). March 1998. Groundwater Monitoring Report.

THIS PAGE INTENTIONALLY LEFT BLANK.

TAB

Appendix B Well Construction and Stratigraphy

APPENDIX B

Well Construction and Stratigraphy

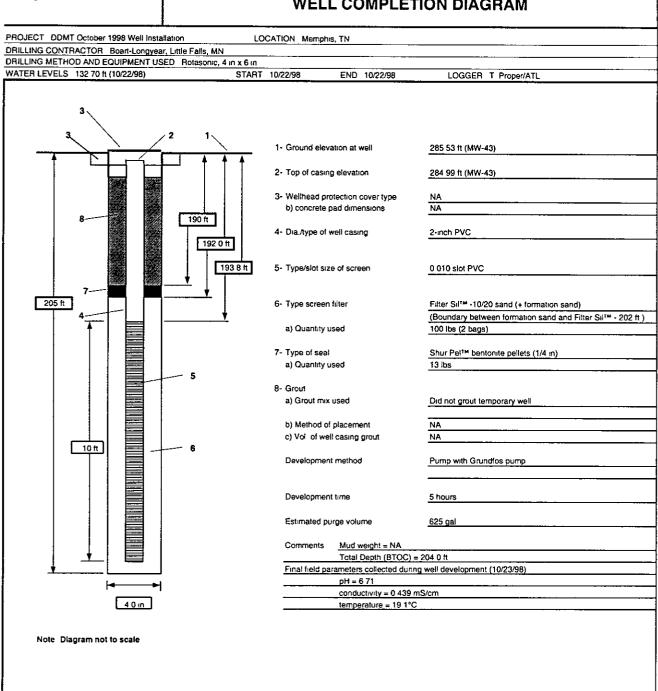
This appendix contains well completion diagrams for the following:

- MW-43
- TW-43
- MW-62
- MW-63
- MW-64
- MW-65
- MW-66
- PZ-1
- PZ-2
- PZ-3
- PZ-4
- PZ-5
- PZ-6
- PZ-7
- PZ-8

488 114

THIS PAGE INTENTIONALLY LEFT BLANK.

1


CH2MHILL

PROJECT NUMBER
113630.01.ZZ MW-43 SHEET 1 OF 1

WELL COMPLETION DIAGRAM

LOCATION Memphis, TN PROJECT DDMT October 1998 Well Installation DRILLING CONTRACTOR Boart-Longyear, Little Falls, MN DRILLING METHOD AND EQUIPMENT USED Rotasonic, 4 in x 6 in LOGGER T Proper/ATL WATER LEVELS 128 38 ft (11/12/98) START 10/26/98 END 10/26/98 1- Ground elevation at well 285 53 ft 2- Top of casing elevation 284 99 ft 3- Wellhead protection cover type Flush mount vault 3 ft x 3 ft b) concrete pad dimensions 4- Dia /type of well casing 2-inch PVC 157 O #t 161 5 ft 5- Type/slot size of screen 0 010 slot PVC Filter Sil™ -10/20 sand 173 ft 6- Type screen filter a) Quantity used 200 lbs (4 bags) 7- Type of seal Shur Pel™ bentonite pellets (1/4 in) (Pellets used to seal confining unit if penetrated.) 238 lbs (16 ft) a) Quantity used 8- Grout Quik Grout™ (100 lbs), 48 gal water a) Grout mix used b) Method of placement Pumped c) Vol. of well casing grout Approx 236 gal 10 ft Development method Pump with Grundfos pump Development time 6 5 hours 800 gal Estimated purge volume Mud weight = 9.4 lbs/gal (not measured) Comments Total Depth (BTOC) = 171 6 ft Final field parameters collected during well development (11/8/98) pH = 6.14conductivity = 0 333 mS/cm 4 0 in temperature = 18 6°C Note Diagram not to scale

PROJECT NUMBER WELL NUMBER 113630.01.ZZ TW-43 **CH2NIHILL WELL COMPLETION DIAGRAM**

SHEET 1

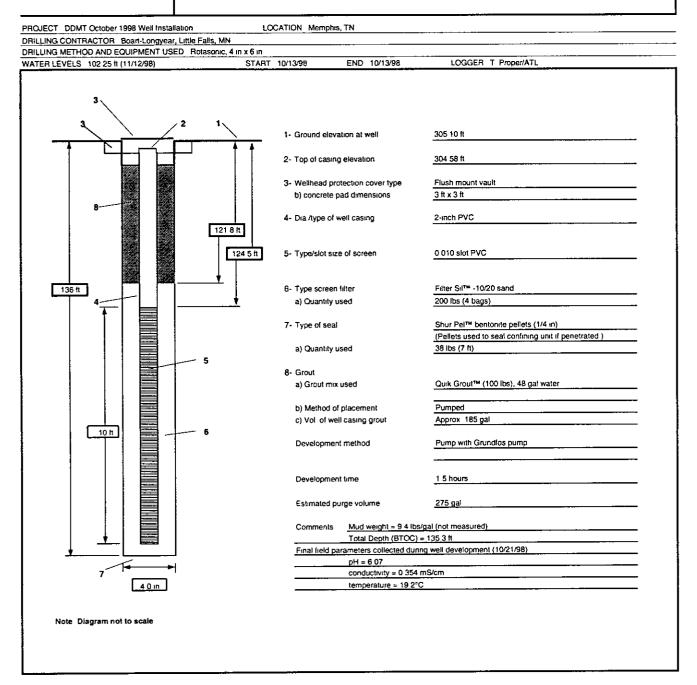
OF 1

PROJECT NUMBER

113630.01.ZZ MW-62 SHEET 1 OF 1

WELL COMPLETION DIAGRAM

PROJECT DDMT October 1998 Well Installation LOCATION Memphis, TN DRILLING CONTRACTOR Boart-Longyear, Little Fails, MN DRILLING METHOD AND EQUIPMENT USED Rotasonic, 4 in x 6 in WATER LEVELS 93 99 ft (11/12/98) START 10/14/98 END 10/14/98 LOGGER T Proper/ATL 1- Ground elevation at well 293 98 ft 2- Top of casing elevation 293 60 ft 3- Wellhead protection cover type Flush mount vault b) concrete pad dimensions 3 ft x 3 ft 4- Dia /type of well casing 2-inch PVC 82 6 ft 86 ft 5- Type/slot size of screen 0 010 slot PVC 97 5 ft Filter SilTM -10/20 sand 6- Type screen filter a) Quantity used 250 lbs (5 bags) 7- Type of seal Shur Pel™ bentonite pellets (1/4 in) (Pellets used to seal confining unit if penetrated) a) Quantity used 70 lbs (15 ft) 8- Grout a) Grout mix used Quik Grout™ (100 lbs), 48 gal water b) Method of placement Pumped c) Vol. of well casing grout Approx 125 gai _ 10 ft Development method Bailed with disposable bailer (slow recovery) Development time 20 minutes (over the course of 4 days) Estimated purge volume 1 8 gal Mud weight = 9 4 lbs/gal (not measured) Total Depth (BTOC) = 97 13 ft Final field parameters collected duning well development (10/25/98) pH = 7 90 conductivity = 0 185 mS/cm _4 0 in temperature = 18 8°C Note Diagram not to scale



PROJECT NUMBER

113630.01.ZZ WELL NUMBER

MW-63 SHEET 1 OF 1

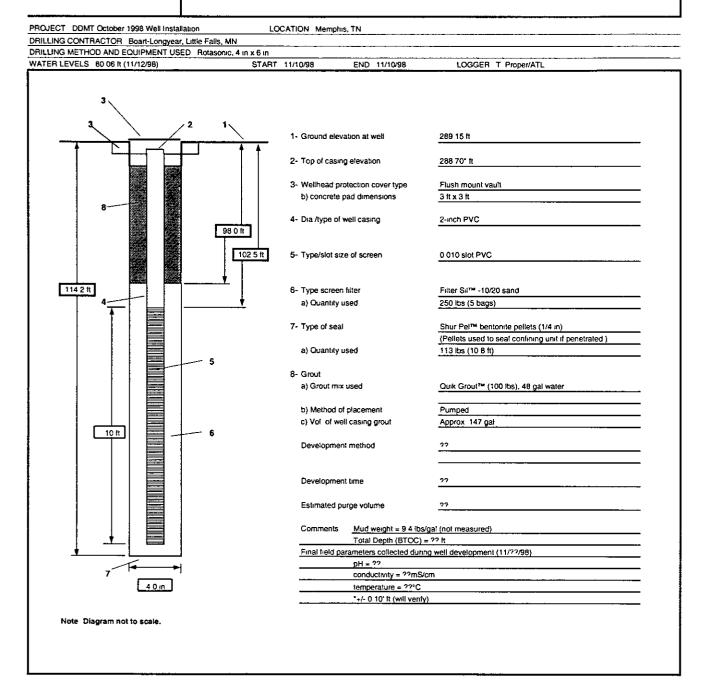
WELL COMPLETION DIAGRAM

PROJECT NUMBER
113630.01.ZZ MW-64 SHEET 1 OF 1

WELL COMPLETION DIAGRAM

PROJECT DDMT October 1998 Well Installation LOCATION Memphis, TN DRILLING CONTRACTOR Boart-Longyear, Little Falls, MN DRILLING METHOD AND EQUIPMENT USED Rotasonic 4 in x 6 in WATER LEVELS 106 53 h (11/12/98) START 10/15/98 END 10/15/98 LÖGGER T Proper/ATL 1- Ground elevation at well 304 63 ft 2- Top of casing elevation 304 24 ft 3- Wellhead protection cover type Flush mount vault b) concrete pad dimensions 3 ft x 3 ft 4- Dia /type of well casing 2-inch PVC 97 0 ft 102 0 ft 5- Type/slot size of screen 0 010 stot PVC 113 5 ft 6- Type screen filter Filter Sil™ -10/20 sand a) Quantity used 200 lbs (4 bags) 7- Type of seal Shur Pel™ bentonite pellets (1/4 in) (Pellets used to seal confining unit if penetrated.) a) Quantity used 25 lbs (2 5 ft) 8- Grout Quik Grout™ (100 lbs), 48 gal water a) Grout mix used b) Method of placement Pumped c) Vot of well casing grout Approx 146 gal 10 ft Development method Bailed with disposable bailer (slow recovery) Development time 6 hours (intermittently) Estimated purge volume 33 gai Mud weight = 9 4 lbs/gal (not measured) Total Depth (BTOC) = 112 8 ft Final field parameters collected during well development (10/24/98) pH = 6 82 conductivity = 0 324 mS/cm 40 m temperature = 18 4°C Note Diagram not to scale

CH2MHILL


PROJECT NUMBER		WELL NUMBER			·
113630.01.ZZ		MW-65	SHEET 1	OF 1	
	WELL COMPLETION DIAGRAM				

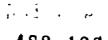
PROJECT DOMT October 1998 Well Installation LOCATION Memphis, TN DRILLING CONTRACTOR Boart Longyear, Little Falls, MN DRILLING METHOD AND EQUIPMENT USED Rotasonic, 4 in x 6 in WATER LEVELS 50 86 ft (11/12/98) START 11/6/98 END 11/6/98 LOGGER T Proper/ATL 1- Ground elevation at well 263 57 ft 2- Top of casing elevation 263 22 ft 3- Wellhead protection cover type Flush mount vault b) concrete pad dimensions 3 ft x 3 ft 4- Dia /type of well casing 2-inch PVC 36 5 ft 40 8 ft 5- Type/siot size of screen 0 010 slot PVC 52 ft 6- Type screen filter Filter Sil™ -10/20 sand a) Quantity used 200 lbs (4 bags) 7- Type of seal Shur Pel™ bentonite pellets (1/4 in) (Pellets used to seal confining unit if penetrated.) a) Quantity used 38 ibs (4 ft) 8- Grout a) Grout mix used Quik Grout™ (100 lbs), 48 gal water Pumped b) Method of placement c) Vol. of well casing grout Approx 55 gal 10 ft Development method Development time Estimated purge volume 22 Comments Mud weight = 9 4 lbs/gal (not measured) Total Depth (BTOC) = ?? ft Final field parameters collected during well development (11/72/98) pH = ?? conductivity = ??mS/cm 4 0 in temperature = ??°C Note Diagram not to scale

•	CH2MHILL

PROJECT NUMBER	WELL NUMBER			
113630.01.ZZ	MW-66	SHEET 1	OF 1	

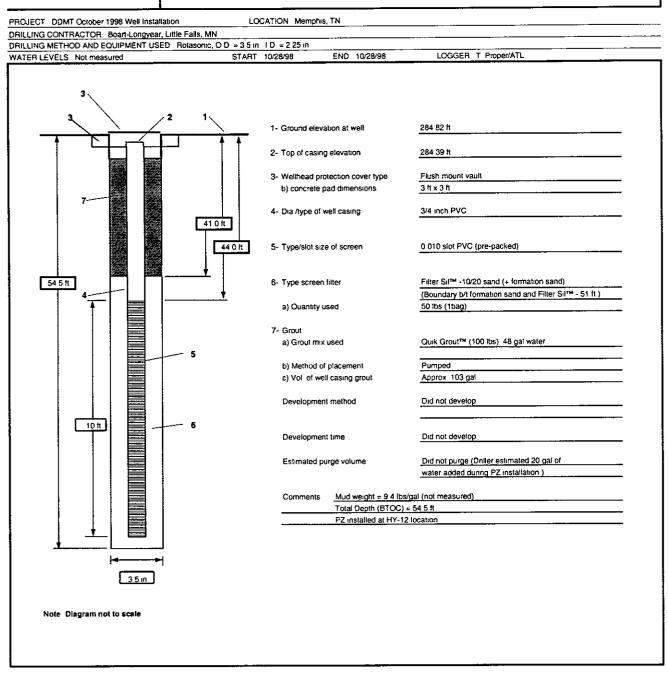
WELL COMPLETION DIAGRAM

	•
-	CH2MHILL


PROJECT NUMBER	WELL NUMBER		
113630.01.ZZ	PZ-1	SHEET 1	OF 1
WE	LL COMPLETION	DIAGRAM	

PROJECT DDMT October 1998 Weil Historianon.

DRILLING CONTRACTOR Boart-Longyear Little Falls, MN


DRILLING METHOD AND EQUIPMENT USED Rotasonic, O D = 3.5 in , I D = 2.25 in

START 10/27/98 LOCATION Memphis, TN END 10/27/98 LOGGER T Proper/ATL 1- Ground elevation at well 308 32 ft 2- Top of casing elevation 307 76 ft 3- Wellhead protection cover type Flush mount vault b) concrete pad dimensions 3 ft x 3 ft 3/4-inch PVC 4- Dia /type of well casing 99 0 ft 103 7 ft 0 010 slot PVC (pre-packed) 5- Type/slot size of screen Filter Sil™ -10/20 sand (+ formation sand) 115 ft 6- Type screen filter (Boundary b/t formation sand and Filter Sil™ - 105 ft.) 25 lbs (1/2 bag) a) Quantity used 7- Grout Quik Grout™ (100 lbs), 48 gal water a) Grout mix used b) Method of placement Pumped c) Vol. of well casing grout Approx 149 gal Development method Did not develop 10 ft Development time Did not develop Estimated purge volume Did not purge (Dniller estimated 100 gal of water added during PZ installation) Comments Mud weight = 9.4 fbs/gal (not measured) Total Depth (BTOC) = 114 2 ft PZ installed at HY-6 location 3.5 in Note Diagram not to scale

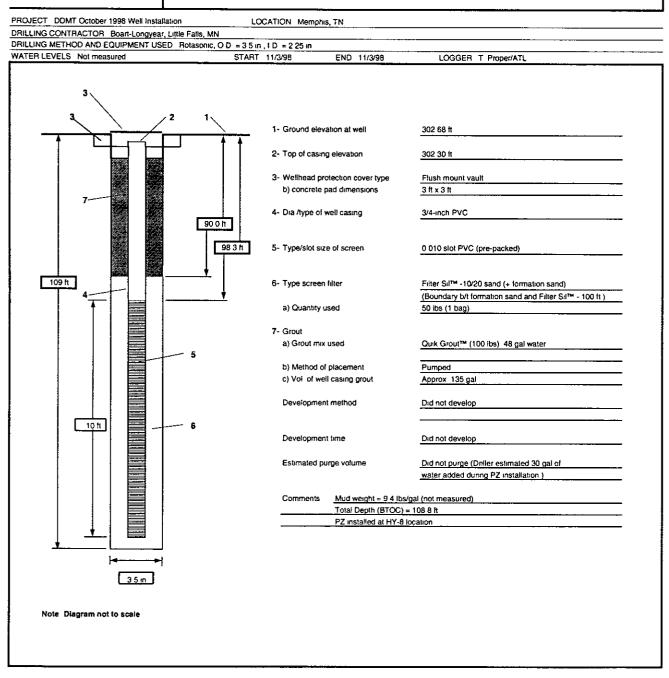
PROJECT NUMBER	VELL NUMBER			•
113630.01.ZZ	PZ-2	SHEET 1	OF	1
\A/E11	COMPLETION	DIACRAM		

CH2MHILL

PROJECT NUMBER

113630.01.ZZ

PZ-3

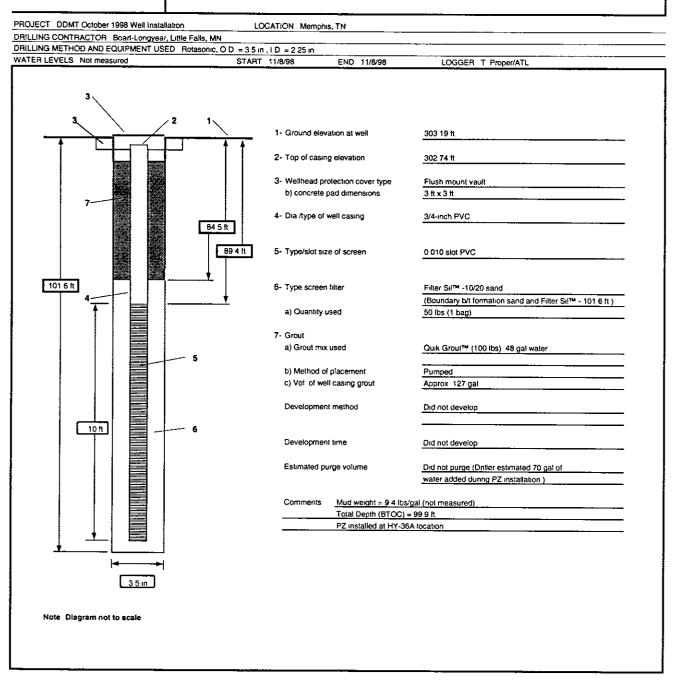

SHEET 1 OF 1

WELL COMPLETION DIAGRAM

PROJECT DDMT October 1998 Well Installation LOCATION Memphis, TN DRILLING CONTRACTOR Boart-Longyear, Little Falls, MN DRILLING METHOD AND EQUIPMENT USED Rotasonic O D = 35 in 1 D = 2 25 in WATER LEVELS Not measured START 10/29/98 END 10/29/98 LOGGER T Proper/ATL 1- Ground elevation at well 298 73 ft 2- Top of casing elevation 298 31 ft 3- Wellhead protection cover type Flush mount vault b) concrete pad dimensions 3 ft x 3 ft 4- Dia /type of well casing 3/4-inch PVC 102 0 ft 108 9 ft 5- Type/slot size of screen 0 010 slot PVC (pre-packed) 120 ft 6- Type screen filter Filter Sil™ -10/20 sand (+ formation sand) (Boundary b/t formation sand and Filter Sil™ - 106 ft) a) Quantity used 50 lbs (1 bag) 7- Grout a) Grout mix used Quik Grout™ (100 lbs), 48 gal water b) Method of placement Pumped c) Vol. of well casing grout Approx 153 gal Development method Did not develop 10 ft Did not develop Development time Estimated purge volume Did not purge (Driller estimated 30 gal of water added during PZ installation) Mud weight = 9 4 lbs/gal (not measured) Comments Total Depth (BTOC) = 119 4 ft PZ installed at HY-78A location 3 5 m Note Diagram not to scale

PZ-4	SHEET 1	OF 1	- 1			
WELL COMPLETION DIAGRAM						

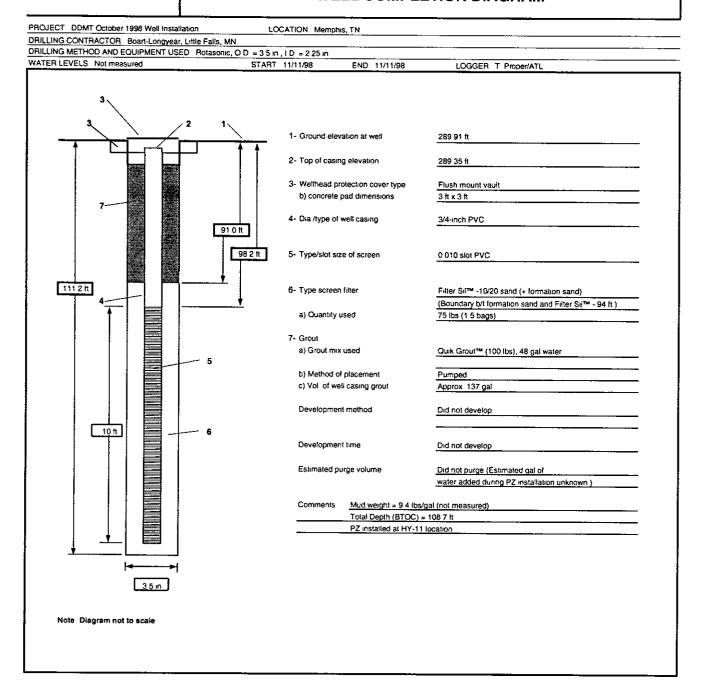
PROJECT NUMBER	WELL NUMBER			
113630.01.ZZ	PZ-5	SHEET 1	OF 1	
WEI	L COMPLETION	DIAGRAM		


PROJECT DDMT October 1998 Well Installation LOCATION Memphis, TN DRILLING CONTRACTOR Boart-Longyear, Little Fails, MN DRILLING METHOD AND EQUIPMENT USED. Rotasonic, O D \approx 3.5 in , I D \approx 2.25 in LOGGER T Proper/ATL WATER LEVELS Not measured START 11/5/98 END 11/5/98 1- Ground elevation at well 256 55 ft 2- Top of casing elevation 256 04 ft 3- Welihead protection cover type Flush mount vault b) concrete pad dimensions 3 ft x 3 ft 3/4-inch PVC 4- Dia./type of well casing 52 5 ft 68 1 ft 0 010 slot PVC (pre-packed) 5- Type/slot size of screen 79 ft 6- Type screen filter Filter Sil™ -10/20 sand (+ formation sand) (Boundary b/t formation sand and Filter Sil** - 67 ft) a) Quantity used 100 lbs (2 bags) 7- Grout a) Grout mix used Quik Grout™ (100 lbs), 48 gal water Pumped b) Method of placement c) Vol. of well casing grout Approx 79 gal Development method Did not develop 10 ft Development time Did not develop Did not purge (Estimated gal of Estimated purge volume water added during PZ installation unknown) Comments Mud weight = 9.4 lbs/gal (not measured) Total Depth (BTOC) = 78 6 ft PZ installed at HY-5 location 3,5 in Note Diagram not to scale

المدارية وأأتعاقه

PROJECT NUMBER	WELL NUMBER		
113630.01.ZZ	PZ-6	SHEET 1 OF 1	
	ELL COMPLETION	_	

WELL COMPLETION DIAGRAM


CH2MHILL

PROJECT NUMBER	WELL NUMBER			
113630.01.ZZ	PZ-7	SHEET 1	OF 1	
v	VELL COMPLETION	DIAGRAM		

LOCATION Memphis, TN PROJECT DDMT October 1998 Well Installation DRILLING CONTRACTOR Boart-Longyear, Little Falls, MN
DRILLING METHOD AND EQUIPMENT USED Rotasonic, O D = 3.5 in , I D = 2.25 in LOGGER T Proper/ATL WATER LEVELS Not measured END 11/9/98 START 11/9/98 304 93 ft 1- Ground elevation at well 2- Top of casing elevation 304 50 ft Flush mount vault 3- Wellhead protection cover type 3 ft x 3 ft b) concrete pad dimensions 3/4-inch PVC 4- Dia /type of well casing 93 O ft 101 3 ft 0 010 slot PVC 5- Type/stot size of screen 6- Type screen filter Filter StI™ -10/20 sand 112 0 ft (Boundary b/t formation sand and Filter Sil™ - 112 ft.) 75 lbs (1 5 bags) a) Quantity used 7- Grout a) Grout mix used Quik Grout™ (100 lbs), 48 gal water Pumped b) Method of placement Approx 140 gal c) Vol. of well casing grout Development method Did not develop 10 ft Development time Did not develop Did not purge (Driller estimated 50 gal of Estimated purge volume water added during PZ installation) Mud weight = 9 4 lbs/gal (not measured) Comments Total Depth (BTOC) = 111 8 ft PZ installed at HY-67A location 3.5 in Note Diagram not to scale

•	CH2MHILL
---	----------

PROJECT NUMBER	WELL NUMBER			
113630.01.ZZ	PZ-8	SHEET 1	OF 1	
WE	II COMPLETION			

THIS PAGE INTENTIONALLY LEFT BLANK.

TAB

AppendixC

TAB

Appendix C Quality Assurance / Quality Control

APPENDIX C

Quality Assurance/Quality Control

Appendix C contains the following:

- C-1: Memphis Depot BRAC Data Quality Evaluation Memorandum
- C-2: Data Quality Evaluation Report–Memphis Depot Screening Sites Project
- C-3: Data Quality Evaluation Report for the Defense Depot Memphis, Tennessee, Remedial Investigation Project
- C-4: Memphis Depot Main Installation RI/FS Data Quality Evaluation

APPENDIX C QUALITY ASSURANCE/QUALITY CONTROL

THIS PAGE INTENTIONALLY LEFT BLANK.

Appendix C-1

THIS PAGE INTENTIONALLY LEFT BLANK.

СКМНІЦ.

Memphis Depot BRAC Data Quality Evaluation

Introduction

Surface and subsurface soil and sediment samples were collected during October 1996 Field QC samples included field duplicates, field blanks, trip blanks (analyzed for VOCs only), equipment rinsate blanks, and matrix spikes. The samples were analyzed for the following analytical fractions

- Volatile organic compounds (VOCs) by SW-846 method 8020
- Volatile organic compounds (VOCs) by SW-846 method 8260
- Semivolatile organic compounds (SVOCs) by SW-846 method 8270
- Organochlorine Pesticides/PCBs by SW-846 method 8080
- Total petroleum hydrocarbons (IR) by EPA method 418 1
- Metals by SW-846 methods 6010, 7470, and 7471

The purpose of the data quality evaluation process (DOEP) is to assess the effect of the overall analytical process on the usability of the data. The two major categories of data evaluation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a straightforward check of compliance with the method requirements, either the laboratory did, or did not, analyze the samples within the limits of the analytical method. Evaluation of matrix interferences is more subtle and involves the analysis of several areas of results including surrogate spike recoveries, matrix spike recoveries, and duplicate sample results.

DQE for the Screening Sites data consisted of the following two principal activities:

- Hard copy "validation" of the EPA Level 3 data packages (as a note, it is not possible to "validate" the EPA Level 2 data because there is no QC summary data to evaluate)
- Database-wide evaluation of the trends in data quality (for example, trends in surrogate spike recovery)

It is important to note that "data validation" is the assessment of the hard-copy data base deliverables in terms of method compliance, and "data quality evaluation" is the qualitative evaluation of overall trends in the project-specific database. Areas evaluated in the DQE include the following.

- Potential "blank contamination" (i.e. the effect on the usability of data for target compounds and analytes detected in both the field or laboratory blank samples and the corresponding field samples)
- Laboratory performance (i.e. recovery for spiked blank samples and other laboratory checks such as calibration and laboratory control samples)
- Matrix interferences (i.e. recovery for spiked field samples)

• Usability of metals results at, or near, the instrument detection limits

This DQE technical memorandum (TM) includes the following

- Results of the database-wide DQE queries (summary tables are included at the end of this report)
- Assessment of the overall usability of the data to support the project decision-making process

The focus of the hard-copy data validation was to review each of the QC summary sheets, note nonconformances on the DV worksheets, qualify the data as appropriate, and summarize the results of this review. These completed worksheets are included in the project file and are available upon request

Data Evaluation Criteria

Before the analytical results were released by the laboratory, both the sample and QC data were carefully reviewed to verify sample identity, instrument calibration, detection limits, dilution factors, numerical computations, accuracy of transcriptions, and chemical interpretations. Additionally, the QC data were reduced and the resulting data were reviewed to ascertain whether they were within the laboratory-defined limits for accuracy and precision. Any non-conforming data were discussed in the data package cover letter and case narrative.

The data EPA level 3 QC packages were reviewed by the project chemists using the process outlined in the Environmental Protection Agency (EPA) guidance document *USEPA CLP National Functional Guidelines for Inorganic (Organic) Data Review* (February, 1994) The data review and validation process is independent of the laboratory's checks and focuses on the usability of the data to support the project data interpretation and decision-making processes. Areas of review included (when applicable to the method) holding time compliance, calibration verification, blank results, matrix spike precision and accuracy, method accuracy as demonstrated by LCSs, field duplicate results, surrogate recoveries, internal standard performance, and interference checks. A data review worksheet was completed for each data package.

Data that were not within the acceptance limits were appended with a qualifying flag, which consists of a single or double-letter abbreviation that reflects a problem with the data. Although the qualifying flags originate during the database query process, they are included in the final data summary tables deliverable so that the data will not be used indiscriminately. The following flags were used in this text.

TABLE C.1-1
Data Qualification Flags
BRAC Data Quality Evaluation
Memphis Depot Main Installation RI

Qualifier	Description
U	Undetected. Analyte was analyzed for but not detected above the method detection limit.
UJ	Detection limit estimated. Analyte was analyzed for and qualified as not detected. The result is estimated.
J	Estimated The analyte was present, but the reported value may not be accurate or precise.
R	Rejected. The data are unusable (NOTE: Analyte/compound may or may not be present)

Inorganic numerical sample results that are greater than the method detection limit (MDL) but less than the laboratory reporting limit (RL) are qualified with a "J" for estimated as required by the EPA Functional Guidelines for Evaluating Data Quality

"R" qualifiers are used to reject data that have been determined unusable during data validation. Poor MS/MSD recovery, poor surrogate recovery, poor laboratory control sample recovery, missed holding times, and gross contamination are some of the cases where "R" qualifiers may be applied to data.

Once the data review and validation process was completed, the entire data set were reviewed for chemical compound frequencies of detection, dilution factors that might affect data usability and patterns of target compound distribution. The data set was also evaluated to identify potential data limitations, uncertainties, or both in the analytical results.

Potential Field Sampling and Laboratory Contamination

Four types of blank samples were used to monitor potential contamination introduced during field sampling, sample handling, shipping activities, as well as sample preparation and analysis.

- Trip Blank (TB) A sample of ASTM Type II water that is prepared in the laboratory prior to the sampling event. The water is stored in VOC sample containers and is not opened in the field, and travels back to the laboratory with the other samples for VOC analysis. This blank is used to monitor the potential for sample contamination during the sample container trip. One trip blank should be included in each sample cooler that contained samples for VOC analysis. Eight trip blanks were submitted to the laboratory with these samples.
- Equipment Rinsate Blank (ERB) A sample of the target-free water used for the final rinse during the equipment decontamination process. This blank sample is collected by rinsing the sampling equipment after decontamination and is analyzed for the same analytical parameters as the corresponding samples. This blank is used to monitor potential contamination caused by incomplete equipment decontamination. One equipment rinsate blank should be collected per day of sampling, per type of sampling equipment. Two equipment rinsate blanks were submitted to the laboratory for analysis.

- Field Blank or Ambient Blank (FB or AB): The field blank is an aliquot of the source water used for equipment decontamination. This blank monitors contamination that may be introduced from the water used for decontamination. One field blank should be collected from each source of decontamination water and analyzed for the same parameters as the associated samples Two field blanks were collected during this sampling event.
- Laboratory Method Blank or Method Blank (MB). A laboratory method blank is an analytefree matrix to which all reagents are added in the same volumes or proportions as used in sample
 processing. The method blank should be carried through the complete sample preparation and
 analytical procedure. The method blank is used to document contamination resulting from the
 analytical process. One method blank was prepared and analyzed for every twenty samples or per
 analytical batch, whichever was more frequent.

Evaluation of QC Blank Results according to the EPA Functional Guidelines, concentrations of common organic contaminants detected in samples at less than ten times the concentration of the associated blanks can be attributed to field sampling and laboratory contamination rather than environmental contamination from site activities. Common organic contaminants include acetone, methylene chloride, 2-butanone (MEK), and the phthalates. For other inorganic and organic contaminants, five times the concentration detected in the associated blanks rather than ten is used to qualify results as potential field and/or laboratory contamination rather than environmental contamination. A detailed list of contaminant found in the field and laboratory blanks is provided in Table C 1-2a. The frequency and range of targets detected in the samples, after qualification based on blank contamination, is provided in Table C 1-2b.

Acetone, 2-butanone, 2-hexanone, and 4-methyl-2-pentanone (ketone family or class) are often associated with equipment rinsate solvents, such as methanol, as solvent contaminants. Incomplete drying of the rinsate solvent can cause carryover of these contaminants. Acetone and methylene chloride are extraction solvents and are common laboratory contaminants. Phthalates are ubiquitous laboratory contaminants. Phthalates are used as plasticizers and are often introduced into samples during handling. Gloves used in the field and the laboratory may contribute to the presence of phthalate compounds. Other apparatus and reagents used in the field and/or laboratory may contain phthalates.

- Acetone (extraction solvent and common lab contaminant) was detected in one equipment rinsate blank, one field blank, three trip blanks, and 11 laboratory method blanks. All acetone detects in the field samples were less than 10 times the level of the associated blanks and were therefore qualified as non-detected (U)
- Methylene chloride (extraction solvent and common lab contaminant) was detected seven laboratory method blanks. Methylene chloride was not detected in any of the field QC samples.
 All methylene chloride detects in the field samples were less than 10 times the level of the associated blanks and were therefore qualified as non-detected (U)
- 2-Butanone (common lab contaminant) was found in one equipment rinsate blank and one field blank. All 2-butanone detects in the field samples were less than 10 times the level of the associated blanks and were therefore qualified as non-detected (U)
- Phthalates are common lab contaminants and were detected in a number of blanks Benzyl butyl phthalate was detected in one laboratory blank Five laboratory method blanks had bis-2-ethylhexyl)phthalate (BEHP) present Diethyl phthalate was detected in one field blank and one equipment rinsate blanks. Additionally, di-n-butyl phthalate (DNBP) was detected in one field blank and eight laboratory blanks. Due to the widespread detection of BEHP and DNBP, global

flags were applied to these samples. Several phthalates were detected in samples greater than 10 times the highest associated blank levels. These results may be anomalies, therefore care should be exercised when using these data.

Phenol was the only other organic compound detected in any blank. It was found in one equipment rinsate blank. Phenol was detected above the MDL in one sample that was not associated with this equipment rinsate blank.

When evaluating any significant amount of data such as this, there may be instances in which common laboratory contaminants are reported at low levels in samples, but are not detected in any associated blank samples. Therefore, they can not be qualified as "U" (undetected) based upon blank evaluation. However, the reported levels of these compounds must be evaluated carefully to determine if they are truly indicative of environmental conditions, or low level contamination from the field or laboratory. Several phthalates (benzyl butyl phthalate, bis(2-etylhexyl phthalate, di-noctylphthalate, and dimethylphalate) were found in samples, but not in the associated blanks and were therefore not qualified as undetected. These are common laboratory contaminants and may possibly be due to low level contamination, rather than environmental conditions. However, several phthalates are present at levels significantly above the report limit. In particular, sample AA0049DL was diluted solely in order to have bis(2-ethylhexyl)phthalate response within the calibration range. These results may be true contaminants, therefore care should be exercised when using these data

A number of metals were detected in various blanks. Many of these metals are ubiquitous at low levels (chromium, copper, nickel, manganese, and lead). Chromium and nickel are associated with alloys of steel. Copper is the primary metal used in conduits, tubing, and some electrical wiring. Lead is associated with many alloys or solder combinations. Other metals such as arsenic, cadmium, selenium, silver, thallium, and mercury are not common contaminants and generally are quantitated just above the MDL and are usually false positives associated with instrument noise. Samples were qualified for metallic blank contamination on an SDG applicable basis and not globally. Any sample concentration falling under the five times blank rule was qualified as not detected.

Matrix Effects

Surrogate Spike Recovery

Surrogate spike compounds were added to every sample analyzed for the organic parameters including field and laboratory blanks as well as field environmental samples. Surrogate spikes consist of organic compounds which are similar to the method targets in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.

Surrogate spike recoveries were used to monitor both laboratory performance and matrix interferences. Surrogate spike recoveries from field and laboratory blanks were used to evaluate laboratory performance because the blanks should represent an "ideal" sample matrix. Surrogate spike recoveries for field samples were used to evaluate the potential for matrix interferences.

Per SW-846, the laboratory should develop in-house performance criteria for surrogate recoveries. Once established, control limits and warning limits for surrogates should be updated at least semi-annually. Table C.1-3 summarizes the VOC, SVOC, and pesticide/PCB surrogate recovery control limits reported by the laboratory, as well as the ranges of reported surrogate recoveries.

Based on the database query, the average VOC recovery was 103.8%. When the laboratory VOC control limits were applied, more than 95% of the recoveries were within laboratory acceptance criteria

488 142

A greater variation (and hence broader range of recoveries) in surrogate spike recovery was observed for the SVOC analyses, but this is typical and is reflected by the broader method target acceptance limits. One sample had extremely low surrogate recovery and was re-extracted with acceptable results. The SVOC acid surrogate recovery averaged 77% recovery. The base-neutral surrogate recovery averaged 84% recovery. Greater than 95% of the surrogate recoveries were within the laboratory acceptance limits.

Surrogate recoveries were not determined for 50 of the organochlorine pesticide/PCB samples due to the dilutions required for quantitation performed for analysis. All results for these samples were flagged as estimated, "J" for detects and "UJ" for non-detects. The measured surrogate recoveries averaged 100.3%. Of these measurable surrogate recoveries, 95% were within laboratory control limits

The organic surrogates recovered within control limits, demonstrating no adverse effects due to the sample matrix.

Matrix Spike Recoveries

Matrix spikes are prepared in order to document the precision and bias of a method in a given sample matrix. For inorganic matrix spikes, three aliquots of a single sample were analyzed; one native sample, one native duplicate, and one sample spiked with target elements. Spike recovery is used to evaluate potential matrix interferences as well as accuracy. Precision is evaluated by the comparison between the native sample and native duplicate results for each target analyte. Three aliquots of a single sample are also analyzed for organic methods, however, utilizing one native and two spiked aliquots. Unlike the surrogate spike compounds, organic matrix spike compounds are found on the method target compound list. Spike recovery is used to evaluate potential matrix interferences as well as accuracy. The duplicate results (MS/MSD or native/Dup.) are compared to evaluate precision

Organic results are not qualified upon the results of MS/MSD results alone. Evaluation is in conjunction with surrogate and internal standard (if applicable) results. Several of the organochlorine pesticide/PCB spikes were diluted due to native concentrations of pesticides and recovery cannot be determined. For the DDMT BRAC effort, the laboratory MS/MSD spiking solutions contained 5 compounds for volatiles, 11 targets for semivolatiles, and 6 compounds for pesticide/PCBs. No organic results required qualification due to the MS/MSD precision and accuracy measurements indicating that the matrix did not influence the method or the final analytical result.

The GC/MS volatile and semivolatile MS/MSD recovery and precision data all fell within laboratory control limits. Two sets of the organochlorine pesticide/PCB spikes (A047MS/SD and A042MS/SD) were diluted due to native contents and recoveries could not be determined. However, the precision of the native compounds was acceptable. The other three sets of OC pesticide/PCB spikes had acceptable recovery and precision, except where native contents were significantly higher than the spike level.

Inorganic results may be qualified solely upon the results of the matrix spike/matrix spike duplicate precision and accuracy. Instances where the native sample concentration for a given element exceeds the spike added concentration by a factor of four or more are disregarded as the spike added would be masked by the native concentration. According to EPA Functional Guidelines, metals recoveries of greater than 30% and outside the 75-125% recovery control limits are required to be flagged as estimated. Precision requirements for soils and waters are at 35 and 20 relative percent difference (RPD), respectively. Lead recovery was below 75% in two spikes. However, the native (A129) for one spike was almost four times the spike level. The matrix spike recovery for sample A106 was 26 percent. The lead detects in samples associated with this spike were qualified as estimated (J) and

non-detects were rejected (R). All inorganic recoveries that exceeded the 75-125% recovery limits are summarized in Table C.1-4. For the other unacceptable recoveries, associated samples were flagged as estimated ("J" for detects and "UJ" for non-detects) due to matrix spike performance.

The precision and accuracy information obtained from the matrix spiking and native duplicate precision indicate that the specific sample matrix did not influence the overall analytical process or the final numerical sample result.

Laboratory and Field Duplicate Sample Results

For soil samples (laboratory and field duplicates), a control limit of \pm 35% for the RPD was used for original and duplicate sample values greater than or equal to five times the RL. A control limit of \pm the two times the RL was used if either the sample or the duplicate value was less than five times the RL. In the cases where only one result is above the five times the RL level and the other is below, the \pm two times the RL criteria were applied.

Laboratory duplicates (LD) are used in inorganic analysis to evaluate precision. Two aliquots of the same sample are separated in the laboratory and analyzed concurrently. According to the EPA *Functional Guidelines*, data are qualified based on laboratory duplicate precision. Table C.1-5a summarizes the laboratory duplicate results that did not meet precision criteria.

Field duplicate analyses measure both field and laboratory precision and can also be affected by the homogeneity of the samples. Therefore the results may have more variability than lab duplicates, which measure only lab performance. According to the EPA *Functional Guidelines*, there are no qualification criteria for field duplicate precision.

There were several sets of field duplicates collected during this field effort. Both the native and duplicate samples were analyzed for the same parameters. Precision criteria were met for all parameters except those listed in Table C.1-5b, demonstrating minimal matrix heterogeneity

ICP Serial Dilution

The serial dilution of samples quantitated by ICP determines whether or not significant physical or chemical interferences exist due to sample matrix. If the analyte concentration is sufficiently high, the serial dilution analysis must agree within a 10% difference of the original determination after correction for dilution.

Two serial dilutions were reported with this sampling event. Results were qualified based on association of the serial dilution to the individual sample delivery groups (SDGs). Aluminum, barium, chromium, cobalt, copper, iron, lead, manganese, sodium, vanadium, and zinc did not meet serial dilution criteria for this sampling event. Associated samples were qualified as estimated (J/UJ).

Samples Requiring Dilution

There are often occasions during the analysis of samples when a dilution may be required for various reasons. Diluting a sample is usually performed to provide more accurate quantitation of the target compounds and to protect the analytical instrumentation. If the concentrations of the target compounds are above the calibration range of the instrument, the sample extract must be diluted in order to obtain an accurate quantitation. Laboratories typically dilute the sample extracts such that the responses of the target compounds are in the upper part of the calibration range. This is done in order to give a clear, strong signal from the detector while providing the lowest possible reporting limits.

488 144

Another reason samples need to be diluted is the presence of non-target compounds and chemical interferences, or matrix effects. Matrix effects can be produced from a variety of sources, including conductivity, pH, organic content, and biota (oils and lipids). Laboratories will often perform a clean-up procedure on the sample extract prior to analysis. Standard clean-up procedures are designed to recover the target compounds, while minimizing or removing interfering non-target compounds; however, interferences can still persist, even after clean-up procedures have been employed.

Some inorganic samples were diluted for selected parameters (calcium, barium, and iron) in order to prevent concentrations from exceeding the instrument linear ranges or when excessive interference was present.

Many organochlorine pesticide/PCB samples required dilutions due to levels of targets present in the samples. Some of these were diluted to a level at which surrogate and spike recoveries could not be determined.

Several semivolatile samples required dilution due to levels of targets present in the samples. In these cases, the laboratory additionally provided data from less diluted analysis, thus providing better report limits for the other compounds.

PARCCs

Precision--is defined as the agreement between duplicate results, and was estimated by comparing duplicate matrix spike recoveries, sample duplicates, as wells as the field duplicate sample results. Other than the documented exceptions, the precision between native and field duplicate sample results were within acceptable criteria for 90% of the measurements indicating that sample matrix did not significantly interfere with the overall analytical process.

Accuracy--is a measure of the agreement between an experimental determination and the true value of the parameter being measured. For the organic analyses, each of the samples was spiked with a surrogate compound, for organic analyses a MS, MSD, and LCS were spiked with a known reference material before preparation, and for inorganic analyses a MS and LCS were spiked with target analytes before preparation. Each of these approaches provides a measure of the matrix effects on the analytical accuracy. The LCS results demonstrate accuracy of the method and the laboratory's to meet the method criteria. MS and MSD results establish precision and accuracy of the matrix. Accuracy can be estimated from the analytical data and was not measured directly. Spike recoveries were within the method acceptance limits in greater than 92% of the measurements. Surrogate recoveries were within acceptance limits in greater than 95% of the measurements. Therefore, other than the documented exceptions, there was no evidence of significant matrix interferences that would affect the usability of the data.

Representativeness—this criteria is a qualitative measure of the degree to which sample data accurately and precisely represent a characteristic environmental condition. Representativeness is a subjective parameter and is used to evaluate the efficacy of the sampling plan design Representativeness was demonstrated by providing full descriptions in the project scoping documents of the sampling techniques and the rationale used for selecting sampling locations

Completeness—is defined as the percentage of measurements that are judged to be valid compared to the to total number of measurements made. Of a total of 15460 validated results (individual compounds or elements), 645 (4.2% of total results) were rejected. Of the rejected data, 644 (99% of rejected results) were attributed to reextracts, reanalysis, or secondary dilutions for the organic parameters (there can only be one valid result for a sample). Only 1 (< 0.01% of total results) result was completely rejected (where no valid result for parameter remains). Therefore, not considering

the rejects based on multiple parameter results, more than 99 percent of the data was determined to be valid

Comparability--is another qualitative measure designed to express the confidence with which one data set may be compared to another. Factors that affect comparability are sample collection and handling techniques, sample matrix type, and analytical method. Comparability is limited by the other PARCC parameters because data sets can be compared with confidence only when precision and accuracy are known. Data from this investigation are comparable with other data collected at the site because only EPA methods were used to analyze the sample and standard EPA Level III QC data are available to support the quality of the data.

Summary and Conclusions

Conclusions of the data quality evaluation process include:

- The laboratory analyzed the samples according to the EPA methods stated in the project plan as demonstrated by the deliverable summaries and analytical run sequences.
- Concentrations of acetone, methylene chloride, 2-butanone, diethyl phthalate, and di-n-butyl
 phthalate can all be attributed to field sampling and/or laboratory contamination rather than
 environmental contamination and all samples results for these parameters were flagged as nondetected for these parameters
- Several phthalates (benzyl butyl phthalate, bis(2-etylhexyl phthalate, di-n-octylphthalate, and dimethylphalate) were found in samples, but not in the associated blanks and were therefore not qualified as undetected. These are common laboratory contaminants and may possibly be due to low level contamination, rather than environmental conditions. However, several of these phthalate compounds are present at levels significantly above the report limits. In particular, sample AA0049DL was diluted solely in order to have bis(2-ethylhexyl)phthalate response within the calibration range. These results may be anomalies, therefore care should be exercised when using these data.
- Sample results for metals above the MDL but less than the RL may be attributed to instrument noise and/or low level contamination and not site-related activities and as such may be false positives due to the inaccuracy at the MDL.
- Many of the validated organochlorine pesticide/PCB field samples were diluted for analysis in
 order to prevent target compounds from exceeding the calibration range. Surrogates were diluted
 out of 50 of these samples and recoveries could not be determined.
- Spike recoveries and duplicate sample results indicate that the specific sample matrix did not significantly interfere with the analytical process for target parameters.

The project objectives or PARCCs were met, and the data can be used in the project decision-making process as qualified by the data quality evaluation process.

Analytes Detected in Field and Laboratory Blanks
Memphis Depot Main Installation Ri

<u> </u>		Sample				Lab	
Sample ID	Matrix	Type	Method	Parameter	Result	Qual	Units
ER1	WQ	EB		ALUMINUM	113	TR	μG/L
FB1	wa	FB		ALUMINUM	82 5	TR	μG/L
FB2	WQ	FB	$\overline{}$	ALUMINUM	156	TR	μG/L
AA0026	wa	EB		ANTIMONY	56	TR	μG/L
FB2	WQ	FB		ANTIMONY	63	TR	μG/L
QCMC168PBS~P	SQ	LB	SW6010	ANTIMONY	0 467	TR	MG/KG
PBS-P	SQ	LB	SW6010	ARSENIC	-0 407	TR	MG/KG
PB\$-P	SQ	LB	SW6010	ARSENIC	-0 407	TR	MG/KG
PB\$-P	SQ	LB		ARSENIC	-0 407	TR	MG/KG
ER1	WQ	€B	SW6010	BARIUM	11	TR	μG/L
AA0026	WQ	EB	SW6010	BARIUM	0.38	TR	μG/L
FB1	WQ	FΒ	SW6010	BARIUM	11	TR	μG/L
FB2	WQ	FB	SW6010	BARIUM	0 24	TR	μG/L
QCMC168PBS~P	SQ	LB		BARIUM	0 036	TR	MG/KG
QCMC181PBS~P	SQ	LB	SW6010	BARIUM	0 076	TR	MG/KG
PBS-P	SQ	LB	SW6010	BARIUM	0 024	TR	MG/KG
PBS~P	SQ	LB		BARIUM	0 024	TR	MG/KG
PBS-P	SQ	LB	SW6010	BARIUM	0 024	TR	MG/KG
QCMC168PBS~P	SQ	LB	SW6010	BERYLLIUM	-0 099	TR	MG/KG
QCMC181PBS-P	SQ	LB	SW6010	BERYLLIUM	-0 099	TR	MG/KG
PBS-P	SQ	LB	SW6010	BERYLLIUM	0 015	TR	MG/KG
PBS-P	SQ	LB	SW6010	BERYLLIUM	0 015	TR	MG/KG
PBS~P	SQ	LB	SW6010	BERYLLIUM	0 015	TR	MG/KG
QCMC181PBW~P	WQ	LB	SW6010	BERYLLIUM	-0 89	TR	μG/L
PBS-P	SQ	LB		CADMIUM	0 018	TR	MG/KG
PBS~P	SQ	LB	SW6010	CADMIUM	0.018	TR	MG/KG
PBS~P	SQ	LB		CADMIUM	0 018	TR	MG/KG
ER1	WQ	EB	SW6010	CALCIUM	864	TR	μG/L
FB1	WQ	FB	SW6010	CALCIUM	805	TR	µG/L
QCMC181PBS~P	SQ	LB	SW6010	CALCIUM	11 028	TR	MG/KG
PBS-P	SQ	LB	SW6010	CALCIUM	6 031	TR	MG/KG
PBS-P	SQ	LB	SW6010	CALCIUM	6 031	TR	MG/KG
PBS~P	SQ	LB	SW6010	CALCIUM	6 031	TR	MG/KG
QCMC181PBW~P	WQ	LB	SW6010	CALCIUM	117 41	TR	μG/L
AA0026	WQ	EB	SW6010	CHROMIUM, TOTAL	0.39	TR	μG/L
FB2	WQ	FB	SW6010	CHROMIUM, TOTAL	0.51	TR	μG/L
PBS~P	SQ	LB	SW6010	COBALT	-0 05	TR	MG/KG
PBS~P	SQ	LB _	SW6010	COBALT	-0 05	TR	MG/KG
PBS~P	SQ	LB	SW6010	COBALT	-0 05	TR	MG/KG
ER1	WQ	EB		COPPER	4.5	TR	μG/L
FB1	WQ	FB	+	COPPER	3.9	TR	μG/L
PBS-P	SQ	LB		COPPER	0 391	TR	MG/KG
PBS-P	SQ	LB		COPPER	0 391	TR	MG/KG
PBS~P	SQ	LB		COPPER	0 391	TR	MG/KG
QCMC181PBW-P	WQ	LB		COPPER	3 24	TR	μG/L
ER1	WQ	EB	SW6010		60 4	TR	μG/L
FB1	WQ	FB	SW6010		47.8	TR	μG/L
QCMC181PBS~P	SQ	LB	SW6010		0 837	TR	MG/KG
PBS-P	SQ	LB	SW6010	· · · · · · · · · · · · · · · · · · ·	-0 424		MG/KG
PBS-P	SQ	LB	SW6010		-0 424		MG/KG
PBS~P	SQ	LB	SW6010		-0 424		MG/KG
QCMC181PBW~P	WQ	LB	SW6010		3 02	TR	µG/L
ER1	WQ	EB		MAGNESIUM	30 6	TR	µG/L
FB1	WQ	FB		MAGNESIUM	18 2	TR	µG/L
QCMC181PBS~P	SQ	LB		MAGNESIUM	2 47	TR	MG/KC
PBS~P	SQ	LB		MAGNESIUM	1 231	TR	MG/KC
PBS~P	SQ	LB		MAGNESIUM	1 231	TR	MG/K0
PBS-P	SQ_	LB		MAGNESIUM	1 231	TR	MG/K
ER1	WQ	EB		MANGANESE	15	TR	μG/L
FB1	WQ	FB		MANGANESE	0.82	TR	µG/L
QCMC168PBS~P	SQ	LB		MANGANESE	-0 038		MG/K
QCMC181PBS~P	SQ	LB		MANGANESE	0 089		MG/K0
PBS~P	SQ	LB		MANGANESE	-0 015		MG/K
PBS-P	SQ	LB		MANGANESE	-0 015		MG/K
PBS-P	SQ	LB		MANGANESE	0 015		MG/K
QCMC181PBW~P	WQ	LB		MANGANESE	0 59	TR	μG/L
	SQ	LB	SW6010	NICKEL	-0 037		MG/K0
PBS-P							
PBS-P PBS-P	SQ	LB		NICKEL	-0 037	_	MG/KC
			\$W6010	NICKEL	-0 037	TR	MG/K0
PBS-P	SQ	LB	SW6010			TR TR	_

TABLE C.1-2a
Analytes Detected in Field and Laboratory Blanks
Memphis Depot Main Installation Ri

PBS-P	sq	LB	SW6010	SILVER	-0 117	TR	MG/KG
PBS-P	SQ	LB	SW6010		-0 117	TR	MG/KG
ER1	WQ	E8		SODIUM	1460	TR	μG/L
FB1	WQ	FB	SW6010	SODIUM	1360	TR	μG/L
FB2	WQ	FB	SW6010		135	TR	μG/L
QCMC181PBS-P	SQ	_ LB	SW6010		17 592	TR	MG/KG
PBS~P	SQ	LB	SW6010		64 424	TR	MG/KG
PBS-P	SQ	LB	SW6010	SODIUM	64 424	TR	MG/KG
PBS-P	SQ	LB	SW6010	SODIUM	64 424	TR	MG/KG
QCMC181PBW-P	WQ	LB	SW6010	SODIUM	332 2	TR	µG/L
ER1	WQ	EB		THALLIUM	24	TR	μG/L
PBS~P	SQ	LB	SW6010	THALLIUM	-0 908	TR	MG/KG
PBS-P	SQ	LB	SW6010	THALLIUM	-0 908	TR	MG/KG
PBS~P	sa	LB		THALLIUM	-0 908	TR	MG/KG
ER1	WQ	E8	SW6010	ZINÇ	4	TR	µG/L
AA0026	WQ	EB	SW6010	ZINC	38	TR	µG/L
FB1	WQ	FB	SW6010		32	TR	µG/L
FB2	WQ	FB	SW6010	ZINC	42	TR	µG/L
QCMC168PBS~P	SQ	LB	SW6010	ZINC	0 471	TR	MG/KG
QCMC181PBS~P	SQ	LB	SW6010		0 295	TR	MG/KG
PBS~P	SQ	LB	SW6010	ZINC	0 19	TR	MG/KG
PBS~P	SQ	LB	SW6010	<u> </u>	0 19	TR	MG/KG
PBS~P	SQ	LB	SW6010		0 19	TR	MG/KG
QCMC181PBW~P	WQ	LB	SW6010		3 04	TR	μG/L
ER1	WQ	EB		MERCURY	0 03	TR	μG/L
FB2	WQ	FB		MERCURY	0 02	TR	μG/L
QCMC168PBS~CV	SQ	LB	SW7471	MERCURY	-0 021	TR	MG/KG
Y11056B2	SQ	LB		2-HEXANONE	5	J	µG/KG
AA0026	WQ	EB		ACETONE	14	=	μG/L
FB2	WQ	FB		ACETONE	26	=	μG/L
Y10266B2	SQ	LB		ACETONE	5	J	μG/KG
QCMC181VBLK8C	SQ	LB		ACETONE	- 8	J	µG/KG
Y10286B1	SQ	LB		ACETONE	8	J	μG/KG
Y10256B1	SQ	LB		ACETONE	12	=	µG/KG
Y10266B2	SQ	LB		ACETONE	5	J	µG/KG
Y10286B1	SQ	LB		ACETONE	8	Ĵ	µG/KG
Y11046B2	SQ	LB		ACETONE	6	J	µG/KG
Y11046B2	SQ	LB		ACETONE	6	- j-	µG/KG
Y11056B2	SQ	LB		ACETONE	10	=	µG/KG
VBLKTS	SQ	LB		ACETONE	2	J	µG/KG
VBLKTU	SQ	LB		ACETONE	4	Ĵ	µG/KG
TB1	WQ	ТВ		ACETONE	10	=	μG/L
TB4	WQ	ТВ		ACETONE	10	=	µG/L
TB6	WQ	TB		ACETONE	9	J	µG/L
AA0026	WQ	EB		METHYL ETHYL KETONE (2-BUTANONE)	3	J	μG/L
FB2	WQ	FB		METHYL ETHYL KETONE (2-BUTANONE)	4	J	µG/L
Y10256B2	SQ	LB	 	METHYLENE CHLORIDE	1	J	µG/KG
Y10266B2	SQ	LB		METHYLENE CHLORIDE	2	J	µG/KG
Y10256B2	SQ	LB		METHYLENE CHLORIDE	1	j	μG/KG
QCMC168VBLK84	SQ	LB		METHYLENE CHLORIDE	1	J	μG/KG
Y10266B2	ŞQ	LB		METHYLENE CHLORIDE	2	J	µG/KG
Y11016B2	SQ	LB		METHYLENE CHLORIDE	1	J	μG/KG
Y11016B2	SQ	LB		METHYLENE CHLORIDE	1	Ĵ	μG/KG
S11076B1	SQ	LB		BENZYL BUTYL PHTHALATE	53	ij	µG/KG
S10216B1	SQ	LB		bis(2-ETHYLHEXYL) PHTHALATE	120	J	µG/KG
				bis(2-ETHYLHEXYL) PHTHALATE	160	ij	µG/KG
	SO	LB	I SW8270				
QCMC168SBLKLV	SQ SQ	LB LB					LuG/KG
QCMC168SBLKLV S11076B1	SQ	LB	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	160	J	µG/KG
QCMC168SBLKLV S11076B1 S10216B1	SQ SQ	LB LB	SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE	160 120	J	μG/KG
OCMC168SBLKLV S11076B1 S10216B1 SBLKEJ	SQ SQ SQ	LB LB LB	SW8270 SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE	160 120 53	J J	μG/KG μG/KG
OCMC168SBLKLV S11076B1 S10216B1 SBLKEJ AA0026	SQ SQ SQ WQ	LB LB LB EB	SW8270 SW8270 SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE DIETHYL PHTHALATE	160 120 53 2	J	μG/KG μ G /KG μG/L
QCMC168SBLKLV S11076B1 S10216B1 SBLKEJ AA0026 FB2	SQ SQ SQ WQ WQ	LB LB LB EB FB	SW8270 SW8270 SW8270 SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE DIETHYL PHTHALATE DIETHYL PHTHALATE	160 120 53 2 5	J	μG/KG μG/KG μG/L μG/L
OCMC168SBLKLV S11076B1 S10216B1 SBLKEJ AA0026 FB2 FB2	SQ SQ SQ WQ WQ	LB LB LB EB FB	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE DIETHYL PHTHALATE DIETHYL PHTHALATE DI-n-BUTYL PHTHALATE	160 120 53 2 5	J J J	μG/KG μG/KG μG/L μG/L μG/L
QCMC168SBLKLV S11076B1 S10216B1 SBLKEJ AA0026 FB2 FB2 QCMC181SBLKLW	SQ SQ SQ WQ WQ WQ	LB LB LB EB FB FB	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE DIETHYL PHTHALATE DIETHYL PHTHALATE DI-n-BUTYL PHTHALATE DI-n-BUTYL PHTHALATE	160 120 53 2 5 1 160	J J J J	μG/KG μG/KG μG/L μG/L μG/L μG/KG
QCMC168SBLKLV S11076B1 S10216B1 SBLKEJ AA0026 FB2 FB2 GCMC181SBLKLW S10216B2	SQ SQ SQ WQ WQ SQ SQ	LB LB LB EB FB FB LB	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE DIETHYL PHTHALATE DIETHYL PHTHALATE DI-n-BUTYL PHTHALATE DI-n-BUTYL PHTHALATE DI-n-BUTYL PHTHALATE DI-n-BUTYL PHTHALATE	160 120 53 2 5 1 160 150	J J J J	pG/KG pG/KG pG/L pG/L pG/KG pG/KG
QCMC168SBLKLV S11076B1 S10216B1 SBLKEJ AA0026 FB2 FB2 QCMC181SBLKLW S10216B2 S10226B1	SQ SQ WQ WQ WQ SQ SQ SQ	LB LB LB EB FB LB LB LB LB	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE DIETHYL PHTHALATE DIETHYL PHTHALATE DI-n-BUTYL PHTHALATE DI-n-BUTYL PHTHALATE DI-n-BUTYL PHTHALATE DI-n-BUTYL PHTHALATE DI-n-BUTYL PHTHALATE	160 120 53 2 5 1 160 150 91))))	pG/KG pG/KG pG/L pG/L pG/KG pG/KG pG/KG
QCMC168SBLKLV S11076B1 S10216B1 SBLKEJ AA0026 FB2 FB2 QCMC181SBLKLW S10216B2 S10226B1 S11076B1	\$Q \$Q \$Q WQ WQ \$Q \$Q \$Q	LB LB EB FB FB LB LB LB LB	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE DIETHYL PHTHALATE DIETHYL PHTHALATE DI-n-BUTYL PHTHALATE	160 120 53 2 5 1 160 150 91 610)))))))	pG/KG pG/KG pG/L pG/L pG/KG pG/KG pG/KG pG/KG
QCMC168SBLKLV S11076B1 S10216B1 SBLKEJ AA0026 FB2 FB2 QCMC181SBLKLW S10216B2 S10226B1 S11076B1 S10286B1	\$Q \$Q \$Q WQ WQ \$Q \$Q \$Q \$Q	LB LB EB FB FB LB LB LB LB LB	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE DIETHYL PHTHALATE DI-n-BUTYL PHTHALATE	160 120 53 2 5 1 160 150 91 610)]]]]]]	pg/Kg pg/Kg pg/L pg/L pg/Kg pg/Kg pg/Kg pg/Kg pg/Kg
QCMC168SBLKLV S11076B1 S10216B1 SBLKEJ AA0026 FB2 FB2 QCMC181SBLKLW S10216B2 S10226B1 S11076B1 S10286B1 S10286B2	\$Q \$Q \$Q WQ WQ \$Q \$Q \$Q \$Q \$Q	LB LB EB FB FB LB LB LB LB LB LB	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE biethyl Phthalate bi-n-butyl Phthalate	160 120 53 2 5 1 160 150 91 610 120 89)]]]]]]	pg/Kg pg/Kg pg/L pg/L pg/Kg pg/Kg pg/Kg pg/Kg pg/Kg pg/Kg
QCMC168SBLKLV S11076B1 S10216B1 SBLKEJ AA0026 FB2 FB2 QCMC181SBLKLW S10216B2 S10226B1 S11076B1 S10286B1	\$Q \$Q \$Q WQ WQ \$Q \$Q \$Q \$Q	LB LB EB FB FB LB LB LB LB LB	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE DIETHYL PHTHALATE DI-n-BUTYL PHTHALATE	160 120 53 2 5 1 160 150 91 610)]]]]]]	pg/Kg pg/Kg pg/L pg/L pg/Kg pg/Kg pg/Kg pg/Kg pg/Kg

TABLE C.1-2b
Frequency of Detects in Samples
Memphis Depot Main Installation Ri

Method	Matrix	Parameter	Number Analyzed	Number Detected	Minimum Detected	Maximum Detected	Units
E418 1	SB	PETROLEUM HYDROCARBONS	7	3	3 2	198	MG/KG
E418 1	SE	PETROLEUM HYDROCARBONS	3	3	1410	5980	MG/KG
E418 1	SS	PETROLEUM HYDROCARBONS	7	6	26 3	1570	MG/KG
SW6010	SB	ALUMINUM	53	53	1800	19500	MG/KG
SW6010	SE	ALUMINUM	3	3	3270	8210	MG/KG
SW6010	SS	ALUMINUM	34	34	1950	15900	MG/KG
SW6010	SE	ANTIMONY	3	3	28 4	1210	MG/KG
SW6010	SS	ANTIMONY	34	10	0 48	48	MG/KG
SW6010	SB	ARSENIC	53	53	19	12 7	MG/KG
SW6010	ŞĒ	ARSENIC	3	2	53	59	MG/KG
SW6010	SS	ARSENIC	34	32	22	50 5	MG/KG
SW6010	SB	BARIUM	53	53	67	176	MG/KG
SW6010	SE	BARIUM	3	3	1120	3650	MG/KG
SW6010	SS	BARIUM	34	34	93	239	MG/KG
SW6010	SB	BERYLLIUM	53	52	0 33	0.85	MG/KG
SW6010	SE	BERYLLIUM	3	1	0 33	0 33	MG/KG
SW6010	SS	BERYLLIUM	34	29	0 02	0 73	MG/KG
SW6010	SB	CADMIUM	53	13	0 26	0 34	MG/KG
SW6010	SE	CADMIUM	3	3	27 2	84 3	MG/KG
SW6010	SS	CADMIUM	34	23	02	6	MG/KG
SW6010	SB	CALCIUM	53	52	691	10900	MG/KG
SW6010	SE	CALCIUM	3	3	15900	79100	MG/KG
SW6010	SS	CHRONIIINA TOTAL	34 53	33 53	479 1 8	104000 48 3	MG/KG MG/KG
SW6010	SB	CHROMIUM, TOTAL				1700	MG/KG
SW6010 SW6010	SE	CHROMIUM, TOTAL	34	34	158 5.5	60.9	
SW6010	SS SB	CHROMIUM, TOTAL	53	53	11	17	MG/KG MG/KG
SW6010	SE	COBALT	3	3	44.4	90 9	MG/KG
SW6010	SS	COBALT	34	34	11	10 7	MG/KG
SW6010	SB	COPPER	53	53	3	20 8	MG/KG
SW6010	SE	ICOPPER	3	3	153	14200	MG/KG
SW6010	SS	COPPER	34	33	2.9	55 8	MG/KG
SW6010	SB	IBON	53	53	3450	24800	MG/KG
SW6010	SE	IRON	3	3	24700	133000	MG/KG
SW6010	SS	IRON	34	34	4870	23000	MG/KG
SW6010	SB	LEAD	53	53	4.6	21 8	MG/KG
SW6010	SE	LEAD	3	3	3110	3820	MG/KG
SW6010	SS	LEAD	34	33	28	372	MG/KG
SW6010	SB	MAGNESIUM	53	53	816	84200	MG/KG
SW6010	SE	MAGNESIUM	3	3	1590	17000	MG/KG
SW6010	SS	MAGNESIUM	34	34	122	5880	MG/KG
SW6010	SB	MANGANESE	53	53	165	2260	MG/KG
SW6010	SE	MANGANESE	3	3	224	739	MG/KG
SW6010	SS	MANGANESE	34	34	34 3	970	MG/KG
SW6010	SB	NICKEL	53	53	33	22 5	MG/KG
SW6010	SE	NICKEL	3	3	29 8	139	MG/KG
SW6010	SS	NICKEL	34	34	23	21 1	MG/KG
SW6010	SB	POTASSIUM	53	47	625	3710	MG/KG
SW6010	SE	POTASSIUM	3	3	173	1400	MG/KG
SW6010	SS	POTASSIUM	34	33	88 7	3360	MG/KG
SW6010	SB	SELENIUM	53	1	13	13	MG/KG
SW6010	SE	SELENIUM	3	2	49 9	182 11 2	MG/KG MG/KG
SW6010	SS	SELENIUM	34	13	0 42	49	MG/KG
SW6010	SE	SILVER	34	1 2	0 25	0.6	MG/KG
SW6010	SS_ SE	SILVER	34	3	804	1750	MG/KG
SW6010	SB	THALLIUM	53	1 1	0 23	0 23	MG/KG
SW6010 SW6010	ŞE	THALLIUM	3	+ ;	21	21	MG/KG
SW6010	SB	VANADIUM	53	53	51	37 4	MG/KG
SW6010	SE	VANADIUM	3	3	01	15 4	MG/KG
SW6010	SS	VANADIUM	34	34	72	37.2	MG/KG
SW6010	SB	ZINC	53	53	99	94 5	MG/KG
SW6010	SE	ZINC	3	3	2550	5570	MG/KG
SW6010	SS	ZINC	34	33	95	263	MG/KG
SW7471	SB	MERCURY	53	2 33	0 37	0.37	MG/KG
SW7471	SE	MERCURY	3	2	0.37	0 67	MG/KG
SW7471	SS	MERCURY	34	24	0 02	21	MG/KG
SW8080	SS	ALPHA-CHLORDANE	76	10	11	1200	μG/KG
	SS	DDD	76	4	22	46	μG/KG
SW8080				. 7			

Method	Matrix	Parameter	Number	Number	Minimum	Maximum	
SW8080	SS	DDE	Analyzed 76	Detected	Detected	Detected	Units
SW8080	SS	DDT	76	40 45	38 92	2300	μG/KG
SW8080	SB	DIELDRIN	56	3	16	3500 47	µG/KG
SW8080	SS	DIELDRIN	76	55	27	10000	μG/KG μG/KG
SW8080	SS	GAMMA-CHLORDANE	76	10	17	1100	μG/KG
SW8080	SS	PCB-1260 (AROCHLOR 1260)	76	2	2300	2900	μG/KG
SW8260	SB	BROMOMETHANE	45	1	2	2	μG/KG
SW8260	SB	CHLOROMETHANE	45	2	1	2	μG/KG
SW8260	SS	CHLOROMETHANE	29	1	1	1	μG/KG
SW8260	SS	TOLUENE	29	3	1	2	μG/KG
SW8270 SW8270	SE	2,4-DIMETHYLPHENOL	4	1	16000	16000	μG/KG
SW8270	SE SE	2-METHYLNAPHTHALENE	4	1	8200	8200	µG/KG
SW8270	SE	4-METHYLPHENOL (p-CRESOL) ACENAPHTHENE	4	1	5100	5100	μG/KG
SW8270	SS	ACENAPHTHENE	39	2	390 130	560	μG/KG
SW8270	SE	ANTHRACENE	4	2	510	3100 1200	µG/KG
SW8270	SS	ANTHRACENE	39	4	57	4700	μG/KG μG/KG
SW8270	SB	BENZO(a)ANTHRACENE	54	3	44	74	μG/KG
SW8270	SE	BENZO(a)ANTHRACENE	4	3	1200	6500	μG/KG
SW8270	SS	BENZO(a)ANTHRACENE	39	12	39	13000	μG/KG
SW8270	SB	BENZO(a)PYRENE	54	2	71	80	μG/KG
SW8270	SE	BENZO(a)PYRENE	4	3	840	5400	μG/KG
SW8270	SS	BENZO(a)PYRENE	39	13	39	12000	µG/KG
SW8270	SB	BENZO(b)FLUORANTHENE	54	2	82	88	μG/KG
SW8270	SE	BENZO(b)FLUORANTHENE	4	3	1400	8700	μG/KG
SW8270	SS	BENZO(b)FLUORANTHENE	39	14	42	12000	μ G/KG
SW8270 SW8270	SB	BENZO(g,h,i)PERYLENE	54	2	44	100	µG/KG
SW8270	SE	BENZO(g,h,i)PERYLENE	4	2	390	2300	μG/KG
SW8270	SB	BENZO(g,h,i)PERYLENE BENZO(k)FLUORANTHENE	39 54	9	37	9100	μG/KG
SW8270	SE	BENZO(k)FLUORANTHENE	4	3	39 1100	81 8100	µG/KG
SW8270	SS	BENZO(k)FLUORANTHENE	39	13	42	11000	μG/KG μG/KG
SW8270	SB	BENZYL BUTYL PHTHALATE	54	1	430	430	μG/KG
SW8270	SS	BENZYL BUTYL PHTHALATE	39	3	42	700	μG/KG
SW8270	SB	bis(2-ETHYLHEXYL) PHTHALATE	54	1	180000	180000	μG/KG
SW8270	SE	bis(2-ETHYLHEXYL) PHTHALATE	4	3	7500	13000	μG/KG
SW8270	\$E	CARBAZOLE	4	2	400	830	μG/KG
SW8270	SS	CARBAZOLE	39	4	35	4000	μG/KG
SW8270	SB	CHRYSENE	54	5	40	93	μG/KG
SW8270	SE	CHRYSENE	4	3	1600	9800	μG/KG
SW8270 SW8270	SS SE	CHRYSENE DIBENZ(a,h)ANTHRACENE	39	15	43	15000	μG/KG
SW8270	SS	DIBENZ(a,h)ANTHRACENE	4 39	3	860 83	860	µG/KG
SW8270	SS	DIBENZOFURAN	39	2	56	4000 1200	μG/KG μG/KG
SW8270	SB	DIMETHYL PHTHALATE	54	1	180	180	μG/KG
SW8270	SS	DI-n-OCTYLPHTHALATE	39	1	120	120	µG/KG
SW8270	SB	FLUORANTHENE	54	5	50	100	μG/KG
SW8270	SE	FLUORANTHENE	4	3	2400	9000	μG/KG
SW8270	SS	FLUORANTHENE	39	17	44	33000	μG/KG
SW8270	SE	FLUORENE	4	2	600	700	μG/KG
SW8270	\$5	FLUORENE	39	2	140	2200	μG/KG
SW8270	SB	INDENO(1,2,3-c,d)PYRENE	54	1	90	90	μG/KG
SW8270	SE	INDENO(1,2,3-c,d)PYRENE	4	1	2200	2200	μG/KG
SW8270 SW8270	SS SE	INDENO(1,2,3-c,d)PYRENE ISOPHORONE	39	7	48	9000	μG/KG
SW8270	SE	NAPHTHALENE	4	1	400	400	μG/KG
SW8270	SS	NAPHTHALENE	39	1	5500 1400	5500 1400	μG/KG
SW8270	SB	N-NITROSODIPHENYLAMINE	54	1	1400	1400	μG/KG μG/KG
SW8270	SS	PENTACHLOROPHENOL	39	1	94	94	μG/KG
SW8270	SB	PHENANTHRENE	54	3	49	69	μG/KG
SW8270	SE	PHENANTHRENE	4	3	1900	6700	μG/KG
SW8270	SS	PHENANTHRENE	39	14	43	23000	μG/KG
SW8270	SE	PHENOL	4	1	760	760	μG/KG
CIATOOTO	SB	PYRENE	54	. 5	44	90	μG/KG
SW8270							
SW8270 SW8270	SE SS	PYRENE PYRENE	4 39	3 16	2200 46	9700 26000	μG/KG μG/KG

TABLE C.1.3
Surrogate Recovery Control Limits
Memphis Depot Main Installation RI

Surrogate Compound	Laboratory Soil Control Limits (%)	Range Based on Actual Sample Recoveries
4-Bromofluorobenzene (VOC)	74 – 141	
Dibromofluoromethane (VOC)	80 – 120	82 – 127%
Toluene-d8 (VOC)	81 – 117	
Tetrachloro-m-xylene (Pest/PCB)	43 – 116	70 – 130%
Decachlorobiphenyl (Pest/PCB)	44 – 128	70 - 130%
2-Fluorophenol (SVOC)	25 – 121	A and
Phenol-d5 (SVOC)	24 – 113	Acid 13 – 140%
2,4,6-Tribromophenol (SVOC)	19 – 122	13 = 140%
2-Fluorobiphenyl (SVOC)	30 – 115	Base-Neutral
Nitrobenzene-d5 (SVOC)	23 – 120	10 - 143%
Terphenyl-d14 (SVOC)	18 – 137	10 - 143%

TABLE C.1-4
Inorganic Matrix Spike Recoveries Outside Control Limits
Memphis Depot Main Installation RI

	Sample		Matrix Spike	Native Conc /
Method	ID	Parameter	Recovery (%)	Spike Added
SW6010	A106	Lead	26	1 14
SW6010	A106	Manganese	135	3.59
SW6010	A106	Thallium	69	0.00
SW6010	A106	Zinc	67	3.60
SW6010	A109	Antimony	61	0.03
SW6010	A109	Manganese	58	2 16
SW6010	A129	Antimony	59	0.05
SW6010	A129	Arsenic	67	0 04
SW6010	A129	Lead	-38	3.66
SW6010	A129	Selenium	61	0 00
SW6010	A129	Thallium	60	0 00
SW6010	A129	Zinc	186	3.81

Note

Bolded values indicate that the native contamination of the given element was greater than four times the concentration of the spike added. The matrix spike recoveries for these elements are disregarded, because the spike added concentration was masked by the native concentration.

TABLE C.1-5A
Laboratory Duplicate Precision Outside Control Limits
Memphis Depot Main Installation RI

Sample								Diff of Sample &	Criteria to
ID	Parameter	Lab Resul	lt	Lab Dup Re	sult	UNITS	RPD	LD	evaluate
A106	Aluminum	3690	= :	2503.49	=	MG/KG	38.31%	1186 511	use RPD
A106	Barium	63.1	=	40.347	=	MG/KG	43 99%	22.753	use RPD
A106	Calcium	104000	=	64518.64	=	MG/KG	46.86%	39481.362	use RPD
A129	Calcium	5700	=	10330 45	=	MG/KG	57.77%	4630 446	use RPD
A106	Соррег	15 5	=	24 960	=	MG/KG	46 76%	9 460	use RPD
A129	Iron	7730	=	13169 87	=	MG/KG	52 06%	5439 868	use RPD
A106	Lead	58.8	=	25.354	=	MG/KG	79.49%	33 446	use RPD
A129	Lead	201	=	124 940	=	MG/KG	46 67%	76 060	use RPD
A106	Magnesium	4700	=	2802.38	=	MG/KG	50 59%	1897 619	use RPD
A129	Magnesium	1420	=	4761 50	=	MG/KG	108 11%	3341 498	use RPD
A106	Manganese	186	=	124 995	=	MG/KG	39 23%	61 005	use RPD
A109	Manganese	113	=	69 907	=	MG/KG	47 12%	43 093	use RPD
A129	Nickel	4 2	TR	8 703	=	MG/KG	69 80%	4.5031	use RPD
A106	Sodium	091	TR	93.668	TR	MG/KG	196 15%	92 758	use +/-
A129	Zinc	212	=	380 582	=	MG/KG	56 90%	168 582	use RPD

TABLE C.1-5BField Duplicate Precision Outside Control Limits *Memphis Depot Main Installation RI*

Method	Parameter	Sample ID	FD Sample ID	Sampl Resul	- 1	FD Resul	t	Units	RPD	Diff of Sample & FD	Criteria to evaluate
SW6010	Arsenic	A106	DUP9	6.2	J	3.4	J	MG/KG	58 33%	2 8	use RPD
SW6010	Arsenic	A97	DUP8	4.1	J	5 9	J	MG/KG	36 00%	18	use RPD
SW6010	Barium	A106	DUP9	63 1	J	39 3	J	MG/KG	46.48%	23 8	use RPD
SW6010	Beryllium	A106	DUP9	0 16	J	0 11	J	MG/KG	37 04%	0 1	use RPD
SW6010	Beryllium	A97	DUP8	0 29	J	0.51	J	MG/KG	55 00%	02	use RPD
SW6010	Calcium	A129	DUP11	5700	J	8940	J	MG/KG	44 26%	3240 0	use RPD
SW6010	Calcium	A97	DUP8	19000	J	65000	J	MG/KG	109.52%	46000.0	use RPD
SW6010	Magnesium	A129	DUP11	1420	J	3910	J	MG/KG	93 43%	2490.0	use RPD
SW6010	Magnesium	A97	DUP8	2230	J	5880	J	MG/KG	90.01%	3650 0	use RPD
SW6010	Manganese	A109	DUP3	113	J	64.6	J	MG/KG	54 50%	48 4	use RPD
SW6010	Nickel	A106	DUP9	13 2	=	72	=	MG/KG	58.82%	6.0	use RPD
SW6010	Nickel	A109	DUP3	5	=	34	J	MG/KG	38 10%	16	use RPD
SW6010	Zinc	A97	DUP8	42	J	64.2	J	MG/KG	41.81%	22 2	use RPD
SW8080	DDT	A23	DUP4	81	J	250	=	UG/KG	102.11%	169.0	use +/-
SW8080	Dieldrin	A36	DUP1	5600	J	1800	J	UG/KG	102.70%	3800 0	use +/-

Appendix C-2

THIS PAGE INTENTIONALLY LEFT BLANK.

Data Quality Evaluation (DQE) Report DDMT Screening Sites Project

Introduction

Surface and groundwater, soil and sediment samples and the corresponding QC samples were collected and submitted to the analytical laboratory for analysis of the following parameters:

- Volatile organic compounds (VOCs) by SW-846 method 8260A
- Semivolatile organic compounds (SVOCs) by SW-846 method 8270B
- Pesticides and polychlorinated biphenyl (PCBs) by SW-846 method 8081
- Herbicides by SW-846 method 8151
- Polynuclear aromatic hydrocarbons (PAHs) by SW-846 method 8100
- Phenols by SW-846 method 8040
- Dioxins and Furans by SW-846 method 8280
- Metals by SW-846 methods 6010 and 7000 series
- pH by EPA method 150.1 (water) and SW-846 method 9045 (solids)
- Fluoride by EPA method 340.2

Field QC included duplicate field samples, trip blanks (analyzed for VOCs only), and equipment rinsate blanks, and field blanks.

The samples were submitted to the laboratory in 51 groups; therefore, there are 51 sample delivery groups (SDGs). All the samples were analyzed using SW-846 methods; however, the laboratory provided EPA Level 2 QC data packages for 23 of the SDGs and EPA Level 3 QC data packages for 28 of the SDGs. EPA Level 2 data packages included the sample results and corresponding laboratory method blank results; EPA Level 3 data packages also included a summary of the QC data (for example, calibration and spiked sample results).

The purpose of the data quality evaluation process (DQEP) is to assess the effect of the overall analytical process on the usability of the data. The two major categories of data evaluation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a straight-forward check of compliance with the method requirements; either the laboratory did, or did not, analyze the samples within the limits of the analytical method. Evaluation of matrix interferences is more subtle and involves the analysis of several areas of results including surrogate spike recoveries, matrix spike recoveries, and duplicate sample results.

DQE for the Screening Sites data consisted of the following two principal activities:

- Hard copy "validation" of the EPA Level 3 data packages (as a note, it is not possible to "validate" the EPA Level 2 data because there is no QC summary data to evaluate)
- Database-wide evaluation of the trends in data quality (for example, trends in surrogate spike recovery)

It is important to note that "data validation" is the assessment of the hard-copy data base deliverables in terms of method compliance, and "data quality evaluation" is the qualitative evaluation of overall trends in the project-specific database. Areas evaluated in the DQE include the following:

- Potential "blank contamination" (i.e. the effect on the usability of data for target compounds and analytes detected in both the field or laboratory blank samples and the corresponding field samples)
- Laboratory performance (i.e. recovery for spiked blank samples and other laboratory checks such as calibration and laboratory control samples)
- Matrix interferences (i.e. recovery for spiked field samples)
- Usability of metals results at, or near, the instrument detection limits

This DQE technical memorandum (TM) includes the following:

- Results of the database-wide DQE queries (summary tables are included at the end of this report)
- Assessment of the overall usability of the data to support the project decision-making process

The focus of the hard-copy data validation was to review each of the QC summary sheets, note nonconformances on the DV worksheets, qualify the data as appropriate, and summarize the results of this review. These completed worksheets are included in the project file and are available upon request

Data Evaluation Criteria

Before the analytical results were released by the laboratory, both the sample and QC data were carefully reviewed to verify sample identity, instrument calibration, detection limits, dilution factors, numerical computations, accuracy of transcriptions, and chemical interpretations. Additionally, the QC data were reduced and the resulting data were reviewed to ascertain whether they were within the laboratory-defined limits for accuracy and precision. Any non-conforming data were discussed in the data package cover letter and case narrative.

The EPA Level 3 QC data packages were reviewed by the project chemists using the method acceptance criteria and the process outlined in the EPA *Functional Guidelines*. Samples that were not within the acceptance limits were annotated with a qualifying flag, which consists

of a single or multi-letter abbreviation that indicates a QC nonconformance associated with that analytical result. Although the qualifying flags originate during the data review and validation process, they are included in the data summary tables so that the data will not be used indiscriminately. The following flags were used in the DQEP:

TABLE C.2-1
Data Qualification Flags
Memphis Depot Main Installation RI

Qualifier	Description
J	Estimated. The analyte was present, but the reported value may not be accurate or precise.
U	Undetected. Analyte was analyzed for but not detected above the method detection limit
R	Rejected. The data are unusable. (Analyte/compound may or may not be present)
UJ	Undetected, but the reporting limit is estimated

Once the data review and validation process for the EPA Level 3 QC data was completed, the entire data set was reviewed for target compound/analyte frequency of detection, dilution factors that might affect data usability, and patterns of target compound/analyte distribution. The data set was also evaluated to identify potential data limitations, uncertainties, or both in the analytical results.

Potential Field Sampling and Laboratory Contamination

Types of QC Blank Samples

Three types of field blank samples were used to monitor potential contamination introduced during field sampling and sample handling activities.

- Trip Blank (TB)(VOCs only). A sample of ASTM Type II water was prepared by the laboratory and it accompanied the sample coolers from the field to the lab. This blank monitors potential contamination introduced during sample handling and shipping For this project, one trip blank was submitted with each cooler containing samples for VOC analysis. A total of 14 TBs were submitted to the laboratory for this field effort.
- Equipment Rinsate Blank (ERB): Consists of a sample of the ASTM Type II water used
 as the final rinse during equipment decontamination. This blank sample is collected by
 rinsing a piece of equipment after decontamination is completed and is analyzed for the
 same analytical parameters as the corresponding samples. This blank monitors potential
 contamination caused by incomplete equipment decontamination
- Field Blank (FB): Consists of a sample of the source water used to decontaminate the
 field sampling equipment and at least one FB was collected from each source of water.
 Typically there are 2 types of FBs: one a sample of the tap water used to steam-clean the
 equipment and a second sample of the ASTM Type II water used for the final equipment

rinse. FBs are analyzed for the same parameters as the corresponding samples. Two FBs were submitted to the laboratory for this field effort.

Laboratory method blanks (LBs) were also analyzed with each analytical batch. For water samples, a laboratory method blank is ASTM Type II water that is treated as a sample in that it undergoes the same analytical process as the corresponding field samples. For soil samples, the laboratory method blank may consist of a sample of EPA-approved soil (Ottawa desert sand). Method blanks are used to monitor laboratory performance and potential contamination introduced during the analytical process. One method blank was analyzed for every 20 samples, or one per analytical batch, whichever was more frequent.

Evaluation of QC Blank Results

Summarized in Table C 2-2 are the frequency of detection, and the minimum and maximum concentration for target compounds. Also included in Table C.2-2 are the frequency of detection, and minimum and maximum concentration for target compounds that were also detected in the field samples. For example, methylene chloride is included in Table C.2-2 because it was detected in the field and laboratory blank samples as well the field samples. However, phenanthrene was detected in selected field samples and not any of the field or laboratory blanks; therefore, phenanthrene is not included in this table.

According to the EPA Guidance Manual, Functional Guidelines for Evaluating Data, field sample results that were less than five (ten for common contaminants) times the concentration in the corresponding blank sample can be qualified as "U" for not detected. No qualifiers are applied to the blank sample results.

- Acetone was detected in one of the 14 trip blanks (11 ug/L) and 6 of the 86 laboratory blanks at concentrations ranging from 13 to 15 ug/kg. Acetone is used as an extraction solvent in the laboratory and is a common contaminant. Acetone was detected in the field samples at frequencies and concentrations comparable to the field and laboratory blank samples. Therefore, acetone should be attributed to laboratory contamination and not environmental conditions.
- Bis(2-ethylhexyl)phthalate was detected in 4 of the 42 laboratory soil blanks at
 concentrations ranging from 360 to 660 ug/kg. Phthalates are commonly used as
 plasticizers and are field sampling and laboratory contaminants. Bis(2ethylhexyl)phthalate was detected in the field samples at frequencies and
 concentrations comparable to the laboratory blank samples. Therefore, bis(2ethylhexyl)phthalate should be attributed to laboratory contamination and not
 environmental conditions.
- The samples were analyzed for dioxins and furans using EPA method SW-846/8290 which is a sensitive method with low method detection and reporting limits. Concentrations of dioxins and furans were detected in the field and laboratory blank samples as well as the field samples. Dioxins and furans are not considered to be common field sampling or laboratory contaminants; therefore, the 5X rule is used to evaluate the environmental sample results. Low concentrations of dioxins and furans can be attributed to background or instrument noise and are not indicative of

environmental conditions. Concentrations of dioxins and furans greater than 5X the concentration in the corresponding field and laboratory blank samples are representative of environmental conditions

- Concentrations of metals near the instrument detection limit (IDL) and less than the
 project-specific reporting limits were detected in some of the QC blank samples. These
 results are typically indicative of instrument background and not field sampling or
 laboratory contamination. Negative numbers were reported by the laboratory for
 selected blank and field sample results. Negative numbers associated with atomic
 spectroscopy methods of analysis results from one of, or a combination of two, possible
 situations:
- Instrument noise: Variation in signal intensity is the <u>primary</u> reason that negative numbers are reported. Any calibration curve associated with atomic spectroscopy utilizes a calibration blank. "Blank" is assigned a "zero concentration" when the calibration curve is computed. Because "blank" does not have an analyte signal, instrument noise, slight variations in detection devices, stray light, or background corrections can elicit a quantitative response different from the "blank". These responses can and often are, slightly negative absorbencies or emission intensities, which when compared to the curve, yield negative concentrations. The absolute value of these negative concentrations are compared to the instrument (IDL) or method detection limit (MDL); both the IDL and MDL are calculated rather than demonstrated values and hence have an inherent inaccuracy. If the absolute value of the negative sample result is greater than these reporting limits, then the negative value is reported.
- Calibration Blank Contamination: Any contaminant present in the blank during calibration will artificially set "zero" at the contaminant concentration. Any samples analyzed after the calibration blank which contain less contamination than the calibration blank will result in a negative value as the sample result. This is not a common situation and occurs mostly with zinc and copper, two ubiquitous contaminants.

QC Measures

Surrogate Spike Recoveries

Surrogate spike compounds were added to every sample analyzed for the organic parameters including field and laboratory blanks as well as field environmental samples. Surrogate spike compounds are the structural homologs of target compounds and are therefore expected to behave in a similar manner during analysis. Surrogate spike recoveries were used to monitor both laboratory performance and matrix interferences. Surrogate spike recoveries from field and laboratory blanks were used to evaluate laboratory performance because the field blanks represent an "ideal" sample matrix. Surrogate spike recoveries for field samples were used to evaluate the potential for matrix interferences. There are no graphs for dioxins and furans because no surrogate compounds were added to the sample. Internal standards are used in place of surrogate spike compounds.

 IABLE C 2-2

 Compounds of Results for Target Compounds Detected in both Helds

 Memphs Depot Main Installation RI

			Blank Sarr	Blank Sample Results	<u>s</u> ,			Field Sampte Results	ste Results			Comments
:		Blank	•	Min	Max	1	Sample		M G	Max		The state of the s
Welhod	larget Compound Acetone	EB EB	5/6	13	2 2	194 194	SW	3/4	100	17	1/6rt	Field sampling and faboratory confamination
		87	1/10	41		J/grl	SS	13/24	13	220	μg/kg	Values > 160 reflect environmental conditions
		87	8723	13	16	ng/kg	SO	1/1	95		ŋg∕kg	Field sampling and laboratory contamination
							SB	35/79	16	120	₽9/kg	Field sampling and laboratory contamination
	2 Bulanone	E8	2/6	17	22	η⁄δή	SS	2/24	22	8	trg/kg	Field sampling and laboratory contamination
							SB	1/79	14		₽g⁄kg	
svoc	Bis(2-ethylhexyl) phthalate	87	1/12	360		trg/kg	SB	11/48	430	2800	βγ⁄βπ	Field sampling and taboratory contamination
Metais	Alvminum	EB	5/5	51	34	ng∕L	SW	4/4	64	576	hg/t	Values > 170 µg/L or 17 mg/kg may reflect environmental condutions
		F7	1/8	4	4	ηδ/L	SW (D)	9/9	2	81	ηση.	
		81	4/6	2.8	3.4	mg/kg	SS	5/2	6390	15600	mg/kg	
							88	21/21	6070	20400	т9/кд	
	Antimony	EB	3/6	2.0	3.2	1∕6rl	SW	13/15	7	36	hg/L	Values > 15 µg/L or 1 5 mg/kg may reflect environmental contamination
		9	9/8	187	227	µg/L	SW (D)	11/17	19	36	η/βπ	
							SS	4/26	0.26	7	mg/kg	
							SB	35/81	0.25	22	тд/ка	
	Arsenc	9	4/11	-0 4	-03	mg/kg	MS.	11/15	26	1	1/64	Values > 10 µg/L or 1 0 mg/kg may reflect environmental contamination
							(a) ws	13/17	18	41	ηδη.	
							SS	26/26	17	49	mg/kg	
							SB	81/81	13	43	mg/kg	
	:											
	Barium	E8	5/5	0.35	1.9	1/6rt	SW	4/4	55 88	15	µg/L	Values > 20 µg/L or 0.4 mg/kg may be environmental and/or native background tevels
		£	1/1	6.7		ηδ/L	SW (D)	9/9	3.8	15	nô,r	
		67	8/8	0.27	1 36	rg/L	SS	5/5	8	168	mg/kg	
		r.B	9/9	0 031	9200	mg/kg	SB	21/21	64	88	mg/kg	

C 29

ATU147543/APPENDICES/APP C//TableC_2 2 xls

Comparison of Results for Target Compounds Defected in both Fields Memphis Depot Main Installation Ri

Mark Sample Min Max Mark Frequency Conc Conc Units 118 µg/L SW 1/15 0.11 20 µg/L 22 SW (D) 3/17 0.10 0.16 µg/L 23 4/26 0.11 20 mg/kg 24 SW (D) 3/17 0.10 0.16 µg/L 25 4/26 0.11 20 mg/kg 25 11/26 0.21 14 µg/L 26 mg/kg SS 11/126 0.21 14 µg/L 27 mg/kg SS 11/126 0.17 ng/L ng/L 28 1µg/L SW (D) 14/17 0.49				CHANG SALIDIE DESCRIP		4				•		
Target Compound Type Frequency Conc Conc Units Benythum Lib Sep 0.11 0.19 pyll SS 4.07 0.11 0.10		Blank		M.	Max		Sample		E S		ļ	1
L8 568 011 019 199L SW 1/15 011 101					Conc	Units	Matrix	Frequency	Conc		- 1	
18 28 016 029 140L 5W (D) 141L5 010 016 140L				0.11	0 19	µ9/L	MS	1/15	0 11		ng/L	Values > 1 0 µg/L or 0 1 mg/kg may reflect environmental contamination
LB 2/8 0 16 0 29 19JL 5/W 14/15 0 27 mg/kg 13/R1 0 17 0 27 mg/kg 14/15 0 17 0 17 mg/kg 14/15 0 17 0 18 mg/kg 14/15 0 18							SW (D)	3/17	0 10	0 16		
18 28 016 029 191 SW 14/15 02 14 191 18 13/11 022 022 190 12/17 017 013 192 192 192 182 11/126 031 25 192 193 19							SS	4/26	0 11	20		
LB 2/8 016 029 µg/L SW 14/15 02 14 µg/L LB 3/11 022 022 mg/kg SW 12/17 017 013 19/1 EB 5/5 6/6 2 324 µg/L SW 14/15 017 5/8 mg/kg LB 6/8 071 073 µg/L SW 15/15 072 19 µg/L LB 6/8 071 073 µg/L SW 15/15 072 19 µg/L LB 6/8 0.66 0.88 µg/L SW 15/15 0.72 19 µg/L LB 6/8 0.67 µg/L SW 14/17 0.99 13 µg/L LB 6/8 0.66 0.88 µg/L SW 15/15 0.96 14 µg/L LB 6/8 0.66 0.88 µg/L SW 15/15 0.96 14 µg/L LB 6/8 0.66 0.88 µg/L SW 15/15 0.96 14 µg/L LB 6/8 0.66 0.88 µg/L SW 15/15 0.96 14 µg/L EB 4/6 12 4 µg/L SW 15/15 0.96 17 µg/L EB 4/6 12 4 µg/L SW 15/15 0.96 17 µg/L EB 1/1 3 3 µg/L SW 15/15 0.96 17 µg/L EB 1/1 3 3 µg/L SW 15/15 0.96 17 µg/L EB 1/1 3 3 µg/L SW 15/15 0.96 17 µg/L EB 1/1 3 3 µg/L SW 15/15 0.96 17 µg/L EB 1/1 3 3 µg/L SW 15/15 0.96 17 µg/L EB 1/1 3 3 µg/L SW 15/15 0.96 17 µg/L EB 1/1 3 3 µg/L SW 15/15 0.96 17 µg/L EB 1/1 3 3 µg/L SW 15/15 0.96 17 µg/L EB 1/1 2 3 3 µg/L SW 15/15 2.4 1.03 µg/L EB 1/1 2 3 3 µg/L SW 15/15 2.4 1.03 µg/L EB 1/1 2 3 3 µg/L SW 15/15 2.4 1.03 µg/L EB 1/1 2 3 3 µg/L SW 15/15 2.4 1.03 µg/L EB 1/1 2 3 3 µg/L SW 15/15 2.4 2.5 µg/L EB 1/1 2 3 3 µg/L SW 26/26 4 1 103 µg/L EB 1/1 2 3 3 µg/L SW 26/26 4 1 103 µg/L EB 1/1 2 3 3 µg/L SW 26/26 4 1 103 µg/L EB 1/1 2 3 3 µg/L 2 2 2 2 2 2 2 2 2							SB	13/81	0 03	0.27		
LB 2/B 0 16 0 29 Hg/L SW 14/15 0 2 14 Hg/L LB 3/11 0 22 0 22 mg/Mg SW 11/126 0 13 2 5 mg/Mg EB 3/11 0 22 0 22 mg/Mg SS 11/26 0 13 2 5 mg/Mg EB 5/5 66 2 324 µg/L SW 4/4 2490 9680 µg/L LB 66 2 324 µg/L SW 4/4 2490 9680 µg/L LB 8/6 1/1 64 1/2 58 mg/Mg LB 8/7 1/2 SW 1/2 86 1/2 1/2 LB 6/6 3 4 7 µg/L SW 1/4 0 66 1/2 µg/L 1/4 1/4 0 69 1/4 µg/L 1/4 1/4 0 66 1/4 1/4 1/4 1/4 1/4 1/4 1												
LB 311 0.22 0.22 mp/s SS 11/26 0.31 2.6 mp/s EB 5/5 66.2 3.24 µg/L SW (D) 6/6 2.290 90-80 µg/L LB 8/8 11 77 µg/L SW (D) 6/6 2.290 90-80 µg/L LB 8/8 11 77 µg/L SS 5/5 95-4 1110 mg/kg LB 8/8 11 77 µg/L SS 5/5 95-4 1110 mg/kg LB 8/8 11 77 µg/L SW 15/15 805 1g/L LB 6/6 3 4 µg/L SW (D) 14/17 0.49 1g/L LB 6/11 0 7 7 µg/L SW (D) 14/17 0.69 1g/L LB 6/11 0 7 7 µg/L SW (D) 14/4 0.66 1g/L	Cadmium			0 16	0.29	1/6#	Sw	14/15	0.2	4	ng/L	Values > 1 5 µg/L or 0 5 mg/kg may reflect environmental contamination
EB 5/5 66 2 324 µg/L SW 4/4 2490 9080 µg/L FB 1/1 64 µg/L SW (D) 4/4 2490 9080 µg/L LB 8/8 1/1 64 µg/L SW (D) 4/4 2490 9080 µg/L LB 8/8 1/1 64 1/2 µg/L SW (D) 4/4 2490 9080 µg/L LB 8/8 1/1 66 30 4.7 mg/kg SB 5/121 805 2750 mg/kg LB 6/11 0.03 4.7 mg/kg SB 28/25 6.8 3.5 1/2 µg/L LB 6/11 0.03 0.29 mg/kg SS 28/25 6.8 3.16 mg/kg LB 6/1 0.68 0.81 µg/L SW (D) 14/17 0.49 1.9 1/2 LB 6/1 0.66 0.88 µ		B7		0.22	0 22	тужд	SW (D)	12/17	0 17	0.53		
EB 5/5 66 Z 324 µg/L SW (D) 4/4 2490 0980 µg/L LB 8/8 1/1 77 µg/L SW (D) 6/6 2230 9620 µg/L LB 8/8 1/1 77 µg/L SW (D) 6/6 2750 9620 µg/L LB 6/6 3/0 4/7 µg/L SW (D) 6/6 2750 µg/L N/D 9520 µg/L N/D			i				SS	11/26	0.31	25		
EB 5/5 66.2 32.4 µg/L SW (D) 6/6 2290 9080 µg/L LB 1/1 64 µg/L SW (D) 6/6 2290 9620 µg/L LB 8/8 1/1 77 µg/L SS 5/5 95.4 1100 µg/L LB 8/6 30 47 mg/Mg SB 21/21 805 2750 µg/L LB 5/8 0.71 0.73 µg/L SW (D) 14/17 0.49 13 µg/L LB 5/8 0.71 0.73 µg/L SW (D) 14/17 0.49 13 µg/L LB 6/11 0.09 0.29 mg/Mg SS 26/26 6.8 316 µg/L LB 6/11 0.73 µg/L SW (D) 14/17 0.66 14 µg/L LB 6/1 0.66 0.88 µg/L SW (D) 6/6 0.68 10							SB	28/81	0 17	5.8	тд/ка	
FB 1/1 64 µg/L SW (D) 666 2290 9620 µg/L LB 6/6 30 47 mg/L SS 5/5 954 11100 mg/Lg LB 6/6 30 47 mg/L SS 5/5 954 11100 mg/Lg EB 6/6 30 47 mg/L SW 15/15 805 2750 mg/Lg LB 6/6 071 073 µg/L SW 15/15 072 19 µg/L LB 6/11 0.03 0.23 mg/kg SS 26/26 6.8 336 mg/kg LB 6/11 0.03 0.23 mg/kg SS 26/26 6.8 336 mg/kg EB 3/5 0.48 0.67 µg/L SW 10 6.6 0.68 19 14/1 19 1/2 EB 3/5 0.48 0.67 µg/L SW <t< td=""><td>Calcum</td><td></td><td></td><td>66.2</td><td>324</td><td>ng/L</td><td>SW</td><td>4/4</td><td>2490</td><td></td><td></td><td>Values > 500 µg/L or 50 0 mg/kg may be environmental and/or native background levels</td></t<>	Calcum			66.2	324	ng/L	SW	4/4	2490			Values > 500 µg/L or 50 0 mg/kg may be environmental and/or native background levels
LB B/B 11 77 Hg/L SS 5/5 954 11100 mg/sg LB B/B 30 47 mg/kg SB 21/21 805 2750 mg/kg LB S/B 071 073 Hg/L SW 14/17 0.49 13 Hg/L LB 6/11 0.09 0.29 mg/kg SS 26/26 6.8 336 mg/kg LB 6/11 0.09 0.29 mg/kg SS 26/26 6.8 336 mg/kg LB 6/11 0.09 0.29 mg/kg SS 26/26 6.8 336 mg/kg LB 6/3 0.66 0.88 µg/L SW SW 6 0.66 114 µg/L EB 4/6 6.3 6.6 0.68 10 117 µg/L FB 1/1 SW 15/15 2.4 2.2 µg/L FB <t< td=""><td></td><td>FB</td><td></td><td>64</td><td></td><td>1/6rt</td><td>Sw (D)</td><td>9/9</td><td>2290</td><td>9620</td><td></td><td></td></t<>		FB		64		1/6rt	Sw (D)	9/9	2290	9620		
EB 36 47 mg/kg SB 21/21 805 2750 mg/kg EB 3/6 07 75 µg/L SW 15/15 0.72 19 µg/L LB 6/11 0.09 0.29 mg/kg SS 26/26 6.8 336 mg/kg EB 3/5 0.48 0.67 µg/L SW 4/4 0.66 14 µg/L LB 6/8 0.66 0.88 µg/L SW 0 66 14 µg/L EB 4/6 1.2 4 µg/L SW 15/15 5 83 mg/kg FB 1/1 3 3 µg/L SW 15/15 6 83 mg/kg FB 1/1 3 1 <		87		=	77	ηδη.	SS	5/2	954	110	•	
EB 38 077 75 µg/L SW 15/15 072 19 µg/L LB 5/8 071 073 µg/L SW (D) 14/17 049 13 µg/L LB 6/11 009 029 mg/kg SS 26/26 68 336 mg/kg SB 81/81 95 915 mg/kg LB 6/8 066 089 µg/L SW (D) 6/6 068 10 µg/L EB 4/6 12 4 µg/L SW (D) 17/17 099 171 µg/L FB 1/1 3 3 µg/L SW (D) 17/17 099 171 µg/L FB 1/1 3 3 µg/L SW (D) 17/17 099 171 µg/L FB 1/1 3 3 µg/L SS 28/26 41 103 mg/kg SB 6/16 17 23 mg/kg		B1		30	4.7	mg/kg	SB	21/21	802	2750		
EB 386 077 75 µg/L SW (D) 14/17 0.49 13 µg/L LB 6/11 0.09 0.29 mg/kg SS 26/26 6.8 336 mg/kg EB 3/5 0.48 0.67 µg/L SW (D) 6/6 0.68 1.4 µg/L LB 6/8 0.66 0.88 µg/L SW (D) 6/6 0.68 1.0 µg/L EB 4/6 1.2 4 µg/L SW (D) 6/6 6.8 1.0 µg/L FB 1/1 3 3 µg/L SW (D) 6/6 6.8 1.0 µg/L FB 1/1 3 1												
LB S/B 0 71 0 73 lg/L SW (D) 14/17 0 49 13 lg/L LB 6/11 0 09 0 29 mg/kg SS 26/26 6 8 336 mg/kg EB 3/5 0 48 0 67 lg/L SW 4/4 0 66 1 4 lg/L LB 6/8 0 66 0 88 lg/L SW 6/6 0 68 1 0 lg/L EB 4/6 1 2 4 lg/L SW 15/15 2 4 22 lg/L FB 1/1 3 1 g/L SW 15/15 2 4 22 lg/L FB 1/1 3 1 g/L SW 1 1/7/7 0 99 17 1 lg/L FB 1/1 3 1 g/L SS 26/26 4 1 103 mg/kg FB 1/1 3 1 g/L SW 1 1/7 0 99 17 1 1 g/L FB	Chromum, to			0.7	7.5	J/6rl	MS	15/15	0.72	19	иду	Values > 15 µg/L or 1 5 mg/kg may reflect environmental contamination
LB 6/11 0.09 0.29 mg/kg SS 26/26 6.8 336 mg/kg EB 3/5 0.48 0.67 µg/L SW 4/4 0.66 14 µg/L LB 6/8 0.66 0.88 µg/L SW 5/5 5.0 8.3 mg/kg EB 4/6 1.2 4 µg/L SW 5/5 5.0 8.3 mg/kg FB 1/1 3 3 µg/L SW 15/15 2.4 2.2 µg/L FB 1/1 3 3 µg/L SW 15/15 2.4 2.2 µg/L LB 7/8 1.04 SS 26/25 4.1 109/L 109/L FB 1/1 3 3 µg/L SS 28/25 4.1 103 mg/kg FB 1/1 3 10/L SS 28/25 4.1 103 mg/kg RB		BJ FB		0.71	0.73	ηδη	SW (D)	14/17	0.49	13		
EB 335 048 067 µg/L SW 444 066 114 µg/L SS 5/5 5 0 83 mg/kg EB 4/6 12 4 µg/L SW (D) 17/17 099 17 1 µg/L FB 1/104 2.06 µg/L SW (D) 17/17 099 17 1 µg/L Mg/L SS 5/5 5 0 83 mg/kg EB 1/6 12 4 µg/L SW 15/15 24 22 µg/L SW (D) 17/17 099 17 1 µg/L SS 5/6 SS 6/6 Mg/L Mg/L SS 5/6 SS 6/6 Mg/L Mg/L SW (D) 17/17 099 17 1 µg/L SS 5/6 SS 6/6 Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L		en n		600	0.29	mg/kg	SS	26/26	89	336	ļ	
EB 3/5 0.48 0.67 μg/L SW (D) 6/6 0.66 14 μg/L LB 6/3 0.66 0.88 μg/L SS 5/5 5.0 8.3 πg/Rg EB 4/6 1.2 4 μg/L SW (D) 6/6 0.68 1.0 μg/L FB 1/1 3 3 μg/L SW (D) 6/6 0.68 1.0 μg/L FB 1/1 3 3 μg/L SW (D) 17/17 0.99 17/1 μg/L LB 7/8 1.04 2.06 μg/L SS 28/2 4.1 103 mg/Kg RB 7/8 1.04 2.06 μg/L SS 28/2 4.1 103 mg/Kg							SB	81/81	9.5	915		
LB 6/8 0 66 0 88 llg/L SW (D) 6/6 0 68 10 lng/L SS 5/5 5/5 5 8 3 mg/kg EB 4/6 1 4 lng/L SW (D) 17/17 0 99 17 1 lng/L FB 1/1 3 3 lng/L SW (D) 17/17 0 99 17 1 lng/L LB 7/8 1 0 2 6 4 1 103 mg/kg SB 81/81 7 235 mg/kg	Coball	EB		0.48	290	1⁄6rl	SW	4/4	99 0	4-	J/gv/	Values > 5 0 µg/L or 1 0 mg/kg may reflect environmental contamination
SS 5/5 50 83 mg/kg SB 21/21 63 10 mg/kg SB 1/1 1 mg/kg SB 21/21 63 10 mg/kg SB 1/1 1 mg/kg SB 21/21 63 10 mg/kg SB 21/21 1 mg/kg SB 21/21 2 mg/kg SB 21/21 1 mg/kg SB 21/21 mg/kg SB 21/2		ГB		990	0.88	Иgц	SW (D)	9/9	0 68	10	1/6rt	
EB 4/6 12 4 µg/L SW 15/15 24 22 µg/L FB 1/1 3 3 µg/L SW (D) 17/17 0.99 17 1 µg/L LB 7/8 1.04 2.06 µg/L SS 28/26 4.1 103 mg/kg							SS	5/5	20	83	тд/ка	
EB 4/6 12 4 µg/L SW 15/15 24 22 µg/L FB 1/1 3 3 µg/L SSW (D) 17/17 0.99 17.1 µg/L LB 7/8 1.04 2.06 µg/L SS 28/26 4.1 103 mg/kg SS 28/26 4							SB	21/21	63	10	тд/ка	
EB 4/6 12 4 µg/L SW 15/15 24 22 µg/L FB 1/1 3 3 µg/L SW(D) 17/17 0 99 17 1 µg/L LB 7/8 1 04 2 06 µg/L SS 26/26 4 1 103 mg/kg SS 26/26 2 3 2 3 mg/kg SS 26/26 4 1 103 mg/kg SS 26/26 4 1												
778 1 04 2 06 1497L SS 26/26 41 103 SB 81/81 7 235	Соррег	EB		12	4	µ9/L	SW	15/15	2.4	22	µg/L	Values > 15 µg/L or 1 5 mg/kg may reflect environmental and/or native background levels
778 1 04 2 06 µg/l. SS 26/26 4 1 103 SB 81/81 7 235		FB		3	3	η∂/L	SW (D)	17/17	660	171		
81/81 7 235		ПВ		2	2 06	µg/L	SS	26/26	4	£01		
							SB	81/81	7	235		

TABLE C 2-2 Companson of Results for Targal Compounds Detacted in Uath Fields Memphis Depat Main Installation Ri

					ľ					ſ	
		Btank Sa	Blank Sample Results	ts			Field Sample Results	ple Result			Comments
Method Target Compound	Blank Type	Frequency	Conc	Max Conc	Units	Sample Matrix	Frequency	Min Conc	Max Conc	Units	"Indicative of "
	83	5/5	24	88	μg/L	MS	4/4	77	835	1/6rl	Values > 150 µg/L or 7 5 mg/kg may reflect environmental and/or nalive background levels
	FB	1/1	30	30	μg/L	SW (D)	9/9	27	253	1/6ri	
	r _B	8/8	5.6	82	μg/L	SS	2/2	12800	44500	mg/kg	
	rB	9/9	14	1.5	mg/kg	SB	21/21	\$5000	28000	mg/kg	
Мадпезічт	EB	3/5	4. 9	Ξ	μg/L	SW	4/4	286	1580	rg/	Values > 500 µg/L or 50 mg/kg may reflect environmental and/or native background levels
	87	6/8	2.0	13	μg/L	SW (D)	9/9	213	1620	ng/L	
	FB	1/6	0 58		тд/кд	SS	5/2	929	2630	mg/kg	
						SB	21/21	2090	3410	тд/кд	
Manganese	8	5/5	17.0	2 4	µ9/L	NS.	4/4	89	83	hg/L	Values > 10 µg/L or 1 0 mg/kg may reflect environmental and/or native background levets
	E.	1/1	0.94		идЛ	SW (D)	9/9	23	21	µg/L	
	118	6/8	190		J/G/L	SS	5/5	150	499	mg/kg	
	8T	9/9	900	-0	mg/kg	SB	21/21	405	1350	тgЛkg	
Mercury	89	1/4	0 04		1/6/1	SW	9/15	0.04	0 18	μg/L	Values > 0 3 µg/L or 0 15 mg/kg may reflect environmental contamination
	B .	2/8	0 046	0 054	1∕6ri	SW (D)	9/17	0 04	80 0	μg/L	
	18	2/12	0.01	0.01	mg/kg	SS	5/26	0 02	0.1	mg/kg	
						SB	4/81	0.04	900	mg/kg	
Nicket	EB	5/6	5	23	76d	SW	13/15	13	81	1,6rt	Values > 15 µg/L or 1 5 mg/kg may reflect environmental contamination
						SW (D)	9/17	14	46	ηδη	
					-	SS	26/26	3.2	59	mg/kg	
						SB	81/81	4 4	76	mg/kg	
Potassium	9	378	-844	845	µ9/L	SW	2/4	1910	2730	ng/L	Values > 1000 µg/L or 100 mg/kg may reflect environmental and/or native background levels
						SW (D)	4/6	751	2580	1/6/1	
						SS	5/5	1230	3090	mg/kg	
	ļ					SB	21/21	1550	3280	mg/kg	
	_										

4

F (2)

ATU147543/APPENDICES/APP C//TableC 2.2 xls

 TABLE C 2-2

 Comparison of Results for largel Compounds Detected in both Fields

 Memphis Depot Main Installation RI

		:	Blank Sample Resutts	nple Resul	Į.			Field Sam	Field Sample Results			Comments
		Blank		Z.	Мах		Sample		Min	Max		
Method	Target Compound	Type	Frequency	Conc	Conc	Units	Matrix	Frequency	Conc	Conc	Units	"Indicative of "
	Selenum	£B	3/5	1.5	2.7	1/6rt	MS	10/15	4-	38	µg/t.	Values > 10 µg/L or 1 0 mg/kg may reflect environmental contamination
		97	5/8	26	42	정	Sw (D)	10/17	17	36	µg∕L	
							SS	1/26	0.31		mg/kg	
					:		SB	4/81	0.24	0.43	т9/ка	
	Sodium	6 3	5/5	88	203	пøл	MS	4/4	456	1080	hg/L \	Values > 500 µg/L or 50 mg/kg may reflect environmental and/or native background levels
		FB	1/1	180	180	ηбη	(a) MS	9/9	419	206	µg∕L	
		87	9/9	84	87	mg/kg	SS	3//5	55	150	mg/kg	
							SB	18/21	24	t01	mg/kg	
	Thallum	89	2/5	13	13	yg/L	SW	4/15	19	25	J∕g4	Values > 10 µg/L or 1 0 mg/kg may reflect environmental contamination
·		rB	4/8	141	141	7/6rl	SW (D)	71.17	14	2.9	µ9∕L	
							SB	1/81	960		mg/kg	
	Zinc Zinc	69	9/9	39	40	µ9∕L	MS	15/15	54	467	אסגר י	Values > 50 µg/L or 5 0 mg/kg may reflect environmental and/or native background levels
		FB	1/1	106		λ6η	SW (D)	17/17	13	406	µg∕t.	
		E7	8/8	2.0	=	μg/L	SS	26/26	21	4000	mg/kg	
		en .	6/11	0.20	1.7	mg/kg	SB	81/81	31		mg/kg	
Notes												
SW surface water			TB Trip blank									
SW (D) dissofved rr	SW (D) dissolved metals in surface water		EB Equipment rinsate blank	sate blank								
SB sub-surface soil from soil boring	il from soit boring		FB Field blank									
SO soil sample			LB laboratory method blank	thod blank								
SS surface soil								٠				

TABLE C.2-3
Laboratory-specific QC Target Acceptance Limits
Memphis Depot Main Installation RI

Fraction Spike Type VOC Surr MS/MSD SVOC Surr	Parameter Dibromofluoromethane Toluene-d8 Bromofluorobenzene 1,1-Dichloroethene	Water 86-118	Soil
	Dibromofluoromethane Toluene-d8 Bromofluorobenzene 1,1-Dichloroethene	86-118	00 1 00
	Toluene-d8 Bromofluorobenzene 1,1-Dichloroethene		021-08
	Bromofluorobenzene 1,1-Dichloroethene Benzene	88-110	81-117
	1,1-Dichloroethene Benzene	86-115	74-121
	Benzene	61-145	61-145
		76-127	76-127
	Trichloroethene	71-120	71-120
	Toluene	76-125	76-125
	Chlorobenzene	75-130	75-130
	2-Fluorophenol	21-100	25-121
	Phenol-d5	10-94	24-113
	Nitrobenzene-d5	35-114	23-120
	2-Fluorobiphenyl	43-116	30-115
	2,4,6-Tribromophenol	10-123	19-122
	Terphenyl-d14	33-141	18-137
MS/MSD	Phenol	12-110	26-90
	2-Chlorophenol	27-123	23-102
	1,4-Dichlorobeznene	36-97	28-104
	N-Nitrosodi-n-propylamine	41-116	41-126
	1,2,4-Trichlorobenzene	39-98	38-107
	4-Chloro-3-methylphenol	23-97	26-103
	Acenapthene	46-118	31-137
	4-Nitrophenol	10-80	11-114
	2,4-Dinitrotoluene	24-96	28-89
	Pentachlorophenol	9-103	17-109
	Pyrene	26-127	35-142

TABLE C.2-3
Laboratory-specific QC Target Acceptance Limits
Memphis Depot Main Installation RI

Analytical	:			
Fraction	Spike Type	Parameter	Water	Soil
Pest/PCB	Sur	Decachlorobiphenyl	42-108	44-128
		Tetrachloro-m-xylene	36-123	43-116
	MS/MSD	4 4'-DDT	30-135	42-149
		Aldrin	30-122	37-136
		Dieldrin	45-134	39-154
		Endrin	38-145	51-150
		gamma-BHC (lindane)	31-126	35-133
		Heptachlor	25-121	47-124
Herbicides	Surr	Dichlorophenylacetic acid	28-132	41-158
	MS/MSD	2,4,5-T	57-161	7-220
		2,4-D	64-135	13-190
		2,4-DB	53-167	40-186
		2,4-DP (Dichloroprop)	20-180	4-164
		3,5-Dichlorobenzoic acid	37-141	39-103
		4-Nitrophenol	12-191	0-142
		Dalapon	2-120	0-126
		Dicamba	48-158	26-166
		Dinoseb	0-192	0-247
		MCPA	32-124	0-180
		MCPP	37-156	0-180
		Pocloram	0-194	0-107
		Silvex (2,4,5-TP)	68-129	43-147

TABLE C.2-3
Laboratory-specific QC Target Acceptance Limits
Memphis Depot Main Installation RI

Analytical				
Fraction	Spike Type	Parameter	Water	Soil
PAHs	Surrogate	Terphenyl-d14	38-113	49-122
	MS/MSD	Naphthalene	37-98	62-125
-		Acenaphthylene	41-99	60-124
		Acenaphthene	40-108	971-99
		Fluorene	54-106	99-152
		Phenanthrene	53-112	081-59
		Anthracene	53-107	60-120
		Fluoranthene	54-114	181-29
		Pyrene	50-114	64-138
		Benzo(a)anthracene	59-122	72-138
		Chrysene	53-126	70-147
		Benzo(b)fluoranthene	911-73	71-134
		Benzo(k)fluoranthene	37-144	58-144
		Benzo(a)pyrene	53-102	60-116
		Indeno(1,2,3-c,d)pyrene	43-117	64-143
		Dibenzo(a,h)anthracene	34-113	65-136
		Benzo(g,h,l)perylene	31-120	64-144
		2,3-Benzofuran	NR	NR

MS/MSD Results for Selected Analytical Fractions Memphis Depot Main installation RI TABLE C.2-4

Matrix	Parameter	QC Limits	RHA-110-MS	RHA-110-MSD	RPD
SW	1,1-Dichloroethene	61-145	126	120	5
	Benzene	76-127	122	122	0
	Chlorobenzene	75-130	112	114	2
	Toluene	76-125	112	114	2
	Trichloroethene	71-120	110	112	2
SW	1,2,4-Trichlorobenzene	39-98	77	89	27
	1,4-Dichlorobenzene	36-97	40	99	33
	2,4-Dinitrotoluene	24-96	8/	88	12
	2-Chlorophenol	27-123	90	74	21
	4-Chloro-3-methylphenol	23-97	65	74	13
	4-Nitrophenol	10-80	30	33	10
	Acenapthene	46-118	60	72	18
	N-Nitroso-di-n-propylamine	41-116	99	88	29
	Pentachlorophenol	9-103	60	62	ဗ
	Phenol	12-110	30	41	31
	Pyrene	26-127	78	80	က
SW	4,4'-DDT	30-135	91	93	2
	Aldrin	30-122	87	81	7
	Dieldrin	45-134	102	101	-
	Endrin	38-145	106	104	2
	gamma-BHC (Lındane)	31-126	88	82	7
	Heptachlor	25-121	89	86	3
SS	2,4,5-T	7-220	177	200	12
	2,4-D	13-190	128	153	18
	2,4-DB	40-186	150	155	3
	2,4-DP (Dichloroprop)	4-164	70	78	11
	Dalapon	39-103	39	34	14
	Dicamba	0-142	159	206	26
	Dinoseb	0-126	53	54	2
	MCPA	0-180	57	68	18
	MCPP	0-180	52	64	21
	Silvex (2,4,5-TP)	68-129	124	126	2

TABLE C.2-5
Duplicate Field Sample Results Summary
Memphis Depot Main Installation RI

Sample :	Method #	Sample ID	Parameter	Native Result	Duplicate Result	Units	RPD
SB	SW6010	RHA007	ARSENIC			-	
SB	SW6010	RHA007		84	81	mg/kg	4%
SB	SW6010		CHROMIUM, TOTAL	24 7	11 4	mg/kg	74%
SB	SW6010	RHA007 RHA007	COPPER	16 4	163	mg/kg	1%
SB	SW6010		LEAD	91	84	mg/kg	8%
SB		RHA007	NICKEL	18 1	17.4	mg/kg	4%
SB	SW6010	RHA007	ZINC	50 4	49 1	mg/kg	3%
SB	SW6010	RHA009	ARSENIC	78	77	mg/kg	1%
SB	SW6010	RHA009	CHROMIUM, TOTAL	24 6	268	mg/kg	9%
SB	SW6010	RHA009	COPPER	17	15 2	mg/kg	11%
SB	SW6010	RHA009	LEAD	87	83	mg/kg	5%
SB	SW6010	RHA009	NICKEL	17 7	17	mg/kg	4%
ŞB	SW6010	RHA009	ZINC	43 4	416	mg/kg	4%
SS	\$W8100	RHA020	BENZÓ(g,h,i)PERYLENE	73	100	μg/kg	31%
SS	SW8100	RHA020	FLUORANTHENE	100	240	µg/kg µg/kg	82%
SS	SW8100	RHA020	INDENO(1,2,3-c,d)PYRENE	88	120	pg/kg pg/kg	31%
SS	SW8100	RHA020	PHENANTHRENE	89	160	pg/kg pg/kg	57%
SS	SW8100	RHA020	PYRENE	76	170	pg/kg pg/kg	76%
SS	SW8080	RHA020	DDT	77	30	pg/kg pg/kg	88%
SS	SW8080	RHA020	DIELDRIN	62	50	μg/kg μg/kg	21%
ss	SW6010	RHA020	ARSENIC	17.1	15.6	mg/kg	9%
SS	SW6010	RHA020	CADMIUM	2	13	mg/kg	42%
SS	SW6010	RHA020	CHROMIUM, TOTAL	336	164	mg/kg	69%
SS	SW6010	RHA020	COPPER	48 9	67.9	, 	33%
SS	SW6010	RHA020	LEAD	1580	563	mg/kg	95%
				16 4	32	mg/kg	64%
SS	SW6010 SW6010	RHA020 RHA020	NICKEL ZINC	693	369	mg/kg	61%
33	2446010	HPIAU2U	ZINC	693	309	mg/kg	1017/
SB	SW8260	RHA030	ACETONE	16	32	μg/kg	67%
ŞB	SW6010	RHA030	ARSENIC	108	9	mg/kg	18%
SB	SW6010	RHA030	CHROMIUM, TOTAL	12.8	27 4	mg/kg	73%
SB	SW6010	RHA030	COPPER	18.8	16 5	mg/kg	13%
SB	SW6010	RHA030	LEAD	13 5	11 1	mg/kg	20%
SB	SW6010	RHA030	NICKEL	17.7	16 8	mg/kg	5%
SB	SW6010	RHA030	ZINC	60 8	55 3	mg/kg	9%
SS	SW8100	RHA039	ANTHRACENE	320	220	μg/kg	379
SS	SW8100	RHA039	BENZO(a)ANTHRACENE	850	760	pg/kg	119
SS	SW8100	RHA039	BENZO(a)PYRENE	730	710	μg/kg	3%
SS	SW8100	RHA039	BENZO(b)FLUORANTHENE	660	700	μg/kg	6%
SS	SW8100	RHA039	BENZO(g,h,i)PERYLENE	490	520	μg/kg	6%
SS	SW8100	RHA039	BENZO(k)FLUORANTHENE	680	720	μg/kg	6%
SS	SW8100	RHA039	CHRYSENE	760	710	μg/kg	7%
SS	SW8100	RHA039	FLUORANTHENE	1800	1500	µg/kg	189
SS	SW8100	RHA039	FLUORENE	300	260	µg/kg	149
SS	SW8100	RHA039	INDENO(1,2,3-c,d)PYRENE	730	740	µg/kg	1%
ss	SW8100	RHA039	PHENANTHRENE	1200	930	µg/kg	25%
SS	SW8100	RHA039	PYRENE	1300	1200	μg/kg	8%
ss	SW6010	RHA039	ARSENIC	10.9	11 3	mg/kg	4%
SS	SW6010	RHA039	CHROMIUM, TOTAL	51 3	77.2	mg/kg	409
ss	SW6010	RHA039	COPPER	27 9	27	mg/kg	3%
SS	SW6010	RHA039	LEAD	340	505	mg/kg	399
SS	SW6010	RHA039	NICKEL	16 3	16 3	mg/kg	0%
SS	SW6010	RHA039	ZINC	182	205	mg/kg	129
SS	SW8080	RHA045	DDT	300	390	μg/kg	269
		1	1	!	 		
	SW8080	RHA056	DDE	620	520	μα/ka !	18%
SS SS	SW8080 SW8080	RHA056 RHA056	DDE DDT	620 1800	520 1700	μg/kg μg/kg	18% 6%

TABLE C.2-5
Duplicate Field Sample Results Summary
Memphis Depot Main Installation RI

Sample Matrix	Method #	Sample iD	Parameter	Native Result	Duplicate Result	Units	RPD
SS	SW8100	RHA067	PHENANTHRENE	76	79	μg/kg	4%
SS	SW8100	RHA067	PYRENE	64	72	µg/kg	12%
SS	SW8080	RHA067	ALPHA-CHLORDANE	15	71	pg/kg	71%
SS	SW8080	RHA067	DDE	36	24	,	40%
SS	SW8080	RHA067	DDT	85	42	µg/kg µg/kg	68%
SS	SW8080	RHA067	GAMMA-CHLORDANE	15	7.4	µg/kg	68%
SB	SW6010	RHA076	ARSENIC	86	8.9		20/
SB	SW6010	RHA076	CHROMIUM, TOTAL	11.7	11.8	mg/kg	3% 1%
SB	SW6010	RHA076	COPPER	16.2	16.5	mg/kg	
SB	SW6010	RHA076	LEAD	93	96	mg/kg	2% 3%
SB	SW6010	RHA076	NICKEL	17.3	17	mg/kg	
SB	SW6010	RHA076	ZINC	51	52 5	mg/kg mg/kg	2% 3%
SB	SW6010	RHA082	ADOENIO				
SB	SW6010		ARSENIC	9.8	11	mg/kg	12%
SB	SW6010	RHA082	CHROMIUM, TOTAL	10.2	11 9	mg/kg	15%
SB	SW6010	RHA082	COPPER	16.6	18 5	mg/kg	11%
SB	SW6010	RHA082	LEAD	11	13 1	mg/kg	17%
SB	SW6010 SW6010	RHA082	NICKEL	18	19 8	mg/kg	10%
30	ONOUN	RHA082	ZINC	55 2	59 5	mg/kg	7%
SB	SW8260	RHA092	ACETONE	17	17	μg/kg	0%
SB	SW8080	RHA092	DDE	56	11	μg/kg	65%
SB	SW8080	RHA092	DDT	. 15	31	μg/kg	70%
SB	SW6010	RHA092	ANTIMONY	1	12	mg/kg	18%
SB	SW6010	RHA092	ARSENIC	69	85	mg/kg	21%
SB	SW6010	RHA092	CHROMIUM, TOTAL	13	14	mg/kg	7%
SB	SW6010	RHA092	COPPER	15.8	17 1	mg/kg	8%
SB	SW6010	RHA092	LEAD	8.5	94	mg/kg	10%
SB	SW6010	RHA092	NICKEL	18	18 6	mg/kg	3%
SB	SW6010	RHA092	ZINC	44 9	53 6	mg/kg	18%
ws	SW7470	RHA102	MERCURY	0.06	0 04	μg/L	40%
ws	SW6010	RHA102	ALUMINUM	147	81 2	μα/L	58%
ws	SW6010	RHA102	BARIUM	5.8	5	μg/L	15%
ws	SW6010	RHA102	CADMIUM	0.38	0 22	µg/L	53%
ws	SW6010	RHA102	CALCIUM	2490	2440	μα/L	2%
ws	SW6010	RHA102	CHROMIUM, TOTAL	12	1 4	+	15%
ws	SW6010	RHA102	COBALT	11	0.84	µg/L	27%
ws	SW6010	RHA102	COPPER	4.4	3 4	μg/L ug/l	
ws	SW6010	RHA102	IRON	306	245	μg/L μα/L	26% 22%
ws	SW6010	RHA102	LEAD	52	245	 	67%
ws	SW6010	RHA102	MAGNESIUM	286	271	µg/L	5%
WS	SW6010	RHA102	MANGANESE	167	14 6	μg/L	13%
ws	SW6010	RHA102	SODIUM	456	483	pg/L pg/L	6%
WS	SW6010	RHA102	THALLIUM	22	13	µg/L	51%
ws	SW6010	RHA102	VANADIUM	1	076	μg/L	27%
ws	SW6010	RHA102	ZINC	34 6	31 2	µg/L	10%
ws	E415 2	RHA102	TOTAL ORGANIC CARBON	23	26	MG/L	12%
WE	CIMCOAO	BUAAAA	A. (
ws ws	SW6010 SW6010	RHA110	ALUMINUM	64	49.8	µg/L	25%
WS		RHA110	BARIUM	12 7	12 1	µg/L	5%
WS	SW6010	RHA110	CHRONIUM TOTAL	8370	8150	µg/L	3%
WS	SW6010 SW6010	RHA110 RHA110	CHROMIUM, TOTAL COBALT	1 4 0 66	1 2 0 86	μg/L μg/L	15% 26%
ws	SW6010	RHA110	COPPER	91	66	μg/L	32%
ws	SW6010	RHA110	IRON	417	432	hg/L	4%
ws	SW6010	BHA110	MAGNESIUM	1580	1570	,	1%
ws	SW6010	RHA110	MANGANESE	68 4	69.8	µg/L	2%
ws	SW6010	RHA110	NICKEL	33	36	µg/L	
ws	SW6010	RHA110	POTASSIUM	2730	2540	µg/L	9% 7%
ws	SW6010	RHA110	SELENIUM	14	2540	µg/L µg/L	70%

TABLE C.2-5 Duplicate Field Sample Results Summary Memphis Depot Main Installation RI

Sample Matrix	Method #	Sample ID	Parameter	Native Result	Duplicate Result	Units	RPD
WS	SW6010	RHA110	SODIUM	1080	993	µg/L	8%
ws	SW6010	RHA110	VANADIUM	0.81	0 69	µg/L	16%
ws	SW6010	RHA110	ZINC	61 3	70 2	μg/L	14%
ws	E415 2	RHA110	TOTAL ORGANIC CARBON	59	6	MG/L	2%
SB	SW8080	RHA154	ALPHA-CHLORDANE	12	16	μg/kg	29%
SB	SW8080	RHA154	GAMMA-CHLORDANE	11	16	ug/kg	37%
SB	SW6010	RHA154	ARSENIC	93	89	mg/kg	4%
SB	SW6010	RHA154	CHROMIUM, TOTAL	13 1	117	mg/kg	11%
SB	SW6010	RHA154	COPPER	16	159	mg/kg	1%
SB	SW6010	RHA154	LEAD	94	99	mg/kg	5%
SB	SW6010	RHA154	NICKEL	17 3	18	mg/kg	4%
SB	SW6010	RHA154	ZINC	55 8	51 7	mg/kg	8%
SB	SW8260	RHA164	ACETONE	37	30	μg/kg	21%
SB	SW6010	RHA164	ALUMINUM	12200	14300	mg/kg	16%
SB	SW6010	RHA164	ANTIMONY	0 25	0.35	mg/kg	33%
SB	SW6010	RHA164	ARSENIC	89	10 1	mg/kg	13%
SB	SW6010	RHA164	BARIUM	121	159	mg/kg	27%
SB	SW6010	RHA164	CADMIUM	0 25	0 29	mg/kg	15%
SB	SW6010	RHA164	CALCIUM	1500	1410	mg/kg	6%
SB	SW6010	RHA164	CHROMIUM, TOTAL	14 6	15 4	mg/kg	5%
SB	SW6010	RHA164	COBALT	81	7.8	mg/kg	4%
SB	SW6010	RHA164	COPPER	163	18 6	mg/kg	13%
SB	SW6010	RHA164	IRON	20200	20700	mg/kg	2%
SB	SW6010	RHA164	LEAD	10	11 2	mg/kg	11%
SB	\$W6010	RHA164	MAGNESIUM	2370	2590	mg/kg	9%
SB	SW6010	RHA164	MANGANESE	445	504	mg/kg	12%
ŞB	SW6010	RHA164	NICKEL	18	17.5	mg/kg	3%
SB	SW6010	RHA164	POTASSIUM	2530	2650	mg/kg	5%
SB	SW6010	RHA164	VANADIUM	29 1	31 7	mg/kg	9%
SB	SW6010	RHA164	ZINC	52 8	57 4	rng/kg	8%
SB	SW8260	RHA173	ACETONE	18	16	μg/kg	12%
SB	SW6010	RHA173	ALUMINUM	12000	10500	mg/kg	13%
SB	SW6010	RHA173	ARSENIC	8	10	mg/kg	22%
SB	SW6010	RHA173	BARIUM	161	181	mg/kg	12%
SB	SW6010	RHA173	BERYLLIUM	0 03	0 09	mg/kg	1009
SB	SW6010	RHA173	CADMIUM	0.26	0 22	mg/kg	17%
SB	SW6010	RHA173	CALCIUM	1370	1170	mg/kg	16%
SB	SW6010 SW6010	RHA173 RHA173	CHROMIUM, TOTAL COBALT	13 9 7 4	12 9 8 2	mg/kg mg/kg	7% 10%
SB SB	SW6010	RHA173	COPPER	16 7	16 7	mg/kg	0%
SB	SW6010 SW6010	RHA173	IRON	18300	20300	mg/kg	10%
SB	SW6010	RHA173	LEAD	11	10 6	mg/kg	4%
SB	SW6010	RHA173	MAGNESIUM	2530	2480	mg/kg	2%
SB	SW6010	RHA173	MANGANESE	533	684	mg/kg	25%
SB	SW6010	RHA173	NICKEL	17 2	17.9	mg/kg	4%
SB SB	SW6010	RHA173	POTASSIUM	2460	2280	mg/kg	8%
SB	\$W6010	RHA173	SILVER	0 12	0 15	mg/kg	22%
SB	SW6010	RHA173	SODIUM	54 7	63 7	mg/kg	15%
SB	SW6010	RHA173	VANADIUM	27 1	24 6	mg/kg	10%
SB	SW6010	RHA173	ZINC	56 1	54 6	mg/kg	3%

Appendix C-3

THIS PAGE INTENTIONALLY LEFT BLANK.

Data Quality Evaluation (DQE) Report for the Defense Depot Memphis, Tennessee, Remedial Investigation Project

Introduction

Surface and groundwater, soil and sediment samples and the corresponding QC samples were collected and submitted to the analytical laboratory for analysis of the following parameters:

- Volatile organic compounds (VOCs) by SW-846 method 8260A
- Semivolatile organic compounds (SVOCs) by SW-846 method 8270B
- Pesticides and polychlorinated biphenyl (PCBs) by SW-846 method 8081
- Herbicides by SW-846 method 8151
- Polynuclear aromatic hydrocarbons (PAHs) by SW-846 method 8100
- Metals by SW-846 methods 6010 and 7000 series
- pH by EPA method 150.1 (water) and SW-846 method 9045 (solids)
- Total organic carbon (TOC) by EPA method 415.2
- Alkalinity by EPA method 310.1
- Cation exchange capacity (CEC) by SW-846 method 9080

Field QC included duplicate field samples, trip blanks (analyzed for VOCs only), equipment rinsate blanks, and field blanks.

The samples were submitted to the laboratory in 18 groups; therefore, there are 18 sample delivery groups (SDGs). All the samples were analyzed using SW-846 methods, however, the laboratory provided EPA Level 2 QC data packages for 10 of the SDGs and EPA Level 3 QC data packages for 8 of the SDGs. EPA Level 2 data packages included the sample results and corresponding laboratory method blank results; EPA Level 3 data packages also included a summary of the QC data (for example, calibration and spiked sample results).

The purpose of the data quality evaluation process (DQEP) is to assess the effect of the overall analytical process on the usability of the data. The two major categories of data evaluation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a straight-forward check of compliance with the method requirements; either the laboratory did, or did not, analyze the samples within the limits of the analytical method. Evaluation of matrix interferences is more subtle and involves the analysis of several areas of results including surrogate spike recoveries, matrix spike recoveries, and duplicate sample results.

DQE for the Screening Sites data consisted of the following two principal activities

- Hard copy "validation" of the EPA Level 3 data packages (as a note, it is not possible to "validate" the EPA Level 2 data because there is no QC summary data to evaluate)
- Database-wide evaluation of the trends in data quality (for example, trends in surrogate spike recovery)

It is important to note that "data validation" is the assessment of the hard-copy data base deliverables in terms of method compliance, and "data quality evaluation" is the qualitative evaluation of overall trends in the project-specific database. Areas evaluated in the DQE include the following:

- Potential "blank contamination" (i.e. the effect on the usability of data for target compounds and analytes detected in both the field or laboratory blank samples and the corresponding field samples)
- Laboratory performance (i.e. recovery for spiked blank samples and other laboratory checks such as calibration and laboratory control samples)
- Matrix interferences (i.e. recovery for spiked field samples)
- Usability of metals results at, or near, the instrument detection limits

This DQE technical memorandum (TM) includes the following:

- Results of the database-wide DQE queries (summary tables are included at the end of this report)
- Assessment of the overall usability of the data to support the project decision-making process

The focus of the hard-copy data validation was to review each of the QC summary sheets, note nonconformances on the DV worksheets, qualify the data as appropriate, and summarize the results of this review. These completed worksheets are included in the project file and are available upon request.

Data Evaluation Criteria

Before the analytical results were released by the laboratory, both the sample and QC data were carefully reviewed to verify sample identity, instrument calibration, detection limits, dilution factors, numerical computations, accuracy of transcriptions, and chemical interpretations. Additionally, the QC data were reduced and the resulting data were reviewed to ascertain whether they were within the laboratory-defined limits for accuracy and precision. Any non-conforming data were discussed in the data package cover letter and case narrative.

The EPA Level 3 QC data packages were reviewed by the project chemists using the method acceptance criteria and the process outlined in the EPA Functional Guidelines. Samples that were not within the acceptance limits were annotated with a qualifying flag, which consists of a single or multi-letter abbreviation that indicates a QC nonconformance associated with that analytical result. Although the qualifying flags originate during the

data review and validation process, they are included in the data summary tables so that the data will not be used indiscriminately. The following flags were used in the DQEP:

TABLE C.3-1
Data Qualification Flags
Memphis Depot Main Installation RI

Qualifier	Description
J	Estimated. The analyte was present, but the reported value may not be accurate or precise.
U	Undetected. Analyte was analyzed for but not detected above the method detection limit
R	Rejected. The data are unusable. (Analyte/compound may or may not be present.)
UJ	Undetected, but the reporting limit is estimated.

Once the data review and validation process for the EPA Level 3 QC data was completed, the entire data set was reviewed for target compound/analyte frequency of detection, dilution factors that might affect data usability, and patterns of target compound/analyte distribution. The data set was also evaluated to identify potential data limitations, uncertainties, or both, in the analytical results.

Potential Field Sampling and Laboratory Contamination

Types of QC Blank Samples

Three types of field blank samples were used to monitor potential contamination introduced during field sampling and sample handling activities.

Trip Blank (TB)(VOCs only): A sample of ASTM Type II water was prepared by the laboratory and it accompanied the sample coolers from the field to the lab. This blank monitors potential contamination introduced during sample handling and shipping. For this project, one trip blank was submitted with each cooler containing samples for VOC analysis. A total of 7 TBs were submitted to the laboratory for this field effort

Equipment Rinsate Blank (ERB): Consists of a sample of the ASTM Type II water used as the final rinse during equipment decontamination. This blank sample is collected by rinsing a piece of equipment after decontamination is completed and is analyzed for the same analytical parameters as the corresponding samples. This blank monitors potential contamination caused by incomplete equipment decontamination. A total of 6 ERBs was submitted to the laboratory for this field effort.

Field Blank (FB): Consists of a sample of the source water used to decontaminate the field sampling equipment and at least one FB was collected from each source of water. Typically there are 2 types of FBs: one a sample of the tap water used to steam-clean the equipment and a second sample of the ASTM Type II water used for the final equipment rinse. FBs are analyzed for the same parameters as the corresponding samples. One FB of the ASTM Type II water was submitted to the laboratory for this field effort.

488 176

Laboratory method blanks (LBs) were also analyzed with each analytical batch. For water samples, a laboratory method blank is ASTM Type II water that is treated as a sample in that it undergoes the same analytical process as the corresponding field samples. For soil samples, the laboratory method blank may consist of a sample of EPA-approved soil (Ottawa desert sand). Method blanks are used to monitor laboratory performance and potential contamination introduced during the analytical process. One method blank was analyzed for every 20 samples, or one per analytical batch, whichever was more frequent.

Evaluation of QC Blank Results

Summarized in Table C.3-2 are the frequency of detection, and the minimum and maximum concentration for target compounds. Also included in Table 2 are the frequency of detection, and minimum and maximum concentration for target compounds that were also detected in the field samples. For example, methylene chloride is included in Table 2 because it was detected in the field and laboratory blank samples as well the field samples. However, phenanthrene was detected in selected field samples and not any of the field or laboratory blanks; therefore, phenanthrene is not included in this table.

According to the EPA Guidance Manual, Functional Guidelines for Evaluating Data, field sample results that were less than five (ten for common contaminants) times the concentration in the corresponding blank sample can be qualified as "U" for not detected. No qualifiers are applied to the blank sample results.

- Acetone was detected in 5 of the 6 equipment rinsate blanks at concentrations ranging from 13 to 16 μ g/L. Acetone was also detected in 1 of the 10 water laboratory method blanks (14 μ g/L) and 8 of the 23 soil laboratory method blanks at concentrations ranging from 13 to 16 μ g/kg. Acetone is used as an extraction solvent in the laboratory and is a common contaminant. Acetone was detected in both the surface water and solid field samples. With the exception of one sample result (RHA070 at 220 μ g/kg), all the acetone results can be attributed to field sampling and laboratory contamination.
- 2-Butanone was detected in 2 of the 6 equipment rinsate blanks at 17 and 22 µg/L. 2-Butanone was also detected in 2 of the 24 surface soil samples (22 and 34 µg/kg) and 1 of the 79 subsurface soil samples at 14 µg/kg. 2-Butanone is an infrequent laboratory contaminant and source include contamination in the internal standard solutions and the moisture control module of the analytical instrument. According to the EPA Functional Guidelines, concentrations of contaminants detected in environmental samples at less than five times the concentrations detected in the corresponding field and laboratory blank samples may be attributed to field sampling or laboratory contamination. 2-Butanone was detected at a similar frequency and concentration as the equipment rinsate blank samples and can be attributed to laboratory contamination.
- Bis(2-ethylhexyl) phthalate (BEHP) was detected in one of the soil laboratory method blank samples at 360 µg/kg. BEHP was also detected in 11 of the 48 subsurface soil samples at concentrations ranging from 430 to 3,800 µg/kg. All the sample results are less than ten time the concentration in the laboratory method blank sample; therefore, BEHP can be attributed to laboratory contamination and not environmental conditions.

- Concentrations of metals near the instrument detection limit (IDL) and less than the project-specific reporting limits were detected in some of the QC blank samples. These results are typically indicative of instrument background and not field sampling or laboratory contamination. Negative numbers were reported by the laboratory for selected blank and field sample results. Negative numbers associated with atomic spectroscopy methods of analysis results from one of, or a combination of, two possible situations:
 - Instrument Noise: Variation in signal intensity is the <u>primary</u> reason that negative numbers are reported. Any calibration curve associated with atomic spectroscopy utilizes a calibration blank. "Blank" is assigned a "zero concentration" when the calibration curve is computed. Because "blank" does not have an analyte signal, instrument noise, slight variations in detection devices, stray light, or background corrections can elicit a quantitative response different from the "blank". These responses can and often are, slightly negative absorbencies or emission intensities, which when compared to the curve, yield negative concentrations. The absolute value of these negative concentrations are compared to the instrument (IDL) or method detection limit (MDL); both the IDL and MDL are calculated rather than demonstrated values and hence have an inherent inaccuracy. If the absolute value of the negative sample result is greater than these reporting limits, then the negative value is reported.
 - Calibration Blank Contamination: Any contaminant present in the blank during calibration will artificially set "zero" at the contaminant concentration. Any samples analyzed after the calibration blank which contain less contamination than the calibration blank will result in a negative value as the sample result. This is not a common situation and occurs mostly with zinc and copper, two ubiquitous contaminants.

QC Measures

Surrogate Spike Recoveries

Surrogate spike compounds were added to every sample analyzed for the organic parameters including field and laboratory blanks as well as field environmental samples. Surrogate spike compounds are the structural homologs of target compounds and are therefore expected to behave in a similar manner during analysis. Surrogate spike recoveries were used to monitor both laboratory performance and matrix interferences. Surrogate spike recoveries from field and laboratory blanks were used to evaluate laboratory performance because the field blanks represent an "ideal" sample matrix. Surrogate spike recoveries for field samples were used to evaluate the potential for matrix interferences. There are no graphs for dioxins and furans because no surrogate compounds were added to the sample. Internal standards are used in place of surrogate spike compounds.

As each data package was reviewed, the surrogate spike recoveries were compared to the QC target limits summarized in Table C 3-3 Samples with surrogate spike recoveries

488 178

outside the target acceptance limits were noted on the data validation worksheets and the sample results qualified with a "J" to indicate potential matrix interferences.

Surrogate spike recoveries were also evaluated in aggregate for each sample type or matrix. Because of the large number of samples, surrogate spike recoveries are summarized in a graph rather than a table. For each organic analysis, a graph was prepared of surrogate spike recovery as a function of "sample number". The samples were arranged chronologically and then numbered sequentially. The graphs are used to evaluate trends and not specific sample results.

Two separate pages were prepared for each analytical fraction. The first page presents surrogate spike recoveries for water samples. The water field QC blanks, laboratory blank and field samples are presented on separate graphs so that trends in ideal versus matrix-specific can be evaluated. The second page presents soil laboratory blank and soil environmental samples; there are no field QC samples for soil. The spiked blank plots demonstrate that the laboratory method was in control. The spiked sample results are used to evaluate potential matrix interference. Spike recoveries of zero indicate that the sample was diluted and the surrogate was no longer "visible" to the instrument.

The following conclusions are applicable to all the figures:

- Surrogate spike recoveries for VOCs are clustered in a narrow band, while recoveries for semivolatile compounds (includes SVOCs, pesticides, PCBs, herbicides, etc.) are spread over a larger range. This is typical of the VOC versus semivolatile-type compounds and the laboratory-specific target acceptance limits reflect this difference.
- In general, the specific sample matrix did not interfere with the overall analytical process because the surrogate spike recoveries for both water and soil samples were within the method target acceptance limits; and the recovery "spread" for blank and field samples were similar.

Matrix Spike/Matrix Spike Duplicate Results (MS/MSD)

For this QC measure, three aliquots of a single sample are analyzed; a native sample, and two spiked with known concentrations of target compounds. For the metals analysis, two native and one spiked sample are analyzed (spike/duplicate). Unlike the surrogate spike compounds, matrix spike compounds are found on the method target compound list. Spike recovery is used to evaluate potential matrix interferences as well as accuracy. For organic analyses, precision is evaluated by comparing the duplicate spike results. For inorganic analyses, precision is evaluated by comparing the duplicate native sample results.

One water MS/MSD was analyzed for the surface water samples and the results of this QC measure are summarized in Table C.3-4. Also, there was only 1 MS/MDS sample for herbicides and this information is also presented in Table C.3-4. For the soil samples, the MS/MSD results are presented using a graph instead of a table because multiple MS/MSD samples were analyzed by the laboratory. All the solid MS/MSD results were combined in a single graph instead of presenting separate graphics for surface soil, subsurface soil, sediment, etc. The graphs are presented by MS/MSD target compound. For example, there are 5 MS/MSD compounds for VOCs; therefore, there are 5 plots for VOCs. Each plot presents MS and MSD recovery as a function of sample number. Sample numbers were

assigned sequentially after the MS/MSD samples were arranged chronologically. The overall purpose of matrix spikes is to evaluate the effect of the specific sample matrix on accuracy and precision. Laboratory-specific target acceptance limits were used to evaluate accuracy and precision. Precision can also be evaluated visually by noting the similarity of the MS and MSD plots.

For all the analytical methods, the sample matrix did not interfere with the overall analytical process because the MS and MSD spike recoveries and precision were within the laboratory-specific target acceptance limits. Additionally, the MS and MSD graphical recovery trends were nearly identical.

Duplicate Field Sample Results

One duplicate field sample was collected for every ten field samples of the same matrix. The duplicate samples were submitted "blind" to the laboratory; i.e. the laboratory did not know which samples were duplicates nor which pair of samples were duplicate of each other.

Ideally, duplicate field samples would be chosen which contain target compounds or analytes above the reporting limit because non-detects provide limited information about precision (i.e. the duplicate of not detected is not detected). It is difficult to summarize duplicate information in a graph because different target compounds/analytes were detected in each pair of duplicate sample. The duplicate field sample results are summarized in Table C.3-5. For each duplicate sample, all results above the reporting limit are presented for both the native and duplicate samples and the relative percent difference between them was calculated. The sample results were not qualified for duplicate sample recovery or precision; however, a general comparison of ± 20 RPD for water and ± 35 RPD for soil was used

In general, the duplicate sample results were within the guidance limits; indicating that the specific sample matrix did not interfere with the overall analytical process. Those duplicate soil results with a RPD greater than 50 percent should be attributed to the non-homogeneity of the soil matrix as well as potentially poor sampling and analysis precision.

Metals Results Near the Instrument Detection Limit

The samples were analyzed for 23 metals including aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc.

Concentrations of metals near the instrument detection limit (IDL) were reported for many of the target metals. Plots of sample results as a function of sample index number for the soil field samples were reviewed yielding the following conclusions:

- Those sample results clustered about the IDL are due to instrument "background" (for example, silver)
- Results evenly distributed over a wide range of concentrations may be attributed to natural abundance (for example, aluminum)

438, 180

 Results which appear to be greatly above the instrument background noise are reflective of environmental conditions

The IDL is the constituent concentration that produces a signal greater than five times the signal/noise ratio of the instrument and is a calculated value. Results at, or near, 10 times the IDL are more "viable" sample results and are not suspect in the same way as results reported at, or near, the IDL. Therefore, sample results at, or near, the IDL may be false positives caused by instrument noise or low level background shifts rather than a true analyte signal.

PARCCs

Precision—is defined as the agreement between duplicate results, and was estimated by comparing duplicate matrix spike recoveries and field duplicate sample results. As discussed above, the RPD for the MS/MSD results were within the target acceptance limits except for two SDGs from the pesticides analysis. However, the RPD for target analytes detected in the duplicate soil samples which were greater than 50% PD which may indicate either poor sample homogeneity or poor sampling and analysis precision.

Accuracy—is a measure of the agreement between an experimental determination and the true value of the parameter being measured. Spiked sample results were used to evaluate accuracy and as noted above, the spike recoveries were within the method target acceptance limits indicating the specific sample matrix did not interfere with the overall analytical process.

Representativeness—this criteria is a qualitative measure of the degree to which sample data accurately and precisely represent a characteristic environmental condition.

Representativeness is a subjective parameter and is used to evaluate the efficacy of the sampling plan design. Representativeness was demonstrated by providing full descriptions in the project scoping documents of the sampling techniques and the rationale used for selecting sampling locations.

Completeness—is defined as the percentage of measurements that are judged to be valid compared to the total number of measurements made. None of the QC Level 1 data was rejected because it was not validated. None of the QC Level 2 data was rejected during validation for QC reasons. It is important to note that the "best value" for each sample is selected and other values rejected in the database. For example, a sample required a 10-fold dilution because one target compound was present above the linear calibration range. The single undiluted result would be "rejected" in the database and the diluted results for the other target compounds rejected for the diluted analysis in order to choose the "best value" for each target compound or analyte. Therefore, 100 percent of the data was deemed usable which exceeds the goal of 95 percent usable data established in the work plan.

Comparability—is another qualitative measure designed to express the confidence with which one data set may be compared to another. Factors which affect comparability are: sample collection and handling techniques, sample matrix type, and analytical method. Comparability is limited by the other PARCC parameters because data sets can be compared with confidence only when precision and accuracy are known. EPA methods were used to analyze the sample; however, there is not QC data available to support the

Level 1 data. Therefore, the data can be compared with the understanding that the quality of the Level 1 data is not known.

Summary and Conclusions

Conclusions of the data quality evaluation process include the following:

- The laboratory analyzed the EPA Level 3 QC samples according to the EPA methods stated in the work plan as demonstrated by the data package deliverables
- Acetone, 2-butanone, and bis-2-ethylhexyl phthalate can be attributed to field sampling and laboratory contamination rather than environmental contamination.
- Surrogate spike and MS/MSD recoveries and duplicate field sample results indicate that the specific sample matrix did not interfere with the overall analytical process
- Poor duplicate precision for metals in the duplicate soil samples should be attributed to both poor sample homogeneity as well as potentially poor sampling and analysis precision.

These data can be used in the project decision making process without further qualification.

Ċ,

TABLE C 3-2
Companson of Results for Targel Compounds
Memphis Depot Main Installation RI

			Blank S.	Blank Sample Results	ts			Field Sample Results	le Result			Comments
Method	Target Compound	Blank Type	Frequency	Min Conc	Max Conc	Units	Sample Matrix	Frequency	Min	Max Conc	Units	"Indicative of"
00x	Acetone	EB	5/6	13	16	µg/L	SW	3/4	10	17	hg/L	Field sampling and laboratory contamination
		87	1/10	14		ng∕L	SS	13/24	13	220	µg∕kg	Values > 160 reflect environmental conditions
		97	8/23	13	16	µg/kg	os	1/1	92		р9/кд	Field sampling and laboratory contamination
							SB	35/79	16	120	µg/kg	Field sampling and laboratory contamination
	2-Butanone	83	5/6	17	22	μg/L	SS	2/24	52	34	µg∕kg	Field sampling and laboratory contamination
							SB	1/79	14		µg/kg	
<u>.</u>												
SVOC	Bis(2-ethylhexyl) phthalate	B)	1/12	360		µg/kg	SB	11/48	430	2800	µg/kg	Field sampling and laboratory contamination
Metals	Aluminum	EB	5/5	13	34	µg∕L	MS	4/4	64	576	μg/L	Values > 170 µg/L or 17 mg/kg may reflect environmental conditions
		9	1/8	14	14	ng∕L	SW (D)	9/9	7	81	µg∕L	
		9	4/6	28	3.4	mg/kg	SS	5/5	6390	15600	mg/kg	
							SB	21/21	6070	20400	mg/kg	
	Antimony	EB	3/6	20	32	µg/L	SW	13/15	2	36	µg/L	Values > 15 µg/L or 1 5 mg/kg may reflect environmental contamination
		8J	2/8	187	2 27	hg/L	SW (D)	11/17	19	36	hg∕L	
							SS	4/26	0.26	7	mg/kg	
							SB	35/81	0.25	22	mg/kg	
	Arsenic	FB	4/11	-0 4	-03	mg/kg	MS	11/15	26	11	µg/L	Values > 10 µg/L or 1 0 mg/kg may reflect environmental contamination
							SW (D)	13/17	18	41	ng∕L	
							SS	26/26	17	49	mg/kg	
							SB	81/81	13	43	mg/kg	
	Barıum	EB	5/5	0.35	19	µg/L	SW	4/4	5.8	15	µg/L	Values > 20 µg/L or 0 4 mg/kg may be environmental and/or native background levels
		FB	1/1	6.7		µg/L	SW (D)	9/9	38	15	µg∕L	
		EB.	8/8	0.27	1 36	μg/L	SS	5/5	8	168	mg/kg	
		ΓB	9/9	0 031	9/00	тд/кд	SB	21/21	64	204	mg/kg	

ATL/147543/APPENDICES/APP C/TableC_3-2 xts/Blank Companson

			Blank Sample	ample Resuits	ts			Field Sample Results	sle Result	en.		Comments
Method	Target Compound	Blank Type	Frequency	Min Conc	Max Conc	Units	Sample Matrix	Frequency	Min Conc	Max Conc	Units	"Indicative of"
	Beryllum	EJ	5/8	0 11	0 19	µg/L	SW	1/15	0 11		hg/L	Values > 1 0 µg/L or 0 1 mg/kg may reflect environmental contamination
							SW (D)	3/17	0 10	0 16	−1/6rl	
							SS	4/26	0 11	2.0	mg/kg	
							SB	13/81	0 03	0 27	mg/kg	
	Cadmum	ΠB	2/8	0 16	0 29	µg/L	SW	14/15	0.2	14	hg/L	Values > 1 5 µg/L or 0 5 mg/kg may reflect environmental contamination
		en	3/11	0 22	0 22	mg/kg	SW (D)	12/17	0 17	0 53	µg/L	
							SS	11/26	0.31	25	mg/kg	
							SB	28/81	0 17	58	mg/kg	
:	Calcium	EB	5/5	66.2	324	hg/L	SW	4/4	2490	0806	hg/L	Values > 500 µg/L or 50 0 mg/kg may be environmental and/or native background levels
		FB	1/1	64		µg∕L	SW (D)	9/9	2290	9620	ng∕L	
_		EB.	8/8	11	77	µg∕L	SS	5/2	954	11100	mg/kg	
		rB	9/9	3.0	47	mg/kg	SB	21/21	805	2750	mg/kg	
:												
	Chromum, total	EB	3/6	20	7.5	µg/L	MS	15/15	0 72	19	1/6rt	Values > 15 µg/L or 1 5 mg/kg may reflect environmental contamination
		87 18	5/8	0.71	0.73	μg/L	SW (D)	14/17	0 49	13	μg/L	
		87	6/11	60 0	0 29	mg/kg	SS	26/26	89	336	mg/kg	
							SB	81/81	9.2	915	mg/kg	
	Cobalt	E3	3/5	0 48	0 67	μg/L	SW	4/4	99 0	14	µg/L	Values > 5 0 µg/L or 1 0 mg/kg may reflect environmental contamination
		9	8/9	99 0	0.88	µg/L	SW (D)	9/9	890	10	ηgγ	
							SS	5/2	50	83	mg/kg	
							SB	21/21	63	10	mg/kg	

TABLE C 3-2
Companson of Results for Target Compounds
Memphis Depot Main Installation RI

TABLE C 3-2
Companson of Results for Target Compounds
Memphis Depot Main Installation RI

			Blank Samı	mple Results	so			Field Sample Results	le Results			Comments
Method Target C	Target Compound	Blank Type	Frequency	Min Conc	Max Conc	Units	Sample Matrix	Frequency	Min Conc	Max Conc	Units	"Indicative of"
ပိ 	Copper	E3	4/6	12	4	1/grt	SW	15/15	24	22	1/6rl	Values > 15 µg/L or 1,5 mg/kg may reflect environmental and/or native background levels
		82	1/1	6	ဗ	µg/L	SW (D)	17/17	66 0	17.1	µg/L	
		9	7/8	102	2 06	μg/L	SS	26/26	4 1	103	mg/kg	
							SB	81/81	7	235	mg/kg	
_ =	Iron	EB	5/2	24	89	µg/L	SW	4/4	11	835	hg/L	Values > 150 µg/L or 7 5 mg/kg may reflect environmental and/or native background levels
		FB	1/1	30	30	hg∕L	(D) MS	9/9	27	253	ng/L	
		81	8/8	56	82	ηδ/L	SS	5/5	12800	44500	mg/kg	
		rB	9/9	14	15	mg/kg	SB	21/21	15000	28000	mg/kg	
Magi	Magnesium	EB	3/5	4 9	=	μg/L	SW	4/4	286	1580	J∕6d	Values > 500 µg/L or 50 mg/kg may reflect environmental and/or native background levels
		9	8/9	2.0	13	µg/L	SW (D)	9/9	213	1620	ηg/L	
		9	1/6	0 58		mg/kg	SS	5/5	929	2630	mg/kg	
							SB	21/21	2090	3410	mg/kg	
Man	Manganese	83	5/5	0 71	2.1	µg/L	SW	4/4	84	89	μg⁄L	Values > 10 µg/L or 1 0 mg/kg may reflect environmental and/or native background levels
		FB	1/1	0 94		μg/L	SW (D)	9/9	23	21	нgЛ	
		89	8/8	0.61		μg/L	SS	5/2	150	499	mg/kg	
		87	9/9	900	0.1	mg/kg	SB	21/21	405	1350	mg/kg	
Me	Mercury	EB	1/1	0.04		µ9∕L	SW	9/15	0 04	0 18	µg/L	Values > 0 3 µg/L or 0 15 mg/kg may reflect environmental contamination
		9	2/8	0 046	0.054	µg/L	SW (D)	9/17	0 04	0 08	µg/L	
		87	2/12	0.01	0 01	mg/kg	SS	5/26	0 02	0 1	mg/kg	
							SB	4/81	0 04	900	mg/kg	

C-53

ATU147543/APPENDICES/APP C/TableC_3-2 xls/Blank Companson

			Blank Se	Blank Sample Results	lts			Field Sample Results	ole Result	s		Comments
Method	Target Compound	Blank Type	Frequency	Min Conc	Мах Сопс	Units	Sample Matrix	Frequency	Min Conc	Max Conc	Units	"Indicative of"
	Nickel	EB	2/6	15	23	µg/L	SW	13/15	13	18	µg/L	Values > 15 µg/L or 1 5 mg/kg may reflect environmental contamination
							SW (D)	9/17	14	46	µg/L	
							SS	26/26	32	29	mg/kg	
							SB	81/81	4 4	26	mg/kg	
	Potassium	81	3/8	-844	-845	µg/L	SW	2/4	1910	2730	µg/L	Values > 1000 µg/L or 100 mg/kg may reflect environmental and/or native background levels
						-	SW (D)	4/6	751	2580	μg/L	
							SS	5/5	1230	3090	mg/kg	
							SB	21/21	1550	3280	mg/kg	
	Selenium	68	3/5	15	27	μg/L	SW	10/15	14	38	µg/L	Values > 10 µg/L or 1 0 mg/kg may reflect environmental contamination
		FB	5/8	26	42	μg/L	SW (D)	10/17	17	36	hg/L	
							SS	1/26	031		mg/kg	
							SB	4/81	0 24	0 43	mg/kg	
	Sodium	EB	5/2	84	203	hg/L	SW	4/4	456	1080	µg/L	Values > 500 µg/L or 50 mg/kg may reflect environmental and/or native background levels
		FB	1/1	180	180	т9/Г	SW (D)	9/9	419	206	hg/L	
		ГВ	9/9	84	87	mg/kg	SS	3/5	55	150	mg/kg	
							SB	18/21	24	101	mg/kg	
	Thallrum	EB	2/5	13	13	1/6rt	SW	4/15	19	2.5	µg/L	Values > 10 µg/L or 1 0 mg/kg may reflect environmental contarmination
		9 7	4/8	141	141	µg∕L	SW (D)	7/17	14	29	µg/L	
							SB	1/81	96 0		mg/kg	

TABLE C.3-2
Comparison of Results for Target Compounds
Memphis Depot Main Installation RI

TABLE C 3-2
Comparison of Results for Target Compounds
Memphis Depot Main Installation RI

		Blank Sa	Blank Sample Results	S)			Field Sample Results	le Results			Comments
Method Target Compound	Blank Type	Frequency Min Conc	Min Conc	Max Conc	Units	Sample Matrix	Frequency	Min Conc	Max Conc	Units	"Indicative of"
Zinc	EB	9/9	39	04	µg/L	MS	15/15	24	467	μg/L	Values > 50 µg/L or 5 0 mg/kg may reflect environmental and/or native background levels
	E	1/1	106		η∂/Γ	SW (D)	17/17	13	406	µg/L	
	9	8/8	2.0	=	μg/L	SS	26/26	21	4000	mg/kg	
	rB	6/11	0 20	17	mg/kg	SB	81/81	31	1460	mg/kg	
Notes											
SW surface water		TB Trip blank									
SW (D) dissolved metals in surface water		EB Equipment rinsate blank	rınsate blank	J							
SB sub-surface soil from soil boring		FB Field blank									
SO soil sample		LB laboratory method blank	method blank								
SS surface soil								;			

TABLE C.3-3
Laboratory-specific QC Target Acceptance Limits
Memphis Depot Main Installation RI

Analytical Fraction	Spike Type	Parameter	Water	Soil
VOC	Surr	Dibromofluoromethane	86-118	80-120
		Toluene-d8	88-110	81-117
		Bromofluorobenzene	86-115	74-121
	MS/MSD	1,1-Dichloroethene	61-145	61-145
		Benzene	76-127	76-127
		Trichloroethene	71-120	11-120
		Toluene	76-125	76-125
		Chlorobenzene	75-130	75-130
SVOC	Surr	2-Fluorophenol	21-100	25-121
		Phenol-d5	10-94	24-113
		Nitrobenzene-d5	35-114	23-120
		2-Fluorobiphenyl	43-116	30-115
		2,4,6-Tribromophenol	10-123	19-122
		Terphenyl-d14	33-141	18-137
	MS/MSD	Phenol	12-110	26-90
		2-Chlorophenol	27-123	23-102
		1,4-Dichlorobeznene	36-97	28-104
		N-Nitrosodi-n-propylamine	41-116	41-126
		1,2,4-Trichlorobenzene	39-98	38-107
		4-Chloro-3-methylphenol	23-97	26-103
		Acenapthene	46-118	31-137
		4-Nitrophenol	10-80	11-114
		2,4-Dinitrotoluene	24-96	28-89
		Pentachlorophenol	9-103	17-109
		Pyrene	26-127	35-142

TABLE C.3-3

Laboratory-specific QC Target Acceptance Limits Memphis Depot Main Installation RI

Analytical Fraction	Spike Type	Parameter	Water	Soil
Pest/PCB	Sur	Decachlorobiphenyl	42-108	44-128
		Tetrachioro-m-xylene	36-123	43-116
	MS/MSD	4.4'-DDT	30-135	42-149
		Aldrin	30-122	37-136
		Dieldrin	45-134	39-154
		Endrin	38-145	51-150
		gamma-BHC (lindane)	31-126	35-133
		Heptachlor	25-121	47-124
Herbicides	Surr	Dichlorophenylacetic acid	28-132	41-158
	MS/MSD	2,4,5-T	57-161	7-220
		2,4-D	64-135	13-190
		2,4-DB	53-167	40-186
		2,4-DP (Dichloroprop)	20-180	4-164
		3,5-Dichlorobenzoic acid	37-141	39-103
		4-Nitrophenol	12-191	0-142
		Dalapon	2-120	0-126
		Dicamba	48-158	26-166
		Dinoseb	0-192	0-247
		MCPA	32-124	0-180
		MCPP	37-156	0-180
		Pocloram	0-194	0-107
		Silvex (2,4,5-TP)	68-129	43-147

TABLE C.3-3

Laboratory-specific QC Target Acceptance Limits Memphis Depot Main Installation RI

Analytical Fraction	Spike Type	Parameter	Water	Soil
PAHs	Surrogate	Terphenyl-d14	38-113	49-122
	MS/MSD	Naphthalene	37-98	62-125
		Acenaphthylene	66-17	60-124
		Acenaphthene	40-108	66-125
		Fluorene	54-106	66-125
		Phenanthrene	53-112	65-130
		Anthracene	53-107	60-120
		Fluoranthene	54-114	67-131
		Pyrene	50-114	64-138
		Benzo(a)anthracene	59-122	72-138
		Chrysene	53-126	70-147
		Benzo(b)fluoranthene	57-116	71-134
		Benzo(k)fluoranthene	37-144	58-144
		Benzo(a)pyrene	53-102	60-116
		Indeno(1,2,3-c,d)pyrene	43-117	64-143
		Dibenzo(a,h)anthracene	34-113	65-136
		Benzo(g,h,l)perylene	31-120	64-144
		2,3-Benzofuran	NR	NR

TABLE C.3-4
MS/MSD Results for Selected Analytical Fractions
Memphis Depot Main Installation RI

Fraction	Matrix	Parameter	QC Limits	RHA-110-MS	RHA-110-MSD	RPD
VOC	SW	1,1-Dichloroethene	61-145	126	120	5
		Benzene	76-127	122	122	0
		Chlorobenzene	75-130	112	114	2
		Toluene	76-125	112	114	2
		Trichloroethene	71-120	110	112	2
SVOC	МS	1,2,4-Trichlorobenzene	39-98	44	58	27
		1,4-Dichlorobenzene	36-97	40	56	33
		2,4-Dinitrotoluene	24-96	78	88	12
		2-Chlorophenol	27-123	09	74	21
		4-Chloro-3-methylphenol	23-97	99	74	13
		4-Nitrophenol	10-80	30	33	10
		Acenapthene	46-118	09	72	18
		N-Nitroso-dı-n-propylamine	41-116	99	88	29
		Pentachlorophenol	9-103	09	62	3
		Phenol	12-110	30	41	31
		Pyrene	26-127	78	80	3
Pest	МS	4,4'-DDT	30-135	91	93	2
		Aldrin	30-122	87	81	7
		Dieldrin	45-134	102	101	1
		Endrin	38-145	106	104	2
		gamma-BHC (Lindane)	31-126	88	82	7
		Heptachlor	25-121	89	86	3
Herbicides	SS	2,4,5∙T	7-220	177	200	12
		2,4-D	13-190	128	153	18
		2,4-DB	40-186	150	155	3
		2,4-DP (Dichloroprop)	4-164	02	78	11
		Dalapon	39-103	39	34	14
		Dicamba	0-142	159	206	26
		Dinoseb	0-126	53	54	2
		MCPA	0-180	57	89	18
		MCPP	0-180	52	64	21
		Silvex (2,4,5-TP)	68-129	124	126	2

TABLE C.3-5
Duplicate Field Sample Results Summary
Memphis Depot Main Installation RI

Sample	Mathed "	Parrie 18					
Matrix	Method #	Sample ID	<u>Parameter</u>	Native Result	Duplicate Result	Units	RPD
SB SB	SW6010	RHA007	ARSENIC	8 4	81	mg/kg	4%
	SW6010	RHA007	CHROMIUM, TOTAL	24.7	114	mg/kg	74%
SB	SW6010	RHA007	COPPER	164	163_	mg/kg	1%
SB	SW6010	RHA007	LEAD	91	8.4	mg/kg	8%
SB	SW6010	RHA007	NICKEL	18 1	17 4	mg/kg	4%
SB	SW6010	RHA007	ZINC	50 4	49 1	mg/kg	3%
SB	SW6010	RHA009	ARSENIC	7.8	7.7	mg/kg	1%
SB	\$W6010	RHA009	CHROMIUM, TOTAL	24 6	26 8	mg/kg	9%
SB	SW6010	RHA009	COPPER	17	15 2	mg/kg	11%
SB	SW6010	RHA009	LEAD	87	8.3	mg/kg	5%
SB	SW6010	RHA009	NICKEL NICKEL	17 7	17	mg/kg	4%
SB	\$W6010	RHA009	ZINÇ	43 4	41 6	mg/kg	4%
SS	SW8100	RHA020	BENZO(g h,ı)PERYLENE	73	100	μg/kg	31%
SS	SW8100	RHA020	FLUORANTHENE	100	240		82%
SS	SW8100	RHA020	INDENO(1 2 3-c,d)PYRENE	88	120	μg/kg	31%
SS	SW8100	RHA020	PHENANTHRENE	89	160	μg/kg	57%
SS	SW8100	RHA020	PYRENE	76	170	µg/kg	
SS	SW8080	RHA020	DDT	77	30	µg/kg	76%
SS	SW8080	RHA020	DIELDRIN	62		μg/kg	88%
SS	SW6010	RHA020	ARSENIC	17 1	50	µg/kg	21%
SS	SW6010				156	mg/kg	9%
SS	SW6010	RHA020	CADMIUM	2	13	mg/kg	42%
		RHA020	CHROMIUM, TOTAL	336	164	mg/kg	69%
SS	SW6010	RHA020	COPPER	48 9	67 9	mg/kg	33%
SS	SW6010	RHA020	LEAD	1580	563	mg/kg	95%
SS	SW6010	RHA020	NICKEL	16 4	32	mg/kg	64%
SS	SW6010	RHA020	ZINC	693	369	mg/kg	61%
SB	SW8260	RHA030	ACETONE	16	32	μg/kg	67%
SB	SW6010	RHA030	ARSENIC	10.8	9	mg/kg	18%
SB	SW6010	RHA030	CHROMIUM, TOTAL	128	27 4	mg/kg	73%
SB	SW6010	RHA030	COPPER	18.8	16.5	mg/kg	13%
SB	SW6010	RHA030	LEAD	13.5	11.1	mg/kg	20%
SB	SW6010	RHA030	NICKEL	17.7	168	mg/kg	5%
SB	SW6010	RHA030	ZINC	60.8	55 3	mg/kg	9%
SS	SW8100	RHA039	ANTHRACENE	320	220	110 (110	עודני
SS	SW8100	RHA039	BENZO(a)ANTHRACENE	850		µg/kg	37%
SS	SW8100	RHA039	BENZO(a)PYRENE		760	µg/kg	11%
SS				730	710	μg/kg	3%
SS	SW8100 SW8100	RHA039 RHA039	BENZO(b)FLUORANTHENE	660	700	μg/kg	6%
SS	SW8100	RHA039	BENZO(g,h,i)PERYLENE	490	520	µg/kg	6%
SS	SW8100		BENZO(k)FLUORANTHENE	680	720	µg/kg	6%
		RHA039	CHRYSENE	760	710	µg/kg	7%
SS	SW8100	RHA039	FLUORANTHENE	1800	1500	µg/kg	18%
SS	SW8100	RHA039	FLUORENE INDENOCA OR A PROPERTY	300	260	µg/kg	14%
SS	SW8100	RHA039	INDENO(1,2,3-c,d)PYRENE	730	740	µg/kg	1%
SS	0018W2	RHA039	PHENANTHRENE	1200	930	µg/kg	25%
SS	SW8100	RHA039	PYRENE	1300	1200	µg/kg	8%
SS	SW6010	RHA039	ARSENIC	10.9	11 3	mg/kg	4%
SS	SW6010	RHA039	CHROMIUM, TOTAL	51 3	77 2	mg/kg	40%
SS	SW6010	RHA039	COPPER	27 9	27	mg/kg	3%
SS	SW6010	RHA039	LEAD	340	505	mg/kg	39%
SS	SW6010	RHA039	NICKEL	163	163	mg/kg	0%
SS	SW6010	RHA039	ZINC	182	205	mg/kg	12%
SS	SW8080	RHA045	DDT	300	390	µg/kg	26%
SS	SW8080	RHA056	DDÉ	620	520	µg/kg	18%
SS	SW8080	RHA056	DDT	1800	1700	μg/kg	6%
SS	SW8100	RHA067	FLUORANTHENE	80	81	110 11:0	10/
೨೨	3440100	RDAU07	1 FLOORANINENE		1 61	μg/kg	1%

1. 1. 2. 2. 2. 2. 2.

TABLE C.3-5
Duplicate Field Sample Results Summary
Memphis Depot Main Installation RI

ample Matrix	Method #	Sample ID	Parameter	Native Result	Duplicate Result	Units	RPD
SS	SW8100	RHA067	PHENANTHRENE	76	79	μg/kg	4%
SS	SW8100	RHA067	PYRENE	64	72	ug/kg	12%
SS	SW8080	RHA067	ALPHA-CHLORDANE	15	71	µg/kg	71%
SS	SW8080	RHA067	DDE	36	24	ua/ka	40%
SS	SW8080	RHA067	DDT	85	42	μg/kg	68%
SS	SW8080	RHA067	GAMMA-CHLORDANE	15	7.4	pg/kg pg/kg	68%
SB	SW6010	RHA076	ARSENIC	0.4	20		00/
SB	SW6010	RHA076		86	89	mg/kg	3%
SB			CHROMIUM, TOTAL	11.7	11 8	mg/kg	1%
SB	SW6010	RHA076	COPPER	16 2	16.5	mg/kg	2%
	SW6010	RHA076	LEAD	93	96	mg/kg	3%
SB	SW6010	RHA076	NICKEL	17.3	17	mg/kg	2%
SB	SW6010	RHA076	ZINC	51	52 5	mg/kg	3%
SB	SW6010	RHA082	ARSENIC	98	11	mg/kg	12%
SB	0109MS	RHA082	CHROMIUM, TOTAL	10 2	11 9	mg/kg	15%
SB	SW6010	RHA082	COPPER	16.6	185	mg/kg	11%
SB	SW6010	RHA082	LEAD		13 1	mģ/kg	17%
SB	SW6010	RHA082	NICKEL	18	198	mg/kg	10%
SB	SW6010	RHA082	ZINC	55 2	59 5	mg/kg	7%
SB	SW8260	RHA092	ACETONE	17	17	uc tv~	0%
SB	SW8080	RHA092	DDE	56	11	hā/kā	65%
SB	SW8080	RHA092	DDT	15	31		70%
SB	SW6010	RHA092	ANTIMONY	1	12	µg/kg	
SB	SW6010	RHA092	ARSENIC	69		mg/kg	18%
SB	SW6010	RHA092			8 5 14	mg/kg	21%
SB		RHA092	CHROMIUM, TOTAL	13	· · · · · · · · · · · · · · · · · · ·	mg/kg	7%
	SW6010		COPPER	15 8	17 1	mg/kg	8%
SB	SW6010	RHA092	LEAD	8.5	94	mg/kg	10%
SB	SW6010	RHA092	NICKEL	18	18.6	mg/kg	3%
SB	SW6010	RHA092	ZINC	44 9	53 6	mg/kg	18%
ws	SW7470	RHA102	MERCURY	0.06	0.04	μg/L	40%
ws	SW6010	RHA102	ALUMINUM	147	81.2	µg/L	58%
WS	SW6010	RHA102	BARIUM	58	5	μg/L	15%
ws	SW6010	RHA102	CADMIUM	038	0 22	µg/L	53%
ws	SW6010	RHA102	CALCIUM	2490	2440	ug/L	2%
ws	SW6010	RHA102	CHROMIUM, TOTAL	12	14	ug/L	15%
ws	SW6010	RHA102	COBALT	11	0.84	ug/L	27%
ws	SW6010	RHA102	COPPER	44	34	μα/L	26%
ws	SW6010	RHA102	IRON	306	245	µg/L	22%
ws	SW6010	RHA102	LEAD	5 2	26	µg/L	67%
WS	5W6010	RHA102	MAGNESIUM	286	271	µg/L	5%
WS	SW6010	RHA102	MANGANESE	167	146	µg/L	13%
WS	SW6010	RHA102	SODIUM	456	483	µg/L	6%
WS	SW6010	RHA102	THALLIUM	22	13	μg/L	51%
WS	SW6010	RHA102	VANADIUM	1	0.76	μg/L	27%
ws	SW6010	RHA102	ZINC	346	31 2	ug/L	10%
WS	E415 2	RHA102	TOTAL ORGANIC CARBON	23	26	mg/L	12%
11/2	0111/252	0112512	A 1 (A 4/A 11 A 4		40.0		050
WS	SW6010	RHA110	ALUMINUM	64	49.8	μg/L	25%
WS	SW6010	RHA110	BARIUM	12 7	12 1	μg/L	5%
WS	SW6010	RHA110	CALCIUM	8370	8150	μg/L	3%
WS	SW6010	RHA110	CHROMIUM, TOTAL	14	12	µg/L	15%
WS	SW6010	RHA110	COBALT	0.66	0.86	µg/L	26%
WS	SW6010	RHA110	COPPER	91	66	μg/L	32%
WS	5W6010	RHA110	IRON	417	432	ug/L	4%
WS	SW6010	RHA110	MAGNESIUM	1580	1570	µg/L	1%
WS	SW6010	RHA110	MANGANESE	68 4	69.8	µg/L	2%
WS	SW6010	RHA110	NICKEL	33	36	µg/L	9%
WS	SW6010	RHA110	POTASSIUM:	2730	2540	µg/L	7%

TABLE C.3-5
Duplicate Field Sample Results Summary
Memphis Depot Main Installation RI

Sample Matrix	Method #	Sample ID	Parameter	Native Result	Duplicate Result	Units	RPD
WS	SW6010	RHA110	SODIUM	1080	993	ug/L	8%
WS	SW6010	RHA110	VANADIUM	0.81	0.69	µg/L	16%
ws	SW6010	RHA110	ZINC	61.3	70 2	µg/L	14%
WS	E4152	RHA110	TOTAL ORGANIC CARBON	59	6	mg/L	2%
SB	SW8080	DUATEA	ALDUA OU ODDANE		,,		200/
SB	SW8080	RHA154	ALPHA-CHLORDANE	12	16	µg/kg	29%
SB		RHA154	GAMMA-CHLORDANE	11	16	ug/kg	37%
SB	\$W6010 \$W6010	RHA154 RHA154	ARSENIC	93	89	mg/kg	4%
SB	SW6010		CHROMIUM, TOTAL COPPER	13 1	11.7	mg/kg	11%
SB	SW6010	RHA154 RHA154		16	159	mg/kg	1%
SB	SW6010	RHA154	LEAD	94	99	mg/kg	5%
SB	SW6010	RHA154	NICKEL ZINC	173	18	mg/kg	4%
35	3440010	KHA154	ZINC	55 8	51 7	mg/kg	8%
SB	SW8260	RHA164	ACETONE	37	30	μg/kg	21%
SB	SW6010	RHA164	ALUMINUM	12200	14300	mg/kg	16%
SB	SW6010	RHA164	ANTIMONY	0 25	0.35	mg/kg	33%
SB	SW6010	RHA164	ARSENIC	89	10 1	mg/kg	13%
SB	SW6010	RHA164	BARIUM	121	159	mg/kg	27%
SB	SW6010	RHA164	CADMIUM	0 25	0 29	mg/kg	15%
SB	SW6010	RHA164	CALCIUM	1500	1410	mg/kg	6%
SB	SW6010	RHA164	CHROMIUM, TOTAL	146	15.4	mg/kg	5%
SB	SW6010	RHA164	COBALT	81	7.8	mg/kg	4%
SB	SW6010	RHA164	COPPER	163	186	mg/kg	13%
SB	SW6010	RHA164	IRÓN	20200	20700	mg/kg	2%
SB	\$W6010	RHA164	LEAD	10	112	mg/kg	11%
SB	SW6010	RHA164	MAGNESIUM	2370	2590	mg/kg	9%
SB	SW6010	RHA164	MANGANESE	445	504	mg/kg	12%
SB	SW6010	RHA164	NICKEL	18	17.5	mg/kg	3%
\$B	SW6010	RHA164	POTASSIUM	2530	2650	mg/kg	5%
SB	SW6010	RHA164	VANADIUM	29 1	31 7	mg/kg	9%
SB	SW6010	RHA164	ZINC	52 8	57 4	mg/kg	8%
SB	SW8260	RHA173	ACETONE	18	16	µg/kg	12%
SB	SW6010	RHA173	ALUMINUM	12000	10500	mg/kg	13%
SB	SW6010	RHA173	ARSENIC	8	10	mg/kg	22%
SB	SW6010	RHA173	BARIUM	161	181	mg/kg	12%
SB	SW6010	RHA173	BERYLUUM	0.03	0.09	mg/kg	100%
SB	SW6010	RHA173	CADMIUM	0 26	0 22	mg/kg	17%
SB	SW6010	RHA173	CALCIUM	1370	1170	mg/kg	16%
SB	SW6010	RHA173	CHROMIUM, TOTAL	13.9	129	mg/kg	7%
SB	SW6010	RHA173	COBALT	7.4	82	mg/kg	10%
SB	SW6010	RHA173	COPPER	16.7	167	mg/kg	0%
SB	\$W6010	RHA173	IRON	18300	20300	mg/kg	10%
SB	SW6010	RHA173	LEAD	11	10.6	ma/ka	4%
SB	SW6010	RHA173	MAGNESIUM	2530	2480	mg/kg	2%
SB	SW6010	RHA173	MANGANESE	533	684	mg/kg	25%
SB	SW6010	RHA173	NICKEL	17.2	17.9	mg/kg	4%
SB	SW6010	RHA173	POTASSIUM	2460	2280	mg/kg	8%
SB	SW6010	RHA173	SILVER	0 12	0 15	mg/kg	22%
SB	SW6010	RHA173	SODIUM	54.7	63 7	mg/kg	15%
SB	SW6010	RHA173	VANADIUM	27 1	24 6	mg/kg	10%
	SW6010	RHA173	ZINC	56 1	54 6	mg/kg	3%

THIS PAGE INTENTIONALLY LEFT BLANK.

Appendix C-4

488.196

THIS PAGE INTENTIONALLY LEFT BLANK.

DDMT Main Installation RI/FS Data Quality Evaluation (DQE)

Introduction

Surface and groundwater, soil and sediment samples were collected during the fall of 1998 Field QC samples collected included field duplicates, field blanks, trip blanks (analyzed for VOCs only), and equipment rinsate blanks. The samples were analyzed for the following analytical fractions:

- Volatile organic compounds (VOCs) by SW-846 method 8260B
- Semivolatile organic compounds (SVOCs) by SW-846 method 8270C
- Total Metals by SW-846 methods 6010B and 7000 series
- Organochlorine Pesticides and PCB's by SW846 method 8081
- Polynuclear Aromatics (PAH's) by SW846 method 8100
- Hexavalent Chromium by SW846 method 7196
- Total Organic Carbon (TOC) by SW-846 9060

The purpose of the data quality evaluation process (DQEP) is to assess the effect of the overall analytical process on the usability of the data. The two major categories of data evaluation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a straight-forward check of compliance with the method requirements; either the laboratory did, or did not, analyze the samples within the limits of the analytical method. Evaluation of matrix interferences is more subtle and involves the analysis of several areas of results including surrogate spike recoveries, matrix spike recoveries, and duplicate sample results.

DQE for the Screening Sites data consisted of the following two principal activities:

- Hard copy "validation" of the EPA Level 3 data packages (as a note, it is not possible to "validate" the EPA Level 2 data because there is no QC summary data to evaluate)
- Database-wide evaluation of the trends in data quality (for example, trends in surrogate spike recovery)

It is important to note that "data validation" is the assessment of the hard-copy data base deliverables in terms of method compliance, and "data quality evaluation" is the qualitative evaluation of overall trends in the project-specific database. Areas evaluated in the DQE include the following:

- Potential "blank contamination" (i.e. the effect on the usability of data for target compounds and analytes detected in both the field or laboratory blank samples and the corresponding field samples)
- Laboratory performance (i.e. recovery for spiked blank samples and other laboratory checks such as calibration and laboratory control samples)

医髓炎 医病毒

- Matrix interferences (i.e. recovery for spiked field samples)
- Usability of metals results at, or near, the instrument detection limits

This DQE technical memorandum (TM) includes the following:

- Results of the database-wide DQE queries (summary tables are included at the end of this report)
- Assessment of the overall usability of the data to support the project decision-making process

The focus of the hard-copy data validation was to review each of the QC summary sheets, note nonconformances on the DV worksheets, qualify the data as appropriate, and summarize the results of this review. These completed worksheets are included in the project file and are available upon request.

Data Evaluation Criteria

Before the analytical results were released by the laboratory, both the sample and QC data were carefully reviewed to verify sample identity, instrument calibration, detection limits, dilution factors, numerical computations, accuracy of transcriptions, and chemical interpretations. Additionally, the QC data were reduced and the resulting data were reviewed to ascertain whether they were within the laboratory-defined limits for accuracy and precision. Any non-conforming data were discussed in the data package cover letter and case narrative

The EPA Level 3 QC data packages were reviewed by the project chemists using the process outlined in the Environmental Protection Agency (EPA) guidance document Functional Guidelines for Evaluating Data (February, 1994). Areas of review included (when applicable to the method) holding time compliance, calibration verification, blank results, matrix spike precision and accuracy, method accuracy as demonstrated by LCSs, field duplicate results, surrogate recoveries, internal standard performance, and interference checks. A data review worksheet was completed for each of these data packages and any non-conformance documented. This data review and validation process is independent of the laboratory's checks and focuses on the usability of the data to support the project data interpretation and decision-making processes.

Data that were not within the acceptance limits were appended with a qualifying flag, which consists of a single or double-letter abbreviation that reflects a problem with the data. Although the qualifying flags originate during the database query process, they are included in the final data summary tables deliverable so that the data will not be used indiscriminately. The following flags were used in this text:

TABLE C.4-1
Data Qualification Flags
Memphis Depot Main Installation RI

Qualifier	Description
U	Undetected. Analyte was analyzed for but not detected above the method detection limit
UJ	Detection limit estimated. Analyte was analyzed for, and qualified as not detected. The result is estimated.
J	Estimated. The analyte was present, but the reported value may not be accurate or precise.
R	Rejected. The data are unusable. (NOTE: Analyte/compound may or may not be present.)

Numerical sample results that are greater than the method detection limit (MDL) but less than the laboratory reporting limit (RL) are qualified with a "J" for estimated as required by the EPA Functional Guidelines for Evaluating Data Quality.

The entire database was queried for frequency of detection in blanks and samples, detailed listing of blank detects, matrix spike/matrix spike duplicate (MS/MSD) results, field duplicate precision, surrogate recoveries, preparation and analysis dates pertaining to holding times. The queries were then manipulated to calculate necessary statistics for evaluation of the data.

Once the data review and validation process was completed, the entire data set were reviewed for chemical compound frequencies of detection, dilution factors that might affect data usability, and patterns of target compound distribution. The data set was also evaluated to identify potential data limitations, uncertainties, or both in the analytical results. Attachment A lists the changes in data qualifiers due to the validation processes.

Potential Field Sampling and Laboratory Contamination

Four types of blank samples were used to monitor potential contamination introduced during field sampling, sample handling, shipping activities, as well as sample preparation and analysis in the laboratory

- Trip Blank (TB): A sample of ASTM Type II water that is prepared in the laboratory prior to the sampling event. The water is stored in VOC sample containers and is not opened in the field, and travels back to the laboratory with the other samples for VOC analysis. This blank is used to monitor the potential for sample contamination during the sample container trip. One trip blank should be included in each sample cooler that contained samples for VOC analysis. Ten trip blanks were submitted to the laboratory with these samples.
- Equipment Rinsate Blank (ERB): A sample of the target-free water used for the final rinse during the equipment decontamination process. This blank sample is collected by rinsing the sampling equipment after decontamination and is analyzed for the same analytical parameters as the corresponding samples. This blank is used to monitor potential contamination caused by incomplete equipment decontamination. One equipment rinsate blank should be collected per day of sampling, per type of sampling equipment. Depending on the method, up to seventeen equipment rinsate blanks were submitted to the laboratory for this field effort

- Field Blank or Ambient Blank (FB or AB): The field blank is an aliquot of the source water used for equipment decontamination. This blank monitors contamination that may be introduced from the water used for decontamination. One field blank should be collected from each source of decontamination water and analyzed for the same parameters as the associated samples Three field blanks were collected during this sampling event.
- Laboratory Method Blank or Method Blank (MB): A laboratory method blank is ASTM Type II water that is treated as a sample in that it undergoes the same analytical process as the corresponding field samples. Method blanks are used to monitor laboratory performance and contamination introduced during the analytical procedure. One method blank was prepared and analyzed for every twenty samples or per analytical batch, whichever was more frequent.

Evaluation Criteria of QC Blank Results

According to the EPA Functional Guidelines, concentrations of common organic contaminants detected in samples at less than ten times the concentration of the associated blanks can be attributed to field sampling and laboratory contamination rather than environmental contamination from site activities Common organic contaminants include acetone, methylene chloride, 2-butanone, and the phthalates. For other inorganic and organic contaminants, five times the concentration detected in the associated blanks (rather than ten times) is used to qualify results as potential field and/or laboratory contamination rather than environmental contamination. The ten times rule was applied on an SDG by SDG basis and not globally. Global application, however, would account for anomalous data which should be attributed to laboratory or field blank contamination.

Detects in the samples at levels less than the action levels listed were qualified as not detected. Table C.4-2 compiles the blank detections into a "frequency of detection" by target parameter.

Table C.4-2 indicates that acetone, methylene chloride, 2-butanone, chloroform, and toluene were detected in at least one of the different volatiles blanks. Methylene chloride, acetone, and 2butanone are common contaminants Methylene chloride and acetone are common laboratory extraction solvents. Butanone and the other ketones are common contaminants of methanol, the solvent used for equipment decontamination. The majority of the sample detections for these compounds were qualified as not detected due to blank contamination. However, the data user should be cautioned that some of the remaining sample hits are anomalous and more than likely should be attributed to contamination. Chloroform was detected in two rinsate blanks and in one field sample at approximately the same concentration level. This compound is a THM (trihalomethane) and is suspected to be a contaminant in the laboratory water since no field blanks or samples contained detectable levels of chloroform Toluene was detected in a single rinsate blank at the MDL and was not used to qualify any field samples due to this low level.

Phthalates are used as plasticizers. The most common phthalates are bis(2-ethylhexyl) phthalate (BEHP) and D₁-n-butylphthalate. Phthalates are often introduced into samples during handling. Gloves are often used when handling soil sampling and groundwater sampling equipment such as pumps, hoses, split spoons, dredges and bailers. Additionally, laboratory chemists use gloves when handling samples and extracts. Gloves are coated with plasticizers such as BEHP to facilitate release of the gloves from the skin. Table C.4-2 indicates that phthalates were detected in multiple blanks Attachment A reflects several field samples qualified as not detected due to blank contamination Again, if global application of the flags were applied, the majority of all phthalate detections would be qualified as not detected due to contamination. Thus, caution should be utilized when making decisions based upon phthalate data.

As listed in Table C.4-2, several metals were reported in either the method, equipment rinsate, and/or field blanks. Sample results less than five times the concentration found in the associated blanks for that SDG were attributed to field sampling or laboratory contamination and are not considered to be indicative of environmental contamination. Samples reflecting this condition were qualified as not detected. These metals included aluminum, antimony, arsenic, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, selenium, silver, sodium, thallium, vanadium, and zinc.

Many of these metals are ubiquitous at low levels (aluminum, calcium, chromium, copper, nickel, iron, magnesium, manganese, sodium, and zinc). Iron, chromium, and nickel are associated with alloys of steel. Aluminum and copper are the primary metals used in conduits, tubing, and some electrical wiring. Lead is associated with many alloys or solder combinations. Calcium, magnesium, and sodium are the cations associated with common salts. Additionally, many of these elements can be found as trace level contaminants in acids utilized for digestion in the laboratory. Other metals such as antimony, arsenic, beryllium, cadmium, cobalt, selenium, silver, thallium, and vanadium are not common contaminants and generally are quantitated just above the MDL and are usually false positives associated with instrument noise.

Samples were qualified for metallic blank contamination on an SDG applicable basis and not globally. Any sample concentration falling under the five times blank rule was qualified as not detected. Affected samples can be examined in Attachment A.

Matrix Effects

Surrogate Spike Recovery

Surrogate spike compounds were added to every sample analyzed for the organic parameters including field and laboratory blanks as well as field environmental samples. Surrogate spikes consist of organic compounds which are similar to the method targets in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.

Surrogate spike recoveries were used to monitor both laboratory performance and matrix interferences. Surrogate spike recoveries from field and laboratory blanks were used to evaluate laboratory performance because the blanks should represent an "ideal" sample matrix. Surrogate spike recoveries for field samples were used to evaluate the potential for matrix interferences. According to Functional Guidelines, data are not qualified with respect to surrogate recoveries unless one or more volatile surrogates are out of specifications. Semivolatiles are not qualified unless two or more surrogates, within the same fraction (base/neutral or acid fraction), are out of specification.

As each data package was reviewed, the surrogate spike recoveries were compared to the QC target limits summarized in Table C.4-3.

Surrogate recoveries were well within method acceptance ranges. No VOC samples were qualified due to unacceptable surrogate recoveries. A greater variation (and hence broader range of recoveries) in surrogate spike recovery was observed for the SVOC analyses, but this is typical and is reflected by the broader method target acceptance limits. Again, recoveries for the SVOC's were mostly well within control limits. One pesticide/PCB sample, one 8270 SVOC re-extraction, and ten 8100 PAH samples were qualified as estimated for surrogate recoveries outside control limits. The recoveries indicate that the matrix did not influence the analytical method or the final analytical result.

Matrix Spike/Matrix Spike Duplicate Precision and Accuracy

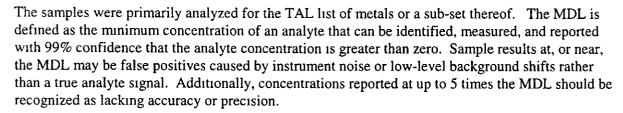
A matrix spike is an aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix. The matrix spike duplicate is an intralaboratory-split sample spiked with identical concentrations of target analyte(s). The spiking occurs prior to sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix. For the MS/MSD measurement, three aliquots of a single sample are analyzed; one native sample and two spiked with target analytes or compounds. Matrix accuracy is evaluated from the spike recoveries, while precision is evaluated from comparison of the percent recoveries of the MS and MSD. All MS/MSD precision and accuracy results are listed in Table C 4-4.

Organic results are not qualified upon the results of MS/MSD results alone. Evaluation is in conjunction with surrogate and internal standard (if applicable) results. Additionally, many MS/MSD samples require dilution and thus the spike compounds added are diluted out and able to be evaluated. The majority of the accuracy and precision results were well within established criteria, indicating that the specific sample matrix did not influence the overall analytical process or the final numerical sample result. No organic methods required qualification due to the MS/MSD precision and accuracy measurements indicating that the matrix did not influence the method or the final analytical result.

Inorganic results may be qualified solely upon the results of the matrix spike/matrix spike duplicate precision and accuracy. Instances where the native sample concentration for a given element exceeds the spike added concentration by a factor of four or more are disregarded as the spike added would be masked by the native concentration. This phenomenon often occurs in a soil matrix for common elements such as iron and aluminum. According to *Functional Guidelines*, metals recoveries of less than 30 percent for a given element require all associated non-detects to be rejected. This was the case for 34 antimony results. Any recovery greater than 30% and outside the 75-125% recovery control limits are required to be flagged as estimated. Precision requirements for soils and waters are at 35 and 20 relative percent difference (RPD), respectively. As Table C.4-4 indicates, the majority of the accuracy and precision results were well within established criteria, indicating that the specific sample matrix did not influence the overall analytical process or the final numerical sample result.

Field Duplicate Sample Results

Field duplicate analyses measure both field and laboratory precision and can also be affected by the homogeneity of the samples. Therefore the results may have more variability than lab duplicates, which measure only lab performance. According to the EPA *Functional Guidelines*, there are no qualification criteria for field duplicate precision. Field duplicate results are summarized in Table C.4-5.


Dependent upon the method, there were up to 18 sets of field duplicates collected during this field effort. Both the native and duplicate samples were analyzed for the same parameters.

An aqueous control limit of \pm 20% for the RPD was used for original and duplicate sample values greater than or equal to five times the RL. Solid samples utilized a control limit of 35 RPD. A control limit of \pm the RL was used if either the sample for the duplicate value was less than five times the RL for waters and 2 times the RL for soils. In the cases where only one result is above the five times the RL level and the other is below, the \pm RL criteria were applied. Table C.4-5 includes a summary of the field duplicate measurements and their associated precision statistic. Statistics outside criteria are highlighted in gray.

Six field duplicate sets contained at least one, but no more than three parameters outside precision criteria. One field duplicate set (MIA313) contained six parameters outside precision criteria.

The 18 field duplicates produced a total of 434 results of which 17 did not meet acceptance criteria. Thus, the precision data (96% complete) indicate that matrix heterogeneity and sampling technique did not greatly influence the final numerical result.

Sample Results for Metals Near the Method Detection Limit (MDL)

PARCCs

Precision--is defined as the agreement between duplicate results, and was estimated by comparing duplicate matrix spike recoveries and field duplicate sample results. MS/MSD precision was documented as well within control limit criteria. Other than the documented exceptions, the precision between native and field duplicate sample results were within acceptable criteria for 96% of the measurements indicating that sample matrix did not significantly interfere with the overall analytical process.

Accuracy--is a measure of the agreement between an experimental determination and the true value of the parameter being measured. For the organic analyses, each of the samples was spiked with a surrogate compound; and for organic and inorganic analyses a MS, MSD, and LCS were spiked with a known reference material before preparation. Each of these approaches provides a measure of the matrix effects on the analytical accuracy. The LCS results demonstrate accuracy of the method and the laboratory's to meet the method criteria. MS/MSD results establish precision and accuracy of the matrix. Spike recoveries were within the method acceptance limits for the majority of the measurements; therefore, other than the documented exceptions, there was no evidence of significant matrix interferences that would affect the usability of the data.

Representativeness—this criteria is a qualitative measure of the degree to which sample data accurately and precisely represent a characteristic environmental condition. Representativeness is a subjective parameter and is used to evaluate the efficacy of the sampling plan design. Representativeness was demonstrated by providing full descriptions in the project scoping documents of the sampling techniques and the rationale used for selecting sampling locations.

Completeness—is defined as the percentage of measurements that are judged to be valid compared to the to total number of measurements made. Other than the 34 antimony results rejected, only dilutions and re-extractions were rejected. Any dilution or re-extraction which were rejected was because a sample can only have a single numerical result for each target. A goal of 90 percent usable data was established in the project scoping document and 95.2% percent of the data was determined to be valid.

Comparability--is another qualitative measure designed to express the confidence with which one data set may be compared to another. Factors that affect comparability are sample collection and handling techniques, sample matrix type, and analytical method. Comparability is limited by the other PARCC parameters because data sets can be compared with confidence only when precision and accuracy are known. Data from this investigation are comparable with other data collected at the

site because only EPA methods were used to analyze the sample and EPA Level III QC data are available to support the quality of the data.

Summary and Conclusions

Conclusions of the data quality evaluation process include:

- The laboratory analyzed the samples according to the EPA methods stated in the work plan as demonstrated by the deliverable summaries and analytical run sequences
- Concentrations of acetone, chloroform, methylene chloride, Di-n-butyl phthalate, and BEHP, should all be attributed to field sampling and laboratory contamination rather than environmental contamination and all samples results were flagged as non-detected for these parameters. Several metals were qualified as not detected on an SDG by SDG basis as appropriate.
- Sample results for metals above the MDL but less than the RL may be attributed to instrument noise and/or low level contamination and not site-related activities and as such may be false positives.
- Sample results for target organic compounds above the MDL but less than the RL should be considered as uncertain but indicative of the presence of that compound at an estimated concentration
- Spike recoveries and duplicate sample results (other than the detailed exceptions in the text) indicate that the specific sample matrix did not interfere with the analytical process.

The project objectives or PARCCs were met, and the data can be used in the project decision-making process as qualified by the data quality evaluation process.

TABLE C.4-2Frequency of Detection in Blanks
Memphis Depot Main Installation RI

,	Depot Main In								
Sample	Analytical	Barranda	Number	Number	Min	Max	Min Detection	Max Detection	11-11-
Type LB	Method SW6010	Parameter ALUMINUM	Analyzed	Detected 6	Detected 0 879	Detected 1 568	Umit 0.79	<u>Umit</u> 079	Units
LB	SW6010	ALUMINUM	11	8	967	26 2	7.90	7 90	ma/ka ua/L
FB	SW6010	AŁUMINUM	3	2	103	27 8	7 90	7 90	UQ/L
EB	SW6010	ALUMINUM	13	8	83	37.6	7.90	7 90	ua/L
_LB	SW6010	ANTIMONY	18	6	-0 384	0 252	0 17	017	ma/ka
FB	SW6010	ANTIMONY	3	1	33	33	1 70	1 70	ua/L
LB	\$W6010	ANTIMONY	15	8	-2 59	3 77	1 70	18 90	UQ/L
FB FB	SW6010 SW6010	ANTIMONY	17	2	3	16	1 70 1 40	1 70 1 40	_ua/L
EB	SW6010	ARSENIC ARSENIC	17	1	16 23	23	1 40	140	ua/L ua/L
LB LB	SW6010	BERYLLIUM	18	16	-0 004	0017	0.00	000	mg/kg
FB	SW6010	BERYLLIUM	3	3	0.05	0.09	0.03	0.03	ug/L
EB	5W6010	BERYLLIUM	17	15	0.02	.013	0 02	0.03	ua/L
LB.	SW6010	BERYLLIUM	15	15	-0 74	016	0.03	010	UQ/L
LB	SW6010	CADMIUM	18	9	-0 031	0 0 1 2	001	001	ma/ka
LB	SW6010	CADMIUM	15	3	011	011	0.09	290	ua/L
LB I	SW6010	CALCIUM	11	6	3 33	8 253	237	2 37	mg/kg
LB :	SW6010	CALCIUM	11	<u> </u>	31 09	31 09	23 70	23 72	ug/L
FB EB	SW6010 SW6010	CALCIUM CALCIUM	13	10	34.6 26.1	41 2 73 7	23 70 23 70	23 70 23 70	ua/L ua/L
LB	\$W6010	CHROMIUM, TOTAL	18	12	0 103	0178	010	010	ma/ka
EB	\$W6010	CHROMIUM, TOTAL	17	4	1 04	12	100	100	ug/L
FB	SW6010	CHROMIUM, TOTAL	3	2	1	15	100	1.00	Ua/L
LΒ	\$W6010	COBALT	111	î	0.054	0.054	0.05	0.05	mg/kg
LB '	5W6010	COBALT	11	3	0.51	0.51	0.50	0.50	ua/L
FB	\$W6010	COBALT	3	2	0 52	0 69	0.50	0.50	UQ/L
ξB	SW6010	COBALT	13	3	0.59	0.82	0.50	0.50	ug/L
LB	SW6010	COPPER	18	4	-0 219	0 275	010	010	ma/ka
LB	SW6010	COPPER	15	9	1 39	1 96 9 1	100	1 20	UQ/L
EB LB	SW6010 SW6010	COPPER IRON	17	<u>7</u>	-4012_	1 715	0 36	036	ug/L mg/kg
EB	SW6010	IRON	13	4	7.8	13.2	3 60	3 60	ua/L
LB	SW6010	IRON	11	3	14.35	14 35	3 60	3 60	ug/L
FB	SW6010	IRON	3	2	66	105	3 60	3 60	UQ/L
LB	SW6010	LEAD	18	5	-0 23	0.211	013	0.13	mg/kg
EB	SW6010	LEAD	17	1	18	1.8	1.30	1 30	UQ/L
LB	SW6010	MAGNESIUM	11	9	-2 445	251	0.62	0.62	ma/ka
F8	SW6010	MAGNESIUM	3	2	17.4	181	6 20	6 20	ug/L
EB	SW6010	MAGNESIUM	13	8	68		6.20	6 20	ug/L
1.8	\$W6010	MANGANESE	11	6	-0.06	0 129	0.05	0.05	ma/ka
EB	\$W6010	MANGANESE	13	3	0.53	0.85	0.50	0.53	Ug/L
FB LB	SW6010 SW6010	MANGANEŞE NICKEL	18	7	0.83	0.038	0.03	0 53 0 03	ma/ka
£8	SW6010	NICKEL	17	 	0.32	0 32	030	032	ug/L
LB	SW6010	SELENIUM	18	8	-0 356	0 264	016	016	mg/kg
Į.B	SW6010	SELENIUM	15	9	-1 97	32	1 60	31 10	ug/L
LB	SW6010	ŞILVER	18	11	.0 05	0.05	0.05	0.05	ma/ka
LB	SW6010	\$ODIUM	11	7	25 011	67 457	11 42	11 42	mg/kg
<u>LB</u>	SW6010	SODIUM	11	11	300 33	386 06	114 20	114 20	ug/L
FB	SW6010	SODIUM	3	3	309	415	114 20	114 20	UQ/L
£B £B	SW6010 SW6010	SODIUM THALLIUM	13	13	200	24700	114 20	114 20	UQ/L
LB	SW6010	VANADIUM	11	5	1 6 -0 087	0 03	0.03	0.03	mg/kg
LB.	SW6010	VANADIUM	111	4	0.34	041	030	0.31	uo/L
EB	SW6010	VANADIUM	13	2	044	0.81	0.30	031	ug/L
LB	SW6010	ZINC	18	7	-0214	1 258	011	011	mg/kg
FB	SW6010	ZINC	3	2	19	3	1 10	1 10	ug/L
LB	SW6010	ZINC	15	7	1 26	3	1 10	4 70	uΩ/L
EB	SW6010	ZINC	17	14	12	23.6	1 10	1 10	ua/L
FB	SW7470	MERCURY	3	<u> </u>	0.09	0.09	0.09	011	ug/L
EB	SW7470	MERCURY	17	 	01	8	10 00	10 00	UQ/L
EB FB	SW8260 SW8260	ACETONE ACETONE	3	5	5 8	8	10 00	10 00	ug/L ug/L
LB	SW8260	ACETONE	18	11	3	57	10 00	500 00	ug/kg
EB	SW8260	CHLOROFORM	12	2	1 1	1 1	10	10	ug/L
EB .	SW8260	METHYL ETHYL KETONE (2-BUTANONE)	12	2	3	4	10 00	10 00	ug/L
ĘΒ	SW8260	METHYLENE CHLORIDE	12	ī	ł	i	10	10	ua/L
LB	SW8260	METHYLENE CHLORIDE	13	2	1	1	10	10	ua/L
LB	SW8260	METHYLENE CHLORIDE	18	8	1	5	10 00	500.00	ug/kg
EB	SW8260	TOLUENE	12	1	1	1	10	10	ua/L
LB	\$W8270	bis(2-ETHYLHEXYL) PHTHALATE	6	2	2	2	10 00	10.00	Ua/L
EB	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	6	4	1 1	4	10 00	10 00	Ua/L
EB	SW8270	Di-n-BUTYL PHTHALATE	6	1	1	 - !	10	10	ug/L
EB	SW8270	DI-n-BUTYL PHTHALATE	6	1 1	1 1	1	10	10	UQ/L
LB	SW8270	DI-n-BUTYL PHTHALATE	. 6 .	1	1 !	1	10	10	ug/L
LB	SW8270	Dt-n-BUTYL PHTHALATE	6	4	1 1	1 1		10	ug/L

Memphis Depot Main Installation RI

Surrogate Recovery Criteria

TABLE C.4-3

71-93 66-99 SW8270 (SW3520): 2-FLUOROBIPHENYL 86-118 81-108 51-117 90-126 SW8270 (SW3520): 2,4,6-TRIBROMOPHENOL SW8270 (SW3510): TERPHENYL-D14 35-45 22-54 SW8270 (SW3510): PHENOL-D5 41-112 76-92 SW8270 (SW3510): NITROBENZENE-D5 29-72 49-61 SW8270 (SW3510). 2-FLUOROPHENOL 82-123 63-130 40-103 79-98 SW8270 (SW3510): 2-FLUOROBIPHENYL 84-106 SW8270 (SW3510): 2,4,6-TRIBROMOPHENOL SW8260 (METHOD): TOLUENE-D8 78-119 98-114 SW8260 (METHOD). DIBROMOFLUOROMETHANE 83-140 **BEOMOLFROSOBENZENE)** 2M8260 (METHOD). 1-BROMO-4-FLUOROBENZENE (4-84-107 34-119 66-116 SW8260 (METHOD): 1,2-DICHLOROETHANE-D4 61-92 2W8100 (\$M3220): TERPHENYL-D14 59-86 51-85 SW8100 (SW3510): TERPHENYL-D14 64-113 76-106 2M8081 (2M3220): DECYCHTOBOBIBHENAF 69-115 72-94 SW8081 (SW3550): 2,4,5,6-TETRACHLORO-META-84-102 62-100 SW8081 (SW3210): DECACHLOROBIPHENYL 37-101 59-91 SW8081 (SW3510): 2,4,5,6-TETRACHLORO-META-Field Sample Ranges Lab Blanks Ranges

ATL/147543/APPENDICES/APP C/Table C_4-3 xts/Table C 4-3

	Lab Blanks Ranges	Field Sample Ranges
SW8270 (SW3520): 2-FLUOROPHENOL	34-98	84-110
SW8270 (SW3620): NITROBENZENE-D5	34-98 87-104 52-108	84-110 87-112 92-108
2M8270 (5W3520): PHENOL-D5		
SW8270 (SW3520): TERPHENYL-D14	02 4(7-106 54
SW8270 (SW3550) 2,4,6-TRIBROMOPHENOL		-128 59
SW8270 (SW3550): 2-FLUOROBIPHENYL	35	-106 58
SW8270 (SW3550): 2-FLUOROPHENOL	33	-106 57
2M8270 (2M3250): HENOL-DS 2M8270 (5M3550): NITROBENZENE-DS	67-97 68-89	-108 62-1
2M8270 (5W3550): TERPHENYL-D14	89 64-99	80-106 54-128 59-106 58-106 57-108 62-117 50-112
TC8080 (SW1311): 2,4,5,6-TETRACHLORO-META-	68-62	2 68
TC8080 (\$W1311). DECACHLOROBIPHENYL, TCLP	102-108 62-113	62
TC8270 (SW1311): 2,4,6-TRIBROMOPHENOL, TCLP	62-113	59-136 48-83
IC8270 (\$W1311): 2-FLUOROBIPHENYL, TCLP	55-76	
TC8270 (\$W1311): 2-FLUOROPHENOL, TCLP	54-97	46-94
TC8270 (SW1311). NITROBENZENE-D5, TCLP	63-97 54-113	54-101
TC8270 (5W1311). PHENOL-D5, TCLP	,	46-94 54-101 47-114 69-106
TC8270 (5W1311): TERPHENYL-D14, TCLP	84-95	69-106

TABLE C.4-3
Surrogate Recovery Criteria
Memphis Depot Main Installation RI

· · ·

TABLE C 4-4
MS/MSD Accuracy and Precision
Memphis Depot Main Installation RI

RPD	1,6%	3.4%	8	8 2	10.78	0 10	7 78	32.8%	5.3%	21.4%	15.5%	64.1%	40.2%		4.4%	3	8 8	0.3%	4.5%	5.3%	288	5.8%	5.1%	12.5%	850	X :	200	- 12g	8	×	5.9%	1.7%	9.5%	488	248	800	7.3%	80	0,1%	8.7%	26%	3.6%	.5%	8	427	360	7,0	86.	80	30%
MSD Recovery	%21.96	100.12%	-241 72%	364.50%	2/2/20	085 07%	22 7.4%	291.54%	44.91%	18.77%	28.00%	1039 95%	39.36%	28.98%	35.99%	27.75	67,639	50.30%	73.57%	64.22%	73.58%	79,70%	77.50%	868.88	72.98%	74.57%	74.21%	74 88%	75.85%	75.82%	79,57%	76.70%	94.21%	74.68%	71.92%	2000	70.10	78.66%	78.07%		81.03%	82.38%	80.20%	80.23%	75.71%	79.20%	81 508	81.63%	82.49%	83.08%
MSD Spike Added	517812.00	260630.00	68.20	28.50	53.62	25.0	22.22	28.09	52.98	59.10	57.72	22,13	52.97	56.16	29.79	70.05	0700	53.57	5.83	23.32	5.91	27.55	52.97	56.16	59.10	5.30	DE C	53.00	23.67	5.51	224.72	55.11	60.68	5.97	28 10	25. 4	562	59.11	236.38	59.29	5.51	233.09	5.91	211.86	25.67	57.05	20,70	220.51	23.10	5.83
MSD Lab Result	1250000,00	322368.00	16343.50	20.52	350.65	800 13	20413	280.80	334.79	12.05	17.16	463,14	20.85	19.28	21.16	201	788	30.16	8	28.18	4.35	39.56	57.25	114.31	70.53	446	363	87.65	* 10	23.5	178.80	48.07	121.07	4.46	19391	X	2/0	27.00	185.85	645,10	4.72	231.02	4.79	86.69	88.86	60.75	20.02	180.00	29.36	4.88
MS Recovery	92.3%		-1490.7%	36.2%	33 79	× 71	20.0	8	12.0%	14.8%	23.7%	23.7%	26.2%	28.2%	34.4%	43.3%	44 0%	A7 A9.	70.3%	70.8%	71.5%	71.6%	72.1%	72.9%	73.6%	73.6%	73.8%	74 1%	24.70	77.0%	75.0%	75.3%	75.6%	75.7%	76.78	200	77.6%	77.8%	78.0%	78.3%	78.8%	78.9%	79.0%	79.4%	79.5%	79.7%	76.08	80.4%	80.5%	80.6%
MS Spike Added	517812.00	280930.00	168.20	28.30	2 53	7 5 7 7	53.34	200	52.98	59,10	57.72	22.13	52.97	56.16	57.67	59.67	28.28	53.57	5.83	23.33	5.91	27.55	52.97	56,16	59.10	5.30	5.30	53.00	25,53	551	224.72	55.11	59.09	5.97	59.10	59.14	5 65 4 5 65 4	1,05	236.38	59.29	5.51	233.09	5.91	211.86	57.67	57.65	20.70	220.51	23.10	5.83
MS Lab Result	1230000.00	333605.00	17892.67	106.68	212.00	230.04	20100	208.26	317.37	9.73	14,69	238.25	13,87	18.85	20.26	2654	8007	27.48	21.7	20,70	422	37.32	54.40	100.87	70.87	4.41	3.91	43.97	9 0	96.7	168.50	47.28	110.09	4 52	10841	PE 19	8,8	53.62	185.75	703.43	4,60	222.81	4.72	168.31	91.07	80.19	20.47	17.30	28.89	4.73
Units	ma/ka	ma/ka	ma/ka	ma/ka	MQ/KG	3 (A)	MOVKO) N	2/50	Dy/ou	ma/ko	ma/ka	ma/ka	mo/ka	ma/ko	oy/ou	OX PO	DO VEC	2/04		ως/ _[[mo /kg	mc/ka	та/ка	то/ка	ma/ka	mo/ko	mo/ko		0 X	2/2	mo/kg	mo/ko	ma/ka	mo/kg	mo/ka	DO S	27,00	04/cm	O¥/ou	mo/ka	mo/kg	mo/ka	ma/ka	mo/ko	ра/ка	mo/ka	04/00 04/00	mo/ko	ma/ka
tab Qual		"	"	11	u	"	"	H 1	1 1	2	£	ľ	3	얼	Ħ		¥	¥ ₽	=	1	ŀ	"	"	N	"	Ħ	3	ĭ	n	4 2	=	"	Ħ	3	u	"	" =	'	1		Œ	=	ΙĽ	3	11	"	= =	2 =	=	E
Lab Result	752000	41400	20400	318		25.5	360	20,00	3 5	800	-	233	0.18		0.4	997	0.42	2,4	200	3,5	26	ž	16.2	59.9	27.4	0.51	0.05	47	444	3	300	35.	65.4	90:00	61.4	[6.3]		3,2	3.5	199	0.26	30	0.05	0.17	452	121	70	9 6	103	003
Parameter	ALKALINITY, TOTAL (AS COCO3).	ALKALINITY, TOTAL (AS COCO3)	IRON	LEAD	CHROMIUM, TOTAL	LEAD	ZINC	COSpeta	MANGANESE	WOMINA	ANIMONY	CHROMIUM, TOTAL	ANTIMONY	ANTIMONY	ANTIMONY	ANTIMONY	ANIIMONY	ANIIMONY	ANIMONI	CUDORALINA TOTAL	SI VED	COPPER	NOKEL	NICKEL	VANADIUM	CADMIUM	SILVER	COBALI	ZINC	CHICOMUM, IOIAL	MINITER	INC.N	LEAD	SILVER	ZINC	NICKEL	NOKEL	SILVER	SEIENIIM	MAANC ANESE	BERYHUM	ARSENIC	CADMIUM	THALLIUM	ZINC	NICKEL	LEAD	MALLUOM	CHROMIUM TOTAL	CADMIUM
Sample ID	MIA112	MIA159	MIA138	MIA033	MIA327	MIA-32/	MIA159	MIA32/	MIA 327	MIA138	MIA 128	MIA159	MIA327	MA159	MIA306	MIA230	MIA033	MIA277	MIACYO	MANS	MINAMO	MAIA 277	MIA327	MIA159	MIA138	MIA327	MIA327	MIA327	MIAU33	MAI38	MIA 150	MIA137	MIA138	MIA230	MIA138	MIA138	MIA033	AILA ISA	MIN 130		MA277	MIA033	MIA138	MIA327	MIA306	MIA306	MIA306	MIA277	MIA305	MIA033
Analytical	E310.1	E310.1	SW6010	SW6010	SW6010	SW6010	200900	SW6010	OWOOID	CWACIO	OLOSANS	0109MS	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	3.00m	Olomo	OTOWN	0100445	SWKOID	0109MS	SW6010	SW6010	SW6010	SW6010	SW6010	0109MS	SWOOD	SWACOLO	SW6010	SW6010	0109/MS	SW6010	SW6010	SWOOD	SAMOOIO	SWKO10	SWAOIO	SW6010	SW6010	SW6010	0109WS	SW6010	SW6010	0109MS	SW6010	0109MS
Matrix	87	SS	SS	SS	SS	23	8	a	38	8 %	3 8	3 27	SS	SS	SS	SS	g	S S	28	2 5	2 8	3 8	3 2	S	SS	SS	SS	SS	82	S	2 2	38	88	SS	SS	SS	SA E	2 8	2 8	2 8	3 8	8	s	SS	x	SS	SS	ន	2 %	38

ATL/147543/APPENDICES/APP C/Table C_4 3 xls/Table C 4-4

2 84.72% 86.55% 86.55% 86.43% 10.04% 81.05% 81.05% 80.30% 80 90.50% 94.17% 94.17% 96.12% 90.12% 90.12% 94.10% 94.10% 94.10% 94.10% 94.10% 94.10% 94.10% 94.10% 94.10% 94.10% 94.10% Recovery 81.32% 82.19% 82.52% 82.52% 85.05% 85.05% 81.78% 84,65% 85,36% 85,52% 83,34% 82,78% 82,13% 84,68% 84,36% SS MSD Spike Added MSD Lab Result 469 485 546 195,00 193,34 193,34 193,34 193,34 193,34 193,34 193,34 193,00 93.1% 93.2% 93.4% 85.5% 85.5% 85.5% 85.5% 86.3% 87.4% 84.3% 84.7% 85.0% 85.1% MS Recovery 88.2% 88.2% 88.2% 88.2% 88.5% 88.5% 89.5% 89.5% 81.6% 80.9% MS Spike Added 5.77 19997.47 224.73 26.49 230.72 5.77 5.83 20.48 211.83 20.48 211.83 20.48 21.18 20.48 20 238 cs 238 cs 238 cs 238 cs MS Lab Result 283.28 249.02 ma/ka mo/ka ma/ka ua/l mc/ka ma/ka ma/ka ma/ka ma/ka ma/ka ma/ka ma/ka ma/ka mo/kg ma/ko ma/ka Units コロロ IR. ı ≅ Eab Qual ∥덤크 필월이 엄엄 띅 27.0 0.20 0.18 0.19 0.19 0.18 Result 282 8 ᅙ SELENIUM
COPPER
ERYLLUM
THALLIUM
THALLIUM
BERYLLUM
ARSENIC
SELENIUM
CADMIUM
THALLIUM
CADMIUM
CADMIUM
CADMIUM
CADMIUM
CADMIUM
SELENIUM
SELENIUM
SELENIUM
SELENIUM
CADMIUM
CADMIUM
THALLIUM
CADMIUM
THALLIUM
SELENIUM
SELENIUM
SELENIUM
SELENIUM
SELENIUM
SELENIUM
SELENIUM
THALLIUM
SELENIUM
SELENIUM
SELENIUM
SELENIUM
THALLIUM
SELENIUM
SELENIUM
THALLIUM
SELENIUM
SELENIUM
THALLIUM
SELENIUM
SELENIUM
THALLIUM
SELENIUM
SELENIUM
SELENIUM
THALLIUM
SELENIUM
SELENIU POTASSIUM ARSENIC COPPER ARSENIC SILVER CADMIUM BERYLLIUM IHALLIUM LEAD BARIUM ARSENIC Parameter MIA230 MIA138 MIA138 MIA230 MIA126 MIA230 MIA230 MIA230 MIA230 MIA139 MIA327 MIA230 MIA033 MIA138 MIA128 MIA230 MIA230 MIA230 MIA230 MIA230 MIA230 MIA230 MIA230 MIA230 MIA128 MIA128 MIA128 MIA306 MIA306 MIA277 MIA138 MIA327 MIA033 MIA230 MIA230 MIA128 MIA296 MIA296 MIA296 MIA018 MIA128 Sample 0109WS 0109WS 0109WS 0109WS SW6010 SW6010 SW6010 SW6010 2W6010 2W6010 2W6010 2W6010 2W6010 2W6010 2W6010 2W6010 2W6010 SW6010 3W6010 3W6010 0109W8 Analytical Method SW6010 SW6010 SW6010 Matrix

Memphis Depot Main Installation RI TABLE C 4-4
MS/MSD Accuracy and Precision

C 73

`,#**;**

TABLE C 4-4
MS/MSD Accuracy and Precision
Memphis Depot Main installation RI

G _P	0.8%	3.8%	1.1%	88	2.4%	3.8%	30%	1.8%	2.1%	3.1%	8	2.5%	.8%	8 7	80	80.	27.0	8 3	200	38	268	340	2.4%	2.3%	22%	1.8%	2.2%	9.8%	9.3%	11.6%	5.3%	2	21.58	34.0%		88	2.6%	4.7%	7.1%	200	857	800	91,	8 8	8	25.0%				T	ě	4
MSD Recovery	95.03%	90.06%	94.59%	97.83%	98.64%	100.67%	94 22%	391 66	816.86	94.88%	8018	94.45%	100.20%	4/2 10 10 10 10 10 10 10 10 10 10 10 10 10	200.00	800 m	\$07.01	20070	07 750	104 208	218.01	10.26%	3,5	100.30%	100 14%	106.20%	106.76%	98.30%	98.23%	95.77%	65.92%	186.22%	73.87%	16.46%	2000.000	04 18%	99.40%	88.07%	95.74%	86.01%	85.31%	811.8	3/6 (0)	02.038	201.00	121 74%	0.00%	0.00%	0.00%	2000	8000	82 80%
MSD Spike Added	21.38	23.84	224.77	19999.85	200002	200000	214 13	409.96	1999.98	5.35	200001	28.87	20000	20000	0000	3000	2000	388	27.7	200	400 07	100001	240 00	230.65	2000	1999.97	20000	57,69	23.09	26.79	57.92	56.39	55.29	55.57	13.97	1 3.2	2.00	0.37	0.38	0.37	035	0.38	030	95.0	73.88	17.24	19.61	39.21	19.61	19,61	39.21	17.24
MSD Lab Result	29.62	32.37	214.21	20280.27	1975,47	2013.43	202.08	497,68	2036.85	23	2001.65	42.67	501.45	20439.24	57,78	STILLS.	70.00	2000	23.00	100.11	528 54	212/2 44	2,45 11	320,33	531.38	2136.73	538.80	76.81	34.18	38.96	598.18	10.652	153.84	278.15	730 15.47	2000	8	0.37	0.44	0.35	0.33	0.42	5 c	0.45	301.66	80.5	2002	30000	200 00	20000	30000	15531 L
MS Recovery	93.9%	95,4%	%9'56	95.9%	96.3%	36'96	97.0%	97.4%	97.8%	98.0%	88.18	88.1%	98.5%	70.0%	87.00	25.75	200	25.55	8 70	20.00	36, 101	101 48	101	103.6%	103.98	104.3%	104.4%	112.1%	112.6%	113.6%	121.7%	126.8%	141.0%	225.6%	14.78	04.2%	102.1%	83.6%	87.9%	88.3%	92.6%	98 4%	%Z%:	8000	151 59	85.5%	200	860	0.0%	%0.0	800	38
MS Spike Added	21.38	23.84	224.77	19999,85	200005	200000	214.13	499,96	1999.98	5.35	2000.01	28.87	200,00	20004.90	80.03	2000	20003	2000	33.55	2000	400.07	10000 84	240 00	230.65	2000	1000 07	500.00	57 69	23.09	26.79	57.92	56.39	55.29	55.57	73.41	1 32	200	0.37	0.38	0.37	0.35	0.38	0.39	0.39	200	17.24	10.01	39.21	19.61	1961	39.21	17.24
MS Lab Result	20.38	33.64	216.53	19894.49	1929.42	1938.58	208.13	488.65	1994.59	5,46	1964.52	43.73	492.65	26385.20	49.34	19800	516.25	20012	25.5	17 63 11	7, 7, 3	00.00	258 BO	325.80	510.00	2008 PM	527.21	84 74	37.50	43,74	630.48	899.48	190.98	394.37	20761.97	2019/00	25	0.35	0.41	0.36	0.32	0.42	0.43	0.44	0.40	105.05	2000	3000	200 00	200.00	330,00	140.52
Units	wo/ko	ma/ka	ma/ka	UQ/I	1/00	J/on	ша/ка	1/00	1/00	ma/ka	701	ma/ka	l/on	/D	1/00	701	701	ğ	Į,	ma/ka			1	27,700	2/5	Š	, 'S	U/J	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	mo/ka	7	mo/ka	ma/ka	ma/ka	ma/ka	-ma/ka	ma/ka	ma/ka	mo/kg	DX/O	7 (A)	No.	oo/ka	ua/ka	ua/ka	Da/ka
Cua Buai	"	"	TR	TR	TR	U	TR	TR	TR	IR	Ħ	Ī	η	=	n :	╡			Ĭ	"	4	¥	ļ	,	1	2	F		н	=	"	=	ı	=	Ħ	= =	=	ı	=	IR	=	-		*	H.	ä	D =	=	> >	=	3	ı
Lab Result	03	10.9	9.5	714	2.6	1.6	0.33	1.9	38.7	0.22	3,4	15.4	0.5	0999	0.	-	17.8	0.49	800	7.40	767	2 5	;	a d	0.0	2	, ,	3 5	11.5	13.3	200	628	113	592	00%	00/9	800	000	0.07	0.03	0.02	0.04	000	0.05	0.04	200) (2)	§ §	500	200	390	9
Parameter	CHROMINA TOTAL	CHPOMILIM TOTAL	SELENIUM	MAGNESIUM	SELENIUM	THACLIUM	SECENIUM	LEAD	ALUMINUM	ВЕКУПЛИМ	ARSENIC	COPPER	COBALI	CALCIUM	CADMIUM	CHROMIUM, TOTAL	MANGANESE	NICKEL	BERYLLIUM	ARSENIC	IKON Section	CINC	MUNICO	N. HOVO	MANANA	PADIDA	VICENTA	VANADIIM	CHROMIUM TOTAL	COPPER	MANGANESE	LEAD	ZINC	LEAD	RON	NON	MAEDOLIDA	MERCURY	MERCURY	MERCURY	MERCURY		MERCURY	MERCURY	MERCURY	DIELDIZIN	NECORN	FNDRIN	GAMMA BHC (LINDANE)	HEPTACHLOR	IQQ a'a	DD 001
Sample ID	140.304	MIA230	MA 150	MIADIB	MIA018	MIA018	MIA296	MIA018	MIA018	MIA296	910AIM	MIA128	MIA018	MIA018	MIA018	MIA018	MIA018	MIA018	MIA018	MIA296	MIAUB	MIAOIB	MIAUB	MIAUIB	MAIZ	910014	S CONTRACTOR	901000	MIA128	MA296	MIA128	MIA159	MIA277	MIA277	MIA327	M!A128	MIAGIO	MIA277	MIA128	MIA159	MIA327	MIA306	MIA230	MIA138	MIA033	MIA138	MIAIZB	MIA138	MA138	MIA138	MIA138	MA128
Analytical Method	0102403	SWCO10	SWADIO	SW6010	SW6010	OLOAWS	SWK010	SW6010	0109WS	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	5W6010	SW6010	Oldania	Ollowin	Olows	Olovana	CIOXXX	Swed D	SIMADIO	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	06/7/05	SW7A71	SW7471	SW7471	SW7471	SW747	SW7471	SW7471	SW7471	SW8081	SW808	SWSGB	SWRORI	SW8081	SW8081	SW8081
Matritx	35	38	3 8	S.	Š	ş	×	y.	Š	x	χ×	ss	S.W.	ΑŠ	S.	χX	S.M.	WS	Ş	SS	SS.	SS.	× i	\$	2	2	2	2	3 8	8	S	S	SS	æ	SS	ន	2	3 %	S	SS	SS	SS	SS	SS	SS	SS	SS	2 2	2 %	SS	S	SS

2

2 64.44% 55.56% 08.89% 77.33% 71.11% 80.00% 82.13% 94.69% 96.98% 81.43% 95.01% 112.24% 204.39% 41.25% -6.15% 0.00% 0.00% %000 0000 0000 0000 MSD Recovery %000 0 000 0 0 %000 %000 %000 000% 8000 | 11.1% | 0.29 | 0.45 | 1.23 | 1.24 | 0.45 | 1.24 | MSD Lab Resuff MS Recovery | 100.00 | 380.00 | 380.00 | 3 340.00 350.00 400.00 370.00 MS Spike Added 100.00 ua/ka 3000 00 ua/ka 5500.00 ua/ka 5500.00 ua/ka 5500.00 ua/ka 100.00 ua/ka 100.00 ua/ka 100.00 ua/ka 100.00 1000,00 550000 1100001 1100001 MS Lab Result U volko
U volko o oo/ko n oo/ko n oo/ko 1,00 00/kg 00/kg 00/kg ua/ka no/ka uo/ka uo/ka 뺾 da G 2000 Lab Result 8888 855585858 200 GAMMA BLIANA ALDRIN CAMMA BHC GINDANE)

BOLDOI

BOLDOI PHENANIHRENE
ACENAPHIHENE
ACENAPHIHENE
ACENAPHIHENE
ACENAPHIHENE
ACENAPHIHENE
ACENAPHIHENE
ACENAPHIHENE
ANTHRACENE
BENZOGANTHRACENE
BENZOGANTHRACENE BENZODSTUDRANHENE
BENZOGSTUDRERYTENE
BENZOGSTUDRERYTENE GAMMA BHC (LINDANE)
 SW8100
 MIA323

 SW8100
 MIA033

 SW8100
 MIA033

 SW8100
 MIA033

 SW8100
 MIA033

 SW8100
 MIA033

 SW8100
 MIA022

 SW8100
 MIA022

 SW8100
 MIA022

 SW8100
 MIA020

 SW8100
 MIA020
 SW8100 MIA306 SW8100 MIA327 SW8100 MIA200 SW8100 MIA200 SW8100 MIA200 SW8100 MIA227 SW8100 MIA226 SW8100 MIA206 MIAQ18 MIAQ18 MIAQ18 MIAQ12 MIAQ18 MIAQ18 MIAQ18 MIAQ18 MIAQ128 MIAQ128 MIAQ128 MIA200 MIA200 MIA230 MIA277 MIA296 MIA327
MA327
MA327 MIA230 MIA277 MIA296 MIA306 MIA327 Sample ID 1808WS 1808WS 1808WS 1808WS 1808WS 1808WS 1808WS 1808WS SW8100 SW8100 SW8100 SW8100 2W8100 2W8100 2W8100 2W8100 2W8100 Analytical Method Matrix

Memphis Depot Main Installation RI

MS/MSD Accuracy and Precision

FABLE C 4-4

ATU147543/APPENDICES/APP C/Table C_4 3 xis/Table C 4-4

F,

ţ:

O. C.												T	\int								ľ												2000%									6.5%	1.8%	800	800	8	200	10 A	5.7%	5.4%	10.5%	5.1%
MSD Recovery	0.00%	0.00%	2000	8000	000%	%000 0	000%	0.00%	8000	8000	000%	8000	000%	2000	8 2000	8 2 2	2000	2000	0.00%	3000	1000	2000	8000	0.00%	%0000	*000	0.00%	0.00%	2000	0.00%	2000	8000	69.23%	8000	200	8000	3000	%00'0	9,000	2000	-	41.67%	50.00%	44,44%	44,44%	42.11%	4/2/2	45,00%	47.2%	47.37%	47.37%	50.00%
MSD Spike Added	180,00	190,00	180,00	340,00	350.00	400.00	370.00	360.00	380.00	350.00	340.00	350.00	400.00	37000	2000	20000	3000	35000	38	32000	25.55	380.00	350.00	300000	3700.00	340,00	350.00	400,00	370.00	360.00	380.00	350.00	350000	3700.00	3,000	35,000	40000	370.00	360,00	380,00	350,00	3600.00	3600,00	3600,00	3600,00	380000	380000	4000.00	3400.00	3800.00	3800.00	3800.00
MSD Lab Result	1100.00	1100 00	00'0011	00000	000001	1200,00	5500,00	1100.00	00.00	710000	00000	00000	120000	0000	8 8 8 8	38	300	2001	2000	2500	W W I	801	8001	200000	5500.00	100000	10000	1200.00	5500,00	1100.00	1100,00	1100.00	2700,00	5500.00	mmee:	Minari.	13000	5500,00	1100.00	1100.00	1100.00	-1500.00	1800:00	1600.00	1600.00	00,000	800.00	8008	2007	1800,00	1800:00	1900,000
MS Recovery	%00	%O'0	0.0%	200	800	800	0.0%	0.0%	800	900	800	800	800	900	8 8	800	250	800	8 8 8	9000	200	200	200	£00	%0°0	900 0	200	900	0.0%	%0'0	3,000	9000	0.0%	0.0%	200	200	880	×000	% 00	%0.0	%0.0	- 44.4%	44,4%	44.4%	44.4%	47.4%	50.0%	88 88 88	88	80.03	52.6%	52.6%
MS Spike Added	180 00	190,00	180.00	340,00	350.00	400,00	370.00	360.00	380.00	350.00	340.00	35000	40000	37000	2000	3000	35000	200	888	3000	26026	38.5	350.00	3900	3700.00	340.00	350.00	400.00	370.00	360.00	380.00	350.00	3900.00	3700,00	3/0000	340.00	388	370.00	36000	380,00	350.00	3600,00	3600,00	3600,00	3600.00	3800.00	3800,00	400000	360000	3800 00	3800.00	3800.00
MS Lab Result	00:0011	1100.00	1100.00	00:0001	00:0011	1200,00	5500,00	1100.00	00:001	00.0011	00:0001	100.00	1200.00	5500.00	000	mani	00000	200	2000	20000	200	2001	28.5	3000	5500.00	00001	00011	1200.00	5500.00	1100.00	1100,00	1100.00	2800.00	2500.00	2500.00	00000	3000	5500 C	000011	1100.00	00,0011	-1600,000	1600.00	1600.00	1600,00	1800.00	1900.00	200000	200	00000	2000,00	2000,00
Chilts	ı.d/ka	ua/ka	ua/ka	∪a/ka	ua/ka	ua/ka	ua/ka	na/ka	ua/ka	ua/ka	ua/ka	ng/kg	na/ka	D)/ka	DZ/KO	DX/DA	DX/DD	o !	0 (Y)	03//01	3			3	2/2	04/0	24/01	o ko	ua/ka	ua/ka	ua/ka	ua/ka	ua/ka	na/ka	DJ/KO	03/KO		24/51	I/ka	ua/ka	ua/ka	H	ua/ka	ua/ka	ua/ka	ua/ka	DA/ka	na/ka	NO KO	00/kg	og/ka	ua/ka
d ga	=	Þ	Ξ	ם	3	3	=	3	3	3	=	1	╛	= :	1:	1	= :	=	1	=	1	1=	1=	1=	7	=	=	1=	-	⊃	2		3	3	1	= :	1=	1=	=	∍	₽	1	ן		ב	3	=	=	1:	3 =	=	
Lab Result	8	8	1100	<u>8</u>	8	1200	9200	8	1188	8	8	8	8	9200	3 5	3	8	3 5	38.	3 5	2	3 5	2	5	555	Į.	Ē	133	250	001	00[1100	139	2200	2500	<u>8</u>	3 5	ş	2	9	00[8	[1100	100	8	8	8	3 5	3 5	8	138
Parameter	RENZO/WELLIOPANTHENE	RENZOCIECIO PARTIENE	BENZO(k)FLUORANTHENE	CHRYSENE	CHRYSENE	CHRYSENE	CHRYSENE	CHRYSENE	CHRYSENE	CHRYSENE	DIBENZ(O, h) ANTHRACENE	DIBENZ(Q,D)ANTHRACENE	DIBENZ(a,h)ANIHRACENE	DIBENZ(a,h)ANTHRACENE	DIBENZ(O, h) ANTHRACENE	OIBENZ(Q, h) ANI HRACENE	DIBENZ(O.h)ANTHRACENE	FLUORANIHENE	FLUORANITENE	FLUORANIHENE	PLOOKANITURA COLODA A PLANITURA	FLUCKANIHENE	PLACKAINING OF THE PRINCIPLE OF THE PRIN	CLUS CALLED CALLED	FLUCINGENE	SANCENCY OF A CHOCKE	INDENOT 2 2 CONDON	INDENOTION OF CONTROLS	INDENOCL 2.3-C. CIDYRENE	INDENOCL 2.3-c. d)PYRENE	INDENOCL2.3-c.d)PYRENE	INDENOCI, 2,3-c, d) PYRENE	NAPHIHALENE	NAPHTHALENE	PHENANTHRENE	PYRENE	PYRENE	DVDSNC	DVDENE	PYZENE	PVISENE	ACENAPHIHENE	ACENAPHTHYLENE	ANTHRACENE	NAPHTHALENE	NAPHTHALENE	ACENAPHIHENE	ANTHRACENE	ANTHICACENE	FILODIANE	ACENAPHINYLENE	PHENANTHRENE
Sample ID	MAYOR	MIA30X	MIA327	MIA112	MIA200	MIA230	MIA277	MIA296	MIA306	MIA327	MIA112	MIA200	MIA230	MIA277	MIA296	MIA306	MIA327	MIALIZ	MAZO	MIAZBO	MIAZ	MIAZO	ON CONTRACT	7500	MANS	MINK!	MINIS	MAA230	MIA277	MIA206	MIA306	MIA327	MIA033	MIA277	MIA277	MIA112	MIA200	MASS	MAZO	MIA305	MIA327	- MIA266 -	MIA296	MIA296	MIA296	MIA306	MIA306	MIA230	MIA306	MIAZO	MIA306	MIA306
Analytical	CIA/B 100	CAMB 100	SW8100	SW8100	SW8100	SW8100	SW8100	SW8100	SW8100	SW8100	SW8100	0018WS	SW8100	SW8100	SW8100	SW8100	SW8100	SW8100	OOLBAKS	2008	200.000	SW8 IOO	200,000	ON SANS	SW6 U0	20,000	20,000	2000	SW8100	SWB100	SW8100	SW8100	SW8100	SW8100	SW8100	SW8100	SW8100	20,000	SA(B) OO	ON B TO	CVA/R100	COL BANK	SWRIDO	SW8100	SW8100	SW8100	SW8100	SW8100	SW8100	SW8 00	SW8100	SW8100
Matrix	y	3 5	SS	S	SS	SS	SS	S	S	S	SS	SS	S	SS	SS	SS	SS	88	82	SS	a	8	28	2 5	2 8	2 8	8	4 8	3 %	8	S	S	SS	ß	SS	SS	ន	2 8	38	3 %	ď	3 2	38	S	SS	SS	SS	SS	SA	28	3 %	SS

C 8

47.223 11.13 60.003 8.03 55.003 8.03 60.003 8.03 60.003 8.03 70.553 14.13 70.553 10.13 131.553 2.03 10.253 10.13 10.253 10.03 115.303 10.13 115.3 2 131.43% 148.57% 154.29% 160.00% 60.00% 151.43% 62.88% 62.88% 62.88% 80.00% 94.74% 94.74% 94.74% 94.74% 94.74% 96.94% 96.94% 96.94% 96.94% 96.94% Recovery MSD 22.8% 1700.00 3500.00
65.0% 2400.00 4000.00
65.0% 2400.00 4000.00
65.0% 2400.00 4000.00
71.8% 2400.00 3500.00
72.4% 5200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.4% 2200.00 3400.00
72.5% 4200.00 3400.00
72.5% 4200.00 3400.00
72.5% 4200.00 3500.00
117.1% 5200.00 3500.00
117.1% 5200.00 3500.00
117.1% 5200.00 3500.00
117.1% 5200.00 3500.00
117.1% 5200.00 3500.00
117.1% 5400 550.00
80.0% 4400 550.00
80.0% 4400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80.0% 5400 550.00
80 3500.00 3500.00 3500.00 3500.00 50.00 50.00 50.00 MSD Spike Added MSD Lab Result 100.0% 100.0% 100.0% MS Recovery 370.00 3400.00 3400.00 3400.00 3700.00 2000 2000 2000 2000 2000 MS Spike Added 485.00 270.00 270.00 270.00 270.00 57 44 00 44 00 44 00 3700 00 3700 00 3500 00 3600 00 3600 00 2400.00 2600.00 400.00 2500.00 4000 00 4100 00 4100 00 4300 00 450000 460000 600000 600000 MS Lab Result 240000 4400.00 ua/ka ua/ka ua/ka ua/ka ua/ka ua/ka ua/ka oy/or va/ko va/ko va/ka ua/ka 70 NO/ d/kp ua/ka Units do G 8888 Lab Result 8888 됨 1.1-DICHOROEHENE
BENZENE
TOLUENE
TOLUENE
TOLUENE
TOLUENE
TOLUENE
TRICHLOROEHYLENE (TCE)
CHLOROEHYLENE
CHLOROBENZENE
CHLOROBENZENE
TRICHLOROEHYLENE
TRICHLOROEHYLENE BENZENE

IRICHIOROEIHYIENE

I.I-DICHIOROEIHENE

IRICHIOROEIHYIENE

IRICHIOROEIHYIENE

I I.DICHIOROEIHENE

BENZENE

I I.DICHIOROEIHENE

BENZENE

I OLUENE

I OLUENE ACENAPHITEIRE
EUORENE
INDENOLIZACA OPVRENE
ANHRACENE
BENZOGIOPPRENE
BENZORALUZANHENE
BENZORALUZANHENE
ACENAPHITEIRE
ACENAPHITEIRE
NAPHITALENE BENZODS LUCRANIHENE FLUORANIHENE FLUORENE PHENANIHENE BENZODANIHRAGENE CHRYSENE PYRENE
PHENANTHERNE
BRIZOGALDIERNENE
ANTHRACENE
ANTHRACENE
ANTHRACENE
ACENAPHINTENE
ACENAPHINTENE
PHENANTHRENE
PHENANTHRENE
PHENANTHRENE
ACENAPHIHALENE
ACEN PHENANTHRENE ACENAPHTHYLENE NAPHTHALENE Parameter SW8260 MIAQ18
SW8260 MIAQ18
SW8260 MIA128
SW8260 MIA128 SW8100 MIA327 SW8100 MIA327 SW8100 MIA327 SW8100 MIA327 SW8100 MIA327 SW8100 MIA200 SW8100 MIA200 SW8100 MIA200 SW8260 MIA018 MIA033 MIA112 MIA112 MIA112 MIA112 MIA033 MIA033 MIA230 MIA230 MIA200 MIA327 MIA327 MIA327 MIA033 MIA112 MIA112 Sample ID MIA230 MIA230 MIA230 MIA230 MIA033 MIA033 MIA138 MIA088 MIA088 MIA138 MIA138 MIA088 MIA327 ODI SANS ODI SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 Analytical Method SW8100 SW8100 SW8100 SW8100 SW8100 SW8100 SW8100 SW8100 SW8100 Matrix

MS/MSD Accuracy and Precision Memphis Depot Main Installation RI

FABLE C 4-4

ATU147543/APPEND/CES/APP C/Table C_4 3 xIs/Table C 4-4

TABLE C.4-4
MS/MSD Accuracy and Precision
Memphis Depot Main Installation RI

, · 2 · 1

: :

Matrix	Analytical	Sample ID	Parameter	Lab Resulf	Lab Qual	Units	MS Lab Result	MS Spike Added	MS Recovery	MSD Lab Resutt	MSD Spike Added	MSD Recovery	RPD
y	SWR260	MIA138	CHLOROBENZENE	=	Þ	va/ka	59,00	56.00	105 4%	57.00	59.00	%19'96	3.4%
30	CIANROAD	MAIADAR	CHIODOBENZENE	2	-	ua/ka	53.00	50.00	106.0%	56.00	53.00	105,66%	5.5%
S.	SW8260	MIA327	BENZENE	2	J	ua/ka	50.00	45,00	106.7%	48.00	45.00	102.22%	4.1%
£	SWR2AD	MA327	1.1-DICHLOROETHENE	6	n	ua/ka	49.00	45.00	108.9%	47.00	45.00	104.44%	42%
S	SW8270	MIA138	ACENAPHTHENE	3000	ſ	ua/ka	4300.00	-97.00	-130.4%	320000	-997.00	-20.06%	20,336
S	SW8270	MIA327	2-CHLOROPHENOL	350	כ	ua/ka	2800,00	3500,00	0.0%	2700.00	350000	72.14%	2000%
S	SW8270	MIA 128	4-CHLORO-3-METHYLPHENOL	380	3	ua/ka	3200.00	3800,00	800	360000	3800.00	0.00%	
SS	SW8270	MIA327	4-CHLORO-3-METHYLPHENOL	320	=	uo/ka	3000.00	3500.00	0.0%	2900.00	320000	8000	
WS	SW8270	MIADIB	4-CHLORO-3-METHYLPHENOL	0	7	700	8400	100:00	0.0%	0800	0000	8000	
SS	SW8270	MIA327	4-NITROPHENOL	1800	3	ua/ka	320000	3500.00	800	3100.00	350000	2000	
S	SW8270	MIA128	PENTACHLOROPHENOL	8	7	ua/ka	310000	3800.00	800	3/0000	380000	*2000	
SS	SW8270	MIA128	PHENOL	88	7	oy/on	310000	380000	800	39000	380000	37,00	91.40
SS	SW8270	MIA138	PYRENE	2000	 	no/ka	2400000	23974.00	3.38	0000	100 W	33.00%	34. A
SW.	SW8270	MIA018	4-NITROPHENOL	23 5	1	ğ	38	3000	21.0%	30.00	2000	47.008	22 00
SN:	SW8270	MIAGIB	PHENOL	2 9	╡	į į	35.00	2000	50.08	27.00	00.05	54.00%	2/%
Ş	SW82/0	MIAUIS	A A HEODICALON CENTER	2000	1	27, 57	2000	30000	51.38	200000	390000	51.28%	800
8	SW82/0	MIA 38	1 2 4 TOLOHOORENZENE	2	╬		31.00	50.00	62.0%	32.00	20.00	64,00%	3.2%
8 %	SW02/0	A/14178	DENTACH COCHE	β	=	no/ka	2500.00	3900,00	64.1%	2600 00	3900,00	\$20,00	39%
3 4	SWROZO	MIADIB	2-CHI OROPHENOL	₽)	7/07	65.00	100.00	65.0%	86.00	00'001	%000	200.0%
g	SWR270	MIA128	1.4-DICHLOROBENZENE	380	ח	ug/kg	1300.00	1900.00	68.4%	1500.00	00'0061	78.95%	14.3%
S	SW8270	MIA138	2.4-DINITROJOLUENE	3900	n	ua/ka	1400.00	2000 000	20.0%	130000	200000	65.00%	7.4%
SS	SW8270	MIAD18	ACENAPHIHENE	10	ח	1/00	35.00	80.00	20.0%	39.00	20.00	78.00%	10.8%
Ş	SW8270	MIA018	N-NITROSODI-n-PROPYLAMINE	2	3	1/01	35.00	50.00	20.0%	43.00	20.00	800%	20.5%
SS	SW8270	MIA)38	4-CHLORO-3-METHYLPHENOL	3900	3	ua/ka	2800.00	3900.00	7).8%	30000	300000	76.92%	98.50 60 60 60 60 60 60 60 60 60 60 60 60 60
SS	SW8270	MIA128	2-CHLOROPHENOL	380	4	ua/ka	2800.00	3800,00	73.7%	320000	38000	2000	
SS	SW8270	MIA128	4-NITROPHENOL	88	1	ua/ko	280000	3800,00	73.78	mmer.	2000	70.05%	3000
sa :	SW8270	MIA128	ACENAPHIHENE		1	oy/so	4000	2000	4 5/ 5/ 2/ 5/	W UV	00000	8421%	13.3%
SS	SW82/0	MIAIZ8	N-NIKOSODI-D-PROFITAMINE	3	1	7	200	200	24.74	45.77	20.00	\$UU00	8
\$ 1	SW8270	MIAQUE	24-DINITROJO UENE	ي د	=	2	36.7	00001	77.0%	0016	100.00	000%	200.0%
£ £	07007F	WIAU 0	PENDOCHONION OF THE PROPERTY O	Š	=	0//0	CO UUZ	3500.00	37.1%	2200.00	3500.00	62,86%	20.4%
2 2	SW6270	MA327	DESCRIPTION OF THE PROPERTY OF	350	=	no/ko	2700.00	3500,00	77.1%	2600 00	3500.00	74.29%	3.8%
3 8	C/A/8270	MIA 327	1 4-DICHI OROBENZENE	350	5	ua/ka	1400,00	1800.00	77.8%	1400.00	1800.00	77.78%	0.0%
8	SWR270	MIA 128	1.2.4 TRICHLOROBENZENE	380	5	uo/ka	1500.00	1900:00	78.9%	1700,00	1900,00	89,47%	12.5%
s ss	SW8270	MIA128	2.4-DINITROTOLUENE	380	5	ua/ka	1500.00	00'0061	78.9%	1600.00	1900,00	84.21%	6.5%
SS	SW8270	MIA128	PYRENE	380	3	ua/ka	1600.00	1900,00	84.2%	00000	190000	100,00%	
SS	SW8270	MIA138	1.4-DICHLOROBENZENE	3000	7	na/ka	1700,00	200000	820%	00009	200000	20000	P &
S	SW8270	MIA138	N-NITROSODI-n-PROPYLAMINE	88	4	oy/on	00071	20000	\$0 ca	W 100	20.00	3080	200
\$	SW8270	MIADIB	PYRENE 10 4 TOLO II OCORENICALI	2 5	1=	3	2007	000081	88.08	15000	1800.00	83,33%	6.5%
2 8	0/78MS	MIA32/	A CENA DUTHENS	35	1=	2//0	0,000	3800.00	88.9%	00:0091	1800.00	88.89%	90.0
8	SW6270	MIA138	1 2 4-TPICH OROBENZENE	3000	=	ua/ka	1800.00	2000,00	%0'06	1800.00	2000.00	90.00%	0.0%
3	SWR270		2-CHLOROPHENOL	-3000	-0	ua/ka	3600,00	- 3900.00	92.3%	-350000-	390000	89.74%	2.8%
S	SW8270	MIA138	PHENOL	3900	3	ua/ka	3600.00	3900.00	92.3%	350000	300000	89.74%	2.8%
S	SW8270	MIA327	2.4-DINITROTOLUENE	350	3	ua/ka	1700.00	1800.00	94.4%	1700.00	1800.00	94.44%	0.0%
×	SW8270	MIA327	N-NITROSODI-n-PROPYLAMINE	350	∃	ua/ka	1700.00	1800.00	94.4%	00000	1800.00	88.89%	8 9
Ø	SW8270	MIA327	PYRENE	130	7	ua/ka	1900.00	1800 000	98.3%	200000	180000	103.89%	4 5
SS	SW9060	MA112	TOTAL ORGANIC CARBON	12300	ı	ma/ka	4960000	39985.40	93.3%	220000	00 7000	200.00	2 16
SS	SW9060	MIA159	TOTAL ORGANIC CARBON	6240	1	DZ/KO	0000977	08 9886	\$8'Q1	20,000	0000	05.00%	37 18
X	TC6010	MIA159	Codmium, ICLP	9	 	ġ.	32.50	0000	8000	96 0721	000000	87.46%	18%
SS	TC6010	MA159	Selenum, ICIP	174	†	Į,	76.77	700 37	85.78 84.19	16.48 72	408.36	94.05%	2.4%
ន	10000	MIA 159	1900, ICLP	7,4	" =	2 2	45.40	50.00	86.00	45.28	20.09	90.56%	0.3%
8 2	100110	MIA 150	Thought Tong	26	,=	700	1838.12	2000.00	86.5	1683.20	2000.00	84,16%	8.8%
2	10000	MIAIO	DOBUGE LAST	4,				2000000	******				

C 83

ATU147543/APPENDICES/APP C/Table C_4 3 xis/Table C 4-4

		_	_	_	_,		_	_		_	_		_	_		_	_	_	_	_
RPD	0.0%	1.8%	3.3%	0.8%	1.7%	2.2%	11%	10%		15.4%	15.4%	13.3%	37.0%	0.0%	5.4%	81.6	00%	0.0%	4.3%	3.8%
MSD Recovery	94.34%	93.76%	91.81%	94.82%	97.74%	94.10%	92.24%	102.90%	2000	56.00%	56,00%	64,00%	44,00%	72.00%	76,00%	92.00%	84,00%	88 00%	80096	108,00%
MSD Spike Added	200,000	50,00	500.02	199.98	2000.00	249.96	499.76	2.00	500.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00
MSD Lab Result	471.68	46.88	542,56	266.72	1954.80	256.60	2121.00	2.25	540.00	140.00	140.00	160.00	00:00	00'081	00'061	230,00	210.00	220,00	240.00	270.00
MS Recovery	94,4%	95.4%	95.4%	95.9%	96.1%	96.3%	97.1%	101,8%	800	48.0%	48.0%	\$6.0%	64.0%	72.0%	72.0%	84.0%	84.0%	88.0%	92.0%	104.0%
MS Spike Added	500 00	50 00	500.02	199,98	2000.00	249.96	499,76	2.00	500.00	250 00	250.00	250 00	250 00	250 00	250.00	250 00	250.00	250 00	250.00	250 00
MS Lab Result	471.80	47.72	92 099	268.88	1922.08	262.20	2145.24	2.23	540,00	120.00	120,00	140,00	00:091	180.00	00'081	210.00	210.00	220.00	230.00	260.00
Units	UQ/I	ממ/ך	חמ/ר	חמ/ך	חמי/ן	na/L	1/60	T/D/I	1/00	na/t	J/an	na/i	1/00	רמט/ך	Ua/L	7/00	J/on	1/00	7/50	חס/ן
tab Qual	D	>	IS.	=	5	2	"	2	5	5	5	э	э	5	5	3	5	э	n	ח
Lab Result	75.6	0.4	83.5	77.1	46.4	21.4	0991	61.0	S	S	S	S	250	250	95	8	250	89	50	S
Parameter	Antimony, ICLP	Beylium, ICLP	Nickel, TCLP	Chromium, ICLP	Arsenic, ICLP	Copper, ICLP	Zinc. ICLP	Mercury, ICLP	CRESOLS, m & p. TCLP	1.4-DICHLOROBENZENE, TCLP	HEXACHLOROETHANE, TOLP	HEXACHLOROBUTADIENE, TCLP	PENTACHLOROPHENOL, TCLP	2.4.5-TRICHLOROPHENOL TCLP	HEXACHLOROBENZENE, TCLP	2.4-DINITROTOLUENE, TCLP	PYRIDINE, TCLP	2.4.6-TRICHLOROPHENOL TCLP	NITROBENZENE, TCLP	2-METHYLPHENOL (O-CRESOL), TCLP
Sample ID	MIA159	MIA 159	MIA)59	MIA159	MIA 159	MIA150	MIA159	MIA150	MIA112	MIA112	MIA112	MIA112	MIA112	MIA112	MIA112	MIA112	MIA112	MIA112	MIA112	MIA112
Analyticat	10,000	TCA010	10,000	010901	10,000	10,000	01090	10,747.01	108270	108270	108270	108270	TC8270	10.8270	TC8270	108270	TC8270	108270	TC8270	108270
Matrix	y)	y	8	¥	ž	3 %	ž	z,	, E	3 5	z	8	, s	ä	8	3 5	y.	, s	S	ď
	_		_		_		_		-			_	_	_	_					_

TABLE C 4-4
MS/MSD Accuracy and Precision
Memphis Depot Main Installation RI

٠,

TABLE C.4-5
Field Duplicate Precision
Memphis Depot Main Installation RI

	RPD	200 00%	200 0%	200 0%	200 0%	200 0%	200 0%	200 0%	200 0%	200 0%	200 00%	200 0%	200 0%	200 0%	200 0%	\$000 \$000 \$000 \$000 \$000 \$000 \$000 \$00	200 0%	200 0%	200 0%	200 0%	200 0%	200 0%	200 0%	200 0%	200 0%	2000%	2000%	2000%	200.0%	30 0% 30 0%	2000%	200 0%	200 0%	200 0%	2000%	2000%	\$000%	2000%	-200 00%	2000%	2000%	200 0%	200 0%	2000%	2000%	2000%	280%	400.000
Field Dup Detection	Limit	46.4	000	0.32	25	480	25	480	350	350	7100	350	7100	350	3000	7100	350	909	350	350	350	3000	5300	350	350	7100	350	7100	350	000	350	7100	350	1200	350	3000	2100	3000		350	8	=	350	350	350	1200	340	6 10
	Units	Ug/L	ng/L	ug/L	ua/ka	DA/60	UQ/KG	ua/ka	ua/ka	ug/kg	UQ/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ua/ka	UQ/ka	ug/kg	og/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	UQ/kg	ug/kg	ng/kg	ug/kg	ug/kg	ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	UQ/kg	та/ка
Field Dup	Lab Qual	TR	TR	TR	ſ		l L			ſ	ſ	a	n	J.	n	, f	ш	n	3	E	E	n	#	3	3	n	n	ſ	ш	n	ш	n	JI	٦	11	Ω	7	ס	=	ш	٦	n n		L,	Ш	7	_	n
Field Dup	Final Result	742	600	0.67	8.7	110	11	51	2	2	1500	1500	7100	100	3000	3000	2900	600	00061	23000	38000	3000	0069	9300	20000	7100	350	4200	3900	009	27000	7100	440	800	970	3000	086	3000	7300	11000	130	11	150	150	32000	840	45	010
Detection	Limit	46.4	0.08	0.32	24	470	24	470	1800	10000	1800	10000	1800	10000	3000	10000	1800	11	00001	00001	00001	3000	9300	10000	10000	1800	1800	10000	1800	11	10000	1800	10000	1200	10000	3000	1800	3000	5300	10000	11	10	1800	10000	10000	1200	380	0.2
	Qual	n	ñ	118	ח	ם	٦) >	ח	_	p	ſ	ſ	ם	ſ	ſ	ı	7	"	ıı	"		n	"	H	-	7		11	_	=	-,	٦	n	ı	ſ	ſ	=	n	tl	il	-7	⊃	U	=	Λ	⊃	TR
Final	Result	464	900	0.49	24	470	24	470	88	0001	88	2400	240	10000	2500	2000	4100	Ŷ	29000	31000	32000	3700	2300	27000	3000	310	310	009	4900	2	32000	85	0001	1200	1500	1600	1300	4000	6300	24000	31	9	1800	10000	29000	1200	380	0.37
Field Dun	Sample ID	MIA160FD	MIA019FD	MIA019FD	MIA026FD	MIA026FD	MIAD26FD	MIA026FD	MIA189FD	MIA189FD	MIA189FDDL	MIA189FD	MIA189FDDL	MIA189FD	MIA223FD	MIA189FDDL	MIA189FD	MIA139FDDL	MIA180FD	MIA189FD	MIA 189FD	MIA223FD	MIA199FD	MIAIROFD	MIAIROFD	MIATROFIDE	MIA189FD	MIA189FDDL	MIA189FD	MIA139FDDL	MIA189FD	MIA189FDDL	MIA189FD	MIA231FD	MIA189FD	MIA223FD	MIA189FDDL	MIA223FD	MIA199FD	MIA189FD	MIA139FDDL	MIA189FD	MIA189FD	MtA189FD	MIA189FD	MIA231FD	MIA129FD	MIA282FD
	Sample ID	MIA159	MIA018	MIANIR	MIA025	MIA025	MIAN25	MIANOS	MIAIRA	MATABL	MIA188	MIATRO	MIA188	MIATRADI	MIA222	MIATRIDI	MIA188	MIA138	MIATRADI	MIA 1890	MIATRADI	MAIA222	MIA198	MATARDI	MIA 188DI	MIAIRR	MIA188	MIATRADI	MIA188	MIA138	MIA188DE	MIA188	MIA188DI	MIA230	MIA188DL	MIA222	MIA188	MIA222	MIA198	MIA188DL	MIA138	MIA188	MIA188	MIA188DL	MIA188DL	MIA230	MIA128	MIA281
	referroing	Arsonic ICIP	MERCHRY	NICKEI	AI PHA. CHI ODDANE	NAME OF THE PARTY OF THE		INDENCY 23 C ANDVOENE	O MATHY NABHTHALENE	2 MCTUVI NA DUTHA I ENE	A O EN A DETHENE	ACENAPHTHENE	ACENAPHTHYI ENE	A CENTABLITY ENE	ANTHOACENE	ANTHOACENE	ANTHRACENE	BENZENE	DENIZONATHDA CENE	DENZOCADORIE	DENZOVENELIODANIMENIE	DENZOCA PINDEDNI ENE	DONZOVA PIDEDVIENE	PENZOYALIJI FENTERNE	DENZONSELIO DA NITHENE	PINO CTUVI UCYVI) BUTHAL ATE	Nac STHAN HEYAL V DETHAL ATE	CADRAZOIE	CABBAZOIE	CADBON DISTIFIDE		DIRENZOFIDAN	DIBENZOFIBAN	FLIOSANTHENE	FILIORENE	FLIODENE	FILIORENE	INDENOCI 2.3-C. OPVRENE	INDENOCIO 2.5. CAPVRENE	INDENO(1 2 3.0 d)PYRENE	ANETHY: ETHY KETONE (2.RITANONE)	METHYL ETHYL KETONE (2-BUJANONE)	NAPHTHALENE	NAPHTHALENE	PHENANTHRENE	PYRENE	PYRENE	ANTIMONY
	Analytical	New York	07070	0,077,00	SWOOI O	2000001	30007.0	SWBUBI	3W62/U	20070	0770070	0770046	CIA/8770	070070	SW8270	OFFICIAL	0770740	0770076	OCCOPAC	070000	OFCORRO	300000	Steeling	200000	0770000	OVOCALO S	0770070	070070	SW0270	SW8270	3W6200	SW0270	OZCANO270	SW8100	OKA9270	State	CMR270	SWB100	CA/8100	CVA/8270	CAUROAC	SW8260	SW8270	SWAROZO	SWAROZO	SW8100	SW8270	SW6010
	N. September	Y S	33		2	i i	i i	y s	7 6	8 8	8 8	2 2	2 8	8 8	8 8	3 6	8 5	នេះ	9 8	2 5	8	2 8	2 8	8	2 2	2 5	2 5	2 5	g e	S S	8 2	8 8	3 8	3 8	3 %	3 8	3	g y	38	g y	S	g y	3 8	3 %	g g	8 %	3 8	SS

98 5% 98 5% 92 5%

5300 5300 5300

137 3% 127 0%

3008 3000 3000

126 5%

1200% 1146% 113 0%

88

152 9%

300

200 0% 200 0% 190 6% 162 3% 160 7%

င်ဗွ

Defection mg/kg ng/kg g/kg ma/kg mg/kg ma/ka mg/kg mg/kg mg/kg mg/kg ug/ka ug/kg ug/kg ug/kg ug/kg ug/ka ug/kg 09/kg 09/kg 09/kg 09/kg ma/ka ma/kg ma/ka ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ng/kg ug/ka mg/kg og/kg ga/kg ua/ka ma/ka ma/ka ug/kg ug/kg ug/kg Field Dup Lab Quai Final Result Field Dup 002 008 008 40000 12000 18000 74000 74000 0009 1800 2000 5000 020 8 0.05 504 Detection 5300 8 Ē 2000 Lab Quai ß £ 3000 3000 8_000 23000 25000 72000 9500 23000 9500 25000 3000 36000 65000 18000 14000 5100 4200 430 3700 9000 008 28 051 MIA189FDDL MIA189FDDL MIA189FDDL MIA189FDDL MIA189FDDL MIA189FDDL MIA189FDDL M!A189FDDL MIA189FD MIA189FD MIA189FD MIA314FD Field Dup Sample ID MIA189FDDI MIA189FDDL MIA0334FD
MIA223FD
MIA3314FD
MIA0225FD
MIA0225FD
MIA0223FD
MIA0223FD
MIA0223FD
MIA0223FD
MIA0223FD
MIA0223FD
MIA0223FD
MIA0223FD MIA223FD MIA328FD MIA199FD MIA328FD MIA199FD MIA160FD MIA050FD MIA199FD MIA199FD MIA171FD MIA328FD MIA297FD MIA129FD MIA160FD MIA282FD MIA314FD MIA188DL MIA188DL MIA313 MIA333 MIA222 MIA313 Sample ID MIA188 MIA188 MIA188 MIA188 MIA188 MIA188 MIA188 MIA188 MIA296 MIA327 MIA025 MIA222 MIA222 MiA222 MIA222 MIA222 MIA327 MIA327 MIA327 MIA327 MIA327 MIA327 MIA327 MIA337 MIA222 MIA128 MIA159 MIA159 MIA049 MIA188 MIA188 MIA188 MIA327 MIA198 MIA033 MIA281 MIA277 BENZO(Q)ANTHRACENE BENZO(Q)PYRENE BENZO(D)FLUORANTHENE INDENO(1,2,3-c, d)PYRENE DIBENZ(O, h) ANTHRACENE FLUORANTHENE CHRYSENE BENZO(k)FLUORANTHENE BENZO(a)PYRENE DIBENZ(a,h)ANTHRACENE BENZO(b)FLUORANTHENE BENZO(k)FLUORANTHENE BENZO(k)FLUORANTHENE BENZO(a)ANTHRACENE BENZO(b)FLUORANTHENE BENZO(Q,h, I)PERYLENE LEAD PHENANTHRENE NICKEL PYRENE BENZO(a)PYRENE FLUORANTHENE PHENANTHRENE FLUORANTHENE Total Xylenes ANTIMONY
ANTIMONY
MERCURY
SELENIUM
SILVER
SILVER
SILVER
SILVER
SILVER
SILVER CADMIUM SODIUM COPPER PYRENE PYRENE Memphis Depot Main Installation RI Field Duplicate Precision SW6010 SW8100 SW8100 SW8100 Analytical SW6010 SW7471 SW7471 SW7471 SW6010 SW8270 SW8270 SW8270 SW6010 SW8100 SW8100 Method SW8270 SW6010 SW6010 SW8100 SW6010 SW8100 SW8100 SW8100 SW8260 SW8100 SW8100 SW8260 SW8100 SW8260 SW8100 SW8270 'ଷ' ଅଧାର୍ଥ ବା ଅଧାର୍ଥ ଅଧାର SS

00 00 8 00 18 00 18

Ē

TABLE C.4-5

TABLE C.4-5
Field Duplicate Precision
Memphis Depot Main Installation RI

	RPD	86 3%	87.8%	86.2%	84.2%	83 3%	82 4%	815%	81 2%	26 9%	71 9%	715%	66 7%	66 7%	66 7%	65 3%	63 8%	62 0%	618%	61 7%	58.7%	56 2%	26 0%	55 3%	53 5%	52.2%	51.9%	510%	50.6%	50 0%	47 8%	47.6%	46 8%	46.2%	45.7	45.04	20.76	42.49	42.48	400%	40 0%	40.0%	40 0%	40 U%	36/26	38 3%	3/0%	36 5%
Field Dup Defection	Limit	14	5300	5300	7100	100	350	13	5300	0.02	0.2	13	14	11	7100	0019	7100	0.12	610	1.7	0 16	910	7100	7100	1.8	7100	010	7100	7100	0019	58	7100	7100	91,5	/10	2000			010	0.38	0.0098	6100	0 0089	0 0027	4367	0 38	0.36	017
	Units	ug/kg	ug/kg	ug/kg	ug/ka	та/ка	DA/KO	ug/kg	ug/kg	ma/kg	ma/kg	mg/kg	ng/kg	ng/kg	ug/kg	mg/kg	ug/kg	mg/kg	ng/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	mg/kg	ug/kg	mg/kg	ug/kg	ua/ka	ma/ka	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mq/kg	па/ка	mg/kg	UQ/KG	mg/kg	ma/ka	mg/kg	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	та/ка
Circle Circle	Lab Quai	=	. 11	H	15	TR	ſ	ı	Ħ	11	TR	Н	r	٦	Đ	H	=	I	7	31	II.	-	П	11	TR	ĸ	11	1	ŧ	Ľ	ß	14	li	7	И	¥	11	11		¥.	갵	II	п	<u>۱</u>	낊	В	낊	н
Ciel Ciel	Final Result	81	20000	9300	11000	034	001	38	7100	600	0.87	727	3	2	12000	13	00091	748	061	53	213	320	18000	17000	12.8	000/1	17	00061	31000	0.03	86	40000	18000	ВО	46 1	0 43	386	8	1300	45	0.02	000	12	0.33	1420	0059	-	0.83
doiloatad	Limit	=	5300	2300	00001	100	180	=	5300	0.018	61.0	1.4	=	2	10000	0 0 0 4 8	0002	012	610	17	0.16	019	10000	10000	18	00001	0 19	10000	00001	0.02	38	10000	10000	13	017	0 00059	0036	011	610	960	66000	0019	0 0089	0.0027	434 4	0.38	60	0.17
3	op o	II	ı	7	,,	2	-	"	_	,	2	ı	-	-	-	£	,	,,	-	, =	"	-	, ,	ı	2	"	н	ı	"	"	ı,	"	1	-	"	ı	"	ï		ĭ	TR	Ш	=	낊	ZZ.	=	TR	=
-	Pesuit	33	780	3700	2,000	0 14	200	1	300	700	190	3.74	5	-	24000	5	3100	142	3	28	2	570	3300	SUL.	7.4	29000	_	32000	5200	0.05	140	92009	29000	5	29 5	0.67	599	38 9	- 2000-	8	003	900	18	0.22	096	4410	1 6	12
1	Field Dup	MIA139FD	MIA199FD	MIA199FD	MIATROFIDI	MAIA2316D	NAIA 180FD	AMA 120ED	MA 100FD	A STACO	MIA278FD	AAIA3146D	AAIA 130FD	ANA 180FD	MIA 180FDDI	MAN LACED	MIATROFICE	MIAIROFD	MAINTED	AMIA314FD	MANAGED	MAIOTED	MIAIROFUNI	MIA 180FDDI	MIA314FD	ICICIDE INV	MIAD34ED	MIATROFIDI	MIA180FDDI	MIA139FD	MIA129FD	MIA 189FDDL	MIA189FDDL	MIA026FD	MIA139FD	MIA034FD	MIA160FD	MIA328FD	-MIA121FD-	MIA160FD	MIA034FD	MIA282FD	MIA314FD	MIA297FD	MIA189FD	MIA189FD	MIA160FD	MIA050FD
	C) olumb	MIAIR	MIA108	MIATOR	MIA 18RDI	MAIN 330	MIATOR	0017117	MIATOR	7100170	MIA277	MASTS	MAIATOD	MAY 199	MIN 198DI	MAIA 150	MAIN 1880	MATABA	MIA 130	MIA313	1 WILD 13	0000	DAIA I RIPA	ANA 1990	MINATO	NAIA 188DI	MIACIR	MIATRO	MIATABLI	MA138	MIA128	MIA188DL	MIA188DL	MIA025	MIA138	MIA033	MIA159	MIA327	-MIA120-	MIA159	MIA033	MIA281	MIA313	MIA296	MIA188	MIA188	MIA159	MIA049
	and the second of	GINOMATI IS CO SNOTON INTER MATERIAL	METHIC FILIT NELCTIC CONTRACTOR	DENIZONANTHOACENE	DENZOCA POBOVI ENIC	BEINZO(Q,T,J)PERTLEINE	CADIMIDIA		METHYL ETHYL KELOINE (Z-BOTANOINE)	THE CAN IN THE LAND	MERCURY	ANIINGSA	LEAD	PHIZEING CO.	CARBON DISULFIDE	INCINCTIVE COLUMN	CADMIUM	DEINZO(U)PTIKEINE	JAII7	FINALBEINGE	SELENION	AKSEIVIC	FORD AVIENCE	BENZONDIFLUCIONAMINENE	BEINZO(K)FLIGORANI REINE	ENDOWNER COCKAGO	DEINZO SEI CHILINA	SELENIUM	OVOENE	VOITOGEN	WICKOR!	ELIODANTHENE	DHENANTHOENE	METHYL ETHYL KETONE (2-BUTANONE)	ARSENIC	BERYLLIUM	NICKEL	COPPER	BENZENE	ANIMONY	CADMILIM	MERCHRY	CADMIUM	BERYLLIUM	POTASSIUM	NOS	SFIFNIUM	SELENIUM
	Analytical	Method	SW8200	SW8100	SW8100	SW82/U	SW6010	SW82/0	SW8260	SWBTOO	SW7471	SW6010	SW6010	SW8260	SW8260	3W62/U	SW6010	SW82/U	DI09MS	SW8260	SW6UID	SW6010	SW8260	SW8270	SW8270	DIDOWS	SW82/0	OLOGAS	SW82/0	SW62/U	SW/4/	SW6081	CAMBOTO	SW8260	0109WS	0109WS	0109MS	SW6010	CWRZAN	OLOAMS	CIMACOLO	CWZWZ	SWKO10	OLOWAS	0109/8/5	OLOSWS	OLOWS	0109MS
	:	Matrix	S S	2 8	S	SS	88	SS	SS	SS	SS	S	SS	SS	SS	S	SS	SS	SS	88	SS	SS	SB	SS	SS	3	S S	S S	88	s s	3 8	3 8	2 2	3 5	S	S	S.	S	9	S S	ຄິນ	3 %	8	3 8	3 8	3 8	ર જ	SS

22 2%

21 %

C-83

Defection Field Dup 25 6 0 00026 0 036 0000 100012 20012 20012 20012 20012 20012 20012 20012 20012 20012 20012 20012 20012 956 23 28 0,019 0 033 읾 350 mg/kg ma/ka ug/kg ug/L mg/kg ma/ka ma/ka ma/ka ma/ka ug/ka mg/kg ua/ka mg/kg UQ/KG mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ma/ka ma/ka mg/kg ma/kα ma/kg DA/kg mg/kg mg/kg mg/kg ma/ka ug/kg na/ka mg/kg ug/kg mg/kg ug/kg ug/kg J J Field Dup Lab Qual ≅ \cong ≅ 띠염 Final Result Field Dup 24800 1230 79 153 251 251 270 142 131 003 3040 1500 1500 1500 5200 00089 8 3000 2330 0 53 035 252 252 328 258 된 663 187 62] 0 7 95.1 00097 0.79 0 0026 00029 53000 2000 0005 0012 0038 0038 058 1800 0 035 8 0 15 350 25 873 038 Ē 뎶 012 8 욍 \$ grad g "|≅| ≅ \cong 46100 21000 4200 <u>8</u> 806 005 235 138 4100 300 8 8 450 008 4030 10.6 58 Š 8 8 MIA328FD MIA328FD MIAL282PD
MIAL28 MIA189FDDL MIA278FD MIA189FD Field Dup Sample ID MIA171FD MIA231FD MIA139FD MIA171FD MIA189FD MIA034FD MIA231FD MIA171FD MIA314FD MIA314FD MIA034FD MIA160FD MIA160FD MIA189FD MIA026FD MIA328FD MIA129FD MIA314FD MIA328FD MIA034FD MIA025 MIA327 MIA170 Sample ID MIA327 MIA327 MIA033 MIA128 MIA1281 MIA128 MIA281 MIA281 MIA128 MIA128 MIA128 MIA128 MIA128 MIA227 MIA277 MIA159 MIA159 MIA281 MIA188 MIA281 MIA327 MIA159 MIA159 MIA313 MIA327 MIA188 MIA170 MIA138 MIA188 MIA277 MIA 188 MIA033 MIA230 MIA296 MIA327 ARSENIC BENZOKNFLUORANTHENE CHROMIUM, TOTAL ANTHRACENE PHENANTHRENE
CHROAMUM, TOTAL
ALPHA-CHLORDANE
BENZOGJANTHRACENE
CALCIUM
POTASSIUM GAMMA-CHLORDANE CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL FLUORANTHENE POTASSIUM Chromium, ICLP ACENAPHTHENE FLUORANTHENE ANTHRACENE CADMIUM ARSENIC ARSENIC Nickel, TCLP CADMIUM LEAD VANADIUM ALUMINUM VANADIUM CADMIUM BERYLLUM Parameter NICKEL COPPER ZINC NICKEL MERCURY MERCURY CALCIUM DD- d'd ARSENIC COPPER LEAD Field Duplicate Precision Memphis Depot Main Installation RI SW8100 IC6010 SW8100 SW6010
SW6010 Analytical Method SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW8100 SW6010 SW6010 SW6010 SW8081 000% SW0010 SW8081 SW8100 SW6010 SW6010 SW6010 SW6010 9 9 9 SW8081

28 0%

26 8% 26 4% 82,82 25 5% 24 5%

30 5% 30 1%

29 6% 29 1% 29 0% 28 8% 28 6% 28 6% 28 6% 28 0%

TABLE C.4-5

TABLE C.4-5 Field Duplicate Precision Memphis Depot Main Installation RI

RPO	20.4%	20.4%	20 3%	20.3%	82	19.4%	19.4%	19.0%	19.0%	18 9%	18 9%	18.8%	18 7%	18 4%	18 2%	18 2%	17.6%	17.6%	17.5%	17.4%	17.2%	17.0%	16.7%	16.5%	16.4%	16.2%	16 1%	16 1%	16 1%	160%	160%	15 9%	15.9%	15.7%	15.5%	15.4%	15.4%	15.4%	15.4%	15.4%	15.4%	15.4%	15.4%	15.4%	15.4%	15 3%	15.1%	
Field Dup Detection Limit	350	0.15	0.68	011	53000	480	58	53000	0.85	0.11	36	0038	53000	0.86	5300	0.02	0.056	0 12	53000	12.6	0.94	0 034	53000	23000	0 17	0.13	0.061	990	11	0.15	0.053	0 035	0.25	330	0.72	0019	480	53000	5300	7100	36	11	36	=	0.5	0.07	0034	
Units	ug/kg	та/ка	та/ка	та/ка	Da/kg	ug/kg	ug/kg	ug/kg	та/ка	ma/ka	ug/kg	ma/ka	UQ/KG	ma/ka	DA/RO	та/ка	mg/kg	mg/kg	ug/kg	mg/kg	mg/kg	mg/kg	ug/ka	ug/kg	mg/kg	та/ка	mg/kg	та/ка	mg/kg	ma/ka	ma/kg	ma/kg	mg/kg	ug/kg	mg/kg	mg/kg	ng/kg	pa/kg	ug/kg	ug/ka	ug/kg	ug/kg	ug/kg	uo/ka	DO/ka	ma/ka	mo/ka	No. Person
Field Dup Lab Quai	п	ц	11	=	=	7	n	t	ĸ	ß	Ħ	ı	H	វា	Ð	(II	=	H	=	Ħ	=	н	ıı	IR	li.	II	TR	JI .	n	TR	П	TR	H	II	=	7	- f	=	l		7		1	1	- 1	1 1	
Field Dup	440	5.4	53.6	163	82000	170	170	00069	5360	15.6	58	22.7	76000	5700	36000	0.1	112	13	62000	121000	10600	83	130000	59000	0.28	37.4	658	309	12100	768	2.7	19	51	410	2020	900	140	35000	42000	4200	14	7	140	71	4 A	88 1	00	7
Detection	1800	0.15	0.68	011	53000	470	38	53000	0.85	110	35	0.036	53000	0.84	5300	0.02	0.055	0.12	53000	12.5	093	0035	53000	53000	0.17	013	1900	190	11	015	0.053	0 0 3 4	0.25	390	071	0019	470	53000	5300	1800	35	2	25	3 5	200	0.00	0000	***
Lab	7	=	=	II	ls	ſ	ı	11	ш	"	ı	ı	н	Ω	łì	ß	ı		_	81	"	"	ı	٦	12	B	II	ĭ	"	_	2	×	¥	я	н	Ð	ſ	f	ıı	"	_		,	<u> </u>	"	"	н	"
Final	550	44	43.7	133	000/9	140	140	57000	4430	129	48	27.4	93000	4740	30000	0.12	93.9	10.9	22000	144000	2,00	7	110000	2000	0.33	44	260	263	10300	654	23	162	43.5	480	1730	0.07	22	30000	36000	4900	12	-	2	3 5	77.	75.4	00/	0.0
Field Dup Sample ID	MIA189FD	MIA297FD	MIA189FD	MIA297FD	MIA314FD	MIA026FD	MIA129FD	MIA314FD	MIA050FD	MIA171FD	MIA328FD	MIA139FD	MIA314FD	MIA328FD	MIA189FD	MIA223FD	MIA189FD	MIA231FD	MIA314FD	MIA189FD	MIA139FD	MIA297FD	MIA314FD	MIA314FD	MIA297FD	MIA034FD	MIA129FD	MIA050FD	MIA026FD	MIA139FD	MIA189FD	MIA328FD	MIA189FD	MIA139FD	MIA129FD	MIA129FD	MIA026FD	MIA314FD	MIA189FD	MIA189FDDI	MIA328FD	MIATROFIL	NIA 328ED	MIASZOFU.	MIA 189FU	MIAUZOFU	MIAUZOFU	MIAIBYFU
Gidam	MIA188	MIA296	MIA188	MIA296	MIA313	MIA025	MIA128	MIA313	MIA049	MIA170	MIA327	MIA138	MIA313	MIA327	MIA188	MIA222	MIA188	MIA230	MIA313	MIA188	MIA138	MIA296	MIA313	MIA313	MIA296	MIA033	MIA128	MIAOM9	MIA025	MIA138	MIA188	MIA327	MIA188	MIA138	MIA128	MIA128	MIA025	MIA313	MIA188	MIA188	MIA327	MIN 188	WINA100	MIA32/	MIA188	MIA025	MIA025	MIA188
Approximated	Naci Political	APSENIC	1FAD	COPPER	PYRENE	FILODANTHENE	NIEUDIO	BENZOCKELKORANTHENE	ALIMINIM	COPPER	JOP OF	VANADIJIM	CHOYSENE	ALIMINIM	PHENANTHRENE	MEDCIDA	NAANC ANEGE	CHEOMINA TOTAL	BENZOLONDENE	CALCIBA	ALIMANI IM	NICKEI	FILIPANTHENE	PENZOVANELIODANIHENE		SILL	MANGANESE	MAGNESIIM	ALIMINIM	IEAD	CORAIT	INCIN	BAPILIM	NIZO ISIO	MAGNESIUM	MERCHRY	PVPENE	RENZOVO P. DPEDVI ENE	DENISORATIONS	CABBAZOLE	CARBACOLE	CHANIDENIE	FINALBENZENE	IOO- a'a	TOLUENE	ARSENIC	BARIUM	NCKEL
Analytical	OCCUR	CIMADIO	OLUVAS	0109/85	SW8100	StA/B270	CAVBOR 1	CANBIO	SAKADIO	SWOOD	SWROB1	OLONAS	CAMBION	OLUVINS	CA/R100	CA77471	CIVEOTO	010000	SWOOLO	CANADIO	200000	0100000	00000	0018/40	SWEDIO	CIAMOIO	CIAMONO	0100000	0109785	0100000	010046	SIAKAOTO	SIAKOTO	SIA/BOR1	0109WS	CACAZ	CtA/A270	CVA B 100	001046	0010000	SW82/U	SWBUBI	SW8260	SW8081	Sw8260	SW6010	SW6010	SW6010
	Marrix	ឧ	3 %	š	S	8	20	က ပ	3 8	300	3 8	38	50	30	30	8	Si	3 8	8 5	g g	2 2	8 5	ละ	3 8	S S	200	200	8 8	g y	ų s	8 8	20	3 5	3 8	30	3 8	8 5	30	8 8	8 8	8 8	ŝ	SS	SS	SS	쌇	35	SS

ATL/147543/APPENDICES/APP C/Table C_4-3 xIs/Table C 4-5

	RPD	150%	14 9%	146%	145%	14 5%	14 5%	14 4%	14 3%	14 1%	140%	12.00	13.8%	13.7%	13.6%	13.5%	13.4%	13.3%	13.2%	13 0%	13 0%	12 9%	12 8%	12.7%	12.6%	12.5%	12.4%	12.4%	12 4%	12 3%	8 8	11 8%	11.8%	11.6%	115%	114%	11 4%	11 3%	11 3%	11 3%	11 1%	%1 12	25 C	10.9%	890	
Field Dup	Limit	0.053	0 12	53000	0.037	5300	97.7	00036	0.15	480	0.15	5300	21.0	0.045	0.037	0.53	013	2300	370	0 17	0.52	370	60	58	60.4	5300	0.73	0.056	0.15	0 032	1198	9	10	0 14	00000	2300	0.0028	66000	910	4000	0.054	33	4000	0.0029	9300	1000
	Units	та/ка	mg/kg	ug/kg	mg/kg	ug/kg	mg/kg	mg/kg	mg/kg	ug/kg	mg/kg	UG/Kg	m9/kg	D4/04	24/50	mo/ka	ma/ka	no/ko	no/ko	ma/ka	mg/kg	ug/kg	mg/kg	ug/kg	ug/L	ng/kg	mg/kg	та/ка	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	24/20	mo/ka	ua/ka	mg/kg	mg/kg	mg/kg	ug/kg	ma/ka	mg/kg	ug/kg	mg/kg	DA/KD	C C C C C C C C C C C C C C C C C C C
9	Lab Qual	lŧ	в	ſ	ű	=	H	TR	н	7	ß	ß	н	ı	"	2	-	1		11	В	ſ	TR	រា	ц	IJ	=	1	н	li.	lt	11	u ~	, ,	ĭ	Н	ĭ	TR.	=	I	TR	¢.	II	TR	"	
3	Field Dup	88.6	34.7	44000	10.2	37000	2240	0.52	6	79	17.6	23000	147	13.2	16.7	111	5	ABOOM	18	0	17200	8	2.5	74	1040	34000	2110	111	565	9.5	2310		18800	973	0.46	37000	033	0.28	7.5	25000	17	8680	29000	0.29	008/	4100
	Detection	0.051	0.12	53000	0.038	5300	97.5	0.0035	0.15	470	0 14	5300	0046	710	0.043	000	300	2002	35	21.0	150	350	60	38	604	5300	0.73	0.055	0.16	0.032	1168	011	0.42	,	0000	5300	0.0028	00008	0 16	3900	0.054	3.2	3900	0.0028	5300	0.83
	do G	1	H	-	H	11	ı,	E	15	5	п	"	"	11	п	8 5	¥	"	,, -	,	" "	_	, ≙	ı	"	ti	ıı	"	"	=	11	11	n .		" F	-	<u>د</u>	£	"	"	TR	Ħ	1	≃	II.	-
	Final	74.2	200	38000	11 B	33000	258	0.45	52	5	153	2000	128	115	25.5	13/	> =	43,4	4200	- c	15100	5	22	RA BA	1.80	3mm	2390	88	49.9	8.4	2050	12.5	16700	2	332	33000	0.37	200	84	2800	19	9700	26000	0.26	2000	3740
	Field Dup	MINASORED	MIA207ED	MIA31AED	MINOSAED	MIAIROFI	MIA 130FD	MIANOSED	MIA189FD	MIA026FD	MIA026FD	MIA189FD	MIA026FD	MIA129FD	MIA026FD	MIAI29FU	MIAIBYED	MAZSIFU	MIAIBYFU	MIA328FU	MINOSED	MIARORED	MIA 1805D	MIATOED	MANATAOFD	MIATROFIL	MIA 130FD	MIA120FD	MIA223FD	MIA189FD	MIA026FD	MIA050FD	MIA129FD	MIA328FD	MIA328FU	MIN LEAFED	MIA1715D	MIA120FD	MIA147FD	MIA139FD	MIA050FD	MIA189FD	MIA139FD	MIA278FD	MIA189FD	MIA189FD
	1	Somple ID	MANAGA	MAI A 3 1 3	MANAGES	MAT ABB	00 C V	MIACOS	MAISS	MIA025	MIA025	MIA188	MIA025	MIA128	M!A025	MIA128	MAIBB	MIA230	MIAISS	MIA32/	MIAZSU	MIA 207	MIA32/	MIA 128	MIA 150	MIA188	MAT38	MA128	MIA222	MIA188	MIA025	MIA049	MIA128	MIA327	MIA327	MIA 26	MIA 120	MIA128	MIA 146	MIA138	MIA049	MIA188	MIA138	MIA277	MIA188	MIA188
		Parameter	SAKOIN		INDENO(1,2,3-C,0)PYKEINE	NICKEL STAISCOLUCIO ANTHUME	BENZO(D)FLUORANIMENE	POLYSSION	ADSENIO	BENZOANELIODANTHENE	COPPER	BENZO(a h.))PERYLENE	NICKEL.	CHROMIUM, TOTAL	VANADIUM	NICKEL	COPPER	ZINC	CHRYSENE	BENZO(O)ANTHRACENE	ARSENIC	NONI NONI CONTRACTOR IN CONTRA	BENZO(D)FLUORANI HEINE	ANIMONY	JOG- d'd	Ledd, ICLP	MACAISSI IM	MAGNICIA	BARROIM	VANADIUM	POTASSIUM	COPPER		METHYL ETHYL KETONE (2-BUTANONE)	1EAD	BERYLLIUM	BENZO(Q)ANIHKACENE	BERYLLION	CAUMIUM	FILIODANTHENE	COBALI	MAGNESIUM	PYRENE	BERYLLIUM	FLUORANTHENE	ALUMINUM
	Analytical	Method	SW6010	SWOULD	SW8100	SW6010	SWBIDD	SW6010	SW0010	OLCOVIC	SW6Z/U	SWR100	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW8100	SW8270	SW6010	SW6OIU	SW8270	SW6010	SW8081	10000	SW8100	SWOOD	SWOOTO	SWKOTO	SW6010	SW6010	SW6010	SW8260	SW6010	SW6010	SW8100	SW6010	SW6010	OLCOMS	SW6210	SWAOTO	07.08WS	SW6010	SW8100	SW6010
		Matrix	SS	SS	SS	SS	SS	S	, i	S t	7 7	, y	S.	SS	SE	SS	SS	SS	SS	SS	SS	SE	SS	SS	SS	SS	88	SS	88	8 8	3 5	SS	SS	SS	SS	SS	SS	SS	25	88	8 8	8 %	3 %	3 8	SS	SS

TABLE C.4-5
Field Duplicate Precision
Memphis Depot Main Installation RI

	RPD	10.4%	10.4%	10.2%	366	98%	9.8%	98%	97%	%96	%96	9.5%	9.4%	93%	91%	91%	8.7%	87%	87%	87%	85%	8 3%	83%	8 2%	8 1%	80%	80%	80%	80%	80%	80%	80%	80%	200	3 75	4/4	40,7	7.0%	14%-	7.4%	73%	7.3%	72%	72%	7.2%	7.1%	7 18	0 7.8
Field Dup Detection	Limit	26	0.15	0038	0.15	0.17	36	0.43	370	18.8	0.13	4000	0.036	480	0.003	28	4000	390	110	5300	7,000	100	370	0.15	4000	02	0.23	0003	66000	0061	110	011	4000	00/0	0.05/	610	0 14	824 5	-0.12	400	480	370		011	100	0073	00027	400
	Units	mg/kg	та/ка	та/ка	mg/kg	mg/kg	ug/kg	mg/kg	ug/kg	ug/L	_ mg/kg ∤	ug/kg	mg/kg	ua/ka	ma/ka	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	ug/kg	mg/kg	ua/ka	mg/kg	mg/kg	та/ка	та/ка	та/ка	ug/kg	ua/ka	UQ/KQ	ug/kg	ma/kg	mg/kg	mg/kg	1760	- mg/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	UQ/KQ
Field Dup	Lab Qual	ß	0	n	Н	н	ſ	ij	7	11	=) ſ	II	J	11	ij	=	f	=	=	П	II	ſ	6	Н	11	н	Ľ	¥	=	11	11		"	11	И	Ш	2	3		7	7	11	II.	≅ :	2	2	1
Field Dup	Final Result	1410	7.1	17.5	149	38.4	29	18500	65	3160	139	2200	13.2	51	0.46	1960	11000	110	220	00009	295	690	58	3.5	7100	1.2	1.3	0.48	0.24	13	240	130	1200	1200	502	162	13.7	1400	19.5	14000	99	1/	143	143	0.43	5.8	0.29	1400
Detection	Limit	2.6	910	0.038	0.15	0.17	35.	0.43	350	18.8	013	3900	0.036	470	0.003	2.7_	3900	390	120	2300	0.075	0 0004	350	0.15	3900	010	0.23	0003	86000	0.052	130	138	3800	069	0057	0.18	0 14	8245	0.12	3900	470	350	1.	011	100	1,00	0 0027	400
gg	Qual	н	II	II	li	п	-	В	-	ı,	II	<u> </u>	=	ſ	TR	D	ŀ	,	ı	ı	ı,		- -	=	=	0	И	TR	TR	Н	ı	0	5	II	li .	"	=	TR	H	н	7		"	11	ĭ	ĭ	2	u
Final	Result	1270	6.4	15.8	13.5	348	32	20400	85	2870	153	2002	14.5	ß	0.42	06/1	12000	82	240	55000	271	0.75	ಚ	3.8	7700	13	12	0.52	0.26	12	260	28	1300	8	652	15	12.7	1510	181	13000	71	99	133	133	0.4	5.4	0.27	1500
Field Duo	Sample ID	MIA050FD	MIA171FD	MIA231FD	MIA026FD	MIA223FD	MIA328FD	MIA139FD	MIA328FD	MIA171FD	MIA147FD	MIA139FD	MIA171FD	MIA026FD	MIA231FD	MIA129FD	MIA139FD	MIA139FD	MIA034FD	MIA189FD	MIA026FD	MIA278FD	MIA328FD	MIA050FD	MIA139FD	MIA147FD	MIA026FD	MIA139FD	MIA307FD	MIA314FD	MIA034FD	MIA034FD	MIA139FD	MIA189FD	MIA050FD	MIA026FD	MIA297FD	MIA019FD	MIA223FD	MIA139FD	MIA026FD	MIA328FD	MIA328FD	MIA328FD	MIA223FD	MIA026FD	MIA050FD	MIA223FD
	Sample ID	MIA049	MIA170	MIA230	MIA025	MIA222	MIA327	MIA138	MIA327	MIA170	MIA146	MIA138	MIA170	MIA025	MIA230	MIA128	MIA138	MIA138	MIA033	MIA188	MIA025	MIA277	MIA327	MIA049	MIA138	MIA146	MIA025	MIA138	MIA306	MIA313	MIA033	MIA033	MIA138	MIA188	MIA049	MIA025	MIA296	MIA018	MIA222	MIA138	MIA025	MIA327	MIA327	MIA327	MIA222	MIA025	MIA049	MIA222
	Parameter	CALCIUM	ARSENIC	NICKEL	CHROMIUM, TOTAL		JUG- o'u	NOZI	INDENO(1 2 3-C D)PYRENE	Zho TOLP	CHROMIIM TOTAL	DISENZOFURAN	NCKEL	RENZOYO, D. INPERVIENE	BERYLLIUM	CALCIUM	BENZOZOSENE	JUC o o	PHENANIHOENE	PVDENE	MANGANESE	O A DAMILIAA	PHENANTHRENE	ARSENIC	INDENOCI 2.3-C. COPYRENE	SELENIUM	SEI FUILIA	BERYLLIUM	CADMIUM	SILVER	BENZO(b)FLUORANTHENE	INDENO(1,2,3-c,d)PYRENE	NAPHIHALENE	IOO-,d'd	MANGANESE	LEAD	LEAD	POTASSIUM	COPPER	CHRYSENE	16	BENZO(q,h,l)PERYLENE	CHROMIUM III	CHROMIUM, TOTAL		COBALI	BERYLLIUM	lQQ-,d'd
in the second	Method	SW6010	SW6010	SW6010	SW6010	0109WS	SWAGA	0109/03	CIMBOZO	10,5010	StatAO10	SW8270	SW6010	SWR270	OLUMAS	0109/85	OTCRW2	CIA/BOR1	CAVB100	SWIDO	CINAMIS	CIARADIO	CIWA270	OLOAWS	SW8270	CIOAWS	OLOPAS	SW6010	SW6010	0109WS	SW8100	SW8100	SW8270	SW8081	SW6010	0109WS	0109MS	SW6010	0109/MS	SWR270	SW8270	SW8270	SW6010	0109MS	SW6010	0109MS	SW6010	1808WS
	Matrix	SS	SS	SS	SE	S	S	8	3 %	3 %	3 5	y	8	3 5	S	ç	S S	3	3 0	3 0	3 9	3 %	38	8	8	5	7	S	S	SS	SS	SS	SS	SS	SS	SE	SS	S/A	SS	S,	3 14	SS	SS	SS	SS	S	SS	SS

C 91

TABLE C.4-5 Field Duplicate Precision Memphis Depot Main Installation RI

TABLE C.4-5
Field Duplicate Precision
Memphis Depot Main Installation RI

	RPD	2.7%	26%	2.5%	24%	21%	21%	21%	1%	1 9%	19%	17%	1.7%	16%	13%	1 3%	13%	1.1%	10%	10%	10%	%60	0.7%	0.6%	0.6%	0.5%	0.5%	0.4%	0.4%	02%	02%	800	800	800	900	800	00%	800	900	900	900	00%	900	%00	00%	900	00%	9600
Field Dup Detection	Limit	0.06	0.0029	0.15	910	6000	0.13	0.003	4000	0.39	4000	110	0.057	0 12	0 13	0.058	0.12	0 062	110	0.12	0.15	011	6.2	18.8	0.53	0.12	0 14	23.7	0.15	0.13	013	0.48	2 9	2 €	480	10	4000	=	4000	110	4000	110	10	14	110	400	370	4000
	Units	mg/kg	та/ка	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ma/kg	ng/kg	ma/ka	mg/kg	mg/kg	mg/kg	та/ка	ma/ka	ma/ka	mg/kg	mg/kg	тд/ка	mg/kg	1/Bn	Ud/L	UQ/I	mg/kg	ma/ka	1/Bn	mg/kg	та/ка	mg/kg	ng/L	UQ/KG	UQ/KQ	OQ/KO	ug/kg	og/kg	UQ/KQ	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	na/ka	ug/kg
Field Dup	Lab Qual	1	≃	=	11	ı	П	TR	=	=	=	8	6	н	ц	п	ı	41	B	H	II	11	TR.	н	П	п	ŧJ	n	"	=	= ;	¥ -	7	11 -	_	7	7	-		"	=	31	7	٦	=	*	7	ſ
Field Dup	Final Result	7.4	0.38	35.4	8.4	0 93	82.3	0.49	5100	10400	5400	17.6	121	19	151	315	7.9	059	38.4	10.4	10.5	10.8	719	1670	17.9	184	19.4	0699	270	615	617	12/	- 2	22	25	_	8	4	12000	170	12000	170	2	2	180	450	130	3100
Detection	Limit	0.059	0 0029	0.15	0 16	6000	013	0 003	3900	0.39	3900	0.12	0.057	0.12	0.13	0.056	0.12	0.062	0.11	0.12	0 15	0 11	62	188	0.53	0 12	0 14	23.7	0 14	013	0 13	0.48	2	9	470	٥	3900	2	3900	120	3800	120	٥	Ξ	130	400	350	3900
qp	Qual	n	Ľ	11	11	li	н	TR	=	ш	11	=	II	=	П	11	B	=	=	=	н	1t	2	H	II	И	n	11	1	ц	ľ	≃ .	_		_	_	7	٦	ı	6	ц	II	7	_		Н	7	_
Final	Result	7.6	0.39	36.3	8.2	0.95	908	0.48	5200	10600	5300	17.9	119	18.7	153	311	7.8	199	38	103	10.4	601	714	1660	17.8	183	193	0999	569	614	616	127		22	52	_	9	4	_12000_	170	12000	170	2	2	180	450	130	3100
Field Dup	Sample ID	MIA139FD	MIA307FD	MIA129FD	MIA282FD	MIA189FD	MIA223FD	MIA223FD	MIA139FD	MIA050FD	MIA139FD	MIA171FD	MIA139FD	MIA282FD	MIA223FD	MIA328FD	MIA147FD	MIA139FD	MIA314FD	MIA307FD	MIA307FD.	MIAOSOFD	MIA019FD	MIA160FD	MIA019FD	MIA I 39FD	MIA050FD	MIA019FD	MIA278FD	MIA139FD	MIA282FD	MIA019FD	MIAU89FD	MIA089FD	MIA026FD	MIA328FD	MIA139FD	MIA189FD	MIA139FD	MIA034FD	MIA139FD	MIA034FD	MIA328FD	MIA139FD	MIA034FD	MIA223FD	MIA328FD	MIA139FD
	Sample ID	MIA138	MIA306	MIA128	MIA281	MIA188	MIA222	MIA222	MIA138	MIA049	MIA138	MIA170	MtA138	MIA281	MIA222	MIA327	MIA146	MIA138	MIA313	MIA306	MIA306	MIA049	MIA018	MIA159	MIA018	MIA138	MIA049	MIA018	MIA277	MIA138	MIA281	MIA018	MfA088	MIA088	MIA025	MIA327	MIA138	MIA188	_ MIA138	MIA033	MIA138	MIA033	MIA327	MIA138	MIA033	MIA222	MIA327	MIA138
	Parameter	COBALI	BERYLLIUM	LEAD	ARSENIC	CADMIUM	ZINC	BERYLLIUM	CARBAZOLE	NON	ANTHRACENE	CHROMIUM, TOTAL	BARIUM	CHROMIUM, TOTAL	CHROMIUM, TOTAL	MANGANESE	COPPER	MANGANESE	CHROMIUM, TOTAL	CHROMIUM, TOTAL	LEAD	CHROMIUM, TOTAL	MAGNESIUM	Zinc 1CLP	MANGANESE	COPPER	LEAD	CALCIUM	LEAD	ZINC	ZINC	BARIUM	CARBON DISULFIDE	METHYL ETHYL KETONE (2-BUTANONE)	BENZO(d)ANTHRACENE		2-METHYLNAPHTHALENE	BENZENE	BENZO(a)ANTHRACENE	BENZO(a)ANTHRACENE	BENZO(b)FLUORANTHENE	BENZO(k)FLUORANTHENE	CARBON DISULFIDE	CARBON DISULADE	CHRYSENE	DIELDRIN	FLUORANTHENE	FLUORENE
Analytical	Method	SW6010	SW6010	0109MS	SW6010	SW6010	OLU9MS	0109/08	SW8270	SW6010	SW8270	SW6010	SW6010	SW6010	SW6010	0109MS	0109MS	0109WS	0109MS	0109MS	0109MS	SW6010	0109MS	10,0010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW8260	SW8260	SW8270	SW8260	SW8270	SW8260	SW8270	SW8100	SW8270	SW8100	SW8260	SW8260	SW8100	SW8081	SW8270	SW8270
	Matrix	ss	SS	SS	SS	SS	S	SS	S	SS	SS	SS	SS	SS	S	SS	S.	S	S	SS	SS	SS	×8	SS	S/A	SS	SS	MS	SS	SS	SS	WS	SB	88	꼸	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS

C-93

ATU147543/APPENDICES/APP C/Table C_4 3 xls/Table C 4-5

Anatytical Matter Field Dup Final Liab Final Dup Final Liab Final Dup Final Liab Field Dup Final Liab Field Dup Detection Detection Detection Between Detection Processor Detection Field Dup Detection Detection Detection Detection Detection Detection Processor Detection Detection Field Dup Detection Field Dup Detection Field Dup Detection Detection Detection Detection Detection Detection Field Dup Detection D
Anatytical Freid Dup Final Lab Defection Field Dup Field Field Dup<
Analytical Freid Dup Final Final Lab Detection Field Dup Field Dup Field Dup Final Freid Dup Field
Analytical Parameter Sample ID Final Lab Detection Sw8081 D.D. DE MIA 188 MIA 189FD 1100 = 620 Sw8081 D.D. DE MIA 189FD 1100 = 620 Sw8270 PHENANTHIRENE MIA 138 MIA 139FD 25000 = 3700 Sw8270 PHENANTHIRENE MIA 138 MIA 139FD 25000 = 3700 Sw8270 PYRENE MIA 188 MIA 189FD 9 J J Sw8250 TOOI Xvienes MIA 189FD 9 J J 10 Sw8270 BERYLLLUM MIA 189FD 9 J J 10 Sw8271 MERCURY MIA 189FD 0.03 TR 0.018 Sw7471 MERCURY MIA 189FD 0.03 TR 0.018 Sw7471 MERCURY MIA 189FD 0.03 TR 0.019 Sw7471 MERCURY MIA 183 0.04 = 0.019
Analytical Parameter Sample ID Final Lab Detection Sw8081 D.D. DE MIA 188 MIA 189FD 1100 = 620 Sw8081 D.D. DE MIA 189FD 1100 = 620 Sw8270 PHENANTHIRENE MIA 138 MIA 139FD 25000 = 3700 Sw8270 PHENANTHIRENE MIA 138 MIA 139FD 25000 = 3700 Sw8270 PYRENE MIA 188 MIA 189FD 9 J J Sw8250 TOOI Xvienes MIA 189FD 9 J J 10 Sw8270 BERYLLLUM MIA 189FD 9 J J 10 Sw8271 MERCURY MIA 189FD 0.03 TR 0.018 Sw7471 MERCURY MIA 189FD 0.03 TR 0.018 Sw7471 MERCURY MIA 189FD 0.03 TR 0.019 Sw7471 MERCURY MIA 183 0.04 = 0.019
Analytical Porameter Sample ID Final Lab Melhod Sw8081 D.D. DE MIA 188 MIA 189FD 1100 = Sw8081 D.D. DE MIA 188 MIA 189FD 1100 = Sw8270 PHENANTHIRENE MIA 138 MIA 139FD 25000 = Sw8270 PHENANTHIRENE MIA 138 MIA 139FD 25000 = Sw8270 PYRENE MIA 138 MIA 189FD 9 J Sw8250 Tokal Xvienes MIA 188 MIA 189FD 9 J Sw8250 Tokal Xvienes MIA 189FD 9 J Sw8271 MERCLIRY MIA 188 MIA 189FD 004 = Sw7471 MERCLIRY MIA 188 MIA 189FD 003 TR Sw7471 MERCLIRY MIA 188 MIA 189FD 004 = Sw7471 MERCLIRY MIA 188 MIA 189FD 004 = Sw7471 MERCLIRY MIA 188 MIA 188
Analytical Porameter Sample ID Final Sw8081 D.D. DE MIA 188 MIA 189FD 1100 Sw8081 D.D. DE MIA 188 MIA 189FD 1100 Sw8270 PHENANTHIRENE MIA 138 MIA 139FD 25000 Sw8270 PYRENE MIA 138 MIA 139FD 25000 Sw8270 PYRENE MIA 138 MIA 189FD 9 Sw8250 Total Xvienes MIA 188 MIA 189FD 9 Sw8270 RERYLLLUM MIA 188 MIA 189FD 9 Sw7471 MERCLIRY MIA 188 MIA 189FD 003 Sw7471 MERCLIRY MIA 188 MIA 189FD 003 Sw7471 MERCLIRY MIA 313 MIA 307FD 004 Sw7471 MERCLIRY MIA 314FD 3.5 Sw7471 MERCLIRY MIA 3307FD 0.04
Analytical Porameter Sample ID Freid Dup Sw8081 D.D.'-DDE MIA188 MIA186DD Sw8270 PHENANTHRENE MIA136 MIA136D Sw8270 PYRENE MIA138 MIA136D Sw8270 PYRENE MIA136 MIA136D Sw8270 PYRENE MIA136 MIA188D Sw8270 PYRENE MIA188 MIA189D Sw8271 MERCLIRY MIA189 MIA18FD Sw7471 MERCLIRY MIA189 MIA189D Sw7471 MERCLIRY MIA189 MIA189D Sw7471 MERCLIRY MIA313 MIA189D Sw7471 MERCLIRY MIA313 MIA314D Sw7471 MERCLIRY MIA313 MIA314D Sw7471 MERCLIRY MIA313 MIA314D
Analytical Parameter Sample ID Sw8081 p.pDDE MIA188 Sw8081 p.pDDE MIA188 Sw8081 p.pDDE MIA188 Sw8270 PHENANTHRENE MIA138 Sw8270 PYRENE MIA188 Sw8260 Total Xvienes MIA188 Sw6010 BERYLLUM MIA188 Sw7471 MERCURY MIA188 Sw7471 MERCURY MIA313
Analytical Parameter 3 Method Parameter 5 SW8081 p.pDDE 5 SW8270 PHENANTHRENE 5 SW8270 PYRENE 5 SW8270 PYRENE 5 SW8260 Total Xvienes 5 SW6010 BERYLLUM 5 SW7471 MERCURY 5 SW7471 MERCURY 5 SW7471 MERCURY 5 SW7471 MERCURY 6
Analytical Method Sw8081 Sw8081 Sw8081 Sw8270 Sw8270 Sw8270 Sw8270 Sw8270 Sw8270 Sw8270 Sw7471 Sw7471 Sw7471

MACHINA SI

TABLE C 4-5 Field Duplicate Precision Memphis Depol Main Installation Rt

Market	Sacrate ID	Joh Sameta Je	Analytical	December.	Final Result	Lab Qual	Final Qual	Det Limit	Units	Ougl na
Matrix	Sample ID	Lab Sample ID	Method	Parameter						Qual Reason
WS	MIA018	MG682001	SW6010	ALUMINUM	38 7	TIR	U.	79 1	ug/L_	BL BL
WS .	MIA019FD	MG682002	SW6010	ALUMINUM	39 1	TIR	U	79	ug/L	BL
WS_	MIA022	MG682004	SW6010	ALUMINUM	49.5	TR	U	79 '	ug/L	BL BL
SE	MIA015	MG682018 MG682008	SW6010	ANTIMONY	0.89	TR TR	U U	0.34	mg/kg	BL BL
SE SS	MIA026FD MIA001	MG672001	SW6010 SW6010	ANTIMONY ANTIMONY	0.26 1.3	TR	U	0.19 '	mg/kg mg/kg	BL BL
SS	MIA001	MG672005	SW6010	ANTIMONY	0.56	TR	U	021	ma/ka	BL BL
SS	MIA006	MG672005 MG672006	SW6010	ANTIMONY	0.32	TR	Ü	019	mg/kg	BL
WS	MIA0011	MG682014	SW6010	ANTIMONY	41	TR	Ü	17	ug/L	BL
WS	MIA012	MG682015	SW6010	ANTIMONY	5	TR	Ü	17	ug/L	BL
WS	MIA016	MG682019	SW6010	ANTIMONY	3	TR	Ü	17	ug/L	BŁ BŁ
WS	MIA017	MG682019	SW6010	ANTIMONY	39	TR	U	17	ug/L	- BL
WS	MIA018	MG682020	SW6010	ANTIMONY	5	TR	Ü	17	ug/L	BL BL
WS	MIA019FD	MG682002	SW6010	AVIIMONY	3	TR	Ü	17	ug/L	BL
WS	MIA021	MG682003	SW6010	ANTIMONY	47	TR	U	17	ug/L	BL
WS .	MIA021	MG682004	SW6010	ANTIMONY	61	TR	Ü	17 1	ug/L	BL
WS	MIA007	MG682011	SW6010	ARSENIC	15.8	=	Ü	14	ug/L	BL
WS	MIA007	MG682015	SW6010	ARSENIC	169	=	Ü	14	ug/L	BL
WS	MIA016	MG682019	SW6010	ARSENIC	34	TR	Ŭ	14	ug/L	BL
ws ws	MIA015 MIA017	MG682019 MG682020	SW6010	ARSENIC ARSENIC	34	IR	U	14	ug/L	BL
WS WS	MIA018	MG682020	SW6010	ARSENIC ARSENIC	34	TR	U	14	ug/L ug/L	BL BL
WS WS	MIA018	MG682001 MG682002	SW6010	ARSENIC ARSENIC	25	TR	- u	14	ug/L ug/L	BL.
		MG682002 MG682003	SW6010	ARSENIC ARSENIC	26	TR	l u	14	ug/L ug/L	BL BL
WS	MIA021 MIA022	MG682003 MG682004	SW6010	ARSENIC	29	TR	l ü	14	ug/L ug/L	BL BL
WS SB	MIAU22 MIA151	MG-082004 MG-730032	SW6010	BERYLUM	0.09	TR	υ	0.0027	ma/ka	BL BL
SB	MIA 152	MG730032 MG730033	SW6010	BERYLUM	001	TR	Ü	0.0027	mg/kg	BL
WS	MIA007	MG682011	SW6010	BERYLLIUM	0.03	TR	Ü	0 025	ug/L	BL
WS	MIA011	MG682014	SW6010	BERYLLIUM	0.04	TR	Ü	0 025	ug/L	BL
WS WS	MIA012	MG682015	SW6010	BERYLLIUM	0.04	TR	Ü	0 025	ug/L	BL
WS	MIA012	MG682019	SW6010	BERYLLIUM	0.07	TR	Ü	0 025 1	ug/L	BL
WS	MIA017	MG682020	SW6010	BERYLLIUM	0 06	TR	υ	0 025	ug/L	BL
WS	MIA018	MG682020	SW6010	BERYLLIUM	0.06	IR.	l ö	0 025	ug/L ug/L	BL
WS	MIA019FD	MG682001	SW6010	BERYLLIUM	004	TR	Ü	0 025	ug/L	BL
WS	MIA019FD	MG682003	SW6010	8ERYLLIUM	0.04	TR	ŭ	0 025	ug/L	BL
WS	MIA022	MG682004	SW6010	8ERYLLIUM	0.02	TR	Ü	0.02	ug/L	BL
SS	MIA050FD	MG711009	SW6010	CADMIUM	0.05	TR	υ	0.0091	ma/ka	BL
SS	MIA050FD	MG711009	SW6010	CADMIUM	003	TR	υ	0.00921	mg/kg	BL
SS	MIA353	MG723024	SW6010	CADMIUM	0.00	TR	υ	0.0093	mg/kg	BL
SS	MIA354	MG723025	SW6010	CADMIUM	0.07	TR	Ü	0.0092	mg/kg	BL
W\$	MIA007	MG682011	SW6010	COBALT	0.59	TR	Ü	05 1	ua/L	BL.
WS	MIA016	MG682019	SW6010	COBALT	0.51	TR	Ü	05	ug/L	BL
SB	MIA152	MG730033	SW6010	COPPER	14	TR	U	011	mg/kg	BŁ
WS	MIA007	MG682011	SW6010	COPPER	24	TR	Ü	1	ug/L	BL BL
WS	MA011	MG682014	SW6010	COPPER	28	TR	υ	1 1	ug/L	BL
WS	MIA012	MG682015	SW6010	COPPER	24	TR	1 u	 	ug/L	BL
WS WS	MIA012	MG682019	SW6010	COPPER	17	TR	υ	1 1	ug/L	BL
WS WS	MIA017	MG682020	SW6010	COPPER	49	TR	υ	1 1	ug/L	BL
WS	MIA017 MIA018	MG682020 MG682001	SW6010	COPPER	42	TR	Ü	1 1	ug/L	BL
WS	MIA019FD	MG682001	SW6010	COPPER	19	IR	l ü	 	ug/L	BL
WS	MIA021	MG682002	SW6010	COPPER	21	TR	υ	ii	ug/L	BL
WS	MIA021	MG682004	SW6010	COPPER	24	TR	Ŭ	i	ug/L	BL
WS	MIA007	MG682003	SW6010	LEAD	2	TR	ĺΰ	13	ug/L	BL
WS	MIA011	MG682014	SW6010	LEAD	17	TR	Ŭ	13 1	ug/L	BL
WS	MIA012	MG682015	SW6010	LEAD	18	TR	Ŭ	13	ug/L	BL
WS	MIA018	MG682013	SW6010	LEAD	19	TR	ϋ	13	ug/L	BL
WS	MIA019FD	MG682002	SW6010	LEAD	14	TR	ϋ	13 1	ug/L	BL
WS	MIA022	MG682004	SW6010	LEAD	28	TR	Ιŭ	13 !	ug/L	BL
WS	MIA007	MG682011	SW6010	NICKEL	11	TR	Ιŭ	0.32	ug/L	BL BL
WS	MIA011	MG682014	SW6010	NICKEL	21	TR	Ŭ	0.32	ug/L	BL
WS	MIA012	MG682015	SW6010	NICKEL	1 1	TR	U	032	ug/L	BL
WS	MIA016	MG682019	SW6010	NICKEL	0.33	TR	Ü	0.32	ug/L	BL
WS	MIA017	MG682019	SW6010	NIÇKEL	0.58	TR	T 0	0.32	ug/L	BL
WS	MIA019FD	MG682002	SW6010	NICKEL	0.67	1IS	Ŭ	0.32	ug/L	BL
WS	MIA021	MG682003	SW6010	NICKEL	16	TR	Ü	032	ug/L	BL
WS	MIA022	MG682004	SW6010	NICKEL	0.64	TR	 0 -	0.32	ug/L	BL
442		MG743012	SW6010	SELENIUM	12	# # TR	T U	0 19	mg/kg	BL
CO	MIA074	MG743012 MG743014	SW6010	SELENIUM	1 12		l Ü	0.19	ma/ka	BL
SB		. nor_///3/11//	i avvoutu E	SELENIUM] ≂	<u> </u>	L UZ	I Ing/kg	I DL
SB	MIA076				1.0	T	1 11	0.0	man die	Di
SB_ SB	MIA125	MG743020	SW6010	SELENIUM	12	=_	U	02	mg/kg	BL
SB					12 096	=	U	02 02 019	mg/kg mg/kg	BL BL Bt

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

			Analytical		Final	tab	Final		[
Matrix	Sample ID	Lab Sample ID	Method	Parameter	Result	Qual	Qual	Det Limit	Units	Qual Reason
SS	MIA138	MG743003	SW6010	SELENIUM	13	=	U	0 19	mg/kg	BL
SS SS	MIA139FD MIA141	MG743004 MG743005	SW6010	SELENIUM	12	=	Ü	0 19	ma/kg	Bt.
SS	MIA141 MIA142	MG743006	SW6010 SW6010	SELENIUM SELENIUM	076		U	0 18 0 19	mg/kg mg/kg	BL.
SS	MIA143	MG743007	SW6010	SELENIUM	0.75	=	U	0 19	mg/kg	BŁ.
SS	MIA144	MG743008	SW6010	SELENIUM	0.85	=	Ü	0 18	mg/kg	BL
SS	MIA145	MG743009	SW6010	SELENIUM	09	-	Ü	0 18	mg/kg	BL
SS	MIA222	MG776005	SW6010	SELENIUM	0 97	=_	U	0 19	ma/ka	BL
SŞ	MIA223FD	MG776006	SW6010	SELENIUM	0.89	= .	U	0 19	mg/kg	BL
SS	MIA228	MG776010	SW6010	SELENIUM	12	_ =	U	0 19	mg/kg	BL
SS	MIA229	MG776011	SW6010	SELENIUM	13	=	U	0 19	mg/kg	BL
SS SS	MIA230 MIA231FD	MG776012 MG776013	SW6010	SELENIUM	13	-	<u> </u>	0 19	mg/kg	BL BL
SS	MIA237	MG776013	SW6010 SW6010	SELENIUM SELENIUM	072	===	U U	019	mg/kg	BL BL
SS	MIA240	MG776020	SW6010	SELENIUM	1 1	=	u	017	mg/kg mg/kg	BL BL
SS	MIA253	MG776022	SW6010	SELENIUM	11	=	Ü	018	mg/kg	BL
SS	MIA254	MG776023	SW6010	SELENIUM	0.78	=	Ŭ	0 19	mg/kg	BL
SS	MIA256	MG776025	SW6010	SELENIUM	0.87	=	U	0 17	mg/kg	BL
SS	MIA259	MG776028	SW6010	SELENIUM	13	=	U	0 17	mg/kg	BL
SS	MIA260	MG776029	SW6010	SELENIUM	0.67	=	U	0 19	mg/kg	BL
SS	MIA242	MG777003	SW6010	SELENIUM	19	=	U	0.35	ma/ka	BL
SS	MIA248 MIA249	MG777008 MG777009	SW6010 SW6010	SELENIUM SELENIUM	1 13	=	U	0 18	ma/ka	BL BL
\$\$	MIA251	MG777011	SW6010	SELENIUM SELENIUM	063	=	U	0 42	mg/kg mg/kg	BL BL
SS	MIA280	MG777017	SW6010	SELENIUM	0.03	=	U U	02	mg/kg	BL BL
SB	MA126	MG743021	SW6010	SELENIUM	0 29	TR	Ü	02	ma/ka	BL BL
SE	MtA023	MG682005	SW6010	SELENIUM	0.54	TR	Ŭ	021	mg/kg	BL
SS	MIA252	MG776021	SW6010	SELENIUM	13	TR	Ü	0.83	mg/kg	BL
SS	MIA255	MG776024	SW6010	SELENIUM	12	TR	IJ	0.83	mg/kg	BL
SS	MIA244	MG777004	SW6010	SELENIUM	0.26	TR	U	018	mg/kg	BL
SS	MIA247	MG777007	SW6010	SELENIUM	0.28	TR	U	018	mg/kg	BL
SS	MIA250	MG777010	SW6010	SELENIUM	0.36	TR	U	0 18	ma/ka	BL
SS	MIA263 MIA278FD	MG777014 MG777016	SW6010 SW6010	SELENIUM	0.54	TR	Ų	0.35	ma/ka	BŁ.
	MIA284	MG777021	SW6010	SELENIUM SELENIUM	0.44	TR TR	U	019 018	mg/kg mg/kg	BL BL
SS	MIA285	MG777022	SW6010	SELENIUM	0.28	TR	U	019	mg/kg	BL
SS	MIA286	MG777023	SW6010	SELENIUM	031	TR	Ü	02	mg/kg	BL
SS	MIA288	MG777025	SW6010	SELENIUM	0.32	TR	Ü	02	mg/kg	BL
SS	MIA227	MG776009	SW6010	SELENIUM	0.41	TR	IJ	018	mg/kg	BL
WS	MIA011	MG682014	SW6010	SELENIUM	17	TR	U	16	ug/L	BL
WS	MIA018	MG682001	SW6010	SELENIUM	26	TR	U	16	ug/L	BL
WS WS	MIA019FD	MG682002	SW6010	SELENIUM	46	TR	U	16	ug/L	BL
SB	MIA021 MIA074	MG682003 MG743012	SW6010 SW6010	SELENIUM SODIUM	28	TR TR	U	16	ug/L	BL Di
SB	MIA075	MG743012 MG743013	SW6010	SODIUM	116 242	TR	U	13.8	mg/kg mg/kg	BL BL
SB	MiA076	MG743014	SW6010	SODIUM	125	TR	Ü	14 1	mg/kg	BL BL
SB	MIA099	MG767002	SW6010	SODIUM	93.2	TR	Ü	144	mg/kg	BL
SB	MIA177	MG767006	SW6010	SODIUM	146	TR	U	145	ma/ka	BL
SB	MIA178	MG767007	SW6010	SODIUM	56 7	TR	U	14 1	mg/kg	BL
SB	MIA180	MG767009	SW6010	SODIUM	223	TR	U	139	mg/kg	BL.
SB	MIA182	MG767011	SW6010	SODIUM	178	TR	U	14.4	mg/kg	BL
SB SE	MIA184 MIA014	MG767013	SW6010	SODIUM SODIUM	112	IR TR	···U	141	mg/kg	BL
SE SE	MIA014 MIA015	MG682017 MG682018	SW6010 SW6010	SODIUM	112	TR TR	<u> </u>	16 9 22 9	mg/kg	BL
SE	MIA023	MG682005	SW6010	SODIUM	99	TR	Ü	15	mg/kg mg/kg	BL BL
SE	MIA024	MG682006	SW6010	SODIUM	132	TR	Ü	15	mg/kg	BL
SE	MIA026FD	MG682008	SW6010	SODIUM	138	TR	Ü	16.6	ma/ka	BL
SE	MIA027	MG682009	SW6010	SODIUM	5) 4	TR	Ü	147	mg/kg	BL
SS	MIA005	MG672005	SW6010	SODIUM	68.5	TR	U	13.8	mg/kg	BL.
SS	MIA006	MG672006	SW6010	SODIUM	105	TR	U	12.8	mg/kg	BL
SS	MIA032	MG695004	SW6010	SODIUM	158	TR	U.	127	mg/kg	BL
SS	MIA037	MG695008	SW6010	SODIUM	95.5	TR	U	13	mg/kg	BL
SS SS	MIA045 MIA048	MG711004	SW6010	SODIUM	117	TR	U	12.4	mg/kg	BL.
SS	MIA048 MIA049	MG711007 MG711008	SW6010	SODIUM	150	TR	IJ	12.6	mg/kg	BL BL
SS SS	MIA050FD	MG711009	SW6010 SW6010	SODIUM SODIUM	95.2 87.8	TR TR	ป	123	mg/kg	BL
SS	MIA051	MG711007	SW6010	SODIUM	150	TR	Ü	12.4	mg/kg mg/kg	BL BL
SS	MIA134	MG743023	SW6010	SODIUM	100	TR	Ü	13.7	ma/kg	BL
SS	MiA137	MG743002	SW6010	SODIUM	109	TR	Ü	13.3	_mg/kg	BL
SS	MIA138	MG743003	SW6010	SODIUM	131	TR	ΰ	13.5	mg/kg	BL
SS	MIA139FD	MG743004	SW6010	SODIUM	90.7	TR	Ü	13.5	mg/kg	BL

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

			Analytical		Final	Lab	Final			İ
Matrix	Sample ID	Lab Sample 1D	Method	Parameter	Result	Qual	Qual	Det Limit	Units	Qual Reason
SS	MIA141	MG743005	SW6010	SODIUM	87.5	TR	U	13 1 '	ma/ka	BL
SS	MIA142	MG743006	SW6010	SODIUM	98 9	TR	Ŭ	13.3	mg/kg	BL
SS	MIA143	MG743007	SW6010	SODIUM	56.9	TR.	Ü	13.5	mg/kg	BL
SS	MIA 144	MG743008	SW6010	SODIUM	80 7	TR	Ų	128	mg/kg	BL
SS	MIA328FD	MG757001	SW6010	SODIUM	50 4	TR	J	12.5	mg/kg	BL.
SS	MIA098	MG767001	SW6010	SODIUM	182	TR	U	13.4	mg/kg	BL
SS	MIA174	MG767003	SW6010	SODIUM	85.4	TR	U	127 '	mg/kg	BL
SS	MIA179	MG767008	SW6010	SODIUM	105 87.5	TR TR	U	12.7	mg/kg	BL BL
SS	MIA183 MIA188	MG767012 MG770001	SW6010 SW6010	SOD!UM SOD!UM	182	TR	Ü	12 1	mg/kg mg/kg	BL
SS	MIA189FD	MG770001 MG770002	SW6010	SODIUM	266	TR	U	12 1	mg/kg	BL
SS	MIA193	MG770006	SW6010	SODIUM	113	TR	Ŭ	13.4	ma/ka	BL
SS	MIA275	MG778001	SW6010	SODIUM	155	TR) 	12.3	ma/ka	BL
SS	MtA128	MG785001	SW6010	SODIUM	27 4	TR	IJ	13.2	ma/ka	BL
SS _	MIA129FD	MG785002	SW6010	SODIUM	51	TR	U	13.2	mg/kg	8t
SS	MIA132	MG785003	SW6010	SODIUM	63.6	TR	U	13	mg/kg	BL
SS	MIA302	MG785013	SW6010	SODIUM	90.4	TR	U	13.7	mg/kg	BL
SS	MIA303	MG785014	SW6010	SODIUM	53	TR	U	13.7	mg/kg	BL
SS	MIA304	MG785015	SW6010	SODIUM	122 101	TR TR	U	13.9	mg/kg	BL BL
SE	MIA028 MIA007	MG682010 MG682011	SW6010 SW6010	SODIUM SODIUM	1140	TR	U	1142	mg/kg ug/L	BL
WS	MIA007	MG682014	SW6010	SODIUM	1290	TR	- 	11421	ug/L ug/L	BŁ
WS	MIA012	MG682015	SW6010	SODIUM	992	TR	l ŭ	1142	ug/L	BL
WS	MIA016	MG682019	SW6010	SODIUM	846	TR	Ŭ	1142	ug/L	BL
WS	MIA017	MG682020	SW6010	SODIUM	958	TR	U	1142	ug/L	8L
WS .	MIA018	MG682001	SW6010	SODIUM	790	TR	U	1142	ug/L	BL
WS	MIA019FD	MG682002	SW6010	SODIUM	735	TR	U	1142	ug/L	BL
WS	MIA021	MG682003 _	SW6010	SODIUM	755	TR	U_	1142	∪g/L	BL
WS	MIA022	MG682004	SW6010	SODIUM	737	TR	U	1142	ug/L	BL
SB	MIA074	MG743012	SW6010	THALLIUM	0 42	TR	U.	0 19 1	mg/kg	BL
SB .	MIA184	MG767013	SW6010	THALLIUM	0.69	TR	u u	02	mg/kg	BL
SS	MIA347	MG723021 MG757004	SW6010 SW6010	THALLIUM THALLIUM	0.24	TR	l U	0 19 1	ma/ka ma/ka	BL
SS SS	MiA332 MiA336	MG757008	SW6010	THALLIUM	024	TR	υ	0 19	mg/kg	BL
WS	MIA019FD	MG682002	\$W6010	THALLIUM	43	TR	ŭ	16 1	ug/L	BL
WS	MIA012	MG682015	SW6010	VANADIUM	39	TR	Ŭ	031	ug/L	BL
ws	MIA016	MG682019	SW6010	VANADIUM	0.55	TR	υ	031	ug/L	BL
WS	MIA017	MG682020	SW6010	VANADIUM	031	TR	U	0.31	ug/L	BL
WS	MIA018	MG682001	SW6010	VANADIUM	0.7	TR	U	0.31	ug/L	BL
WS	MIA019FD	MG682002	SW6010	VANADIUM	0.35	TR	υ	031	ug/L_	BL
W\$	MIA022	MG682004	SW6010	VANADIUM	0 47	TR	U	031	ug/L	BL
WS	MtA007	MG682011	SW6010	ZINC	4	TR	U	11 :	ug/L	BL
WS	MIA011	MG682014	SW6010	ZINC	41	TR	U U	11 1	ug/L	BL BL
WS	MIA018	MG682001 MG682002	SW6010 SW6010	ZINC ZINC	95 91	TR TR	Ü	111	ug/L ug/L	BL
WS SE	MIA019FD MIA023	MG682005	SW7471	MERCURY	0.05	=	Ü	0 022	mg/kg	BL
SE SE	MIA025	MG682007	SW7471	MERCURY	0.05	-	Ü	0 024	mg/kg	BL
SS	MIA006	MG672006	SW7471	MERCURY	0.05		Ŭ	0019	ma/ka	BL
SE	MIA026FD	MG682008	SW7471	MERCURY	0.03	TR	U	0 024	ma/ka	BŁ
SE	MIA027	MG682009	SW7471	MERCURY	0.03	TR	U	0.021	mg/kg	8L
SS	MIA 159	MG756007	SW7471	MERCURY	0.03	TR	U	0.019	mg/kg	8L
SB	MIA177	MG767006	SW8260	2-BUTANONE	16	=	U	11 1	ug/kg	BL
SB	MIA180	MG767009	SW8260	2-BUTANONE	17	=	U	11	ug/kg	BL
SS	MIA174	MG767003	SW8260	2-BUTANONE	52	=	U	2	ug/kg	BL
SS	MIA179	MG767008	SW8260	2-BUTANONE	58	=	U	9 9	ug/kg	BL BI
SS	MIA183	MG767012	SW8260	2-BUTANONE	17	=	U	111	ug/kg ug/kg	BL BL
SB SB	MIA099 MIA178	MG767002 MG767007	SW8260 SW8260	2-BUTANONE	11	 	U	11	ug/kg ug/kg	BL
SB	MIA178	MG767010	SW8260	2-BUTANONE	11	1	Ιΰ	11	ug/kg	BL
SB	MIA182	MG767010	SW8260	2-BUTANONE	12	J	Ü	12	ug/kg	BL
\$B	MIA184	MG767013	SW8260	2-BUTANONE	11	J	Ü	11	ug/kg	BL
SS	MIA098	MG767001	SW8260	2-BUTANONE	10	J	Ū	10	ug/kg	BL
SB	MIA099	MG767002	SW8260	ACETONE	14	=	U	11	ug/kg	BL
SB	MA177	MG767006	SW8260	ACETONE	78	=	Ų	11	ug/kg	BL
SB	MIA178	MG767007	SW8260	ACETONE .	33	=	U	11	ug/kg	BL
SB	MIA180	MG767009	SW8260	ACETONE	90	=	Ū	11	ug/kg	BL
SB	MIA181	MG767010	SW8260	ACETONE	41	=	U	11 !	ug/kg	BL
SB	MIA182	MG767011	SW8260	ACETONE	38	=	U	12	ug/kg	BL
SB	MIA184	MG767013	SW8260	ACETONE	20	=	U	11	ug/kg	BL
SE	MIA023	MG682005	SW8260	ACETONE	13	=	U	12 1	ug/kg	BL
SE	MIA024	MG682006	SW8260	ACETONE	1 17	π	U	13 !	l ug/kg	BL

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

			Analytical		Final	Lab	Final		ٿن	
Matrix	Sample ID	Lab Sample ID	Method	Parameter	Result	Qual	Qual	Det Limit	Units`	Qual Reaso
SE	MIA025	MG682007	SW8260	ACETONE	33	=	U	13	ug/kg	BL
SE	MIA026FD	MG682008	SW8260	ACETONE	45	=	Ü	16	ug/kg	BL
SS	MIA327	MG756027	SW8260	ACETONE	35	-	ŭ	9	ug/kg	BL
SS	MIA328FD	MG757001	SW8260	ACETONE	46	<u> </u>	Ü	10	ug/kg	BL
SS	MIA098	MG767001	SW8260	ACETONE	52	=	Ü	10	ug/kg	BL
SS	MIA174	MG767003	SW8260	ACETONE	300	=	Ū	9	ug/kg	BL
SS	MIA179	MG767008	SW8260	ACETONE	320	=	Ü	9	ug/kg	BL
SS	MIA183	MG767012	SW8260	ACETONE	82	=	Ü	9	ug/kg	BL
SS	MiA132	MG785003	SW8260	ACETONE	150	<u></u>	U	12	ug/kg	BL
SS	MIA302	MG785013	SW8260	ACETONE	300	=	U	10	ug/kg	BL
SS	MIA303	MG785014	SW8260	ACETONE	370	=	U	11	ug/kg	BL
SS	MIA304	MG785015	SW8260	ACETONE	220	=	U	11	ug/kg	BL
SS	MIA 188	MG770001	SW8260	ACETONE	22	=	UJ	10	ug/kg	BL
SS	MIA143	MG743007	SW8260	ACETONE	520	E	U	10	ug/kg	BL
SE	MIA013	MG682016	SW8260	ACETONE	880	=	IJ	110	ug/kg	BL
\$E	MIA014	MG682017	SW8260	ACETONE	30	=	U	14	ug/kg	BL
SE	MIA015	MG682018	SW8260	ACETONE	150	=	U	27	ug/kg	BL
SE	MIA027	MG682009	SW8260	ACETONE	18	=	U	12	ug/kg	BL
SS	MIA032	MG695004	SW8260	ACETONE	160	=	U	10	ug/kg	BL
SS	MIA037	MG695008	SW8260	ACETONE	170	=	U	11	ug/kg	BL BL
SE	MIA028	MG682010	SW8260	ACETONE	200	=	UJ	21	ug/kg	BL BL
SB SB	MIA066 MIA070	MG723001	SW8260	ACETONE ACETONIE	56		.U	11	ug/kg_	BL BL
SB	MIA070	MG723005 MG723006	SW8260 SW8260	ACETONE ACETONE	56	=	U	11 12	ug/kg	BL BL
SB	MIA071	MG723006 MG723007	SW8260	ACETONE ACETONE	33 21	=	U	12	ug/kg ug/kg	BL BL
SB	MIA089FD	MG730002	SW8260	ACETONE ACETONE	96		ŭ	10	ug/kg ug/ka	BL BL
\$B	MIA094	MG730002	SW8260	ACETONE	140	=	Ü	11	ug/kg ug/kg	BL,
SB	MIA095	MG730006	SW8260	ACETONE	33	-	Ü	10	ug/kg ug/kg	BL
SB	MIA097	MG730008	SW8260	ACETONE	11	===	ŭ	9	ug/kg	BL
SB	MIA074	MG743012	SW8260	ACETONE	200	=	Ü	11	ug/kg	BL
SB	MIA075	MG743013	SW8260	ACETONE	270	=	ŭ	12	ug/kg	BL
SB	MIA076	MG743014	SW8260	ACETONE	140	_	Ü	11	ug/kg	BL
SS	MIA134	MG743023	SW8260	ACETONE	150	=	υ	11	ug/kg	BL.
SS	MIA137	MG743002	SW8260	ACETONE	260	=	ŭ	10	ug/kg	BL
SS	MIA138	MG743003	SW8260	ACETONE	280	=	Ū	11	ug/kg	BL
SS	MIA141	MG743005	SW8260	ACETONE	320	_	U	11	ug/kg	BL
SS	MIA 142	MG743006	SW8260	ACETONE	260	=	U	11	ug/kg	BL
SS	MIA 144	MG743008	SW8260	ACETONE	200	=	U	9	ug/kg	BL
SS	MIA145	MG743009	SW8260	ACETONE	120	=	U	10	ug/kg	BL
SS	MIA128	MG785001	SW8260	ACETONE	170	=	U	11	ug/kg	BL.
SS	MIA129FD	MG785002	SW8260	ACETONE	310	=	U	13	ug/kg	8L
SB	MIA088	MG730001	SW8260	ACETONE	100		UJ	10	ug/kg	BL
SS	MIA189FD	MG770002	SW8260	ACETONE	24	=	IJ	11	ug/kg	BL
SS	MIA193	MG770006	SW8260	ACETONE	220	<u> </u>	เม	10	ug/kg	BL
SS	MIA275	MG778001	SW8260	ACETONE	54		UJ	11	ug/kg	BL
SB	MIA096	MG730007	SW8260	ACETONE .	12		U	12	ug/kg	BL
SS	MIA 139FDDL	MG743004DL	SW8260	ACETONE	600	J	U	600	ug/kg	BL
WS	MIA007	MG682011	SW8260	ACETONE	10] 	Ų.	10	ug/L	BL BL
WS WS	MIA011 MIA012	MG682014 MG682015	SW8260 SW8260	ACETONE ACETONIE	10	 	U	10	ug/L	BL
WS	MIAU12 MIA018	MG682015 MG682001	SW8260 SW8260	ACETONE ACETONE	10	 	<u> </u>	10	ug/L	BL BL
WS	MIA018	MG682003	SW8260 SW8260	ACETONE ACETONE	10	J J	UJ	10	ug/L	
SB	MIA089FD	MG730002	SW8260	METHYLENE CHLORIDE	10	J	U	10	ug/L ug/kg	BL BL
\$B	MIA094	MG730005	SW8260	METHYLENE CHLORIDE METHYLENE CHLORIDE	11	1	Ü	11	ug/kg ug/kg	BL BL
SB	MIA095	MG730006	SW8260	METHYLENE CHLORIDE	10	j	Ü	10	ug/kg ug/kg	BL BL
SB	MIA096	MG730007	SW8260	METHYLENE CHLORIDE	12	j	Ŭ	12	ug/kg ug/kg	BL
SB	MIA097	MG730007	SW8260	METHYLENE CHLORIDE	9	j	Ü	9	ug/kg ug/kg	BL BL
SE	MIA014	MG682017	SW8260	METHYLENE CHLORIDE	14	Ĭ	U	14	ug/kg	BL
SE	MIA015	MG682018	SW8260	METHYLENE CHLORIDE	27	Ť	U	27	ug/kg ug/kg	BL
SE	MIA025	MG682007	SW8260	METHYLENE CHLORIDE	13	Ĭ	Ü	13	ug/kg	BL
SE	MIA027	MG682009	SW8260	METHYLENE CHLORIDE	12	Ĵ	Ü	12	ug/kg	BL
SS	MIA032	MG695004	SW8260	METHYLENE CHLORIDE	10	Ĭ	υ	10	ug/kg ug/kg	BL
SS	MIA037	MG695008	SW8260	METHYLENE CHLORIDE	111	Ĭ	Ü	11	ug/kg	BL
SS	MIA132	MG785003	SW8260	METHYLENE CHLORIDE	12	1 1	Ιΰ	12	ug/kg ug/kg	BL BL
SS	MIA302	MG785013	SW8260	METHYLENE CHLORIDE	10	1	υ	10	ua/ka	BL
SS	MIA303	MG785013	SW8260	METHYLENE CHLORIDE	11	j	Ü	11	ug/kg ug/ka	BL
SS	MIA304	MG785015	SW8260	METHYLENE CHLORIDE	111	j	Ι Ŭ	l ii	ug/kg	BL
SE	MIA013	MG682016	SW8260	METHYLENE CHLORIDE	110	 	l w	110	ug/kg	BL
SE	MIA028	MG682010	SW8260	METHYLENE CHLORIDE	21	1	l W	21	ug/kg	BL
SE	MIA023	MG682005	SW8260	METHYLENE CHLORIDE	12	ij	υ	12	ug/kg	BL
SE.	MIAD24	MG682006	SW8260	METHYLENE CHLORIDE	13	1	Ιΰ	13	ug/kg	BL

·, ·

Matrix	Sample ID	Lab Sample ID	Analytical Method	Daramaiar	Final Result	Lab Qual	Final Qual	Det Limit	Units	Qual Reaso
	· ·			Parameter						
SE	MIA026FD MIA005	MG682008 MG672005	SW8260 SW8260	METHYLENE CHLORIDE METHYLENE CHLORIDE	16	J	U	16	ug/kg	BL
SS SS	MIA006	MG672006	SW8260	METHYLENE CHLORIDE METHYLENE CHLORIDE	12	J	U U	12	ug/kg ug/kg	BL BL
SS	MIA275	MG778001	SW8260	METHYLENE CHLORIDE	14	=	Ü	11	ug/kg	BL
SB	MIA088	MG730001	SW8260	METHYLENE CHLORIDE	10	-	υ	10	ug/kg ug/kg	BL
SB	MIA074	MG743012	SW8260	METHYLENE CHLORIDE	1 11		Ü	11	ug/kg	BL
SB	MIA075	MG743013	SW8260	METHYLENE CHLORIDE	12		Ü	12	ug/kg	BL
SB	MIA076	MG743014	SW8260	METHYLENE CHLORIDE	111		IJ	11 '	ug/kg	BL
SS	MIA137	MG743002	SW8260	METHYLENE CHLORIDE	10	Ĭ	Ü	10 +	ug/kg	BL
SS	MIA138	MG743003	SW8260	METHYLENE CHLORIDE	11	Ĵ	Ü	11 1	ua/ka	BL
SS	MIA139FD	MG743004	SW8260	METHYLENE CHLORIDE	14	J	Ü	14	ua/ka	BL
SS	MIA141	MG743005	SW8260	METHYLENE CHLORIDE	11	J	U	11	ug/kg	BL
SS	MIA142	MG743006	SW8260	METHYLENE CHLORIDE	11	J	U	31 (ug/kg	BL
SS	MIA143	MG743007	SW8260	METHYLENE CHLORIDE	10	J	U	10	ug/kg	BL
SS	MIA 144	MG743008	SW8260	METHYLENE CHLORIDE	9	J	U	9 1	ug/kg	BL
SS	MIA145	MG743009	SW8260	METHYLENE CHLORIDE	10	J	U	10 ;	ua/ka	BL
SS	MIA128	MG785001	SW8260	METHYLENE CHLORIDE	11	J	U	11	ug/kg	BL
SS	MIA129FD	MG785002	SW8260	METHYLENE CHLORIDE	13	J	Ū	13 ;	ug/kg	BL
SS	MIA327	MG756027	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	350	J	Ü	350	ua/ka	8L
SS	MIA328FD	MG757001	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	370	Ĵ	Ü	370	ug/kg	BL
SS	MIA275	MG778001	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	360	Ĵ	U	360	ug/kg	BL
SE	MIA024	MG682006	SW8270	DI-n-BUTYL PHTHALATE	440	Ĵ	Ü	440	ug/kg	BL
SE	MIA015	MG682018	SW8270	DI-n-BUTYL PHTHALATE	670	J	IJ	670	ug/kg	BL
SE	MIA023	MG682005	SW8270	Di-n-BUTYL PHTHALATE	440	J	Ü	440	ug/kg	BL
SS	MIA327	MG756027	SW8270	DI-n-BUTYL PHTHALATE	350	J	U	350	ug/kg	BL
WS	MIA022	MG682004	SW8270	DI-n-BUTYL PHTHALATE	10	J	U	10	ug/L	BL
SS	MIA159	MG756007	TC6010	Copper TCLP	21.4	TR	U	48	ug/L	BL
SS	MIA160FD	MG756008	TC6010	Copper, TCLP	13.5	TR	Ų	48	ug/L	BL
SS	MIA165	MG756012	10,0010	Copper, TCLP	101	TR	U	48	ug/L	BL
SS	MIA167	MG756014	TC6010	Copper TCLP	112	TR	U	48	ug/L	BL
SS	MIA338	MG757010	TC6010	Copper TCLP	13.5	TR	υ	48	ug/L	BL
SS	MIA253	TCMG776022	TC6010	Copper TCLP	67	TIR	υ	48	ug/L	BL
SS	MIA261	TCMG777012	TC6010	Copper, TCLP	7.8	TR	υ	48 1	ug/L	BL
SS	MIA165	MG756012	TC6010	Thallium, TCLP	904	TR	υ	82	ug/L	BL
SS	MIA253	TCMG776022	TC6010	Zinc, TCLP	419	TR	U	188	ug/L	BL
SS	MIA160FD	MG756008	TC7470	Mercury, TCLP	0 22_	=	Ι. υ.	011	ug/L	BL
SS	MIA159	MG756007	TC7470	Mercury, TCLP	0 19	TR	U	01	ug/L	BL
SS	MIA 167	MG756014	TC7470	Mercury, TCLP	0 12	TR	Ū	10	ug/L	BL
SS	MIA032	MG695004	SW8081	ALDRIN	94	U	IJ	9.4	ug/kg	ÇC
SS	MIA037	MG695008	SW8081	ALDRIN	19	U	UJ	19	ug/kg	CC_
SB	MIA075	MG743013DL	SW8081	ALPHA BHC	10	U	IJ	10	ug/kg	CC
\$B	MIA099	MG767002	SW8081	ALPHA BHC	21	U	UJ	21 1	ug/kg	CC
SB	MIA 177	MG767006	SW8081	ALPHA BHC	22	υ	UJ	22 1	ug/kg	CC
SB	MIA178	MG767007	SW8081	ALPHA BHC	21	U	w	21 1	ug/kg	CC
SB	MIA180	MG767009	SW8081	ALPHA BHC	21	υ	w	21 1	ug/kg	CC
SB	MIA181	MG767010	SW8081	ALPHA BHC	21	U	w	21 1	ug/kg	CC
SB	MIA182	MG767011	SW8081	ALPHA BHC	22	U	w	22 '	ug/kg	CC
SB	MIA184	MG767013	SW8081	ALPHA BHC	21	U	w	21	ug/kg	CC
SS	M(A141	MG743005DL	SW8081	ALPHA BHC	19	<u> </u>	W	19	ug/kg	.cc
SS	MIA144	MG743008DL	SW8081	ALPHA BHC	19	U	UJ	19	ug/kg	<u>cc</u>
SS	MIA320	MG756021	SW8081	ALPHA BHC	780	U	w	780	ug/kg	CC
SS	MtA324	MG756024	SW8081	ALPHA BHC	94	<u> </u>	w	94 !	ug/kg	CC
SS	MIA325	MG756025	SW8081	ALPHA BHC	19	<u> </u>	UJ	19 1	ug/kg	CC
SS	MIA326	MG756026	SW8081	ALPHA BHC	48	U.	w	48	ug/kg	CC
SS	MIA327	MG756027	SW8081	ALPHA BHC	18	<u> </u>	UJ	18	ug/kg	CC
SS	MIA328FD	MG757001	SW8081	ALPHA BHC	19	U	UJ	19	ug/kg	CC
SS	MIA330	MG757002	SW8081	ALPHA BHC	20	U	UJ	20	ug/kg	CC_
SS	MIA331	MG757003	SW8081	ALPHA BHC	2	Ų.	UJ	2 !	ug/kg	CC
SS	MIA332	MG757004	SW8081	ALPHA BHC	10	U.	UJ	10	ug/kg	cc
SS	MIA333	MG757005	SW8081	ALPHA BHC	19	U	W.	19	ug/kg	CC
SS	MIA334	MG757006	SW8081	ALPHA BHC	96	<u>U</u>	W_	96	ug/kg	CC
SS	MIA335	MG757007	SW8081	ALPHA BHC	21	U	l m	21 !	ug/kg	CC
SS	MIA336	MG757008_	SW8081	ALPHA BHC	2	U	UJ.	2 1	ua/ka	cc
SS	MIA098	MG767001	SW8081	ALPHA BHC	100	U	IJ	100 !	ug/kg	CC
SS	MIA174	MG767003	SW8081	ALPHA BHC	19	U	ÜJ	19	ug/kg	CC
SS	MIA179	MG767008	SW8081	ALPHA BHC	19	U	IJ	19	ug/kg	CC
SE	MIA013	MG682016DL	SW8081	HEPTACHLOR	53	Ü	ţŲ	53	ug/kg	CC
SE	MIA014	MG682017	SW8081	HEPTACHLOR	12	U	UJ	12	ug/kg	CC
SE	MIA015	MG682018	SW8081	HEPTACHLOR	34	U	UJ	34	ug/kg	CC
						-				
SE	MIA023	MG682005	SW8081	HEPTACHLOR	22	lu	UJ	22	ug/kg	L cc

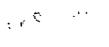
ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

Matrix	Sample ID	Lab Sample ID	Analytical Method	Parameter	Final Result	Lab Qual	Final Qual	Det Limit	Units /	Qual Reason
SE	MtA025	MG682007	SW8081	HEPTACHLOR	24	C	IJ	24	ug/kg	CC
SE	MłA026FD	MG682008	SW8081	HEPTACHLOR	25	U	IJ	25	ug/kg	<u>cc</u>
SE	MIA027	MG682009	SW8081	<u>HEPTACHLOR</u>	2.2	U	UJ	22	ug/kg	cc
SE.	MIA028	MG682010DL	SW8081	HEPTACHLOR	330	U	<u>u</u> J	330	ug/kg	CC
W\$ W\$	MIA007 MIA011	MG682011 MG682014	SW8081	HEPTACHLOR	0.05	U	UJ UJ	0.05	ug/L	CC CC
WS WS	MIA011	MG682014 MG682015	SW8081 SW8081	HEPTACHLOR HEPTACHLOR	0.05	Ü	UJ	0.05	ug/L ug/L	CC
WS	MIA016	MG682019	SW8081	HEPTACHLOR HEPTACHLOR	0.05	Ü	W	0.05	ua/L	cc
WS	MIA017	MG682020	SW8081	HEPTACHLOR	0.05	Ü	UJ	0.05	ug/L	čč
WS	MIA018	MG682001	SW8081	HEPTACHLOR	0.05	Ŭ	UJ	0.05	ug/L	cc
WS	MIA021	MG682003	SW8081	HEPTACHLOR	0.05	Ŭ	ÜJ	0.05	ug/L	cc
WS	MIA022	MG682004	SW8081	HEPTACHLOR	0.05	Ü	UJ	0.05	ug/L	cc
SB	MIA075	MG743013DL	SW8081	METHOXYCHLOR	100	υ	UJ	100	ug/kg	cc
SB	MIA099	MG767002	SW8081	METHOXYCHLOR	21	U	IJ	21	ug/kg	CC
S8	MIA177	MG767006	SW8081	METHOXYCHLOR	22	U	ÜĴ	22	ug/kg	CC
SB	MIA178	MG767007	SW8081	METHOXYCHLOR	21	U	ÚĴ	21	ug/kg	CC
SB	MIA180	MG767009	SW8081	METHOXYCHLOR	21	U	ÜÜ	21	ug/kg	CC
SB	MIA181	MG767010	SW8081	METHOXYCHLOR	21	υ	_w	21	ug/kg	cc
SB	MIA182	MG767011	SW8081	METHOXYCHLOR	22	U	W	22	ug/kg	cc
SB	MIA184	MG767013	SW8081	METHOXYCHLOR	21	<u> </u>	<u>w</u>	21	ug/kg	<u>cc</u>
SE	MIA014	MG682017	SW8081	METHOXYCHLOR	120	U.	UJ.	120	Ug/kg	CC
SE SE	MIA015 MIA023	MG682018 MG682005	SW8081 SW8081	METHOXYCHLOR METHOXYCHLOR	340 220	U	UJ UJ	340 220	ug/kg	CC
SE	•				_	U	UJ		ug/kg	CC
SE SE	MIA024 MIA025	MG682006 MG682007	SW8081 SW8081	METHOXYCHLOR METHOXYCHLOR	110 240	U U	UJ UJ	110 240	ug/kg ug/kg	CC
SE	MIA026FD	MG682008	SW8081	METHOXYCHLOR	250	Ü	- D2	250	ug/kg	CC
SE	MIA027	MG682009	SW8081	METHOXYCHLOR	22	Ü	UJ	22	ug/kg	cc
SS	MIA005	MG672005	SW8081	METHOXYCHLOR	4100	ŭ	UJ	4100	ug/kg	cc
SS	MiA006	MG672006	SW8081	METHOXYCHLOR	190	ŭ	Ü	190	ua/ka	cc
SS S	MIA032	MG695004	SW8081	METHOXYCHLOR	94	Ü	w	94	ug/kg	CC
SS	MIA037	MG695008	SW8081	METHOXYCHLOR	190	U	UJ	190	ug/kg	CC
SS	MiA141	MG743005DL	SW8081	METHOXYCHLOR	19	υ	w	19	ug/kg	CC
SS	MIA144	MG743008DL	SW8081	METHOXYCHLOR	19	U	UJ	19	ug/kg	CC
SS	MIA320	MG756021	SW8081	METHOXYCHLOR	7800	Ų	UJ	7800	ug/kg	CC
SS	MtA324	MG756024	SW8081	METHOXYCHLOR	94	U	w	94	ug/kg	CC
SS	MIA325	MG756025	SW8081	METHOXYCHLOR	190	U	W	190	ug/kg	cc
SS	MIA326	MG756026	SW8081	METHOXYCHLOR	48	U.	w	48	ug/kg	CC
SS	MIA327 MIA328FD	MG756027	SW8081	METHOXYCHLOR	180	U	เม	180	ug/kg	CC
SS	MIA328FD	MG757001 MG757002	SW8081 SW8081	METHOXYCHLOR METHOXYCHLOR	190 200	U	UJ UJ	190 200	ug/kg ug/kg	CC
SS	MIA331	MG757003	SW8081	METHOXYCHLOR	200	υ	UJ	200	ug/kg	CC
SS	MIA332	MG757003	SW8081	METHOXYCHLOR	100	u	ÜJ	100	ug/kg	cc
SS	MIA333	MG757005	SW8081	METHOXYCHLOR	19	ŭ	Ü	19	ug/kg	CC
SS	MIA334	MG757006	SW8081	METHOXYCHLOR	960	U	W	960	ug/kg	CC
SS	MIA335	_MG757007	SW8081	METHOXYCHLOR	21	U	w	21	ug/kg	cc
SS	MIA336	MG757008	SW8081	METHOXYCHLOR	20	Ü	ເນ	20	ug/kg	CC
SS	MIA098	MG767001	SW8081	METHOXYCHLOR	1000	U	W	1000	ug/kg	CC
SS	MIA174	MG767003	SW8081	METHOXYCHLOR	190	υ¨	w	190	ug/kg	CC
SS	MIA179	MG767008	SW8081	METHOXYCHLOR	190	U	w	190	ug/kg	CC
WS	MIA007	MG682011	SW8081	METHOXYCHLOR	0.5	U	- W	05	ug/L	CC_
WS	M(A011	MG682014	SW8081	METHOXYCHLOR	0.5	Ų.	<u> W</u>	05	ug/L	CC
WS WS	MIA012	MG682015 MG682019	SW8081 SW8081	METHOXYCHLOR METHOXYCHLOR	0.5	U	UJ UJ	0.5	ug/L	CC
WS	MIA016 MIA017	MG682019 MG682020	SW8081 SW8081	METHOXYCHLOR METHOXYCHLOR	05 05	U	w w	05	ug/L ug/L	CC CC
WS	MIA018	MG682020	SW8081	METHOXYCHLOR METHOXYCHLOR	0.5	U	- W	0.5	ug/L ug/L	CC
WS	MIA021	MG682003	SW8081	METHOXYCHLOR	0.5	Ü	UJ	0.5	ug/L	CC
WS	MIA022	MG682004	SW8081	METHOXYCHLOR	0.5	Ü	Ü	0.5	ug/L	cc
SB	MIA074	MG743012	SW8081	p p -DDC	4	Ü	uj	4	ug/kg	CC
SB	MIA076	MG743014	SW8081	p p'-DDC	41	Ŭ_	ÜÜ	41	ug/kg	cc
SS	MIA100	MG730009	SW8081	p,p'-DDC	93	U	w	93	ug/kg	CC
SS	MIA102	MG730011	SW8081	p,p'-DDC	18	U	UJ	18	ug/kg	CC
SS	MIA103	MG730012	SW8081	DQC-`q q	18	U	uJ	18	ug/kg	cc
SS	MiA104	MG730013	SW8081	300-qq	18	Ü	ÜĴ	18	ug/kg	CC
SS	MIA105	MG730014	SW8081	300- q q	3.8	U	W	3.8	ug/kg	cc
SS_	MIA106	MG730015	SW8081	200-qq	18	U	m	18	ug/kg	CC
SS	MIA107	MG730016	SW8081	<u>7,00</u> 0 g,q	18	U	UJ.	18	ug/kg	cc
SS	MIA108	MG730017	SW8081	200-)q q	7.5	U	UJ	7.5	ug/kg	CC_
		MG730018	SW8081	p,p -DDC	3.8	I บ	j UJ	3.8	ug/kg	.l cc
SS	MIA 109									
	MIA 109 MIA 134 MIA 137	MG743023 MG743002	SW8081 SW8081	200- q.q 200- q.q 200- q.q	20 38	Ü	W W	20 38	ug/kg ug/kg	CC

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

Matrix	Sample ID	Lab Sample ID	Analytical Method	Parameter	Final Result	Lab Qual	Final Qual	Det Limit	Units	Qual Reason
SS	MIA139FD	MG743004	SW8081	200-DDC	390	U	W	390	ug/kg	CC
SS	MIA142	MG743006	SW8081	300-g q	19	Ü	บบ	19	ug/kg	cc
SS	MIA143	MG743007	SW8081	JQQ-`q q	200	Ű	UJ	200	ug/kg	cc
SS	MIA292	MG785004	SW8081	PCB-1260 (AROCHLOR 1260)	280	=	٦	180	ug/kg	CC
SS	MIA300	MG785011	_SW8081	PCB-1260 (AROCHLOR 1260)	6100	=	J	3800	ug/kg	CC
SS	MIA301	MG785012	SW8081	PCB-1260 (AROCHLOR 1260)	18000	=	J	7300	ug/kg	cc
SS	MiA303	MG785014	SW8081	PCB-1260 (AROCHLOR 1260)	17000	=	J	8000	ug/kg	CC
<u>\$\$</u>	MIA128	MG785001	SW8081	PCB-1260 (AROCHLOR 1260)	380	U	<u> </u>	380	ug/kg	CC C
<u>\$\$</u>	MIA129FD	MG785002	SW8081	PCB-1260 (AROCHLOR 1260)	580	U	UJ UJ	580 380	ug/kg	cc
SS	MIA132 MIA302	MG785003 MG785013	SW8081 SW8081	PCB-1260 (AROCHLOR 1260) PCB-1260 (AROCHLOR 1260)	380 390	U	117	390	ug/kg ug/kg	CC
SS	MIA304	MG785015	SW8081	PCB-1260 (AROCHLOR 1260)	8000	Ü	UJ	8000	ua/ka	cc
WS	MIA017	MG682020	SW8260	ACETONE	10	Ü	W	10	ug/L	cc
WS	MiA019FD	MG682002	SW8260	ACETONE	10	Ü	UJ	10	ug/L	CC
SB	MIA120	MG743015	SW8260	BROMOMETHANE	610	Ŭ	w	610	ug/kg	CC
SB	MIA121FD	MG743016	SW8260	BROMOMETHANE	610	U	W	610 +	ug/kg	ÇC
SB	MIA124	MG743019	SW8260	BROMOMETHANE	620	IJ	UJ	620 1	ug/kg	CC
SS	MIA327	MG756027	SW8260	BROMOMETHANE	9	υ	UJ	9 1	ug/kg	cc
SS	MIA328FD	MG757001	SW8260	BROMOMETHANE	10	U	UJ	10	ug/kg	CC
SS	MIA098	MG767001	SW8260	BROMOMETHANE	10	U	UJ	10	ug/kg	<u>cc</u>
SS	MIA188	MG770001	SW8260	BROMOMETHANE	10	<u> </u>	nî.	10	ug/kg	CC
SS	MIA189FD	MG770002	SW8260	BROMOMETHANE	11	<u> </u>	<u>w</u>	11	ug/kg	CC
SB CD	MIA120	MG743015	SW8260	CHLOROMETHANE	610	<u> </u>	W W	610	ug/kg	CC
SB SB	MIA121FD MIA124	MG743016 MG743019	SW8260 SW8260	CHLOROMETHANE CHLOROMETHANE	610 620	U	w w	620	ug/kg ug/kg	CC
WS S	MIA007	MG682011	SW8260	CHLOROMETHANE	10	Ü	w w	10	ug/kg ug/L	cc
WS WS	MIA018	MG682001	SW8260	CHLOROMETHANE	10	Ü	w	10	ug/L	ČČ
WS	MIA022	MG682004	SW8260	CHLOROMETHANE	10	l ŭ	uj	10	ua/L	CC
SB	MIA088	MG730001	SW8260	METHYL ISOBUTYL KETONE	10	Ū	UJ	10	ug/kg	CC
SS	MIA188	MG770001	SW8260	METHYL ISOBUTYL KETONE	10	U	UJ	10	ug/kg	CC
SS	MIA189FD	MG770002	SW8260	METHYL ISOBUTYL KETONE	11	U	ພ	11	ug/kg	CC
SS	MIA 193	MG770006	SW8260	METHYL ISOBUTYL KETONE	10	U	ŲJ	10	ug/kg	CC
SS	MIA275	MG778001	SW8260	METHYL ISOBUTYL KETONE	11	U	IJ	11	ug/kg	CC
SS	MIA302	MG785013	SW8270	2,4-DINITROPHENOL	7900	U	w	7900 1	ug/kg	<u>cc</u>
SS	MIA303	MG785014	SW8270	2 4-DINITROPHENOL	2000	U	<u> </u>	2000	ug/kg	CC CC
SS	MIA304	MG785015	SW8270	2,4-DINITROPHENOL	2000 50	U	w	2000 50	ug/kg	CC
W\$ WS	MIA007 MIA011	MG682011 MG682014	SW8270 SW8270	4-NITROPHENOL 4-NITROPHENOL	50	l ü	<u> </u>	50	ug/L ug/L	CC
WS	MIA012	MG682015	SW8270	4-NITROPHENOL	50	Ü	- w	50	ug/L	cc
WS	MIA016	MG682019	SW8270	4-NITROPHENOL	50	υ	UJ	50	ug/L	CC
WS	MIA017	MG682020	SW8270	4-NITROPHENOL	50	Ŭ	w	50	ug/L	CC
WS	MIA018	MG682001	SW8270	4-NITROPHENOL	50	U	w	50	ug/L	CC
WS	MIA019FD	MG682002	\$W8270	4-NITROPHENOL	50	U	UJ	50 1	ug/L	CC
WS	MIA021	MG682003	SW8270	4-NITROPHENOL	50	U	UJ	50 (ug/L	CC
SS	MIA139FDDL	MG743004DL	SW8260	1 1 1-TRICHLOROETHANE	600	U	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	1 1 1-TRICHLOROETHANE	600	U	R	600	ug/kg	DL
SS	MIA 139FDDL	MG743004DL	SW8260	1 1 2 2-TETRACHLOROETHANE	600	U	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	1,1,2,2-TETRACHLOROETHANE	600	U	R	600	ug/kg ug/kg	DL DL
SS	MIA139FDDL MIA143DL	MG743004DL MG743007DL	SW8260 SW8260	1,1 2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE	600	 "	R	600	ug/kg ug/kg	DL
SS	MIA139FDDL	MG743007DL MG743004DL	SW8260	1,1-DICHLOROETHANE	600	U	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	1 1-DICHLOROETHANE	600	υ	R	600	ug/kg	DL
SS	MIA139FDDL	MG743004DL	SW8260	1 1-DICHLOROETHENE	600	Ü	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	1,1-DICHLOROETHENE	600	U	R	600	ug/kg	DL
SS	MIA139FDDL	MG743004DL	SW8260	1 2-DICHLOROETHANE	600	U	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	1,2-DICHLOROETHANE	600	U	R	600	ug/kg	DL
SS	MIA 139FDDL	MG743004DL	SW8260	1,2-DICHLOROPROPANE	600	U	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	1,2-DICHLOROPROPANE	600	U	R	600	ug/kg	DL DL
SS	MIA143DL	MG743007DL	SW8260	2-BUTANONE	600	ļ Ų	R	600	ug/kg	DL
SS	MIA139FDDL	MG743004DL	SW8260	2-BUTANONE	120	U	R	600	ug/kg	DL DL
SS	MIA139FDDL	MG743004DL	SW8260 SW8260	2-HEXANONE 2-HEXANONE	600 600	U	R	600	ug/kg ug/kg	DL
SS	MIA143DL MIA143DL	MG743007DL MG743007DL	SW8260 SW8260	ACETONE	600	Ü	R	600	ug/kg ug/kg	DL
SS SS	MIA139FD	MG743007DL	SW8260	ACETONE	700	E	R	14	ug/kg	DL
SS	MIA139FDDL	MG743004 DL	SW8260	BENZENE	600	l 5	R	600	ug/kg	DŁ DŁ
SS SS	MIA143DL	MG743007DL	SW8260	BENZENE	600	ŭ	R	600	ug/kg	DL
SS	MIA139FDDL	MG743007DL	SW8260	BROMODICHLOROMETHANE	600	Ŭ	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	BROMODICHLOROMETHANE	600	Ü	R	600	ug/kg	DL
SS	MIA139FDDL	MG743004DL	SW8260	BROMOFORM	600	Ü	R	600	ug/kg	DL
SS	MiA143DL	MG743007DL	SW8260	BROMOFORM	600	U	R	600 '	ug/kg	DL
				BROMOMETHANE	600	Ü	R	600 1	ug/kg	DL

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI


		1	l							1
			Anatytical		Final	Lab	Final		٠	<u>.</u>
Matrix	Sample ID	Lab Sample iD	Method	Parameter	Result	Qual	Qual	Det Limit	Units	Qual Reason
SS	MIA143DL MIA139FDDL	MG743007DL	SW8260	BROMOMETHANE CARBON DISULFIDE	600	U	R	600 600	ug/kg ug/kg	DL DL
SS SS	MIA143DL	MG743004DL MG743007DL	SW8260 SW8260	CARBON DISULFIDE	600	Ü	R R	600	ug/kg	DL
SS	MIA139FDDL	MG743007DL	SW8260	CARBON TETRACHLORIDE	600	U	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	CARBON TETRACHLORIDE	600	Ŭ	1R	600	ug/kg	DL
SS	MIA139FDDL	MG743004DL	SW8260	CHLOROBENZENE	600	U	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	CHLOROBENZENE	600	U	R	600	ug/kg	DL
SS	MIA139FDDL	MG743004DL	SW8260	CHLOROETHANE	600	U	R	600	ug/kg	DL
<u>.SS</u>	MIA143DL	MG743007DL	SW8260	CHLOROÉTHANE	600	<u>U</u>	Ŕ	600	ug/kg	DL
SS	MIA139FDDL	MG743004DL	SW8260	CHLOROFORM	600	U	R	600	ug/kg	DL DL
SS	MIA143DL MIA139FDDL	MG743007DL MG743004DL	SW8260 SW8260	CHLOROFORM CHLOROMETHANE	600	U	R	600	ug/kg ug/ka	DL
SS SS	MiA143DL	MG743004DL MG743007DL	SW8260	CHLOROMETHANE	600	Ü	R	600	ua/ka	DL
SS	MIA139FDDL	MG743004DL	SW8260	cis-1,3-DICHLOROPROPENE	600	ŭ	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	cis-1 3-DICHLOROPROPENE	600	Ü	R	600	ug/kg	DŁ
SS	MIA139FDDL	MG743004DL	SW8260	DIBROMOCHLOROMETHANE	600	U	R	600	ug/kg	ÐL
SS	MIA143DL	MG743007DL	SW8260	DIBROMOCHLOROMETHANE	600	U	R	600	ug/kg	DL
SS	MIA 139FDDL	MG743004DL	SW8260	ETHYLBENZENE	600	U	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	ETHYLBENZENE	600	U	R	600	ug/kg	DL
SS	MIA 139FDDL	MG743004DL	SW8260	METHYL ISOBUTYL KETONE	600	U	R	600	ug/kg	DL DL
SS SS	MIA143DL MIA139FDDL	MG743007DL MG743004DL	SW8260 SW8260	METHYL ISOBUTYL KETONE METHYLENE CHLORIDE	600	U	R	600	ug/kg ug/kg	DL DL
SS	MIA143DL	MG743007DL	SW8260	METHYLENE CHLORIDE METHYLENE CHLORIDE	600	Ü	R	600	ug/kg	DL
SS	MIA139FDDL	MG743007DL	SW8260	STYRENE	600	u u	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	STYRENE	600	υ	ıs	600	ug/kg	DL
SS	MIA139FDDL	MG743004DL	SW8260	TETRACHLOROETHYLENE(PCE)	600	U	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	TETRACHLOROETHYLENE(PCE)	600	U	R	600	ug/kg	DL
SS	MIA139FDDL	MG743004DL	SW8260	TOLUENE	600	U	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	TOLUENE	600	<u> </u>	<u> </u>	600	ug/kg	DL
SS	MIA139FDDL	MG743004DL	SW8260	TOTAL 1,2-DICHLOROETHENE	600	U	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	TOTAL 1,2-DICHLOROETHENE	600	U	R	600	ug/kg	DL
SS SS	MIA139FDDL MIA143DL	MG743004DL MG743007DL	SW8260	Total Xylenes	600	U	R R	600	ug/kg	DL DL
SS	MIA139FDDL	MG743004DL	SW8260 SW8260	Total Xylenes trans-1 3-DICHLOROPROPENE	600	Ü	R	600	ug/kg ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	trans-1 3-DICHLOROPROPENE	600	Ιΰ	R	600	ug/kg	DL
SS	MIA139FDDL	MG743004DL	SW8260	TRICHLOROETHYLENE (TCE)	600	Ŭ	R	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	TRICHLOROETHYLENE (TCE)	600	U	R	600	ug/kg	DL
SS	MIA 139FDDL	MG743004DL	SW8260	VINYL CHLORIDE	600	U	Ŕ	600	ug/kg	DL
SS	MIA143DL	MG743007DL	SW8260	VINYL CHLORIDE	600	U	R	600	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	1,2,4-TRICHLOROBENZENE	1300	ļ <u>U</u>	R	1300	ug/kg	DL
\$E	MIA028DL	MG682010DL	SW8270	1,2 4-TRICHLOROBENZENE	1300	<u> </u>	R	1300	ug/kg	DL
SS SS	MIA098DL MIA188DL	MG767001DL MG770001DL	SW8270 SW8270	1,2,4-TRICHLOROBENZENE 1 2 4-TRICHLOROBENZENE	2000 10000	U	R	10000	ug/kg	DL Dt
SS	MIA189FDDL	MG770001DL MG770002DL	SW8270	1 2 4-TRICHLOROBENZENE	7100	U	R R	7100	ug/kg ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	1,2 4-TRICHLOROBENZENE	2400	Ü	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	1,2 4-TRICHLOROBENZENE	800	Ŭ	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	1 2 4-TRICHLOROBENZENE	1200	Ü	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	1 2-DICHLOROBENZENE	1300	U	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	1 2-DICHLOROBENZENÉ	1300	IJ	R	1300	ug/kg	DL
<u>\$\$</u>	MIA098DL	MG767001DL	SW8270	1 2-DICHLOROBENZENE	2000	U	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	1 2-DICHLOROBENZENE	10000	U	R.	10000	ug/kg	DL
SS SS	MIA189FDDL MIA302DL	MG770002DL MG785013DL	SW8270 SW8270	1 2-DICHLOROBENZENE 1 2-DICHLOROBENZENE	7100 2400	U	RR	7100 2400	ug/kg ug/kg	DL DL
SS	MIA303DL	MG785013DL MG785014DL	SW8270 SW8270	1 2-DICHLOROBENZENE	800	Ü	R	800	ug/kg ug/kg	DL
SS S	MIA304DL	MG785015DL	SW8270	1 2-DICHLOROBENZENE	1200	Ü	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	1 3-DICHLOROBENZENE	1300	Ŭ	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	1 3-DICHLOROBENZENE	1300	Ŭ	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	1 3-DICHLOROBENZENE	2000	Ü	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	1,3-DICHLOROBENZENE	10000	U	R	10000	ug/kg	ÐŁ
SS	MIA189FDDL	MG770002DL	SW8270	1 3-DICHLOROBENZENE	7100	U	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	1 3-DICHLOROBENZENE	2400	U	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	1 3-DICHLOROBENZENE	800	U	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	1,3-DICHLOROBENZENE	1200	U	R .	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	1 4-DICHLOROBENZENE	1300	<u> </u>	R	1300	ug/kg	DL DL
SE SS	MIA028DL MIA098DL	MG682010DL MG767001DL	SW8270 SW8270	1 4-DICHLOROBENZENE 1,4-DICHLOROBENZENE	1300	U	R	1300 2000	ug/kg ug/ka	DL DL
SS	MIA188DL	MG770001DL	SW8270 SW8270	1 4-DICHLOROBENZENE	10000	U	R	10000	ug/kg ug/kg	DL
 	MIA 189FDDL	MG770001DL	SW8270	1,4-DICHLOROBENZENE	7100	Ü	R	7100	ug/kg ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	7 4-DICHLOROBENZENE	2400	ŭ	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	1 4-DICHLOROBENZENE	800	Ŭ	R	800	ug/kg	DL
SS	MiA304DL	MG785015DL	SW8270	1 4-DICHLOROBENZENE	1200	Ü	R	1200	ug/kg	DL

ATTACHMENT A

			Analytical		Final	Lab	Final			
Matrix	Sample ID	Lab Sample ID	Method	Parameter	Result	Qual	Qual	Det timit	Units	Qual Reason
SE	MIA015DL	MG682018DL	SW8270	2 2'-OXYBIS(1-CHLORO)PROPANE	1300	U	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	2 2'-OXYBIS(1-CHLORO)PROPANE	1300	U	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	2 2'-OXYBIS(1-CHLORO)PROPANE	2000	U	R	2000	ug/kg	DL
22	MIA188DL	MG770001DL	SW8270	2 2'-OXYBIS(1-CHLORO)PROPANE	10000	<u>U</u>	R	100000	ug/kg	DL
SS SS	MIA189FDDŁ	MG770002DL	SW8270	2.2'-OXYBIS(1-CHLORO)PROPANI	7100	<u></u> !	R	7100	ug/kg	DL
SS	MIA302DL MIA303DL	MG785013DL MG785014DL	SW8270	2,2'-OXYBIS(1-CHLORO)PROPANE	2400	U	R	2400 : 800 !	ug/kg	DL
 \$\$	MIA303DL MIA304DL	MG785014DL	SW8270 SW8270	2.2'-OXYBIS(1-CHLORO)PROPANE 2.2'-OXYBIS(1-CHLORO)PROPANE	1200	 	R	1200	ug/kg ug/kg	DL DL
SE	MIA015DL	MG682018DL	SW8270	2 4 5-TRICHLOROPHENOL	6700	- U	R	6700	ug/kg ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	2 4 5-TRICHLOROPHENOL	6400	Ü	R	6400	ug/kg	DL DL
SS	MIA098DL	MG767001DL	SW8270	2 4 5-TRICHLOROPHENOL	9800	υ	R	9800	ua/ka	DL
SS	MIA188DL	MG770001DL	SW8270	2 4 5-TRICHLOROPHENOL	53000	Ŭ	R	53000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	2 4 5-TRICHLOROPHENOL	35000	ŭ	Ŕ	35000	ua/ka	DL
SS	MIA302DL	MG785013DL	SW8270	2 4 5-TRICHLOROPHENOL	12000	Ŭ	Ŕ	12000 +	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	2 4 5-TRICHLOROPHENOL	4000	υ	Ŕ	4000	ua/ka	DL
SS	MIA304DL	MG785015DL	SW8270	2 4 5-TRICHLOROPHENOL	6100	Ŭ	R	6100 1	ua/ka	DL
SE	MIA015DL	MG682018DL	SW8270	2,4 6-TRICHLOROPHENOL	1300	υ	R	1300	ug/kg	DL
\$E	MIA028DL	MG682010DL	SW8270	2,4 6-TRICHLOROPHENOL	1300	Ŭ	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	2,4 6-TRICHLOROPHENOL	2000	Ü	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	2 4 6-TRICHLOROPHENOL	10000	Ü	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	2 4 6-TRICHLOROPHENOL	7100	ŭ	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	2 4 6-TRICHLOROPHENOL	2400	Ü	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	2 4 6-TRICHLOROPHENOL	800	Ü	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	2,4,6-TRICHLOROPHENOL	1200	Ŭ	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	2,4-DICHLOROPHENOL	1300	Ü	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	2.4-DICHLOROPHENOL	1300	Ū	R	1300	ug/kg	ÐL
SS	MIA098DL	MG767001DL	SW8270	2 4-DICHLOROPHENOL	2000	Ú	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	2 4-DICHLOROPHENOL	10000	Ü	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	2 4-DICHLOROPHENOL	7100	U	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	2,4-DICHLOROPHENOL	2400	U	R	2400 1	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	2,4-DICHLOROPHENOL	800	U	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	2 4-DICHLOROPHENOL	1200	U	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	2 4-DIMETHYLPHÉNOL	1300	U	R	1300	ug/kg	DL
\$E	MIA028DL	MG682010DL	SW8270	2 4-DIMETHYLPHENOL	1300	U	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	2 4-DIMETHYLPHENOL	2000	U	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	2 4-DIMETHYLPHENOL	10000	U	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	2 4-DIMETHYLPHENOL	7100	U	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	2 4-DIMETHYLPHENOL	2400	U	R	2400	ug/kg	DL
SS	MIA303DL	MG785014Dt	SW8270	2 4-DIMETHYLPHENOL	800	U	R	800 -	ug/kg	Dί
SS	MIA304DL	MG785015DL	SW8270	2 4-DIMETHYLPHENOL	1200	U.	R	1200 +	ug/kg	DŁ
_SE	MIA015DL	MG682018DL	SW8270	2 4-DINITROPHENOL	6700	U	R	6700	ug/kg	DL
SE	MIAQ28DL	MG682010DL	SW8270	2 4-DINITROPHENOL	6400	U	R	6400	ug/kg	DŁ
SS	MIA098DL	MG767001DL	SW8270	2.4-DINITROPHENOL	9800	U	R	9800	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	2 4-DINTROPHENOL	53000	U_	R	53000	ug/kg	DL
SS	MIA 189FDDL	MG770002DL	SW8270	2 4-DINITROPHENOL	35000	U.	R.	35000	ug/kg	ÐL
SS	MIA302DL	MG785013DL	SW8270	2 4-DINITROPHENOL	12000	U	R	12000	ug/kg	DL
<u>\$\$</u>	MIA303DL	MG785014DL	SW8270	2 4-DINITROPHENOL	4000	U	R	4000	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	2 4-DINITROPHENOL	6100	U	R	6100	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	2 4-DINITROTOLUENE	1300	U	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	2 4-DINITROTOLUENE	1300	U.	IS.	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	2 4-DINITROTOLUENE	2000	l U	<u> </u>	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	2 4-DINITROTOLUENE	10000	l U	R	7100	ug/kg	DL
<u>SS</u>	MIA189FDDL	MG770002DL	SW8270	2 4-DINITROTOLUENE	7100	U	R	7100 (ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	2 4-DINITROTOLUENE	2400		R	2400	ug/kg	DL Di
SS	MIA303DL	MG785014DL	SW8270	2 4-DINITROTOLUENE	800 1200	U	R	1200	ug/kg ug/kg	DŁ DŁ
SS	MIA304DL	MG785015DL	SW8270 SW8270	2 4-DINITROTOLUENE 2,6-DINITROTOLUENE	1300	Ϊ́	R	1300	ug/kg ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	2,6-DINTROTOLUENE	1300	Ü	R	1300	ug/kg ug/kg	DL
SE	MIA028DL	MG682010DL MG767001DL	SW8270 SW8270	2,6-DINTROTOLUENE	2000	Ü	R	2000	ug/kg ug/kg	DL DL
<u>SS</u>	MIA188DL	MG770001DL	SW8270	2,6-DINITROTOLUENE	10000	Ŭ	R	10000	ug/kg	DL
SS SS	MIA189FDDL	MG770002DL	SW8270	2 6-DINITROTOLUENE	7100	U	R	7100	ug/kg	DL
 \$\$	MIA302DL	MG785013DL	SW8270	2 6-DINITROTOLUENE	2400	υ	R	2400	ug/kg	DL
	MIA302DL MIA303DL	MG785013DL MG785014DL	SW8270	2 6-DINITROTOLUENE	800	Ü	R	800	ug/kg	DL
SS			SW8270 SW8270	2 6-DINITROTOLUENE 2 6-DINITROTOLUENE	1200	Ü	R	1200	ug/kg ug/kg	DL
SS	MIA304DL	MG785015DL			1300	Ü	R	1300 1	ug/kg ug/kg	DL
SE_	MIA015DL	MG682018DL	SW8270	2-CHLORONAPHTHALENE		U	R	1300		DL
SE	MIA028DL	MG682010DL	SW8270	2-CHLORONAPHTHALENE	1300			_	ug/kg	_
<u>SS</u>	MIA098DL	MG767001DL	SW8270	2-CHLORONAPHTHALENE	2000	U	R -	2000	ug/kg	DL
SS	MIA188DL	MG770001Dt	SW8270	2-CHLORONAPHTHALENE	7100	l u	R o	7100	ug/kg	DL DL
SS	MIA189FDDL	MG770002DL	SW8270	2-CHLORONAPHTHALENE	7100	<u> </u>	R		ug/kg	
SS	MIA302DL	MG785013DL	SW8270	2-CHLORONAPHTHALENE	2400	U.	R	2400 1	ug/kg	DL DL
SS	MIA303DL	MG785014DL	SW8270	2-CHLORONAPHTHALENE	800	Ŭ	R	800	ug/kg	

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

		· -···				_		1		
	[Analytical		Final	Lab	Final			
Matnx	Sample ID	Lab Sample ID	Method	Parameter	Result	Qual	Qual	Det Limit	Units	Qual Reason
SS	MIA304DL	MG785015DL	SW8270	2-CHLORONAPHTHALENE	1200	ָ ט	R	1200	ug/kg	DL
\$E	MIA015DL	MG682018DL	SW8270	2-CHLOROPHENOL	1300	U	R	1300	ug/kg	DL ^
SE	MIA028DL	MG682010DL	SW8270	2-CHLOROPHENOL	1300	Ų	R	1300	ug/kg	DL
SS SS	MIA098DL MIA188DL	MG767001DL MG770001DL	SW8270 SW8270	2-CHLOROPHENOL 2-CHLOROPHENOL	10000	U	R	2000 10000	ug/kg ug/kg	DL DL
SS	MIA189FDDL	MG770002DL	SW8270	2-CHLOROPHENOL	7100	Ü	R	7100	ug/kg ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	2-CHLOROPHENOL	2400	Ü	R	2400	ug/kg ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	2-CHLOROPHENOL	800	Ü	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	2-CHLOROPHENOL	1200	U	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	2-METHYLNAPHTHALENE	1300	U	R	_1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	2-METHYLNAPHTHALENE	1300	υ	R	1300	∪g/kg	DL
<u>SS</u>	MIA098DL	MG767001DL	SW8270	2-METHYLNAPHTHALENE	2000	U	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	2-METHYLNAPHTHALENE	10000	U	R	10000	ug/kg	DL
SS SS	MIA189FDDL MIA302DL	MG770002DL MG785013DL	SW8270 SW8270	2-METHYLNAPHTHALENE	7100 2400	U	R	7100 2400	ug/kg	DL DL
SS	MIA303DL	MG785013DL	SW8270	2-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	800	U	R	800	ug/kg ug/kg	DŁ
SS	MIA304DL	MG785015Dt	SW8270	2-METHYLNAPHTHALENE	1200	Ŭ	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DŁ	SW8270	2-METHYLPHENOL (o-CRESOL)	1300	Ŭ	R	1300	ug/kg	DL
SĘ	MIA028DL	MG682010DL	SW8270	2-METHYLPHENOL (o-CRESOL)	1300	Ü	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	2-METHYLPHENOL (o-CRESOL)	2000	U	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	2-METHYLPHENOL (o-CRESOL)	10000	U	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	2-METHYLPHENOL (o-CRESOL)	7100	U	R	7100	ug/kg	DL
SS SS	MIA302DL MIA303DL	MG785013DL MG785014DL	SW8270 SW8270	2-METHYLPHENOL (o-CRESOL) 2-METHYLPHENOL (o-CRESOL)	2400 800	U	R R	2400 800	ug/kg	DL DL
SS	MIA303DL MIA304DL	MG785014DL MG785015DL	SW8270 1	2-METHYLPHENOL (O-CRESOL)	1200	U	R	1200	ug/kg ug/kg	DŁ DŁ
SE	MIA015DL	MG682018DL	SW8270	2-NITROANILINE	6700	Ü	R	6700	ua/ka	DL
SE	MIA028DL	MG682010DL	SW8270	2-NITROANILINE	6400	Ü	R	6400	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	2-NITROANILINE	9800	Ü	R	9800	ug/kg	DL
SS	MIA188Dt	MG770001DL	SW8270	2-NITROANILINE	53000	U	R	53000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	2-NITROANILINE	35000	U	R	35000	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	2-NITROANILINE	12000	Ų 	R	12000	ug/kg	DŁ
SS	MIA303DL MIA304DL	MG785014DL MG785015DL	SW8270 SW8270	2-NITROANILINE 2-NITROANILINE	4000 6100	U	R R	4000 6100	ug/kg	DŁ DŁ
SE	MIA015DL	MG682018DL	SW8270	2-NITROPHENOL	1300	U	R	1300	ug/kg ug/kg	DL DL
SE	MIA028DL	MG682010DL	SW8270	2-NITROPHENOL	1300	U	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	2-NITROPHENOL	2000	Ū	R	2000	ug/kg	ÐL
SS	MIA188DL	MG770001DL	SW8270	2-NITROPHENOL	10000	U	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	2-NITROPHENOL	7100	U	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	2-NITROPHENOL	2400	U	R	2400	ug/kg	DL
SS SS	MIA303DL MIA304DL	MG785014DL MG785015DL	SW8270 SW8270	2-NITROPHENOL	800	U	R	800	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	2-NITROPHENOL 3 3 -DICHLOROBENZIDINE	1200 1300	Ü	R	1200 1300	ug/kg ug/kg	DL DL
SE	MIA028DL	MG682010DL	SW8270	3.3'-DICHLOROBENZIDINE	1300	Ü	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	3 3'-DICHLOROBENZIDINE	2000	ŭ	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	3 3'-DICHLOROBENZIDINE	10000	Ü	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	3 3 -DICHLOROBENZIDINE	7100	U	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	3 3 -DICHLOROBENZIDINE	2400	Ų	R	2400	ug/kg	DL
SS SS_	MIA303DL MIA304DL	MG785014DL	SW8270	3 3'-DICHLOROBENZIDINE	800	Ų.	R	800	ug/kg	DL
<u>SS</u>	MIAO15DL	MG785015DL MG682018DL	SW8270 SW8270	3 3 -DICHLOROBENZIÐINE 3-NITROANILINE	1200 6700	U	R	1200 6700	ug/kg ug/kg	DL DL
SE	MIA028DL	MG682010DL	SW8270	3-NITROANILINE	6400	Ü	R	6400	ug/kg ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	3-NTROANLINE	9800	ŭ	R	9800	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	3-NITROANILINE	53000	ŭ	R	53000	ug/kg	DŁ
SS	MIA189FDDL	MG770002DL	SW8270	3-NITROANILINE	35000	U	R	35000	ug/kg	DŁ
SS	MIA302DL	MG785013DL	SW8270	3-NITROANILINE	12000	U	R	12000	ug/kg	DŁ
SS	MIA303DL	MG785014DL	SW8270	3-NITROANILINE	4000	U	R	4000	ug/kg	DL
SS SE	MIA304DL	MG785015DL	SW8270 SW8270	3-NITROANILINE 4 6-DINITRO-2-METHYLPHENOL	6100	U	R	6100	ug/kg	DL
SE	MIA015DL MIA028DL	MG682018DL MG682010DL	SW8270 SW8270	4 6-DINITRO-2-METHYLPHENOL 4 6-DINITRO-2-METHYLPHENOL	6700 6400	U U	R R	6700 6400	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	4,6-DINITRO-2-METHYLPHENOL	9800	<u>"</u>	R	9800	ug/kg ug/kg	DL DL
SS	MIA188DL	MG770001DL	SW8270	4,6-DINITRO-2-METHYLPHENOL	53000	Ü	R	53000	ug/kg ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	4,6-DINITRO-2-METHYLPHENOL	35000	Ŭ	R	35000	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	4 6-DINITRO-2-METHYLPHENOL	12000	Ü	R	12000	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	4 6-DINITRO-2-METHYLPHENOL	4000	Ü	R	4000	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	4 6-DINITRO-2-METHYLPHENOL	6100	U	R	6100	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	4-BROMOPHENYL PHENYL ETHER	1300	U	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DŁ	SW8270	4-BROMOPHENYL PHENYL ETHER	1300	U	R	1300	ug/kg	DL
SS	MIA098DL MIA188DL	MG767001DL MG770001DL	SW8270 SW8270	4-BROMOPHENYL PHENYL ETHER 4-BROMOPHENYL PHENYL ETHER	2000 10000	U	R	2000 10003	ug/kg ug/kg	DL
	T IANUL DOOPE		JVYOZ/U		i iuu	U	ı K	1000	USI KO	-
\$S_	MIA189FDDL	MG770002DL	SW8270	4-BROMOPHENYL PHENYL ETHER	7100	U	R	7100	ug/kg] DL

SS SS SE SE SE SS SS	Sample ID MIA303DL MIA304DL	Lab Sample ID MG785014DL	Method	Parameter	Result	Qual	Quali	Det Limit	Units	Qual Reason
SS SE SE SS		! MG785014DF !		4.00.01.10.01.51.11.01.01.11.1.01.01.11.1						
SE SE SS	I MIASUADE I		SW8270	4-BROMOPHENYL PHENYL ETHER	800	<u> </u>	R	800	ug/kg	DL DL
SE SS	MIA015DL	MG785015DL MG682018DL	SW8270 SW8270	4-BROMOPHENYL PHENYL ETHER 4-CHLORO-3-METHYLPHENOL	1200 1300	U	R R	1200	ug/kg ug/kg	DL DL
SS	MIA028DL	MG682010DL	SW8270	4-CHLORO-3-METHYLPHENOL	1300	U	R	1300	ug/kg ug/kg	DL
	MIA098DL	MG767001DL	SW8270	4-CHLORO-3-METHYLPHENOL	2000	Ü	R	2000	ua/ka	DL
	MIA188DL	MG770001DL	SW8270	4-CHLORO-3-METHYLPHENOL	10000	Ü	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	4-CHLORO-3-METHYLPHENOL	7100	Ü	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	4-CHLORO-3-METHYLPHENOL	2400	U	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	4-CHLORO-3-METHYLPHENOL	800	U	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	4-CHLORO-3-METHYLPHENOL	1200	C	R	1200 1	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	4-CHLOROANILINE	1300	Ü	R	1300 1	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	4-CHLOROANILINE	1300	U	R	1300 +	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	4-CHLOROANILINE	2000	U	R	2000 (ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	4-CHLOROANILINE	10000	U	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	4-CHLOROANILINE	7100	U.	R	7100 ,	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	4-CHLOROANILINE	2400	Ü	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	4-CHLOROANILINE	800	U.	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	4-CHLOROANILINE	1200	บ	R	1200 :	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	4-CHLOROPHENYL PHENYL ETHER	1300	U	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	4-CHLOROPHENYL PHENYL ETHER	1300	n	R	1300 !	ug/kg	DL
SS	MIA098DL	MG767001DL MG770001DL	SW8270	4-CHLOROPHENYL PHENYL ETHER 4-CHLOROPHENYL PHENYL ETHER	2000	. U	R	2000	ug/kg	DL
SS	MIA188DL		SW8270		10000	U	R	10000 i	ug/kg	DL
SS SS	MIA189FDDL MIA302DL	MG770002DL MG785013DL	SW8270 SW8270	4-CHLOROPHENYL PHENYL ETHER 4-CHLOROPHENYL PHENYL ETHER	7100 2400	U U	R R	7100 s 2400	ug/kg ug/kg	DL DL
SS	MIA303DL	MG785013DL MG785014DL	SW8270	4-CHLOROPHENYL PHENYL ETHER	800	Ü	R	800	_ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	4-CHLOROPHENYL PHENYL ETHER	1200	Ü	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	4-METHYLPHENOL (p-CRESOL)	1300	Ŭ	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	4-METHYLPHENOL (p-CRESOL)	1300	Ü	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	4-METHYLPHENOL (p-CRESOL)	2000	- ŭ	<u> </u>	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	4-METHYLPHENOL (p-CRESOL)	10000	Ü	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	4-METHYLPHENOL (p-CRESOL)	7100	Ü	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	4-METHYLPHENOL (p-CRESOL)	2400	U	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	4-METHYLPHENOL (p-CRESOL)	800	U	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	4-METHYLPHENOL (p-CRESOL)	1200	U	R	1200 +	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	4-NITROANILINE	6700	U	R	6700	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	4-NITROANILINE	6400	U	R	6400	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	4-NITROANILINE	9800	U	R	9800 1	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	4-NITROANILINE	53000	U	R	53000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	4-NITROANILINE	35000	U	R	35000 '	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	4-NITROANILINE	12000	U	R	12000	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	4-NITROANILINE	4000	U	R	4000	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	4-NITROANILINE	6100	U	R	6100 (ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	4-NITROPHENOL	6700	U.	R	6700	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	4-NITROPHENOL	6400 9800	U	R	6400 i 9800 i	ug/kg	DL DL
SS	MIA098DL	MG767001DL MG770001DL	SW8270	4-NITROPHENOL 4-NITROPHENOL	53000	U	R	53000	ug/kg	DL
SS SS	MIA188DL MIA189FDDL	MG770001DL MG770002DL	SW8270 SW8270	4-NITROPHENOL	35000	Ü	R	35000	ug/kg ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	4-NITROPHENOL	12000	Ü	R	12000	ua/ka	DL
SS	MIA302DL MIA303DL	MG785013DL MG785014DL	SW8270	4-NITROPHENOL	4000	Ŭ.	R	4000	ug/kg	DL
SS	MIA303DL MIA304DL	MG785015DL	SW8270	4-NITROPHENOL	6100	ŭ	R	6100	ug/kg	DL
SE	MIA028DL	MG682010DL	5W8270	ACENAPHTHENE	240	Ĵ	R	1300	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	ACENAPHTHENE	250	Ĵ	Ŕ	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	ACENAPHTHENE	620	Ĵ	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	ACENAPHTHENE	2400	J.	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	ACENAPHTHENE	1500	J	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	ACENAPHTHENE	1600	J	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	ACENAPHTHENE	380	J	R	800 (ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	ACENAPHTHENE	690	J	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	ACENAPHTHYLENE	1300	U	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	ACENAPHTHYLENE	1300_	<u>u</u>	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	ACENAPHTHYLENE	2000	U	R	2000	ug/kg	DL
SS	MIA 188DL	MG770001DL	SW8270	ACENAPHTHYLENE	10000	U	R_	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	ACENAPHTHYLENE	7100	<u> </u>	R.	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	<u>ACENAPHTHYLENE</u>	2400	U	R	2400	ug/kg_	DL
SS	MIA303DL	MG785014DL	SW8270	ACENAPHTHYLENE	800	U	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	ACENAPHTHYLENE	1200	U	R	1200	ug/kg	DL
	MIA189FD	MG770002	SW8270	ANTHRACENE	2900	E	R	350	ug/kg	DL
SS			011/0070	ANTHRACENE	440		l R	1200	t complete	
SS SE	MIA015DL	MG682018DL	SW8270			J		1300	ug/kg	DL
SS	MIA015DL MIA028DL MIA098DL	MG682018DL MG682010DL MG767001DL	SW8270 SW8270 SW8270	ANTHRACENE ANTHRACENE ANTHRACENE	420 960	J	R	1300	ug/kg ug/kg ug/kg	DL DL

٠٠,

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

Matrix	Sample ID	Lab Sample ID	Analytical Method	Parameter	Final Result	Lab Quai	Final Qual	Det Limit	Units	Qual Reason
SS	MIA302DL	MG785013DL	SW8270	ANTHRACENE	2100	eaucu:	R	2400	ug/kg	DL DL
SS	MIA303DL	MG785013DL	SW8270	ANTHRACENE	500	-	R	800	ug/kg ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	ANTHRACENE	1100	Ĵ	R	1200	ug/kg	DL
SS	MIA098	MG767001	SW8270	BENZO(a)ANTHRACENE	3400	E	ĸ	390	ug/kg	DL
SS	MIA188	MG770001	SW8270	BENZO(a)ANTHRACENE	25000	E	R	1800	ug/kg	DL
SS	MIA189FD	MG770002	SW8270	BENZO(a)ANTHRACENE	19000	E	R	350	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	BENZO(a)ANTHRACENE	1800	=	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	BENZO(a)ANTHRACENE	1600	=	R	1300	ug/kg	DL
SS	MIA302DL	MG785013DL	\$W8270	BENZO(a)ANTHRACENE	5200	=	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	BENZO(a)ANTHRACENE	1700	=	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	BENZO(a)ANTHRACENE	3200	=	R	1200	ug/kg	DŁ
SS	MIA098	MG767001	SW8270	BENZO(a)PYRENE	3100	E	R	390	ug/kg	DL
SS SS	MIA 188	MG770001 MG770002	SW8270 SW8270	BENZO(a)PYRENE	23000	E	R	1800 350	ug/kg	DL DL
SE	MIA189FD MIA028DL	MG682010DL	SW8270	8ENZO(a)PYRENE BENZO(a)PYRENE	2000	_	R	1300	ug/kg ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	BENZO(a)PYRENE	2000		R	1300	ug/kg ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	BENZO(a)PYRENE	4400	=	R	2400	ua/ka	DL
SS	MIA303DL	MG785014DL	SW8270	BENZO(a)PYRENE	1700	=	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	BENZO(a)PYRENE	2800	=	R	1200	ug/kg	DL
SS	MIA188	MG770001	SW8270	BENZO(b)FLUORANTHENE	36000	E	R	1800	ug/kg	DL
SS	MIA 189FD	MG770002	SW8270	BENZO(b)FLUORANTHENE	38000	E	R	350	ug/kg	DL
SE	MIA028DL	MG682010Dt.	SW8270	BENZO(b)FLUORANTHENE	2300	12	R	1300	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	BENZO(b)FLUORANTHENE	2300	=	R	1300	ug/kg	DL
SS	MIA098DŁ	MG767001DL	SW8270	BENZO(b)FLUORANTHENE	2700	=	R	2000	ug/kg	DL
\$S	MIA302DŁ	MG785013DL	SW8270	BENZO(b)FLUORANTHENE	4700	=	R	2400	ug/kg	DL DL
SS	MIA303DL	MG785014DL	SW8270	BENZO(b)FLUORANTHENE	2000	=	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	BENZO(b)FLUORANTHENE	2700	=	R	1200	ug/kg	DL
SS	MIA188	MG770001	SW8270	BENZO(g,h i)PERYLENE	23000	 —- <u>₽</u>	R	1800	ug/kg	DL
<u>SS</u> SE	MIA189FD MIA028DL	MG770002 MG682010DL	SW8270 SW8270	BENZO(g h I)PERYLENE BENZO(g h I)PERYLENE	9300 1800	E	R	350 1300	ug/kg ug/kg	DL DL
SE SE	MIA015DL	MG682018DL	SW8270	BENZO(g h i)PERYLENE	1700	=	R	1300	ug/kg ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	BENZO(q h ı)PERYLENE	2300	 	R	2000	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	BENZO(g,h,i)PERYLENE	2900		R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	BENZO(g,h,i)PERYLENE	1300	=	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	BENZO(g,h,i)PERYLENE	1800	=	R	1200	ug/kg	DL
SS	MIA098	MG767001	SW8270	BENZO(k)FLUORANTHENE	3200	E	R	390	ug/kg	DL
SS	MIA 188	MG770001	SW8270	BENZO(k)FŁUORANTHENE	24000	E	R	1800	ug/kg	DL
SS	MIA189FD	MG770002	SW8270	BENZO(k)FLUORANTHENE	20000	E	R	350	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	BENZO(k)FLUORANTHENE	2100	=	R	1300	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	BENZO(k)FLUORANTHENE	1900	=	R	1300	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	8ENZO(k)FLUORANTHENE	4000	-	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	BENZO(k)FLUORANTHENE	1500	<u> </u>	R	800	ug/kg_	Dt.
SS SE	MIA304DŁ MIA015DL	MG785015DL MG682018DL	SW8270 SW8270	BENZO(k)FLUORANTHENE BENZYL BUTYL PHTHALATE	2800 1300	= U	R	1200	ug/kg ug/kg	DL DL
SE	MIA028DL	MG682010DL	SW8270	BENZYL BUTYL PHTHALATE	1300	 	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	BENZYL BUTYL PHTHALATE	2000	Ü	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	BENZYL BUTYL PHTHALATE	10000	ΙŬ	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	BENZYL BUTYL PHTHALATE	7100	Ū	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	BENZYL BUTYL PHTHALATE	2400	Ū	R	2400	ug/kg	, DL
SS	MIA303DL	MG785014DL	SW8270	BENZYL BUTYL PHTHALATE	800	Ü	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	BENZYL BUTYL PHTHALATE	1200	U	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	bis(2-CHLOROETHOXY) METHANE	1300	U	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	bls(2-CHLOROETHOXY) METHANE	1300	<u> </u>	R	1300	ug/kg	DL
SS	MIA098DŁ	MG767001DL MG770001DL	SW8270	bis(2-CHLOROETHOXY) METHANE	2000	<u> </u>	R	2000	ug/kg	DL
SS	MIA188DL		SW8270	bis(2-CHLOROETHOXY) METHANE	10000	U.U.	<u> </u>	10000	ug/kg	DL
SS SS	MIA189FDDL MIA302DL	MG770002DL MG785013DL	SW8270 SW8270	bis(2-CHLOROETHOXY) METHANE bis(2-CHLOROETHOXY) METHANE	7100 2400	U	R R	7100 2400	ug/kg ug/kg	DL Di
SS	MIA303DL	MG785013DL	SW8270	bis(2-CHLOROETHOXY) METHANE	800	Ü	R	800	ug/kg ug/kg	DL
SS	MIA303DL MIA304DL	MG785014DL	SW8270	bis(2-CHLOROETHOXY) METHANE	1200	T Ü	R	1200	ug/kg ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	bis(2-CHLOROETHYL) ETHER	1300	Ü	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	bis(2-CHLOROETHYL) ETHER	1300	ŭ	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	bis(2-CHLOROETHYL) ETHER	2000	Ŭ	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	bis(2-CHLOROETHYL) ETHER	10000	Ü	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	bis(2-CHLOROETHYL) ETHER	7100	Ü	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	bis(2-CHLOROETHYL) ETHER	2400	U	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	bis(2-CHLOROETHYL) ETHER	800	U	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	bis(2-CHLOROETHYL) ETHER	1200	U.	R	1200	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	2000	U	R	2000	ug/kg	DL.
SS	MIA188DL	MG770001DL	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	10000	U	R	10000	ug/kg	DL
SS	MIA189FDDŁ	MG770002DL	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	7100	Ų	R	7100	∪g/kg	DL
SS	MIA302DL	MG785013DL	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	2400	U	R.	2400	ug/kg	DL

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

										[
			Analytical	B	Final	Lab	final		44.4.	
Matrix	Sample ID	Lab Sample ID	Method	Parameter Parameter	Result	Qual	Qual	Det Limit	Units	Qual Reason
SS SE	MIA303DL MIA028DL	MG785014DL MG682010DL	SW8270 SW8270	bis(2-ETHYLHEXYL) PHTHALATE bis(2-ETHYLHEXYL) PHTHALATE	800 260	J	R	1300	ug/kg ug/kg	DL Di.
SE	MIA015DL	MG682018DL	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	1400	=	R	1300	ug/kg ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	190	J	IR	1200	ug/kg	DL
SS	MIA189FD	MG770002	SW8270	CARBAZOLE	3900	E	R	350	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	CARBAZOLE CARBAZOLE	490	J	R	1300 (ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	CARBAZOLE	460	J	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	CARBAZOLE	770	J	R	2000	ug/kg	DL
SS SS	MiA188DL MiA302DL	MG770001DL MG785013DL	SW8270 SW8270	<u>CARBAZOLE</u> CARBAZOLE	6000 2200	<u> </u>	R	10000 2400	ug/kg ug/kg	DL DL
SS	MIA303DL	MG785013DL	SW8270	CARBAZOLE	640	<u> </u>	R	800	ug/kg ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	CARBAZOLE	1100	Ĵ	R	1200	ug/kg	DL
SS	MIA098	MG767001	SW8270	CHRYSENE	3900	E	R	390	ug/kg	Dì
SS	MIA188	MG770001	SW8270	CHRYSENE	30000	E	R	1800 +	ug/kg	DŁ
SS	MIA189FD	MG770002	SW8270	CHRYSENE	27000	<u> </u>	R	350	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	CHRYSENE	2600	=	R	1300 ′	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	CHRYSENE	2600	=	R	1300	Ug/kg	DL
SS SS	MIA302DL MIA303DL	MG785013DL MG785014DL	SW8270 SW8270	CHRYSENE CHRYSENE	5400 1900	=	R	2400 ¹	ug/kg ug/kg	DL DL
SS	MIA304DL	MG785014DL MG785015DL	SW8270	CHRYSENE	3400	=	R	1200	ug/kg	DL
SS	MIA189FD	MG770002	SW8270	DIBENZ(g h)ANTHRACENE	5600	E	R	350	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	DIBENZ(g h)ANTHRACENE	1300	Ü	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	DIBENZ(a h)ANTHRACENE	1300	Ü	R	1300 +	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	DIBENZ(a,h)ANTHRACENE	2000	U	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	DIBENZ(a h)ANTHRACENE	10000	U	R	10000	ug/kg	DL
SS	MIA302DL MIA303DL	MG785013DL	SW8270 SW8270	DIBENZ(a h)ANTHRACENE	2400 800	U	R	800	ug/kg	DL Di
SS SS	MIA303DE MIA304DE	MG785014DL MG785015DL	SW8270	DIBENZ(a h)ANTHRACENE DIBENZ(a h)ANTHRACENE	1200	Ü	R	1200	ug/kg ug/kg	DL
SE	MIA015Dt	MG682018DL	SW8270	DIBENZOFURAN	1300	ŭ	R	1300	ug/kg	DŁ :
SS	MIA188DL	MG770001DL	SW8270	DIBENZOFURAN	10000	Ü	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	DIBENZOFURAN	7100	U	R	7100 i	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	DIBENZOFURAN	140	J	R	1300 1	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	DIBENZOFURAN	240	J	R	2000	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	DIBENZOFURAN	650	<u> </u>	R	2400	ug/kg	DL
SS SS	MIA303DL MIA304DL	MG785014DL MG785015DL	SW8270 SW8270	DIBENZOFURAN DIBENZOFURAN	200 390	J	R R	1200	ug/kg ug/kg	DL DL
SE	MIA015DL	MG682018DL	SW8270	DIETHYL PHTHALATE	1300	Ŭ	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	DIETHYL PHTHALATE	1300	Ü	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	DIETHYL PHTHALATE	2000	U	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	DIETHYL PHTHALATE	10000	U	R	100001	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270_	DIETHYL PHTHALATE	7100	U	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	DIETHYL PHTHALATE	2400	Ų.	R	2400	ug/kg	DL
SS SS	MIA303DL MIA304DL	MG785014DL MG785015DL	SW8270 SW8270	DIETHYL PHTHALATE DIETHYL PHTHALATE	800 1200	U	R	800 i 1200	ug/kg ug/kg	DL
SE SE	MIA015DL	MG682018DL	SW8270	DIMETHYL PHTHALATE	1300	U	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	DIMETHYL PHTHALATE	1300	Ŭ	Ŕ	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	DIMETHYL PHTHALATE	2000	Ü	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	DIMETHYL PHTHALATE	10000	U	R	100001	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	DIMETHYL PHTHALATE	7100	U	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	DIMETHYL PHTHALATE	2400	U.	R R	2400	ug/kg	DL DI
SS SS	MIA303DL	MG785014DL MG785015DL	SW8270 SW8270	DIMETHYL PHTHALATE DIMETHYL PHTHALATE	800 1200	U	R	1200	ug/kg ug/kg	DL DL
SS	MIA304DL MIA098DL	MG7850150L MG767001DL	SW8270	DI-n-BUTYL PHIHALATE	2000	Ü	R	2000	ug/kg ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	Di-n-BUTYL PHTHALATE	10000	Ü	R	100001	ug/kg	Dt.
SS	MIA189FDDL	MG770002DL	SW8270	DI-n-BUTYL PHTHALATE	7100	U	R	7100 !	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	DI-n-BUTYL PHTHALATE	2400	U	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	DI-n-BUTYL PHTHALATE	800	U	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	DI-n-BUTYL PHTHALATE	1200	Ų	R	1200	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270 SW8270	DI-n-BUTYL PHTHALATE DI-n-BUTYL PHTHALATE	160 160	j	R	1300	ug/kg ug/kg	DL DL
SE SE	MIA015DL MIA015DL	MG682018DL MG682018DL	SW8270 SW8270	DI-n-BUTYL PHIHALATE DI-n-OCTYLPHTHALATE	1300	U	R	1300	ug/kg ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	DI-n-OCTYLPHTHALATE	1300	Ü	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	DI-n-OCTYLPHTHALATE	2000	U	R	2000	ug/kg	DL
SS	MIA188DŁ	MG770001DL	SW8270	DI-n-OCTYLPHTHALATE	10000	U	R	100001	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	DI-n-OCTYLPHTHALATE	7100	U	ß	7100	ug/kg	ÐĻ
SS	MIA302DL	MG785013DL	SW8270	DI-n-OCTYLPHTHALATE	2400	U	R	2400	ug/kg	DŁ
SS	MIA303DL_	MG785014DL MG785015DL	SW8270	DI-n-OCTYLPHTHALATE	800	U	R	800 1	ug/kg	DL DI
		4 MACC (MSC(15C)	SW8270	DI-n-OCTYLPHTHALATE	1200	lυ	R	1200 '	ug/kg	DL
SS	MIA304DL					1		1200 1		E.
	MIA015DL MIA028DL	MG682018DL MG682010DL	SW8270 SW8270	FLUORANTHENE FLUORANTHENE	5200 5700	=	R	1300	ua/ka ua/ka	DL DL

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

Matrix	Sample ID	Lab Sample ID	Analytical Method	Parameter	Final Result	Lab Qual	Final Qual	Det Limit	Units	 Qual Reason
SE	MIA028	MG682010	SW8270	FLUORANTHENE	5400	E	R	640	ug/kg	DL DL
SS	MIA098	MG767001	SW8270	FLUORANTHENE	10000	Ē	R	390	ug/kg	DL
SS	MIA188	MG770001	SW8270	FLUORANTHENE	81000	E	R	1800	ug/kg	DL
SS	MIA189FD	MG770002	SW8270	FLUORANTHENE	95000	E	R	350	ug/kg	DL
SS	MIA302	MG785013	SW8270	FLUORANTHENE	14000	E	R	1600	ug/kg	DL
SS	MIA303	MG785014	SW8270	FLUORANTHENE	4000	E	R	400	ua/ka	DL
SS	MIA304	MG785015	SW8270	FLUORANTHENE	5900	<u>E</u>	R R	410 1300	ug/kg	DL DL
SE SE	MIA015DL MIA028DL	MG682018DL MG682010DL	SW8270 SW8270	FLUORENE FLUORENE	280 330	J	R	1300	ug/kg ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	FLUORENE	470	j	R	2000	ua/ka	DL
SS	MIA188DL	MG770001DL	SW8270	FLUORENE	1500	j	ß	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	FLUORENE	980	J	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	FLUORENE	1100	J	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	FLUORENE	290	J	R	800	ug/kg	DL
SS	MtA304DL	MG785015DL	SW8270	FLUORENE	610		R	1200	ug/kg	DL
SE SE	MIA015DL	MG682018DL	SW8270	HEXACHLOROBENZENE	1300	U	R	1300 1300	ug/kg ug/kg	DL DL
SS	MIA028DL MIA098DL	MG682010DL MG767001DL	SW8270 SW8270	HEXACHLOROBENZENE HEXACHLOROBENZENE	1300 2000	Ü	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	HEXACHLOROBENZENE	10000	Ü	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	HEXACHLOROBENZENE	7100	Ŭ	R	7100	ug/kg	DŁ
SS	MIA302DL	MG785013DL	SW8270	HEXACHLOROBENZENE	2400	Ü	R	2400	ug/kg	DŁ
SS	MIA303DL	MG785014DL	SW8270	HEXACHLOROBENZENE	800	Ü	Ŕ	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	HEXACHLOROBENZENE	1200	U	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	HEXACHLOROBUTADIENE	1300	U	ß	1300	ug/kg	DL
SE SS	MIA028DL MIA098DL	MG682010DL MG767001DL	SW8270 SW8270	HEXACHLOROBUTADIENE HEXACHLOROBUTADIENE	1300 2000	U	R	1300 2000	ug/kg ug/kg	DL DL
SS	MIA188DL	MG770001DL	SW8270	HEXACHLOROBUTADIENE HEXACHLOROBUTADIENE	10000	Ü	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770001DL	SW8270	HEXACHLOROBUTADIENE	7100	Ü	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	HEXACHLOROBUTADIENE	2400	Ŭ	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	HEXACHLOROBUTADIENE	800	υ	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	HEXACHLOROBUTADIENE	1200	U	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	HEXACHLOROCYCLOPENTADIENE	1300	U	R	1300	ug/kg	DL
SE	MIA028DL	MG682010Dt	SW8270	HEXACHLOROCYCLOPENTADIENE	1300	U	R	1300	ug/kg	DL
SS SS	MIA098Dt MIA188Dt	MG767001DL MG770001DL	SW8270 SW8270	HEXACHLOROCYCLOPENTADIENE HEXACHLOROCYCLOPENTADIENE	2000 10000	Ü	R R	2000 10000	ug/kg ug/kg	DL DL
SS	MIA189FDDL	MG770001DL	SW8270	HEXACHLOROCYCLOPENTADIENE	7100		R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	HEXACHLOROCYCLOPENTADIENE	2400	Ŭ	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	HEXACHLOROCYCLOPENTADIENE	800	U	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	HEXACHLOROCYCLOPENTADIENE	1200	U	R	1200	ug/kg	ÐL
SE	MIA015DL	MG682018DL	SW8270	HEXACHLOROETHANE	1300	U	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	HEXACHLOROETHANE	1300	U	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL MG770001DL	SW8270	HEXACHLOROETHANE	2000 10000	U U	R	10000	ug/kg	DL DL
SS	MIA188DL MIA189FDDL	MG770001DL MG770002DL	SW8270 SW8270	HEXACHLOROETHANE HEXACHLOROETHANE	7100	Ü	R	7100	ug/kg ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	HEXACHLOROETHANE	2400	l ü	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	HEXACHLOROETHANE	800	U_	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	HEXACHLOROETHANE	1200	U	R	1200	ug/kg	DL
SS	MIA188	MG770001	SW8270	indeno(1 2,3-c d)PYRENE	23000	E	R	1800	ug/kg	DL
SS	MIA189FD	MG770002	SW8270	INDENO(1,2,3-c d)PYRENE	11000	Ε	R	350	ug/kg	DL
SE SE	MIA028DL MIA015DL	MG682010DL MG682018DL	SW8270 SW8270	INDENO(1 2 3-c d)PYRENE INDENO(1 2 3-c d)PYRENE	1700 1500	=	R	1300	ug/kg ug/kg	DL DL
SS	MIA015DL MIA098DL	MG767001DL	SW8270 SW8270	INDENO(1.2.3-C.d)PYRENE INDENO(1.2.3-C.d)PYRENE	2100	=	R	2000	ug/kg ug/kg	DL
SS	MIA302DL	MG785013DL	\$W8270	INDENO(1 2,3-c,d)PYRENE	3000		R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	INDENO(1 2,3-c d)PYRENE	1200	=	R	800	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	INDENO(1,2 3-c,d)PYRENE	1900	=	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	ISOPHORONE	1300	U	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	\$W8270	ISOPHORONE	1300	U	R	1300	∪g/kg	DL
SS	MIA098DL	MG767001DL	SW8270	ISOPHORONE	2000	U	R	2000	ug/kg	DL
<u>\$\$</u>	MIA 188DL	MG770001DL	SW8270	ISOPHORONE	10000	U	R	10000	ug/kg	DL
SS	MIA189FDDL MIA302DL	MG770002DL MG785013DL	SW8270 SW8270	ISOPHORONE ISOPHORONE	7100 2400	U	R	7100 2400	ug/kg ug/kg	DL DL
SS	MIA302DL MIA303DL	MG785013DL	SW8270	ISOPHORONE	800	Ü	R	800	ug/kg ug/kg	DL
SS	MIA304DL	MG785014DL MG785015DL	SW8270	ISOPHORONE	1200	Ü	R	1200	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	NAPHTHALENE	1300	Ü	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	NAPHTHALENE	1300	บ	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	NAPHTHALENE	2000	U	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	NAPHTHALENE	10000	U	R	10000	ug/kg	DL
SS	MIA189FDDL	MG770002DL	SW8270	NAPHTHALENE	7100	U	R	7100	ug/kg	DL
	MIA302DL	MG785013DL	SW8270	NAPHTHALENE	320	- J	R	2400	ug/kg	DL
SS SS	MIA303DL MIA304DL	MG785014DL MG785015DL	SW8270 SW8270	NAPHTHALENE NAPHTHALENE	150 190	j	R	800 1200	ug/kg ug/kg	DŁ DŁ

ATTACHMENT A

		, ,			,			1_		
Matrix	Sample ID	Lab Sample ID	Anatytical Method	Parameter	Final Result	Lab Qual	Final Qual	Det Limit	Units	Qual Reason
SE	MIA015DL	MG682018DL	SW8270	NITROBENZENE	1300	U	R	1300	ua/ka	DL
SE	MIA028DL	MG682010DL	SW8270	NITROBENZENE	1300	U	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	NITROBENZENE	2000	U	R	2000	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	NITROBENZENE	10000	Ü	R	10000 1	ug/kg	DL
SS	MIA 189FDDL	MG770002DL	SW8270	NITROBENZENE	7100	U	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	NITROBENZENE	2400	U	R	2400 1	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	NITROBENZENE	800	Ų	R	800 +	ug/kg	DL
SS SE	MIA015DL	MG785015DL MG682018DL	SW8270 SW8270	NITROBENZENE N-NITROSODI-n-PROPYLAMINE	1200	U	R	1200 [†]	ug/kg ug/ka	DL DL
SE SE	MIA028DL	MG682010DL	SW8270	N-NITROSODI-n-PROPYLAMINE	1300	Ü	R	1300	ug/kg ug/kg	DL DL
SS	MIA098DL	MG767001DL	SW8270	N-NITROSODI-n-PROPYLAMINE	2000	Ü	R	2000 '	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	N-NITROSODI-n-PROPYLAMINE	10000	ŭ	R	10000	ug/kg	ĐL
SS	MIA189FDDL	MG770002DL	SW8270	N-NITROSODI-n-PROPYLAMINE	7100	υ	R	7100	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	N-NITROSODI-n-PROPYLAMINE	2400	U	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	N-NITROSODI-n-PROPYLAMINE	800	U	R	800 1	ug/kg	DL
SS	MIA304DL	MG785015DL	SW8270	N-NITROSODI-n-PROPYLAMINE	1200	U	R	1200	_ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	N-NITROSODIPHENYLAMINE	1300	U	Ŕ	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	N-NITROSODIPHENYLAMINE	1300	U	R	1300	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	N-NITROSODIPHENYLAMINE	2000	U	R	2000	ug/kg	DL DL
SS SS	MIA188DL MIA189FDDL	MG770001DL MG770002DL	SW8270 SW8270	N-NITROSODIPHENYLAMINE N-NITROSODIPHENYLAMINE	10000 7100	U	R	7100 t	ug/kg	DL DL
SS	MIA302DŁ	MG770002DL MG785013DL	SW8270	N-NITROSODIPHENYLAMINE N-NITROSODIPHENYLAMINE	2400	Ü	R	2400	ug/kg ug/kg	DL
SS	MIA302DE MIA303DE	MG785014DL	SW8270	N-NITROSODIPHENYLAMINE	800	U U	R	800	ug/kg ug/kg	DL
SS	MIA303DL	MG785015DL	SW8270	N-NITROSODIPHENYLAMINE	1200	Ü	R	1200	ug/kg ug/ka	DL
SE	MIA015DL	MG682018DL	SW8270	PENTACHLOROPHENOL	670	ŭ	R	670	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	PENTACHLOROPHENOL	640	Ü	R	640	ug/kg	DL
SS	MIA098DL	MG767001DL	SW8270	PENTACHLOROPHENOL	980	U	R	980	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	PENTACHLOROPHENOL	5300	U	R	5300	ug/kg	ÐŁ
SS	MIA189FDDL	MG770002DL	SW8270	PENTACHLOROPHENOL	3500	U	R	3500	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	PENTACHLOROPHENOL	1200	υ	R	1200	ug/kg	DŁ
SS	MIA303DL	MG785014DL	SW8270	PENTACHLOROPHENOL	400	U	R	400 1	ug/kg	DL_
SS	MIA304DL	MG785015DL	SW8270	PENTACHLOROPHENOL	610	U	R	610	ug/kg	DL
SS SS	MIA188	MG767001	SW8270	PHENANTHRENE	6700 25000	E	R P	390 1800	ug/kg	DL DL
SS	MIA189FD	MG770001 MG770002	SW8270 SW8270	PHENANTHRENE PHENANTHRENE	32000	 	R R	350	ug/kg ug/kg	DL
SS	MIA304	MG785015	SW8270	PHENANTHRENE	4700	E	R	410	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	PHENANTHRENE	3200	=	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	PHENANTHRENE	2400	=	R	1300	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	PHENANTHRENE	10000	_=	R	2400 '	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	PHENANTHRENE	3300	=	R	800 t	ug/kg	DL
SE	MIA015DL	MG682018DL	SW8270	PHENOL	1300	Ü	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	PHENOL	1300	U	R	1300 (ug/kg	DL.
SS	MIA098DL	MG767001DL	SW8270	PHENOL	2000	U	R	2000 '	ug/kg	DL
SS	MIA188DL	MG770001DL	SW8270	PHENOL	10000	<u> </u>	<u>R</u>	10000	ug/kg	DL
SS SS	MIA189FDDL MIA302DL	MG770002DL	SW8270	PHENOL PHENOL	7100 2400	U	R R	7100 l 2400 l	ug/kg	DL DL
SS	MIA302DL MIA303DL	MG785013DL MG785014DL	SW8270 SW8270	PHENOL	800	Ü	R	800	ug/kg ug/kg	DL
SS SS	MIA303DL	MG785015DL	SW8270	PHENOL	1200	Ŭ	R	1200	ug/kg ug/kg	DL
	MtA098	MG767001	SW8270	PYRENE	8600	Ē	R	390	ua/ka	DL
SS	MIA188	MG770001	SW8270	PYRENE	72000	Ē	R	1800	ug/kg	DL
SS	MIA189FD	MG770002	SW8270	PYRENE	74000	E	R	350	ug/kg	DL
SS	MIA304	MG785015	SW8270	PYRENE	4900	E	R	410	ug/kg	DL
SE	MIA015DL	MG682018DL	5W8270	PYRENE	4700	₹	R	1300	ug/kg	DL
SE	MIA028DL	MG682010DL	SW8270	PYRENE	4900	=	R	1300	ug/kg	DL
SS	MIA302DL	MG785013DL	SW8270	PYRENE	9400	=	R	2400	ug/kg	DL
SS	MIA303DL	MG785014DL	SW8270	PYRENÉ	3200	= TD	R	800	ug/kg	DL (DATE
SS	MIA252	MG776021	SW6010	SILVER SILVER	0.09	TR TR	J	0.051	mg/kg	IB MS
SS SS	MIA255 MIA256	MG776024 MG776025	SW6010 SW6010	SILVER	0.18	TR	J	0.051	mg/kg mg/kg	IB MS IB MS
SS	MIA257	MG776025 MG776026	SW6010	SILVER	011	TR	j	0.053	ma/ka	IB MS
SS	MIA259	MG776028	SW6010	SILVER	01	TIR	Ĵ	0 053	mg/kg	IB MS
SS	MIA242	MG777003	SW6010	SILVER	02	TR	ij	011	mg/kg	IB,MS
SS	MIA244	MG777004	SW6010	SILVER	034	TR	Ĵ	0.054	ma/kg	IB,MS
SS	MIA245	MG777005	SW6010	SILVER	0.44	TR	j	0.053	mg/kg	IB,MS
SS	MIA246	MG777006	SW6010	SILVER	061	TR	J	021	mg/kg	IB MS
SS	MIA249	MG777009	SW6010	SILVER	0.58	TR	J	0 13	mg/kg	IB MS
SS	MIA250	MG777010	SW6010	SILVER	0.09	TR	J	0.054	mg/kg	IB MS
SS	MIA251	MG777011	SW6010	SILVER	0 13	TR	J	0.058 '	mg/kg	IB,MS
SS	MIA277	MG777015	SW6010	SILVER	0 13	TR	J	0.054 1	ma/ka	IB MS
SS	MIA280	MG777017	SW6010	SILVER	0.21	TR	<u> </u>	0.061	mg/kg	IB,MS
SS	MIA282FD	MG777019	SW6010	SIĻVER	0 13	TR	<u> </u>	0.056	mg/kg	IB,MS

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

								· - · ·		
			Analytical		Final	Lab	Final			
Matrix	Sample ID	Lab Sample ID	Method	Parameter	Result	Qual	Qual	Det Limit	Units-	Qual Reason
SS	MIA283 MIA032	MG777020	SW6010	SILVER	0.09	TR	J	0.054	mg/kg	IB MS
SS SE	MIA032 MIA013R	MG695004 MG682016R	SW6010 SW8260	COBALT 1,1,1-TRICHLOROETHANE	110	TR U	J R	0 056 110	mg/kg ug/kg	IB SD IS
. SE	MIA028R	MG682010R	SW8260	1,1,1-TRICHLOROETHANE	21	Ü	R	21	ug/kg	IS
SE	MIA013	MG682016	SW8260	1,1,1-TRICHLOROETHANE	110	υ	w	110	ug/kg	15
SE	MIA028	MG682010	SW8260	1,1,1-TRICHLOROETHANE	21	Ŭ	ÜĴ	21	ug/kg	IS
SE	MIA013R	MG682016R	SW8260	1,1,2 2-TETRACHLOROETHANE	110	Ū	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	1,1,2,2-TETRACHLOROETHANE	21	U	R	21	ug/kg	IŞ
SE	MIA013	MG682016	SW8260	1,1,2,2-TETRACHLOROETHANE	110	U	IJ	110	ug/kg	IŞ
SE	MIA028	MG682010	SW8260	1 1,2,2-TETRACHLOROETHANE	21	υ	IJ	21	ug/kg	IS .
SE	MIA013R	MG682016R	SW8260	1 1,2-TRICHLOROETHANE	110	U	R	110	ug/kg	IS IS
SE	MIA028R	MG682010R	SW8260	1,1 2-TRICHLOROETHANE	110	U U	R UJ	21 110	ug/kg	IS IC
SE SE	MIA013 MIA028	MG682016 MG682010	SW8260 SW8260	1,1 2-TRICHLOROETHANE 1 1 2-TRICHLOROETHANE	21	U	UJ	21	ug/kg ug/ka	IS IS
SE	MIA013R	MG682016R	SW8260	1 1-DICHLOROETHANE	110	l Ü	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	1 1-DICHLOROETHANE	21	lΨ	R	21	ua/ka	is
SE	MIA013	MG682016	SW8260	1 1-DICHLOROETHANE	110	Ü	ÜJ	110	ug/kg	is
SE	MIA028	MG682010_	SW8260	1,1-DICHLOROETHANE	21	Ŭ	ÜĴ	21	ug/kg	1S
SE	MIA013R	MG682016R	SW8260	1 1-DICHLOROETHENE	110	U	R	110	ug/kg	i\$
SE	MIA028R	MG682010R	SW8260	1,1-DICHLOROETHENE	21	U	R	21	ug/kg	!S
SE	MIA013	MG682016	SW8260	1,1-DICHLOROETHENE	110	U	IJ	310	ug/kg	#S
SE	MIA028	MG682010	SW8260	3,1-DICHLOROETHENE	21	U	m	21	ug/kg	IS
SE	MIA013R	MG682016R	SW8260	1 2-DICHLOROETHANE	110	U	R	110	ug/kg	IS IS
SE SE	MIA028R MIA013	MG682010R	SW8260	1 2-DICHLOROETHANE	21	U	R	21	ug/kg	IS IS
SE SE	MIA028	MG682016 MG682010	SW8260 SW8260	1,2-DICHLOROETHANE	110 21	U	UJ UJ	110 21	ug/kg	IS IC
SE SE	MIA013R	MG682016R	SW8260	1,2-DICHLOROETHANE 1 2-DICHLOROPROPANE	110	 	R	110	ug/kg ug/kg	IS IS
SE	MIA028R	MG682010R	SW8260	1,2-DICHLOROPROPANE	21	l ü	R	21	ug/kg	IS
SE	MIA013	MG682016	SW8260	1 2-DICHLOROPROPANE	110	Ü	Ü	110	ug/kg	ış
SE	MIA028	MG682010	SW8260	1 2-DICHLOROPROPANE	21	Ü	w	21	ug/ka	IS
SE	MIA013	MG682016	SW8260	2-BUTANONE	120	-	J	110	ug/kg	IS
SE	MIA028	MG682010	SW8260	2-BUTANONE	40		J	21	ug/kg	IS
SE	MIA013R	MG682016R	SW8260	2-BUTANONE	120	=	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	2-BUTANONE	22	_=_	R	21	ug/kg	. IS
SE	MIA013R	MG682016R	SW8260	2-HEXANONE	110	U	R	110	ug/kg	IŞ
<u>SE</u>	MIA028R	MG682010R	SW8260	2-HEXANONE	21	<u> </u>	R	21	ug/kg	IS IS
SE SE	MIA013 MIA028	MG682016 MG682010	\$W8260	2-HEXANONE	110 21	U	UJ UJ	110 21	ug/kg	IS IS
SE	MIA013R	MG682010 MG682016R	SW8260 SW8260	2-HEXANONE ACETONE	1600	1 =	R	310	ug/kg ug/kg	IS
SE	MIA028R	MG682010R	SW8260	ACETONE	120	+ =	R	21	ug/kg ug/kg	15
SE	MIA013R	MG682016R	SW8260	BENZENE	110	υ	R	110	ug/kg	is
SE	MIA028R	MG682010R	SW8260	BENZENE	21	ŭ	R	21	ug/kg	is
SE	MIA013	MG682016	SW8260	BENZENE	110	Ū	IJ	110	ua/ka	IS
SE	MIA013R	MG682016R	SW8260	BROMODICHLOROMETHANE	110	IJ	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	BROMODICHLOROMETHANE	21	U	R	21	ug/kg	IS
SE	MIA013	MG682016	SW8260	BROMODICHLOROMETHANE	110	U	UJ	110	ug/kg	IS
SE	MIA028	MG682010	SW8260	BROMODICHLOROMETHANE	21	U	w	21	ug/kg	IS
SE SE	MIA013R	MG682016R	SW8260	BROMOFORM	110	U.	R	110	ug/kg	IS IS
SE	MIA028R MIA013	MG682010R MG682016	SW8260 SW8260	BROMOFORM BROMOFORM	110	U U	R	21 110	ug/kg	IS IS
SE	MiA028	MG682010	SW8260	BROMOFORM	21	U	L DD	21	ug/kg ug/kg	IS
SE	MIA013R	MG682016R	SW8260	BROMOMETHANE	110	T U	R	110	ug/kg	IS
SE	MIAC28R	MG682010R	SW8260	BROMOMETHANE	21	Ŭ	R	21	ug/kg	IS
SE	M:A013	MG682016	SW8260	BROMOMETHANE	110	Ŭ	w	110	ug/kg	IS
SE	MIA028	MG682010	SW8260	8ROMOMETHANE	21	Ū	w	21	ug/kg	IS
SE	MIA013R	MG682016R	SW8260	CARBON DISULFIDE	22	J	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	CARBON DISULFIDE	3	J	R	21	ug/kg	IS
SE	MIA013R	MG682016R	SW8260	CARBON TETRACHLORIDE	110	U	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	CARBON TETRACHLORIDE	21	<u> </u>	R	21	ug/kg	IS IS
SE	MIA013	MG682016	SW8260	CARBON TETRACHLORIDE	110	U	l m	110	ug/kg	IS
SE	MIA028	MG682010	SW8260	CARBON TETRACHLORIDE	21	U	m	21	ug/kg	IS IS
SE SE	MIA013R MIA028R	MG682016R	SW8260 SW8260	CHLOROBENZENE CHLOROBENZENE	110 21	U	R	110	ug/kg	IS IS
SE SE	MIAD13	MG682010R MG682016	SW8260	CHLOROBENZENE	110	l n	R	110	ug/kg ug/kg	IS IS
SE	MIA028	MG682010	SW8260	CHLOROBENZENE CHLOROBENZENE	21	Ü	UJ	21	ug/kg ug/kg	1S
SE	MIA013R	MG682016R	SW8260	CHLOROSENZENE	110	l ü	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	CHLOROETHANE	21	lŭ	R	21	ug/kg	IS
SE	MIA013	MG682016	SW8260	CHLOROETHANE	110	l ŭ	ù	110	ug/kg	IS
SE	MIA028	MG682010	SW8260	CHLOROETHANE	21	υ	บัง	21	ug/kg	1S
SE	MIA013R	MG682016R	SW8260	CHLOROFORM	110	U	R	110	ug/kg	1S
SE	MIA028R	MG682010R	SW8260	CHLOROFORM	21	U	R	21	ug/kg	IS.

ATTACHMENT A

353

Matrix	Sample ID	Lab Sample ID	Analytical Method	Dorocci	Finai	Lab	Final	Detical	1 January	Qual Reason
SE	MIA013	MG682016	SW8260	Parameter	Result	Qual	Qual UJ	Det Limit	Units	
SE SE	MIA028	MG682010 MG682010	SW8260	CHLOROFORM CHLOROFORM	110 21	U	w w	110	ug/kg	IS IS
SE SE	MIA013R	MG682016R	SW8260	CHLOROMETHANE	110	U	R	110	ug/kg ug/kg	IS
SE	MIA028R	MG682010R	SW8260	CHLOROMETHANE	21	Ü	R	21 ,	ug/kg	IS
SE	MIA013	MG682016	SW8260	CHLOROMETHANE	110	ŭ	UJ	110	ug/kg	IS
SE	MIA028	MG682010	SW8260	CHLOROMETHANE	21	ŭ	LIII	21	ua/ka	IS
SE	MIA013R	MG682016R	SW8260	cis-1 3-DICHLOROPROPENE	110	Ü	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	cis-1 3-DICHLOROPROPENE	21	υ	R	21	ug/kg	IS
SE	MIA013	MG682016	SW8260	cis-1 3-DICHLOROPROPENE	110	Ŭ	Ü	110	ug/kg	IS
SE	MIA028	MG682010	SW8260	cis-1 3-DICHLOROPROPENE	21	U	ÜĴ	21	ug/kg	is
SE	MIA013R	MG682016R	SW8260	DIBROMOCHLOROMETHANE	110	Ü	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	DIBROMOCHLOROMETHANE	21	Ū	R	21	ug/kg	IS
SE	MIA013	MG682016	SW8260	DIBROMOCHLOROMETHANE	110	U	w	110 :	ug/kg	IS
SE	MIA028	MG682010	SW8260	DIBROMOCHLOROMETHANE	21	Ū	w	21	ug/kg	1S
SE	MIA013R	MG682016R	SW8260	ETHYLBENZENE	110	Ū	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	ETHYL8ENZENE	21	Ú	R	21 (ug/kg	IS
SE	MIA013	MG682016	SW8260	ETHYL8ENZENE	110	U	W	310	ug/kg	IS
SE	MIA028	MG682010	SW8260	ETHYLBENZENE	21	Ū	UJ	21	ug/kg	IS
SE	MIA013R	MG682016R	SW8260	METHYL ISOBUTYL KETONE	110	Ü	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	METHYL ISOBUTYL KETONE	21	Ü	R	21	ug/kg	is
SE.	MIA013	MG682016	SW8260	METHYL ISOBUTYL KETONE	110	Ŭ	ÜJ	110	ug/kg	IS
SE	MIA028	MG682010	SW8260	METHYL ISOBUTYL KETONE	21	ΙŬ	UJ	21	ug/kg	IS
SE	MIA013R	MG682016R	SW8260	METHYLENE CHLORIDE	21	Ĵ	R	110 (ug/kg	IS
SE	MIA028R	MG682010R	SW8260	METHYLENE CHLORIDE	4	Ĵ	R	21 1	ug/kg	IS
SE	MiA013R	MG682016R	SW8260	STYRENE	310	Ŭ	R	110	ua/ka	IS
SE	MIA028R	MG682010R	SW8260	STYRENE	21	Ū	R	21	ua/ka	is
SE	MIA013	MG682016	SW8260	STYRENE	110	Ú	w	110	ug/kg	IS
SE	MIA028	MG682010	SW8260	STYRENE	21	Ü	ŵ	21	ug/kg	IS
SE	MIA013R	MG682016R	SW8260	TETRACHLOROETHYLENE(PCE)	110	U	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	TETRACHLOROETHYLENE(PCE)	21	Ū	R	21	ua/ka	İS
SE	MIA013	MG682016	SW8260	TETRACHLOROETHYLENE(PCE)	110	Ū	ÜĴ	110	ug/kg	IS
SE	MIA028	MG682010	SW8260	TETRACHLOROETHYLENE(PCE)	21	U	UJ	21	ug/kg	IS
SE	MIA013R	MG682016R	SW8260	TOLUENE	13	J	R	110	ua/ka	IS
SE	MIA028R	MG682010R	SW8260	TOLUENE	21	U	R	21 1	ug/kg	IS
SE	MIA013	MG682016	SW8260	TOLUENE	110	U	w	110 1	ug/kg	IS
SE	MIA028	MG682010	SW8260	TOLUENE	21	Ü	W	21 1	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	TOTAL 1 2-DICHLOROETHENE	2	J	R	21	ug/kg	IS
SE	MIA013R	MG682016R	SW8260	TOTAL 1 2-DICHLOROETHENE	110	U	R	110	ua/ka	IS
SE	MIA013	MG682016	SW8260	TOTAL 1 2-DICHLOROETHENE	110	Ū	UJ	110	ug/kg	1S
SE	MiA028	MG682010	SW8260	TOTAL 1 2-DICHLOROETHENE	21	U	w	21 1	ug/kg	is
SE	MIA013R	MG682016R	SW8260	Total Xylenes	110	U	R	110	ug/kg	IS.
SE	MIA028R	MG682010R	SW8260	Total Xylenes	21	U	R	21	ug/kg	IS.
SE	MIA013	MG682016	SW8260	Total Xylenes	110	Ü	w	110 1	ug/kg	IS
SE	MIA028	MG682010	SW8260	Total Xylenes	21	U	w	21 ;	ug/kg	tS.
SE	MIA013R	MG682016R	SW8260	trans-1 3-DICHLOROPROPENE	110	U	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	trans-1 3-DICHLOROPROPENE	21	Ü	R	21 1	ug/kg	IS
SE	MIA013	MG682016	SW8260	trans-1 3-DICHLOROPROPENE	110	Ü	UJ	110	ug/kg	!S
SE	MIA028	MG682010	SW8260	trans-1,3-DICHLOROPROPENE	21	Ü	UJ	21 :	ug/kg	IS
SE	MIA013R	MG682016R	SW8260	TRICHLOROETHYLENE (TCE)	110	Ü	R	110	ug/kg	IS
SE	MIA028R	MG682010R	SW8260	TRICHLOROETHYLENE (TCE)	21	Ū	R	21	ug/kg	IS
SE	MIA013	MG682016	SW8260	TRICHLOROETHYLENE (TCE)	110	U	UJ	110	ug/kg	IS
SE	MIA028	MG682010	SW8260	TRICHLOROETHYLENE (TCE)	21	Ų	IJ	21 i	ug/kg	IS
SE	MIA013R	MG682016R	SW8260	VINYL CHLORIDE	110	U	R	110 !	ug/kg	1S
SE	MIA028R	MG682010R	SW8260	VINYL CHLORIDE	21	U	R	21	ug/kg	IS
SE	MIA013	MG682016	SW8260	VINYL CHLORIDE	110	Ü	IJ	110 i	ug/kg	!S
SE	MIA028	MG682010	SW8260	VINYL CHLORIDE	21	Ū	UJ	21	ug/kg	IS
SS	MIA330	MG757002	5W6010	ANTIMONY	06	TR	J	0 19	mg/kg	MS
SS	MIA331	MG757003	SW6010	ANTIMONY	0 34	TR	J	02	mg/kg	MS
SS	MIA332	MG757004	SW6010	ANTIMONY	0 41	TR	J	02	mg/kg	MS
SS	MiA333	MG757005	SW6010	ANTIMONY	0 24	TR	J	0 19	mg/kg	MS
SS	MIA336	MG757008	SW6010	ANTIMONY	0 24	TR	J	02	mg/kg	MS
SS	MIA337	MG757009	SW6010	ANTIMONY	0.25	TR	J	0.18	mg/kg	MS
SS	MIA338	MG757010	SW6010	ANTIMONY	0.21	TR	J	0.18	mg/kg	MS
SS	MIA349	MG757012	SW6010	ANTIMONY	0.48	TR	1 i	021	mg/kg	MS
SS	MIA350	MG757012	SW6010	ANTIMONY	0.42	TR	j	02	mg/kg	MS
SS	MIA351	MG757013 MG757014	SW6010	ANTIMONY	0.43	TR	Ĵ	019	mg/kg	MS
SS	MIA188	MG770001	SW6010	ANTIMONY	22	TR	 	09	mg/kg	MS
SS	MIA189FD	MG770001 MG770002	SW6010	ANTIMONY	25	TR	-	09 1	mg/kg	MS
SS		MG770002 MG770006	SW6010	ANTIMONY	073	TR	 	02		MS
	MIA 193		SW6010			U	R	019 1	mg/kg	
SS	MIA328FD	MG757001		ANTIMONY	0 19				mg/kg	MS
SS	MIA334	MG757006	SW6010	ANTIMONY	0 19	U	R	019	mg/kg	MS

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

Matrix	Sample ID	Lab Sample ID	Analytical Method	Parameter	Final Result	Lab Qual	Final Qual	Det Limit	Units	Qual Reason
				Parameter				021		MS MS
SS SS	MIA335 MIA339	MG757007 MG757011	\$W6010 \$W6010	ANTIMONY ANTIMONY	0 21	U	R	0 19	mg/kg ma/kg	MS
SS	MIA032	MG695004	SW6010	ANTIMONY	0 19	Ü	UJ	0 19	ma/ka	MS
SS	MIA033	MG695005	SW6010	ANTIMONY	0 42	TR	J	02	mg/kg	MS
SS	MIA037	MG695008	SW6010	ANTIMONY	0 19	Ü	IJ	0 19	mg/kg	MS
SS	MIA040	MG695011	SW6010	ANTIMONY	0 18	U	IJ	0.18	mg/kg	MS
SS	MIA041	MG695012	SW6010	ANTIMONY	0 18	U	IJ	0 18	mg/kg	MS
SS	MIA034FD	MG695006	SW6010	ANTIMONY	02	U	IJ	02	mg/kg	MS
SS	MiA132	MG785003	SW6010	ANTIMONY	0 79	TR	R	0 19	mg/kg	MS
SS	MiA261	MG777012	SW6010	ANTIMONY	49.1	TR	J	3.7	mg/kg	MS
SS	MIA285	MG777022	SW6010	ANTIMONY	0.79	TR	J	02	mg/kg	MS
SS	MIA269	MG778027	SW6010	ANTIMONY	16.8	_ <u>=</u>	,	0 19	mg/kg	MS
SS	MIA153	MG756001	SW6010 SW6010	ANTIMONY	0.42	TR TR	J	0 19	mg/kg	MS MS
SS	MIA155 MIA157	MG756003 MG756005	SW6010	ANTIMONY ANTIMONY	0.26	TR	J	02	mg/kg mg/kg	MS
SS	MIA158	MG756006	SW6010	ANTIMONY	0.37	TR	- 1	019	ma/ka	MS
SS	MIA159	MG756007	SW6010	ANTIMONY	3	TR		0 96	mg/kg	MS
SS	MIA160FD	MG756008	SW6010	ANTIMONY	45	TR	,	0.38	mg/kg	MS
SS	MIA162	MG756009	SW6010	ANTIMONY	0.58	TR	Ĵ	0 19	mg/kg	MS
SS	MIA163	MG756010	SW6010	ANTIMONY	0 49	TR	Ĵ	02	mg/kg	MS
SS	MIA 165	MG756012	SW6010	YNOMITA	0 23	TR	J	02	mg/kg	MS
SS	MIA 166	MG756013	SW6010	ANTIMONY	0 44	TR	J	0 19	mg/kg	MS
SS	MIA 167	MG756014	SW6010	ANTIMONY	0.49	TR	j	021	mg/kg	MS
SS	MIA171FD	MG756018	SW6010	YNOMITIA	0.46	TR	J_	019	mg/kg	MS
SS	MIA172	MG756019	SW6010	ANTIMONY	0.32	TR	J	019	mg/kg	MS
SS	MIA325	MG756025 MG776008	SW6010	ANTIMONY ANTIMONY	101	TR	ļ.,	077	mg/kg	MS MS
SS SS	MIA226 MIA233	MG776014	SW6010 SW6010	ANTIMONY	071	TR TR	J	076 02	mg/kg mg/kg	MS
SS	MIA234	MG776014	SW6010	ANTIMONY	5	TR		0.73	ma/ka	MS
SS	MIA238	MG776018	SW6010	ANTIMONY	63	TIR	l i	18	mg/kg	MS
SS	MIA252	MG776021	SW6010	ANTIMONY	39	1K	j	0.88	mg/kg	MS
SS	MIA255	MG776024	SW6010	ANTIMONY	147	TR	Ĵ	0.89	mg/kg	MS
SS	MIA256	MG776025	SW6010	ANTIMONY	3 2	TR	J	0 18	mg/kg	MS
SS	MIA258	MG776027	SW6010	ANTIMONY	27	TR	J	0.9	mg/kg	MŞ
SS	MIA241	MG777002	SW6010	ANTIMONY	0 91	TR	J	02	mg/kg	MS
SS	MIA242	MG777003	SW6010	ANTIMONY	15	TR	_J	0.37	mg/kg	MS
SS	MIA244	MG777004	SW6010	ANTIMONY	27	TR	J	0.19	mg/kg	MS
SS	MIA245	MG777005	SW6010	ANTIMONY	29	TR	<u>;</u>	018	mg/kg	MS
SS SS	MIA246	MG777006	SW6010	ANTIMONY	7.4 4.8	TR TR	J .	0.72	mg/kg	MS
SS	MA249 MA250	MG777009 MG777010	SW6010 SW6010	YO'MITUA YO'MITUA	11	TR	j	0.45	mg/kg mg/kg	MS
SS	MIA251	MG777010	SW6010	ANTIMONY	0.86	TR	1	02	mg/kg	MS
SS	MIA262	MG777013	SW6010	ANTIMONY	59	TR	l i	19	ma/ka	MS
SS	MIA263	MG777014	SW6010	ANTIMONY	0.96	TR	Ĵ	0.37	mg/kg	MS
SS	MIA277	MG777015	SW6010	ANTIMONY	041	TR	J	0 19	mg/kg	MS
S\$	MIA278FD	MG777016	SW6010	ANTIMONY	0.87	TR	J	0.2	mg/kg	MS
SS	MIA280	MG777017	SW6010	ANTIMONY	15	TR	J	0.21	mg/kg	MS
SS	MIA281	MG777018	SW6010	ANTIMONY	0.37	TR		02	mg/kg	MS
SS	MIA283	MG777020	SW6010	ANTIMONY	064	TR	J	0 19	mg/kg	MS
SS	MIA284	MG777021	SW6010	ANTIMONY	074	TR	J	0.19	mg/kg	MS
SS	MIA286 MIA287	MG777023 MG777024	SW6010 SW6010	ANTIMONY ANTIMONY	03	TR	J	022	mg/kg mg/kg	MS MS
SS	MIA288	MG777024 MG777025	SW6010	ANTIMONY	0 39	TR	j	021	mg/kg	MS
SS	MIA243	MG778021	SW6010	ANTIMONY	28	TR	J	0 18	mg/kg	MS
SS	MIA265	MG778023	SW6010	ANTIMONY	32	TR	J	18	mg/kg	MS
SS	MIA275	MG778001	SW6010	ANTIMONY	4.3	TR	J	0.92	mg/kg	MS
SS	MIA313	MG778010	SW6010	ANTIMONY	7.4	TR	j	1.8	mg/kg	MS
SS	MIA314FD	MG778011	SW6010	ANTIMONY	12.8	TR	J.	18_	mg/kg	MS
SS	MIA315	MG778012	SW6010	ANTIMONY	7.9	TR	J	19	mg/kg	MS
SS	MIA316	MG778013	SW6010	ANTIMONY	9	TR	J	18	mg/kg	MS
SS	MIA295	MG785007	SW6010	ANTIMONY	29	TR	J	0 18	mg/kg	MS
SS	MIA296	MG785008	SW6010	ANTIMONY	21	TR	 -	0 18	mg/kg	MS
SS	MIA297FD	MG785009	SW6010	ANTIMONY	2	TIR_	J	0.18	mg/kg	MS
SB	MIA074	MG743012	SW6010	ANTIMONY	033	TR	R	02	mg/kg	MS
SB SB	MIA076	MG743014 MG743020	SW6010 SW6010	ANTIMONY ANTIMONY	0.85 0.42	TR TR	R	021	mg/kg mg/kg	MS MS
SS	MIA125 MIA134	MG743020 MG743023	SW6010	ANTIMONY	0.54	TR	R	02	mg/kg	MS
SS	MIA134 MIA137	MG743023	SW6010	ANTIMONY	0.54	TR	LS.	02	mg/kg	MS
		MG743002 MG743003			0 96	TR	R	02		MS
SS	I MIATS		י נוונאסאכ	ANTIMUNY		114		1 UZ	HILLIANGE	
SS SS	MIA138 MIA139FD	MG743004	SW6010 SW6010	ANTIMONY ANTIMONY	0.95	TR	R	02	mg/kg mg/kg	MS

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

			Analytical		Final	lab	Final	1		
Matrix	Sample ID	Lab Sample ID	Method	Parameter	Result	Qual	Qual	Det Limit	Units	Qual Reason
SS	MIA 142	MG743006	SW6010	ANTIMONY	07	TR	R	02	ma/ka	MS
SS	MIA143	MG743007	SW6010	ANTIMONY	0.5	TR	R	02	mg/kg	MS
SS	MIA 144	MG743008	SW6010	ANTIMONY	0.35	TR	R.	0 19	mg/kg	MS
SS	MIA 145	MG743009	SW6010	ANTIMONY	0.27	TR	R	019	mg/kg	MS
SS cc	MIA 1205D	MG785001	SW6010	ANTIMONY	1	TR	R	02	mg/kg	MS
SS SS	MIA129FD MIA299	MG785002 MG785010	SW6010 SW6010	ANTIMONY ANTIMONY	16 16	TR TR	R	02 1	mg/kg	MS
SS	MIA302	MG785013	SW6010	ANTIMONY	0.58	TR	R	02	mg/kg mg/kg	MS MS
SS	MIA303	MG785014	SW6010	ANTIMONY	071	TR	R	02	mg/kg	MS
SS	MIA304	MG785015	SW6010	ANTIMONY	0.76	TR	R	021	ma/ka	MS
SS	MIA218	MG776001	SW6010	ANTIMONY	0.98	1R	W	021	mg/kg	MS
\$\$	MIA220	MG776003	SW6010	ANTIMONY	13	ĭR	ŲJ	021	mg/kg	MS
SS	MIA221	MG776004	SW6010	ANTIMONY	11	TR	W	021	mg/kg	MS
SS	MIA222	MG776005	SW6010	ANTIMONY	1	115	_w_	021	mg/kg	MS
SS	MIA223FD	MG776006	SW6010	ANTIMONY	12	TR .	_ W	02	ma/ka	MS
SS	MIA225	MG776007	SW6010	ANTIMONY	0.76	TR	UJ	021	mg/kg	MS
SS	MIA227 MIA228	MG776009 MG776010	SW6010 SW6010	ANTIMONY ANTIMONY	0 96 0 73	TR TR	UJ	019	mg/kg	M\$ MS
SS	MIA229	MG776010	SW6010	ANTIMONY	11	TR	W	021	mg/kg mg/kg	MS MS
SS	MIA230	MG776012	SW6010	ANTIMONY	860	TR	UJ	02	mg/kg	MS
SS	MIA231FD	MG776013	SW6010	ANTIMONY	0.66	TR	UJ	02	mg/kg	MS
SS	MIA236	MG776016	SW6010	ANTIMONY	11	TR	Ü	019	ma/ka	MS
SS	MIA239	MG776019	SW6010	ANTIMONY	0.47	TR	ÜĴ	019	mg/kg	MS
SS	MIA240	MG776020	SW6010	ANTIMONY	0 22	TR	IJ	0 18	mg/kg	MS
SS	MIA253	MG776022	SW6010	ANTIMONY	11	TR	IJ	02	mg/kg	M\$
SS	MIA254	MG776023	SW6010	ANTIMONY	0.75	TR	iii.	02	mg/kg	MS
SS	MIA257	MG776026	SW6010	ANTIMONY	0.86	TR	UJ	018 !	mg/kg	MS
SS	MIA259	MG776028	SW6010	ANTIMONY	12	TR	UJ	018	mg/kg	MS
SS	MIA260	MG776029	SW6010	ANTIMONY	0.85	TR	<u>uj</u>	02	ma/ka	MS
SS	MIA264 MIA270	MG778022	SW6010	ANTIMONY	12	TR	UJ	019 (mg/kg	MS
SS	MIA305	MG778028 MG778003	SW6010 SW6010	ANTIMONY ANTIMONY	0.48	TR TR	UJ	019 ⁽	mg/kg mg/kg	MS MS
SS	MIA306	MG778003	SW6010	ANTIMONY	04	TR	UJ	02	mg/kg	MS
SS	MIA309	MG778004	SW6010	ANTIMONY	0 22	7R	ÜJ	019	mg/kg	MS
SB	MIA075	MG743013	SW6010	ANTIMONY	021	Ü	R	021	_mg/kg	MS
SB	MIA126	MG743021	SW6010	ANTIMONY	0.21	Ü	R	021	mg/kg	MS
SB	MIA127	MG743022	SW6010	ANTIMONY	0.21	U	R	021	mg/kg	MS
SS	MIA156	MG756004	SW6010	ANTIMONY	0 19	U	R	019	mg/kg	MS
SS	MIA164	MG756011	SW6010	ANTIMONY	0.2	U	R	02 1	mg/kg	MS
SS	MIA 168	MG756015	SW6010	ANTIMONY	02	U.U.	R	02	mg/kg	MS
SS	MIA 169	MG756016	SW6010	ANTIMONY	0 19	Ų.	R	019 1	mg/kg	MS
SŞ	MIA 170	MG756017	SW6010	ANTIMONY	0 19	U U	- R	019	mg/kg	MS
SS SS	MIA173 MIA326	MG756020 MG756026	SW6010 SW6010	ANTIMONY ANTIMONY	02 019	Ü	R R	02	mg/kg	MS
SS	MIA320	MG756027	SW6010	ANTIMONY	018	Ü	R	018	mg/kg mg/kg	MS MS
SS	MIA237	MG776017	SW6010	ANTIMONY	018	Ü	- K	018	mg/kg mg/kg	MS
SS	MIA247	MG777007	SW6010	ANTIMONY	0 19	Ü	w	019	mg/kg	MS
SS	MIA248	MG777008	SW6010	ANTIMONY	0 19	Ŭ	Ü	019	mg/kg	MS
SS	MIA282FD	MG777019	SW6010	ANTIMONY	0 19	Ü	w	019	mg/kg	MS
SS	MIA289	MG777026	SW6010	ANTIMONY	0 19	U	W	019 (mg/kg	MS
SS	MIA290	MG777027	SW6010	ANTIMONY	02	U	m	02	mg/kg	MS
SS.	MIA291	MG777028	SW6010	ANTIMONY	018	U	<u>w</u>	0 18 1	mg/kg	MS
SS	MIA307FD	MG778005	SW6010	ANTIMONY	02	U	m	02	mg/kg	MS
SS	MIA328FD	MG757001	SW6010	CADMIUM CADMIUM	15	=	J	0.0093	mg/kg	MS
SS SS	MIA334 MIA338	MG757006 MG757010	SW6010 SW6010	CADMIUM	31	=	J	0.009	mg/kg mg/kg	MS
SS	MIA338 MIA330	MG757010 MG757002	SW6010	CADMIUM	024	= TR	 	0.00971	mg/kg mg/kg	MS MS
SS	MtA331	MG757003	SW6010	CADMIUM	014	TR	i	0.00991	mg/kg	MS
SS	MIA332	MG757004	SW6010	CADMIUM	015	TR	j	001	mg/kg	MS
SS	MIA333	MG757005	SW6010	CADMIUM	0 19	TR	Ĵ	0.0097	mg/kg	MS
SS	MIA335	MG757007	SW6010	CADMIUM	0 24	TR	Ĵ	001	mg/kg	MS
SS	MIA336	MG757008	SW6010	CADMIUM	016	TR	J	0.00991	mg/kg	MS
SS	MIA337	MG757009	SW6010	CADMIUM	0 27	TR	J	0.00911	mg/kg	MS
SS	MIA339	MG757011	SW6010	CADMIUM	016	TR	J	0.0094	mg/kg	MS
SS	MIA349	MG757012	SW6010	CADMIUM	014	TR	J	0011	mg/kg	MS
SS	MIA350	MG757013	SW6010	CADMIUM	011	TR	J	001	mg/kg	MS
SS	M!A351	MG757014	SW6010	CADMIUM	0.08	TR	J	0.0096	mg/kg	MS
SS	MIA160FD	MG756008	SW6010	CADMIUM	13	=	 	0019	mg/kg	MS
SS	MIA164	MG756011	SW6010	CADMIUM	11	=	 	0.0098	mg/kg	MS
SS	MIA171FD	MG756018	SW6010	CADMIUM	07	=	J	0.0094	mg/kg	MS
SS	MIA325	MG756025	SW6010	CADMIUM	27	=	i J	0 039	mg/kg	MS

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

			1						ſ	I .
	S1- 1S		Analytical		Final	Lab	Finai	n-111	11-34-	O! D
Matrix	Sample ID	Lab Sample ID	Method SW6010	Parameter CADMINA	Result 0.55	Qual TR	Qual	0 0093	Units	Qual Reason MS
SS SS	MIA153 MIA155	MG756001 MG756003	SW6010	CADMIUM CADMIUM	0 29	TR	. J	0.0093	mg/kg mg/kg	MS
SS	MiA156	MG756004	SW6010	CADMIUM	0.5	TR	J	0.0096	mg/kg	MS
SS	MtA157	MG756005	SW6010	CADMIUM	0.46	TR	J	0 0095	mg/kg	MS
SS	MIA158	MG756006	SW6010	CADMIUM	0 25	TR	٦	0 0095	ma/ka	MS
SS	MIA159	MG756007	SW6010	CADMIUM	0 66	TR	J	0 048	mg/kg	MS
SS	MIA162	MG756009	SW6010	CADMIUM	0 12	TR	J	0 0096	mg/kg	MS
SS SS	MIA 163 MIA 165	MG756010 MG756012	SW6010 SW6010	CADMIUM CADMIUM	016	TR TR	j	0.0098	mg/kg mg/kg	MS MS
SS	MIA166	MG756012	SW6010	CADMIUM	013	TR	.j	0.0097	mg/kg	MS
SS	MfA167	MG756014	SW6010	CADMIUM	0.57	TR	Ĵ	0011	mg/kg	MS
SS	MIA168	MG756015	SW6010	CADMIUM	0 17	TR	Ĵ	0.0098	mg/kg	MS
\$S	MiA169	MG756016	SW6010	CADMIUM	0 17	TR	J	0 0094	mg/kg	MS
SS	MIA170	MG756017	SW6010	CADMIUM	0.49	TR	J	0 0095	mg/kg	MS
SS	MIA172	MG756019	SW6010	CADMIUM	0 12	TR	J	0.0093	mg/kg	MS
SS	MIA173	MG756020	SW6010	CADMIUM	0.13	TR	ļ	0.0098	mg/kg	MS
SS	MIA326 MIA327	MG756026 MG756027	SW6010 SW6010	CADMIUM CADMIUM	0.29 0.51	TR	J	0.0096	mg/kg mg/kg	MS MS
SS	MIA032	MG695004	SW6010	CHROMIUM TOTAL	12.2	=	j	012	mg/kg	MS
SS	MIA033	MG695005	SW6010	CHROMIUM TOTAL	13.2	-	Ĵ	012	mg/kg	MS
SS	MIA034FD	MG695006	SW6010	CHROMIUM TOTAL	95	=	J	0 12	mg/kg	MS
SS	MIA037	MG695008	SW6010	CHROMIUM, TOTAL	149	=	J	0 12	mg/kg	MS
SS	MIA040	MG695011	SW6010	CHROMIUM TOTAL	16.5	=	ļļ	011	mg/kg	MS
SS SB	MIA041 MIA074	MG695012 MG743012	SW6010 SW6010	CHROMIUM TOTAL CHROMIUM TOTAL	167 14	=	ļ	011	mg/kg	MS MS
SB	MIA075	MG743012 MG743013	SW6010	CHROMIUM TOTAL	10.4	=	 	0 13	mg/kg mg/kg	MS
SB	MIA076	MG743014	SW6010	CHROMIUM TOTAL	12.5	<u> </u>	 	0 13	mg/kg	MS
SB	MIA125	MG743020	SW6010	CHROMIUM TOTAL	13.5	=	Ĵ	013	mg/kg	MS
SB	MIA126	MG743021	SW6010	CHROMIUM TOTAL	12		J	0 13	mg/kg	MS
SB	MIA127	MG743022	SW6010	CHROMIUM, TOTAL	13	=	<u> </u>	0 13	mg/kg	MS
SS	MIA134	MG743023	SW6010	CHROMIUM, TOTAL	14	<u> </u>	J	0 12	mg/kg	MS
SS	MIA137 MIA138	MG743002 MG743003	SW6010 SW6010	CHROMIUM TOTAL CHROMIUM TOTAL	131	=	١	012	mg/kg mg/kg	_MS MS
SS	MIA139FD	MG743004	SW6010	CHROMIUM, TOTAL	13	=	1	012	mg/kg	MS
SS	MIA141	MG743005	SW6010	CHROMIUM, TOTAL	116		j	012	mg/kg	MS
SS	MIA142	MG743006	SW6010	CHROMIUM TOTAL	13 9	=	j	0 12	mg/kg	MS
SS	MIA143	MG743007	SW6010	CHROMIUM TOTAL	10.4	=	J	0 12	mg/kg	MS
SS	MIA 144	MG743008	SW6010	CHROMIUM TOTAL	8.2	=	J	0 12	mg/kg	MS
SS	MIA145	MG743009	SW6010	CHROMIUM TOTAL	10.4	=	J	0 12	mg/kg	MS
SS	MIA328FD MIA153	MG757001 MG756001	SW6010 SW6010	COBALT COPPER	5 17.5	TR =	J	0 055 0 11	mg/kg mg/kg	MS MS
SS	MIA155	MG756003	SW6010	COPPER	15.4	+ =	 	0 12	mg/kg	MS
SS	MIA156	MG756004	SW6010	COPPER	21 3	=	Ť	011	mg/kg	MS
SS	M!A157	MG756005	SW6010	COPPER	26 9	=	Ĵ	011	mg/kg	MS
SS	MIA158	MG756006	SW6010	COPPER	55 1	=	J	0.11	mg/kg	MS
SS	MIA159	MG756007	SW6010	COPPER	208	=	J	0.56	mg/kg	MS
SS	MIA160FD MIA162	MG756008 MG756009	SW6010 SW6010	COPPER COPPER	153 15.5	=	 	022	mg/kg mg/ka	MS MS
SS	MIA163	MG756010	SW6010	COPPER	12 1	=	J -	012	mg/kg	MS
SS	MIA164	MG756011	\$W6010	COPPER	168	=	Ŭ	012	mg/kg	MS
SS	MIA165	MG756012	SW6010	COPPER	113	-	Ĵ	0 12	mg/kg	MS
SS	MIA166	MG756013	\$W6010	COPPER	11	=	J	011	mg/kg	MS
SS	MIA167	MG756014	SW6010	COPPER	18.4	-	Į ,	0 12	mg/kg	MS
SS	MIA168 MIA169	MG756015 MG756016	SW6010 SW6010	COPPER COPPER	13 8 12 8	 _ = _	J	012	mg/kg mg/kg	MS MS
SS	MA109	MG756017	SW6010	COPPER	12.9	=	, J	011	mg/kg mg/kg	MS
SS	MIA171FD	MG756018	SW6010	COPPER	156	- -	 	011	mg/kg	MS
SS	MIA172	MG756019	SW6010	COPPER	14	=	J	011	mg/kg	MS
58	MIA325	MG756025	SW6010	COPPER	163	=	J	0.45	mg/kg	MS
SS	MIA326	MG756026	\$W6010	COPPER	23 6		J	011	mg/kg	MS
SS	MIA327	MG756027	SW6010	COPPER	38 9	 =	J.	011	mg/kg	MS
SS	MIA 173	MG756020	SW6010	COPPER	143	 	J	0 12	mg/kg	MS
SS	MIA328FD MIA330	MG757001 MG757002	SW6010 SW6010	NICKEL NICKEL	19 10.5	=	J	0 035	mg/kg mg/kg	MS MS
SS	MIA330 MIA331	MG757002 MG757003	\$W6010	NICKEL NICKEL	14	 	1 1	0 037	mg/kg	MS
SS	MIA332	MG757004	SW6010	NICKEL	163	=	j	0 039	mg/kg	MS
SS	MIA333	MG757005	SW6010	NICKEL	146	=	Ĵ.	0.037	mg/kg	MS
_ SS	MIA334	MG757006	SW6010	NICKEL	11	=	J	0.036	mg/kg	MŞ
SS	MiA335	MG757007	SW6010	NICKEL	14 1		J	0.039	mg/kg	MS
SS	MIA336	MG757008	SW6010	NICKEL	11.7	===	 	0.038	mg/kg	MS
SS	MIA337	MG757009	\$W6010	NICKEL	63	<u>l = </u>	<u> </u>	0.035	mg/kg	MS

. * . .

ATTACHMENT A

Matrix	Sample ID	Lab Sample ID	Analytical Method	Parameter	Final Result	Lab Qual	Final Qual	Det Limit	Units	Qual Reason
SS	M!A338	MG757010	SW6010	NICKEL	66	=	J_	0.034	mg/kg	MS
SS	MiA339	MG757011	SW6010	NICKEL	102	±	J	0.035	mg/kg	M\$
SS	MtA349	MG757012	SW6010	NICKEL_	126	=	J	0.04 1	mg/kg	MS
SS	MIA351	MG757014	SW6010	NICKEL	12.5	=	J	0.037	ma/ka	MS
SS	MIA328FD	MG757001	SW6010	SILVER	0.05	U	w	0.05	mg/kg	MS
SS	MIA330	MG757002 MG757003	SW6010 SW6010	SILVER SILVER	0.06	U	W W	0.06	mg/kg	MS MS
SS SS	MIA331 MIA332	MG757003 MG757004	SW6010	SILVER	006	U	w	006	mg/kg mg/kg	MS
SS	MIA333	MG757005	SW6010	SILVER	006	U	UJ	0.06 +	mg/kg	MS
SS	MIA334	MG757006	SW6010	SILVER	0.06	Ü	UJ	0.06 ,	mg/kg	MS
SS	MIA335	MG757007	SW6010	SILVÉR	0.06	Ü	UJ	0.06 1	mg/kg	MS
SS	MIA336	MG757008	SW6010	SILVER	0.06	U	3	0.06	mg/kg	MS
SS	MIA337	MG757009	SW6010	SILVER	0.05	U	w	0.05 '	mg/kg	M\$
SS	MIA338	MG757010	SW6010	SILVER	0.05	U	W	0.05 (mg/kg	M\$
SS	MIA339	MG757011	SW6010	SILVER	0.06	U	_w	0.06	mg/kg	MS
SS	MIA349	MG757012	SW6010	SILVER	0.06	U	w	0.06	mg/kg	MS
SS	MIA350	MG757013	SW6010	SILVER	0.06	U	W	0.06	mg/kg_	MS
	MIA351	MG757014	SW6010	SILVER	0.06	U	<u>UJ</u>	006	mg/kg	MS
SS	MIA032	MG695004	SW6010	SILVER	0.06	U	<u>UJ</u>	0.061	mg/kg	MS
SS	MIA033	MG695005	SW6010	SILVER	0.06	U U	UJ UJ	0.06	mg/kg	MS
SS SS	MIA034FD MIA037	MG695006 MG695008	SW6010 SW6010	SILVER SILVER	0.06 0.06	U	UJ	0.06 !	mg/kg mg/kg	MS MS
SS	MIA037 MIA040	MG695011	SW6010	SILVER SILVER	0.05	U	w	0.05 :	mg/kg mg/kg	M\$
SS	MIA041	MG695011	SW6010	SILVER	0.05	Ü	w	0.05 1	ma/ka	MS
SS	MIA160FD	MG756008	SW6010	SILVER	0.91	TR	J	011 :	mg/kg	MS
SS	MiA325	MG756025	SW6010	SILVER	16	TR	Ĵ	0 22 !	mg/kg	MS
SB	MIA074	MG743012	SW6010	SILVER	0.06	U	UJ	0.06	mg/kg	MS
SB	MIA075	MG743013	SW6010	SILVER	0.06	IJ	IJ	0.06 (mg/kg	MS
SB	MIA076	MG743014	SW6010	SILVER	0.06	U	UJ	0.06 !	mg/kg	MS
SB	MIA125	MG743020	SW6010	SILVER	0.06	U	IJ	0.06	mg/kg	MS
SB	MIA126	MG743021	SW6010	SILVER	0.06	U	IJ	0061	mg/kg	MS
SB	MIA127	MG743022	SW6010	SILVER	0.06	U	UJ	0061	mg/kg	MS
SS	MIA134	MG743023	SW6010	SILVER	0.06	U	<u>ui</u>	0061	mg/kg	MS
SS	MIA137	MG743002	SW6010	SILVER	0.06	U	w	0.06 :	mg/kg	MS
SS	MIA138	MG743003	SW6010	SILVER	0.06	U	w	0.061	ma/ka	MS MS
SS SS	MIA139FD MIA141	MG743004 MG743005	SW6010 SW6010	SILVER SILVER	0.06	Ü	LUJ	0.06	mg/kg mg/kg	MS
SS	MIA142	MG743006	SW6010	SILVER	006	Ü	UJ	006+	mg/kg	MS
SS	MIA143	MG743007	SW6010	SILVER	0.06	ŭ	w	0.06	mg/kg	MS
SS	MIA145	MG743009	SW6010	SILVER	0.06	Ü	UJ	0.061	ma/ka	MS
SS	MIA153	MG756001	SW6010	SILVER	0.05	Ü	W	0.05	mg/kg	MS .
SS	MIA155	MG756003	SW6010	SILVER	0.06	U	W	0.06	mg/kg	MS
SŞ	MIA156	MG756004	SW6010	SILVER	0.06	U	w	0.06	mg/kg	MS
SS	MIA157	MG756005	SW6010	SILVER	0.06	U	w	0.06	mg/kg	MS
SS	MIA158	MG756006	SW6010	SILVER	0.06	Ü	UJ	006	mg/kg_	MS
SS	MIA159	MG756007	SW6010	SILVER	0.06	U	UJ	006	mg/kg_	MS
SS	MIA162	MG756009	SW6010	SILVER	0.06	U	UJ	0.061	mg/kg	MS
<u>SS</u>	MIA163	MG756010	SW6010	SILVER	0.06	U	UJ	0.06	mg/kg	M\$
SS	MIA164	MG756011 MG756012	SW6010 SW6010	SILVER SILVER	0.06	U	UJ UJ	0.06	mg/kg mg/kg	MS MS
SS	MIA 165 MIA 166	MG756012 MG756013	SW6010	SILVER	006	l U	UJ	0.06	ma/ka	MS
\$\$ \$\$	MIA 167	MG756014	SW6010	SILVER	0.06	Ü	นม	0.061	mg/kg	MS
SS	MIA168	MG756015	SW6010	SILVER	0.06	Ŭ	UJ	0.06	mg/kg	MS
SS	MIA169	MG756016	SW6010	SILVER	0.06	Ü	IJ	0.06	mg/kg	MS
SS	MIA170	MG756017	SW6010	SILVER	0.06	U	UJ	0.06	mg/kg	MS
SS	MIA171FD	MG756018	SW6010	SILVER	0.06	U	IJ	0.06	mg/kg	MS
SS	MIA172	MG756019	SW6010	SILVER	0.05	U	Ü	0.05	mg/kg	MS
SS	MIA173	MG756020	SW6010	SILVER	0.06	U	w	0.06	mg/kg	MS
SS	MIA326	MG756026	SW6010	SILVER	0.06	U	W.	0.061	mg/kg	MS
SS	MIA327	MG756027	SW6010	SILVER	0.05	U	ຸນນ_	0.05!	mg/kg	MS
SS	MIA144	MG743008	SW6010	SILVER	0.06	U	m	0.061	mg/kg	MS
SS	MIA032	MG695004	SW6010	VANADIUM VANADIUM	20.6	=	J	0 035	mg/kg mg/kg	MS MS
SS	MIA037 MIA074	MG695008 MG743012	SW6010 SW6010	VANADIUM	27 1	=	J	0.037	mg/kg mg/kg	MS MS
SB SB	MIA074 MIA075	MG743012 MG743013	SW6010	VANADIUM	13.8	=	J	0.038	mg/kg	MS
SB	MIA076	MG743013 MG743014	SW6010	VANADIUM	23.6	=_	 	0.0381	ma/ka	MS
SS	MIA134	MG743014 MG743023	SW6010	VANADIUM	28 7		Ĭ	0.037	mg/kg	MS
SS	MIA137	MG743023	SW6010	VANADIUM	22 1	† =	.1	0.0361	mg/kg	MS
	MIA138	MG743003	SW6010	VANADIUM	27.4	=	J	0 0361	mg/kg	MS
SS	MIA139FD	MG743004	SW6010	VANADIUM	22 7	=	Ĵ	0.036	mg/kg	MS
	MIA141	MG743005	SW6010	VANADIUM	213	=	1	0.0351	mg/kg	MS

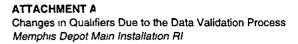
ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

Matrix	Sample ID MIA142 MIA143 MIA144 MIA145 MIA032 MIA0332 MIA0337 MIA0347 MIA040 MIA041 MIA142 MIA149 MIA149 MIA149 MIA159 MIA160FD MIA160FD MIA165 MIA167 MIA170 MIA171FD MIA144 MIA327 MIA241 MIA242 MIA242 MIA244 MIA242 MIA244 MIA245 MIA247	Lab Sample ID MG743006 MG743007 MG743008 MG743009 MG695004 MG695004 MG695005 MG695008 MG6950011 MG695012 MG743006 MG757010 MG757010 MG757012 MG755012 MG755014 MG755014 MG755014 MG755014 MG755017 MG756018 MG755017 MG756018 MG743008 MG777002 MG777002 MG777004 MG777004	Method SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 TC6010 SW6010 SW6010	Parameter VANADIUM VANADIUM VANADIUM VANADIUM VANADIUM ZINC COMPANION TOLP Codmium TCLP BERYLLIUM COBALT	Result 28 1 21 3 16 9 23 36 7 44 37 4 57 8 57 5 75 1 003 11 6 13 6 14 6 15 6 16 6 17 6 18 7 18 7 18 8 18	Qual	Out	Det Limit 0 036 0 036 0 036 0 034 0 034 0 12 0 13 0 13 0 12 0 12 0 12 0 19 11 6 11 6 11 6 11 6 11 6 11 6 11 6	Units ma/kg ma/kg ma/kg ma/kg ma/kg ma/kg ma/kg ma/kg ma/kg ma/kg ma/kg ua/kg ua/L ua/L ua/L ua/L ua/L	Qual Reason MS MS MS MS MS MS MS MS MS MS MS MS MS
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA143 MIA144 MIA145 MIA032 MIA033 MIA034FD MIA037 MIA040 MIA041 MIA142 MIA338 MIA349 MIA156 MIA160FD MIA165 MIA167 MIA170 MIA171 MIA171 MIA171 MIA241 MIA242 MIA242 MIA242 MIA244 MIA245 MIA246	MG743007 MG743008 MG743009 MG695004 MG695004 MG695005 MG695008 MG695011 MG695012 MG743000 MG757010 MG757010 MG757010 MG755008 MG756007 MG756008 MG756012 MG756018 MG756017 MG756018 MG756018 MG775001	SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010	VANADIUM VANADIUM VANADIUM ZINC ZINC ZINC ZINC ZINC ZINC ZINC ZINC	21 3 16 9 23 36 7 44 37 4 57 8 57 5 75 1 003 11 6 11 6 11 6 11 6 11 6 11 6	= = = = = = = = = = = = = = = = = = =		0036 0034 0034 012 013 013 013 012 012 019 116 116 116 116	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L	MS MS MS MS MS MS MS MS MS MS MS MS MS M
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA144 MIA145 MIA032 MIA033 MIA033 MIA034FD MIA037 MIA040 MIA041 MIA142 MIA338 MIA349 MIA159 MIA165 MIA165 MIA167 MIA171FD MIA171FD MIA171FD MIA144 MIA327 MIA241 MIA242 MIA242 MIA242 MIA244 MIA246	MG743008 MG743009 MG695004 MG695004 MG695005 MG695006 MG695011 MG695012 MG743006 MG757010 MG757010 MG757012 MG756017 MG756017 MG756018 MG756018 MG756018 MG756018 MG777002 MG777002 MG777003	SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW7471 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010	VANADIUM VANADIUM ZINC ZINC ZINC ZINC ZINC ZINC ZINC ZINC	169 23 367 44 374 578 575 751 003 116 116 116 116 116 116 116 116 116 11	= = = = = = = = = = = = = = = = = = =		0 0 3 4 0 0 3 4 0 1 2 0 1 3 0 1 3 0 1 3 0 1 2 0 1 2 0 0 1 9 1 1 1 6 1 1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L	MS MS MS MS MS MS MS MS MS MS MS MS MS M
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA145 MIA032 MIA033 MIA034FD MIA037 MIA040 MIA041 MIA142 MIA338 MIA349 MIA159 MIA165FD MIA165 MIA167 MIA171FD MIA171FD MIA171FD MIA241 MIA242 MIA242 MIA242 MIA245 MIA246	MG743009 MG695004 MG695005 MG695006 MG695008 MG695011 MG695012 MG743006 MG757010 MG757010 MG756017 MG756017 MG756018 MG756018 MG756018 MG756018 MG777002 MG777002 MG777003	\$\text{SW6010}\$ \$\text{\$SW6010}\$ \$\text{\$SW6010}\$ \$\text{\$SW6010}\$ \$\text{\$SW6010}\$ \$\text{\$SW6010}\$ \$\text{\$SW6010}\$ \$\text{\$SW6010}\$ \$\text{\$SW6010}\$ \$\text{\$SW7471}\$ \$\text{\$IC6010}\$ \$\text{\$IC6010}\$ \$\text{\$IC6010}\$ \$\text{\$IC6010}\$ \$\text{\$IC6010}\$ \$\text{\$IC6010}\$ \$\text{\$IC6010}\$ \$\text{\$SW6010}\$ \$\text{\$SW6010}\$ \$\text{\$SW6010}\$	VANADIUM ZINC ZINC ZINC ZINC ZINC ZINC ZINC ZINC	23 36 7 44 37 4 57 8 57 5 75 1 0 03 11 6 11 6 11 6 11 6 11 6 11 6 11 6	= = = = = = = = = = = = = = = = = = =	### ##################################	0034 012 013 013 013 012 012 012 019 116 116 116 116	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L	MS MS MS MS MS MS MS MS MS MS MS MS MS M
\$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$	MIA032 MIA033 MIA034FD MIA037 MIA040 MIA041 MIA142 MIA338 MIA349 MIA159 MIA165FD MIA165 MIA167 MIA171FD MIA171FD MIA144 MIA327 MIA241 MIA242 MIA242 MIA242 MIA245 MIA246	MG695004 MG695005 MG695006 MG695008 MG695011 MG695012 MG743006 MG757010 MG757012 MG756008 MG756012 MG756014 MG756014 MG756018 MG756018 MG756018 MG777002 MG777002 MG777002	\$\text{SW6010}\$ \$\text{\$\$SW6010}\$ \$	ZINC ZINC ZINC ZINC ZINC ZINC ZINC ZINC	36 7 44 37 4 57 8 57 5 75 1 0 03 11 6 11 6 11 6 11 6 11 6 11 6 11 6	= = = = = TR U U U U U U U U		012 013 013 013 013 012 012 019 116 116 116 116	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L	MS MS MS MS MS MS MS MS MS MS MS MS MS M
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA033 MIA034FD MIA037 MIA040 MIA041 MIA142 MIA338 MIA349 MIA159 MIA165 MIA165 MIA167 MIA171 MIA171 MIA171 MIA171 MIA241 MIA242 MIA242 MIA242 MIA244 MIA245 MIA246	MG695005 MG695006 MG695008 MG695011 MG695012 MG733006 MG757010 MG757012 MG756007 MG756008 MG756014 MG756014 MG756018 MG756018 MG756018 MG777002 MG777002 MG777002	SW6010 SW6010 SW6010 SW6010 SW6010 SW7471 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 SW6010 SW6010 SW6010	ZINC ZINC ZINC ZINC ZINC ZINC ZINC ZINC	44 37 4 57 8 57 5 75 1 0 03 11 6 11 6 11 6 11 6 11 6 11 6 11 6	= = = = = = = = = = = = = = = = = = =	m m m m m	013 013 013 012 012 0019 11.6 11.6 11.6 11.6	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L	MS MS MS MS MS MS MS MS MS MS MS MS MS M
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA037 MIA040 MIA041 MIA142 MIA338 MIA349 MIA159 MIA160FD MIA167 MIA170 MIA171FD MIA144 MIA327 MIA241 MIA242 MIA242 MIA244 MIA245 MIA246	MG695008 MG695011 MG695012 MG743006 MG757010 MG757012 MG756007 MG756008 MG756012 MG756014 MG756017 MG756018 MG743008 MG7777002 MG7777002 MG7777002	SW6010 SW6010 SW6010 SW7471 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 SW6010 SW6010 SW6010	ZINC ZINC ZINC ZINC ZINC MERCURY Cadmium, TCLP Cadmium ICLP BERYLLIUM COBALI	57 8 57 5 75 1 003 11 6 11 6 11 6 11 6 11 6 11 6	= = IR U U U U	m m m m m	0 13 0 12 0 12 0 019 11 6 11 6 11 6 11 6 11 6	mg/kg mg/kg mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L	MS MS MS MS MS MS MS MS MS MS MS MS MS M
\$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5	MIA040 MIA041 MIA142 MIA338 MIA349 MIA159 MIA165FD MIA165 MIA171FD MIA171FD MIA171FD MIA241 MIA241 MIA242 MIA242 MIA244 MIA245 MIA246	MG695011 MG695012 MG743006 MG757010 MG757012 MG756007 MG756008 MG756012 MG756014 MG756017 MG756018 MG743008 MG756027 MG777002 MG777002	SW6010 SW6010 SW7471 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 SW6010 SW6010 SW6010	ZINC ZINC MERCURY Cadmium, TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP CADMIum, TCLP BERYLLIUM COBALT	57 5 75 1 0 03 11 6 11 6 11 6 11 6 11 6 11 6 11 6 11 6	= TR U U U U U	m m m m	0 12 0 12 0 019 11 6 11 6 11 6 11 6 11 6	mg/kg mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L	MS MS MS MS MS MS MS MS MS MS
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIAO41 MIA142 MIA338 MIA349 MIA159 MIA165FD MIA165 MIA167 MIA171FD MIA171FD MIA144 MIA327 MIA241 MIA242 MIA242 MIA244 MIA245 MIA246	MG695012 MG743006 MG757010 MG757012 MG755007 MG756008 MG756012 MG756014 MG756018 MG743008 MG756027 MG777002 MG777002	SW6010 SW7471 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 SW6010 SW6010 SW6010	ZINC MERCURY Cadmium, TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium TCLP Cadmium TCLP BERYLLIUM COBALT	75.1 0.03 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6	= IR U U U U U	m m m m	0 12 0 019 11 6 11 6 11 6 11 6 11 6	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L	MS MS MS MS MS MS MS MS MS
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA142 MIA338 MIA349 MIA159 MIA165D MIA165 MIA167 MIA1710 MIA1717 MIA1717 MIA174 MIA327 MIA241 MIA242 MIA242 MIA242 MIA244 MIA245 MIA246	MG743006 MG757010 MG757012 MG756007 MG756008 MG756012 MG756014 MG756017 MG756018 MG743008 MG756027 MG777002 MG777003 MG777004	SW7471 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 SW6010 SW6010 SW6010	MERCURY Cadmium, TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP CADMIUM COBALT	003 116 116 116 116 116 116 116 116	TR U U U U U U	m m m m	0019 11 6 11 6 11 6 11 6 11 6	mg/kg ug/L ug/L ug/L ug/L ug/L	MS MS MS MS MS MS MS MS
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA338 MIA349 MIA159 MIA160FD MIA165 MIA167 MIA170 MIA171FD MIA144 MIA327 MIA241 MIA242 MIA242 MIA242 MIA244 MIA245 MIA246	MG757010 MG757012 MG756007 MG756008 MG756012 MG756014 MG756017 MG756018 MG743008 MG777002 MG777002	TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 SW6010 SW6010 SW6010	Cadmium, TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP Cadmium, TCLP CADMIUM COBALT	11 6 11 6 11 6 11 6 11 6 11 6 11 6	U U U U	ພ ພ ພ ພ ພ	11 6 11 6 11 6 11 6 11 6	ug/L ug/L ug/L ug/L ug/L ug/L	MS MS MS MS MS MS MS
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA349 MIA159 MIA160FD MIA165 MIA167 MIA170 MIA171FD MIA144 MIA327 MIA241 MIA242 MIA242 MIA244 MIA245 MIA246	MG757012 MG756007 MG756008 MG756012 MG756014 MG756017 MG756018 MG743008 MG736027 MG777002 MG777003 MG777004	TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 SW6010 SW6010 SW6010	Cadmium ICLP Cadmium ICLP Cadmium ICLP Cadmium ICLP Cadmium ICLP Cadmium ICLP Cadmium ICLP Cadmium ICLP Cadmium ICLP BERYLLIUM COBALI	11 6 11 6 11 6 11 6 11 6 11 6	U U U U	ພ ພ ພ ພ	11.6 11.6 11.6 11.6 11.6	ug/L ug/L ug/L ug/L ug/L	MS MS MS MS MS MS
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA159 MIA160FD MIA165 MIA167 MIA170 MIA171FD MIA144 MIA327 MIA241 MIA242 MIA242 MIA244 MIA245 MIA246	MG756007 MG756008 MG756012 MG756014 MG756017 MG756018 MG743008 MG756027 MG777002 MG777003 MG777004	TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 SW6010 SW6010 SW6010	Cadmium ICLP Cadmium ICLP Codmium, ICLP Codmium ICLP Cadmium, ICLP Cadmium, ICLP Codmium ICLP BERYLLIUM COBALI	11 6 11 6 11 6 11 6 11 6	U U U U	พ พ พ	116 116 116 116	ug/L ug/L ug/L ug/L	MS MS MS MS MS
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA160FD MIA165 MIA165 MIA170 MIA171FD MIA144 MIA327 MIA241 MIA242 MIA242 MIA244 MIA245 MIA246	MG756008 MG756012 MG756014 MG756017 MG756018 MG743008 MG7766027 MG777002 MG777003 MG777004	TC6010 TC6010 TC6010 TC6010 TC6010 TC6010 SW6010 SW6010 SW6010	Cadmium TCLP Codmium, TCLP Codmium TCLP Cadmium TCLP Cadmium TCLP Codmium TCLP BERYLLIUM COBALT	11.6 11.6 11.6 11.6	U U U	m m m	116 116 116	ug/t ug/t ug/t	MS MS MS MS
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA165 MIA167 MIA170 MIA171FD MIA144 MIA327 MIA241 MIA242 MIA242 MIA245 MIA246	MG756012 MG756014 MG756017 MG756018 MG743008 MG756027 MG777002 MG777003 MG777004	TC6010 TC6010 TC6010 TC6010 SW6010 SW6010 SW6010	Cadmium, TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP BERYLLIUM COBALT	116 116 116	. บ บ	UJ UJ UJ	11 6 11 6	ug/L ug/L	MS MS MS
\$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$	MIA167 MIA170 MIA171FD MIA144 MIA327 MIA241 MIA242 MIA242 MIA244 MIA245 MIA246	MG756014 MG756017 MG756018 MG743008 MG756027 MG777002 MG777003 MG777004	1C6010 1C6010 1C6010 SW6010 SW6010 SW6010	Codmium TCLP Cadmlum, TCLP Cadmlum TCLP BERYLLIUM COBALT	11 6 11 6	U U	UJ UJ	116	ug/L	M\$ M\$
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA171FD MIA144 MIA327 MIA241 MIA242 MIA244 MIA245 MIA246	MG756017 MG756018 MG743008 MG756027 MG777002 MG777003 MG777004	TC6010 TC6010 SW6010 SW6010 SW6010	Cadmium, TCLP Cadmium TCLP BERYLLIUM COBALT	116 116	U	เม			MS
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MIA144 MIA327 MIA241 MIA242 MIA244 MIA245 MIA246	MG743008 MG756027 MG777002 MG777003 MG777004	SW6010 SW6010 SW6010	BERYLLIUM COBALT		U	IJ			NAC.
SS SS SS SS SS SS SS SS SS SS SS SS SS	MIA327 MIA241 MIA242 MIA244 MIA245 MIA246	MG756027 MG777002 MG777003 MG777004	SW6010 SW6010	COBALT	0.36			116	ug/L	I IVID
SS	MIA241 MIA242 MIA244 MIA245 MIA246	MG777002 MG777003 MG777004	SW6010			TR	J	0.0028	mg/kg	MS, SD
SS SS SS SS SS SS	MIA242 MIA244 MIA245 MIA246	MG777003 MG777004			4.7	TR	J	0.053	mg/kg	MS, SD
SS SS SS SS SS	MIA244 MIA245 MIA246	MG777004		COPPER	12 7	=	J	0 12	mg/kg	MS, SD
SS SS SS	MIA245 MIA246		SW6010	COPPER	7.8	=	J	0 22	mg/kg	MS SD
SS SS SS	MIA246	MG///HIS	SW6010	COPPER	24	=-	J	011	mg/kg	MS, SD
SS SS			\$W6010	COPPER	19 1	=	J	011	mg/kg	MS, SD
SS		MG777006 MG777007	SW6010 SW6010	COPPER COPPER	28 3 8 9	=	J	043	mg/kg	MS SD MS, SD
	MIA248	MG777008	SW6010	COPPER	58		J	011	mg/kg mg/kg	MS, SD
	MIA249	MG777009	SW6010	COPPER	35 6	 -	<u> </u>	0 26	ma/ka	MS, SD
SS	MIA250	MG777010	SW6010	COPPER	47	<u> </u>	j	011	mg/kg	MS, SD
SS	MIA251	MG777011	SW6010	COPPER	14.3	-	j	0 12	ma/ka	MS, SD
SS	MIA262	_MG777013	SW6010	COPPER	38 2	=	J	11	mg/kg	M\$ SD
SS	MIA263	MG777014	SW6010	COPPER	117	=	j	0 22	mg/kg	MS SD
SS	MIA277	MG777015	SW6010	COPPER	17.6	=	J.	011	mg/kg	MS SD
SS	MIA278FD	MG777016	SW6010	COPPER	18 7	=	J	012	mg/kg	MS, SD
SS	MIA280	MG777017	SW6010	COPPER	32 1	=	J	0.12	mg/kg	MS, SD
SS	MIA281	MG777018	SW6010	COPPER	129	=	J.	011	_mg/kg	MS, SD
SS	MIA282FD	MG777019	SW6010	COPPER	16.5	=	J.	011	mg/kg	MS, SD
SS	MIA283 MIA284	MG777020 MG777021	SW6010 SW6010	COPPER COPPER	29 1 6 5	=	J	011	mg/kg	MS, SD
SS	MIA285	MG777021	SW6010	COPPER	109	=	1	012	mg/kg mg/kg	MS, SD MS, SD
SS	MIA286	MG777023	SW6010	COPPER	31.2	-	1	013	mg/kg	MS, SD
SS	MIA287	MG777024	SW6010	COPPER	24 2		ĭ	0 12	mg/kg	MS, SD
SS	MIA288	MG777025	SW6010	COPPER	25 1		J	013	mg/kg	MS, SD
SS	MIA289	MG777026	SW6010	COPPER	13.7	=	Ĵ	011	mg/kg	MS, SD
SS	MIA290	MG777027	SW6010	COPPER	144	=	J	011	mg/kg	MS, SD
SS	MIA291	MG777028	SW6010	COPPER	7.5	=	J	011	mg/kg	MS, SD
SS	MIA261	MG777012	SW6010	COPPER	193	TR	J	22	mg/kg	MS, SD
SS	MIA 153	MG756001	SW6010	NICKEL	10.5	==	J	0.035	mg/kg	MS SD
SS	MIA 155	MG756003	SW6010	NICKEL	13.3	=_	J	0.038	mg/kg	MS SD
SS SS	MIA 156 MIA 157	MG756004 MG756005	SW6010 SW6010	NICKEL NICKEL	12.8 15.4	=	J	0 036 0 036	mg/kg	MS, SD
SS	MIA158	MG756006	SW6010	NICKEL NICKEL	20	=	 	0 036	mg/kg mg/kg	MS, SD MS, SD
SS	MIA159	MG756007	SW6010	NICKEL	59 9	=	j	0.036	mg/kg	MS, SD
SS	MIA160FD	MG756008	SW6010	NICKEL	38 6	=	Ĵ	0.036	mg/kg	MS, SD
SS	MIA162	MG756009	SW6010	NICKEL	15.4	=	Ĵ	0.037	mg/kg	MS, SD
SS	MIA163	MG756010	SW6010	NICKEL	142	=	J	0 037	mg/kg	MS, SD
SS	MIA164	MG756011	SW6010	NICKEL	94		J	0 037	mg/kg	MS SD
SS	MIA165	MG756012	SW6010	NICKEL	10.8	=	j	0.038	mg/kg	MS SD
SS	MIA166	MG756013	5W6010	NICKEL	129	=	J	0 037	mg/kg	MS SD
SS	MIA167	MG756014	SW6010	NICKEL	14.5	<u> </u>	J	0.04	mg/kg	MS, SD
SS	MIA168	MG756015	SW6010	NICKEL	15	 _= _		0 037	ma/ka	MS SD
SS	MIA169	MG756016	SW6010	NICKEL	146	=	J	0.036	mg/kg	MS SD
SS	MIA170	MG756017	SW6010	NICKEL	14.5	-	J	0.036	mg/kg	MS SD
SS	MIA171FD	MG756018	SW6010	NICKEL	13.2	 	J	0.036	mg/kg	MS SD
SS SS	MIA172 MIA173	MG756019 MG756020	SW6010 SW6010	NICKEL NICKEL	109	=	J	0 035	mg/kg	MS SD
SS	MIA325	MG756020 MG756025	SW6010	NICKEL NICKEL	56	=	J	0.036	mg/kg mg/kg	MS, SD MS, SD
SS	MIA326	MG756026	SW6010	NICKEL	113	=	,	0 036	mg/kg mg/kg	MS, SD
SS	MIA327	MG756027	SW6010	NICKEL	162	<u> </u>	1 3	0 034	mg/kg	MS SD
SS	MIA157	MG756005	SW6010	ZINC	111	 	 	0 12	mg/kg	MS, SD

488 248

ATTACHMENT A

	1	[· · · · · · · · · · · · · · · · · · ·	·				"			
Matrix	Sample ID	Lab Sample ID	Analytical Method	Parameter	Final Result	Lab Qual	Final Qual	Det Limit	Units	Qual Reason
SB	MIA074	MG743012	SW6010	ZINC	51.5		J	0 13	mg/kg	MS, SD
SB	MIA075	MG743013	SW6010	ZINC	50 3	Ε	J	0 14 1	mg/kg	MS, SD
SB	MIA076	MG743014	SW6010	ZINC	48 8	=	J	0 14	mg/kg	MS SD
SB	MIA125	MG743020	SW6010	ZINC	55 2	H	J	0 13	mg/kg_	MS SD
SB	MIA126.	MG743021	SW6010	ZINÇ	42 9	H	J	014	mg/kg	MS, SD
\$8	MIA127	MG743022	SW6010	ZINC	28 2	ı	J	014 :	mg/kg	MS, SD
SS	MIA134	MG743023	SW6010	ZINC	68 6	=	7	0.13 ،	mg/kg	MS, SD
SS	MIA137	MG743002	SW6010	ZINC	48 8	=	J	0 13	mg/kg	MS, SD
SS	MIA138	MG743003	SW6010	ZINC	61.4	=	J	0 13	mg/kg	MS, SD
SS	MIA139FD	MG743004	SW6010	ZINC	615	=	J	0 13	mg/kg	MS, SD
SS	MIA141	MG743005	SW6010	ZINC	42	=	J	0 13 +	mg/kg	MS SD
SS	MIA142	MG743006	SW6010	ZINC	59 1	=	J	0 13	mg/kg	MS SD
SS	MIA143	MG743007	SW6010	ZINC ZINC	52 1	=	J	0 13	mg/kg	MS SD
SS	MtA 144	MG743008	SW6010	ZINC	36.6	=	J	0 12 '	mg/kg	MS, SD
SS	MIA241	MG777002	SW6010	ZINC	50.8	=	J	0 13	mg/kg	MS, SD
SS	MIA242	MG777003	SW6010	ZINC	154	=	J	0.24	mg/kg	M\$, SD
SS	MIA244	MG777004	SW6010	ZINC	482	=	J	012	. mg/kg	MS, SD
SS	MIA245	MG777005	SW6010	ZINC	505	=_	J	0 12	mg/kg	MS SD
SS	MIA246	MG777006	SW6010	ZINC	1060	=	J	0.47	ma/ka	MS SD
SS	MIA247	MG777007	SW6010	ZINC	85.4	=	<u> </u>	0 12	ma/ka	MS, SD
SS	MIA248	MG777008	SW6010	ZINC	41.2	=	J	0 12 '	mg/kg	MS, SD
SS	MIA249	MG777009	SW6010	ZINC	1100	=	J	0.29	mg/kg	MS, SD
SS	MIA250	MG777010	SW6010	ZINC	16.8	=	J	0 12	mg/kg	MS SD
SS	MIA251	MG777011	SW6010	ZINC	48 3	=	J	013	mg/kg	MS SD
SS	MIA261	MG777012	SW6010	ZINC	11500	=_	<u> </u>	24 1	mg/kg	MS, SD
SS	MIA262	MG777013	SW6010	ZINC	8330	<u>=</u>	ļļ	12	mg/kg	MS, SD
SS	MIA263	MG777014	\$W6010	ZINC	692	=	J.	024	mg/kg	MS SD
SS	MIA277	MG777015	SW6010	ZINC	113	=	J.	012 1	mg/kg	MS SD
SS	MIA278FD	MG777016	SW6010	ZINC	113	=	J	013	mg/kg	MS, SD
SS	MIA280	MG777017	SW6010	ZINC	177	=	J	014	mg/kg	MS, SD
SS	MIA281	MG777018	SW6010	ZINC	616	=	J.	013	mg/kg	MS SD
SS	MIA282FD	MG777019	SW6010	ZINC	61 7	=		013	mg/kg	MS, SD
SS	MIA283	MG777020	SW6010	ZINC	280		J	0 12	mg/kg	MS, SD
SS	MIA284	MG777021	SW6010	ZINC	41	 ≣	- J	0 12	mg/kg	MS SD
SS	MIA285	MG777022	SW6010	ZINC	45.6	=	-	0 13 1	mg/kg	MS SD
<u>SS</u>	MIA286	MG777023	SW6010	ZINC ZINC	128 223	-	j	013	mg/kg	MS, SD MS, SD
<u>\$\$</u>	MIA287	MG777024 MG777025	SW6010	ZINC	100	-	-	014 1	mg/kg	MS SD
SS	MIA288 MIA289		SW6010 SW6010	ZINC	72 6	=	1	013	ma/ka ma/ka	MS, SD
SS	* 	MG777026		ZINC	50 5	=	ز	013 1	ma/ka	MS, SD
SS SS	MIA290 MIA291	MG777027 MG777028	SW6010 SW6010	ZINC	22.5	_	1	012	mg/kg	MS, SD
SS	MiA241	MG777002	SW6010	ARSENIC	66	=	1	0 17	mg/kg	SD
SS	MIA242	MG777002	\$W6010	ARSENIC	32	=	j	03 '	mg/kg	SD SD
SS		•	SW6010	ARSENIC	8		j	015	ma/ka	SD SD
	MIA244	MG777004 MG777005	SW6010	ARSENIC	66		<u> </u>	015	mg/kg	SD
SS	MIA245 MIA246	MG777006	SW6010	ARSENIC	72	=	- 	061	mg/kg	SD
SS	MIA246 MIA247	MG777007	SW6010	ARSENIC	38	=	J	015	mg/kg	SD SD
SS	MIA248	MG777007	SW6010	ARSENIC	37	=		015	mg/kg	SD
SS	MIA249	MG777009	SW6010	ARSENIC	111	====	 -	037	ma/ka	SD
SS SS	MIA250	MG777010	SW6010	ARSENIC	39	=		0 15	mg/kg	SD
	MIA251	MG777010	SW6010	ARSENIC	91	=	 	016	mg/kg	
SS	MIA263	MG777014	SW6010	ARSENIC	44	=		031 1	mg/kg	SD
SS .	MIA277	MG777015	SW6010	ARSENIC	99		ΙŤ	015 1	mg/kg	SD
SS	MIA278FD	MG777016	SW6010	ARSENIC	10.5	=	 	017	mg/kg	SD
SS	MIA280	MG777010	SW6010	ARSENIC	13.4	=	j	0 17	mg/kg	SD
SS	MiA281	MG777017	SW6010	ARSENIC	82	=	1	016	mg/kg	SD
SS	MIA282FD	MG777019	SW6010	ARSENIC	84	=	Ĭ	016 1	ma/ka	SD
SS	MiA283	MG777019 MG777020	SW6010	ARSENIC	148	=	Ĭ	0 15	mg/kg	SD
SS	MIA284	MG777020	SW6010	ARSENIC	63	=	i	0 16 1	mg/kg	SD
SS	MIA285	MG777022	SW6010	ARSENIC	8	=	j	017	mg/kg	SD
SS	MIA286	MG777023	SW6010	ARSENIC	15 7	=	j	0 18	mg/kg	SD
SS	MIA280	MG777024	SW6010	ARSENIC	92	= -	j	0 17 1	mg/kg	SD
SS	MIA288	MG777025	SW6010	ARSENIC	121	=	, ,	0 18	mg/kg	\$D
SS	MIA289	MG777026	SW6010	ARSENIC	94	=	J	0 16	mg/kg	SD
SS	MIA299	MG777027	SW6010	ARSENIC	66	=	J	0 16	ma/ka	SD
SS	MIA290	MG777028_	SW6010	ARSENIC	52	=	1 7	0 15	ma/ka	SD
	MIA291	MG778021	SW6010	ARSENIC	12.4		 	0 15	mg/kg	SD
				ARSENIC	71	=	J	0 15 1	mg/kg	SD SD
SS	MIA264	MG778022	SW6010	ARSENIC ARSENIC	5		J	0 15 1	mg/kg	SD
SS	MIA265	MG778023	SW6010	ARSENIC ARSENIC	11	= -	<u>. J</u>	0 16 1	mg/kg	SD
SS	MIA269	MG778027	SW6010			=				
SS	MIA270	MG778028	SW6010	ARSENIC	66	=	<u> </u>	016	mg/kg	SD


ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

			Analyheal		Final	Lab	Final			
Matrix	Sample ID	Lab Sample ID	Method	Parameter	Result	Qual	Qual	Det Limit	Units	Qual Reason
SS	MIA305	MG778003	SW6010	ARSENIC	242	=	١.	0 17	mg/kg	SD
SS	MIA306	MG778004	SW6010	ARSENIC	99	=	J	0 16	ma/kg	SD
SS	MIA307FD	MG778005	SW6010	ARSENIC	10.3	-	J	0 16	mg/kg	SD
SS	MIA309	MG778006	SW6010	ARSENIC	92	-	J	0 16	mg/kg	SD.
SS	MIA313	MG778010	SW6010	ARSENIC	13.8	=	J	015	mg/kg	SD
SS SS	MIA314FD MIA315	MG778011 MG778012	SW6010 SW6010	ARSENIC ARSENIC	<u>99</u> 64	=		0 15	mg/kg mg/kg	SD SD
SS	MIA316	MG778012	SW6010	ARSENIC	- <u>04</u> 56	=	J	015	mg/kg	SD
SS	MIA262	MG777013	SW6010	ARSENIC	72	TR	J	16	mg/kg	SD
SS	MIA275	MG778001	SW6010	ARSENIC	49	TR	Ĵ	0.76	mg/kg	SD
SS	MIA261	MG777012	SW6010	ARSENIC	3	υ	ŵ	3	mg/kg	SD
SS	MIA328FD	MG757001	SW6010	BERYLLIUM	0 38	TR	j	0.0027	mg/kg	\$D
SS	MIA330	MG757002	SW6010	BERYLLIUM	0.37	TR	J	0 0029	mg/kg	SD
SS	MIA331	MG757003	SW6010	BERYLLIUM	0 35	TR	٠	0 0029	mg/kg	\$D
SS	MIA332	MG757004	SW6010	BERYLLIUM	0.5	TR	j	0.003	mg/kg	SD
SS	MIA333	MG757005	SW6010	8ERYLLIUM	0 44	TR	<u> </u>	0.0028	mg/kg	SD
SS	MIA334 MIA335	MG757006 MG757007	SW6010 SW6010	BERYLLIUM BERYLLIUM	0 42 0 42	TR TR	J	0.0028	mg/kg	SD SD
SS	MIA336	MG757007	SW6010	BERYLLIUM	0.43	IR IR	J.	0.0029	mg/kg mg/kg	SD SD
SS	MIA337	MG757009	SW6010	BERYLLIUM	0 25	TR	J	0 0027	mg/kg	SD
SS	MIA338	MG757010	SW6010	BERYLLIUM	031	1R	Ĵ	0 0027	mg/kg	SD
SS	MIA339	MG757011	SW6010	BERYLLIUM	0.38	TR	J	0 0028	mg/kg	SD
SS	MIA349	MG757012	SW6010	BERYLLIUM	0 42	TR	ij	0.0031	ma/ka	SD
ŞS	MIA350	MG757013	SW6010	BERYLLIUM	0 47	TR	J	0.003	mg/kg	SD
SS	MIA351	MG757014	SW6010	BERYLLIUM	0.43	TR	J	0.0028	mg/kg	SD
SS	MIA188	MG770001	SW6010	BERYLLIUM	0.31	TR	J	0 0026	mg/kg	SD
SS	MIA189FD	MG770002	SW6010	BERYLLIUM	0.39	TR	ļ	0 0026	mg/kg	SD
SS	MIA193	MG770006	SW6010	BERYLLIUM	0.47	TR	J.	0.0029	mg/kg	SD
SS	MIA032	MG695004	SW6010	BERYLLIUM	0.41	TR	J	0.0028	mg/kg	SD
SS SS	MIA033 MIA034FD	MG695005 MG695006	SW6010 SW6010	BERYLLIUM BERYLLIUM	0 67	= 7R	J	0 0029	mg/kg mg/kg	SD SD
SS	MIA037	MG695008	SW6010	BERYLLIUM	048	TR	1	0 0029	mg/kg	SD SD
SS	MIA040	MG695011	SW6010	BERYLLIUM	0.47	TR		0.0027	mg/kg	SD
SS	MIA041	MG695012	SW6010	BERYLLIUM	0.28	TR	Ĭ	0.0027	mg/kg	SD
SS	MIA315	MG778012	SW6010	BERYLLIUM	18	=	Ĵ	0.0027	mg/kg	SD
SB.	MIA 125	MG743020	SW6010	BERYLLIUM	064	=	J	0.0031	mg/kg	SD
SS	MIA 158	MG756006	SW6010	BERYLLIUM	0.87	=	j	0.0028	mg/kg	SD
SS	MIA255	MG776024	SW6010	BERYLLIUM	0.58	=		0 0026	mg/kg	SD
SS	MIA244	MG777004	SW6010	BERYLLIUM	0.67	=	<u> </u>	0 0027	mg/kg	SD
SS	MIA245	MG777005	SW6010	BERYLLIUM	0.87	=	l J	0.0027	mg/kg	SD
SS	MIA282FD	MG777019	SW6010	BERYLUUM	0.7	=	l i	0.0029	mg/kg	SD
SS SS	MIA289 MIA313	MG777026 MG778010	SW6010 SW6010	BERYLLIUM BERYLLIUM	0 62 2 5	=	J	0.0029	mg/kg mg/kg	SD SD
SS	MIA314FD	MG778011	SW6010	BERYLLIUM	25	=	J	0.0026	mg/kg	SD
SS	MIA316	MG778013	SW6010	BERYLLIUM	13	 	1	0.0027	ma/ka	SD
SB	MIA074	MG743012	SW6010	BERYLLIUM	0.56	TR	Ĵ	0 003	mg/kg	SD
SB	MIA075	MG743013	SW6010	BERYLLIUM	0.38	ŦR	J	0.0031	mg/kg	SD
SB	MIA076	MG743014	SW6010	BERYLLIUM	0.43	TR	J	0 0031	mg/kg	SD
SB	MIA 126	MG743021	SW6010	BERYLLIUM	0.47	ŢŖ	J	0.0031	mg/kg	SD
SB	MIA127	MG743022	SW6010	BERYLLIUM	0.52	TR	J	0 0031	mg/kg	SD
<u>\$\$</u>	MIA134	MG743023	SW6010	BERYLLIUM	0.53	TR	ļ <u>,</u>	0.003	_mg/kg	<u>SD</u>
SS	MIA137	MG743002	SW6010	BERYLLIUM	0.50	TR TR	Į į	0.0029	ma/ka	SD SD
SS SS	MIA138 MIA139FD	MG743003	SW6010 SW6010	BERYLLIUM BERYLLIUM	0 52 0 48	TR TR	j	0.003	mg/kg	SD SD
SS	MIAT39FD MIAT41	MG743004 MG743005	SW6010 SW6010	BERYLLIUM	0.43	TR	j	0.0029	mg/kg mg/kg	SD
SS	MIA142	MG743005	SW6010	BERYLLIUM	0.56	TR	 ;	0 0029	mg/kg	SD
SS	MIA143	MG743007	SW6010	BERYLLIUM	0.49	TR	J	0 003	mg/kg	SD
SS	MIA145	MG743009	SW6010	BERYLLIUM	0.49	TR	T J	0.0028	mg/kg	SD
SS	MIA160FD	MG756008_	SW6010	BERYLUUM	0.26	TR	Ĵ	0 0028	mg/kg	SD
SS	MIA162	MG756009	SW6010	BERYLLIUM	04	ĪR	J	0.0028	mg/kg	SD
SS	MIA163	MG756010	SW6010	BERYLLIUM	0 44	TR	J	0 0029	mg/kg	SD
SS	MIA164	MG756011	SW6010	BERYLLIUM	0.3	TR	J	0 0029	mg/kg	SD
SS	MIA 165	MG756012	SW6010	BERYLLIUM	0.34	TR	J	0 0029	mg/kg	SD
SS	MIA166	MG756013	SW6010	BERYLUUM	0.45	TR	J	0 0029	mg/kg	SD
SS	MIA167	MG756014	SW6010	BERYLLIUM	0.41	TR	1 1	0.0031	mg/kg	SD
SS	MIA168	MG756015	SW6010	BERYLUUM	0.42	TR	1 - 1	0.0029	mg/kg	SD SD
<u>SS</u>	MIA 169	MG756016	SW6010	BERYLLIUM	0.41	TR	 !	0.0028	mg/kg	SD
SS	MIA170	MG756017	SW6010	BERYLLIUM	0.37	TR	 '	0.0028	mg/kg	SD
SS	MiA171FD	MG756018	SW6010	BERYLUUM	0.33	TR	<u> </u>	0.0028	ma/ka	SD
SS	MIA172	MG756019	SW6010	BERYLLIUM	0 37	l TR	l J	0 0027	mg/kg	SD

... 5

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

		Į l	Analytical		Final	Lab	Final			1
Matrix	Sample ID	Lab Sample ID	Method	Parameter	Result	Qual	Qual	Def Limit	Units	Qual Reason
SS	MIA325	MG756025	SW6010	BERYLLIUM	0.34	TIR	J	0.0028	ma/ka	SD
SS	MIA326	MG756026	SW6010	8ERYLUUM	0.37	TIR	J	0 0028	mg/kg	SD
SS	MIA327	MG756027	SW6010	BERYLLIUM	0.37	TR	J	0.0026	mg/kg	SD
SS	MIA218	MG776001	\$W6010	BERYLLIUM	0 47	TR	J	0 003	mg/kg	SD
SS	MIA220	MG776003	SW6010	BERYLLIUM	0.49	TR	J	0.0031 1	mg/kg	SD
SS	MIA221	MG776004	SW6010	BERYLLIUM	0.51	TR TR	J	0.003	mg/kg	SD
SS SS	MIA222 MIA223FD	MG776005 MG776006	SW6010 SW6010	BERYLLIUM BERYLLIUM	0.48	TR	J	0 003	mg/kg mg/kg	SD SD
SS	MIA225	MG776007	SW6010	BERYLLIUM	039	TR	J	0 003 1	mg/kg	SD SD
SS	MIA226	MG776008	SW6010	BERYLUUM	0.08	IIS	J	0.0028	mg/kg	SD
SS	MIA227	MG776009	SW6010	BERYLUUM	0.28	TR	J	0.0028 1	mg/kg	SD
SS	MIA228	MG776010	SW6010	BERYLLIUM	0.48	TR	J	0.0029 1	mg/kg	SD
SS	MIA229	MG776011	SW6010	BERYLLIUM	03	TR	J	0.003 1	mg/kg	SD
SS	MIA231FD	MG776013	SW6010	BERYLUUM	0.46	TR	J	0 003	mg/kg	SD.
SS	MIA233	MG776014	SW6010	BERYLUUM	04	TR TR	J	0.0003	mg/kg	SD
SS SS	MIA234 MIA236	MG776015 MG776016	SW6010 SW6010	BERYLLIUM BERYLLIUM	031	TR	J	0 0027	mg/kg ma/ka	SD SD
SS	MIA237	MG776017	SW6010	BERYLLIUM	0.37	TR	J	0.0027	ma/ka	SD
SS	MIA238	MG776018	SW6010	BERYLLIUM	0 23	TR	j	0.0027	mg/kg	SD
SS	MIA239	MG776019	SW6010	BERYLLIUM	0.36	TR	J	0 0027	mg/kg	SD
SS	MIA240	MG776020	SW6010	BERYLLIUM	0 18	TR	J	0 0027 '	mg/kg	SĐ
SS	MIA252	MG776021	0109MS	BERYLLIUM	0 27	ŢŖ	J	0 0026	mg/kg	SD
SS	MIA253	MG776022	SW6010	BERYLLIUM	0.48	TR		0 0029	mg/kg	SD
SS	MIA254	MG776023	SW6010	BERYLLIUM	0.42	TR	J	0 0029 7	mg/kg	SD
SS SS	MIA256 MIA257	MG776025 MG776026	SW6010	BERYLLIUM BERYLLIUM	03	TR TR	J	0.0027	mg/kg mg/kg	SD SD
SS	MIA257	MG776028	SW6010	BERYLLIUM	0 19	TR	<u> </u>	0.0027	mg/kg	SD
SS	MIA260	MG776029	SW6010	BERYLUUM	0.39	TR	j	0.0029	mg/kg	SD
SS	MIA241	MG777002	SW6010	BERYLLIUM	0.38	TR	j	0.0029	mg/kg	SD
SS	MIA242	MG777003	SW6010	BERYLLIUM	0.32	TR	J	0.0054 1	mg/kg	SD
SS	MIA246	MG777006	SW6010	BERYLLIUM	0.36	TR	J	0011	mg/kg	SD
SS	MIA247	MG777007	SW6010	BERYLLIUM	016	TR	<u> </u>	0 0027	mg/kg	SD
SS SS	MIA248	MG777008 MG777009	SW6010	BERYLUUM	0 13	TR TR	Ļ	0.0027	mg/kg	SD
SS	MIA249 MIA250	MG777010	SW6010 SW6010	BERYLLIUM BERYLLIUM	022	TR	ال ا	0 0066 1	mg/kg mg/kg	SD SD
SS	MIA251	MG777010	SW6010	BERYLLIUM	041	TR	- 3	0 0027	mg/kg	SD
SS	MIA261	MG777012	SW6010	BERYLLIUM	0.33	TR	J	0.054	mg/kg	SD
SS	MIA262	MG777013	SW6010	BERYLLIUM	0.68	ΤR	J	0.028	mg/kg	SD
SS	MIA263	MG777014	SW6010	BERYLLIUM	0 17	ΣĽ	J	0 0055 1	mg/kg	SD
SS	MIA277	MG777015	SW6010	BERYLLIUM	0 26	TR	J	0.0028	mg/kg	SD
SS	MIA278FD	MG777016	SW6010	BERYLIUM	0 29	TR	J	0 0029	≀ng/kg	SD
SS	MIA280	MG777017 MG777018	SW6010	BERYLLIUM	0.56	TR TR	-	0.0031	mg/kg	SD
SS	MIA281 MIA283	MG777020	SW6010	BERYLLIUM BERYLLIUM	0.56	TR	 	0.0029	mg/kg mg/ka	SD SD
SS	MIA284	MG777020	SW6010	BERYLLIUM	0.17	TR	J	0.0028 1	mg/kg	SD
SS	MIA285	MG777022	SW6010	BERYLLIUM	037	TR	Ĵ	0.003	ma/ka	SD.
SS	MIA286	MG777023	SW6010	BERYLLIUM	0.51	TR	Ĵ	0.0032 :	mg/kg	SD
SS	MIA287	MG777024	SW6010	BERYLLIUM	0.48	TR	J	0 003 1	mg/kg	SD
SS	MIA288	MG777025	SW6010	BERYLLIUM	061	TR	J	0.0031 1	mg/kg	\$D
SS	MIA290	MG777027	SW6010	BERYLLIUM	0.53	TR	<u> </u>	0.0029	mg/kg	SD
SS	MIA291	MG777028	SW6010	BERYLLIUM BERYLLIUM	0.33	TR TR	J	0.0027 (mg/kg	SD SD
SS SS	MIA243 MIA264	MG778021 MG778022	SW6010 SW6010	BERYLLIUM BERYLLIUM	037	TR	 	0.0027	mg/kg mg/kg	SD SD
SS	MiA265	MG778023	SW6010	BERYLLIUM	021	TR	Ľ	0.0027	mg/kg	SD
SS	MiA269	MG778027	SW6010	BERYLLIUM	0 29	TR	Ĵ	0.0028	mg/kg	SD
SS	MIA270	MG778028	SW6010	BERYLLIUM	0.26	TR	Ĵ	0.0028	mg/kg	SD
SS	MtA275	MG778001	SW6010	BERYLLIUM	0.09	TR	J	0014	mg/kg	SD
SS	MiA305	MG778003	SW6010	BERYLLIUM	0.36	TR	<u> </u>	0.003	mg/kg	SD
SS	MIA306	MG778004	SW6010	BERYLLIUM	0.39	TR	Į.	0.0029	mg/kg	SD
SS	MIA307FD	MG778005	SW6010	BERYLBUM	0.38	TR	ļ	0.0029	mg/kg	SD
SS SS	MIA309 MIA328	MG778006 MG785001	SW6010 SW6010	BERYLLIUM BERYLUUM	0.39	TR TR	<u> </u>	0.00281	mg/kg mg/kg	SD SD
SS	MIA 129FD	MG785001	SW6010	BERYLIUM	046	TR	J	0.0029 1	mg/kg	SD.
SS	MIA132	MG785003	SW6010	BERYLUUM 8ERYLUUM	034	TR	J	0.0029	mg/kg	SD
SS	MIA295	MG785007	SW6010	BERYLLIUM	004	TR	J	0 0026	mg/kg	SD
SS	MIA296	MG785008	SW6010	BERYLLIUM	0 22	TR	J	0.0027	mg/kg	SD
SS	MiA297FD	MG785009	SW6010	BERYLLIUM	0.33	TR	Ĵ	0 0027 1	mg/kg	SD
		MG785010	SW6010	BERYLLIUM	0.26	TR	J	0.0027	mg/kg	SD
SS	MIA299						<u> </u>	•		
	MIA302 MIA303	MG785013 MG785014	SW6010 SW6010	BERYLLIUM BERYLLIUM	0 47	TR TR	j	0.003	mg/kg mg/kg	SD SD

			A		Fra.=1	Lob	Final			
• • - • · · · ·	Samuela ID		Analytical	December	Final Result	Lab Quai	Final Qual	Det Limit	Units	Qual Reason
Matrix	Sample ID	Lab Sample ID MG756001	Method SW6010	Parameter BERYLLIUM	0 33	TR	- UJ	0 0027	ma/ka	SD SD
SS	MIA 153 MIA 155	MG756003	SW6010	BERYLLIUM	0.43	TR	W	0.0027	ma/ka	SD SD
SS	MIA 156	MG756004	SW6010	BERYLLIUM	0.42	TIR	w	0 0028	mg/kg	SD
SS	MIA157	MG756005	SW6010	BERYLLIUM	0.45	TR	W	0 0028	mg/kg	SD
SS	MIA159	MG756007	SW6010	BERYLLIUM	03	TR	W	0 0028	mg/kg	SD
SS	MIA258	MG776027	SW6010	BERYLLIUM	0.05	TR.	ŲJ	0 0026	mg/kg_	SD
SS	MIA230	MG776012	\$W6010	BERYLUUM	0.42	TR	J	0.003	mg/kg mg/kg	SD SD
SS SS	MIA244 MIA245	MG777004 MG777005	SW6010 SW6010	CADMIUM CADMIUM	0.89	= -		0.0093	mg/kg	SD.
SS	MIA277	MG777005	SW6010	CADMIUM	0.75	<u> </u>	J	0 0094	ma/ka	SD
SS	MIA278FD	MG777016	SW6010	CADMIUM	0.69	=	Ĵ	0.01	mg/kg	SD
ŞS	MIA280	MG777017	SW6010	CADMIUM	1	=	J	0.011	mg/kg	SD
SS	MIA283	MG777020	SW6010	CADMIUM	16	=	J	0 0094	mg/kg	SD
SS	MIA286	MG777023	SW6010	CADMIUM	0.76	=	<u> </u>	0011	mg/kg	SD
SS	MIA287	MG777024	SW6010	CADMIUM	0.79	# # TO	J	0.01	mg/kg	SD
SS	MIA241 MIA242	MG777002 MG777003	SW6010 SW6010	CADMIUM CADMIUM	0.41	TR TR	J	001	mg/kg mg/kg	SD SD
SS SS	MIA242 MIA246	MG777006	SW6010	CADMIUM	12	TR		0.036	mg/kg	SD I
SS	MIA247	MG777007	SW6010	CADMIUM	0 18	TR	J	0.0093	mg/kg	SD
SS	MIA248	MG777008	SW6010	CADMIUM	0 14	TR	J	0.0093	mg/kg	SD
SS.	MtA249	MG777009	SW6010	CADMIUM	3	TR	J	0 023	mg/kg	SD
SS	MiA250	MG777010_	SW6010	CADMIUM	014	TR	J	0 0093	mg/kg	SD
SS	MIA251	MG777011	SW6010	CADMIUM	03	TR	J.	001	mg/kg	SD
SS	MIA261 MIA262	MG777012	SW6010 SW6010	CADMIUM	37	TR TR	1	0 18	mg/kg	SD SD
SS SS	MIA262 MIA263	MG777013 MG777014	SW6010	CADMIUM CADMIUM	0.75	TR	 	0.019	mg/kg mg/kg	SD
SS	MIA281	MG777018	SW6010	CADMIUM	0.41	TR	<u> </u>	0 0097	mg/kg	\$D
SS	MIA282FD	MG777019	SW6010	CADMIUM	0.53	TR	J	0.0097	mg/kg	SD
SS	MtA284	MG777021	SW6010	CADMIUM	0.36	TR	j	0 0095	mg/kg	SD
SS	MIA285	MG777022	SW6010	CADMIUM	0.3	TR	J	001	mg/kg	SD
SS	MIA288	MG777025	SW6010	CADMIUM	0 47	TR	<u> </u>	0011	mg/kg	SD_
SS SS	MIA289	MG777026	SW6010	CADMIUM	0.45	TR	J	0 0097	mg/kg	SD SD
SS	MIA290 MIA291	MG777027 MG777028	SW6010 SW6010	CADMIUM CADMIUM	014	TR	<u> </u>	0.0092	mg/kg mg/kg	SD SD
SS	MIA243	MG778021	\$W6010	CHROMIUM, TOTAL	81	=	j	011	mg/kg	SD
SS	MIA264	MG778022	SW6010	CHROMIUM, TOTAL	97	=	J	012	mg/kg	SD
SS	MIA265	MG778023	SW6010	CHROMIUM TOTAL	7.5	=	J	011	mg/kg	SD
SS	MIA269	MG778027	SW6010	CHROMIUM, TOTAL	27.8	_=_	J	012	mg/kg	SD
SS	MIA270	MG778028	SW6010	CHROMIUM TOTAL	13.8	-	├	0 12	mg/kg	SD
SS	MIA275	MG778001	SW6010 SW6010	CHROMIUM TOTAL CHROMIUM TOTAL	92	=	J	0.56	mg/kg mg/kg	SD SD
SS	MIA305 MIA306	MG778003 MG778004	SW6010	CHROMIUM TOTAL	10.3	-	<u> </u>	0 12	mg/kg	SD SD
SS	MIA307FD	MG778005	SW6010	CHROMIUM TOTAL	10.4	 	Ť	0 12	mg/kg	SD
SS	MIA309	MG778006	SW6010	CHROMIUM TOTAL	10 1	=	Ĵ	0 12	mg/kg	SD
SS	MiA313	MG778010	SW6010	CHROMIUM TOTAL	38	=	J	011	mg/kg	SD
SS	MIA314FD	MG778011	SW6010	CHROMIUM, TOTAL	38 4	=	J	011	mg/kg	SD
SS	MiA315	MG778012	SW6010	CHROMIUM TOTAL	31 3	=	<u> </u>	011	mg/kg	SD
SS SB	MIA316 MIA074	MG778013 MG743012	SW6010 SW6010	CHROMIUM, TOTAL COBALT	13.2 6.8	=	J	011	mg/kg mg/kg	SD SD
SB	MIA074	MG743012	SW6010	COBALT	69	=	1	0.062	mg/kg	SD
SS	MIA134	MG743023	SW6010	COBALT	66	<u> </u>	j	0.06	rng/kg	SD
SS	MIA138	MG743003	SW6010	COBALT	7.6	=	J	0.059	mg/kg	SD
SS	MIA139FD	MG743004	SW6010	COBALT	7.4	=	_J	0.06	mg/kg	SD
SS	MIA141	MG743005	SW6010	COBALT	62		J	0.057	mg/kg	SD
SS	MIA142	MG743006	SW6010	COBALT	8	=	J.	0.059	mg/kg	SD
<u>SS</u>	MIA143 MIA144	MG743007 MG743008	SW6010 SW6010	COBALT COBALT	7 57	=	J	0.06 0.056	mg/kg	SD SD
SS	MIA145	MG743009	SW6010	COBALT	72	=	j	0.056	mg/kg mg/kg	SD SD
SB	MIA075	MG743013	SW6010	COBALT	27	TR	Ĵ	0.062	mg/kg	SD
SS	MIA137	MG743002	SW6010	COBALT	56	TR	J	0.058	mg/kg	SD
SS	MIA193	MG770006	SW6010	COPPER	17.7	=	J	0 12	mg/kg	SD
SS	MIA188	MG770001	SW6010	COPPER	97	1R	J	0.53	mg/kg	SD
SS	MIA189FD	MG770002	SW6010	COPPER	111	TR	J	0.53	mg/kg	SD SD
SS	MIA144	MG743008	SW6010	COPPER	119	=	1 1	011	mg/kg	SD SD
SB SB	MIA074 MIA075	MG743012 MG743013	SW6010 SW6010	COPPER COPPER	18 2 9 5	=	J	0 12	mg/kg mg/kg	SD SD
SB	MIA076	MG743013 MG743014	SW6010	COPPER	176	=	1 1	0 12	mg/kg	SD
SB	MIA125	MG743020	SW6010	COPPER	191	=	_ j	0 12	mg/kg	SD
SB	MIA126	MG743021	SW6010	COPPER	15 1		J	0 12	mg/kg	SD
SB	MiA127	MG743022	SW6010	COPPER	10.7	=	J	013	mg/kg	SD
SS	MIA134	MG743023	SW6010	COPPER	18.5		J	0 12	mg/kg	SD

ATTACHMENT A

Changes in Qualifiers Due to the Data Validation Process Memphis Depot Main Installation RI

			Analytical		Finat		F	1	-	
Matrix	Sample ID	Lab Sample ID	Method	Parameter	Result	Lab Qual	Final Qual	Det Limit	Units	Qual Reason
SS	MIA137	MG743002	SW6010	COPPER	193	=	j	0 12	mg/kg	SD SD
SS	MIA138	MG743003	SW6010	COPPER	18.3	_	J	0 12	ma/ka	SD
SS	MIA139FD	MG743004	SW6010	COPPER	184	=	J	0 12	mg/kg	SD
SS	MIA141	MG743005	SW6010	COPPER	15 1	=	J	0 11	mg/kg	\$D
SS SS	MIA142 MIA143	MG743006 MG743007	SW6010 SW6010	COPPER COPPER	19	=		0 12 1	mg/kg	SD
SS	MIA145	MG743007	SW6010	COPPER	16.5 16.2	=	J 1	012 '	mg/kg mg/kg	SD SD
SS	MIA218	MG776001	SW6010	COPPER	25.5	=	j	012	ma/ka	SD
SS	MIA220	MG776003	SW6010	COPPER	27 2	=	J	0 12	mg/kg	SD
SS	MIA221	MG776004	\$W6010	COPPER	25 2	=	J	012	mg/kg	SD
SS SS	MIA222 MIA223FD	MG776005 MG776006	SW6010	COPPER	18 1	=	<u> </u>	0 12	mg/kg	SD
SS	MIA225FD	MG776006 MG776007	SW6010 SW6010	COPPER COPPER	19.5 18	=	<u>j</u>	012	mg/kg mg/kg	SD SD
SS	MiA227	MG776009	SW6010	COPPER	115	=	J	011	ma/ka	SD SD
SS	MIA228	MG776010	SW6010	COPPER	15 9	=	Ĵ	0 12	mg/kg	SD
SS	MIA229	MG776011	SW6010	COPPER	21.2	=_	J	0 12	mg/kg	SD
SS	MIA230	MG776012	SW6010	COPPER	15 3	=_	J	0 12	mg/kg	SD
SS	MIA231FD	MG776013	SW6010	COPPER	163	=	<u></u>	0 12 '	mg/kg	SD
SS SS	MIA233 MIA236	MG776014 MG776016	SW6010 SW6010	COPPER COPPER	15 6 14 6	=	J	012 (mg/kg	SD SD
SS	MIA237	MG776017	SW6010	COPPER	13.4	=	J	011 1	mg/kg mg/ka	SD SD
SS	MiA239	MG776019	SW6010	COPPER	10.6	=	j	011	ma/ka	SD SD
SS	MIA240	MG776020	SW6010	COPPER	43	=	J	011 (mg/kg	\$D
SS	MIA253	MG776022	SW6010	COPPER	169	=	J	011 (mg/kg	\$D.
SS	MIA254	MG776023	SW6010	COPPER	14	=	J	0 12	mg/kg	SD
SS SS	MIA255 MIA256	MG776024 MG776025	SW6010 SW6010	COPPER COPPER	39 1	=	J	0.52 (mg/kg	SD
SS	MIA257	MG776025	SW6010	COPPER	20 2 4	=	J	011	mg/kg mg/kg	SD SD
SS	MIA259	MG776028	SW6010	COPPER	71	-	 j	011	mg/kg	SD
SS	MIA260	MG776029	SW6010	COPPER	127	=	J	0 12	mg/kg	SD
SS	MIA128	MG785001	SW6010	COPPER	154	=	J	0 12	mg/kg	SD
SS	MIA129FD	MG785002	SW6010	COPPER	16.5	= -	J	0 12	mg/kg	SD
SS SS	MIA132 MIA295	MG785003 MG785007	SW6010 SW6010	COPPER	15 9 9 1	=	<u> </u>	011	mg/kg	SD SD
SS	MIA295	MG785007 MG785008	SW6010	COPPER COPPER	133	=	J	011	mg/kg mg/kg	SD SD
SS	MIA297FD	MG785009	SW6010	COPPER	163	=	J	011	mg/kg	SD
SS	MIA299	MG785010	SW6010	COPPER	91	=	J	011 1	mg/kg	SD
SS	MIA302	MG785013	SW6010	COPPER	168	=	J	0 12	mg/kg	SD
SS	MIA303	MG785014	SW6010	COPPER	18 9	=	J	012 '	mg/kg	SD
SS SS	MIA304 MIA226	MG785015 MG776008	SW6010 SW6010	COPPER COPPER	21 9 7 6	= TR	J	012 (mg/kg	SD SD
SS	MIA234	MG776008 MG776015	SW6010	COPPER	87	TR	<u>J</u>	0.43	mg/kg mg/kg	SD
SS	MIA238	MG776018	SW6010	COPPER	8 2	TR	Ĵ	11	mg/kg	SD
SS	MIA252	MG776021	SW6010	COPPER	109	TR	j	0.52 1	rng/kg	SD
SS	MIA258	MG776027	SW6010	COPPER	38	TR	J	0.53 (mg/kg	SD
SS	MIA188	MG770001	SW6010	<u>LEAD</u>	43 7	=	J	0.68	mg/kg	SD
SS SS	MIA189FD MIA193	MG770002 MG770006	SW6010 SW6010	<u>LEAD</u> LEAD	53 6 15 4	=	J	0.68 1	mg/kg	SD SD
SS	MIA218	MG776001	SW6010	LEAD	38 4	=	J	0 16 1	mg/kg mg/kg	SD SD
SS	MIA220	MG776003	SW6010	LEAD	41.6		J	0 16 1	mg/kg	\$D
SS	MIA221	MG776004	SW6010	LEAD	34 3	=	J	016 (mg/kg	
SS	MIA222	MG776005	SW6010	LEAD	49 9	=	J	0 16	mg/kg	SD
SS	MIA223FD	MG776006	SW6010	LEAD.	56 5	=	<u> </u>	0 15	mg/kg	SD SD
SS	MIA225 MIA226	MG776007 MG776008	SW6010 SW6010	LEAD LEAD	21 14 1	=	J	0 16	mg/kg	SD SD
SS SS	MIA220	MG776008 MG776009	SW6010	LEAD	13.5	=	J	0 14	mg/kg mg/kg	SD SD
SS	MIA228	MG776010	SW6010	LEAD	18.8			0 15 !	mg/kg	SD SD
SS	MIA229	MG776011	SW6010	LEAD	85 4	=	j	0 16 1	ma/ka	SD
SS	MIA230	MG776012	SW6010	LEAD	11.7	=	J	0 15	mg/kg	SD
SS	MIA231FD	MG776013	SW6010	LEAD	16.5	=	J	0 15 1	mg/kg	SD
SS SS	MIA233	MG776014 MG776015	SW6010 SW6010	LEAD LEAD	93 932	=	J	0 15 ¹ 0 56 ¹	mg/kg	SD
SS	MIA234 MIA236	MG776016	SW6010	LEAD	210	=	J	0 14 1	mg/kg mg/kg	SD SD
SS	MIA237	MG776010	\$W6010	LEAD	120		J	0 14 1	mg/kg	SD
SS	MIA238	MG776018	SW6010	LEAD	24 9	=	Ĵ	14 1	mg/kg	SD
SS	MIA239	MG776019	SW6010	LEAD	125	=	J	0 14 (mg/kg	\$D.
SS	MIA240	MG776020	SW6010	LEAD	22	=	J	0 14	mg/kg	SD
SS	MIA252	MG776021	SW6010	LEAD	162	=	J	066 1	mg/kg	SD
SS	MIA253	MG776022	SW6010	LEAD	121	=	J	015 :	mg/kg	\$D
SS	MIA254	MG776023	SW6010	LEAD	86	-	J	015	mg/kg	SD

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

Motrix	Sample ID	tab Sample ID	Analytical Method	Parameter	Final Result	Lab Qual	Final Qual	Det Limit	Units	Qual Reason
SS	M)A256	MG776025	SW6010	LEAD	1590	=	J	014	mg/kg	SD
SS	MIA257	MG776026	SW6010	LEAD	95.2	_	j	014	ma/kg	SĐ
SS	MIA258	MG776027	SW6010	LEAD	76 2	=	Ĵ	0.68	mg/kg	SD
SS	MIA259	MG776028	SW6010	LEAD	745	P.	J	0 14	mg/kg	SD
SS	MIA260	MG776029	SW6010	LEAD	15.5	=	J	0 15	ma/ka	SD
SS	MIA243	MG778021	SW6010	LEAD	188	. =	J	0 14	mg/kg	\$D
SS	MIA264	MG778022	SW6010	LEAD	20 2	=		0 14	mg/kg	\$D
SS	MIA265	MG778023	SW6010	LEAD	11.8	=	J	14	mg/kg	\$D
SS	MIA269	MG778027	SW6010	LEAD	187	=	J	0 15	mg/kg	SD SD
SS	MIA270	MG778028	SW6010	LEAD	82 1	=-	J	0 14	mg/kg	SD SD
SS	MIA275	MG778001	SW6010 SW6010	LEAD LEAD	14 8 32 8	=	J	0.16	mg/kg mg/kg	SD
SS SS	MIA305 MIA306	MG778003 MG778004	SW6010	LEAD	10.4	=		0 15	mg/kg	SD
SS	MIA307FD	MG778004 MG778005	SW6010	LEAD	10.5	-		0 15	ma/ka	SD
SS	MIA309	MG778006	SW6010	LEAD	96		-	014	mg/kg	SD
SS	MIA313	MG778010	SW6010	LEAD	344	=	j	14	ma/ka	SD
SS	MIA314FD	MG778011	SW6010	LEAD	727	=	Ĵ	13	mg/kg	SD
SS	MIA315	MG778012	SW6010	LEAD	250	-	Ĵ	14	mg/kg	SD
SS	MIA316	MG778013	SW6010	LEAD	157	=	J	14	mg/kg	SD_
SS	MIA128	MG785001	SW6010	LEAD	36 3	=	J	0 15	mg/kg	SD
SS	MIA129FD	MG785002	SW6010	LEAÐ	35 4	=	J	0 15	ma/kg	SD
SS	MIA132	MG785003	SW6010	LEAD	11.4		J	0 15	mg/kg	SD
SS	MIA295	MG785007	SW6010	LEAD	22 6	=	J	0 14	mg/kg	SD
SS	MIA296	MG785008	SW6010	LEAD	12 7			014	mg/kg	SD
SS	MIA297FD	MG785009	SW6010	LEAD	13 7	=	<u> </u>	014	mg/kg	SD
SS	MIA299	MG785010	SW6010	LEAD	14 3	=		014	mg/kg	SD
SS	MIA302	MG785013	SW6010	LEAD	29 2	 -	<u> </u>	0 15 0 15	mg/kg	SD SD
SS SS	MIA303 MIA304	MG785014 MG785015	SW6010 SW6010	LEAD LEAD	32 74 9	=	1	0 16	mg/kg mg/kg	SD_
SS	MIA243	MG778021	SW6010	NICKEL	7.8	-	j	0.035	ma/ka	SD
SS	MIA264	MG778022	SW6010	NICKEL	11		 	0.036	ma/ka	SD
SS	MIA265	MG778023	SW6010	NICKEL	83	=	Ť	0.035	mg/kg	SD
SS	MIA269	MG778027	SW6010	NICKEL	26 4	=.	J	0.036	mg/kg	SD
SS	MIA270	MG778028	SW6010	NICKEL	115		J	0 036	mg/kg	SD
SS	MIA305	MG778003	\$W6010	NICKEL	14 1	=	J	0.039	mg/kg	SD
SS	MIA306	MG778004	SW6010	NICKEL	15 1	=	J	0 037	mg/kg	SD
SS	MIA307FD	MG778005	SW6010	NICKEL	142	=	<u> </u>	0 038	mg/kg	SD
SS	MIA309	MG778006	SW6010	NICKEL	146	=	J J	0 036	mg/kg	SD
SS	MIA313	MG778010	SW6010	NICKEL	67	=	J	0.034	mg/kg	SD
SS	MIA314FD	MG778011	SW6010	NICKEL	46 3	=	 	0.034	mg/kg	SD
SS SS	MIA315	MG778012	SW6010	NICKEL	63	= -	 	0 035	mg/kg mg/ka	SD SD
SS	MIA336 MIA128	MG778013 MG785001	SW6010 SW6010	NICKET NICKET	13.7	= .	 	0 037	mg/kg	SD
SS	MIA129FD	MG785001	SW6010	NICKEL	15 7		1 3	0 037	mg/kg	SD
SS	MiA132	MG785003	SW6010	NICKEL	168	-	j	0.037	mg/kg	SD
SS	MiA295	MG785007	SW6010	NICKEL	61		J	0.034	mg/kg	SD
SS	MIA296	MG785008	SW6010	NICKEL	7	=	Ĵ	0.035	mg/kg	SD
SS	MIA297FD	MG785009	SW6010	NIÇKEL	83	=	J	0.034	mg/kg	SD
SS	MIA299	MG785010	SW6010	NICKEL	8.5	_=_	J	0 034	mg/kg	SD
SS	MIA302	MG785013	SW6010	NICKEL	17 1	=	J	0.039	mg/kg	SD
SS	MIA303	MG785014	SW6010	NICKEL	181	=	J	0 039	mg/kg	SD
SS	MIA304	MG785015	SW6010	NICKEL	167	-	l J	0.039	mg/kg	SD
SS	MIA275	MG778001	SW6010	NICKEL	10.5	TR	 	0.17	mg/kg	SD
SS	MIA328FD	MG757001	SW6010	ZINC	299	-	1	0 12	mg/kg	SD SD
SS	MIA330	MG757002	SW6010	ZINC	60.6	 = -	 	0 13	mg/kg	SD
SS	MIA331	MG757003	SW6010 SW6010	ZINC ZINC	36 9 57 3	-=	J	0 13 0 13	mg/kg mg/kg	SD SD
SS	MIA332 MIA333	MG757004 MG757005	SW6010	ZINC	57.8	=	 	013	mg/kg	SD SD
SS	MIA334	MG757006	SW6010	ZINC	653	 	1 1	013	mg/kg	SD SD
SS	MIA335	MG757007	SW6010	ZINC	37.4	 - -	1 1	013	mg/kg	SD
SS	MIA336	MG757008	SW6010	ZINC	30 7		Ť	0 13	mg/kg	SD
SS	MIA337	MG757009	SW6010	ZINC	61 4	=	T J	0 12	mg/kg	SD
SS	MIA338	MG757010	SW6010	ZINC	300	<u> </u>	J	0 12	mg/kg	SD
SS	MIA339	MG757011	SW6010	ZINC	30 2	 _	Ĵ	012	mg/kg	SD
SS	MIA349	MG757012	SW6010	ZINC	57 4	_	I J	0 14	mg/kg	SD
SS	MIA350	MG757013	SW6010	ZINC	443	=	J	0 13	mg/kg	SD
SS	MIA351	MG757014	SW6010	ZINC	38 9	_ =	J	0 12	mg/kg	SD
SS	MIA188	MG770001	SW6010	ZINC	142	=	J	0 12	mg/kg	SD
SS	MIA189FD	MG770002	\$W6010	ZINC	748	=	J	0.12	mg/kg	SD
SS	MIA 193	MG770006	SW6010	ZINC	53.7	=	J	0 13	mg/kg	SD
SS	MIA218	MG776001	SW6010	ZINC	59.4	1 = .	J	0 13	mg/kg	SD

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

		,						1		
Matrix	Sample ID	Lab Sample ID	Analytical Method	Parameter	Final Result	Lab	Final Qual	Det Limit	Units	Qual Reason
SS	MIA221	MG776004	SW6010	ZINC	65 2		J	0.13		SD SD
SS	MIA153	MG756001	SW6010	ZINC	386	=		013	mg/kg mg/kg	SD SD
SS	MIA155	MG756003	SW6010	ZINC	141	 		013	mg/kg	SD SD
SS	MIA156	MG756004	SW6010	ZINC	170		<u> </u>	012	ma/ka	SD
SS	MIA158	MG756006	SW6010	ZINC	53 9	╅	l j	012 1	mg/kg	SD
SS	MiA159	MG756007	SW6010	ZINC	340		ij	012	ma/ka	SD
SS	MIA160FD	MG756008	SW6010	ZINC	251	-	j	012	mg/kg	SD
SS	MIA162	MG756009	SW6010	ZINC	49.8		j	012	mg/kg	SD
SS	MIA163	MG756010	SW6010	ZINC	36 8	-	J	013	ma/ka	SD
SS	MIA164	MG756011	SW6010	ZINC	1010	=	Ĵ	013	ma/ka	SD
SS	MIA165	MG756012	SW6010	ZINC	59 4	=	J	013	mg/kg	SD
SS	MIA166	MG756013	SW6010	ZINC	33 4	=	J	0.13	mg/kg	SD
SS	MIA 167	MG756014	SW6010	ZINC	204	=	J	014	mg/kg	SD
SS	MIA168	MG756015	SW6010	ZINC •	48 9	=	J	0 13 ,	mg/kg	SD
SS	MIA 169	MG756016	\$W6010	ZINC	39.4	=	J	0 12 '	mg/kg	SD
SS	MIA170	MG756017	SW6010	ZINC	235	2	J	012 +	mg/kg	SD
SS	MIA171FD	MG756018	SW6010	ZINC	329	_=	J	0 12	mg/kg	SD
SS	MIA172	MG756019	SW6010	ZINC	52	<u> </u>	J	0 12	mg/kg	SD
SS	MIA173	MG756020	SW6010	ZINC	43		J	0 13	mg/kg	SD
SS	MIA325	MG756025	SW6010	ZINC	856	=	J	0 12	mg/kg	SD
SS	MIA326	MG756026	SW6010	ZINC	78	=	J	0 12 1	mg/kg	SD
<u>SS</u>	MIA327	MG756027	SW6010	ZINC	282	=	J	0.12 (mg/kg	SD
SS	MIA220	MG776003	SW6010	ZINC	76.6	=_	J	0 14	mg/kg	SD
SS	MIA222	MG776005	SW6010	ZINC	806	_=_	J	0 13 1	mg/kg	SD
SS	MIA223FD	MG776006	SW6010	ZINC	823	- = -	J	0 13 '	mg/kg	SD
SS	MIA225	MG776007	SW6010	ZINC	59 7	=	J	0 13 1	mg/kg	SD
SS	MIA226	MG776008	SW6010	ZINC	26 2	<u> </u>	<u> </u>	0 12 .	mg/kg	SD
SS	MIA227	MG776009	SW6010	ZINC	31.4	=	<u></u>	0 12 +	mg/kg	SD
SS	MIA228	MG776010	SW6010	ZINC	67.8		J	013	mg/kg	SD
SS	MIA229	MG776011	SW6010	ZINC	105	-		0 13 1	mg/kg	SD
SS	MIA230	MG776012	SW6010	ZINC	43 9	=	J	0 13 1	mg/kg	SD
SS	MIA231FD	MG776013	SW6010	ZINC	50 2	-	ļ J	0.13 (mg/kg	SD
SS	MIA233	MG776014	SW6010	ZINC	41	=	J	0 13 !	mg/kg	SD
SS	MIA234	MG776015	SW6010	ZINC	123	=	<u> </u>	0 12 1	mg/kg	SD
SS	MIA236	MG776016	SW6010	ZINC	229	=	J	0.12	mg/kg_	SD
SS	MIA237	MG776017	SW6010	ZINC	433		J	0 12	ma/ka	SD
SS	MIA238	MG776018	SW6010	ZINC	41.6	=-	<u> </u>	0 12	mg/kg	SD
SS SS	MIA239 MIA240	MG776019 MG776020	SW6010 SW6010	ZINC	37.3	╀──≡─	ļ	0 12 1	mg/kg	SD
SS SS	MIA252	MG776020 MG776021		ZINC ZINC	28 2	-		0 12	mg/kg	SD
SS	MIA253	MG776021 MG776022	SW6010 SW6010	ZINC	312 56 6	┝═	 	011 013	mg/kg	SD SD
SS	MIA254	MG776022 MG776023	SW6010	ZINC	40 2		 		mg/kg	
SS	MIA255	MG776023 MG776024	SW6010	ZINC	1160	-	J	013	mg/kg	SD SD
SS	MIA256	MG776025	SW6010	ZINC	690	=	J	012 1	mg/kg	SD SD
SS	MIA257	MG776026	SW6010	ZINC	653	 	ز	012	mg/kg	SD
SS	MIA258	MG776027	SW6010	ZINC	364	=	,	012	mg/kg	SD SD
SS	MIA259	MG776028	SW6010	ZINC	571	=	٠	012 (ma/ka ma/ka	SD SD
SS	MIA260	MG776029	SW6010	ZINC	49.5	===		013	mg/kg	SD SD
SS	MIA243	MG778021	SW6010	ZINC	140	=		012	ma/ka	SD I
SS	MIA264	MG778022	SW6010	ZINC	43 8	<u> </u>		012 :	mg/kg	SD
SS	MIA265	MG778023	SW6010	ZINC	44 4	<u> </u>	J	012	mg/kg	
SS	MIA269	MG778027	SW6010	ZINC	228	=	J	012	mg/kg	SD
SS	MIA270	MG778028	SW6010	ZINC	87 7	=	Ī	0 12	mg/kg	SD
SS	MIA275	MG778001	SW6010	ZINC	45 4	 - -	,	0.59	mg/kg	SD SD
SS	MIA305	MG778003	SW6010	ZINC	55 3	=	J	0 13 1	mg/kg	SD
SS	MIA306	MG778004	SW6010	ZiNC	45 2	-	J	0 13	mg/kg	SD
\$S	MIA307FD	MG778005	SW6010	ZINC	42 4	=	J	013	mg/kg	SD
SS	MIA309	MG778006	SW6010	ZINC	43 4			0 12	mg/kg	SD
SS	MIA313	MG778010	SW6010	ZiNC	184	=	Ĭ	0 12	mg/kg	SD
SS	MIA314FD	MG778011	_ SW6010	ZINC	1770	-	Ĵ	0 12	mg/kg	SD
SS	MIA315	MG778012	SW6010	ZINC	121	_	Ĵ	0 12	mg/kg	SD
SS	MIA316	MG778013	SW6010	ZINC	117	=	Ĵ	0 12	mg/kg	SD
SS	MIA128	MG785001	SW6010	ZINC	72.8	=	Ĵ	013	mg/kg	\$D.
SS	MIA129FD	MG785002	SW6010	ZINC	75 2	=	J	0 13	mg/kg	SD
SS	MIA132	MG785003	SW6010	ZINC	46.9	=	Ĵ	0 13	mg/kg	SD
SS	MIA295	MG785007	SW6010	ZINC	28	=	Ĵ	012 1	mg/kg	SD
SS	MIA296	MG785008	SW6010	ZINC	29 9	=	J	012	mg/kg	SD
SS	MIA297FD	MG785009	SW6010	ZINC	34 7	=	<u> </u>	012	mg/kg	SD SD
SS	MIA299	MG785010	SW6010	ZINC	45	_	J	012	mg/kg	SD
SS	MIA302	MG785013	SW6010	ZINC	59 2	=	Ĵ	013	mg/kg	SD
SS	MIA303	MG785014	SW6010	ZINC	69 4	=	Ĵ	013	mg/kg	SD
								·	is, nu	

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

Mater	Sample ID	tab Samola ID	Analytical Method	Poromotor	Final	Lab	Final	Dattimit	Units	Qual Pages
Matrix SS	MIA304	MG785015	Method SW6010	Parameter ZINC	Result 107	Qual	Qual J	Det Limit 0 13	ma/ka	Qual Reasor
SS	M:A304	MG743009	SW6010	ZINC	49	=	.J	013	mg/kg mg/kg	SD
WS	MIA019FD	MG682002	SW8081	ALDRIN	0.05	= U	UJ	0.05	ua/L	SS
WS	MIA019FD	MG682002	SW8081	ALPHA BHC	0.05	Ü	UJ	0.05	ug/L	SS
WS	MIA019FD	MG682002	SW8081	ALPHA ENDOSULFAN	0.05	Ŭ	UJ	0.05	ug/L	ŞS
W5	MIAD19FD	MG682002	SW8081	ALPHA-CHLORDANE	0.05	Ü	IJ	0.05	ug/L	SS
WS	MIA019FD	MG682002	SW8081	BETA BHC	0.05	U	ŲJ	0.05	ug/L	SS
W\$	MIA019FD	MG682002	SW8081	BETA ENDOSULFAN	01	U	ນ	01	ug/L	SS
WS	MIA019FD	MG682002	SW8081	DELTA BHC (DELTA	0.05	U	w	0.05	ug/L	SS
WS	MIA019FD	MG682002	SW8081	DIELDRIN	01	Ų	UJ_	01	ug/L	SS
WS	MIA019FD	MG682002	SW8081	ENDOSULFAN SULFATE	01	U	UJ	0]	ug/L	SS
WS	MIA019FD	MG682002	SW8081	ENDRIN ENDRIN ALGERINGE	01	<u> </u>	UJ ·	01	ug/L	SS
WS WS	MIA019FD MIA019FD	MG682002 MG682002	SW8081 SW8081	ENDRIN ALDEHYDE ENDRIN KETONE	01	U	UJ	01	ug/L	SS
WS	MIA019FD	MG682002	SW8081	GAMMA BHC (LINDANE)	0.05	Ü	- 03	0.05	ug/L ug/L	SS
WS	MIA019FD	MG682002	SW8081	GAMMA-CHLORDANE	0.05	Ü	เม	0.05	ug/L ug/L	SS
WS	MIA019FD	MG682002	SW8081	HEPTACHLOR	0.05	Ü	นม	0.05	ug/L	SS
WS	MIA019FD	MG682002	SW8081	HEPTACHLOR EPOXIDE	0.05	Ű	UJ	0.05	ug/L	SS
WS	MIA019FD	MG682002	SW8081	METHOXYCHLOR	0.5	U	UJ	05	ug/L	SS
WS	MIA019FD	MG682002	SW8081	p p'-DDC	01	Ü	UJ	01	ug/L	SS
WS	MIA019FD	MG682002	SW8081	pp'-DDE	_ 01	U	ŲJ	01	ug/L	SS
WS	MIA019FD	MG682002	SW8081	pp'-DD1	01	U	w	01	ug/L	SS
WS	MIA019FD	MG682002	SW8081	PCB-1016 (AROCHLOR 1016)	ī	U	UJ	1	ug/L	SS
WS	MIA019FD	MG682002	SW8081	PCB-1221 (AROCHLOR 1221)	2	U	UJ	2	ug/L	SS
WS	MIA019FD	MG682002	SW8081	PCB-1232 (AROCHLOR 1232)	1 1	υ	UJ	1	ug/L	SS
WS	MIA019FD	MG682002	SW8081	PCB-1242 (AROCHLOR 1242)	1	U	UJ.	1	ug/L	SS
WS	MIA019FD	MG682002	SW8081	PCB-1248 (AROCHLOR 1248)	 	Ų.	UJ.	!	ug/L	SS
WS WS	MIA019FD MIA019FD	MG682002	SW8081 SW8081	PCB-1254 (AROCHLOR 1254) PCB-1260 (AROCHLOR 1260)	 	U	II)	1	ug/L	SS
WS	MIA019FD	MG682002 MG682002	SW8081	TOXAPHENE	5	· · ii	נט	5	ug/L ug/L	SS SS
SS	MIA056	MG720004	SW8100	1-METHYLNAPHTHALENE	58	 	W	58	ug/ka	SS
SS	MIA056	MG720004	SW8100	2-METHYLNAPHTHALENE	58	Ü	w	58	ug/kg	SS
SS	MIA056	MG720004	\$W8100	ACENAPHTHENE	58	υ	w	58	ug/kg	SS
SS	MIA056	_ MG720004	SW8100	ACENAPHTHYLENE	58	Ū	Ü	58	ug/kg	SS
SS	MIA056	MG720004	SW8100	ANTHRACENE	58	U	W	58	ug/kg	SS
SS	MIA056	MG720004	SW8100	BENZO(a)ANTHRACENE	58	U	IJ	58	ug/kg	SS
SS	MIA056	MG720004	SW8100	BENZO(a)PYRENE	58	U	UJ	58	ug/kg	SS
SS	MIA056	MG720004	SW8100	BENZO(b)FLUORANTHENE	58	U	UJ	58	ug/kg	SS
SS	MIA056	MG720004	SW8100	BENZO(g,h,i)PERYLENE	58	U	UJ	58	ug/kg	SS
SS	MIA056	MG720004	SW8100	BENZO(k)FLUORANTHENE	58	U	w	58	ug/kg	SS
SS SS	MIA056 MIA056	MG720004 MG720004	SW8100 SW8100	CHRYSENE	58	<u> </u>	UJ	58	ug/kg	SS
<u></u>	MIA056	MG720004	SW8100	DIBENZ(a h)ANTHRACENE FLUORANTHENE	58 58	U U	UJ	58 58	ug/kg ug/kg	SS
SS	MIA056	MG720004	SW8100	FLUORENE	58	u	UJ	58	ug/kg	SS
SS	MIA056	MG720004	SW8100	INDENO(1 2,3-c d)PYRENE	58	Ü	UJ	58	ug/kg	SS
SS	MIA056	MG720004	SW8100	NAPHTHALENE	58	ŭ	UJ	58	ua/ka	SS
SS	MIA056	MG720004	SW8100	PHENANTHRENE	58	Ū	ÜĴ	58	ug/kg	SS
SS	MIA056	MG720004	SW8100	PYRENE	58	U	IJ	58	ug/kg	SS
SS	MIA060	MG720008	SW8100	1-METHYLNAPHTHALENE	1000	U	UJ	1000	ug/kg	SS
SS	MIA060	MG720008	SW8100	2-METHYLNAPHTHALENE	1000	U	IJ	1000	ug/kg	SS
SS	MIA060	MG720008	SW8100	ACENAPHTHENE	1000	U	UJ	1000	ua/ka	SS
SS	MIA060	MG720008	SW8100	ACENAPHTHYLENE	1000	U	UJ	1000	ug/kg	SS
SS	MIA060	MG720008	SW8100	ANTHRACENE	1000	U	w	1000	ug/kg	SS
<u>\$\$</u>	MIA060	MG720008	SW8100	BENZO(a)ANTHRACENE	2000	-	<u> </u>	1000	ug/kg	SS
<u>SS</u>	MIA060	MG720008	SW8100	BENZO(a)PYRENE	2200	-	<u> </u>	1000	ug/kg	SS
SS SS	MtA060 MtA060	MG720008 MG720008	SW8100 SW8100	BENZO(b)FLUORANTHENE BENZO(g h I)PERYLENE	1300	=	<u>,</u>	1000	ug/kg	SS
SS	MIA060	MG720008	SW8100	BENZO(k)FLUORANTHENE	1900	=	j	1000	ug/kg ug/kg	SS SS
SS	MIA060	MG720008	SW8100	CHRYSENE	2400	=	j	1000	ug/kg ug/kg	SS
SS	MIA060	MG720008	SW8100	DIBENZ(a,h)ANTHRACENE	1000	Ü	Ü	1000	ug/kg	SS
SS	MIA060	MG720008	SW8100	FLUORANTHENE	4900	=	J	1000	ug/kg	SS
SS	MIA060	MG720008	\$W8100	FLUORENE	1000	Ū	ŭ	1000	ug/kg	SS
SS	MIA060	MG720008	SW8100	INDENO(1 2 3-c d)PYRENE	1400	=	J	1000	ug/kg	SS
SS	MIA060	MG720008	SW8100	NAPHTHALENE	1000	U	_UJ	1000	ug/kg	SS
SS	MIA060	MG720008	SW8100	PHENANTHRENE	3400	=	J	1000	ug/kg	\$\$
SS	MIA060	MG720008	SW8100	PYRENE	3500	=	J	1000	ug/kg	SS
SS	MIA082	MG723014	SW8100	BENZO(a)ANTHRACENE	6100	=	J	1300	ug/kg	. SS
SS	MIA082	MG723014	SW8100	BENZO(a)PYRENE	5100	=	J	1300	ug/kg	SS
SS	MIA082	MG723014	SW8100	BENZO(b)FLUORANTHENE	5400	=	j	1300	ug/kg	SS
SS	MIA082	MG723014	SW8100	BENZO(g h i)PERYLENE	2600	=		1300	ug/kg	SS
SS	MIA082	MG723014	SW8100	BENZO(k)FLUORANTHENE	7000	=	J	1300	ug/kg	SS

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

]	Analytical		Final	Lab	Final	:		<u> </u>
Matrix	Sample ID	Lab Sample ID	Method	Parameter	Result	Qual	Qual	Det Limit	Units	Qual Reason
SS	MIA082	MG723014	SW8100	CHRYSENE	7100	=	J	1300	ua/ka	SS
SS	MiA082	MG723014	SW8100	FLUORANTHENE	14000	=	J	1300	ug/kg	SS
SS	MIA082	MG723014	SW8100	INDENO(1,2 3-c,d)PYRENE	3400	=	J	1300	ug/kg	SS
SS	MIA082	MG723014	SW8100	PHENANTHRENE	8800		j	1300 '	ug/kg	SS
SS	MIA082	MG723014	SW8100	PYRENE	10000	=	J	1300	ug/kg	SS
SS	MIA085	MG723017	SW8100	BENZO(a)ANTHRACENE	2200	=	J	1000	ug/kg	SS
SS	MIA085	MG723017	SW8100	BENZO(a)PYRENE	2300	=	J	1000	ug/kg	SS
SS	MIA085 MIA085	MG723017 MG723017	SW8100 SW8100	BENZO(b)FLUORANTHENE BENZO(g h,i)PERYLENE	1300	=	J	1000	ug/kg ug/ka	SS
SS	MIA085	MG723017 MG723017	SW8100	BENZOK)FLUORANTHENE	2900	=	j	1000	ug/kg ug/kg	SS
SS	MIA085	MG723017	SW8100	CHRYSENE	2600	=	j	1000 /	ug/kg	SS
SS	MIA085	MG723017	SW8100	FLUORANTHENE	4900	_	J	1000 ı	ug/kg	SS
SS	MIA085	MG723017	SW8100	INDENO(1,2,3-c d)PYRENE	1400	=	٦	1000	ug/kg	SS
SS	MIA085	MG723017	SW8100	PHENANTHRENE	2800	=	J	1000	ug/kg	SS
SS	MIA085	MG723017	SW8100	PYRENE	3600	=	J	1000 (ug/kg	SS
SS	MIA118	MG730026	SW8100	ACENAPHTHENE	2000	=	J	1100	ug/kg	SS
SS	MIA118	MG730026	SW8100	ANTHRACENE	2200	=	Į.,	1100 !	ug/kg	SS
SS	MIA118 MIA118	MG730026 MG730026	SW8100 SW8100	BENZO(a)ANTHRACENE BENZO(a)PYRENE	13000	=	J	1100 f 1100 f	ug/kg ug/kg	SS
SS SS	MIATT8	MG730026 MG730026	SW8100 SW8100	BENZO(b)FLUORANTHENE	10000	=	7	1100 1	ug/kg ug/ka	SS
SS	MIA118	MG730026	SW8100	BENZO(B)FEOORANTHENE BENZO(g,h l)PERYLENE	8200	=	J	1100	ug/kg ug/ka	SS
SS	MIATI8	MG730026	SW8100	BENZO(k)FLUORANTHENE	12000	=	J	1100	ug/kg	SS
SS	MIA118	MG730026	SW8100	CHRYSENE	14000	=	J	1100	ug/kg	SS
ŞS	MIA118	MG730026	SW8100	DIBENZ(a,h)ANTHRACENE	2200	=	7	1100	ug/kg	SS
ŞS	MIA118	MG730026	SW8100	FLUORANTHENE	26000	=	J	1100	ug/kg	SS
SS	MIA118	MG730026	SW8100	FLUORENE	1300	=_		1100	ug/kg	SS
SS	MIA118	MG730026	SW8100	INDENO(1,2,3-c,d)PYRENE	11000		J.,	1100	ug/kg	SS
SS	MIA118	MG730026	SW8100	PHENANTHRENE	14000		<u> </u>	1100	ug/kg	SS
SS	MIA118	MG730026	SW8100	PYRENE ACENAPHTHENE	20000	-	.1	1100	ug/kg	SS SS
SS	MIA119 MIA119	MG730027 MG730027	SW8100 SW8100	ANTHRACENE	2600 2600	=	J	1100	ug/kg ug/kg	SS
SS	MIA119	MG730027	SW8100	BENZO(a)ANTHRACENE	12000	 	J	1100 1	ug/kg	SS
SS	MIA119	MG730027	SW8100	BENZO(a)PYRENE	10000	=		1100 1	ug/kg	SS
SS	MIA119	MG730027	SW8100	BENZO(b)FLUORANTHENE	10000	=	Ĵ	1100	ug/kg	SS
SS	MtA119	MG730027	SW8100	BENZO(g h i)PERYLENE	7300	=	Ĵ	1100	ug/kg	SS
SS	MiA119	MG730027	SW8100	BENZO(k)FLUORANTHENE	11000	=	J	1100 i	ug/kg	SS
SS	MIA119	MG730027	SW8100	CHRYSENE	12000		J	1100	ug/kg	SS
SS	MIA119	MG730027	SW8100	DIBENZ(a h)ANTHRACENE	2000	=	J	1100 (ug/kg	SS
SS	MIA119	MG730027	SW8100	FLUORANTHENE	25000	-	J	1100	ug/kg	SS
SS	MIA119	MG730027	SW8100	FLUORENE	1600	=	J	1100	ug/kg	SS
SS	MIA119 MIA119	MG730027 MG730027	SW8100 SW8100	INDENO(1 2,3-c d)PYRENE PHENANTHRENE	10000	=	<u>.</u> j	1100	ug/kg ug/kg	SS
SS SS	MIA119	MG730027 MG730027	SW8100	PYRENE	19000	┢┋	j	1100 (ug/kg ug/kg	SS
SB	MIA205	MG743025	SW8100	1-METHYLNAPHTHALENE	120	Ū	- w	120	ug/kg	SS
SB	MIA205	MG743025	SW8100	2-METHYLNAPHTHALENE	120	Ü	w	120	ug/kg	SS
SB	MIA205	MG743025	SW8100	ACENAPHTHENE	120	Ü	w	120	ug/kg	SS
SB	MIA205	MG743025	SW8100	ACENAPHTHYLENE	120	U	UJ	120 i	ug/kg	SS
SB	MIA205	MG743025	SW8100	ANTHRACENE	120	U	W	120	ug/kg	SS
SB	MiA205	MG743025	SW8100	BENZO(a)ANTHRACENE	120	U	w	120	ug/kg	SS
SB	MIA205	MG743025	SW8100	BENZO(a)PYRENE	120	U	<u>w</u>	120 (ug/kg	SS
SB	MIA205	MG743025	SW8100	BENZO(b)FLUORANTHENE	120	U	- UJ	120	ug/kg	SS
SB	MIA205	MG743025	SW8100 SW8100	BENZO(g h i)PERYLENE BENZO(k)FLUORANTHENE	120 120	U	เม	120	ug/kg ug/kg	SS
SB SB	MIA205 MIA205	MG743025 MG743025	SW8100 SW8100	CHRYSENE	120	 	UJ UJ	120	ug/kg	SS
SB	MIA205 MIA205	MG743025 MG743025	SW8100	DIBENZ(g h)ANTHRACENE	120	Ü	UJ	120	ug/kg	SS
SB	MIA205	MG743025	SW8100	FLUORANTHENE	120	Ü	W	120	ug/kg	\$\$
SB	MIA205	MG743025	SW8100	FLUORENE	120	Ŭ	เม	120	ug/kg	SS
SB	MIA205	MG743025	SW8100	INDENO(1 2 3-c d)PYRENE	120	Ŭ	υJ	120	ug/kg	SS
\$B	MIA205	MG743025	SW8100	NAPHTHALENE	120	Ū	IJ	120	ug/kg	SS
SB	MIA205	MG743025	SW8100	PHENANTHRENE	120	Ü	Ü	120	ug/kg	SS
SB	MIA205	MG743025	SW8100	PYRENE	120	U	UJ	120	ug/kg	SS
SS	MIA320	MG756021	SW8100	BENZO(a)ANTHRACENE	4200	=	J	1100	ug/kg	SS
SS	MIA320	MG756021	SW8100	BENZO(a)PYRENE	4300	=	J.,	1100	ug/kg	SS
SS	MIA320	MG756021	SW8100	BENZO(b)FLUORANTHENE	3700	_=_	1	1100	ug/kg	SS
SS	MIA320	MG756021	SW8100	BENZO(g h,i)PERYLENE	3300	=	J	1100 [ug/kg	SS
SS	MIA320	MG756021	SW8100	BENZO(k)FLUORANTHENE	4800	=	 	1100	ug/kg	SS
SS	MIA320	MG756021	SW8100	CHRYSENE	4600	=	 	1100	ug/kg	SS
SS.	MtA320	MG756021	SW8100	FLUORANTHENE	14000	=	J .	1100 :	ug/kg	SS
SS	MIA320	MG756021 MG756021	SW8100 SW8100	INDENO(1,2,3-c d)PYRENE PHENANTHRENE	3800 7800		 !	1100	ug/kg ug/kg	SS SS
SS	MIA320					=	l J			

ATTACHMENT A
Changes in Qualifiers Due to the Data Validation Process
Memphis Depot Main Installation RI

			Analytical		Final	Lab	Final	D-414	Heste	01.0
Matrix	Sample ID	Lab Sample ID	Method	Parameter	Result	Qual	Qual	Det Limit	Units	Qual Reason
SS	MIA206	MG770013	SW8100	1-METHYLNAPHTHALENE	530	U	m	530 530	ug/kg	SS
SS SS	MIA206 MIA206	MG770013 MG770013	SW8100 SW8100	2-METHYLNAPHTHALENE ACENAPHTHENE	530 530	U	LIII	530	ug/kg ug/kg	SS
SS	MIA206	MG770013	SW8100	ACENAPHTHYLENE ACENAPHTHYLENE	530	Ü	UJ	530	ug/kg	SS
SS	MIA206	MG770013	SW8100	ANTHRACENE	530	Ü	UJ	530	ug/kg	SS
SS	MIA206	MG770013	SW8100	BENZO(a)ANTHRACENE	530	Ü	IJ	530	ug/kg	SS
SS	MIA206	MG770013	SW8100	BENZO(a)PYRENE	530	U	IJ	530	ug/kg	SS
SS	MIA206	MG770013	SW8100	BENZO(b)FLUORANTHENE	530	U	ÜĴ	530	ug/kg	SS
SS	MIA206	MG770013	SW8100	BENZO(g,h I)PERYLENE	530	Ü	IJ	530	ug/kg	SS
SS	MiA206	MG770013	SW8100	BENZO(k)FLUORANTHENE	530	U		530	ug/kg	SS
SS	MiA206	MG770013	SW8100	CHRYSENE	530	U	UJ	530	ug/kg	SS
SS	MIA206	MG770013	SW8100	DIBENZ(a,h)ANTHRACENE	530	U	UJ	530	ug/kg	SS
SS	MIA206	MG770013	SW8100	FLUORANTHENE	530	U	UJ UJ	530	ug/kg	SS
SS	MIA206	MG770013 MG770013	SW8100 SW8100	FLUORENE INDENO(1 2 3-c d)PYRENE	530 530	U	nn nn	530 530	ug/kg ug/kg	SS
SS	MIA206 MIA206	MG770013 MG770013	SW8100	NAPHTHALENE	530	- ŭ	UJ	530	ug/kg ug/kg	SS
SS	MIA206	MG770013	SW8100	PHENANTHRENE	530	Ü	UJ	530	ua/ka	SS
SS	MIA206	MG770013	SW8100	PYRENE	530	ŭ	w	530	ug/kg	SS
SB	MiA207	MG770014	SW8100	1-METHYLNAPHTHALENE	280	Ŭ	w	280	ug/kg	SS
SB	MIA207	MG770014	SW8100	2-METHYLNAPHTHALENE	280	Ŭ	ÜĴ	280	ug/kg	SS
\$B	MIA207	MG770014	SW8100	ACENAPHTHENE	280	Ü	ŲJ	280	ug/kg	SS
SB	MIA207	MG770014	SW8100	ACENAPHTHYLENE	280	U	IJ	280	ug/kg	SS
SB	MIA207	MG770014	SW8100	ANTHRACENE	280	U	ŲJ	280	ug/kg	SS
SB	MIA207	MG770014	SW8100	BENZO(a)ANTHRACENE	280	U	ÜĴ	280	ug/kg	SS
SB	MIA207	MG770014	SW8100	BENZO(a)PYRENE	280	U_	UJ	280	ug/kg	SS
\$B	MIA207	MG770014	SW8100	BENZO(b)FLUORANTHENE	280	<u>u</u>	UJ	280	ug/kg	SS
S8	MIA207	MG770014	SW8100	BENZO(g h i)PERYLENE	280	U	UJ	280	ug/kg	SS
SB	MIA207	MG770014	SW8100	BENZO(k)FLUORANTHENE	280	U. U	UJ	280	ug/kg	SS
SB	MIA207	MG770014	SW8100	CHRYSENE	280	U	<u>w</u> _	280	ug/kg	SS
SB	MIA207	MG770014	SW8100	DIBENZ(a h)ANTHRACENE	280	U.	<u>w</u>	280	ug/kg	SS
SB SB	MIA207 MIA207	MG770014 MG770014	SW8100 SW8100	FLUORANTHENE FLUORENE	280	U	w w	280 280	ug/kg ug/kg	SS
SB	MIA207	MG770014 MG770014	SW8100	INDENO(1 2 3-c d)PYRENE	280	Ü	U.I	280	ug/kg	SS
SB	MIA207	MG770014	SW8100	NAPHTHALENE	280	ϋ	UJ	280	ug/kg	SS
SB	MIA207	MG770014	SW8100	PHENANTHRENE	280	Ť	חו	280	ug/kg	SS
SB	MIA207	MG770014	SW8100	PYRENE	280	Ū	UJ.	280	ug/kg	SS
WQ	MIA068EBRE	MG723003RE	SW8270	1 2 4-TRICHLOROBENZENE	10	Ü	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	1,2-DICHLOROBENZENE	10	U	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	1 3-DICHLOROBENZENE	10	U	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	1 4-DICHLOROBENZENE	10	U	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	2 2 -OXYBIS(1-CHLORO)PROPANE	10	U	R	10	ug/L	ss
WQ	MIA068EBRE	MG723003RE	SW8270	2,4,5-TRICHLOROPHENOL	50	<u> </u>	<u>R</u>	50	ug/L	SS
WQ	MIAO68EBRE	MG723003RE	SW8270	2 4 6-TRICHLOROPHENOL	10	U	R	10	ug/L	SS
MØ	MIA068EBRE MIA068EBRE	MG723003RE MG723003RE	SW8270 SW8270	2 4-DICHLOROPHENOL 2 4-DIMETHYLPHENOL	10	U	R	10	ug/L ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	2 4-DINITROPHENOL	50	Ü	ls.	50	ug/L ug/L	SS
WQ	MIAD68EBRE	MG723003RE	SW8270	2,4-DINITROTOLUENE	10	l ü	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	2,6-DINITROTOLUENE	10	Ιŭ	IS.	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	2-CHLORONAPHTHALENE	10	Ŭ	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	2-CHLOROPHENOL	10	Ü	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	2-METHYLNAPHTHALENE	10	U	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	2-METHYLPHENOL (o-CRESOL)	10	, U	R	10	ug/L	SS
MØ	MIA068EBRE	MG723003RE	SW8270	2-NITROANILINE	50	U	R	50	υg/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	2-NITROPHENOL	10	<u>u</u>	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	5W8270	3 3 -DICHLOROBENZIDINE	10	Ü	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	3-NITROANILINE	50	U	R	50	ug/L	SS SS
WQ	MIA068EBRE	MG723003RE	SW8270	4 6-DINITRO-2-METHYLPHENOL	50	U	R	50	ug/L	SS SS
WQ	MIA068EBRE	MG723003RE	SW8270	4-BROMOPHENYL PHENYL ETHER 4-CHLORO-3-METHYLPHENOL	10 10	U	R	10	ug/L	SS
WQ WQ	MIA068EBRE MIA068EBRE	MG723003RE MG723003RE	SW8270 SW8270	4-CHLORO-3-METHYLPHENOL 4-CHLOROANILINE	10	U	R	10	ug/L ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	4-CHLOROPHENYL PHENYL ETHER	10	Ü	R	10	ug/L ug/L	SS
WO	MIA068EBRE	MG723003RE	SW8270	4-METHYLPHENOL (p-CRESOL)	10	Ü	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	4-NITROANILINE	50	Ü	R	50	ug/L	_ SS
WQ	MIA068EBRE	MG723003RE	SW8270	4-NITROPHENOL	50	Ü	R	50	ug/L	SS
WO	MIAD68EBRE	MG723003RE	SW8270	ACENAPHTHENE	10	ŭ	R	10	ug/L	SS
WO	MIA068EBRE	MG723003RE	SW8270	ACENAPHTHYLENE	10	Ü	R	10	ug/L	SS
we	MIA068EBRE	MG723003RE	SW8270	ANTHRACENE	10	Ū	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	BENZO(a)ANTHRACENE	10	Ũ	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	BENZO(a)PYRENE	10	U	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	BENZO(b)FLUORANTHENE	10	U	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	BENZO(q h i)PERYLENE	10	lυ	ls.	10	ug/L	SS

ATTACHMENT A

Changes in Qualifiers Due to the Data Validation Process Memphis Depot Main Installation RI

Matrix	Sample ID	Lab Sample ID	Analytical Method	Parameter	Final Result	Lab Quai	Final Qual	Det Limit	Units	Qual Reason
WQ	MIA068EBRE	MG723003RE	SW8270	BENZO(k)FLUORANTHENE	10	11	R	10		SS
WQ	MIA068EBRE	MG723003RE	SW8270	BENZYL BUTYL PHTHALATE	10	11	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	bis(2-CHLOROETHOXY) METHANE	10	II		10	ug/L	SS
MO MO	MIA068EBRE	MG723003RE	SW8270		10	l U	R	10	ug/L	SS
	MIA068EBRE	MG723003RE	SW8270	bis(2-CHLOROETHYL) ETHER		 			ug/L	
WQ WQ	MIA068EBRE		SW8270	bis(2-ETHYLHEXYL) PHTHALATE	10	U II	R	10 '	ug/L	SS
		MG723003RE		CARBAZOLE	10		R	10	υg/L	SS
WQ.	MIA068EBRE	MG723003RE	SW8270	CHRYSENE	10	U	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	DIBENZ(a h)ANTHRACENE	10	U	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	DIBENZOFURAN	10	U	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	DIETHYL PHTHALATE	10	<u>u</u>	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	DIMETHYL PHTHALATE	10	U	Ŗ	10	ug/L	SS
WQ	MiA068EBRE	MG723003RE	SW8270	Dt-n-BUTYL PHTHALATE	10	U U	R	10	.ug/L	SS
MØ	MIA068EBRE	MG723003RE	SW8270	DI-n-OCTYLPHTHALATE	10	U	R	10	ug/L	SS
MÖ	MIA068EBRE	MG723003RE	SW8270	FLUORANTHENE	10	U	R	10	ug/L	SS
MØ	MIA068EBRE	MG723003RE	SW8270	FLUORENE	10	U	R	10 1	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	HEXACHLOROBENZENE	10	υ	R	10 (ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	HEXACHLOROBUTADIENE	10	U	R	10 '	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	HEXACHLOROCYCLOPENTADIENE	10	U	R	10 (ug/L	\$S
WQ	MIA068EBRE	MG723003RE	SW8270	HEXACHLOROETHANE	10	U	R	10 1	ug/L	SS
WO	MIA068EBRE	MG723003RE	SW8270	INDENO(1,2 3-c,d)PYRENE	10	υ	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	ISOPHORONE	10	U	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	NAPHTHALENE	10	ΙU	R	10 ;	ua/L	SS
MØ	MIAQ68EBRE	MG723003RE	SW8270	nitrobenžene	10	U	R	10 1	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	N-NITROSODI-n-PROPYLAMINE	10	U	Ŕ	10 (ug/L	ss
WQ	MIA068EBRE	MG723003RE	SW8270	N-NITROSODIPHENYLAMINE	10	U	R	10 i	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	PENTACHLOROPHENOL	5	Ų	R	5 1	ug/L	ss
WQ	MIA068EBRE	MG723003RE	SW8270	PHENANTHRENE	10	U	R	10 1	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	PHENOL	10	U	R	10	ug/L	SS
WQ	MIA068EBRE	MG723003RE	SW8270	PYRENE	10	U	R	10	ua/L	SS

TAB

Appendix D

TAB

COPC Selection for All FUS/Surrogate Sites

COPC Selection for All FUs and Surrogate Sites

This appendix contains the following:

- Table D-1-Constituents of Potential Concern in FU1: Surface Soil
- Table D-2-Constituents of Potential Concern in FU1: Subsurface Soil
- Table D-3—Constituents of Potential Concern in Screening Site 65: Surface Soil
- Table D-4-Constituents of Potential Concern in Screening Site 65: Subsurface Soil
- Table D-5-Constituents of Potential Concern in FU2: Surface Soil
- Table D-6-Constituents of Potential Concern in FU2: Sediment
- Table D-7-Constituents of Potential Concern in FU2: Surface Water
- Table D-8-Constituents of Potential Concern in RI Site 59: Surface Soil
- Table D-9-Constituents of Potential Concern in RI Site 59: Subsurface Soil
- Table D-10-Constituents of Potential Concern in FU3: Surface Soil
- Table D-11-Constituents of Potential Concern in FU3: Subsurface Soil
- Table D-12-Constituents of Potential Concern in FU3: Sediment
- Table D-13-Constituents of Potential Concern in RI Site 34: Surface Soil
- Table D-14-Constituents of Potential Concern in RI Site 34: Subsurface Soil
- Table D-15-Constituents of Potential Concern in FU4: Surface Soil
- Table D-16-Constituents of Potential Concern in FU4: Subsurface Soil
- Table D-17-Constituents of Potential Concern in FU4: Sediment
- Table D-18—Constituents of Potential Concern in Residential Point Estimate at Station SS14A: Surface Soil
- Table D-19-Constituents of Potential Concern in Screening Site 36: Surface Soil
- Table D-20-Constituents of Potential Concern in Screening Site 36: Subsurface Soil
- Table D-21-Constituents of Potential Concern in FU5: Surface Soil
- Table D-22-Constituents of Potential Concern in FU5: Subsurface Soil
- Table D-23-Constituents of Potential Concern in Residential Point Estimate at Station SS77C: Surface Soil
- Table D-24—Constituents of Potential Concern in Screening Site 77: Surface Soil
- Table D-25—Constituents of Potential Concern in Screening Site 77: Subsurface Soil
- Table D-26-Constituents of Potential Concern in FU6: Surface Soil
- Table D-27-Constituents of Potential Concern in FU6: Subsurface Soil
- Table D-28-Constituents of Potential Concern in FU6: Sediment
- Table D-29-Constituents of Potential Concern in Residential Point Estimate at Station SS66A: Surface Soil
- Table D-30-Constituents of Potential Concern in Screening Site 66: Surface Soil
- Table D-31-Constituents of Potential Concern in Screening Site 66: Subsurface Soil
- Table D-32-Constituents of Potential Concern in FU7: Groundwater
- Table D-33–Human Health Criteria per Chemical

THIS PAGE INTENTIONALLY LEFT BLANK.

2

P1147543\APPO_FU1 xts\copc futss

Sis				T		T	T		T	T	T	T		Γ			П		T			T	T	T	Γ			T	1	T			П		T	T		T	Ţ	Ţ	T	T	Τ	T			П
COPC/BASIS	Yes	X BS	욁	Yes A	Yes A	X 88	X es X	5 .	<u> </u>	S	4 4 6 5 X	CD 20 X	Xes X	X es	Yes	No B		온				2 2	2 2	N S	N B	No	일	일:	2	2 2	N B	<u>ပ</u>	S S	읟	2						2 2	2 2	N N	2 2	N _B	No B	2
8										1											╧											L									\perp	\perp	floor	L			
Regulatory Criteria for Leachability	43	82	2	8	S	46	9	3	ă :		7	-		1	340	1 4	61	570	27	9		00001	1500	003	32000	63	3600	0.2		88	8			16	5	2300	£3	4300		<u> </u>	اد				17	94	130
Regulatory Criteria for Surface Soil	3.1	0 43	0 87	0 004	0 87	8.7	35	/R	5	5000	1000	70.0	Š	0 32	8	310	160	470	470	780	18	0087	2300	22	230	16	46	= ;	7.8	ZBO	10800	470	310	27	31	780	780	310	310	A 0	0000	400	200	1100	4700	160	160
Background Concentration	7	20	0.71	960	60	0.78	0.067	860	0.16	0074	0.26	0.000	0 0	150					0 19		0 0 0 0 0 0	23810	0000	5	0.82	1.1			4-	5840	25	18	34	0 0067	0 65			16		3000	97040	30	4600	1304	0 002		30
Arithmetic Mean Detected Concentration	4.2	21	13	7	14	4	34	19	0 67	200	0,0	0 0	0	4 5	88	0 0025	0.46	18	9.5	001	0 13	68369	8 2 2	0 0033	6	0 55	0 18	0 002	0.58	37749	25	56	181	0 0028	1	9500	0 0065	25	16	0 0023	0.097	14190	4019	400	0 038	0.88	14
Maximum Detected Concentration	8	55	52	29	65	71	13	88	6,4	2 ;	Z	4 1	- 2	99	2	0 003	90	5.7	9.5	0 0 1 7	021	13300	7 3	9000	48	22	0.31	0 000	4	144000	35	9.2	7.7	0 0028	22	0 056	0000	130	52	0 0020	013	20400	0026	657	0 081	13	21
Minimum Detected Concentration	0.73	2.5	0 085	0 081	960 0	0 073	0.045	0 11	0 0025	0.004	0.00	9000	000	23	191	0 000	0 19	0 0 0 0 0	9.5	0 007	0 0 0 19	3740	0000	1000	2900	0.27	0 064	0 002	800	1550	3	23	7.8	0 0028	0 065	950 0	9000	0.26	9900	0 0020	0 02	4410	1670	8	900 0	98 0	4 4
Maximum Detection Limit	35	36	53	53	53	53	24	53	32	32	53	£ 5	0.19	2 S	2 20000005	0 0 14	53	53	53	90	-8	2 5	2 2	000	5	0.48	24	0.014	90	13	100	0 27000001	12	35	24	24	0.014	53	53	8 .	18	0.87	2 20000005	0.063	0 0 1 4	53	24
Minimum Detection Limit	0.2	0 15000001	0 058	0 058	0 058	0 058	0.38	0 058	0 0038	0.0038	0.058	BEDO O	BCD O	0.038	21	100	0 058	0 058	0 058	001	0 0019	0 82999998	8500	0 025	0.058	0.0026	0 35	0.01	0 0088	0 69999999	900	0 038	10	0 0038	0.35	0 35	0.01	0 058	0 058	0 0019	0.0019	220	0 41000000	0.013	001	0.058	0 034
Number Detected	7					27		27			2				9	2	3	10	1	3	е		12		26	16	5	9	21	= `	23	3 =	23	1	8	1	2	29	11		5		23 =		7	4	23
Number Analyzed	18	23	38	38	8	8	22	8	44	4	88	44	88 6	3 8		16	88	8	38	15	44	=	3	- +	5	23	23	16	23	1	2 2	=	23	44	23	23	16	38	88	44	4	= 6	3 =	- -	16	88	23
Parameter Name	ANTIMONY	ARSENIC	BENZO(a)ANTHRACENE	BENZO(a)PYRENE	BENZO(b)FLUORANTHENE	BENZO(k)FLUORANTHENE	CARBAZOLE	CHRYSENE		_	DIBENZ(a,h)ANTHRACENE	OFFLORIN	INDENO(1,2,3-c,d)PYHENE	PCE-1260 (AROCI OR 1260)		_	2-METHYLNAPHTHALENE	ACENAPHTHENE	_	ACETONE	ALPHA-CHLORDANE	ALUMINUM	ANTHRACENE	BARIUM	BENZO(a b. APERVI ENE	BERYLLUM	bis(2 ETHYLHEXYL) PHTHALATE	BROMOMETHANE	CADMIUM	CALCIUM	CARBONING TOTAL	COBALT	COPPER	000	DIBENZOFURAN	OH-IN-BUTYL PHTHALATE	ETHYLBENZENE	FLUORANTHENE	FLUORENE	GAMMA BHC (LINDANE)	GAMMA-CHLORDANE	IRON	LEAD	MAGNESIUM	METHYL ETHYL KETONE (2-BUTANONE)	NAPHTHALENE	NICKEL
Units	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG		_	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	NO.NG		1	MG/KG	MG/KG		MG/NG	MG/KG	MG/KG	MG/KG	MG/KG		MG/KG	MG/KG	MG/KG	MG/KG	\neg	_	MG/KG	MG/KG	MG/KG	MG/KG	
Matrix						SS			SS	Ì	SS	Ī	T	Τ		Γ		SS				T		SS	T	SS		П		1			Ī	Г	П		SS			Ī	1	SS	T	1			
-	lo	S	ls	S	S	s	S	S	s)	श	S	2	Ω ú	o v	<u>ب اد</u>	ĪΩ	li co	lo	S	S	s	S)	ωĮ.	25 0	2 0	לשןכ	S	(O)	C)	(A)	njo	3 8	زي إ	SS	lo	ĺω	ŝ	S	SS	S	S	ध	0) [0	<u> </u>	SS	10	SS

TABLE D-1
Consituents of Potential Concern in FU1—Surface Soil
Mempins Depot Main Installation RI

TABLE D-1
Constituents of Potential Concern in FU1—Surface Solt
Memphs Depot Main Installation RI

			;	;	Minimum	Maximum	Minimum	Maximum	Arithmetic Mean		Regulatory	Regulatory	
E E	Matrix Units	Perameter Name	Analyzed	Number Detected	Limit	Limit	Concentration	Concentration	Concentration	Concentration	Surface Soil		COPC/BASIS
1 SS	Π	MG/KG PHENANTHRENE	38	27	0 058	53	0 18	61	13	061	230	L	No B
1.88	Г	MG/KG POTASSIUM	11	11	08	437	808	2630	1948	1820			S S
1 SS	Γ	MG/KG PYRENE	88	29	8500	3 53	0.5	120	12	1.5	230	880	R ON
188	Γ	MG/KG SELENIUM	23	ç	0 18	31	1.2	3.4	61	0.8	39	5	89 92
188	Γ	MG/KG SILVER	23		0 05	5 23	290	0.67	290	2	39	8	ე გ
1 SS		MG/KG SODIUM	=	•	0 9700003	14	294	294	767				No E
1 88		MG/KG TOLUENE	16	4	100	0.014	100 0	0.014	62000	0 005		12	No B
188	Γ	MG/KG Total Xylenes	16	cu	001	0.014	600 0	600 0	600 0	600 0	16000	0.5	S S
1.55	Γ	MG/KG TRICHLOROETHYLENE (TCE)	16		100	0.014	200 0	0 002	200 0		99	90 0	No B
188		MG/KG VANADIUM	11	1	0 032	019	84	29	50	48	55	0009	No C
- SS		MG/KG ZINC	30	30	0 0 0 78	9	42	646	104	126	2300	12000	No B
te Dat	a evaluated is	Note Data evaluated include field duplicates and normal samples (0-2 feet)											
<	Excee	Exceeds Criteria											
6	Does	Does not exceed Criteria											
U	Does	Does not exceed Background											
Δ	No Cr	No Criteria available & exceeds Background, or no Criteria or Background avallable	avallable										
ш	Chem	Chemical is an essential nutrient and professional judgement was used in eliminating	eliminatıng it as	it as a COPC									
tL.	Chem	Chemical is a common lab contaminant and professional judgement was used in eliminating It as a COPC	sed in ellminati	ng It as a CC	PC								
g	Chem	Chemical is a member of a chemical class which contains other COPCs											

Constituents of Potential Concern in FU1--Subsurface Soil Memphis Depot Main Installation RI TABLE D-2

		`	1		Minimum	Махітит	Minimum	Maximum	Arithmetic Mean		Regulatory Criteria for		
Unit Matrix	Units	Parameter Name	Analyzed	Detected	Limit	Limit	Concentration	Concentration	Concentration	Concentration	(Leachability)	COPC/BASIS	BASI
1 SB	MG/KG	ANTIMONY	21	3	0 22	39		13	12		9		Yes H
1 SB	MG/KG	MG/KG ARSENIC	21	12	0.5	13	47	13	8	17	67		Yes
1 SB	MG/KG DDE	DDE	21	8	0000		0 0016	0 032	8600 0	0 0015	54		Yes H
	MG/KG DDT	DDT	21	οt	0 00	0013	0 0016	0 081	0 021	0 0072	11	Yes	Yes
1 SB	MG/KG	MG/KG ACETONE	21	12	0012	0013	900 0	0018	0.012		16		No B
	MG/KG	MG/KG ALUMINUM	6	6	0.79	0.88	9180	18700		21829		ž	No C
	MG/KG BARIUM	BARIUM	6	6	0 0 0 0 0 0 0 0 0 0 0	0 033	76	181	128	300	1600		No
1 SB	MG/KG	bis(2-ETHYLHEXYL) PHTHALATE	27	12	0.4	0 44	0 047	12	0.23		0096		No F
1 SB	MG/KG	BROMOMETHANE	21	-	0012	0 0 13	0 002	0 005	200 0		20		No B
	MG/KG	CALCIUM	6	6	0.46	0.51	978	2750	1782	2432		Ň	No E
	MG/KG	CHROMIUM, TOTAL	21	21	0 058	13	01	19	13	26	BC 38		No C
1 SB N	MG/KG	CHRYSENE	27	2	E90 0	0 44	0 047	500	6700		160		No B
	MG/KG	COBALT	6	6	0.04	0 044	. 63	66	7.8	20		ž	o S
	MG/KG	HEIGH	21	12	0 1	13	11	22	91	33		ž	S S
		DI-n-BUTYL PHTHALATE	27	2	0.4	0.44	0 052	0 0 58	5500		2300		No B
	MG/KG	FLUORANTHENE	27	2	6900	0 44	9900	0.072	690 0	0.045			No B
	MG/KG	GAMMA BHC (LINDANE)	21	ਲ	200 0	9000	0 0014	0 0027	0 0021		0000		No B
1 SB	MG/KG	IRON	6	6	0.2	0 22	15900	23400	19233	38480		ž	일
	MG/KG LEAD	LEAD	21	21	0.24	62 0	7.3	14	10	24		ž	υ S
	MG/KG	MG/KG MAGNESIUM	6	6	0.23	0.26	2210	2920	2490	4900		ž	일
1 SB h	MG/KG	MG/KG MANGANESE	6	6	0 024	0 026			869	1540			S S
	MG/KG NICKEL	NICKEL	21	21	0 15	26	14	20	18	37	130		ပ လ
	MG/KG	PHENANTHRENE	27	1	0 003	0 44	0 089		0 089		250		No B
1 SB	MG/KG	POTASSIUM	6	6	90	66	1880	2780	2389	1800			No E
1 SB	MG/KG	PYRENE	27	2	0 063	0 44	0 058	0 06	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 042	3		No B
1 SB 1	MG/KG	SILVER	21	9	0 084	26	0 1	0 17	0 135	-	8		ပ ဥ
	MG/KG	TETRACHLOROETHYLENE(PCE)	21	6	0.012	0 0 13	0 002	0 007	00		900		S B
	MG/KG	VANADIUM	6	6	0 052	0 058	52	36	28	51			<u> </u>
1 SB 1	MG/KG	ZINC	27	27	0 0 0 5	52	96			114	12000		No B

Does not exceed Background

Does not exceed Background

No Criteria available & exceeds Background, or no Criteria or Background available
Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC
Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC
Chemical is a member of a chemical class which contains other COPCs
Chemical is a surface soil COPC

TABLE D-3
Constituents of Potential Concern in Screening Site 65—Surface Soil
Memphis Depot Main Instatation R1

P1147543/APPD_FU1 xislcopc 65ss

					Number	Number	Minimum Detection	Maximum Detection	Minimum Detected	Maximum Detected	Arithmetic Mean Detected	Background	Regulatory Critaria for	Regulatory Criteria for		
Š	9	Matrix	Units	Parameter Name	Analyzed	Detected	TEN C	, LIMIT	Concentration	Concentration	Concentration		34mme 35mm	Concenting	YeslA	<u>ş</u>
	8 4	2 2	CKC	RENZO(s)DYRENE	-	-	0	22	0 081	67	20		0 087	∞	Yes A	Π
Ī	Τ	Τ	*C/KG	MG/KG BENZOODFLUORANTHENE	1	13	0.4	22	860 0	65	21		0.87	ď	Yes A	
٦	Τ		MOVKG	BENZO(k)FLUORANTHENE	17	5	0.4	22	0 0 073	17				61*	Yes A	
Ē	Π	SS	MG/KG	MG/KG CARBAZOLE	10	7	620	15	0.048	12			32	90	Yes A	П
			MG/KG	DOE	25	8	22000	35	0004	7.3				ফ	Yes A	٦
	Γ	SS	MG/KG	100	8	85	0 0077	35	0 0057	01	2.5	0 074		ī	Yes A	П
		Г		DIELDRIN	8	9	0 0077	35	100	0.83				0000	Yes A	
	65	SS N		INDENO(1,2,3-c,d)PYRENE	17	ਨੁ	0.4	22	0 026	44			0.87	71	Yes	T
-			MG/KG	CHRYSENE	1,	2	0 4	22	0 11	89	62	0.34	/8	180	5 se .	T
	٦		MG/KG	ACENAPHTHENE	=]		0 0	2						2,0	0 Q	T
	1			ACENAPHTHYLENE	-	-12	40	2 .	200			9000		17	2 2	T
	92	Ţ		ANTHRACENE	-	20 1	4 6	2	000	7000	0.000		0007	200	2 2	T
	T	1		BENZENE	4	7	001	200	0000	4000		0.82		32000	2 2	Τ
1		2 2	MGMG	BENZO(g,n,)/PERTLENE	-	2 6	0.35	12	0.1	031	0.24			3600	8	Τ
	T	Ī		BROMOMETHANE		1	0 0	0.011	0 002		ľ		Ξ	0.20	₽	Γ
Ι	Τ		MCAKG	CADMIUM	4	4	6000	0 36	0 12			*	7.8	80	No B	
Γ	2 2		WG/KG	MG/KG CHROMIUM, TOTAL	4	-	0 1099999999	0.24	8-6			25	10800	38	No B	Π
Γ	Τ	SS	MG/KG	DI n-BUTYL PHTHALATE	=	-	035	ŝ.	0 0 0 0 5 6					2300	No B	П
	Γ		MG/KG	MG/KG DIBENZOFURAN	+	e	6 35	2	0 44			990		15	R SQ	
_	Ī		MG/KG		4	2	001	0 011	900 0				780	13	No B	
Ē	Г	83	MC/KG	FLUORANTHENE	17	4	0.4	22	0.26	130	35	16	310	4300	S S	٦
-	65		MC/KG	FLUORENE	17	6	40	\$	0.82					260	S G	T
-			MG/KG	LEAD	4	4	0 15	6	15			30		1	9 (P	T
-	65			METHYL ETHYL KETONE (2-BUTANONE)	4	2	0 0	0 011	900 0		0 015			=	2 2	T
-		SS	MG/KG	NAPHTHALENE	=		0	2	99 0				30	1	2	T
	П			PHENANTHRENE	-	<u> </u>	0	S	0.0					007	0 Q	T
		T			-	<u>-</u>	* 00000000	27	7	6.					N S	T
	S :	T	MG/KG	SELENIOM		- °	0 103333300		2100	0				1 2	N S	T
	T	3 2	MONG		-	7 =	0.10999999	9	35	646	159	126		12000	N _O	Τ
ľ	3	T	MONAG	All Main is a	•		0.83	1	3740						2	Τ
	T	3 8	MCKC	MGKG IANTIMONY	1		0.20000003	19	0 73					LS.	S	Γ
ľ	Ī	T	CVC.	ABSENIC		4	0 15	3.6	1		7.3			50	ა 8	Ĺ
	3 5	88	MC/KG		4	1	0 0379999999	0.25	44			234		1600	S	Π
-	l	Γ			4	4	0 0026	0.014	0.27		960				No C	
ľ	99			CARBON DISULFIDE	4	2	0 01	1100	0 001		0 0015				No C	П
=		Γ	MG/KG	COBALT	4	4	0 052999999	0.27	23	69	1.7		470		υ <u>8</u>	1
[=		SS	MG/KG	соррея	4	4	0 119999997	0.53	16		15				ე გ	٦
-			MG/KG	RON	4	4	0 219999999	0.42	4410	19900		37040			S S	
-		Γ	MG/KG	MANGANESE	4	4	0 037	0 061999999	94			1304			S S	Т
-		SS	MC/KG	MERCURY	*	6	0 0068	0 018999999	0 03		0 037	0.4		N	2 2	T
			MG/KG	MG/KG NICKEL	*	7	0 034000002	90	5.5	100	01	30	0000	25.5	2 2	T
	\$	SS	MCKG	MG/KG Total Xylenes	4	~	100	1100	0.000					2000	2 2	Τ
_	П	T	MG/KG	VANADIUM	*	7	0 032000002	18999999	4630		100155			3	S E	Ī
1	Ī		MUSKG	MUNIC CALCION		7 4	27.0	0.0	0301		-	4600		1	Note	Γ
	1	3 8	MG/KG	MGKG MAGNESIOM		5	2 / 0	19.0	HOR						2	T
1	ខ្ល	Ī	MONG	MONG POLYSSICM			600	- E	295	294	294				7 2	Τ
-] -			A solo find	Note Date anothered such dealer and normal samples (D-2 feet)												Γ
1		Freeds Criteria	Ontares	Completed and complete very present of the service												
	; 60	Does not exceed Criteria	beexe	Criteria												
	1 0	Dogson	pacada	Done not exceed Backmaind												
	ء د	No Carte	delicate e	te Backoming or no Cotena	or Background available	aldelia										
	ם נ		a dvalld.		nie de la poste	unation date	Od CO									
	ט ע	Chemical	Series	Chemical is at essential football and professional judgether was used in estimately that a COPC Chemical is a common lab contaminant and professional lixtromed was used to aliminating I as a COPC	of was used	n eliminating	It as a COPC									_
		Charmeral	2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	Chamical is a member of a chemical class which contains other COPC	COPCS											

TABLE D-4

Constituents of Potential Concern in Screening Site 65—Subsurface Soil Memphis Depot Main Installation Ri

							T. Contract	Mayballa	Minim	Maximim	Arithmetic Mean		Benulatory Criteria		
					Number	Number	Detection	Detection	Detected	Detected	Detected	Background	for Subsurface Soil		
ž		SiteID Matrix Units	Units	Parameter Name	Analyzed	Detected	Limit	Limit	Concentration	Concentration	Concentration	Concentration	(Leachability)	COPC/BASIS	
-	65	SB	MG/KG	MG/KG CHRYSENE	9	F	0.42	0 43	0 02	50 0	50 0		160		٦
	65	SB	MG/KG	MG/KG bis(2-ETHYLHEXYL) PHTHALATE	æ	-	0.42	0 43	0 11	0 11	110		3600		7
	65	eg.	MG/KG	MG/KG DI-n-BUTYL PHTHALATE	9	1	0 42	0 43	0 052	0 052	0 052		2300		_
_	65	88	MG/KG	MG/KG FLUORANTHENE	9	ļ	0.42	0 43	990 0	9900	990 0	0 045	4300		_
	55	SB	MG/KG	MG/KG PHENANTHRENE	9	-	0 42	0 43	680 0	680 0	680 0		250	No B	7
_	59	88	MG/KG	MG/KG PYRENE	9	+	0 42	0 43	90 0	90 0	90 0	0.042	880		_
-	165	88	MG/KG ZINC	ZINC	9	9	5	5.2	78	155	115	114	12000	No B	-
Note L	Data eval.	luated inc	Sude field	Note Data evaluated include field duplicates and normal samples (2 feet and below)	nd below)										
	٧	Exceeds	Exceeds Cnteria												
	æ	Does no	Does not exceed Criteria	Cntena											
	ပ	Does no	d exceed	Does not exceed Background											
	٥	No Crite	ria availai	No Criteria available & exceeds Background, or no Criteria or Background	or Backgrou	nd available									
	ш	Chemica	al is an es	Chemical is an essential nutrient and professional judgment was used in	It was used II	n eliminating	eliminating it as a COPC								
	ш	Chemica	al is a con	Chemical is a common lab contaminant and professional judgment was used in eliminating it as a COPC	dgment was	nsed in elim	mating it as a	COPC							
	ŋ	Chemica	al is a mei	Chemical is a member of a chemical class which contains other COPCs	other COPCs	_									
	1	Chemica	A IS A SUIT	Chemical is a surface soil COPC											

TABLE D-5
Constituents of Potential Concern in FU2—Surface Soil
Memphis Depot Main Installation RI

Pesticides	PAHs	Inorganics
DDE	Benzo(a)pyrene	Arsenic
DDT	Benzo(a)anthracene	Chromium, total
Dieldrin	Benzo(b)fluoranthene	Copper
Chlordane-alpha		Lead
Chlordane-gamma		Manganese
		Nickel

Note: COPCs have been adapted from the previous risk assessment of Parcel 3. (Final Streamlined Risk Assessment for Parcel 3 Technical Memorandum, CH2M HILL, January 1999)

٠; د

64

COPC/BASIS	Yes A	Yes A	Yes A	Yes A	Yes	Yes	Yes A	768	Yes A	Yes	Yes	Yes G	es i	S S	e i	No.	e C	en i	Ω Q	No B	So B	S B	No B	No B	No 89	No B	No PE	No B	No B	£	δ ₀	89 F	2	en d	SO N	No.	en i	S (No.			+				$\frac{1}{1}$	+			
Regulatory Criteria for Leachability		53	2	60			8	*	-		0 002	160	6.1			0.50	æ			000				32		1						380		10000	-	-	4300		4	0 02	980		16	3 46	34	34 6000 12000	5 34 6000 12000 570	5 34 6000 12000 12000	5 34 6000 12000 570 12000 12000	\$ 34 8000 12000 570 12000 12000 12000
Regulatory Criteria for Sediments	7800	0 43	0.87	0 087	0.87	49	0 0	0.87	0 32	5.3	0 0000043	87	160	470	780	0 038	47	18	550	22	230	8 7	1600	780	10800	470	160	27	1.9	4.9	9300	78000	780	160	23	23	310	400	4700	82	530	ē								
Background	10085	12	2.9	25	22		1100	17			600000 0	32						0 0052	118		1.8	23			20	14		0 0061	0 0072					0.047			7.1	35	0 01		Z.	1		18	18	1 8 30 797	18 30 797 770	18 30 797 70 71	18 30 797 0 777 0 777 1 6 1 7 8	18 30 797 0 77 0 77 1 6 7 6 1 3
Arithmetic Mean Detected Concentration	9699	62	0 73	071	0 93	0 042	0 032	0.64	0 33	0 13	0 000067	0.84	0 052	0 054	0014	0011	0 0064	0 0 1 5	80	0 004	90	0 95	0 084	0 0094	12	15	0.29	690 0	0 088	0 031	0.21	0 11	0 028	0 056	0 015	0 0001	13	35	0 024	0 0068	16	15		47	17	17 17	47 17 149 0 13	147 149 0 13	174 174 179 0 13	17 17 149 013 02 02 045
Maximum Detected Concentration	17100	14	3.8	41	49	0 11	0 16	32	0 33	0 14	0 00015	46		990 0	0 023	0.014	0 0081	0 034	145	0 004	6	46	0.084	0 032	37	219	0.34	0.4	0.79	0 003	0.52	011	0.045	60 0	0 026	0 019	66	169	0 12	0 015	9.3	3.8	•	16	39	1170	1170	39 1170 0 26 0 62	1170 1170 0 26 0 62	93 1170 026 062 64
Minimum Datected Concentration	662	14	0 046	0.041	0 053	0 005	0 0028	0 028	0 33	0 12	0 00001	0 059	0 0 18	0 029	000	0 00032	0 0045	0 0043	16	0 004	0 034	0.041	0 084	0 005	31	0.76	0 23	0 0044	0 0021	0 0037	0 0 0 5 6	0 11	0 0 0 1 9	0 021	0 0 1	0 004	0 037	7.7	0 003	1000	0 039	0 71	800	0.40	46	46	4 6 33 0 027	4 6 33 0 027 0 019	0019 0 044	0027 0027 0019 0 44
Maximum Detection Limit	49			21					63				2 1	2.1																		21					21	80												
Minimum Detection Limit		0 18	0 00	190 0	0 061	0 01	0 0034	90 0	0 034	0.2	Ĭ	0 061	0.061	0 0	001	0 0018	0 0018	0 0018	0 062	001	0 061	0 061	034	0 0 1	0 13	0 064	0.15	0 0034	0 0034	0 0034	0 34	ÞE 0	0 34	0 34	0 0034	0 0034	0 061	0 17	0	0 01	90 0	0 17	900		620 0	0 039	0 039 0 12 0 061	0 039 0 12 0 061 0 061	0 039 0 12 0 061 0 061 0 22	0 039 0 061 0 061 0 061
Number Detected	19	24	17	19	19	4	12	16	-	2	9	19	2	4	3	ົ	4	=	19	*	17	13	#	5	24	19	2	19	20	9	5	1	9	2	7	5	16	24	6	5	19	12	N		19	19	24	19 24 9	19 24 9 12 12	24 24 12 3 21
Number	19	24	24	24	24	22	24	24	19	23	Ö	24	24	24	22	24	24	24	19	22	24	24	22	22	24	19	10	24	24	22	22	22	8	22	24	24	Z			22	24	24	24		19	19	24 24 24	19 24 24 24	24 24 24 24 24	24 24 24 24 24 24 24 24 24 24 24 24 24 2
Parameter Name	ALUMINUM	ARSENIC	BENZO(a) ANTHRACENE	BENZO(a)PYRENE	BENZO(b)FLUORANTHENE	CARBON TETRACHLORIDE	DIELORIN	INDENO(1,2,3-c,d)PYRENE	PCB-1260 (AROCLOR 1260)	PENTACHLOROPHENOL	TCDD Equivalent	CHRYSENE	2-METHYLNAPHTHALENE	ACENAPHTHYLENE	ACETONE	ALDRIN	ALPHA ENDOSULFAN	ALPHA-CHLORDANE	BARIUM	BENZENE	BENZO(g,h,i)PERYLENE	BENZO(k)FLUORANTHENE	BENZYL BUTYL PHTHALATE	CARBON DISULFIDE	CHROMIUM, TOTAL	COBALT	CYANIDE	gaa	300	100	DIETHYL PHTHALATE	DIMETHYL PHTHALATE	DI-n-BUTYL PHTHALATE	DI-n-OCTYLPHTHALATE	ENDRIN	ENDRIN ALDEHYDE	FLUORANTHENE	LEAD	METHYL ETHYL KETONE (2-BUTANONE)	METHYLENE CHLORIDE	PYRENE	SELENIUM	SILVER		VANADIUM	VANADIUM	VANADIUM ZINC ACENAPHTHENE	VANADIUM ZINC ACENAPHTHENE ANTHRACENE	VANADIUM ZINC ACENAPHTHENE ANTHRACENE ANTIMONY	VANADIUM ZINC ZINC ACENAPHTHENE ANTHRACENE ANTIMONY BERYLLIUM
ăįci	MG/KG	_	+-	MG/KG B	-	MG/KG C	Ī	_	Ī		MG/KG T	MG/KG C	\neg	_	_	_			_		MG/KG B		MG/KG B	MG/KG C			MG/KG C	MG/KG D	MG/KG D	MG/KG D	I		$\overline{}$		$\overline{}$	\neg		_	_	_	7		()							
Matnx	: [S.		SE	1		SE		SE	2 SE	SE	SE	1	SE	35	SE		SE		SE	38		SE	SE	SE	SE			2 SE		2 SE		2 SE		2 SE	2 SE	2 SE		2 SE						1		S S S S S S S S S S S S S S S S S S S

TABLE D-6
Constituents of Potential Concern in FU2—Sediment
Memphis Depot Man installation R1

					_		_	_	_	_	_				_	_	_	_									_
	COPC/BASIS	b	၁	ວ	3	2	ပ	ပ	ပ	၁	C	ပ	2	3	3	3	Ε	В	L								
	COPC	ž	Š	Š	No	Š	No	Ŷ.	No	No	No	ŝ	No	No	οN	No	No	No	Š								
atory	ie for abiilty		য	15	560		23			2	84	130	250			I			3600								
Regulatory		_			k		4		_	3	0	~	k						"								
	Regulatory Criteria for Sediments	310	0 087	31	310	18	0 14		1100	23	160	160	230		2300				46								
	ulatory Crite Sediments																										
		89	0.7	0 38	087	સ	0 23	0.23	871	#	0 13	31	6 9	14860	23080	2440	1560	240	0 48								
	Background Concentration													1	2												
dean	_	91	0 19	90 0	0 13	0.018	0 0019	0 0037	215	0 23	0 068	11	260	25586	10447	3458	1210	108	0 32								
Anthmetic Mean	Detected Concentration						0	٥						,													
•		49	0 48	0 14	0 33	0.054	0 002	0 0037	697	0 53	0 081	92	4.7	158000	19200	19100	3240	282	15								
Maximum	Detected Concentration																										
Eng	rted	6.4	0 028	0 022	0 029	0 0048	0 0018	0 0037	24	0 1	0.052	21	0 029	958	2470	714	106	41	0 051								
Minimum	Detected Concentration																										
Maximum	Detection	0 62	21	21	21	0 33	0 33	0 33	0 33	0 14	21	0.7	21	15	37	3.8	512	71	21							COPC	
		0 13	0.061	034	0.061	0 0018	0 0018	0 0018	9900	0 0072	0.061	0 041	0 061	-	0.46	0.79	80	2.1	0 34						eliminating it as a COPC	ing it as a	
Minimum	Detection	4	_	Line Control	i		2 0	1	19	0	6		18	19	19	6	19	_	15					available	nating it a	n eliminal	
	Number Detected	24			10	11			ľ			24	-	Ť	-	19	-	Ξ	1					round avail	sed in etimi	was used	50
	Number	24	24	22	24	24	24	24	\$	24	24	24	24	9	19	5	19	61	22					No Cnteria available & exceeds Background, or no Cateria or Background	Chemical is an essential nutrient and professional judgement was used in	Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC	Chamissis a member of a chemical class which contains other COBCs
																			'n					d, or no Crit	ssional judg	1 profession	ichich conta
	Name		ENE ENE					2											bis(2-ETHYLHEXYL) PHTHALATE					sackgroun	and profe	ninant an	oodo tool
	Parameter Name		NTHRAC	NA.		ORDANE	æ	R EPOXII			 ¥		ENE						(EXYL) P			65	Iround	exceeds E	I nutrient	lab contai	of a shoot
		PER	NZ(a h)	NZOFU	OHENE	MA-CHL	TACHLO	TACHLO	GANESE	CURY	HTHALE	Ą	NANTHR	CIUM	2	NESIUM	ASSIUM	MUK	-ETHYL		흅	ed Criten	ed Backs	ailable &	n essentiz	common	, acquer
	ş	MG/KG COPPER	MG/KG DIBENZ(a,h)ANTHRACENE	MG/KG DIBENZOFURAN	MG/KG PLUOPENE	MG/KG GAMMA-CHLORDANE	MG/KG HEPTACHLOR	MG/KG HEPTACHLOR EPOXIDE	MG/KG MANGANESE	MG/KG MERCURY	MG/KG NAPHTHALENE	MG/KG NICKEL	MG/KG PHENANTHRENE	MG/KG CALCIUM	MG/KG IRON	MG/KG MAGNESIUM	MC/KG POTASSIUM	MG/KG SODIUM	MG/KG bis(2		Exceeds Criteria	Does not exceed Critena	Does not exceed Background	Interia av.	mical Is a	mical is a	e jacque
	Matrix Units	Γ	Γ		Г	₩Ç	MG/I	M	MG/I	MG	MG		Γ		Ī	MG	MG	MQ	MG		EXC	Doe	Doe	No.	Che	Che	Č
	Cnit		SE	SE	ZSE	2 SE	2 SE	2 SE	2 SE	2 SE	2 SE	2SE	2 SE	2 SE	2 SE	2 SE	ZSE	2 SE	2SE	Notes	∢	80	ပ	٥	ш	ш	C
		<u>1.</u>	L	_	L		_	Ц.	_	L	1_	_	<u>i</u>	<u>i </u>	_		1_	_	_	ĻZ						_	_

0 11

TABLE D-7
Constituents of Potential Concern in FU2—Surface Water Memphis Depot Main Installation Rt

						Minimum	Maximum	Minimum	Maximum	Arithmetic Mean		Regulatory		
				Number	Number	Detection	Detection	Detected	Detected	Detected	Background	Criteria for		
Ę	it Matrix	Cults	Parameter Name	Analyzed	Detected	Limit	Limit	Concentration	Concentration	Concentration	Concentration	Surfacewater	COPC/BASIS	ASIS
	2 WS	MG/L	ARSENIC	31	15	0 0014	0 0016	0 0026	0 077	0 02	0 0 1 8	0 000018	Yes	٧
	2 WS	Ι.	DDE	31	3	0 0001	0 0002	0 000026	0 000058	0 000035		650000000	Yes	٧
	2 WS	١.	DOT	31	ਲ	0 0001	0 0002	0 000047	0 00015	0 000084		0 000000059	Yes	٧
L	2 WS	MG/L	DIELDRIN	31	121	0 0001	0 0002	0 000035	0 00043	0 00014		0 00000014	Yes	٧
L	2 WS	MGA	LEAD	31	18	0 0013	0 002	0 0022	0 059	0 0 13	0019		Yes	٥
	2 WS	MG/L	MERCURY	31	-	0 000013	60000 0	60000 0	60000 0	600000		90000 0	Yes	Ą
	2 WS	MG/L	SELENIUM	31	-	0 0014	0 0016	0 0058	0 0058	0 0058		110	No	В
	2 WS	MG/L	ALUMINUM	15	10	9900 0	0 0079	0 05		0 19	51		No	Ç
	2 WS	MG/L	BARIUM	15	ō	0 00024	0 00048	0 0 13		0 0 14	0 13	F	No	ပ
	2 WS	MG/L	CHROMIUM, TOTAL	31	5	0 00048	0 0022	0 0011	0 0 0 19	1100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		No	၁
	2 WS	MG/L	COPPER	31	က	0 00084	0 0012	0.0046	0 022	0 0 16	0 0 0 5	13	No	S
	2 WS	MG/L	MANGANESE	15	15	0 0002	0 00053	0 0084	0 0	0 032	990	900	No	၁
	2 WS	MG/L	NICKEL	31	9	0 00032	0 0055	0 00049	0 018	8600 0	0.23	0.61	No	ပ
	2 WS	MG/L	VANADIUM	ক্র	64	0 0003	0 00044	0 0041	0 0043	0 0042	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		No	ပ
	2 WS	MG/L	CALCIUM	15	15	0 0039	0 024	24	66	6.8	32		No	ш
L	2 WS	MG/L	IRON	5	41	0 0017	9600 0	0 15	0.84	0 38	61	03	No	ш
	2WS	MGA	MAGNESIUM	15	15	0 0019	0 0062	0.27	2.4		7.7		No	Е
	2 WS	MG/L	POTASSIUM	15	12	0 75	0.82	-	4	2.1	7.3		No	ш
	2 WS	MG/L	SODIUM	15	4	0 057	0 11	96 0	11	1	21		No	ш
	2 WS	MGA	bis(2-ETHYLHEXYL) PHTHALATE	181	-	0 0 1	100	1000	0 001	0 001		0 0018	No	ட
	2 WS	MGAL	ZINC	31	20	0 00062	0 0011	0 0098	0.47	0 087	0.29	91	No	8
Notes	Ži													
	∢	Exceed	Exceeds Criteria											
	80	Does no	Does not exceed Criteria											
	O	Does no	Does not exceed Background											
	۵	No Crite	No Criteria available & exceeds Background, or no Criteria or Background available	r no Criteria o	r Background	available								
	ш	Chemic	Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC	nal judgement	was used in	eliminating it a	is a COPC							
	ш	Chemic	Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC	ofessional jud	gement was u	sed in eliminal	ting it as a COP	O						
	ဗ	Chemic	Chemical is a member of a chemical class which contains other COPCs	th contains of	ner COPCs									

TABLE D-8
Constituents of Potential Concern in RI Site 59—Surface Soil
Memphis Depot Main Installation RI

Matrix Units								שמוווומיום שפפוו				
9	Parameter Name	Number	Number Detected	Detection	Detection	Detected Concentration	Detected Concentration	Detected Concentration	Background Concentration		Regulatory Criteria for Leachability	COPC/BASIS
2	MG/KG DIELDRIN	-	4	60000	0 17	100	85 0		980 0	00	0 004	Yes A
- KG	MG/KG TETRACHLOROETHYLENE(PCE)	2	2	0.012	0.012	0 004	£400			1	900	Yes A
MG/KG	ACENAPHTHENE	Ξ	-	0 059	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1/2	0.25	No B
MG/KG	ACETONE	2	-	0.012	0012	960 0	960 0	0 095		780	16	No B
MG/KG	ALPHA-CHLORDANE	11	4	0 002	0 087	12000	80 0		0 028		9	No B
	ALUMINUM	-	Ī	22	22	15600	00951	15600				No C
	ARSENIC	-	-	18	1.8	116	15					
	BARIUM	-	-	0 042	0.042	103					091 1600	No C
	BENZO(a)ANTHRACENE	=	2	0 059	0.4	0 14)		071		7	No C
MG/KG	BENZO(a)PYRENE	11	2	0 059	0.4	0 14				0 087	7	No Co
	BENZO(b)FLUORANTHENE	11	2	0 059	0.4	0 13	0.5		60			No C
MG/KG	BENZO(g,h,i)PERYLENE	11	-	0 0 0		0.1	10	0		230	320	Noic
	BENZO(k)FLUORANTHENE	11	2	0 0 0		0 14		0.15			7 49	No
	CALCIUM	1	-	69 0		986						
	CARRON DISULFIDE	2	1	0.012	Ĭ	0 005				780		No
	CHROMIUM, TOTAL	-	-	027		16	16	16	25	10800	38	S
	CHRYSENE	F	2	0 059		0 14		0 17		8		
	COBALT	-	-	03	03	6.4	6.4	64			ò	No
	COPPER	-	-	0 15	0 15	19	16	- 19	34	310	0	No
	ggg	11	7	0 0039	0 17	0 0028		9800 0		2.7		No B
MG/KG	DDE	11	10	0 0039		0 002				19	9 54	No B
MG/KG DDT	100	11	6	0 0039		0 0017			0 0 74			
MG/KG	MG/KG FLUORANTHENE	11	4	690 0	0.4	0.08		0.5		310	4300	
	GAMMA-CHLORDANE	11	4	0 002	0 087	0 0074			0			No B
MGVKG	INDENO(1,2,3-c,d)PYRENE	11	-	0 059	40	0 12					7	No
MG/KG	IRON	1	1	0 24	0 24	21300	21300	21300	37040		0	No E
MG/KG	Q V3 T	l	1	61	19	15				400	0	S
MG/KG	MAGNESIUM	1		2.2	22	2590		N				Nofe
MG/XG	MANGANESE	F	-	0 041		499				1100	0	NoC
MG/KG	MG/KG METHYL ETHYL KETONE (2-	2	-	0 0 12	0012	600 0			0 002	47		No B
MG/KG	METHYLENE CHLORIDE	2	Ī	0 012	1	0 005	0 002	0 005				No B
VG/KG	MG/KG INICKEL	-	-	190	190	17	17	17	ĕ	160	061	No
MG/KG	PHENANTHRENE	11	4	0 059	0.4	0.076	0 24	0 15				No
	POTASSIUM	-	1	06	06	2060		2060				NoE
	PYRENE	11	4	0 0 0 0 0 0 0 0 0 0 0 0	0.4	0.064	0.27			2	088	No C
MG/KG	MG/KG TOTAL 1,2-DICHLOROETHENE	2	-	0.012	0012	0.00				02_		NoB
MQ/KG	MG/KG TRICHLOROETHYLENE (TCE)	8	-	0 012	0.012	0 003	0000	0000		58		No B
MG/KG	VANADIUM	**	1	0.21	0.21	31	31	31				S S
MG/KG ZINC	ZINC	1	-	0 12	0 12	63	63	63	126	2300	12000	NoC
include fie	Notes Data evaluated include field duplicates and normal samples (0.2 feet)	-2 feet)					/					
Exceeds Criteria												
Does not exceed Criteria	riterla											
exceed E	Does not exceed Background											
ia availab	No Criteria available & exceeds Background, or no Criteria or	ш	ackground available	ejc								
is an ess	Chemical is an essential nutrient and prolessional judgement w	ement was us	ed in elimina	ras used in eliminating it as a COPC	PC					1	!	
is a com	Chemical is a common lab contaminant and professional judge	al judgement	was used in	ment was used in eliminating it as a COPC	as a COPC							
is a men	Chemical is a member of a chemical class which contains other COPCs	ins other COF	ž									

0-13

P 1147543tAPPD_FU2 xistCOPC-59SB

						E E	Mavimim	Ricia	E	Arithmetic Mean		Requision Criteria		
				Number	Number	Detection	Detection	Detected	Detected	Detected	Background	for Subsurface Soil		
Unit Si	SiteID Matrix	x Units	Parameter Name	Analyzed	Detected	Limit	Limit	Concentration	Concentration	Concentration	Concentration	(Leachability)	COPC/BASIS	SISA
2 59		MG/KG	MG/KG ALUMINUM	-	•	•	-	9650	0596	9650	51828		O ON	္
2 59	SB	MG/KG	MG/KG ANTIMONY	-	1	021	021	0.58	0.58	0.58		9	BION	1
2 59		MG/KG	MG/KG ARSENIC	-	-	0 18	0 18	18	9.2	7.8	21	62	O ON	ပ
2 59		MG/KG	MG/KG BARIUM	-	-	0.061000001	0.061000001	76	97	76	300	1600	NoC	ပ
2 59	SB	MG/KG	MG/KG BERYLLIUM	-	-	0 0032	0 0032	041	041	0.41	12	69	Š	ပ
2 59		MG/KG	MG/KG bis(2-ETHYLHEXYL) PHTHALATE	-	-	0 42	0.42	013	0 13	0 13		0096	A ON	ш
2 59		MG/KG	MG/KG CADMIUM	-	-	1100	0 0 1 1	0 15	0 15	0 15	1 4	8	No	ပ
2 59		MG/KG	MG/KG CALCIUM	1	Ŧ	m	Ö	1980	1980	1980	2432		NoE	ш
2 59		MG/KG	MG/KG CHROMIUM, TOTAL	1	-	0 12999995	0 129999995	13	13	13	26	38	No C	Ç
2 59		MG/KG	MG/KG COBALT	-	-	0 063000001	0 063000001	47	47	7.4	20		NoC	Ç
2 59	SB	MG/KG	MG/KG COPPER	-	-	0 12999995	0 12999999	14	14	14	33	-	NoC	ပ
2 59		MG/KG IRON	IRON	Ŧ	_	0.45	0 45	16500	16500	16500	38480		3 ON	ш
2 59		MG/KG LEAD	LEAD	٢	-	0 15999996	0 159999996	8	80	80	24		O ON	C
2 59		MG/KG	MG/KG MAGNESIUM	4	-	0.78	0 78	2380	2380	2380	4900		No]E	ш
2 59		MG/KG	MG/KG MANGANESE	-	-	9900	9900	334	334	334	1540		No	ပ
2 59		MG/KG	MG/KG NICKEL	-	-	0 041000001	0 041000001	14	4	Þ١	37	130	No	ပ
5 2	SB	MG/KG	MG/KG POTASSIUM	-	-	ş	104	2900	2900	2900	1800		S.	ш
2 59		MG/KG	MG/KG SELENIUM	F	-	0 200000003	0.20000003	13	13	13	90	S	No B	8
2 59		MG/KG	MG/KG Total Xylenes	-	-	0012	0 0 12	0 001	1000	100 0	0 002	70 k	NoC	၁
2 59	SB	MG/KG	MG/KG VANADIUM	1	1	0 03900001	0 039000001	26	56	56	51	0009	-	၁
2 59	SB	MG/KG ZINC	ZINC	1	1	0 140000001	0 140000001	39	39	39	114	12000	No	U
Notes Dat	a evaluated	include fier	Notes Data evaluated include field duplicates and normal samples (2 feet and below)	d below)										_
۷	Ехсевс	Exceeds Criteria												
83	Does n	Does not exceed Criteria	Criteria											
O	Does n	tot exceed	Does not exceed Background											
0	No Crit	eria availa	No Criteria available & exceeds Background, or no Criteria or Background	r Background	favailable									
E	Chemit	cal is an es	Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC	t was used in	eliminating	t as a COPC								
LL.	Chemic	cal is a con	Chemical is a common lab contaminant and professional judgement was i	gement was t	ised in elimi	used in eliminating it as a COPC	PC							
g	Chemit	cal is a mea	Chemical is a member of a chemical class which contains other COPCs											
I	Chemic	cal is a suri	Chemical is a surface soil COPC											
					-	***************************************				:				

TABLE D-9
Constituents of Potential Concern in RI Site 59—Subsurface Soil Memphis Depot Main Installation RI

THIS PAGE INTENTIONALLY LEFT BLANK.

Constituents of Potential Concern in FU3 - Surface Soil Memphis Depot Main Installation RI

TABLE D-10

9	COPC/BASIS	V	¥,	A	V	A	A	A			g																																						
000	2					Yes		Yes /		Yes			Yes		Yes	Yes			Yes											0 0									T) <u>n</u>						0 B		8 0
Regulatory Criteria for	_		1	1	8						160		000						<u>5</u>			0				27 N		Z		00021		ŀ		E9	3600 No	0.2		2 2	ac ac		2 2	16					2300 No		560 No
Regulatory Criteria for	\dagger	31	0.43	0.87	0.087	0.87	87	7.8	32 {	10800	87	0.087	, 0 04	0.87	400	2.3	53 (34	36	0.0000043	55	2300 '	310	160	470	470	780	18	7800	2300	200	230	1600	16	46	11	201	13000	12000	070	340	2.2	19	. 61	31	6300	780	310	310 1
Background	Concentination 7	\ 8	200	V0	960	60	0.78	14	0 067	25	0 94	0.26	0.086	0.7	30	0.4			0.8	0.00001	48	126				0.19		0.029	23810	0.096	107	0.82	0 65	1.1			5840	0.002		ă E	2 8	0 0067	0 16	0 074	0 65			1.6	
Arithmetic Mean Detected		2.3	2 5	6.2	23	2.4	26	+	2.2	70	2.7	0.71	0 043	18	244	0.12	89 0	98	14	0 0000072	20	257	0.0033	03	-	0.11	0.02	0 12	6283	9 0	0 0033	1.6	0.083	0 43	0 82	0 002	38368	143	0.10	41	31	0 037	0 033	80 0	13	6.0	0 18	4.2	- 3
Maximum Detected Concentration		77	5	240	/5/0	339	34	8 1	우	915	46	12	0.18	22	4150	2.1	89 0	274	95	0.000013	77	4000	0 008	0.51	5	0 14	0.14	190	13600	432	0.007	22	0 083	2	56	0 002	22/000	403	0 12	8.8	235	0.046	0 17	0 41	24	60	0 18	71	4.8
Minimum Detected Concentration	0.03	0.43	240	6000	0.039	0.038	0.043	0.08	0.08	55	0.043	0.21	0.0012	- 0 048	28	0 015	89 0	26	0 29	0 0000028	6.8	21	0.001	0 084	0.063	0 088	0 002	0.0014	2820	20(0.001	0.037	0 083	0.05	400	0.002	1000	13	0.12	0 88	4 1	0.029	0 0014	0.002	0 49	60	0 18	0.04	0.056
Maximum Detection Limit	7.5	0.0	3.0	2 1	Ω 4	<u>.</u>	15	1.3	15	25	15	15	0.38	15	4.5	0 12	7.7	9.1	35	0 001	0.2	5	0 013	15	15	15	0.013	200	20.4	0.21	0 013	15	15	1.3	15	550	5 00	125	0 119999997	0.3	25	0.38	0.38	0.38	15	15	15	15	15
Minimum Detection LImit	84.0	2 4	0.000	0.03200001	0.033	0.033	0 053	0 0089	0 34	0.055	0.052000001	0.053	0.0036	0 053	0 109999999	0	0.17	18	0 140000001	0 001	0 032000002	0 072	600 0	0 052000001	0 052000001	0.052000001	0.009	0.0018	0.70	0.02500001	0 005	0 053	0 34	0	034	6000	0.43	113	0.109999999	0 032000002	0.097	0 0036	0 0036	0 0036	0.34	0.34	0 34	0 052000001	0 052000001
Number Detected	34	122	43	\$ 5	24 65	? :	41	61	7	125	45	2	24	36	125	32	1	4	٦			125						35	8 5	<u> </u>	6	35	1	57	=	4 6	3 0	1 (, -	99	123	4	33	39	3	1	-	22	41
Number	119	125	200		/O) 	107	125	37	125	107	107	80	107	125	125	37	4	125	9	30	125	80	107	107	107	80	28 8	30	2 8	81	107	37	125	37	2 8	000	3 4) LC	30	125	80	80	80	37	37	37	107	107
Parameter Name	ANTIMONY	ABSENIC	DENIO DA DENIE		Ę		-LUORANTH	CADMIUM	CARBAZOLE	CHROMIUM, TOTAL	CHRYSENE	DIBENZ(a,h)ANTHRACENE	DIELDRIN	INDENO(1,2,3-c,d)PYRENE	LEAD	MERCURY	PENTACHLOROPHENOL	PETROLEUM HYDROCARBONS	SELENIUM	TCDD Equivalent	VANADIUM	ZINC	2-HEXANONE	2-METHYLNAPHTHALENE	ACENAPHTHENE	ACENAPHTHYLENE	ACETONE	ALPHA-CHLORDANE	ANTHONE	BARIUM	BENZENE	,i)PERYLEN	BENZYL BUTYL PHTHALATE	BERYLLIUM	bis(2-ETHYLHEXYL) PHTHALATE	BACMOMETANE	CABBON DISHII FIDE	CHROMIIM III	CHROMIUM. HEXAVALENT		COPPER	QQQ	DDE	LODT	DIBENZOFURAN		DI-n-BUTYL PHTHALATE	FLOORANTHENE	PLUCHENE GAMMA CHI ODDANE
Units		MG/KG	_	_	┰	_	_	7	$\neg \uparrow$		\neg		\neg		_	$\overline{}$	\neg	\neg	\neg	_	_		_	-	MG/KG	_	_	MG/KG	_	_		_			\neg	MG/NG MG/NG	┰	_		1	_	MG/KG	MG/KG						MG/KG
Unit Matrix	+=			200	300	3 6	388	388	355	3.55	3 88	388	388	388	388	388	3 88	3 88	388	388	388	388	388	388	388	388	355	2000	0000	388	388	388	388	388	388	200	200	888	388	3.55	388	388	388	3 85	388	388	388	388	SS

TABLE D-10

Constituents of Potential Concern in FU3 - Surface Soil

Memphis Depot Main Installation RI

	atrix		Parameter Name	Number Analyzed	Number Detected	Minimum Detection Limit	Maximum Detection Limit	Minimum Detected Concentration 0 035	Maximum Detected Concentration	Arithmetic Mean Detected Concentration	Background Concentration	Regulatory Criteria for Surface Soil	Regulatory Criteria for Leachability	СОРС
388		MG/KG	HEPTACHLOR .	80	_	0 0018	0,2	0 035	0 035	0 035		0.14	23	No B
			IRON	30	30	02	3.2	3960	51300	15498	37040	2300		No E
388		MG/KG	MAGNESIUM	30	30	0 22	7.5	263	10900	2406	4600			No E
388			MANGANESE	30	30	0 011	0.230000004	,,60	634	251	1304	1100		No C
388		MQ/KG	METHYL ETHYL KETONE (2-BUTANONE)	80	5	0 009	0 013	0.002	0 044	0 016	0 002	4700	17	No B
388		MG/KG	METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE)	80	1	0 009	0.013	0 002	0 002	0.002		630	26	No B
388		MG/KG	METHYLENE CHLORIDE	80	28	0 009	0 013	0 001	0 007	0 003		85	0 02	No B
388		MG/KG	NAPHTHALENE	107	4	0 052000001	15	0 085	0 63	0 24		160	84	
388		MG/KG	NICKEL	125	125	0.034000002	5	32	76	18	30	160	130	No B
388		MG/KG	PHENANTHRENE	107		0 052000001	15	0 043	52	3.3	0.61	230	250	No B
388		MG/KG	POTASSIUM	30	29	75	723	190	4650	1159	1820			No E
388		MG/KG	PYRENE	107		0.052000001	15	() 043	71	3.6	15	, 230	880	No B
388		MG/KG	SILVER	125	3	0.05	25	531	25	1.5	2	39	34	No B
388		MG/KG	SODIUM	30	9	0 879999995	94	62	863	334				No E
388		MG/KG	TOLUENE	81	5	0 005	0 013	0 001	0 004	0 0018	0 002	1600	12	No B
388		MG/KG	Total Xylenes	81	3	0.005	0.013	0.001	0 003	0 002	0 009	16000	02	No C
388		MG/KG	TRICHLOROETHYLENE (TCE)	80	1	0 009	0 013	0 001	0.001	0 001		58	0 06	No B
Note Dat	ta evalua	ated inclu	Data evaluated includes field duplicates and normal samples (0-2 feet) A full list of all chemicals and their COPC status can be found in Appendix I											
>	ELI.	Exceeds Criteria	Criteria					= =						
Φ.	-	Joes not	Does not exceed Criteria					•						
C	0	Joes not	Does not exceed Background					= =						
Ü	7	Vo Critera	No Criteria available & exceeds Background, or no Criteria or Background available	vailable				₹ =						
m	C	Themical	Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC	ımınatıng it as	a COPC									

മെച

Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC Chemical is a member of a chemical class which contains other COPCs

TABLE D-11
Constituents of Potential Concern in FU3 - Subsurface Soil
Memphis Depot Main Installation RI

TABLE D-11

Constituents of Potential Concern in FU3 - Subsurface Soil

Memphis Depot Main Installation RI

									Note:	ပ	3	3	3	3	Unit
	ធ	TI	ш	D	ဂ	B	>	A full list	Data eval	3 SB	3SB	3SB	3 SB	3SB	Unit Matrix
	Chemica	Chemica	Chemica	No Crite	Does no	Does no	Exceeds Criteria	of all che	uated incl	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	Units
, , , , , , , , , , , , , , , , , , , ,	Chemical is a member of a chemical class which contains other COPCs	Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC	Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC	No Criteria available & exceeds Background, or no Criteria or Background available	Does not exceed Background	Does not exceed Cnteria	Criteria	A full list of all chemicals and their COPC status can be found in Appendix I	Note: Data evaluated includes field duplicates and normal samples (2 feet and below)	MG/KG TRICHLOROETHYLENE (TCE)	Total Xylenes	MG/KG TOLUENE	MG/KG SILVER	PYRENE	Parameter Name
	s other COPC	l judgement wa	ment was usec	na or Backgrou				ppendix I	et and below)	106	106	106	106	89	Number Analyzed
	S	as used in elin	d in eliminating	und avaılable						5		۰	<u>-</u> -	4	Number Detected
		nınatıng it as a (g it as a COPC							0 0090	0 0090	0 0090	0 050	0.052000001	Minimum Detection Limit
		OPC								0 015	0 015	0 015	26	21	Maximum Detection Limit
										0.0020	0.0020	0.0040	0.38	0 064	Minimum Detected Concentration
		•			٠,	-				0.010	0.0020	0 0040	0.38	24	Maximum Detected Concentration
										0.0052	0.0020	0 0040	86.0	0 7 0	Arithmetic Mean Detected Concentration
											0 0020		1	0 042	Background Concentration
		~								0 060	0 20	12	34	880	Regulatory Criteria for Subsurface Soil (Leachability)
										No B	No C	No B	No C	No B	COPC/BASIS

D-19
C_SE FUB
P 114754314PPD_FU3 x1stCOPC_SE FU

Exceeds Criteria

Does not exceed Criteria

Does not exceed Criteria

Over not exceed Background

Over Criteria available & exceeds Background, or no Criteria ov Background available

Chemical is an essential unitent and professional judgement was used an elimnaling it as a COPC

Chemical is a common lab contaminant and professional judgement was used an elimnaling it as a COPC

Chemical is a member of a chemical class which contains other COPCs

⊀ 8 7 5 m m 7 9

				Number	Number	Minimum Detection	Maximum Detection	Minimum Detected	Maximum Defacted	Arithmetic Mean Detacted	Background	Regulatory Criteria for	Regulatory Criteria for		
WORKING 2 + CHANTANITANIENE 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 1 1 0 2 2 1 1 0 2 1 0<		Ĕ		Analyzed	Detected		E	Concentration	Concentration	Concentration	Concentration	Segiments	Q Q		BASIS A
ΜΟΧΙΚΟΙ Ο ΜΕΝΤΙΚΗΝΙΚΗΝΕΚΕΙΚΕ 1 1 1 23 23 23 23 16 14 1	3 SE			-	-	27	27	16	2	91		3	, q	, ,	
MACKOO GANIMADONY 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0	386		2 METHYLNAPHTHALENE	1	-	2.7	2.7	8.2	8.2	82		3	,		
MACKIO ENCOLAMBLANCE 1 1 0.0077999999 1 1 0.0077999999 1 1 0.0077999999 1 1 0.0077999999 1 1 0.0077999999 1 1 0.0077999999 1 1 0.0077999999 1 1 0.0077999999 0.0077999999 1 0.00799999 0.00799999 0.00799999 0.00799999 0.00799999 0.0079999 0.00799999 0.00799999 0.00799999 0.00799999 0.00799999 0.00799999 0.007999999 0.00799999 0.00799999 0.00799999 0.00799999 0.00799999 0.007999999 0.007999999 0.007999999 0.007999999 0.00799999 0.007999999 0.007999999 0.0079999999 0.0079999999 0.0079999999 0.0079999999 0.0079999999 0.0079999999 0.0079999999999999999999999999999999999	3 SE				-	_	0.35	58	28	£2,	7.6	31	r i	ű,	
MACKOG CHOMUNUM 1 1 G050799899 1079 184 29 7 6 9 184 MACKOG CHOMUNUM 1 1 0.18 0.18 920 770 20 1000 38 184 MACKOG CHOMUNUM 1 1 0.18 0.18 920 777 20 1000 184 184 MACKOG CHOMUNUM 1 1 0.18 1820 2550 777 200 184 184 MACKO CHOMUNUM 1 1 1 1 22 0.29 0.25 0.29 184 184 MACKO CHOMUNUM 1 1 1 2 2 0.29 0.35 0.35 0.35 0.35 0.34 184 0.98 0.78 0.78 0.78 0.98 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78	3SE	Г	BARIUM	-	-	-	0 037999999	1120	1120	1120	118	290	200	8	
	3 SE	Γ		-	-	_	0 037999999	18	84	æ	29	78	8	š	
MACANG FERDAL PRACE 98200 <	3 SE	Γ		-	-	33	33	1700	1700	1700	Q2	10800	38	Yes	٠,
HUGKOR DEFTOLE BIN HYDPOCLARIDONS 1 1 0.00000 55800 55800 578 570 1400	38.6	Γ		-	-	0 18	0.18	3820	3820	3820	35	400		Yes	4
HIGKOR CERLAD-MITTEME 1 1 0.7279099999 2550 7550 777 2700 1700 Na VICKOR CERLAD-MITTEME 1 1 2.7 2520 2550 0.77 4.00 5700 Na VICKOR ALVARINADIATIEME 1 1 2.7 2.7 5.5 5.5 1.0 1.0 2.0 1.0 </td <td>3SE</td> <td>Ī</td> <td>т</td> <td>-</td> <td>-</td> <td>134</td> <td>134</td> <td>5980</td> <td>5980</td> <td>2380</td> <td></td> <td>34</td> <td>340</td> <td>Yes</td> <td>▼</td>	3SE	Ī	т	-	-	134	134	5980	5980	2380		34	340	Yes	▼
ΝΕΚΤΟΚΕ (ΣΕΡΕΝΤΗΓΕΝΕΕ 1 27 27 059 0.39 0.07 470 570 NA ΝΕΚΤΟΚΕ (ΣΕΡΕΝΤΡΙΚΕΝΕΕ 1 1 27 27 0.51 0.51 1.65 1.69	3SE	Ī	_	-	-	-	0 379999995	2550	2550	2550	197	2300	12000	ž	\ \
MACKO MACKO <th< td=""><td>a SE</td><td>Τ</td><td>_</td><td>-</td><td>-</td><td>27</td><td>2.7</td><td>039</td><td>039</td><td>0.39</td><td>22.0</td><td>470</td><td>570</td><td>2</td><td>٥</td></th<>	a SE	Τ	_	-	-	27	2.7	039	039	0.39	22.0	470	570	2	٥
MGKGG AMTHATCENEE 1 1 27 27 0 51 0 51 1 20 12000 No MGKGG AMTHATCENEE 1 1 1 1 1 1 1 1 2 2 0 51 2 0 69 2 0 69 1 2 No MGKGG BENZOCIANATHATCENEE 1 1 1 2 2 1 2 2 0 69 2 0 69 No MGKG BENZOCIANATHATCENEE 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1<	12	Τ		-	-	83	83	3550	3550	3550	58001	7800		£	O
MOXIGA ARSENIGA ARSENIGA ARSENIGA ARSENIGA F. 9 5.9 5.9 5.9 6.9<	1	T		-	-	27	2.7	0.51	0.51	051	91	2300	12000	£	o
MGANG GENZOGIAMATHRIAGEME 1 27 27 12 12 12 27 12 </td <td>ų,</td> <td>T</td> <td>т</td> <td>-</td> <td>-</td> <td>=</td> <td>=</td> <td>59</td> <td>65</td> <td>59</td> <td>12</td> <td>0.43</td> <td>53</td> <td>ž</td> <td>U</td>	ų,	T	т	-	-	=	=	59	65	59	12	0.43	53	ž	U
MCANG DEPATORIANTERINE 1 1 2 2 0.64 0.64 2.5 0.097 8 No MCANG DEPATORIANTERINE 1 1 2 2 1 1 1 2 2 0.64 6 9 No MCANG DEATORIANTERINE 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1	3 6	1	BENZO/A)ANTHRACENE	-	-	27	2.7	12	12	12	2.9	0.87	2		o
MGAGG GENZOIDI-LICHANTHENE 1 27 27 11 11 23 0 kP 49 No MGAGG GENZOIDI-LICHANTHENE 1 1 27 27 11 11 23 68 69<	1 2		DENZO(#)DYDENE	-	-	27	2.7	0.84	0.84	0.84	2.5	280.0	8	£	o
MGANG BEALZOIA/FLORAMTHEINE 1 27 27 11 11 27 27 11 11 27 27 12 12 0.46 46 46 3600 No MGANG BARZEO IANTHEINE 1 1 27 27 150 160 11 22 160 No 160 160 No No <td< td=""><td>1 2</td><td>T</td><td></td><td>-</td><td>-</td><td>27</td><td>27</td><td>4-</td><td>14</td><td>4-</td><td>2.2</td><td>0.87</td><td>9</td><td>₽</td><td>O</td></td<>	1 2	T		-	-	27	27	4-	14	4-	2.2	0.87	9	₽	O
MGMG BMG/LEARLY LIPTIVALATE 1 1 27 27 120 120 120 160	1 2	T		-	-	27	27		11	11	23	8.7	49		o
MGXG CALCIUM 1 1 8.2 15900 15900 15800 15800 15800 15800 15800 15800 15800 15800 15800 16800 <td>100</td> <td>Τ</td> <td>bis(2 FTHYLHEXYL) PHTHALATE</td> <td>-</td> <td>-</td> <td>2.7</td> <td>2.7</td> <td>12</td> <td>12</td> <td>12</td> <td>0.48</td> <td>46</td> <td>3600</td> <td>٦</td> <td></td>	100	Τ	bis(2 FTHYLHEXYL) PHTHALATE	-	-	2.7	2.7	12	12	12	0.48	46	3600	٦	
MGANG CAMBAZOLE 1 1 27 27 04 04 04 11 32 06 NA MGANG CAMBAZOLE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 14 14 4 10 1 1 10 1	386	Γ	CALCIUM	-	-	8.2	9.2	15900	15900	15900	14860			٦	<u>u</u>
MGXG CHRYSENE 1 1 27 16 16 16 32 87 160 MA MGXG CHRYSENE 1 1 1 0.022000022 0.022000022 44 44 44 14 17 17 10 MGXG COBALT 1 1 1 1 1 27 24 24 44 14 17 170 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 27 24 24 24 24 310 807 10 10 1 1 1 27 27 27 270 <td< td=""><td>1 25</td><td>Τ</td><td></td><td>-</td><td>-</td><td>27</td><td>27</td><td>90</td><td>40</td><td>0.4</td><td>11</td><td>32</td><td>90</td><td>£</td><td>ان</td></td<>	1 25	Τ		-	-	27	27	90	40	0.4	11	32	90	£	ان
MCMCI CORPLET 1 1 0.032000002 0.044 44 14 44 14 40 14 40 14 40 14 40 14 40 14 40 14 40 14 40 14 40 14 40 14 40 14 40 14 14 40 14 40 14 40 14 40 14 40 14 40 14 40 14 40 14 40 40 14 40 <td>386</td> <td>Τ</td> <td></td> <td>-</td> <td>-</td> <td>27</td> <td>2.7</td> <td>16</td> <td>16</td> <td>16</td> <td>3.5</td> <td>87</td> <td>160</td> <td></td> <td>U</td>	386	Τ		-	-	27	2.7	16	16	16	3.5	87	160		U
MCMCII COPPER FIGH 1 1 0.129999095 0.129990905 153 153 569 140 NA MCMCII CLUDIAMTHENE 1 1 2.7 2.7 2.4 2.4 7.7 310 4500 NA MCMCII CLUDIAMTHENE 1 1 2.7 2.7 0.7 0.7 0.8 310 4500 NA MCMCII ELUDIAMACHENE 1 1 2.7 2.7 0.4 0.4 0.4 0.7 1.0 NA MCMCII ELUDIAMACHENE 1 1 2.7 2.7 0.4 0.4 0.4 0.4 0.6 NA MCMCII ENACHENE 1 1 0.075 0.7	100	T		_	-	0 032000002	0.032000002	44	44	44	14	470			8
MCKG FLÜÖRÄNTHENE 1 2 7 2 7 2 4 2 4 2 4 2 4 2 7 3 10 4500 No MGKG FLÜÖRÄNTENE 1 1 2 7 2 7 0 7	8	T	-	-	-		0 129999995	153	153	153	85	310			8
MGXG ELUORIENE 1 1 27 27 07 07 07 08 310 560 Na MGXG IRON IRON 24700 24700 24700 2890 0500 Na MGXG IRON IRON 0 0 0 0 0 0 0 Na MGXG MARGANESINE 1 1 7 7 7 1590 1590 2440 0 0 Na MGXG MARGANISANESE 1 1 1 7 7 7 224 224 871 100 Na MGXG MARICANINARISE 1 1 1 1 27 27 24 24 23 2 No MGXG MARICANINARISE 1 1 1 1 27 27 25 5 5 No 1 No MGXG PRANINARIANINARISE 1 1 1	38E	Ī	FLUORANTHENE	-	-	2.7	27	24	24	2.4	7.1	310	4300	£	ان
MGKG IFON T 32 32 24700 24700 24700 24700 24700 24700 24700 24700 24700 24700 24700 24700 24700 24700 24700 2700 7	38.5	Π	FLUORENE	F	-	2.7	27	0.7	10	4.0	280	310	260	2 :	ار
MGKG ISOPHIONE 1 1 27 27 04 04 04 04 67 05 No MGKG MAGNESELIM 1 1 1 75 1590 1590 2440 670 05 No MGKG MAGNESELIM 1 1 0 013 0.13 224 224 871 1100 No No MGKG MARCHESELIM 1 1 0 0075 0.0075 0.1 0 1 4 2.3 871 1100 No No MGKG MARCHESELIM 1 1 1 1 1 2.7 2.7 5.5 5.5 6.5 1.0 1.0 No	3 SE			-	1	3.2	3.2	24700	24700	24700	23080	2300		9	J .
MGKGI MAĞNEŞILIM 1 7 7 7 5 1590 1590 2440 100 No MGKGI MAĞNEŞILIM 1 1 1 0.075 0.075 0.1 0	38.6	Γ		-	-	27	2.7	0.4	0.4	0.4		670	0.5	2 :	8
MG/KG MANGANESE 1 1 0 013 0 013 224 224 871 1100 2 No MG/KG MERCLIFY 1 1 1 0 0075 0 0075 0 1 4 23 2 No MG/KG MARHALENE 1 1 1 1 27 27 5 5 5 013 160 150 No MG/KG NICKG NICKG NICKG NICKG 1 1 27 27 31 6 20 250 No MG/KG NICKG NICKG NICKG 1 1 27 27 31 6 20 250 No MG/KG NICKG	386	Γ	MAGNESIUM	-	+	7.5	7.5	1590	1590	1590	2440			2	
MGKG MERCURY 1 1 0.075 0.075 0.1 0.1 0.1 4 2.3 2.5 No MGKG NAPHTHALENE 1 1 2.7 2.7 3.6 5.5 5.5 0.13 150 8.4 No MGKG NACKG NACKG PHANTHARENE 1 1 2.7 2.7 3.1 3.1 6.9 2.50 No MGKG POTASSIUM 1 1 2.7 2.7 173 173 1560 20 No MGKG POTASSIUM 1 1 2.7 2.7 1.73 1.73 1560 20 No MGKG POTASSIUM 1 1 2.7 2.7 2.2 2.2 2.9 2.0 No MGKG POTASSIUM 1 1 0.3 0.3 1.30 2.2 2.9 2.0 No MGKG POTASSIUM 1 1 0.3 0.3	3 SE	Γ	MANGANESE	-	-	0 0 1 3	0.013	224	224	224	87.1	1100		٤,	ان
MGKG NAPHTHALENE 1 1 1 27 27 55 55 65 013 100 84 No. MGKG MICKG DIACKSULM 1	386	Γ		-	-	0 0075	0 0075	0.1	10	0.1	*	23	2	Q.	υĮ
MGKG INCKEL INCKEL <td>38</td> <td>Τ</td> <td></td> <td>-</td> <td>-</td> <td>27</td> <td>2.7</td> <td>55</td> <td>5.5</td> <td>5.5</td> <td>0.13</td> <td>160</td> <td>2</td> <td>운</td> <td>8</td>	38	Τ		-	-	27	2.7	55	5.5	5.5	0.13	160	2	운	8
MGKG PHENANTHRENE 1 1 27 27 31 31 69 200 250 Moderna MGKG POTASSIUM 1 1 75 75 173 173 1750 20 20 Moderna	38.5	Γ		-	-	0 119999997	0 119999997	30	30	30	31	160	130		c
MGKG POTASSIUM 1 75 75 173 173 1560 No No MGKG PYRENE 1 1 1 27 27 22 22 29 29 20 No MGKG PYRENE 1 1 0 1 1 0 1 1 0 No	385	T	_	-	-	27	2.7	31	3.1	31	6.9	230	250		٥
MGAKG PYRENE 1 1 27 27 22 22 22 29 230 880 No MGAKG SODIUM 1 1 0.91 0.91 1330 1330 240 No No MGAKG SODIUM 1 1 0.057999999 0.057999999 0.1 0.1 0.1 30 65 6000 No	3 SE	l	_	-		75	75	173	173	173	1560			£	וש
MIGNG SODIUM 1 0.91 0.91 1330 1330 240 No No No No No No No N	3SE	Γ	-	_	-	27	2.7	2.2	2.5	22	5.9	823	880	£	ان
MGAKG VANADIUM 1 1 0057999998 0.057999998 0.1 0.1 0.1 30 65 6000	38.6	Γ		_	-	160	160	1330	1330	1330	240			2	u u
	38.6	Γ		-	_	_	0.057999998	0.1	0.1	0.1	30	55	0009	2	o
	•	-	Coppeds Orthoria												

TABLE D-12
Constituents of Potential Concern in FU3 Sediment
Memphis Depot Main Installation RI

Constituents of Potential Concern in Fil Site 34 - Surface Soll Mempins Depot Mam Installation RI

2

P1147543WPPD_RU3xds/COPC34SS

						Minimum	Meximum	Minimum	Maximum	Arithmetic Mean		Regulatory	Regulatory		
Unit	Matrix	Salts	Parameter Name	Analyzed	Detected	Limit	Limit	Concentration	Concentration	Concentration	Background Concentration	Criteria for Surface Soil	Criteria for Leachability	COPC	COPC/BASIS
3 34	SS	MG/KG		5	5	16	23	17	49	15	20	0.43	59	Yes	4
3.34	SS	MG/KG		6	7	011	53	0.49	9	37	071	0.87	2	Yes	4
3 34	SS	MG/KG		6	7	0.11	53	0.48	9.5	3.2	960	0 087	8	Yes	¥
334	SS	MG/KG	BENZO(b)FLUORANTHENE	6	7	0.11	53	0.46	9.5	31	60	280	9	Ş,	4
334	SS	MG/KG		6	7	011	53	0.46	12	3.7	0.78	8.7	49	×es	_ _
334	SS	MG/KG		. 5	5	0.23	23	188	124	59	25	10800	38	×e\$	4
3 34	SS	MG/KG	DIBENZ(a h)ANTHRACENE	6	2	011	53	0.21	12	17.0	0.26	0 087	2	×8,	
3 34	SS	MG/KG		6	7	011	53	0.48	62	2.5	40	0.87	7	Xes	4
3 34	SS	MG/KG	LEAD	2	2	0.64	1.7	94	096	666	OE	400		Yes	A
3 34	SS	MG/KG	CHRYSENE	a	7	011	53	0.52	12	14	0.94	-87	8	Yes	9
3 34	ss	MG/KG		6	2	0 11	53	011	16	0.86		470	570	운	8
334	SS	MG/KG		5	4	100	0 011	0 002	0 035	0014		780	91	2	8
334	SS	MG/KG		0	9	011	53	0.13	2.4	13	9600	2300	12000	ş	8
3 34	SS	MG/KG	BENZO(g,h I)PERYLENE	6	7	0 11	53	0.41	56	19	0.82	230	32000	۶	8
3 34	SS	MG/KG	BERYLLIUM	5	1	0 014	60	2	2	2	-	16	63	2	8
3 34	SS	MG/KG	CADMIUM	5	1	0.35	11	0.59	0 28	0.59	14	7.8	8	ş	v
334	SS	MG/KG		5	5	0.13	23	7.1	52	20	34	310		£	8
3 34	SS	MG/KG		o	7	0 11	53	660	24	8.5	16	310	4300	9≥	a
334	SS	MG/KG		6	3	0.11	53	014	16	11		310	560	ž	8
334	SS	MG/KG		20	е	001	0 0 1 1	0 002	0 002	0 002		85	0 02	¥	8
334	SS	MG/KG		rs	ç	0.58	4.5	46	16	99	30	160	130	₩	o
334	SS	MG/KG		6	7	0 11	53	0.41	16	5.8	0.61	230	250	δ	
334	SS	MG/KG	PYRENE	6	7	011	53	0.94	17	6.2	1.5	230	880	No	В
334	SS	MG/KG	MG/KG TOLUENE	'n	-	100	0 011	0 002	0 002	0 002	0 002	1600	12	No	3
334		MG/KG	MG/KG Total Xylenes	s	-	0.01	0.011	0 002	0 002	0.002	0 000	16000	0.2	애	3
334	\neg	MG/KG ZINC	ZINC	5	5	011	4.5	42	577	193	126	2300	12000	No.	В
Note Data eval	luated motu	ples field	Note Data evaluated includes field duplicates and normal samples (0-2 feet)												
A full list	of all chen	micals and	A full list of all chemicals and their COPC status can be found in Appendix I												
∢	Exceeds Criteria	Criteria													
60	Does not	Does not exceed Criteria	Unteria												
O	Does not	t exceed B	Does not exceed Background												
۵	No Criter	ra availab	No Criteria available & exceeds Background, or no Criteria or Background available	Aground avai	able										
ш	Chemical	lisaness	Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC	used in elimi	nating it as a (opc									
ш	Chemical	il is a com.	Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC	ent was used	n eliminating r	t as a COPC									
g	Chemical	dis a men	Chemical is a member of a chemical class which contains other COPCs	OPCs											

1 . A

55

TABLE D-14
Constituents of Potential Concern in RI Sile 34 - Subsurface Soil
Memphis Depot Main installation RI

						Minimum	Maximum	Minimum	Maximum	Arithmetic Mean		Regulatory Criteria		
Unit	Natrix	Cuits	Parameter Name	Number Analyzed	Number Detected	Detection Limit	Detection Limit	Detected Concentration	Detected Concentration	Detected Concentration	Background Concentration	for Subsurface Sail (Leschability)	coPc?	Basis?
8	SB	MG/KG	CHROMIUM, TOTAL	13	13	900	26	13	41	22	56	8	Yes	¥
3	88	1	ARSENIC	13	13	0.2	13	43	13	7.7	17	29	Yes	=
8	SB	1	BENZO(a)ANTHRACENE	13	-	0 062	0.42	018	0 18	0.18		2	Yes	I
334	es		BENZO(a)PYRENE	13	-	0 062	0.42	013	0 13	013			Yes	I
8	es	3	BENZO(b)FLUORANTHENE	13	-	0.062	0.42	0.12	0 12	0 12			Yes	ı
8 8	SB	MG/KG	BENZO(k)FLUORANTHENE	13	-	0 062	0.42	01	0.1	0.1			Yes	I
334	SB	MG/KG	CHRYSENE	13	-	0 062	0.42	0.15	0.15	0.15		160	Yes	I
34	es	MG/KG	LEAD	13	13	0.24	0 39	89	14	10	24			I
334	SB	MG/KG	ACETONE	13	=	0.012	0.013	0 004	0 032	0011		91		В
8	BS	MG/KG	ALUMINUM	-	-	0.82	0.82	16800	16800	16800	21629		2	S
33.38	BB	MG/KG	BARIUM	-	-	0 03	0 03	147	147	147	300			င
33	SB	MG/KG	BENZO(g,h,t)PERYLENE	13	-	0 062	0.42	013	0.13	0.13		32000		9
38,6	SB	MG/KG	BERYLLIUM	13	-	100	0.52	10	0.1	0.1	1.2	89		ပ
334	SB	MG/KG	CADMIUM	13	2	0 02	0 65	027	0 28	0.28	14			S
33	88	MG/KG	MG/KG CALCIUM	-	1	0.48	0.48	912	912	912	2432		No	Ę
334	SB	MG/KG	COBALT	-	-	0.041	0.041	10	10	10	20			ပ
33.32	88	MG/KG	COPPER	13	13	0-1-0	13	9.4	22	15	33		No	ပ
8,6	SB	MG/KG	FLUORANTHENE	13	-	0.062	0.42	0.34	0.34	034	0.045		No	
334	SB	MG/KG	FLUORENE	13	-	0 062	0.42	0.15	0.15	0.15		999	No	9
334	SB	MG/KG	IRON	ŀ	1	021	0.21	24200	24200	24200	38480			E
334	SB	MG/KG	MAGNESTUM	-	1	0.24	0.24	3030	3030	3030	4900			E
334	SB	MG/KG	MG/KG MANGANESE	-	-	0.024	0.024	1090	1090	1090	1540			ပ
36 6	SB	MG/KG	MG/KG METHYLENE CHLORIDE	13	4	0.012	0 013	1000	00000	0 0050				9
# 8	8SI	MG/KG	NICKEL	13	13	0.15	26	12	21	16	37	130		S
е Ж	SB		PHENANTHRENE	13	1	0 062	0.42	0.37	0.37	0.37				
334	SB		PYRENE	13	1	0.062	0.42	0.26	0.26	0.26	0.042	880		В
334	88	MG/KG	TRICHLOROETHYLENE (TCE)	13	3	0.012	0.013	0 0020	0 007	0 0043				В
934 34	SB	MG/KG	MG/KG VANADIUM	,	1	0.054	0 054	38	88	38	51			O
334	SB	MG/KG ZINC	ZINC	13	13	0.078	26	31	7.5	49	114	12000		O
38	SB	MG/KG	MG/KG POTASSIUM	1	1	93	93	3190	3190	3190	1800		No	
Note Data ev.	ahuated inclu-	ndes field du	Note Data evaluated includes field duplicates and normal samples (2 feet and below	•										
∢	Exceed	Exceeds Criteria												
60	Does no	Does not exceed Criteria	hteria											
O	Does no	Does not exceed Background	sackground											
٥	No Crite	eria avatlabi	No Criteria available & exceeds Background, or no Criteria or Background available	kground avail	able									

No Criteria available & exceeds Background, or no Criteria or Background available
Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC
Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC
Chemical is a member of a chemical class which contains other COPCs
Chemical is a surface solf COPC

опгот

TABLE D-15 Constituents of Potential Concern in FU4 - Surface Soil Memphis Depot Mam Installation RI

; [

10000 10000 1300 1300 1500 1500 Regulatory Criteria for Leachability \$ \$ E S Regulatory Criteria for Surface Soli 0 00001 0 029 0 382 Background Concentration 0 45 0 34 0 38 0 92 0 92 0 001 Arithmetic Mean Detected Concentration 4385 27 5 27 5 27 5 66 3 6 6 6 6 4 Maximum Detected 34 0 28 0 048 1300 0 28 0 28 0 12 0 00 0 00 0 03 0 0 05 0 18 Minimum Detected 1 20000005 111 1 79999995 0 001 3 29999995 0 057 0 0 057 0 0 057 0 0 057 0 0 057 0 00 Minimum Detection Limit Number Analyzed I IRON
MAGNESIUM
MERCURY
MERCURY
MERCURY
METHYL ETHYL KETONE (2-BUTANONE)
METHYLENE CHLORIDE
NAPHTHALENE HACKG ALLANIAM

MACKG ALLANIAM

MACKG ALLANIAM

MACKG ALLANIAM

MACKG ARTINAON

MACKG BENZOJGANTHENE

MACKG BENZOJGANTHENE

MACKG GRENZOLE

MACKG CARRAZOLE

MACKG CARRAZOLE

MACKG CARRAZOLE

MACKG CARRAZOLE

MACKG OPPER

MACKG

TABLE D-15 Constituents of Potential Concern in FU4 - Surface Soil Memphis Depot Main Instalfation RI

_											•			
					Minimum	Maximum	Mintmum	Maximum	Arithmetic Mean			Regulatory		
			Number	Number	Detection	Detection	Detected	Detected	Detected	Background	Regulatory Criteria for	Criteria for		_
<u>₹</u>	Matrix Units	Deremeter Name	Analyzed	Detected	E E	Clarit	Concentration	Concentration	Concentration	Concentration	Surface Soll	Leachability	COPC/BASIS	
4 88	Γ	MG/KG INICKEL	150	150	0 033	F	23	44	61	30	160	130	No B	_
4 55	Ι		129	47	0 057	25	0 038	2.6	96 0	0 61	530	250	No 8	_
4 SS		MGKG POTASSIUM	64	42	71	710	68	3140	1135	1820]		No E	_
SS		MG/KG PYRENE	129	23	0 057	62	500	12	1	15	230	880	No B	_
4 SS	Γ	MGKG SILVER	150	18	0 05	3 2999995	0.045	0 63	0.26	2	39	34	S S	
4 SS		MG/KG SODIUM	43	10	0 91000003	276	104	1080	991				NoE	_
SS		MG/KG TETRACHLOROETHYLENE(PCE)	105	-	100	0 025	0 008	900 0	800 0		12	90.0	No B	_
58		MG/KG TOLUENE	105	4	001	0 025	0 002	7100	2600 O	0000	0091	12	No B	
4 SS	Γ	MG/KG Total Xvienes	105	4	0 0	0 025	0 001	0 002	0 0018	600 O	00091	0.2	No	
4 55		MG/KG TRICHLOROETHYLENE (TCE)	105	-	100	0 025	0 002	0 005	500 0		89	900	No B	_
SS	Γ	MG/KG VANADIUM	64	ę.	0 032	8.5	34	51	21	48	99	0009	No B	_
ā	· evaluate	Data evaluated mollude field duplicates and normal samples (0-2 feet)												_
∢	ŭ	Exceeds Criteria												
œ	ã	Does not exceed Criteria												
ပ	å	Does not exceed Background												
٥	2	No Criteria available & exceeds Background, or no Criteria or Background available	avastable											
ш	ð	Chemical is an essential nutneril and professional judgement was used in eliminating it as a COPC	Aminating it as	2005										
u	đ	Chemical is a common lab contaminant and professional judgement was used in	sed in eliminatin	eliminating it as a COPC	Ų									
ď	Ć	Chambol is a member of a chambol class which contains other CODCs.												

TABLE D-16Constituents of Potential Concern in FU4 - Subsurface Soil
Memphis Depot Main Installation RI

Ġ

P 11475431APPD_FU4 x1s1COPC_SB 4

-	Matrix Units	Parameter Name	Number Analyzed	Number Detected	Detection	Detection	Detected Concentration	Detected Concentration	Detected Concentration	Background Concentration	Subsurface Soil (Leachability)	COPC/BASIS
1	₽	1,12.2-TETRACHLOROETHANE	157		.00	0 0 24	_	0 02	0012		00 0	Yes A
1 1	MG/KG	ALPHA-CHLORDANE	144		00	0 0083						Yes D
	MG/KG	ALUMINUM	57	57			1800	26	11	21829		Yes D
	MG/KG	ANTIMONY	154			_						Yes
	MG/KG	ARSENIC	157	15	0 150	4		34	13		29	Yes
ŀ	MG/KG	CHROMIUM, TOTAL	157	157		3 29999	18			56		Yes
ı	MG/KG	COBALT	57	5	٩		-	28				Yes
J	MG/KG	COPPER	157	12		338						Yes
	MG/KG	GAMMA-CHLORDANE	144		Ĭ	0 0083	0 024	00	0 024	000		Yes
I	MG/KG	LEAD	157	156						24		Yes D
1	MG/KG	MANGANESE	57	5	J	2.5				1540		Yes
	MG/KG	PENTACHLOROPHENOL	154								0 03	١
	MG/KG	TCDD Equivalent	35		0 001		0 000000045	0 0 13	0 00042	900000 0	0 005	
	MG/KG	THALLIUM	157	2	A 0.15	3 299	38		4.1		0.7	Yes A
	MG/KG	TOTAL 1,2-DICHLOROETHENE	157	,								
	MG/KG	TRICHLOROETHYLENE (TCE)	157	10	0 0 1	0 025		0 32			900	
ı	MG/KG	BENZO(a)ANTHRACENE	157		3 0.055	5 2	0 042				2	
ı	MG/KG	BENZO(a)PYRENE	157	.,	3 0 0 5 5	2	0 049	0 16	6600		B	Yes
	MG/KG		157		3 0 0 5 5	5 2	250 0	120	0 12		S	Yes
	MG/KG	_	151		0 34999999	2	200				90	Yes
1	MG/KG	CHRYSENE	157		0 055	2	990 0				160	Yes
	MG/KG	DOE	144			0016			0	0 0015		
ı	MG/KG	DDT	144		8 0 0034	0 0 0 16	0 0033	0 0 0 19		22000	11	Yes
ı	MC/KG	DIELDRIN	144				0 0014		0011	037	0 004	Yes H
l	MG/KG	INDENO(1,2,3-c,d)PYRENE	157		0 055	2	410		0		14	Yes
1	MG/KG	PETROLEUM HYDROCARBONS	S		1 70000005	2	19				340	Yes
ļ	MG/KG	SELENIUM	157		0 13	1 70000005	150	2	51	0 6	5	Yes H
	MG/KG	ZINC	157	156	C	1	66	622	68	114	12000	Yes
	MG/KG	1,1-DICHLOROETHENE	157	, ,		0 025	600 0	0	600 0		0.06	No B
1	MG/KG	ACETONE	157	55							16	No[B
1	MG/KG	ALDRIN	144		٥	ľ		0	1600 0		0.5	No
ļ	MG/KG	ANTHRACENE	157				0 054	20	0 127		12000	No B
1	MG/KG	BARIUM	25	57		63	29			300	1600	No
ı	MG/KG	BENZENE	157			ō	0 001	0	1000		003	No B
	MG/KG	BENZO(a.h.i)PERYLENE	157				0.044	41.0	260 0		32000	No B
1	MG/KG	BENZO(k)FLUORANTHENE	157		2 0 055	2	6000				49	No B
1	MG/KG	BENZYL BUTYL PHTHALATE	151		0 349	2	980 0				930	No B
1	MG/KG	BERYLLIUM	157	7	Ļ	1 29999995				12	63	No B
	MG/KG	DIS(2-ETHYLHEXYL) PHTHALATE	150	4	0.34				20		3600	NoF
	MG/KG	BROMOMETHANE	157	2		00		0	0		0.2	No B
ł	MG/KG	Т	157	=		1 700		18		14	8	No
1	MG/KG	_	57	95				5670		2432		No E
1	MG/KG	CHLOROMETHANE	157			0	0 001	0 002	0 0015	:	100	No B
	MG/KG	DIMETHYL PHTHALATE	151								380	No
1	MG/KG	DI-n-BUTYL PHTHALATE	151	2	0 34999999	2		920			2300	No B
1	MG/KG	FLUORANTHENE	157	2		2	900		0 18		4300	
1	MG/KG	HON	57	25		25	3450	4				No E
1	MG/KG	MAGNESIUM	57	25		-				6		No E
1	MG/KG	MERCURY	157	е	0		004	0 37	0.26		2	No B
ı	MG/KG	METHYL ETHYL KETONE (2-BUTANONE)	157	-			1000	ACO O	0.012		17	οN
,									300			

` f

D-25

P \147543\APPD_FU4 xis\COPC_SB 4

Number Detection
Limit
0 039
0 34999999
0.055
0 055
0 91000003
0 053
eliminating it as a COPC
Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC

TABLE D-16
Constituents of Potential Concern in FU4 - Subsurface Soil
Memphis Depot Main Installation RI

TABLE D-17 Constituents of Potential Concern in FU4 - Sediment Memphis Depot Main Installation RI

2 2 2 2 2 2 2 12000 32000 40 16 16 17 470 470 Regulatory Criteria for Leachability 160 39 0 87 0 87 0 87 0 987 0 04 0 04 4 00 0 04 4 00 0 04 0 04 0 87 87 88 87 88 88 Regulatory Criteria for Sedimenta 10085 10085 1118 1118 14 14 0 7 0 0061 30 30 797 797 22080 2440 Background Concentration Arithmetic Mean Detected Concentration Minimum Detected Concentration 0.26 0.26 0.469999999 0 1299999995 0 1299999995 0 79 0 26 0 26 0 26 0 26 Minimum Detection Limit Number Analyzed MGKG
BENZOGIANTHALATE
MGKG
BENZOGIANTHARGENE
MGKG
CARBON TETRACHLORIDE
MGKG
CARBON TETRACHLORIDE
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWILLIA
MGKG
CHROWIL 悥

D-27

٠	
2	
ς.	
3	
3	
2	
÷	
3	
ş	
2	
ž	
ξ	
2	
2	
-	
>	
3	
4	
ž	
7	
Ē	

				Number	N. S.	Minimum	Maximum	Minimum	Maximum Detected	Arithmetic Mean Detected	Background	Regulatory Criteria for	Regulatory Criteria for		
5	Unit Matrix Units	Gnite	Parameter Name	Analyzed Detect	Detected	Limit		Concentration	Concentration	Concentration	Concentration	Sediments	Leachability	COPC	COPC/BASIS
4	SE	MG/KG	MG/KG POTASSIUM	8	80	96	107	76	419	261	1560			No	w
4	SE	MG/KG	MG/KG SODIUM	8	9	0 939999998	26	63	158	113	240			No	ш
7	SE	MG/KG	MG/KG bis(2-ETHYLHEXYL) PHTHALATE	-	2	0.36	9.5	0 0 74	15	787 0	0 48	46	3600	No	ш
Note															
	<	Exceeds Criteria	Criteria												
	60	Does not	Does not exceed Criteria												
	O	Does not	Does not exceed Background												
	_	No Criter	No Criteria avaitable & exceeds Background, or no Criteria or Background available	kground avasla	folia										
	ш	Chemical	Chemical is an essential nutrient and professional judgement was used in elimitating it as	used in elimin	ating it as a C.	a coPc									
	<u>u</u>	Chemical	Chemical is a common lab contaminant and professional judgement was used in eliminatin	nt was used in	seliminating it	ng it ats a COPC									
	ø	Chemical	Chemical is a member of a chemical class which contains other COPCs	OPCs											

TABLE D-17 Constituents of Potential Concern in FU4 - Sediment Memphis Depot Main Instellation RI

TABLE D-18
Constituents of Potential Concern in Residential Point Estimate at Station SS14A - Surface Soil Memphis Depot Main Installation RI

Markit Units Periodical mental				A - 18 h		Descriptions			
Markin Description Concentration Concentration Concentration Concentration Concentration Concentration Surface Soil for Leachability SS Mickid BENZOGJANTHANCENE 6 1 0 07 0 08 0 08 SS Mickid BENZOGJANTHANCENE 0 11 0 08 0 08 0 08 SS Mickid CHRYSENE 1 4 0 087 3 2 0 08 SS Mickid CHRYSENE 1 4 0 087 3 0 0 0 SS Mickid CHRYSENE 2 4 0 086 2 30 0 0 SS Mickid CHRYSENE 2 4 0 08 2 30 3 0 SS Mickid CHRYSENE 0 1 1 4 0 6 2 30 0 0 SS Mickid DENEMBRANCHENE 0 1 1 4 0 6 2 30 0 0 SS Mickid DENEMBRANCHENE 0 1 1 4 0 0 0 0 0 0	•				Arithmetic mean Detected	Background	Criteria for	Regulatory Criteria	
MIGNEG BENEZOGANTHRACENE 6 0.71 0.87 MIGNEG BENEZOGANTHRACENE 14 0.96 32 MIGNEG GARBAZOLE 14 0.96 32 MIGNEG GARBAZOLE 0.11 0.94 87 MIGNEG CHRYSENIE 1.4 0.96 230 MIGNEG GARCHACHLCROPHENOL 0.91 0.98 230 MIGNEG GARINAPHTENE 2.4 0.096 230 MIGNEG BENZOLGANIPERTENE 0.71 46 470 MIGNEG BENZOLGANIPERTENE 0.71 46 310 MIGNEG BENZOLGANIPERTENE 0.71 46 310 MIGNEG BENZOLGANITHENE 0.71 0.87 400 MIGNEG BENZOLGANITHENE 0.91 3.0 0.02 MIGNEG BENZOLGANITHENE 0.91 3.0 0.02 MIGNEG BENZOLGANITHENE 0.03 0.02 0.03 MIGNEG BENZOLGANITHENE 0.03 0.03 0.03 MIGNEG BENZOLGALUM 0.03 0.03 0.03 MIGNEG BENZOLGALUM 0.03 0.03 </th <th>Unit</th> <th>Matrix</th> <th>Units</th> <th>Parameter Name</th> <th>Concentration</th> <th>Concentration</th> <th>Surface Soil</th> <th>for Leachability</th> <th>COPC/BASIS</th>	Unit	Matrix	Units	Parameter Name	Concentration	Concentration	Surface Soil	for Leachability	COPC/BASIS
MGKG BENZO(a)PYRENE 6 1 0 96 0 087 MGKG CARBAZOLE 14 0 067 32 MGKG CARBAZOLE 0 11 0 94 87 MGKG CHAYSENE 1 4 0 096 230 MGKG CHAYSENE 1 4 0 096 230 MGKG CHAYSENE 1 4 0 096 230 MGKG BENZO(g.n.)PERYLENE 2 4 0 086 230 MGKG BENZO(g.n.)PERYLENE 3 4 310 MGKG BENZO(g.n.)PERYLENE 0 71 4 0 082 MGKG BENZO(g.n.)PERYLENE 0 71 310 MGKG PLUORANTHENE 3 30 400 MGKG PLUORANTHENE 9 6 1 5 MGKG PRENE 1 1 2 30 MGKG PRENE 1 1 2 30 MGKG PRENE 1 1 2 30 MGKG BENZO(ISHLUNG 1 1 2 30 MGKG BENZO(ISHLUNG 0 03 0 03 0 03 MGKG BENZO(ISHLUNG 0 03 0 03 0 03 MGKG BENZO(ISHLUNG 0 083 0 03 0	4	SS	MG/KG		9	0 71	28 0	2	Yes A
MGKG GARBAZOLE 114 0.067 32 MGKG PENTACHLOROPHENOL 011 0.94 87 MGKG PENTACHLOROPHENOL 011 0.94 87 MGKG PENTACHLOROPHENOL 14 0.96 230 MGKG BENZOLGA, INFERICE 24 0.09E 230 MGKG BENZOLGA, INFERICE 0.71 0.82 24 MGKG BENZOLGA, INFERICE 0.71 0.82 24 MGKG BENZOLGA, INFERICE 0.71 0.82 230 MGKG FLUDRANTHENE 0.71 0.82 470 MGKG PERVANTHENE 0.91 310 310 MGKG BENZOLGA, INFERIOR 0.92 4.70 8.7 MGKG BENZOLGA, INFERIOR 0.93 0.71 0.87 MGKG BENZOLGA, INFERIOR 0.92 4.70 0.87 MGKG BENZOLGA, INFERIOR 0.93 <	4	SS	MG/KG	BENZO(a)PYRENE	6.1	96 0		8	Yes A
MGKG PENTACHLOROPHENOL 0 11 0.34 8.7 MGKG CHRYSCRAPHTHENE 14 0.94 8.7 MGKG ANTHRACENE 1 4.9 0.95 2.30 MGKG ANTHRACENE 2 4 0.09 2.30 MGKG BINZCPERTYLHEXYL) PHTHALATE 0.71 4.6 3.10 MGKG BINZCPERTYLHEXYL) PHTHALATE 0.71 4.6 3.10 MGKG COPPER 0.0 3.4 3.10 4.00 MGKG COPPER 0.0 3.0 3.0 3.0 4.00 MGKG ELAD MGKG BLANTANDHENE 0.0 3.0 4.00 4.00 MGKG PHENANTHRENE 0.0 3.0 0.0 3.0 4.00 4.00 MGKG PHENANTHRENE 0.0 3.0 0.0 3.0 4.00 MGKG PHENENE 0.0 3.0 0.0 3.0 4.00 MGKG BENZOIDFLUDANTHENE 0.0	4	SS	MG/KG	CARBAZOLE	14	0 067			Yes A
MGKG CHRYSENE 0 11 0.94 87 MGKG CHRYSENE 14 0.95 470 MGKG GACENAPHENE 2.4 0.095 230 MGKG BENZO(g.h.i)PERYLENE 0.71 0.82 230 MGKG BENZO(g.h.i)PERYLENE 0.71 0.82 230 MGKG BENZO(g.h.i)PERYLENE 0.71 0.82 310 MGKG LOPERA 0.71 0.83 310 MGKG LUDRANTHENE 0.91 3.9 400 MGKG PREKE 0.03 0.02 400 MGKG PREKE 0.03 0.02 400 MGKG PREKE 0.03 0.02 400 MGKG BARUC 0.03 0.02 400 MGKG BENZO(N)FLUDRANTHENE 0.03 0.043 MGKG BENZO(N)FLUDRANTHENE 0.03 0.043 MGKG GADMIUM 0.03 0.073 0.03 MGKG GALCIUM 0.03 0.03 0.03 MGKG GADMIUM 0.04 0.03 0.03 MGKG GALCIUM 0.03 0.03 <td>4</td> <td>SS</td> <td>MG/KG</td> <td></td> <td>0 11</td> <td></td> <td>6.3</td> <td></td> <td>Yes</td>	4	SS	MG/KG		0 11		6.3		Yes
MGAKG ACENAPHTHENE 14 0.096 2300 MGAKG BENZOGALA, DERYLENE - 49 0.096 2300 MGAKG BENZOGA, DERYLENE - 49 0.082 230 MGAKG BENZOGA, DERYLENE 0.71 46 46 MGAKG ELVORANTHENE 0.91 3.0 310 MGAKG ELVORANTHENE 0.91 3.0 400 MGAKG ELVORANTHENE 0.91 3.0 400 MGAKG ELAD 0.03 0.002 4700 MGAKG PHENARTHRENE 0.03 0.02 4700 MGAKG BARUNINUM 1.1 2.3 0.43 MGAKG BARUNINUM 0.03 0.03 0.0 MGAKG BENZOGINELUDANTHENE 0.11 2.3 0.87 MGAKG BENZOGINELUDANTHENE 0.03 0.78 0.78 MGAKG CHLOMIUM, TOTAL 1.8 0.07 0.07 MGAKG CHLOMIUM 0.	4	SS	MG/KG		0 11	0.94			
MGNG BATHGALENE 2.4 0.096 2300 MGNG BIALINALOLENE - 4.9 0.096 2300 MGNG BIALINZO(BALI)PENYLLEXYL) PHTHALATE 0.71 46 310 MGNG CLOPERIN 3.4 310 310 MGNG ELUORANITHENE 0.03 0.022 4700 MGNG ELUORANITHENE 9.6 1.5 230 MGNG METHAL ETHYL KETONE (2-BUTANONE) 0.03 0.022 4700 MGNG METHAL 1.1 3.10 400 MGNG METHAL 1.1 2.30 400 MGNG METHAL 1.1 2.30 400 MGNG ALWININUM 1.1 2.30 0.43 MGNG ARSENIC 1.1 2.20 0.43 MGNG BENZO(B)FLUCHANTHENE 0.03 0.71 0.87 MGNG BENZO(B)FLUCHANTHENE 0.03 0.71 1.6 MGNG GENZO(B)FLUCHANTHENE 0.03	4		MG/KG				470		
MGMG BENZOIG BL.)PERVIENE 49 0.82 2.90 MGMG BIELZOIG BL.)PERVIENE 71 46 310 MGMG BIELZETHYLHEXYL) PHTHALATE 34 310 46 MGMG FLODRANTHENE 12 1.6 310 MGMG FLUORENE 0.91 3.0 30 400 MGMG FLUORENE 0.91 3.0 3.0 400 MGMG PIENANTHENE 0.93 0.022 4700 MGMG PIENANTHENE 7.1 0.61 2.30 MGMG PIENANTHENE 7.1 0.61 2.30 MGMG PIENANTHENE 7.1 0.61 2.30 MGMG BARIOLIM 1.11 2.34 5.50 MGMG BARIZOIPICANTHENE 0.03 0.03 0.87 MGMG BENZOIPICHORANTHENE 0.08 0.71 0.87 MGMG BENZOIPICHORANTHENE 0.02 0.02 0.03 MGMG CHAOMIUM 0.03	4		MG/KG			960 0		•	
MGNKG DISCRETHYLLEXYL) PHTHALATE 0 71 46 MGKG COPPERA 34 310 MGKG COPDERATH 12 16 310 MGKG FLUCRANTHENE 0 91 310 310 MGKG FLUCRENE 0 91 310 310 MGKG RELVORENE 0 91 310 400 MGKG MEHYL CHANLANIARENE 230 400 MGKG PYRENE 0 62 4700 320 MGKG PYRENE 0 62 4700 320 MGKG PYRENE 1 11 234 550 MGKG BENZO(B)FLUDRANTHENE 0 033 0 71 0 87 MGKG BENZO(B)FLUDRANTHENE 0 033 0 71 0 87 MGKG BENZO(B)FLUDRANTHENE 0 033 1 1 1 6 MGKG GADRILUM 0 034 0 73 0 73 0 87 MGKG GADRILUM 0 034 1 1 0 63 0 74 0 87 <td>4</td> <td>SS</td> <td>MG/KG</td> <td>BENZO(g,h,ı)PERYLENE</td> <td>4 9</td> <td>0 82</td> <td></td> <td></td> <td></td>	4	SS	MG/KG	BENZO(g,h,ı)PERYLENE	4 9	0 82			
MG/MG COPPER 310 MG/MG COPPER 12 16 310 MG/MG FLUORANTHENE 0 91 10 310 MG/MG FLUORANTHENE 36 30 400 MG/MG METHYL ETHYL KETONE (2-BUTANONE) 0 03 0 002 4700 MG/MG METHYL ETHYL KETONE (2-BUTANONE) 0 03 0 002 4700 MG/MG PHENANTHRENE 9 6 1 5 230 MG/MG PHENANTHRENE 9 6 1 5 230 MG/MG ARSENIC 111 234 550 MG/MG BARIUM 0 033 0 71 0 87 MG/MG BENZO(I)FLUORANTHENE 0 13 0 23 1 1 1 6 MG/MG BENZO(I)FLUORANTHENE 0 088 0 73 0 73 0 87 MG/MG BENZO(I)FLUORANTHENE 0 088 0 73 0 73 0 87 MG/MG CALCIUM 1870 0 73 0 73 0 74 0 70 MG/MG <td>₹</td> <td>SS</td> <td>MG/KG</td> <td>!⊢</td> <td>0.71</td> <td></td> <td>949</td> <td></td> <td>B ON</td>	₹	SS	MG/KG	!⊢	0.71		949		B ON
MG/KG FLUDRANTHENE 10 310 MG/KG FLUDRANTHENE 91 310 MG/KG FLUDRANTHENE 91 310 MG/KG METATYL ETHYL KETONE (2-BUTANONE) 0.03 0.002 4700 MG/KG METATYL ETHYL KETONE (2-BUTANONE) 0.03 0.002 4700 MG/KG PHENANTHRENE 7.1 0.61 230 MG/KG PARENINC 10 0.61 230 MG/KG BARIUNU 11 234 550 MG/KG BENZO(BANTHENE 0.03 0.71 0.87 MG/KG BENZO(BALUDANTHENE 0.03 0.73 8 MG/KG BENZO(BALUDANTHENE 0.03 0.73 8 MG/KG BENZO(BALUM 0.02 1.1 1.6 MG/KG BENZO(BALT 0.08 0.73 8 MG/KG CALCIUM 0.05 1.1 1.0 MG/KG CALCIUM 0.07 0.07 0.07 MG/KG	4	SS	MG/KG	COPPER	34	34			No B
MGKG FLÜORENE 310 MGKG ILÖORENE 310 MGKG LEAD 30 400 MGKG PHETHYL ETHYL KETONE (2-BUTANONE) 0 602 470 MGKG PHENE 7.1 0 61 230 MGKG PHENE 10 0 61 230 MGKG BASENIC 11 24 550 MGKG BASENIC 0 63 0 71 0 87 MGKG BENZO(b)FLUORANTHENE 0 63 0 71 0 87 MGKG BENZO(k)FLUORANTHENE 0 63 0 71 0 87 MGKG BENZO(k)FLUORANTHENE 0 63 0 73 8 7 MGKG BENZO(k)FLUORANTHENE 0 63 0 73 8 7 MGKG CARDIUM 0 63 0 73 8 7 MGKG CARDIUM 0 63 0 73 8 8 7 8 MGKG CHOMIUM, TOTAL 1 8 1 8 1 70 MGKG IRON 1 800 1 60 1 100<	4	SS	MG/KG	FLUORANTHENE	12	16		·	B ON
MGKG LEAD 30 400 MGKG LEAD 400 400 MGKG METHYL ETHYL KETONE (2-BUTANONE) 0.03 470 MGKG PYENENE 9.6 1.5 230 MGKG ALUMINUM 10100 23810 7800 MGKG ARBRIUM 111 234 550 MGKG BENZO(B)FLUORANTHENE 0.083 0.71 0.87 MGKG BENZO(B)FLUORANTHENE 0.033 0.71 0.87 MGKG BENZO(B)FLUORANTHENE 0.032 1.1 1.6 MGKG BENZO(B)FLUORANTHENE 0.032 1.1 7.8 MGKG BENZO(B)FLUORANTHENE 0.032 1.1 7.8 MGKG BENZO(B)FLUORANTHENE 0.032 1.1 7.8 MGKG CADMIUM 0.56 1.4 7.8 MGKG CADMIUM 0.032 1.1 1.6 MGKG INDEMOLYL 0.079 0.079 0.79 0.87	4	SS	MG/KG	FLUORENE	0 91		310		B ON
MGKG METHYL ETHYL KETONE (2-BUTANONE) 0 03 0 002 4700 MGKG PHENANTHRENE 7.1 0 611 230 MGKG PHENANTHRENE 96 1.5 230 MGKG ALUMINUM 10 238 10 780 MGKG ARENIC 111 234 550 MGKG BENZO(B)FLUORANTHENE 0.03 0.71 0.87 MGKG BENZO(B)FLUORANTHENE 0.043 0.87 8.7 MGKG BENZO(B)FLUORANTHENE 0.043 0.87 8.7 MGKG BENZO(B)FLUORANTHENE 0.056 0.71 0.87 MGKG BERYLLIUM 0.32 1.1 7.8 MGKG CALCIUM 0.32 1.1 7.8 MGKG CALCIUM 0.35 1.4 7.8 MGKG CALCIUM 1.875 5.840 1.00 MGKG CALCIUM 0.071 0.87 1.4 7.8 MGKG CALCIUM 0.071 0.87 </td <td>4</td> <td>SS</td> <td>MG/KG</td> <td>LEAD</td> <td>96</td> <td>30</td> <td></td> <td></td> <td>8 ON</td>	4	SS	MG/KG	LEAD	96	30			8 ON
MGKG PHENANTHRENE 7.1 0 61 230 MGKG PHENANTHRENE 9 6 1 5 230 MGKG ALUMINUM 10100 23810 7800 MGKG ARSENIC 20 0 43 643 MGKG BERIZO(a)ANTHRENE 0 093 0 71 0 87 MGKG BENZO(a)ANTHRENE 0 13 0 71 0 87 MGKG BENZO(a)ANTHRENE 0 13 0 71 0 87 MGKG BENZO(a)FLUORANTHENE 0 13 0 71 0 87 MGKG BENZO(a)FLUORANTHENE 0 088 0 78 0 87 MGKG CALCIUM 0 32 1 1 1 6 MGKG CALCIUM 1875 5840 7 8 MGKG CABALT 1 8 1 8 1 8 MGKG CABALT 0 679 0 77 0 87 MGKG INDENO(1,2,3-c,d)PYRENE 1 8300 1 100 MGKG MGKG MGKG MGKG 0 87	4	SS	MG/KG		0 0	0 005			B ON
MG/KG PYRENE 9 6 1 5 230 MG/KG ALUMINUM 10100 23810 7800 MG/KG ARSENIC 0 43 550 MG/KG BARIUM 0 13 0 24 550 MG/KG BENZO(B/FLUORANTHENE 0 13 0 9 0.87 MG/KG BENZO(B/FLUORANTHENE 0 08 0 78 8 7 MG/KG BENZO(B/FLUORANTHENE 0 09 0.87 8 7 MG/KG BENZO(B/FLUORANTHENE 0 09 0.78 8 7 MG/KG BENZO(B/FLUORANTHENE 0 09 0.78 8 7 MG/KG CALCIUM 187 5840 10 MG/KG CARNIUM 187 5840 10 MG/KG CORNIUM 100 0.79 0.78 470 MG/KG CORNIUM 100 0.79 0.79 0.87 MG/KG CHROMIUM 100 0.79 0.70 0.87 MG/KG MAG/KG MAG/KG <td< td=""><td>4</td><td>SS</td><td>MG/KG</td><td>PHENANTHRENE</td><td>7.1</td><td>0 61</td><td>530</td><td></td><td>No B</td></td<>	4	SS	MG/KG	PHENANTHRENE	7.1	0 61	530		No B
MG/KG ALUMINUIM 10100 23810 7800 MG/KG ARSENIC 12 20 0.43 MG/KG BARIUM 111 234 550 MG/KG BENZO(a)ANTHRACENE 0.033 0.71 0.87 MG/KG BENZO(b)FLUORANTHENE 0.088 0.78 8.7 MG/KG BENZO(k)FLUORANTHENE 0.088 0.78 8.7 MG/KG BENZO(k)FLUORANTHENE 0.088 0.78 8.7 MG/KG CADMIUM 0.56 1.1 1.6 MG/KG CADMIUM 1.00 2.48 1.0800 MG/KG CHROMIUM, TOTAL 1.9 2.48 1.0800 MG/KG CHROMIUM, TOTAL 8 1.8 4.70 MG/KG INDENO(1.2.3-c,d)PYRENE 0.079 0.079 0.77 0.87 MG/KG INDENO(1.2.3-c,d)PYRENE 0.079 0.079 0.079 0.07 0.07 MG/KG INGKE MAG/KG MAG/KG MAG/KG NAG/KG	4	SS	MG/KG		96	15		088	No B
MG/KG ARSENIC 12 20 0 43 MG/KG BARIUM 111 234 550 MG/KG BENIZO(a)ANTHRACENE 0 093 0 71 0 87 MG/KG BENZO(b)FLUCRANTHENE 0 13 0 73 0 87 MG/KG BENZO(k)FLUCRANTHENE 0 088 0 78 8 7 MG/KG BERN/LLIUM 0 32 1 1 1 8 MG/KG BERN/LLIUM 0 32 1 1 7 8 MG/KG CADMIUM 0 32 1 1 7 8 MG/KG CAROMIUM 0 32 1 1 7 8 MG/KG CALCIUM 1 8 1 4 7 8 MG/KG CAROMIUM, TOTAL 8 8 1 8 4 70 MG/KG CAROMIUM, TOTAL 8 8 1 8 4 70 MG/KG CAROMIUM, TOTAL 8 8 1 8 4 70 MG/KG MG/KG MG/KG MG/KG A 600 4 600 MG/KG MG/KG MICKEL 2 30	4	SS	MG/KG		10100	23810			No
MG/KG BARIUM 111 234 550 MG/KG BENZO(a)ANTHRACENE 0 093 0 71 0 87 MG/KG BENZO(b)FLUORANTHENE 0 13 0 78 0 78 MG/KG BENZO(k)FLUORANTHENE 0 088 0 78 8 7 MG/KG BERYLLIUM 0 32 1 1 1 6 MG/KG CADMIUM 0 32 1 1 7 8 MG/KG CACIUM 1875 5840 7 8 MG/KG CALCIUM 1875 5840 7 8 MG/KG CABALT 18 470 8 MG/KG COBALT 18 470 8 MG/KG INDENO(1,2,3-c,d)PYRENE 0 079 0,7 0 87 MG/KG INGNG MAGNG 1100 0 081 0 087 MG/KG MAGNG MAGNG 1100 0 081 0 081 0 081 0 081 MG/KG NICKEL 22 30 160 0 081 0 081 <t< td=""><td>4</td><td>SS</td><td>MG/KG</td><td>ARSENIC</td><td>12</td><td>20</td><td></td><td></td><td></td></t<>	4	SS	MG/KG	ARSENIC	12	20			
MG/KG BENZO(a)ANTHRACENE 0 093 0 71 0 87 MG/KG BENZO(b)FLUORANTHENE 0 13 0 78 0 78 MG/KG BENZO(k)FLUORANTHENE 0 088 0.78 8 7 MG/KG BERYLLIUM 0 32 1 1 16 MG/KG CADMIUM 0 56 1 4 7 8 MG/KG CALCIUM 1875 5840 7 8 MG/KG CHROMIUM, TOTAL 8 8 1 8 470 MG/KG CHROMIUM, TOTAL 8 8 1 8 470 MG/KG INDENO(1,2,3-c,d)PYRENE 0 87 2230 4600 2300 MG/KG IRAGNESIUM 2280 4600 0 87 1100 MG/KG MG/KG MG/KG MG/KG MG/KG 1100 2.3 MG/KG NICKEL 22 48 55 48 55 MG/KG VANADIUM 21 48 55 48 5300 MG/KG VANADIUM 2300 46	4	SS	MG/KG	BARIUM	111	234		1600	
MG/KG BENZO(b)FLUORANTHENE 0 13 0 9 0.87 MG/KG BENZO(k)FLUORANTHENE 0 088 0.78 8 7 MG/KG BERYLLIUM 0 32 1 1 16 MG/KG CADMIUM 0.56 1 4 7 8 MG/KG CALCIUM 1875 5840 7 MG/KG CHROMIUM, TOTAL 8 8 18 470 MG/KG CHROMIUM, TOTAL 8 8 18 470 MG/KG INDENO(1,2,3-c,d)PYRENE 8 8 18 470 MG/KG IRON 18300 37040 2300 MG/KG MANGANESIUM 2290 4600 7 0 87 MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG NICKEL 22 30 160 MG/KG VANADIUM 25 48 55 MG/KG VANADIUM 121 121 122	4	SS	MG/KG	BENZO(a)ANTHRACENE	0 0 0	0 71	·	7	No C
MG/KG BENZO(k)FLUORANTHENE 0 088 0.78 8 7 MG/KG BERYLLIUM 0 32 1 1 16 MG/KG CADMIUM 1875 5840 7 8 MG/KG CALCIUM 1875 5840 7 8 MG/KG CHROMIUM, TOTAL 8 8 18 470 MG/KG CHROMIUM, TOTAL 8 8 18 470 MG/KG INDENO(1,2,3-c,d)PYRENE 0 079 0.7 0 87 MG/KG INDENO(1,2,3-c,d)PYRENE 18300 37040 2300 MG/KG INDENO(1,2,3-c,d)PYRENE 490 4600 4600 4600 MG/KG MAG/KG MAG/KG MAG/KG MAG/KG MAG/KG 1100 40 2.3 MG/KG NICKEL 23 48 55 48 55 MG/KG VANADIUM 210 7 7 7 7 7 7 MG/KG NICKEL 210 22 48 55 2300	4	SS	MG/KG	BENZO(b)FLUORANTHENE	0 13	0.0		9	No C
MG/KG BERYLLIUM 0.32 11 16 MG/KG CADMIUM 0.56 14 7 8 MG/KG CALCIUM 1875 5840 7 8 MG/KG CHROMIUM, TOTAL 19 24 8 1080 MG/KG CHROMIUM, TOTAL 8 8 18 470 MG/KG CDBALT 8 8 18 470 MG/KG INDENO(1,2,3-c,d)PYRENE 0.77 0.87 0.77 0.87 MG/KG INDENO(1,2,3-c,d)PYRENE 2290 4600 2300 1100 MG/KG MAGNESIUM 2290 4600 1100 23 MG/KG MECURY 0.081 0.081 0.04 2.3 MG/KG NICKEL 22 30 160 MG/KG VANADIUM 25 48 55 MG/KG ZINC 126 2300 7	4	SS	MG/KG	BENZO(k)FLUORANTHENE	0 088	0.78		49	
MG/KG CADMIUM 0.56 14 7 8 MG/KG CALCIUM 1875 5840 7 MG/KG CHROMIUM, TOTAL 19 24 8 10800 MG/KG CHROMIUM, TOTAL 8 8 18 470 MG/KG INDENO(1,2,3-c,d)PYRENE 0 079 0.7 0 87 MG/KG INDENO(1,2,3-c,d)PYRENE 2290 4600 2300 MG/KG INDENO(1,2,3-c,d)PYRENE 4600 2300 1100 MG/KG MAGNESIUM 4600 4600 1100 MG/KG MECURY 0 081 0 081 1 100 MG/KG NICKEL 23 48 55 MG/KG VANADIUM 25 48 55 MG/KG ZINC 126 2300 1	4	SS	MG/KG	_	0 32	1.1	16		
MG/KG CALCIUM 1875 5840 CALCIUM MG/KG CHROMIUM, TOTAL 19 24 8 10800 MG/KG CHROMIUM, TOTAL 8 8 18 470 MG/KG INDENO(1,2,3-c,d)PYRENE 0 079 0.7 0 87 MG/KG INDENO(1,2,3-c,d)PYRENE 0 079 0.7 0 87 MG/KG INDENO(1,2,3-c,d)PYRENE 450 2300 1100 MG/KG INDENO(1,2,3-c,d)PYRENE 460 230 1100 MG/KG MAGNGANESE 1304 1100 23 MG/KG NICKEL 2.3 160 2.3 MG/KG VANADIUM 25 48 55 MG/KG ZINC 126 2300 1	4	SS	MG/KG	CADMIUM	0.56	14			No C
MG/KG CHROMIUM, TOTAL 19 24 B 10800 MG/KG COBALT 8 B 18 470 MG/KG INDENO(1,2,3-c,d)PYRENE 0 079 0.7 0 87 MG/KG IRON 18300 37040 2300 MG/KG MAGNESIUM 492 1304 1100 MG/KG MECURY 0 081 0 4 2.3 MG/KG NICKEL 30 160 160 MG/KG VANADIUM 25 48 55 MG/KG ZINC 126 2300 1	4	SS	MG/KG	CALCIUM	1875	5840			No E
MG/KG COBALT 470 MG/KG INDENO(1,2,3-c,d)PYRENE 0 079 0.7 0 87 MG/KG IRON 18300 37040 2300 MG/KG MAGNESIUM 4600 1100 1100 MG/KG MARCURY 0 081 0 4 2.3 MG/KG NICKEL 30 160 160 MG/KG VANADIUM 25 48 55 MG/KG ZINC 126 2300 1	4	SS	MG/KG	CHROMIUM, TOTAL	19	24 8			No C
MG/KG INDENO(1,2,3-c,d)PYRENE 0 079 0.7 0 87 MG/KG IRON 18300 37040 2300 MG/KG MAGNESIUM 4600 1100 MG/KG MANGANESE 1304 1100 MG/KG MECURY 0 081 0 4 2.3 MG/KG NICKEL 30 160 MG/KG VANADIUM 25 48 55 MG/KG ZINC 126 2300 1	4	SS	MG/KG	COBALT	88	18			NoC
MG/KG IRON IR300 37040 2300 MG/KG MAGNESIUM 4600 1100 MG/KG MANGANESE 492 1304 1100 MG/KG MICKEL 0 081 0 4 2.3 MG/KG NICKEL 22 30 160 MG/KG VANADIUM 25 48 55 MG/KG ZINC 121 126 2300 1	4	SS	MG/KG	INDENO(1,2,3-c,d)PYRENE	0 0 0 0 0 0 0 0 0 0 0 0	0.7	<i>L</i> 8 0	14	No C
MG/KG MAGNESIUM 2290 4600 100 MG/KG MANGANESE 1304 1100 MG/KG MERCURY 0.081 0.4 2.3 MG/KG NICKEL 30 160 MG/KG VANADIUM 25 48 55 MG/KG ZINC 121 126 2300 1	4	SS	MG/KG	IRON	18300	37040			No C
MG/KG MANGANESE 492 1304 1100 MG/KG MERCURY 0 081 0 4 2.3 MG/KG NICKEL 22 30 160 MG/KG VANADIUM 25 48 55 MG/KG ZINC 126 2300 7	4	SS	MG/KG	MAGNESIUM	2290	4600			No E
MG/KG MERCURY 0 081 0 4 2.3 MG/KG INCKEL 22 30 160 MG/KG VANADIUM 25 48 55 MG/KG ZINC 121 126 2300 1	4	SS	MG/KG		492	1304			No C
MG/KG INICKEL 22 30 160 MG/KG VANADIUM 25 48 55 MG/KG ZINC 121 126 2300 1	4		MG/KG	_	0 081	0.4		2	
MG/KG VANADIUM 25 48 55 MG/KG ZINC 121 126 2300 1	4	SS	MG/KG	NICKEL	22	30		130	
MG/KG ZINC 121 126 2300	4	SS	MG/KG	VANADIUM	25	48			
	4	SS	MG/KG	ZINC	121	126			No

Constituents of Potential Concern in Residential Point Estimate at Station SS14A - Surface Soil Memphis Depot Main Installation RI TABLE D-18

			Arithmetic Mean		Regulatory			
			Detected	Background	Criteria for	Criteria for Regulatory Criteria		
n L	Unit Matrix Ur	Units Parameter Name	Concentration	Concentration	Surface Soil	for Leachability	COPC/BASIS	ASIS
4	4 SS MG	MG/KG 2-METHYLNAPHTHALENE	0 11		160	6 1	No B	8
4	4 SS MG	MG/KG BENZYL BUTYL PHTHALATE	0.11	0 65	1600	930) ON	ပ
4	4 SS MG	MG/KG BROMOMETHANE	0.001		11	0.2	NoB	8
4	4 SS MG	MG/KG DIBENZOFURAN	0 37	0 65	21	15	No]C	၁
4	4 SS MG	MG/KG NAPHTHALENE	0 19		160	84	No B	В
4	4 SS MG	MG/KG POTASSIUM	2040	1820			NoE	ш
Note. I	Data evaluat	Note. Data evaluated include field duplicates and normal samples (0-2 feet)	-					
_ ∠	Exceeds Criteria	erra						
(

Note.

Does not exceed Background Does not exceed Criteria

No Criteria available & exceeds Background, or no Criteria or Background available

Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC.

Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC

Chemical is a member of a chemical class which contains other COPCs

용

SE MICKG 11.22 TETRACH.CHOEFHANIE 24 0 1599999999 2 0 1599999999999999999999999999999999999	96 SS Micked ANTIACHULOTOETHANE 24 3 of 189999990 0 of 3 0 of 3 96 SS Micked ANTIACHULOTOETHANE 24 3 of 189999990 0 of 3 1 of 3 96 SS Micked ANTIACHULOTOETHANE 24 4 of 189999990 0 of 3 1 of 3 96 SS Micked DieLibrium 24 4 of 189999990 0 of 3 0 of 3 96 SS Micked DieLibrium 24 4 of 199999990 0 of 3 0 of 3 96 SS Micked DieLibrium 24 4 of 199999990 0 of 3 0 of 3 96 SS Micked DieLibrium 24 4 of 199999999 0 of 3 0 of 3 96 SS Micked DieLibrium 24 4 of 199999999 0 of 3 0 of 3 96 SS Micked DieLibrium 24 4 of 199999999 0 of 3 0 of 3 96 SS Micked DieLibrium Gelegation 25 1 of 19999999 0 of 3 0 of 3 98 SS Micked Di	Unit SiteID	Metrix	z the D	Parameter Name	Number Analyzed	Number Detected	Minimum Detection Limit	Maximum Detection Limit	Minimum Detected Concentration	Maximum Detected Concentration	Arthmetic Mean Detected Concentration	Background Concentration
Six MACKIG APPLICACE Color C	98 SS MACKO MATINDAY 24 24 O 15500000 7 S O 155000000 7 S O 1550000000 7 S O 1550000000 7 S O				1,1,2,2 TETRACHLOROETHANE	_			0.013	0 004	0 007	00	
SS WACKG DENGENICH 24 0 150000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 SS NAMER DELEGIAM 24 24 24 18 0 500 0.001 0.001 0.001 18 SS NAMER DELEGIAM 23 10 10 0000 0.001 0.001 0.001 0.001 18 SS NAMER DELEGIAM 23 10 0000 0.001 0.001 0.001 0.001 18 SS NAMER DELEGIAM 22 10 0000 0.001 0.001 0.001 0.001 18 SS NAMER DELEGIAM 22 10 0000 0.001 0.001 0.001 0.001 18 SS NAMER DELEGIAM 22 10 0000 0.001 0.001 0.001 0.001 18 SS NAMER DELEGIAM 22 10 0000 0.001 0.001 0.001 0.001 18 SS NAMER DELEGIAM 22 10 0000 0.001 0.001 0.001 0.001 18 SS NAMER DELEGIAM 22 10 0000 0.001 0.001 0.001 0.001 18 SS NAMER DELEGIAM 22 10 0000 0.001 0.001 0.001 0.001 18 SS NAMER DELEGIAM 22 10 0	4 36	SS	MG/KG			e	0 18999998	76	2	32		
SS WACKO DELECTATION Control	85 SSS WANGE DELIDINING 23 8 10 0.0017 0.0017 0.001 86 SSS WANGE DELIDINING 22 1 0.0010 0.001 0.001 86 SSS WANGE DELIDINING 22 1 0.0011 0.012 0.001 0.001 86 SSS WANGE DELIDINING 22 2 0.0011 0.013 0.001 0.001 86 SSS WANGE DELIDINING 22 2 0.0011 0.013 0.001 0.001 86 SSS WANGE DELIDINING 22 2 0.001 0.001 0.001 86 SSS WANGE DELIDINING 2 2 0.001 0.001 0.001 86 SSS WANGE DELIDINING 2 2 0.001 0.001 0.001 88 SSS WANGE DELIDINING 2 2 0.001 0.001 0.001 88 SSS WANGE DELIDING 2 0.001 <t< td=""><td>36</td><td>SS</td><td>MQ/KG</td><td>ARSENIC</td><td>24</td><td>24</td><td>0 159999996</td><td>25</td><td></td><td></td><td></td><td>7</td></t<>	36	SS	MQ/KG	ARSENIC	24	24	0 159999996	25				7
State Control Cont	State Stat	98	SS	MG/KG	DIELDRIN	ន		0 0037	80	0 0012			0.08
SS WACKING DATESTANCING C C C C C C C C	State Control Contro	98	S	MG/KG	PENTACHICHOPHENOL	2 2		0 189999998	0.79	0.70			-
95 NGCK GEORGE 22 2 0 001 0 0	State Control Contro	95 4	S S	MONG MONG		23		1100	0 0 0	0000			
95 SSS MICKER DLANGLANGE ZA Q 90019 0 441 11100 11101	935 SSS MACKGO ALPANELLARIOLANE 2 0 60016 0 0016 1 1010 1 1010 936 SSS MACKGO ALPANELLARIOLANE 2 1 0 69 1 1100 1 001 938 SSS MACKGO BERNZOLOHATIONATERIE 2 1 0 001 1 1100 0 001 938 SSS MACKGO BERNZOLOHATIONATHERIE 2 1 0 001 1 1 0 001 938 SSS MACKGO BERNZOLOHATIONATHERIE 2 0 001 1 1 0 001 0 01 94 SSS MACKGO BERNZOLOHATIONATHERIE 24 0 01 1 1 0 001 0 01 95 SSS MACKGO BERNZOLOHATIONATHERIE 24 0 01 1 1 0 001 0 01 96 SSS MACKGO BERNZOLOHATIONATHERIE 24 0 0000 0 001 0 001 0 001 96 SSS MACKGO BERNZOLOHATIONATHERIE 24 0 0000 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001	9 8	3 8	NO.KG	ACETONE	23.5		1100	0 0 13	0000			
16. SSS MACKAG BERLZONATHERE 2 2 0 155 0000 1 1100 1 1120 1 115	8.55 SMECKI ALUMINIA 2.2 1.0 0.01 1.10 1.12 8.55 MARCIO BARILMA 2.2 1.0 0.01 1.0 0.11 1.10 0.11 0.11 0.02 <td>98</td> <td>SS</td> <td>MC/KG</td> <td></td> <td>23</td> <td></td> <td>0 0019</td> <td>0 41</td> <td>0 0016</td> <td></td> <td></td> <td>0 02</td>	98	SS	MC/KG		23		0 0019	0 41	0 0016			0 02
SS SS MAKKG BENZON-BYTHENCENE 2	93. SS. MACKIG BARINGACHE 2 1 0.01 0.058 0.058 93. SS. MACKIG BARINGACHE 2 2 0.04000000 0.01 0.02 0.01 93. SS. MACKIG BERIZOPAL DIANTHERE 2 1 0.01 1.6 0.042 0.11 95. SS. MACKIG BERIZOPAL DIANTHERE 2 4 0.11 1.6 0.044 0.11 95. SS. MACKIG BERIZOPAL DIANTHERE 2 4 0.11 1.6 0.044 0.11 95. SS. MACKIG BERIZOPAL DIANTHERE 2 4 0.11 1.6 0.044 0.11 96. SS. MACKIG BERIZOPAL DIANTHERE 2 4 0.11 1.6 0.044 0.11 96. SS. MACKIG BERIZOPAL DIANTHERE 2 4 0.11 1.6 0.044 0.11 96. SS. MACKIG BERIZOPAL DIANTHERE 2 4 0.11 1.6 0.044 0.11 96. SS. MACKIG BERIZOPAL DIANTHERE 2 4 0.11 1.6 0.044 0.11 96. SS. MACKIG BERIZOPAL DIANTHERE 2 1 0.01	4 36	SS	MG/KG		2	2	089	96 0	11100			2381
85 SS MAKING BERNERH 2 0 0.6420 0.0420 <td>85 SS, MARKIG BENEZINE 22 2 D 0400000 10 052899999 114 85 SS MARKIG BENEZINE 24 0 11 1 6 0 042 0 0 1 85 SS MARKIG BENEZINE/LUCIANTHERE 24 0 11 1 6 0 042 0 0 1 80 SS MARKIG BENEZIO/PURIDE 24 0 11 1 6 0 044 0 1 80 SS MARKIG BENEZIO/PURIDE 24 0 11 1 6 0 044 0 1 80 SS MARKIG BENEZIO/PURIDE 24 0 1 1 6 0 044 0 1 80 SS MARKIG DENEZIO/PURIDE 24 0 1 1 6 0 044 0 1 80 SS MARKIG DENEZIO/PURIDE 24 2 1 0 048 0 1 0 048 0 048 81 SS MARKIG DENEZIO/PURIDE 23 2 0 0009 1 1 0 048 0 048 82 MARKIG DENEZIO/PURIDE 24 2 1 0 0009 1 1 0 048 0 048 83 SS MARKIG CHARIANTA 2 2 0 0009 1 1 0 0093 0 048</td> <td>4:36</td> <td>SS</td> <td>MG/KG</td> <td>ANTHRACENE</td> <td>24</td> <td></td> <td>0 11</td> <td>16</td> <td>0 058</td> <td></td> <td></td> <td>600</td>	85 SS, MARKIG BENEZINE 22 2 D 0400000 10 052899999 114 85 SS MARKIG BENEZINE 24 0 11 1 6 0 042 0 0 1 85 SS MARKIG BENEZINE/LUCIANTHERE 24 0 11 1 6 0 042 0 0 1 80 SS MARKIG BENEZIO/PURIDE 24 0 11 1 6 0 044 0 1 80 SS MARKIG BENEZIO/PURIDE 24 0 11 1 6 0 044 0 1 80 SS MARKIG BENEZIO/PURIDE 24 0 1 1 6 0 044 0 1 80 SS MARKIG DENEZIO/PURIDE 24 0 1 1 6 0 044 0 1 80 SS MARKIG DENEZIO/PURIDE 24 2 1 0 048 0 1 0 048 0 048 81 SS MARKIG DENEZIO/PURIDE 23 2 0 0009 1 1 0 048 0 048 82 MARKIG DENEZIO/PURIDE 24 2 1 0 0009 1 1 0 048 0 048 83 SS MARKIG CHARIANTA 2 2 0 0009 1 1 0 0093 0 048	4:36	SS	MG/KG	ANTHRACENE	24		0 11	16	0 058			600
85 SS MACKG BEACZOLANTHEARCENE 24 0 11 1 6 0 042 0 17 0 05 85 SS MACKG BEACZOLANTHEARCE 24 4 0 11 1 6 0 044 0 17 0 05 85 SS MACKG BEACZOLANTHEARCE 24 4 0 11 1 6 0 044 0 17 0 05 85 SS MACKG BEACZOLANTHEARCE 24 4 0 11 1 6 0 044 0 17 0 05 85 SS MACKG BEACZOLANTHEARCE 24 4 0 11 1 6 0 044 0 17 0 05 85 SS MACKG BEACZOLANTHEARCE 24 4 0 11 1 6 0 044 0 17 0 05 85 SS MACKG BEACZOLANTHEARCE 24 4 0 11 1 6 0 05	55.5 MACKO BENZOLHATHERE 23 1 0.01 0.013 0.023 0.022 55.5 MACKO BENZOLHATHERE 24 0.11 1.6 0.043 0.13 55.5 MACKO BENZOLHATHERE 24 0.11 1.6 0.044 0.11 55.5 MACKO CHARLAND 25.0 0.075 2.7 2.9 1.043 0.044 55.5 MACKO CHARLAND 25.0 0.075 0.075 0.075 0.044 0.055 55.5 MACKO CHARLAND 25.0 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075	4 36	SS	MG/KG		~	2		0 057999998	107			23
35.5 MIGHGI BERZOQUINTHEMENT 24 4 0.11 1.6 0.044 0.13 0.04 36.5 SSS MARKGI BERZOQUINTHEMENT 24 4 0.11 1.6 0.044 0.11 0.01 36.5 SSS MARKGI BERZOQUINTHEMENT 24 4 0.11 1.6 0.044 0.11 0.01 36.5 SSS MARKGI BERZOQUINTHEMENT 24 4 0.01 1.1 1.6 0.044 0.11 0.018 36.5 SSS MARKGI BERZOQUINTHEMENT 24 4 0.00 0.01	State Stat	98	SS	MG/KG		23		0011	000	0 002			2.0
35 SS MGAKG BERVLOHOLD/CHANTHENE 24 4 0.11 1.6 0.04 0.11 0.15 36 SS MGAKG BERVLOHOLD/CHANTHENE 24 4 0.11 1.6 0.04 0.11 0.07 36 SS MGAKG BERVLOHOLD/CHANTHENE 24 4 0.11 1.6 0.04 0.11 0.07 36 SS MGAKG BERVLOHOLD/CHANTHENE 24 0.05 1.3 0.651 3 0.71 0.07 38 SS MGAKG CALCIUM 24 0.05 0.05 1.3 0.051 0.04 0.04 0.04 38 SS MGAKG CALCIUM 2.0 0.05 1.3 0.05 0.04 0.04 0.04 38 SS MGAKG CALCIUM 2.0 0.05 1.3 0.04 0.04 0.04 0.04 39 SS MGAKG CALCIUM 2.0 0.05 1.3 0.04 0.04 0.14 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	85. SS. MIGKIG BENZOURILLENE 24 0 11 1 6 0 004 0 11 85. SS. MIGKIG BENZOURILLUMATHENE 24 0 11 1 6 0 004 0 11 85. SS. MIGKIG BENZOURILLUMATHENE 24 0 011 1 6 0 004 0 11 85. SS. MIGKIG BENZOURILLUMATHENE 24 0 011 1 6 0 004 0 11 85. SS. MIGKIG BENZOURILLUMATHENE 24 0 011 1 6 0 004 0 01 85. MIGKIG CONTRIBLACIONALIMATENE 24 2 0 0000 2 7 1 6 0 004 0 004 85. MIGKIG CONTRIBLACIONALIMATENE 22 1 0 000 0 000 0 004 0 004 0 004 85. MIGKIG CONTRIBLATORIA 2 0 000 2 0 000 0 000 0 000 0 004 0 004 85. MIGKIG CONTRIBLACIONALIA 2 0 000 0 000 0 000 0 000 0 000 0 000 85. MIGKIG CONTRIBLA 2 0 000 0 000 0 000 0 000 0 000 0 000 0 000 85. MIGKIG CONTRIBLA 2 0 000 0 000 0 000 <td>4 36</td> <td>3 8</td> <td></td> <td>BENZO(a)ANI HRACENE</td> <td>67</td> <td></td> <td></td> <td>-</td> <td>0.042</td> <td></td> <td></td> <td>٥</td>	4 36	3 8		BENZO(a)ANI HRACENE	67			-	0.042			٥
35 SKOKKY GENZOLOLA/FERVILENE 24 0	Sign Michael Belanzolgy, Definitive Here 24 0 011 1 0 0 041 0 11 0 044 0 11 0 044	\$ 2	200	MONG	DENZO(8)PTRENE	200		0	5 4	0 056			
Sign Michael Berlin, University Michael	55 MIGNEG REPUZJONJULUENAMHENE 24 0 1 1 0 0 58 SS MIGNEG DEPECHTL/LIKENYLL) 23 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	36	S S	NOVO	BENZO(0 h NPERVLENE	24	-	- 01	1.0	0 044			0 8
SS SMCKNO BERZETHYLLUM 24 9 00229 1 0.51 9 0.51 9 0.51 0.52 0.52 0.52 0.52 <th< td=""><td>SS MACKIG BERTHLULM 24 8 0.028 1 0.031 1 36 SS MGKIG BARGE THULLUM 24 12 0.0000 0.42 0.041 0.031 36 SS MGKIG CACAMULM 24 2 1.700 1.990 36 SS MGKIG CACAMULM 24 2 0.013 0.041 0.041 36 SS MGKIG CARRAZOLE 23 1 0.93 1.6 0.041 0.041 36 SS MGKIG CARRAZOLE 23 1 1.6 0.041 0.01 0.041 36 SS MGKIG CARRAZOLE 2 1 0.041 0.041 0.041 0.041 36 SS MGKIG CARRAZOLE 2 0.0420 0.043 0.0 0.013 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0</td><td>4 36</td><td>SS</td><td></td><td></td><td>24</td><td>4</td><td>1100</td><td>16</td><td>190 0</td><td></td><td></td><td>0.7</td></th<>	SS MACKIG BERTHLULM 24 8 0.028 1 0.031 1 36 SS MGKIG BARGE THULLUM 24 12 0.0000 0.42 0.041 0.031 36 SS MGKIG CACAMULM 24 2 1.700 1.990 36 SS MGKIG CACAMULM 24 2 0.013 0.041 0.041 36 SS MGKIG CARRAZOLE 23 1 0.93 1.6 0.041 0.041 36 SS MGKIG CARRAZOLE 23 1 1.6 0.041 0.01 0.041 36 SS MGKIG CARRAZOLE 2 1 0.041 0.041 0.041 0.041 36 SS MGKIG CARRAZOLE 2 0.0420 0.043 0.0 0.013 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4 36	SS			24	4	1100	16	190 0			0.7
35. SS. MACKIG DIAGESTHYLHENYL) 223 12 0.0005 0.051 4 2 1.1 0.0005 0.051 4 1.1 0.01 1.1 0.01 1.1 0.01 0.00	35 SKARK ORGANILAM 24 12 0.200000000000000000000000000000000000	4 36	SS	MG/KG	BERYLLIUM	24	8	0 0028	-	031		0.57	-
35.5. Sis. Mickel CALCIUM 24.2 5.0 0.0055 1.3 0.84 4.2 1.9 36. SS. Mickel CALCIUM 2.2 1 0.01 0.01 0.01 0.001 0.001 38. SS. Mickel CALCIUM 2.2 1 0.01 0.01 0.01 0.001 0.001 38. SS. Mickel CHROMAUM, TOTAL 2.4 0.1000 0.001 0.001 0.001 0.001 38. SS. Mickel CHROMAUM, TOTAL 2.4 0.10000000 0.001 0.001 0.001 0.001 38. SS. Mickel Displace 2.2 0.000000 0.001 0.001 0.001 0.001 0.001 38. SS. Mickel Displace 2.2 0.00000 0.001 <td< td=""><td>35 SS MGKKG CAMBULUM 24 5 0.0055 1 3 0.048 0.048 36 SSS MGKKG CAMERAC CAMERATORE 22 1 0.01 0.01 0.01 0.04 0.048</td><td>4 36</td><td>SS</td><td>MG/KG</td><td>bis(2-ETHYLHEXYL)</td><td>23</td><td>2</td><td>0 200000003</td><td>0.42</td><td>0 051</td><td>(7)</td><td>0 71</td><td></td></td<>	35 SS MGKKG CAMBULUM 24 5 0.0055 1 3 0.048 0.048 36 SSS MGKKG CAMERAC CAMERATORE 22 1 0.01 0.01 0.01 0.04 0.048	4 36	SS	MG/KG	bis(2-ETHYLHEXYL)	23	2	0 200000003	0.42	0 051	(7)	0 71	
35 MGKNG CARROLUGE 23 1 0 1 0 1	SS MGKNG GARBON DISULFIDE 23 1 0 0 1 0 0 0 0 0 0	4 36	SS	MG/KG	CADMIUM	24	\$	0 0005	e (0 84			100
SS MGARG CARBOLOUS CONTINUED CON	SS MGARGA CARBON DISJUE JUE Co. Co. Co. Co. Co. Co. Co. Co. Co. Co.	4 36	3 3	MCAG.	CALCIUM	9 62	7	100	-	00/1			90.0
95 SS MACKG CHROMIUM, TOTAL 24 24 0 119899999 26 12.3 34 26 36 SSS MACKG CORPETY SENE 24 2 2 4 0 109999999 2 6 7 6 6 7 6 12.3 8 8 8 8 8 8 6 7 6 6 0.013 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.012 0.013	36 SS Mickle (CHROMIUM, TOTAL 24 24 0 11899999 25 123 34 36 SS Mickle (CHROMIUM, TOTAL 24 24 0 1069 0 16 <td< td=""><td>36</td><td>8 8</td><td>S CONTRACTOR</td><td>CARRON DISTILLEDE</td><td>3 8</td><td></td><td>0011</td><td>0 0 13</td><td>0 001</td><td></td><td></td><td>000</td></td<>	36	8 8	S CONTRACTOR	CARRON DISTILLEDE	3 8		0011	0 0 13	0 001			000
95 SSS MGXRG CHAYSENE 24 4 0 11 1 6 0 063 0 18 0 11 36 SSS MGXRG COPBELT 24 2 6 0 0507 0 6 0 073 0 6 0 073 0 12<	36 SSS MACKG CHRYSENE 24 4 0 11 0 16 0 6 7 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 9 9 8 7 8 9 8 8 9 <td>4 36</td> <td>SS</td> <td></td> <td></td> <td>24</td> <td></td> <td>0 1198</td> <td>2.5</td> <td>12.3</td> <td></td> <td></td> <td>2</td>	4 36	SS			24		0 1198	2.5	12.3			2
35 SSA MARKIG (CORPER) 2 2 0.105000001 6 6 6 36 SSS MACKIG (COPER) 22 4 0.1039999999 0.0039 0.023 0.023 0.023 0.023 0.009 36 SSS MACKIG (DOPER) 23 4 0.0037 0.6 0.013 0.09 0.009 36 SSS MACKIG (DANTHEWE 23 4 0.11 1.6 0.0039 0.02 0.009 38 SSS MACKIG (DANTHEWE 23 4 0.11 1.6 0.0039 0.02 0.009 38 SSS MACKIG (DANTHEWE 24 4 0.11 1.6 0.0039 0.02 0.009 38 SSS MACKIG (SANTHEWE 24 4 0.11 1.6 0.0049 0.02 0.009 38 SSS MACKIG (SANTHEWE 24 4 0.11 1.6 0.0049 0.02 0.009 39 SSS MACKIG (SANTHEWE 24 2 0.40000000 0.75 0.14 0.00	35 SSA MARKG CORPERT 24 24 0 100900001 6 5 6 7 36 SSA MARKG DOFFER 23 4 0 0007 0 013 0 36 36 SSA MARKG DOFFER 23 4 0 0007 0 013 0 36 38 SSA MARKG DOFFER 23 6 0 0007 1 0 0009 0 15 38 SSA MARKG DOFFER 23 6 0 0007 1 0 0009 0 15 38 SSA MARKG DOFFER 23 6 0 0007 1 0 0009 0 15 38 SSA MARKG CAMMARA-CHIORIANE 23 4 0 11 1 0 0009 0 15 39 SSA MARKG LEDON 24 0 11 1 0 0009 0 15 36 SSA MARKG LEDON 22 0 011 0 15 1 100 36 SSA MARKG LEDON 22 2 0 001 0 11 0 10 36 SSA MARKG MELHYL ETHYL KETONE (2- 22 2 0 001 0 10 0 10 36 SSA MARKG MELHYL ETHYL KETONE (2- 22 2 0 001 0 10 0 10	4 36	SS	MG/KG		24	4	011	9	0 063			60
35 MACKIG COPPER 24 4 I OD0595 25 17 66 34 36 SS MACKIG DD0 0.0017 0.0013 0.59 0.002 36 SS MACKIG DD0 0.0017 0.003 0.015 0.01 36 SS MACKIG FLODARIH HENE 2.3 6 0.001 0.001 0.002 0.002 36 SS MACKIG FLODARIH HENE 2.4 4 0.11 1.6 0.11 0.02 0.002 36 SS MACKIG INCINCIA INCINCIAL J.SCJPYRENE 2.4 4 0.11 1.6 0.11 0.024 0.02 0.002 36 SS MACKIG INCINCIAL J.SCJPYRENE 2.2 2 0.01 0.01 0.01 0.01 0.02 0.02 0.02 36 SS MACKIG INCINCIAL J.SCJPYRENE 2.2 2 0.040 0.013 0.05 0.01 0.014 0.012	35 SSS MACKG COPPER 24 0 00037 0 6 0 0013 0 56 36 SS MACKG DOMANTHERE 23 6 0 00037 0 6 0 0013 0 58 36 SS MACKG DOMANTHERE 23 4 0 11 16 0 013 0 03 36 SS MACKG DOMANTHERE 23 4 0 11 16 0 013 0 01 36 SS MACKG DOMANTHERE 24 4 0 11 1 0 01 0 01 36 SS MACKG INCARG IN	4 36	SS	MG/KG		~		. E	0.061000001	6.5	29		-
3.5 MACKIC DDE. 2.3 4 0.037 0.8 0.013 0.59 0.12 3.6 S.S. MACKIC DDE. 2.3 6 0.037 1.6 0.063 0.53 0.083 3.6 S.S. MACKIC DIA-BUTYL PHTMAINE 2.3 6 0.011 1.6 0.063 0.13 0.012 3.5 MACKIC DIA-BUTYL PHTMAINE 2.3 6 0.011 1.6 0.021 0.078 3.5 MACKIC INDINOTLIZ-3-ci)PYTEINE 2.4 0.11 0.011 0.014 0.017 0.078 3.6 S.S. MACKIC INDINOTLIZ-3-ci)PYTEINE 2.4 0.140000001 0.71 1.01 0.078 0.078 3.6 S.S. MACKIC INDINOTLIZ-3-ci)PYTEINE 2.4 0.11 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01	35 SSA MACKG DDE 23 4 0.0537 0.08 0.033 0.05 36 SSA MACKG DLI-BUTYL PHT-MALATE 23 6 0.037 0.0 0.1 0.03 0.15 36 SSA MACKG BLORGANITHENE 24 4 0.11 1.0 0.05 0.15 0.03 36 SSA MACKG BLORGANITHENE 24 4 0.11 1.0 0.05 0.1 0.0 0.1 0.0 0.1 0.0	4 36	SS	MG/KG		24			25	17			9
3.5 Michael District 0 100.00 0 15 0 100.00 3.6 S.S. Michael Full District 2.3 6 0.01 0 10 0 10 0 10 3.6 S.S. Michael Full District 2.3 0 0.01 0 10 0 0.02 0 10 3.6 S.S. Michael Full District 2.4 4 0 11 1 6 0 0.02 0 0.09 3.5 Michael Full District 2.4 4 0 11 1 6 0 0.02 0 0.09 3.5 Michael Incorrection 2.4 4 0 11 1 6 0 0.02 0 0.09 3.5 Michael Incorrection 2.4 4 0 11 1 6 0 0.02 0 0.09 0 0.09 0 0.00 <td> SS MACKG DUT PHTALATE 23 5 0 000 0 15 </td> <td>4 36</td> <td>SS</td> <td>MG/KG</td> <td></td> <td>8</td> <td>7</td> <td>0 0037</td> <td>80</td> <td>0 0013</td> <td></td> <td></td> <td>000</td>	SS MACKG DUT PHTALATE 23 5 0 000 0 15	4 36	SS	MG/KG		8	7	0 0037	80	0 0013			000
3.5 MACKIG FLORANTHERIE 2.4 4 0.11 1 bl 0.103 0.13 0.11 3.6 S.S. MACKIG FLUCHANTHERE 2.4 4 0.019 0.11 1.6 0.11 0.13 0.02 3.6 S.S. MACKIG FLUCHANTHERE 2.4 0.011 1.6 0.11 0.69 0.009 3.6 S.S. MACKIG IRODINOLI,2,3,4,0,9,14RENE 2.2 0.01 0.01 0.01 0.009 3.6 S.S. MACKIG IRODINOLI,2,3,4,0,9,14RENE 2.4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.01	35 NAMERIC PRODUCT LANGE INCIDENTIFIER 24 4 0.11 1 G M G M G M G M G M G M G M G M G M G	4 36	SS	MOKO		53		0 0037	5	0.0039			100
35 MACKING CALCADAMATICH CRIMANE 2.3 0.0019 0.019 0.0034 0.024 0.029 0.0039 36 SSS MACKING INDENDICIT.2.3-c.0PYPRENE 2.4 0.11 0.015 1.00 0.079 0.079 36 SSS MACKING IRCANG	35 Michael Action Character (Action Character (9 2	2 8	NC/C	DI-R-BOLYL PHI HALALE	3 2		200	-	0 00			
35 MGAKG INDIROCITIZAC-giPYRENE 24 0 11 16 0 046 0 046 0 078 16500 16550	36 SSS MGAKG INDENQUAZIA-GIPTRENE 24 0 11 0 40 6 0 43999998 1 60 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26 4	30	WG/KG	GAMMA-CHI CHOANE	2,00		61000	0.41	0 0024			0 02
36 SS MichCle IRON 2 2 0 40 0 439999999 15600 16050 16050 36 SS MichCle IRAD 2 4 0 1400000031 0 76 131 142 36 36 SS MichCle IRAD 1 0 0 2 6 68999999 0 75 1 142 36 36 SS MichCle IRAD 2 6 68999999 0 75 1 140 1 900 1820 36 SS MichCle MichCle MichCle MichCle 2 6 69999999 0 75 0 10 0 00 36 SS MichCle MichCle MichCle MichCle 0 11 0 01 0 01 0 00 </td <td>36 SS McKNG IRACKIG IRACKIG<td>38</td><td>S</td><td>NO.KG</td><td>INDENO(123-c d)PYRENE</td><td>24</td><td>4</td><td>0 11</td><td>1 6</td><td>0 045</td><td></td><td></td><td></td></td>	36 SS McKNG IRACKIG IRACKIG <td>38</td> <td>S</td> <td>NO.KG</td> <td>INDENO(123-c d)PYRENE</td> <td>24</td> <td>4</td> <td>0 11</td> <td>1 6</td> <td>0 045</td> <td></td> <td></td> <td></td>	38	S	NO.KG	INDENO(123-c d)PYRENE	24	4	0 11	1 6	0 045			
36 SS MGMCG LEAD LEAD 24 0.140000000 0.75 131 142 36 36 SSS MGAKG MAKANESIUM 2 2 0.68993999 0.691 0.75 1740 1900 1820 35 SSS MGAKG MANGANESE 2 2 0.691 0.613 0.013 0.025 0.05 36 SSS MGAKG MERCHER 2 2 0.6014 0.013 0.025 0.05 0.05 36 SSS MGAKG MERCHER 2.2 2 0.611 0.613 0.02 0.05 </td <td>36 SS MGMG IEAD 24 0.1400000001 0.75 131 142 36 SS MGMG MARGANESE 2 2 0.68099999 0.75 1740 1900 38 SS MGMG MERCURY 2 2 0.661 0.014 0.013 0.07 36 SS MGMG METHYLE ETHYL KETONE (2-2 2 0.011 0.013 0.01 <</td> <td>8</td> <td>SS</td> <td>MC/KG</td> <td>NOR</td> <td>~</td> <td>~</td> <td>0 40</td> <td>0 439999998</td> <td>15600</td> <td></td> <td></td> <td></td>	36 SS MGMG IEAD 24 0.1400000001 0.75 131 142 36 SS MGMG MARGANESE 2 2 0.68099999 0.75 1740 1900 38 SS MGMG MERCURY 2 2 0.661 0.014 0.013 0.07 36 SS MGMG METHYLE ETHYL KETONE (2-2 2 0.011 0.013 0.01 <	8	SS	MC/KG	NOR	~	~	0 40	0 439999998	15600			
36 SS MGANG MAGNESIUM 2 0 688999998 0 75 1740 1900 1820 36 SS MGANG MANGANESE 2 0 0554 0 0549 0 0549 0 0549 0 056 0 07 0 055 36 SS MGANG MERTALL ETHYL KETONE 23 2 0 011 0 013 0 025 0 075 0 005 36 SS MGANG METHYL ETHYL KETONE 23 4 0 011 0 013 0 015 0 005 0 005 0 015 0 005 0 015 0 005 0 015 0 005 0 015 0 005 0 015 0 005 <t< td=""><td>36 SS MG/NG MACANESIUM 2 2 0.68999999 0.75 1740 1900 36 SSS MG/MG MARIAMISE 2 0.0040000000 418 566 80 36 SSS MG/MG MERCHYLE ETHYLE 23 2 0.011 0.013 0.06 0.07 0.07 36 SS MG/MG METHYLE ETHYLE ETHYLE 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.015 0.013</td><td>4 36</td><td>SS</td><td>MG/KG</td><td>LEAD</td><td>24</td><td></td><td>0 140000001</td><td>0.76</td><td>131</td><td></td><td></td><td></td></t<>	36 SS MG/NG MACANESIUM 2 2 0.68999999 0.75 1740 1900 36 SSS MG/MG MARIAMISE 2 0.0040000000 418 566 80 36 SSS MG/MG MERCHYLE ETHYLE 23 2 0.011 0.013 0.06 0.07 0.07 36 SS MG/MG METHYLE ETHYLE ETHYLE 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.015 0.013	4 36	SS	MG/KG	LEAD	24		0 140000001	0.76	131			
35 Michael Michael 2 0.059 0.064000000 418 566 482 422 36 SS Michael MERCLIPHY ETHYL KETONE (2	36 SS MACKIG	4.36	SS	MG/KG	MAGNESIUM	2	7	_		1740			460
35 Michael Methods Lead of the control	35 SACANG METHYL ETHYL KETONE (2-72) 24 25 0.074 to 118998997 0.06 0.07 36 SS MGAYG METHYL ETHYL KETONE (2-72) 23 2 0.011 0.013 0.025 0.05 36 SS MGAYG MCREL 23 4 0.011 0.013 0.001 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	4 36	SS	MG/KG	MANGANESE	~	2	0 0 0	0.064000003	418			130
35 Michric International Samples (0-2) and second statement and normal samples (0-2) and second statement and normal samples (0-2) and second statement and normal samples (0-2) and second	SS MGAKG METHYLE FHYL KETONE [2-2-3-4-0.011] 0.013 0.025 0.035 0.0	4 36	SS	MG/KG	MERCURY	24	٦	0 0074	0 1199	900			0
35 Michael Michael Michael 23 4 0 for 1 0 for 2 0 for 2 0 for 3 1 for 3 0 for 3 0 for 3 <t< td=""><td>36 SSS MGAKG METHYTENE CHACHIDE 23 4 0.0511 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.027 0.027 0.027 0.027 0.027 0.027 0.020 0.027 0.027 0.020 0.027 0.027 0.027 0.027 0.020 0.027 0.027 0.027 0.020 0.027 0.027 0.026 0.031 0.034 <</td><td>4 36</td><td>SS</td><td>MG/KG</td><td>METHYL ETHYL</td><td>23</td><td>2</td><td>0011</td><td>0 013</td><td>0 025</td><td></td><td></td><td>000</td></t<>	36 SSS MGAKG METHYTENE CHACHIDE 23 4 0.0511 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.027 0.027 0.027 0.027 0.027 0.027 0.020 0.027 0.027 0.020 0.027 0.027 0.027 0.027 0.020 0.027 0.027 0.027 0.020 0.027 0.027 0.026 0.031 0.034 <	4 36	SS	MG/KG	METHYL ETHYL	23	2	0011	0 013	0 025			000
55 SS Mark Principle 24 24 0.03599998 5 5 5 5 5 6 5 4 5 5	SS MGAKG PHENATTHRENE 24 24 0.055959398 5 5 5 5	4 36	SS	MG/KG	METHYLENE CHLORIDE	23		ŀ	0 013	0 001		000	
SS MGMS (PFINANTHHENE) 24 0 11 1 6 0 053 0 27 0 15 36 SS MGMS (PFIENE) 2 2 2 93 100 2020 2040 2040 36 SS MGMS (SILVER) 24 4 0 11 1,6 0.069 0.03 0.63 0.63 36 SS MGMS (SILVER) 2 1 0.05999999 2.5 0.053 0.053 0.63 <t< td=""><td> State Stat</td><td>98</td><td>SS</td><td>MG/KG</td><td></td><td>22</td><td></td><td>- 1</td><td>S ,</td><td>8 6</td><td></td><td></td><td>Ē</td></t<>	State Stat	98	SS	MG/KG		22		- 1	S ,	8 6			Ē
SS MG/KG PYPERE 24 4 0.11 1.6 0.086 0.31 0.20 0.20 SS MG/KG PYPERE 24 1 0.05999999 2.6 0.63 0.63 0.63 SS MG/KG SILVER 24 1 0.05999999 2.6 0.065 0.065 SS MG/KG SILVER 24 1 0.05999999 2.6 0.065 0.065 SS MG/KG SILVER 24 1 0.05999999 2.6 0.065 0.065 SS MG/KG SILVER 24 0.119999997 3.6 5.7 2.66 1.21 SS MG/KG SILVER 24 0.1199999997 3.6 5.7 2.66 1.21 SS MG/KG SILVER 24 0.1199999997 3.6 5.7 2.66 1.21 Cobes not exceed Gritaria C Does not exceed Gritaria C Does not exceed Background	25.2 Micros PortReire 24 4 1 1 6 0 0 0 0 0 0 0 0 0	4 36	SS	MG/KG		24	4	0 11	9 0	0 053			90
15	25	4 36	3	MG/KG	POLASSION SUBTAIL	N S		56	100	2020			70
1	25 MG/MG MICHGE 27 1 0013 005	2 4	g	MCANG				0.0000000000000000000000000000000000000	96	0000			
SS MiGNG VANADIUM 2 2 0.034000002 0.637 2 2 2 2 2 2 2 2 2	SS Michric Variability SS Michric Variability SS Michric Variability SS Michric Variability SS Michric Variability SS Michric Variability SS Michric Variability SS Michric Variability SS Michric SS Michric SS SS SS SS SS SS SS	9 2	8 8	2/2		200		1100	0013	2000			
36 SS MGMCG ZINC 24 24 0 119999997 5 57.2 266 121 1 Data evaluated which she displaced and normal samples (0-2 feet) A Exceeded Scheral B 57.2 266 121 1 A Exceeded Criteria B Does not exceed Griteria C Does not exceed Background	36 SS MGMC ZINC 24 24 0 119999997 5 57 2 266 Data evaluated wickded field dupticates and normal samples (0-2 feet) A Exceeds Criteria Exceeds Criteria B Does not exceed Background C Does not exceed Background available D No Criteria exceeds Background or no Criteria exceeds Background or no Criteria exceeds Background	95	30	MG/KG					0 037	26			4
Data evaluated erclude held dupticates and normal samples (0-2 feet) A Exceeds Chiteria B Does not exceed Chiteria C Does not exceed Background	Data evaluated ercluds field dupticates and normal samples (0-2 feet) A Exceeds Criteria B Does not exceed Background C Does not exceed Background C No Criteria available & exceeds Background, or no Criteria or Background ava	4 36	SS	MC/KG	ZINC			0 119999997	S	57.2			120
		ole Data	waluated	nclude te	eld dupticates and normal samples	(0-2 feet)							
		∢ :	Exceed	s Criteria	1								
		m	Does i	t exceed	Oritena								
	D No Criteria available & exceeds Background, or no Criteria or Background available	U I	Does:	exceed	Background			;					

53

TABLE D-20
Constituents of Potential Concern in Screening Site 36 · Subsurface Soil
Memphis Depot Main installation RI

on Detected Detected Detected Detected Detected Detected Detected Concentration Concentra	Detected Defected Concentration Concentrati	Concentration		Number Number Analyzed Detected 42
0 024 0 05 0 012 0 012 0 003 9 4 8 7 8 7 16 17 28 3 1 3 2 30 16 17 29 3 1 3 2 30 16 17 28 3 1 16 44 29 33 36 0 0 25 0 042 0 17 18 0.6 5 0 0 25 0 042 0 17 0 065 0 065 0 06 0 06 0 0 25 0 004 0 17 0 069 0 16 0 06 0 06 0 0 25 0 004 0 17 0 069 0 16 0 06 0 16 0 06<	0 024 0 005 0 012 0 012 0 003 3 1 3 2 3 0 16 17 26 3 1 3 2 3 0 16 17 29 3 1 3 2 3 0 16 26 32 3 1 1 2 4 4 29 28 32 3 1 1 3 1 7 1 6 24 26 32 0 025 0 042 0 11 0 082 0 062 0 062 0 066 <th></th> <th>Detection 1</th> <th></th>		Detection 1	
9 4 8 7 8 7 8 7 8 7 1 7 2 9 3 1 10 45 28 26 38 3 1 10 44 29 26 38 3 1 10 44 29 26 38 0 0 25 0 042 0 17 0 06 0 0 0 0 025 0 042 0 17 0 069 0 0 0 0 0 0 025 0 042 0 17 0 069 0 <td>9 4 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 1 7 2 9 2 9 3 8 2 9 3 8 4 8 3 8 4 8<td></td><td>0.01</td><td></td></td>	9 4 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 1 7 2 9 2 9 3 8 2 9 3 8 4 8 3 8 4 8 <td></td> <td>0.01</td> <td></td>		0.01	
31 32 30 16 17 29 31 10 45 28 26 38 31 16 44 29 33 24 28 33 31 16 44 29 33 24 28 33 0 025 0 042 0 11 0 062 0 066 0 066 0 066 0 066 0 025 0 0001 0 32 0 068 0 066	31 32 30 16 17 29 31 10 45 28 26 38 31 16 44 29 33 24 29 31 16 44 29 33 24 28 38 31 16 44 29 32 42 28 24 28 0.025 0.042 0.11 0.062 0.066		1.8	
31 10 46 28 26 38 11 44 29 33 28 33 1 6 44 29 24 5 7 1 6 0.42 0.11 0.062 0.66 0.66 0.66 0.06 0 025 0.042 0.01 0.032 0.068 0.06	31 10 46 28 28 33 31 16 44 29 33 33 1 5 32 19 24 5 1 6 13 17 16 24 5 1 6 13 17 16 24 5 1 6 0.025 0.042 0.11 0.082 0.066 0 025 0.000 0.000 0.000 0.000 0.000 0.000 0 025 0.000 0.000 0.000 0.000 0.000 0.000 0 025 0.000 0.000 0.000 0.000 0.000 0.000 0 025 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0 025 0.042 0.14 0.058 1.4 0.058 1.540 1.000 1 0 0 0.041 1.0 0.058 5.0 2.300 1.0 1.0 0 0 0 0.042 0.041		E00	42 0 200000000
3 1 16 44 29 33 0 93999998 76 32 19 24 5 0 025 0 042 0 11 0 062 0 06 0 025 0 001 0 03 0 069 0 06 0 025 0 003 0 003 0 003 0 06 0 025 0 003 1 20 0 003 1 60 0 025 0 003 1 20 0 003 1 60 0 025 0 004 1 20 0 003 1 60 0 026 0 03 1 20 0 003 1 60 0 026 0 03 1 20 0 003 1 60 0 027 0 031 1 0 003 1 0 003 1 0 003 1 0 044 1 8 1 1 1 4 1 8 0 075 0 04 1 6 1 4 0 8 2 0 1 0 044 1 8 1 1 1 4 1 8 0 0 1 2 1 2 20 2 30 2 0 0 0 2 2 1 0 0	3 1 16 44 29 33 0 93999998 76 32 19 24 5 0 025 0 042 0 11 0 062 0 06 0 025 0 001 0 03 0 069 0 06 0 025 0 003 0 003 0 003 0 06 0 025 0 003 1 20 0 003 1 60 0 025 0 003 1 20 0 003 1 60 0 025 0 004 1 20 1 60 1 2 1 60 0 026 0 027 1 20 0 003 1 60 1 60 1 60 0 026 0 027 1 20 0 003 1 60 0 003 1 60 1 0 025 1 0 04 1 6 1 1 1 4 0 03 6 03 1 0 044 1 6 1 1 1 4 0 8 20 1 60 1 1 0 044 1 6 1 1 1 4 1 4 1 6 0 1 1 0 044 1 6 2 1 2 0 2 0	-	26	
0 93999998 7 6 32 19 24 5 0 025 0 042 0 11 0 085 0 06 0 025 0 0042 0 11 0 085 0 06 0 025 0 001 0 32 0 068 0 06 0 025 0 000 0 009 0 009 0 06 0 025 0 000 0 009 0 009 160 0 025 0 000 0 000 0 009 160 0 026 0 000 1540 1 0 00 160 0 026 0 001 0 001 0 001 160 0 028 0 029 1 0 001 0 001 100 0 028 0 04 1 0 001 1 0 001 1 0 001 0 0 100 0 04 1 0 002 20 1 0 002 0 0 25 2 1800 280 250 20 1 0 0 0 0 25 2 1800 2 80 1 540 1 1 0 1 1 0 0 0 25 2 100 0 002 1 0 002 1 0	0 53999998 7 6 32 19 24 5 0 025 0 13 1 7 1 6 0.66 0.06 <td>-</td> <td>8</td> <td>42 0 14000000</td>	-	8	42 0 14000000
16 13 17 16 0.6 5 0.025 0.042 0.11 0.069 0.069 0.06 0.025 0.009 0.039 0.009 0.06 0.06 0.025 0.009 0.009 0.009 0.006 0.06 0.025 0.009 0.009 0.009 0.006 0.06 0.025 0.009 0.009 0.009 0.006 0.06 0.026 0.009 0.009 0.009 0.006 0.06 0.026 0.029 1.2 0.029 1.60 0.03 0.027 0.029 1.2 0.00 0.00 0.03 0.03 0.028 0.041 0.001 0.001 0.008 0.03 0.03 0.03 0.041 0.041 0.075 0.058 4.900 0.02 0.02 0.03 0.041 0.041 0.075 0.058 4.900 0.02 0.02 0.028 0.029 <td< td=""><td>16 13 17 16 0.65 5 0 025 0 0042 0.11 0.062 0.066 0.06 0 025 0 004 0.032 0.069 0.06 0.06 0 025 0 009 0 009 0 009 0 006 0 06 0 025 0 009 0 009 0 009 0 06 0 06 0 025 0 009 0 10 0 009 0 06 16 0 025 0 009 1 21 0 06 16 17 16 0 026 0 027 0 001 0 001 0 001 0 03 10 0 03</td><td></td><td>L</td><td>42 0 230000004</td></td<>	16 13 17 16 0.65 5 0 025 0 0042 0.11 0.062 0.066 0.06 0 025 0 004 0.032 0.069 0.06 0.06 0 025 0 009 0 009 0 009 0 006 0 06 0 025 0 009 0 009 0 009 0 06 0 06 0 025 0 009 0 10 0 009 0 06 16 0 025 0 009 1 21 0 06 16 17 16 0 026 0 027 0 001 0 001 0 001 0 03 10 0 03		L	42 0 230000004
0 025 0 042 0 11 0 082 0 06 0 025 0 001 0 03 0 039 0 06 0 025 0 003 0 039 160 0 025 0 006 0 1029 160 0 026 0 006 121 0 06 0 024 89 121 105 300 160 0 024 89 121 14 0 86 12 63 0 025 0 001 0 001 0 001 1 14 8 6 0 0 1 1 6 1 4 1 8 1 1 1 4 8 6 0 0 1 1 6 1 4 1 8 1 1 1 4 8 6 0 1 7 510 520 24100 38490 20 2300 17 0 2 1 800 2 1800 28400 24100 38480 17 130 0 2 1 800 2 1800 2 220 2 570 2 396 4900 17 0 0 2 1 1	0 025 0 042 0 11 0 085 0 06 0 025 0 001 0 03 0 069 0 06 0 025 0 006 0 1 0 029 160 0 025 0 006 0 1 0 029 160 0 026 0 006 0 1 0 029 160 0 026 0 006 121 105 300 160 0 026 0 001 0 001 0 001 0 001 0 003 160 0 026 0 002 14 0 86 12 8 8 20 160 1 1 0 044 1 8 1 1 1 4 8 8 9 20 23 20 160 0<		L	ı
0 025 0 001 0 32 0 069 0 06 0 025 0 009 0 009 0 009 0 06 0 025 0 009 0 009 0 009 1600 2 3 1 2000 1500 138.50 21829 160 0 042 1 21 105 300 1600 1600 0 042 1 21 0 86 1 2 63 63 63 0 042 1 6 0 44 1 8 1 1 8 63	0 025 0 001 0 32 0 069 0 06 0 025 0 009 0 009 0 009 0 06 0 025 0 009 0 009 0 009 0 06 2 3 1 2000 1500 105 300 1600 0 042 1 21 105 300 1600 1600 0 042 1 21 105 300 1600 1600 0 042 1 4 0 86 1 2 63 0 042 1 6 1 4 0 86 1 2 63 0 042 1 6 0 44 1 8 1 1 8 63 0 071 510 590 550 2432 230 63 0 071 510 520 24100 2432 8 63 0 072 2 1800 2800 2570 24100 230 60 0 041 0 041 0 058 1540 173 60 0 022 1 10 0 049 0 069 </td <td></td> <td>50</td> <td></td>		50	
0 025 0 009 0 009 0 009 0 009 0 009 0 009 16 0 025 0 005 1540 1540 1540 1600 1600 0 044 89 1540 16001 0 001 0 001 0 003 1600 0 025 0 001 0 001 0 001 0 001 0 001 0 003 1600 1 0 025 0 036 1 4 0 86 1 4 0 86 0 003 0 003 0 0 1 0 041 0 042 590 550 2432 8 8 0 0 1 6 0 0 4 0 0 75 0 0 58 20 230 230 0 1 0 0 0 4 0 0 1 0 0 0 58 20 230 230 17 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 025 0 009 0 009 0 009 0 009 0 009 0 009 16 0 025 0 005 0 005 1540 1540 21829 1600 0 044 B9 1540 1540 1000 0 001 0 003 1600 0 025 0 001 0 001 0 001 0 001 0 001 0 003 1600 1 0 024 1 4 0 86 1 4 0 86 2432 63 0 0 1 0 041 0 042 1 8 1 1 1 4 8 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 6 6 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ć	æ
0 025 0 006 0 1 0 029 16 2 3 12300 15400 13850 21829 1600 0 044 19 121 0.001 0.001 0.003 1600 0 025 0 026 1 4 0.001 1.2 6.3 6.0 6.0 1 1 0 025 1 4 0.001 1.4 0.001 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 <td< td=""><td>0 025 0 006 0 1 0 029 16 0 2 3 12300 15400 13850 21829 1600 0 0 44 189 121 0.001 0.003 1600 0 0 22 0 0 22 1 4 0.001 0.001 0.003 1 1 0 0 24 1 8 1 1 1 4 0.003 0 0 1 0 0 44 1 8 1 1 1 4 0.003 0 0 1 0 0 44 1 8 1 1 1 4 0.003 0 2 3 10000002 8 6 9 3 2402 20 20 0 2 3 2 220 2 1800 2640 24100 38430 2300 0 2 3 220 2 2300 2640 2640 1540 17 0 0 2 3 220 2 2000 2600 2600 2666 1540 17 0 0 2 3 30 0 0 2 3 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 11 10 1 1 10 1 1 10</td><td></td><td>0</td><td></td></td<>	0 025 0 006 0 1 0 029 16 0 2 3 12300 15400 13850 21829 1600 0 0 44 189 121 0.001 0.003 1600 0 0 22 0 0 22 1 4 0.001 0.001 0.003 1 1 0 0 24 1 8 1 1 1 4 0.003 0 0 1 0 0 44 1 8 1 1 1 4 0.003 0 0 1 0 0 44 1 8 1 1 1 4 0.003 0 2 3 10000002 8 6 9 3 2402 20 20 0 2 3 2 220 2 1800 2640 24100 38430 2300 0 2 3 220 2 2300 2640 2640 1540 17 0 0 2 3 220 2 2000 2600 2600 2666 1540 17 0 0 2 3 30 0 0 2 3 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 11 10 1 1 10 1 1 10		0	
2 3 12300 15400 13650 21829 1600 0 044 BB 121 105 300 1600 0 025 0 001 0 001 0 001 0 001 0 003 0 03 1 3 0 036 1 4 0 86 1 2 60 0 03 2 0 042 1 6 1 4 0 86 1 1 86 860 860 2300	2 3 15300 15400 13650 21829 160 0 044 B9 121 105 300 1600 0 025 0 001 0 001 0 001 0 001 0 003 0 025 0 042 16 14 0 86 12 60 1 6 0 44 1 8 11 14 86 0 71 510 590 550 2432 86 0 310000002 8 6 9 3 20 2300 2300 0 2 1 2 1800 26400 24100 38430 230 0 2 2 2 2 1800 26400 24100 38430 17 0 0 2 3 2 1800 26400 24100 38430 17 0 0 2 3 2 220 2570 2395 4900 17 0 0 2 3 1 1 1 1 10 1 10 1 10 1 10 0 0 2 3 1 1 1 1 10 1 10 1 10 1 10 0 0 2 4 <t< td=""><td></td><td>0</td><td>11</td></t<>		0	11
0 044 89 121 105 300 1600 0 025 0 001 0 001 0 001 0 001 0 003 1 3 0 036 1 4 0 66 1 2 0 03 1 4 0 042 1 6 1 4 1 6 0 03 0 7 1 510 0 44 1 8 1 1 1 4 8 0 7 1 510 590 550 2432 8 8 0 3100000002 8 6 9 3 50 20 2300 0 25 21800 26400 24100 38430 2300 0 25 21800 2670 2396 4900 17 0 0 25 21800 2670 2396 4900 17 0 0 25 2220 2570 2396 1540 17 0 0 25 0 0 02 0 0 03 0 0 03 17 130 0 0 25 0 0 02 0 0 03 0 0 03 110 110 110 110	0 044 89 121 105 300 1600 0 025 0 001 0 001 0 001 0 003 0 003 1 3 0 045 14 0 06 12 0 03 1 4 1 6 0 44 1 8 1 1 1 4 8 0 71 510 580 550 2432 8 8 0 3100000002 8 6 9 3 50 20 2300 0 25 2 1800 22400 24100 38430 2300 0 25 2 1800 22400 24100 38430 17 0 0 25 2 1800 26400 24100 38430 17 0 0 26 2 1800 2570 2396 4900 17 0 0 26 0 0 0 2 0 0 0 2 1000 1000 1000 0 0 25 0 0 0 2 0 0 0 2 100 0 0 0 2 100 100 0 0 24 0 0 0 2 2 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		23	
0 0 0 25 0 0 0 0 1 0 0 0 1 0 0 0 2 1 3 0 36 1 4 0 86 1 2 63 1 6 0 44 1 8 1 1 8 8 1 6 0 44 1 8 1 1 1 4 8 1 6 0 44 1 8 1 1 8 8 0 71 510 590 550 2432 8 0 3100000000 8 6 9 3 9 20 230 230 0 2 5 2 1800 28400 24100 38480 2300 0 2 5 2 1800 2870 2385 4900 17 0 0 6 5 2 1800 2870 2385 4900 17 0 0 6 5 2 10 0 2840 1540 17 130 0 0 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 025 0 001 0 001 0 003 13 0 36 14 0 86 12 63 1 0 042 16 14 0 86 12 63 1 0 044 18 11 14 8 0 0 71 510 590 550 2432 8 0 3100000000 86 9 3 9 20 230 0 2 1 510 50 24100 2432 8 230 0 2 2 3 2 2 20 2 570 2 34100 38480 230 230 0 2 3 3 2 2 20 2 570 2 335 4900 17 0 0 4 3 3 2 2 20 2 570 2 385 4900 17 0 0 2 3 3 0 0 2 3 3 3 37 130 0 0 2 4 0 0 0 4 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8	2 0 043000001
13 0.36 14 0.86 12 63 2 0.042 16 14 3600 16 0.042 18 11 4 8 0.71 510 590 550 2432 8 0.310000002 8 6 9 3 0.058 2432 8 0.23 2.1800 26400 24100 38430 2300 0.23 2.220 25400 2385 4900 17 0.041 0.075 0.058 4900 17 0.042 0.077 0.008 1540 17 0.024 0.044 0.017 0.008 17 130 0.025 0.004 0.017 0.008 160 0.028 170 0.025 0.004 0.017 0.038 1600 0.028 130 130 0.024 0.024 0.010 0.008 0.008 0.06 0.06 0.024 0.004 0	13 0.36 14 0.86 12 63 2 0.042 16 14 3600 16 0.042 16 14 4 8 0.71 510 590 550 2432 8 0.71 510 593 550 2432 8 0.72 2.040 2640 24100 38490 2300 0.23 2.1800 28400 28400 2300 2300 0.23 2.220 25400 2385 4900 17 0.041 0.075 0.058 1540 17 0.025 0.004 0.017 0.003 1540 17 0.025 0.004 0.017 0.003 10 0.022 0.025 0.004 0.017 0.003 160 0.022 0.025 0.004 0.010 0.003 1.10 0.003 0.024 0.004 0.006 0.006 0.006 <t< td=""><td></td><td>5</td><td>1</td></t<>		5	1
2 0.042 16 14 3600 16 0.44 18 11 14 8 0.71 510 590 2432 8 0.3100000002 6.6 9.3 9 20 0.25 2.1800 2.6400 2.4100 38480 2300 2 2.220 2.570 2.395 4900 2300 0.025 2.220 2.570 2.395 4900 17 0.0125 0.002 0.017 0.0038 1540 17 0.025 0.026 0.002 0.003 3 37 130 6.3 755 1010 883 1800 0.02 93 755 1010 883 1800 0.06 93 755 1010 180 51 600 93 755 1010 1004 0.005 0.005 0.005 93 755 1000 0.005 0.005 <	2 0.042 16 14 3600 16 0.44 18 11 14 8 0.71 510 590 2432 8 0.3100000002 8.6 9.3 9 20 0.23 2.1800 2.570 2.4100 38480 2300 0.23 2.220 2.570 2.395 4900 2300 0.025 0.026 0.027 0.008 1540 17 0.025 0.026 0.007 0.003 17 130 0.025 0.026 0.008 0.003 17 0.027 0.028 0.003 37 130 0.024 0.026 0.008 0.003 37 130 0.024 0.026 0.006 0.005 0.006 0.006 0.024 0.004 0.006 0.005 0.006 0.006 0.024 0.004 0.006 0.005 0.006 0.006 0.024 </td <td></td> <td><u> </u></td> <td>13 0 01600000</td>		<u> </u>	13 0 01600000
1 6 0 44 1 8 11 14 8 0 71 510 590 550 2432 8 0 310000002 8 6 590 550 2432 8 0 310000002 8 6 9 3 20 2300 2300 2 3 2 1800 26400 24100 38480 2300 2300 2 3 2 220 2 570 2 386 1540 17 0 025 0 026 0 074 0 073 17 130 0 025 0 002 0 004 0 003 37 130 6 3 755 1010 883 1800 0 02 9 3 755 1010 883 1800 0 05 1 1 110 110 110 110 0 05 0 024 0 034 0 066 0 065 0 065 0 06 0 21 251 31 12000 114 12000	1 6 0 44 1 8 11 14 8 0 71 510 590 550 2432 8 0 310000002 8 6 590 550 2432 8 0 2 1 2 1800 2 24100 38430 2300 2300 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0042	32	
0 71 510 590 550 2432 0 310000002 8 6 9 3 9 20 2300 2 3 2 0441 0.073 0.058 2300 2300 0 025 2 1800 26400 24100 38480 2300 0 025 2 2220 2570 2396 4900 17 0 04199999 882 1050 966 1540 17 0 025 0 044 0 047 0 0098 0 0038 0 017 0 02 18 47 33 37 130 83 756 1010 883 1800 0 06 93 755 1010 883 1800 0 06 11 110 0 066 0 06 0 06 0 06 0 024 0 004 0 006 0 06 0 06 0 06 0 024 0 004 0 006 0 06 0 06 0 06 0 024 0 004 0 006 0 06 0 06	0 71 510 590 550 2432 0 310000002 8 6 9 3 9 20 20 2 3 2 1804 0.073 0.058 2300 2 3 2 2220 2 570 2 395 4900 0 025 2 2220 2 570 2 396 4900 0 025 0 04 0 017 0 0098 1540 0 02 0 002 0 017 0 0098 0 17 0 02 0 002 0 003 0 003 0 017 0 02 1 18 47 33 37 130 1 1 1 10 1 10 883 1800 0 05 1 1 1 10 0 065 0 065 0 06 0 024 0 004 0 066 0 065 0 06 0 021 2 3 51 8000 6 3 51 150 104 12000	16 044	4	
0 310000002 8 6 9 3 0 058 20 2300 2 0 041 0 075 0 058 2300 2300 2 3 2 2220 25400 24100 38490 10 2 3 2 2220 2570 2385 4900 17 0 025 0 004 0 017 0 0038 17 17 0 025 0 004 0 017 0 0038 180 17 6 3 756 1010 883 1800 0 05 93 756 1010 883 1800 0 06 11 110 110 0 005 0 006 0 06 0 024 0 004 0 006 0 006 0 06 0 06 0 024 0 004 0 006 0 005 0 06 0 06 0 21 25 31 110 114 12000	0 310000002 8 6 9 3 0 0 0 68 20 2300 2 0 041 0 0 7 5 0 0 68 2300 2300 2 3 2 2220 2 5 7 0 2 385 4 900 17 0 0 1 2 30 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1.2	2
2 0.041 0.073 0.058 2300 0.25 2.1800 2.6400 2.4100 38480 2300 2.3 2.220 2.570 2.385 4900 2400 0.041999999 882 1050 366 1540 17 0.025 0.004 0.017 0.008 17 17 0.025 0.002 0.008 0.003 37 130 6.3 755 1010 883 1800 0.06 9.3 755 1010 110 110 0.06 0.024 0.004 0.005 0.005 0.005 0.06 0.21 25 31 28 51 8000 6.3 51 157 100 114 12000	2 0.041 0.073 0.058 2300 0.25 2.1800 2.6400 2.4100 38480 2.3 2.220 2.570 2.395 4900 0.041999999 882 1050 966 1540 17 0.025 0.004 0.017 0.003 17 0.02 0.025 0.002 0.003 0.003 17 130 6.3 1.16 1.10 110 100 0.02 9.3 7.55 1.01 883 1800 0.06 1.1 1.10 1.10 1.00 0.05 0.06 0.024 0.004 0.005 0.005 0.06 0.06 0.21 2.5 3.1 2.8 5.1 6.000 0.21 2.5 3.1 1.00 1.14 1.2000			2 0 310000002
0.25 2.1800 2.6400 2.4100 38480 2.3 2.220 2.570 2.385 4900 0.041939999 882 1050 966 1540 17 0.025 0.004 0.017 0.008 17 17 0.025 0.002 0.008 0.003 37 130 93 755 1010 883 1800 130 11 110 110 110 0.05 0.06 0.024 0.004 0.006 0.005 0.06 0.06 0.21 25 31 28 51 600 6.3 51 157 100 114 12000	0.28 2.1800 2.6400 24100 38480 2.3 2.220 2.570 2.385 4900 0.041999999 882 1050 966 1540 17 0.025 0.004 0.017 0.008 1540 17 0.025 0.002 0.008 0.003 17 130 6.3 755 1010 883 1800 130 1.1 1.10 110 110 0.05 0.06 0.024 0.004 0.005 0.005 0.06 0.06 0.021 25 31 28 51 600 6.3 51 157 100 114 1200	0		4
2 3 2220 2570 2395 4900 0 041939999 882 1050 966 1540 17 0 025 0 004 0 017 0 003 17 0 025 0 002 0 003 0 02 6 3 755 1010 883 1800 1 1 110 110 100 0 024 0 004 0 005 0 06 0 024 0 004 0 005 0 06 0 21 25 31 150 63 6 3 51 157 100 114 12000	2 3 2220 2570 2395 4900 0 041939999 882 1050 966 1540 17 0 025 0 004 0 017 0 0098 17 17 0 025 0 002 0 003 20 0 02 6 3 755 1010 883 1800 130 1 1 110 110 110 0 05 0 05 0 024 0 004 0 005 0 05 0 05 0 06 0 021 25 31 28 51 6000 6 3 51 157 100 114 12000		25	2
0 0.041939999 882 1050 966 1540 17 0 0.25 0 0.04 0 0.17 0 0.038 17 0 0.25 0 0.02 0 0.03 0 0.02 6 3 756 1010 883 1800 1 1 110 110 883 1800 0 0.24 0 0.06 0 0.06 0 0.06 0 0.06 0 0.21 25 31 10 63 51 6000 6 3 51 157 100 114 12000	0.041939999 882 1050 966 1540 17 0.025 0.004 0.017 0.0038 17 0.025 0.002 0.003 0.002 0.028 0.0024 0.002 0.002 0.028 18 47 33 37 130 93 756 1010 883 1800 130 11 110 110 0.005 0.005 0.06 0.024 0.04 0.066 0.065 0.06 0.21 25 31 157 100 12000 6.3 51 157 100 114 12000	6	22	
0 025 0 004 0 017 0 0098 17 0 025 0 002 0 008 0 003 3 37 130 83 75 1010 883 1800 130 11 110 110 0 005 0 005 0 006 0 024 0 004 0 005 0 005 0 006 0 006 6 3 51 157 100 114 12000	0.025 0.004 0.017 0.0098 17 0.025 0.002 0.008 0.003 37 130 6.3 756 1010 83 37 130 1.1 110 110 100 0.005 0.005 0.024 0.004 0.006 0.005 0.00 0.00 0.21 25 31 28 51 6000 6.3 51 157 100 114 12000		L	2 0 041999999
0 025 0 002 0 008 0 003 37 0 02 6 3 18 47 33 37 130 93 755 1010 883 1800 130 1 1 110 110 110 0 06 0 06 0 024 0 004 0 005 0 05 0 06 0 21 25 31 28 51 6000 6 3 51 157 100 114 12000	0 025 0 002 0 008 0 003 0 02 6 3 18 47 33 37 130 93 755 1010 883 1800 130 11 110 110 100 0 05 0 06 0 024 0 004 0 005 0 005 0 06 0 21 25 31 28 51 6000 6 3 51 157 100 114 12000			L
6 3 18 47 33 37 130 93 755 1010 883 1800 1 1 110 110 100 0.05 0.06 0 024 0 004 0 006 0.005 0.06 0.06 0 21 25 31 8000 63 51 6000 6 3 51 157 100 114 12000	6 3 18 47 33 37 130 93 755 1010 883 1800 3 1 1 110 110 110 0.05 0.05 0 024 0 004 0 006 0.005 0.06 0 21 25 31 28 51 6000 6 3 51 157 100 114 12000		100	13
93 756 1010 883 1800 11 110 110 110 0.024 0.04 0.06 0.06 0.06 0.21 25 31 6000 6.3 51 157 100 114 12000	93 756 1010 683 1800 11 110 110 10 0.024 0.04 0.06 0.06 0.21 25 31 6300 6.3 51 157 100 114 12000		99 (
11 110 110 0 06 0 005 0 06 0 024 0 004 0 006 0 005 0 06 0 21 25 31 28 51 600 6 3 51 157 100 114 12000	11 110 110 0 06 0 06 0 065 0 066 0 066 0 024 0 004 0 006 0 005 51 6000 0 21 25 31 28 51 6000 6 3 51 157 100 114 12000		26	
0.024 0.004 0.006 0.005 0.005 0.066 0.21 25 31 28 51 6.000 6.3 51 1.57 1.00 1.14 1.2000	0.024 0.006 0.005 0.005 0.066 0.21 23 31 28 51 6000 6.3 5.1 157 100 114 12000		-	-
0.21 25 31 28 51 6000 63 51 157 100 114 12000	0.21 25 31 28 51 6000 6.3 51 157 100 114 12000		100	
6.3 5.1 15.7 100 114 12000	6.3 5.1 15.7 100 114 12000		121	2
			997	42 0 119999997
				available
				elimination it as a COPC
			2	200
				used in emillianing it as a coro
COPC	copc			
COPC	SOPC			

TABLE D-21 Constituents of Potential Concern in FU5 - Surface Soil Memphis Depot Man Installation RI

0 0 2 4 12000 1600 32000 3600 Regulatory Criteria for Leachability 1100 230 230 230 230 230 230 Regulatory Criteria i Surface Soil 14 5840 0 002 25 25 25 34 0 0067 0 067 0 065 30 30 4600 1304 0 4 1 0 82 RESE 0 002 Background Concentration Arithmetic Mean Detected Concentration 39800 0 037 Minimum Detected 0 00037 0 00037 0 00037 0 00037 0 0003 0 00003 0 0003 0 0003 0 0003 0 0003 0 0003 0 0003 0 0003 0 0003 0 00 Minimum Detection Number Detected Number Analyzed MGKG ANETHYLPHENOL IP CRESOL)
MGKG ANTENOR
MGKG BENZOLJANTHACENE
MGKG BENZOLJANTHACENE
MGKG BENZOLJANTHACENE
MGKG BENZOLJANTHACENE
MGKG GENZOLJANTHACENE
MGKG GENZOLJANTHACENE
MGKG CARBAZOLE
MGKG CACNAPHTHANE
MGKG CACNAPHTHALENE
MGKG CACNAPHTHAL Matrix Unit

sty of a m

P33

TABLE D-21 Constituents of Potential Concern in FU5 - Surface Soil Memphis Depot Main Installation RI

Analyzed Detected Limit Concentration Concen		:		Number				Minimum Detected	Maximum Detected	Arithmetic Mean Detacted	Background	Background Regulatory Criteria for	Regulatory Criteria for	
21 21 21 21 21 2299999 77 2 28 21 48 56 600 1000 1000 1000 1000 1000 1000 10	5 SS	MG/KG	Parameter Name Total Xvienes	Ansiyzed 21	Detected	0 000		Concentration 0 009		Concentration 0 009	0 009	16000	Concentration 0.2	No
126 2300 12000 12800 12000 12000 12800 12900 12000 12800 12900 12000 12800 12900 12000 12800 12900 12900 12800 12900 12900 12800 12900 12900 12800 12900 12900 12800 12900 12900 12800 12900 12900	SSS	MG/KG	VANADIUM	6	6	0 034	0 2099999	7.2	28	21	48	99		S S
Note Data evaluated microde field duplicates and normal samples (0-2 feet) A Exceeds Criteria B Descriptions C Does not exceed Background C Does not exceed Background D No Criteria available & exceeds Background, or no Criteria or Background available E Chemical sa are someon as some not expensional judgement was used in eliminating it as a COPC C Chemical as a member of a chemical class which contains other COPCs	SSS	MG/KG	ZINC	21	12	0 12	4.9	29	136		126		12000	No B
A Exceeds Criteria B Does not acceed Criteria C Does not acceed Criteria C Does not acceed Background D No Criteria available & exceeds Background, or no Criteria or Background available E Chemical is an essential ruthrent and professional subgrament was used in eliminating it as a COPC F Chemical is an essential ruthrent and professional judgement was used in eliminating it as a COPC C Chemical is a member of a chemical class which contains other COPCs	Note Data ev	ahuated inc	thide field duplicates and normal samples (0-2 feet)											
B Does not exceed Criteria C Does not exceed Background. C Does not exceed Background. C Does not exceed Background. C Chemical is an exceed professional yudgement was used in eliminating it as a COPC F Chemical is a common lab containmant and professional yudgement was used in eliminating it as a COPC C Chemical is a member of a chemical class which contains other COPCs C Chemical is a member of a chemical class which contains other COPCs	∢	Exceeds	's Cnteria											
C Does not exceed Background D No Criteria available & exceeds Background or no Criteria or Background available E Chemical is an essential interior and professional judgement was used in eliminating it as a COPC F Chemical is a common lab confaminating the disciplination of the confamination of the confamilies other COPCs	80	Does no	of exceed Criteria											
D No Critera available & exceeds Background, or no Critera or No Critera or No Critera	U	Does no	of exceed Background											
E Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC Chemical is a common lab containmant and professional judgement was used in eliminating it as a COPC G Chemical is a member of a chemical class which contains other COPCs	٥	No Crife	ena available & exceeds Background, or no Critena or Background av	aılable										
F Chemical is a common lab containmant and professional judgement was used in eliminating it as a COPC G Chemical is a member of a chemical class which contains other COPCs	ш	Chemic	al is an essential nutnent and professional judgement was used in eth	nmaling il as a	COPC									
G Chemetal is a member of a chemical class which continue other COPCs	11.	Chemic	al is a common lab contaminant and professional judgement was use	d in eliminating	nt as a COP	C								
	O	Сћетис	al is a member of a chemical class which contains other COPCs											

TABLE D-22 Constituents of Potential Concern in FUS- Subsurface Soil Memphis Depol Main Installation RI

33

P1147543/APPO_FU5 xIS/COPC_SB 5

10 10 10 10 10 10 10 10						Minimum	Maximum	Minimum	Maximum	Arithmetic Mean		Regulatory Criteria for	
27 27 28 48 28 38<	Units Parameter Name			Analyzed	Number	Detection Limit	Detection	Concentration	Concentration	Concentration	Concentration	(Leachability)	COPC/BASIS
27 27 12 0.00 0.00 48 28 <th< td=""><td>CADMIUM</td><td>:ADMIUM</td><td></td><td>27</td><td>2</td><td>0 011</td><td>1 299999952</td><td>0 11</td><td>77</td><td>39</td><td></td><td></td><td>Yes</td></th<>	CADMIUM	:ADMIUM		27	2	0 011	1 299999952	0 11	77	39			Yes
27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 11 24 14 24 14 24 24 24 28 0 28 </td <td></td> <td>SHROMIUM, TOTAL</td> <td></td> <td>72</td> <td>27</td> <td></td> <td>26</td> <td></td> <td>48</td> <td></td> <td></td> <td></td> <td>Yes]A</td>		SHROMIUM, TOTAL		72	27		26		48				Yes]A
27 27 27 28 17 28 18 28 18 28 18 28 18 28 18 28 18 28 18 28 18 28 18 28 18 28<	MG/KG COPPER	OPPER		27	27	0 129999999							YesD
27 7	MG/KG LEAD	EAD		27	27	0 159999996	0 769999981	4.8	54				Yes D
1 0 0 0 0 0 0 0 0 0	MG/KG MANGANESE	AANGANESE		7	7		990 0				1540		Yes D
10 10 10 10 10 10 10 10	MG/KG TOTAL 1,2-DICHLOROETHENE	TOTAL 1,2-DICHLOROETHENE		32	٣	0 011	0 810000002			٥			Yes D
10 0.0000000000000000000000000000000		TRICHLOROETHYLENE (TCE)		32	3		0 810000002		:			900	Yes A
STATE STAT	_	INTIMONY		27	-		7.7		٥			\$	Yes
32 5 (0.370000006) 6 (0.37000007) 0 (0.54) 0 (18)		RSENIC	;	27	27	0 180000007					12	29	Yes H
State Colored Colore	╗	3ENZO(a)ANTHRACENE		32	en.	0 370000005		0 054				2	Yes H
State Stat	MG/KG BENZO(a)PYRENE	3ENZO(a)PYRENE		32	5	0 370000005		0 057				θ	Yes
SZ 50 70<	MG/KG BENZO(b)FLUORANTHENE	SENZO(b)FLUORANTHENE		35	S			0 05				9	Yes H
32 1 (2) 200000005 (3,00000007) 0 (0,0000000) 0 (0,0000000) 0 (0,0000000) 0 (0,0000000) 0 (0,0000000) 0 (0,0000000) 0 (0,0000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,0000000) 0 (0,00000000) 0 (0,0000000) 0 (0,00000000) 0 (0,00000000) 0 (0,000000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,000000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,0000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,000000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,00000000) 0 (0,000000000) 0 (0,000000000) 0 (0,000	MG/KG BENZO(k)FLUORANTHENE	3ENZO(k)FLUORANTHENE		32	S			0.047				49	Yes H
12	MC/KG CARBAZOLE	SARBAZOLE		32	ţ	0 370000005		0048				- 06	Yes H -
15 1 0.0027 0.0044 0.0057 0.0054 0.0054 0.0054 0.0154 0.0144 0.0044 0.0055 0.0055 0.	1	HAYSENE		32	9	0 370000005		0.04				091	Yes
10 10 10 10 10 10 10 10	т	WEI DRIN		13	-	0.0037		0.0057				0 004	Yes H
1	7	NOTATION OF A ADVIDENT		26			O A 20	6800				7.	Yec
27 71 0 99000001 0 004 11700 911 2 1820 28 17 1 0 99000001 6 3 0 004 1700 911 1 0 004 1 1700 29 2 2 2 0 004 0 004 1 0 004 <	-	NOENCI1,2,3-c,0)PTRENE		Ş Ş	4 9	connovs n		0.00	ľ			***	9 91
27 3 (1) 0300000000 4 (2) 40 1 (1) 01 0 (2) 4 1 (2) 00 28 3 (2) 0300000000 1 (2) 0300000000 1 (2) 0300000000 1 (2) 0300000000 1 (2) 0300000000 1 (2) 0300000000 1 (2) 0300000000 1 (2) 030000000 1 (2) 030000000 1 (2) 030000000 1 (2) 030000000 1 (2) 030000000 1 (2) 030000000 1 (2) 030000000 1 (2) 030000000 1 (2) 030000000 1 (2)	7	CELONE		N. C.	<u>"</u>	=1,	1 00000	9000					200
27 7 10 200000000000000000000000000000000000	1	ALUMINUM.			/	0.88000001	20				51828		200
7 9 0 0	MG/KG ANTHRACENE	INTHRACENE		35	က	0 370000005	0 4300000007	0				12000	No B
22 3 0 70000000000000000000000000000000000	MG/KG BARIUM	SARIUM		7	7	0 037999999	0 059999999				300	1600	
22 1 0 3700000005 0 1 0 2000000007 0 073 0 077 0 077 1 2 0 050 27 6 0 20001 1 229959352 0 0436 0 146 0 06 1 2 600 27 7 0 629509368 2 0 0402 0 062 0 062 0 062 0 062 0 1 27 7 0 629509368 0 043 0 042 0 062	MG/KG BENZO(g,h,i)PERYLENE	3ENZO(g,h,i)PERYLENE		32	ဇ			9800				32000	No B
27 9 0 00011 1 299999952 0 33 1 4 0 7 1 6299999952 0 340 0 100 0 000	MG/KG BENZYL BUTYL PHTHALATE	SENZYL BUTYL PHTHALATE		32	-		0 430000007	7,00				026	No B
32 6 0 370000000 6 1430000007 0 046 0 082 0 000 1 7 7 0 639999966 6 10 0001 0 001 0 0002 0 0002 0 0002 0 1 22 1 1 0 001 0 0104 0 0046 0 0042 0 0012 54 13 1 0 0037 0 0043 0 0046 0 0046 0 0042 0 0012 54 13 1 0 0037 0 0043 0 0046 0 0046 0 0046 0 0046 0 0045 14 24 1 0 0037 0 0046 0 0046 0 0046 0 0045 0 0046 </td <td>MG/KG BERYLLIUM</td> <td>TERYLLIUM</td> <td></td> <td>27</td> <td>6</td> <td>0 0031</td> <td>1 299999952</td> <td>0 33</td> <td></td> <td></td> <td>1.2</td> <td></td> <td>No B</td>	MG/KG BERYLLIUM	TERYLLIUM		27	6	0 0031	1 299999952	0 33			1.2		No B
7 7 0 63999986 8 2 520 5150 1683 2432 1 7 7 0 0320 000002 0 002 0 002 0 002 0 002 1 13 1 0 0037 0 0043 0 004 0 002 0 001 1 13 1 0 0037 0 0043 0 004 0 002 <	1	1S(2-ETHYLHEXYL) PHTHAL ATE		32	9	0 370000005		0.046		90 0		3600	No F
1	1	ALCIUM		7	7						2432		
7 7 0 0320000002 0 330000013 1 1 0 102 0 002 0 002 0 001 1 13 1 0 0037 0 0043 0 0044 0 0042 0 0072 1 1 32 6 0 370000005 0 430000007 0 07 0 07 0 07 200 32 6 0 370000005 0 430000007 0 07 0 04 0 04 0 07 200 7 7 0 270000005 0 430000007 0 002 0 04	т	CHLOROBENZENE		32	-	0 0 1 1	0.810000002	0.002				-	
13 1 0.0037 0.0043 0.0026 0.0046	1	CBALT			-			-			20		
13 1 7 0.037 0.044 0.046 0.046 0.072 11 32 9 0.37000005 0.43000007 0.07 0.21 0.12 0.045 0.045 0.045 0.045 0.040 0.045	_	200		-	1			1000			0.0015		No B
32 9 (370000005) 0.0450 0.0450 0.0450 2300 32 6 (370000005) 0.430000007 0.01 0.02 0.045 4300 7 7 (230000005) 0.430000007 0.01 0.02 24800 1432 4300 7 7 (230000005) 0.01 0.02 24800 0.04 0.05 4300 32 1.160 2.240 0.002 3.04 0.045 400 37 7 (230000005) 0.011 1.6000002 0.01 0.02 3.04 27 7 (230000005) 0.43000002 0.001 0.02 0.01 0.02 28 7 (0.01) 0.011 0.000002 0.001 0.02 0.01 0.02 29 4 (0.01) 0.000002 0.001 0.001 0.002 0.001 0.002 20 0.010 0.000 0.001 0.002 0.001 0.002 0.002 21 4 1.00000000 0.001 0.001	_	100		2 5	1	2000	2000	2000			0.000		2
32 6 0 3700000054 4 3000000054	T	l Ul		2 1	1	0.0037	0.0043	0.0046					
32 6 0 370000056 0 430000007 430000000 4300 4300 7 7 0 779993997 7 0 779993997 2510 1422 4900 17 32 7 0 779993997 7 0 779993997 7 0 779999997 0 002 0 001 0 0053 0 01 32 7 0 779999997 0 11 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	31-n-BUTYL PHTHALATE		35		0.370000005		700				2300	
7 7 7 0.2300000040 3.2 11600 24800 16500 38480 7 7 0.719999971 7 0.711 0.8100000024 0.002 0.011 0.0053 4900 177 32 3 0.011 0.8100000024 0.002 0.011 0.0023 0.022 0.022 27 2.7 0.011 0.8100000024 0.009 0.024 0.0023 0.022 0.022 27 2.7 0.011 0.8100000024 0.069 0.37 0.18 0.042 880 1.30 27 4 4.000000026 0.4300000007 0.081 0.074 0.03 0.042 880 1.30 0.042 880 1.30 1.30 0.042 880 1.30 1.30 0.042 880 1.30 1.30 1.30 0.042 880 1.30 1.30 1.30 0.042 1.30 1.30 1.30 0.042 1.30 1.30 1.30 1.30 0.0	MG/KG FLUORANTHENE	LUORANTHENE		32		0 370000005	0 43000	0					
7 9 9 0		HON	•	_	^	0 230000004	32	11600					
32 3 0 tot 11 totocococca 0 002 0 0053 177 27 27 0 tot 10 totocococca 0 001 0 004 0 0053 0 002 27 27 0 tot 10 000001 5 1 7 46 26 36 6 1 30 27 27 0 tot 10 0000001 5 1 7 4 6 26 36 6 1 50 27 4 0 370000000 5 1 7 4 6 1 50 1 50 1 50 1 50 1 50 1 50 1 50 2	MG/KG MAGNESIUM	AAGNESIUM		7	7	0 779999971	7.5	279					
32 7 0 011 0 810000002 0 001 0 0020 0 02 27 27 0 04000001 5 2 1 7 46 26 36 6 130 7 4 0 370000002 0 430000007 0 069 0 37 0 18 250 7 4 0 370000005 0 430000007 0 081 0 74 0 33 0 042 890 27 3 0 100000002 1 3 1 5 1 6 0 6 5 27 1 0 140000002 1 4 1 5 1 5 1 5 0 6 5 27 1 0 140000002 1 6 0 001 0 10000002 0 001 0 002 0 001 0 002 0 002 0 00 0 00 27 1 0 1400000001 2 6 0 23 0 23 51 6000 27 2 7 0 103999999 5 2 4 5 132 71 114 12000 27 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MG/KG METHYL ETHYL KETONE (2-BL	AETHYL ETHYL KETONE (2-BU	TANONE)	33	e	0.011	1 600000024	0 002				17	
27 27 (0.41000001) 5.2 1.7 46 26 36 (0.41000001) 130 7 4 705 4.30000005 6.30000007 0.069 0.074 0.08 150	MG/KG METHYLENE CHLORIDE	AETHYLENE CHLORIDE		32	7	0.011	0.810000002	1000			1	0 02	
32 6 0 370000000 0 430000007 0 069 0 37 0 18 250 7 4 0 370000000 75 104 523 1560 882 1800 882 27 3 0 158909996 1 230000000 0 081 0 74 0 93 0 042 80 27 3 0 158909966 1 230000000 1 4 1 57 1 57 1 57 0 05 0 06 0 0 0	MG/KG NICKEL	HCKEL		27	27	0.041000001	52	17	46		36		
7 4 75 104 523 1580 892 1800 32 6 0 370000005 0 430000007 0 681 0 74 0 33 0 642 890 27 1 3 0 159999996 1 29999995 1 29999995 1 29999995 1 29999995 1 29999995 1 299999995 1 299999995 1 299999995 1 299999995 1 299999995 1 29999999 2 29 0 23 0 23 0 29 0 26 0 26 0 27 0 29 0 29 0 29 0 29 0 29 0 29 0 29 0 27 0 29 0 29 0 27 0 29	MG/KG PHENANTHRENE	HENANTHRENE		35	9	0 37000005	0 430000007	6900		0 18		250	8 ON
32 6 0 370000005 0 430000007 0 081 0 74 0 53 0 042 880 27 3 0 15899996 1 28999996 1 28999996 1 28999996 1 28999999 1 0 1000000 1 0 100000 1 0 100000 1 0 100000 1 0 100000 0 001	-	OTASSILIM		~	4	75	104	523					NoE
27 3 0.15999999 1.29999995 1.29999999 1.3 1.9 1.6 0.6 5 7 1 0.910000028 1.4 1.57 1.57 1.57 1.6 0.09	Т	YBENE		32	9	0 37000005	0 430000007	0.081			0 042	980	N _O B
7 1 0 910000028 14 157 157 157 169 32 3 0 011 0 10000002 0 001 0 002 0 002 0 007 27 7 0 039000001 0 23 0 23 0 23 0 07 27 7 0 03900001 0 219999999 24 37 28 51 6000 27 27 27 0 109999999 5.2 4.5 71 114 12000 grad in eliminating it as a COPC	1	ENITAL PARTY		27	e	0 159999996		13			90		No B
32 3 0 011 0 810000002 0 001 0 003 0 002 0 06 27 1 0 140000001 2 16 0 23 0 23 0 23 0 07 7 7 0 039000001 0 219999999 2 4 37 2 8 5 1 6000 27 2 7 0 103999999 5 2 4 5 132 7 1 114 12000 ground available sed in eliminating it as a COPC t vas used in eliminating it as a COPC	т	MUIGO		7	-	0 910000026		157	157				No E
27 1 0140000001 0 239 0 23 0 23 0 23 0 7 7 7 033000001 0 21999999 24 37 28 51 6000 27 27 0 109999999 5 2 4 5 132 71 114 12000 ground available sed in eliminating it as a COPC twas used in eliminating it as a COPC	T	ETRACHI OROETHYI ENE/PCE		33	e	t=		0.001	0 003			900	No B
7 7 0 039000001 0 219999999 24 37 28 51 6000 No 27 27 0 1099999999 5 2 4 5 132 71 114 12000 No ground available sed in eliminating it as a COPC t was used in eliminating it as a COPC	+-	HALLIUM		72	-	1=		0.23				0.7	NoB
27 27 0 109999999 5 2 4 5 132 71 114 12000 ground available sed in eliminating it as a COPC t was used in eliminating it as a COPC	7-	ANAON IM					0.21999999	24				0009	S
ground available sed in eliminating it as a COPC twas used in eliminating it as a COPC	_	INC	-	7.0	20		5.2	4.5				12000	No B
pres (z feet and below) or no Criteria or Background available ional judgement was used in eliminating it as a COPC professional judgement was used in eliminating it as a COPC hich contains other COPCs	Control College Control Contro		1-1-1	А.	1,3	00000000	4.7	2	5			2004	
or no Criteria or Background available on a second consistence on a second pudgement was used in eliminating it as a COPC increasional judgement was used in eliminating it as a COPC inchesional judgement was used in eliminating it as a COPC inch contains other COPCs	ated instance treid cupincates and itolinal samp	died ouplicates and nomial samp	100 15 1001	direction)									
, or no Criteria or Background available sional judgement was used in eliminating it as a COPC professional judgement was used in eliminating it as a COPC hich contains other COPCs	Charles Circuit												
d, or no Criteria or Background available ssional judgement was used in eliminating it as a COPC professional judgement was used in eliminating it as a COPC which contains other COPCs	Door not exceed United a	Access Cilibria											
spond judgement was used in eliminating it as a COPC d professional judgement was used in eliminating it as a COPC which contains other COPCs.	oes not exceed background	scoriable & exceeds Benkarous	940	ada or Backgroup	aldeheye h								
sssonal judgement was used in eliminating it as a COPC at professional judgement was used in eliminating it as a COPC which contains other COPCs.	o ciliena avallable a exceeds packylou	available a exceeds becagiou	יים מי ווס כיוום	alla ol Dackylouli	davallable	000							
nd professional judgement was used in eliminating it as a COPC s which contains other COPCs	nemical is an essential nutrient and prof	s an essential nutrient and prof	essional judger	sment was used in	l eliminating r	t as a COPC							
	Chemical is a common lab contaminant and professional judgem	s a common lab contaminant an	d professiona	al judgement was	used in elimin	nating it as a C	၁၉၀						
	Chemical is a member of a chemical class which contains other	s a member of a chemical class	which contain										
	Chemical is a surface soil COPC	s a surface soil COPC											

Constituents of Potential Concern in Residential Point Estimate at Station SS77C - Surface Soil Memphis Depot Main Installation RI TABLE D-23

						Regulatory		
				Analytical	Background	Criteria for	Regulatory Criteria	
Unit	Matrix	Units	Parameter Name	Concentration	Concentration	Surface Soil	for Leachability	COPC/BASIS
5	SS	MG/KG	BENZO(a)ANTHRACENE	9	0 71	0.87	2	Yes
5	5 88	MG/KG	MG/KG BENZO(a)PYRENE	6 1	96'0	0.087	8	Yes
5	5 85	MG/KG	MG/KG BENZO(b)FLUORANTHENE	6.1	60	0.87	9	Yes
5	5.85	MG/KG	INDENO(1,2,3-c,d)PYRENE	4 6	0.7	0.87	14	Yes
5	5.85	MG/KG	MG/KG BENZO(k) FLUORANTHENE	4 8	0 78	8.7	67	NoB
5	5 85	MG/KG	MG/KG ACENAPHTHENE	14		470	220	No B
5	5 88	MG/KG	MG/KG ANTHRACENE	2.4	960 0	2300	12000	No B
5	5 88	MG/KG	MG/KG BENZO(g,h,ı)PERYLENE	4 9	0.82	230	32000	No B
5	SS	MG/KG	MG/KG FLUORANTHENE	12	16	310	4300	No B
5	588	MG/KG	MG/KG FLUORENE	0 91		310	260	No B
3	588	MG/KG	MG/KG METHYLENE CHLORIDE	0 0028		85	0 02	B ON
5	588	MG/KG	MG/KG PHENANTHRENE	7.1	0 61	230	250	8 oN
5	5 55	MG/KG	MG/KG PYRENE	96	15		088	B ON
5	588	MG/KG	MG/KG ARSENIC	12	20	0 43	29	S S S
5	5 88	MG/KG	MG/KG COPPER	26	34	310		No[C
ហ	588	MG/KG LEAD	LEAD	30	30	400		No{C
5	2 SS	MG/KG	MERCURY	0 081	0.4	23	2	No C
ς,		MG/KG	MG/KG NICKEL	22			130	No C
ιO.	5 SS	MG/KG	ZINC	1.1	126	2300	12000	No C
ė	Data eve	aluated in	Note. Data evaluated include field duplicates and normal samples (0-2 feet)	imples (0-2 feet)	-			
	Exceeds	Exceeds Criteria						
	Does no	Does not exceed Criteria	Criteria					
	Does no	t exceed	Does not exceed Background					
	No Crite	ria availa	No Criteria available & exceeds Background; or no Criteria or Background available	riteria or Background	available			
	Chemica	al is an e	Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC	gement was used in 6	eliminating it as a C	30PC		
	Chemica	al is a cor	Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC.	onal judgement was us	sed in eliminating i	t as a COPC.		
	Chemica	al is a me	Chemical is a member of a chemical class which contains other COPCs.	tains other COPCs.				

8

TABLE D-24
Constituents of Potential Concern in Screening Site 77 - Surface Soll Memphis Depot Main Installation RI

	COPC/BASIS	Yes A	Yes A	Yes A	Yes A	Yes A	Yes A	Yes A	Yes G	Yes A	Yes A	Yes A	No B	No B	S S	၁ လ	No B	S S	No 8	S S	ų (2 2	U C	n ()	a 42	202	No B	No B	No B	B ON	No	No B	No E	၁ ဗို	2	9 0	9 9	0 DN	2 2	0 0	0 10	U C C C C C C C C C C C C C C C C C C C	2
1		8	29	2	B	Ş	49	90	160	0 004	14	0.03	570	16			12000	1600	32000	3	3600	2		8		55	11	4300	260						2 5	2007	130	nez	naa		n	0000	0000
	for Leachability	-	6	7	7	7	1/2	2			2	3	o	o	9			0	C	6	9			,			6	0	0	6	0	0			8	0	2			5	-		
Regulatory	Surface Soll			0.87		0.87	8 7	35	8	0.04	0.87	5	470				2300	55	23		46	8,		470	340			310	310	-	2300	9		100	23	8	160	3	200	200	7	23	99
	Concentration	7	20	071	960	60	84.0	0.067	0.94	0 086	20				0 020	23810	960 0	234	0 82	-		14	5640	72	246	0 16	0 074	16		0.026	37040	30	4600	1304	0 4		30	190	1820	2 0	0 8	-	0+
Arithmetic Mean	Concentration	44	12	09	61	61	8 7	41	0.4	0 15	46	0 32	1.4	0 004	0.013	10100	24	114	Q. 4.	0 32	520	0.56	2020	60	3	\$ 60	0	12	160	0 022	18300	30	2290	552	0 081	0 0028	22	17	<u> </u>	2	4 .	192	67
Maximum	Concentration	7.4	23	26	26	56	82	4	30	0.26	11	0 32	4.1	0 004	0 024	10100	6.7	114	18	0 39	250	12	2020	37	00	0.077	0.26	49	26	900	18300	1.7	2290	552	0 14	0 003	51	98	939	ß,	14	192	S
Minimum	Defected Concentration (6	51	9800	0 11	0 13	0 11	0 12	0 12	0 032	0 093	0 32	0 086	0 004	0 0027	10100	0 14	114	0.1	0 18	250	027	2020	62	0 0	0 00	0 0022	0.21	0 061	0 0036	18300	12	2290	299	0.01	0 005	54	10	939	70	4	192	Q
Maximum	Detection	7.3	26	38	38	38	38	38	38	0 379999995	38	19	38	0 0 1 2	0 200000003	2.1	38	0.041000001	38	12	38	12	290	24	0.53	7.79999995	0 379999995	38	38	0 200000003	0.230000004	0.78	2.1	0 03999999	0 119999997	0012	4 9	89	87	8	- 13	1	U ZUCCCUCUUS
Minimum	Detaction timit	0 189999998	966666651 0	0 39	0 39	0 39	0 39	0 39	0 39	0 004	0 39	0 200000003	0.39	1100	0 002	2.1	0.39	0.041000001	0 39	0 0028	0 39	0 0095	290	0 119999997	67.0	0 105353555	0 000	0.4	0 39	0 002	0.230000004	0 140000001	2.1	0 039999999	9200 0	1100	0 035999998	0 39	97	65.0	0 170000002	1	0.200000003
	Number		101	9	5	'n	S	e	5	2	4	-	e	-	2	+	e	1	4	a	-	**		ō.		2 6	5	7	9	2	1	10	1	1	4	4	₽ '	9					-
	Analyzed	10	100	2	10	10	10	_	10	_	101	_	10	_	7	_	10	1	10	10		10		٥,	- 19	2		10	10			10	1	-	10	_	10	10	- (2	10		
	Parameter Name	ANTIMONY	ABSENIC	BENZO/a)ANTHRACENE	BENZO(a)PYRENE	BENZO(b)FLUORANTHENE	BENZO(k)FLUORANTHENE	CARBAZÓLE	CHRYSENE	DIELDRIN	INDENO(1.2.3-c,d)PYRENE	PENTACHLOROPHENOL	ACENAPHTHENE	ACETONE	ALPHA CHLORDANE	ALUMINUM	ANTHRACENE	BARIUM	BENZO(9,h,))PERYLENE	BERYLLIUM	DIS(2 ETHYLHEXYL) PHTHALATE	CADMIUM	CALCIUM	CHROMIUM, TOTAL	COBALI	COPPER	<u> </u>	MG/KG FLUORANTHENE	MG/KG FLUOHENE	MG/KG GAMMA-CHLORDANE	HON	EAD	MG/KG MAGNESIUM	MG/KG MANGANESE	MG/KG MERCURY	MG/KG METHYLENE CHLORIDE	NICKEL	MG/KG PHENANTHRENE	MG/KG POTASSIUM	PYHENE	SELENIUM	SODIUM	VANADIUM
	- Studi	MG/KG	_			_	_	_				_		MC/KG	MG/KG A	MG/KG A	MG/KG							MG/KG C	MG/KG	MG/KG		MC/KG F	MG/KG F	MG/KG C	MC/KG IRON	MG/KG LEAD	MG/KG IN	MG/KG N	MG/KG N	MC/KG	MG/KG	MC/KG	MG/KG	MC/KG	MG/KG S	MG/KG SODIUM	MG/KG VAN
	Matrix		SS	55	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	S	8 8	38	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	S	SS	SS	SS
_	Cleff		24	12	577	577	5.77	5 77	5,77	5.77	5 77	577	577	577	577	. 5 77	577	577	577	5 77	22.5	577	577	577	// 6	2	2 2 2	572	5 77	577	577	577	577	5 77	211	577	577	577	22.5	2/1	2/1	577	5 77

DE PLA

D 37

TABLE D-25
Consiltuents of Potential Concern in Screening Site 77 - Subsurface Soil
Memphis Depot Main Instaltation FI

											;				
	9	4	1	Caral Market	Number	Number	Minimum Detection	Maximum Detection	Minimum Detected	Maximum Detected	Anthmetic Mean Detected	Background	Regulatory Criteria for Subsurface Soil (Leachabillty)	COPC/BASIS	ASIS
	Ollello I	XIJIBW		1	Day kell	מופרופת		Ł		0.4		7+	20		-
0	5 77	SB	MG/KG	MG/KG ARSENIC	4	4	6.7			0	2				
S	5 77	SB	MG/KG	MG/KG COPPER	4	4	25	26	19	33	29	33		Yes	
ď	577		MG/KG	MG/KG ACETONE	4	2	2100	0 0 13		9000	0 0055		16		
5	577		MG/KG	MG/KG BENZYL BUTYL PHTHALATE	4	1	ZF 0	0 43	7,00	0 0 7 7	7700		930		
ľ	577		MG/KG	MG/KG bis(2-ETHYLHEXYL) PHTHALATE	4	-	0 42	0 43	0 082	0 082	0 082		3600	S S	
ľ	577		MG/KG	MG/KG CHROMIUM, TOTAL	4	4	52	26	28	34	30	26	38	NoB	
100	577	87	MG/KG LEAD	LEAD	4	4	0.75	0.77	15	21	17	24		υ 8	
5	577		MG/KG	MG/KG METHYL ETHYL KETONE (2-BUTANONE)	4	1	0.012	0 0 13	0 004	0 004	0 004		17		
5	577		MG/KG	MG/KG METHYLENE CHLORIDE	4	1	0.012	0 0 13	0 00	0 002	0 002		0 02		
5	577	88	MG/KG NICKEL	NICKEL	4	7	9	52	29	46					
1	577	Γ	MG/KG ZINC	ZINC	4	4	2	52	63.5	121	88 35	114	12000	S O	
Note (Jata eval	fuated incl	lude field	Note Data evaluated include field duplicates and normal samples (2 feet and below)	OW)										
	⋖	Exceeds Criteria	: Criteria												
	60	Does not	Does not exceed Criteria	Criteria											
	ပ	Does not	1 exceed 1	Does not exceed Background											
	۵	No Criter	rıa avallat	No Criteria avaltable & exceeds Background, or no Criteria or Background a	ckground ava	vailable									
	ш	Chemica	lis an es.	Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC	s used in elm	inating it as	a COPC								
	Ľ.	Chemica	Il is a com	Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC	ent was used	in eliminatir	ng it as a COPC								
	ŋ	Chemica	alis a mer	Chemical is a member of a chemical class which contains other COPCs	COPCS										
	I	Сћетиса	Il is a surf	Chemical is a surface soil COPC											1

TABLE D-26
Constituents of Potential Concern in FU6 Surface Soil
Memphis Depot Main Installation RI

35000 1500 Regulatory Criteria for Leachability 23 5 8 8 5 2 1600 39 23 Regulatory Criteria for Surface Soil 1 6 30 30 30 4600 1304 0 4 0 000 1820 Background Concentration Arithmetic Mean Detected Concentration 1933 Minimum
Detected
Concentration
0 045
0 052
0 052
0 058
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008
0 008 2 5 0 36000001 2 5 2 3 1 2 Number Detected য়ায়ায়ায়া Number Analyzed MGKG G BENZOJANTHAKENE
MGKG G BENZOJANTHAKENE
MGKG G BENZOJANTHENE
MGKG G BENZOJANTHENE
MGKG G BENZOJANTHENE
MGKG G BENZOJANTHENE
MGKG G GENZOJANTHENE
MGKG G DELDRIN
MGKG G DELDRIN
MGKG G DELDRIN
MGKG G DELDRIN
MGKG G DELDRIN
MGKG G DELDRIN
MGKG G CELTAN-LORDANE
MGKG ACETONE
MGKG ACETONE
MGKG ACETONE
MGKG ACETONE
MGKG ACETONE
MGKG ACETONE
MGKG ANTHIROENE
MGKG ANTHIROENE
MGKG G BENZOJA NJERYLENE
MGKG G BENZOJA NJERYLENE
MGKG G BENZOJA NJERYLENE
MGKG G BENZOJA NJERYLENE
MGKG G ANTHIROENE
MGKG G GARDON TOTAL
MGKG G BENZOJA NJERYLENE
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G CARDON TOTAL
MGKG G GARDON TOTAL
MGKG G GAR 5

ł

23

				Number	Number	Minimum Detection	Maximum Detection	Minimum Detected	Maximum Detected	Arithmetic Mean Detected	Background	Background Regulatory Criteria for	Regulatory Criteria for	10400	
Ē	Unit Matrix Units	Salts Calts	Parameter Name	Analyzed	Detected			Concentration	Concentration	Concentration	Concentration	1	Leaching	ŀ	2
Te de	elss	MCKG	MC/KG IVANADIUM	80	86	0 032	0 23999999	20	32	25	48	55	9009	ပ ရ	7
37	655	MG/KG ZINC	ZINC	13	13	0.074	ភ	40	541	129	126	2300	12000	NoB	T
Note D	sta evalua	lated inclu	Note Data evaluated include field duplicates and normal samples (0-2 feet)												
_	Jata scre	ened inch	Data screened includes pre-remediation data												
1		Exceeds Criteria	Criteria												
3	_	Does not	Does not exceed Criteria												
J	,.	Does not	Does not exceed Background												
_	_	No Criter	No Criteria available & exceeds Background, or no Criteria or Background available	ailabfe											
	,,,	Chemical	Chemical is an essential nutrient and professional judgement was used in eliminating	ninating it as	gitasa COPC										
_		Chemical	Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC	d in eliminatis	g it as a COF	Ų									
~	,,,	Chemical	Chemical is a member of a chemical class which contains other COPCs												٦

TABLE D-26 Constituents of Potential Concern in FU6 Surface Soil Memphis Depot Man installation R1

. . .

TABLE D-27 Constituents of Potential Concern in FU6 - Subsurface Soil Memphis Depot Main Installation RI

					Minimum	Maximum	Minimum	Maximum	Arithmetic Mean		Requistory Criteria for	
Matrix	Units	Parameter Name	Number	Number Detected	Detection	Detection Limit	Detected Concentration	Detected Concentration	Detected Concentration	Background Concentration	Subsurface Soil (Leachability)	COPC/BASIS
SB	MG/KG	ARSENIC	4	14	0 17	26	12	11	9 2	17	53	
SB	MG/KG	BENZENE	28	9	001	0.62	0 082	2	0.74		600	Yes A
SB	i i	COPPER	14	14	0 12		5.3	34	17	33		YesD
SB	MG/KG	MG/KG METHYLENE CHLORIDE	28	7	001		000	690 0	0012		0 0	Yes A
SB	MG/KG	Total Xylenes	28	6	0.01	0 62	0 001	0.57	0 22	0 005	0.5	YesA
eSB	MG/KG	ACETONE	28	9	001	0 62	0000	0 35	690 0		16	No B
SB	MG/KG	ALUMINUM	7	7	0 95999998	2 29999995	9860	14200	11250	21829		S
95	MG/KG	ANTIMONY	14	5	0 20999999	7.7	0 42	620	95 0		9	No B
6.58	MG/KG	BARIUM	7	7	0 042	0.061	78	154	101	300	1600	S N
38	MG/KG	BERYLUUM	41	6	0000	1	0.26		0.54	12	63	NoC
SB	MG/KG	MG/KG bis(2-ETHYLHEXYL) PHTHALATE	19	9	0 34999999	1 20000005	0.046	53	660		3600	NoF
, g	MG/KG	BROMOMETHANE	28	2	001	0 62	0 00	0	0 0025		0.2	B ON
ese	MG/KG	CADMIUM	14	9	0.01	1 29999995	016	0.29		14	8	NoC
_ پور	MG/KG	CALCIUM	4	7	0 68000001	3	1340			2432		No E
89	MG/KG	CARBON TETRACHLORIDE	28	2	001	0 62	0.011	0.019	0 0 15		007	No B
98	MG/KG	СНГОВОЕОВМ	28	8	001	0 62	0 002	0 043	0 022		0.0	No B
658	MG/KG	CHROMIUM, TOTAL	14	14	0 13	26	11	28	41	26	38	No B
6 SB	MG/KG	COBALT	4	7	0 061	031	2	88	9	20		No
688	MG/KG	DI-n-BUTYL PHTHALATE	61	ŀ	0 34999999	1 20000005	7.00	4400	2200		2300	NolB
658	MG/KG	ETHYLBENZENE	28	4	001	0 62	0 0 2	1 036	0 18		13	No B
8	MG/KG	FLUORANTHENE	24	1	000	3 t	0 061	0 0 0 0	0 0 0	0 045	4300	No B
ese	MG/KG	IRON	1	7	0 23999999	0.46000001	9190	17500	13970	38480		No E
В	MG/KG	LEAD	14	14	016		4	19		24		O N
В	MG/KG	MAGNESIUM	7	7	0.75	2 29999995	1750	2400	2044	4900		No E
e SB	MG/KG	MANGANESE	7	7	0 041	0 067	49	681	431	1540		N _o
8	MG/KG	MERCURY	14	1	0 0074	0 13	0.04		0 04	0.5		No No
В	MG/KG	METHYL ETHYL KETONE (2-BUTANONE)	28	3	001	0 62	0016	a 038	0 138		17	No B
9	MG/KG	NICKEL	14	13	0 0 0 0	52	5		21	37	130	NoB
889	MG/KG	PHENANTHRENE	54	1	900	3.1	0 052	0 052	750 0		250	No B
8	MG/KG	POTASSIUM	4	7	88	105	663	2740	8281	1800		No
6.58	MG/KG	PYRENE	54	1	90 0	31	990 0	990 0	990 0	0 042	880	NojB
6.58	MG/KG	SELENIUM	4.	ĸ	0 17	1 2999995		17	E 1	90	9	NoB
688	MG/KG	MNIDOS	4	-	1 10000002	15	274	274	274			NoE
688	MG/KG	TOLUENE	28	1	0 0 1	0 62	0.68		89 0		12	No B
6SB	MG/KG	TRICHLOROETHYLENE (TCE)	28	1	001	0 62	0 002	0 005	200 0		90 0	S S
38	MG/KG_	VANADIUM	Ä	7	0 037	0 20999999	17	32	25	51	0009	S No No
-		Ciair	**	7	0,0	2		443	Ž	717	0000	2

Data screened includes pre-remediation data

Exceeds Criteria

Does not exceed Criteria

< 8 C C C C F C I

Does not exceed Background

No Criteria available & exceeds Background, or no Criteria or Background available
Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC
Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC
Chemical is a member of a chemical class which contains other COPCs
Chemical is a surface soil COPC

			Number	Number	Minimum Detection	Maximum Detection	Minimum Detected	Maximum Detected	Arithmetic Mean Detected	Background	Regulatory Criteria for	Regulatory Criteria for		
Unit Matrix	Units	Parameter Name	Analyzed	Detected	Cimit	T, III	Concentration	Concentration	Concentration	Concentration	Sediments	Leachability	COPC/BASIS	ASIS
elSE	MG/KG	4-METHYLPHENOL (p-CRESOL)	2	-	6	35	5 1	51	5.1		39	0.02	Yes	۷,
6SE	MG/KG	ANTIMONY	2	ત	0 35	0 35	154	1210		7 6	31	25	Yes	Α,
e SE	MG/KG E	BARIUM	2	2	0 037999999	0 037999999	3630	3650	3640	118	920	1600	Yes	۷
6 SE		BENZO(a) ANTHRACENE	7	21	8	35	3	6.5	48		0.87	2	Yes	4
6SE	MG/KG E	BENZO(a)PYRENE	N	2	6	35	3	5.4	42		0 087	60	Yes	¥
98		BENZO(b)FLUORANTHENE	24	2	6	3.5	47	8.7	29		087	5	Yes	٧
9 SE	_	CADMILIM	N	2	0 037999999	0 037999999	27	33		23	7.8	8	Yes	٧
6 SE	т-	CHROMIUM TOTAL	2	2		4 5	158	257	208		10800	38	Yes	4
6.SE	_	COPPER	i c	2	0 129999995	0 129999995	2500	14200			310		Yes	٧
S S	4	DIBENZ(a h)ANTHRACENE	T C	-	1	3.5	98 0	98 0			0 087	8	Yes	٧
38	+-	INDENO(123-C d)PYRENE		-	6	6	22	2.2	22	17	0.87	14	Yes	<
2,5	. 1	FAD		-	85.0	0.18	3110	3570			004		Yes	∢
	7	NICKEI	16		0 11999997	0 11999997	83	139		31	160	130	Yes	A
9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 1	7	PETROLI FLIM HYDROCABBONS	100	2		185	1410	1460			34		Yes	Ą
100		ZEI ENSIM	100		039	0 39	8			17	39		Yes	4
38	7	SII VER	100	-	0.08500001	0.085000001	49			1.8	39	34	Yes	4
10.9		THAILIM	N	-		0 189999998	21		21	11	0 55		Yes	٧
38	1	ZINC	N	2	0 379999995	0 379999955	4980	35	35	797	2300		Yes	٧
8 SE	т.	CHRYSENE	C.	2		35	5	86		32	87		Yes	g
38.9	т —	BENZO(a.h.:)PERYLENE	N	2	ਲ	3.5	0 39	23	13		230	32000	No	8
S SE		BENZO(K)FLUORANTHENE	2	-	ल	3.5	33	9.9	3.3	23	8.7	49	No	æ
SE SE	•	COBALT	2	N	0 032000002	0 032000002	69	91			470		No	83
100		FLUORANTHENE	2	CV.	e	3.5	31	6	6.1	7.1	310	4300	No	13
E SE	\mathbf{r}	PHENOL	2	F	6	3.5	92 0	92 0	920	0.2	4700	100	o N	8
98	MG/KG	PYRENE	N	2	3	35	56	16	11	2.9	230	980	ž	8
986	_	ACENAPHTHENE	N	 -	8	35	950		95 0	9	470	570	o _N	ပ
e SE	_	ALUMINUM	N	2	83	83	3270	8210		10085	7800		Š	O
else	1	ANTHRACENE	N	Ī	3	35	1.2	1.2	12	1.6	2300	120	ž	ပ
SISE	Т	ARSENIC	ત્ય	-	++	-	53	65		12	0.43	29	2	O
18.8	_	BERYLLIUM	N	-	0 011	0 0 11	0 33	0 33		13	16	63	oN N	၁
988		CARBAZOLE	2	F	8	35	0.83	0.83	0 83	11	32	90	Š	ပ
S	_	FLUORENE	O	-	8	35	90	90		280	310	260	νo	C
8. 15. 17.	Т	MANGANESE	CI	8	0 0 13	0.013	505	739	622		1100		No	ပ
SE 9	Т	MERCURY	ম	-	0 0075	0 0075	190	290	290	7	23	2	Š	ပ
88	•	PHENANTHRENE	ম	2	6	35	19	29		69	230	250	Ş	v
38	т	VANADIUM	r.	2	0 057999998	0 057999998	12	15			55	0009	νo	ပ
U. (C)	7	CALCIUM	N	N	82	82	30800	79100	54950	14860			Š	ш
37.5	1	NOR	N	2	32	32	95900	,-	114450	23080	2300		No	ш
98.9	Т	MAGNESIUM	2	N	7 5	7.5	11600						No	ш
13.E		POTASSIUM	N	N	75	75	1050	1400		0951			oN N	ш
e SE		SODIUM	2		160	160	904	1750		240			ŝ	Ш
6 SE	MG/KG D	bis(2-ETHYLHEXYL) PHTHALATE	2	2	3	35	7.5	13	10 25		46	3600	°	u.
Note														
∢	Exceeds Criteria	Criteria												
æ	Does not	Does not exceed Criteria												
	Does not	Does not exceed Background												
		No Caterra exellection a successful Doctoround or an Original or Borbaround available	o Chada	Postprovond v	oldobove									
ا د	No Citteria	la available e exceeus packyroum, o		or background										
ш	Chemical	Chemical is an essential nutrient and professional judgement was used in all	nal judgemer	T was used in	eliminating it as a COPC	Sacorc								
ш	Chemical	Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC	ofessional jud	gement was u	ised in eliminat	ing it as a COPC	•							
g	Chemical	Chemical is a member of a chemical class which contains other COPCs	ch contains o	ther COPCs										7

TABLE D-28
Constituents of Potential Concern in FU6 - Sediment
Memphis Depot Main Installation RI

TABLE D-29
Constituents of Potential Concern in Residential Point Estimate at Station SS66A · Surface Soil
Memphis Depot Main Installation RI

P \147543\APPD_FU6 xts\CopcSS66A

Unit Markatic Units Pagamater Name Analytical Concentration Concentration Criteries Soil Frequency Criteries Criteries Soil C
Concentration Concentration Surface Soil for Leachability 6.3 0.96 0.087 8 6.3 0.96 0.087 8 6.4 0.96 0.087 8 6.2 0.07 0.87 14 6.2 0.07 0.87 16 6.2 0.07 0.87 16 6.2 0.07 0.87 16 6.2 0.07 0.87 16 7.4 0.78 8.7 16 7.4 0.78 8.7 49 0.02 0.06 2.30 2.0 0.02 0.06 2.3 4.00 67 0.06 6.3 2.0 67 0.06 6.3 2.0 67 0.06 6.3 2.0 67 0.06 6.3 2.0 60 0.06 6.3 4.00 12 0.06 6.3 0.06 541
5.4 0 71 0 87 2 6.3 0.96 0.087 8 6.1 0.96 0.087 8 6.2 0.067 32 0.6 6.2 0.07 0.87 14 6.2 0.07 0.87 16 6.2 0.07 0.87 16 7.4 0.08 2.30 32000 7.4 0.08 8.7 49 0.12 0.06 2.7 4 0.12 0.06 2.7 49 1.4 1.6 3.0 400 1.4 1.6 3.0 400 1.2 0.16 0.02 470 1.2 0.06 0.02 470 1.2 0.06 0.02 400 1.2 0.06 0.02 400 1.2 0.06 0.02 400 1.2 0.06 0.02 400 1.2 0.06
6 3 0 96 0 087 8 1 1 0 9 0 87 5 1 1 0 067 32 0 6 6 2 0 7 0 87 14 6 8 0 0 82 230 32000 6 8 0 0 82 230 32000 6 8 0 0 82 230 32000 6 9 0 0 82 230 310 4300 7 4 0 78 8 7 49 7 7 80 0 16 1 9 11 1 0 12 22 0 006 1 1 4300 1 1 1 1 6 230 4200 1 7 1 2 0 06 0 074 1 2 0 06 250 1 2 0 06 0 074 1 2 0 06 250 1 200 1 2 0 06 0 074 1 2 0 06 250 1 600 2 1 0 06 0 074 1 2 0 06 250 1 600 2 2 0 2 0 06 0 0 3 2 30 1 600 <t< td=""></t<>
15
15 0.067 32 0.6 6 2
6 2 0 7 0 87 14 9 2 0 94 87 160 6 8 0 82 230 160 7 4 0 78 8 7 40 0 12 0 0067 2 7 16 0 022 0 16 2 7 16 0 022 0 16 2 7 16 0 024 1 9 54 1 1 310 4300 0 07 4700 17 1 1 310 4300 1 2 0 00 4700 1 1 310 4300 1 2 0 00 4700 1 2 230 880 1 2 230 880 1 2 230 880 1 3 230 12 2 4 1 5 230 2 4 1 1 1 100 2 4 2 30 2 30 2 4 2 30 3 30 2 4 2 31 3 30
92 0 94 87 160 6 8 0 82 230 32000 7 4 0 78 8 7 49 7 4 0 78 8 7 49 7 4 0 78 8 7 49 7 5 0 12 0 006 2 7 1 6 7 0 12 0 074 1 9 11 7 0 05 0 074 1 9 11 7 0 05 4700 17 7 0 06 630 4300 2 6 6 0 06 630 4300 2 6 7 0 074 1 6 30 2 6 8 0 06 630 4700 17 1 1 1 5 230 2 6 1 2 0 1 5 230 2 6 1 2 0 1 5 230 2 6 2 2 0 1 7 3 1 6 5 1 1 1 1 1 1 1 6 5 1 1 1 1 1 1 1 10 1 10 1 1 1 <td< td=""></td<>
6 8 0 62 230 32000 7 4 0 78 8 7 49 7 4 0 78 8 7 49 7 4 0 78 8 7 49 0 12 0 0067 2 7 16 0 0 22 0 16 19 11 1 1 1 6 19 11 1 1 1 6 19 11 1 1 1 6 10 11 1 1 1 6 10 11 1 1 1 6 230 26 1 2 0 066 630 26 6 0 061 230 250 250 1 2 1 5 230 250 1 2 2 30 1 200 250 2 3 2 3 2 30 250 2 4 1 1 1 1 2 30 2 5 2 3 2 3 2 3 2 5 2 4 2 30 2 3 2 5 1 30 2 4
TANONE 0 78 8 7 49 TANONE 0 02 0 06 2 7 16 TANONE 0 02 0 06 19 54 TANONE 0 0 06 0 074 19 54 TANONE 0 0 06 0 074 19 54 TANONE 0 0 06 0 074 19 4300 TANONE 0 0 06 0 074 19 4300 TANONE 0 0 06 0 074 10 17 TANONE 0 0 06 0 074 17 4300 TANONE 0 0 06 0 074 17 4300 TANONE 0 0 06 0 074 17 17 TANONE 0 0 06 0 074 17 17 TANONE 0 0 06 0 07 17 17
39 34 310 0 0 12 0 0067 2 7 16 0 0 22 0 16 1 9 1 1
TANONE 0 12 0 0067 2 7 16 TANONE 0 022 0 16 1 9 11 TANONE 0 016 0 002 4700 17 TANONE 0 006 0 002 4700 1700 TANONE 0 006 0 001 1200 1200 TANONE 0 006 0 001 1200 1200 TANONE 0 007 0 001 1200 1200 TANONE 0 007 0 007<
TANONE 0 022 0 16 19 54 TANONE 0 077 19 11 TANONE 0 006 0 002 4700 17 TANONE 0 006 0 007 230 250 541 126 230 250 250 541 126 230 12000 26 541 126 230 12000 26 56 23 23 25 26 63 23 25 1600 26 7 11 16 470 38 8 23 23 23 23 8 242 1304 100 130 16 27
TOTAL 0.074 19 11 14 16 310 4300 14 16 310 4300 14 16 310 4300 17 30 4700 17 TANONE) 0 006 0 001 630 26 6 0 01 12 250 250 12 12 250 250 250 12 23 230 12000 25 12 23 23 880 25 12 230 12000 25 20 12 23 23 23 23 13 23 23 23 23 14 15 31 470 23 15 130 140 130 23 16 30 160 130 23 16 30 160 130 24 16 240 25
TANONE 14 16 310 4300 TANONE 67 30 400 17 TANONE 0 016 0 002 630 2 6 TANONE 0 006 630 2 6 2 5 CANONE 0 006 630 2 6 2 5 CANONE 0 006 630 2 6 2 5 CANONE 0 006 630 2 5 2 6 CANONE 0 006 630 2 5 2 6 2 6 CANONE 0 006 0 0 61 2 30 2 5 2 6 2
FANONE 30 400 TANONE 0 016 0 02 4700 17 TANONE 0 016 0 02 4700 17 TANONE 0 006 0 06 230 26 6 0 61 230 250 250 7 24 12 0 06 06 541 126 230 1200 06 5120 23 230 1200 06 3 6 23 23 25 1600 99 234 550 1600 17 18 470 38 17 18 470 38 16 230 160 33 16 30 160 130 16 30 160 130 242 1304 160 130 16 30 160 130 280 460 56 600 280 460
TANONE 0 016 0 002 4700 17 TANONE 0 006 630 2 6 2 6 6 0 006 1 5 230 2 50 2 50 6 0 004 1 5 2 30 880 880 880 880 880 880 880 880 880 880 880 1200 880 1200 880 1200 880 1200 89 2 34 5 6 2 9
TANONE) 0 006 630 2 6 6 0 61 230 250 6 0 01 12 250 6 12 230 880 6 541 126 230 1200 7 29 7 31 5 8 29 234 550 160 99 234 550 160 63 23 23 23 160 63 23 23 25 10800 38 24 17 18 470 63 242 1304 110 130 16 37040 2300 130 16 33800 56 6000 3630 4600 6000 401 1820 160
6 0 61 230 250 0 004 12 230 880 0 004 12 0 06 541 126 2300 12000 5420 23810 7800 12000 2 9 7 31 5 3 6 20 0 43 29 2 9 7 31 5 9 9 23 0 43 29 2 2 23 16 63 2 2 23 16 63 2 2 23 16 63 2 2 23 10800 38 2 4700 37040 2300 160 130 1 6 30 160 130 130 2 42 1304 55 6000 130 3 3800 5840 55 6000 130 401 1820 160 130 140
12 15 230 880 0 004 12 0.06 641 126 2300 12000 2 9 7 31 500 2 9 7 31 50 3 6 23 50 1600 9 9 234 550 1600 0 23 1 16 63 2 4700 37040 2300 38 1 6 37040 2300 130 1 6 30 160 130 1 6 37040 2300 130 1 6 36 160 130 2 42 1304 1100 130 1 6 36 160 130 2 7 48 55 600 3 8630 4600 600 401 1820 1820
0 004 12 0 06 541 126 2300 12000 5120 236 7800 12000 5120 236 7800 12000 36 20 0 43 29 99 234 550 1600 99 234 550 1600 17 18 470 38 2470 37040 2300 130 16 370 160 130 16 30 160 130 16 30 160 130 33800 5600 6000 3630 4600 6000 401 1820 1820
541 126 2300 12000 5120 23810 7800 5 2 9 2 9 2 0 4.3 2.9 3 6 2 0 0.43 2.9 2.9 9 9 2 34 550 1600 2 3 1 1 16 6.3 2 3 2 3 2.5 10800 38 2 470 37040 2300 38 230 2 42 1304 1100 130 2 7 48 55 6000 2 7 480 56 6000 33800 5840 56 6000 401 1820 1820 180
5120 238i0 7800 29 7 31 5 36 20 043 29 99 234 550 1600 23 11 16 63 23 25 10800 38 24700 37040 2300 38 242 1304 1100 130 16 30 160 130 27 48 55 6000 3630 4600 4600 401 1820 401 152 1820 152 152
29 7 31 5 36 20 043 29 39 234 550 1600 23 11 16 63 23 23 16 63 23 25 10800 38 24700 37040 2300 38 242 1304 1100 130 16 30 160 130 27 48 55 6000 3630 4600 401 1820 401 162 1820 162
3 6 20 0 43 29 99 224 550 1600 0 23 1 1 16 63 23 25 10800 38 24 2 1 10 470 38 242 1 304 1100 130 16 30 160 130 27 48 55 6000 3630 4600 600 600 401 1820 1620 1620
99 234 550 1600 0 23 1 1 16 63 1 23 25 10800 38 2 4700 37040 2300 38 1 6 37040 2300 130 1 6 30 160 130 1 6 30 160 130 2 3800 5840 600 600 3630 4600 401 1820 1820
0 23 11 16 63 23 25 10800 38 17 18 470 38 2470 37040 2300 100 16 370 1100 130 16 30 160 130 27 48 55 6000 3630 4600 640 401 1820 1820
23 25 10800 38 17 18 470 38 24700 37040 2300 130 16 30 160 130 27 48 55 6000 33800 5630 4600 4600 401 1820 152 152
17 18 470 24700 37040 2300 242 1304 160 130 27 48 55 6000 33800 5840 6000 6400 401 1820 600 600
24700 37040 2300 242 1304 1100 16 30 160 130 27 48 55 6000 33800 5840 6000 600 401 1820 6000 6000
242 1304 1100 16 30 160 130 27 48 55 6000 33800 5840 600 4600 401 1820 152 152
16 30 160 130 27 48 55 6000 33800 5840 6000 3630 4601 1820 401 1820 152
27 48 55 6000 33800 5840 680 3630 4600 401 1820 152
33800 5840 3630 4600 401 1820
3630 4600 401 1820 152
401 1820 152 1820
152

Exceeds Criteria

N K B O O B F O

Does not exceed Criteria Does not exceed Background

No Criteria available & exceeds Background, or no Criteria or Background available

Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC

Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC

Chemical is a member of a chemical class which contains other COPCs

٠ . ۽

÷ (* -

Inc. Inc.							Minimum	Maximum	Minimum	Maximum	Arithmetic Mean		Regulatory		
85 Mickob REPROJECTOR/PRINTENE 6 1 0.99 1.2 6.4 6.4 0.0 0.0 0.9	Unit SitelD			Parameter Name	Number Analyzed	Number	Detection	Detection	Concentration	Detected Concentration	Detected Concentration	Background Concentration	Criteria for Surface Soll	Regulatory Criteria for Leachability	COPC/BASIS
\$5. MÜNGKI ÖLFÜLÖNDIPPRENE 6 1 0.38 1/2 6.3 6.9 0.007 9 \$5. MÜNGKI ÖLFÜLÖNDIPPRENE 6 1 0.38 1/2 6.2 0.9 0.097 9 \$5. MÜNGKI ÖLFÜLÖNDIPPRENE 6 1 0.38 1/2 6.2 0.9 0.07 9 \$5. MÜNGKI ÖLFÜLÜLÜNDIPPRENE 6 1 0.38 1/2 6.2 0.9 0.07 0.9 0.09 0.09 \$5. MÜNGKI ÖLFÜLÜNDIR 6 1 0.38 1/2 2.9 2.9 0.0	999		-	BENZO/a	9		0 39	12	5.4	5.4	5.4				YesA
555 MICKING ELORAZONE CONFERNE 6 1 0.93 1/2 6 0.93 0.75 6 0.93 0.75	999	SS	MG/KG	BENZO(a)PYRENE	9	-	0 39	12	63				Š	80	Yes
\$55 MACKG CHARAZUE 6 1 0.99 172 6.1 6.9 1 0.99 172 6.2 6.9 0.9 1.0 6.9 1.0 9.2 6.2 0.94 0.0 1.0 <th< td=""><td>999</td><td>SS</td><td>MG/KG</td><td>BENZO(b)FLUORANTHENE</td><td>9</td><td></td><td>0 39</td><td>12</td><td>8.1</td><td></td><td></td><td></td><td></td><td>9</td><td>Yes</td></th<>	999	SS	MG/KG	BENZO(b)FLUORANTHENE	9		0 39	12	8.1					9	Yes
\$55 MACKE MICHACIAL S. C.GITYREINE 6 1 0.99 172 9.22 9.22 9.24 9.24 0.94 0.97 160 \$55 MACKE ALLIANIULUM 1 2.02 2.02 9.22 9.22 9.22 9.24 9.04 9.07 160 \$55 MACKE ALLIANIULUM 1 2.02 2.02 9.22 9.22 9.22 9.24 9.04 9.07 160 \$55 MACKE ALLIANIULUM 1 0.020000000 9.02 9.02 9.02 9.02 9.04 9.0	999	SS	MG/KG	CARBAZOLE	9		0 39	12	15	1.5	1.5				Yes A
SS MACKIG QLIMPYSIUME 6 1 0.99 12 5 100 5	999	SS	MGKG	INDENO(1,2,3-c,d)PYRENE	9	Ī	0 39	12	62						Yes A
SS MARCIA DALIMINUM 1 2 6 5120 <t< td=""><td>999</td><td>SS</td><td>MG/KG</td><td>CHRYSENE</td><td>9</td><td>Ť</td><td>0 39</td><td>12</td><td>92</td><td></td><td></td><td></td><td></td><td></td><td>Yes</td></t<>	999	SS	MG/KG	CHRYSENE	9	Ť	0 39	12	92						Yes
SS MOCKEQ ARENIMONY 1 1 2.200000004 3.5 3.6	999	SS	MG/KG	ALUMINUM	1	Ī	26	26	5120						No C
SS MACKE ARRENGE 1 0 0 200000000 36 36 20 0 43 6 00 SS MACKE ARRENGE 1 1 0 0 200000000 3 0 0 0 2 2 0 2 0 1 0 0 0 0 SS MACKE BARRING 1 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	999	SS	MG/KG	ANTIMONY	1		2 1	2.1	2.9			4	3.1	\$	No C
SS MAGKAG DEPARTHENE 6 1 0.00000000000000000000000000000000000	98	SS	MG/KG	ARSENIC	1	Ē	0 230000004	0 230000004	36						No[C
SS MAGKAG (BENZOLLUPANTHENE 6 1 0.09 1.2 7.4 7.4 7.4 0.78 2.00 32000 SS MAGKAG (BENZOLLUPANTHENE 6 1 0.09 1.2 7.4 7.4 7.4 0.78 2.00 32000 SS MAGKAG (BENZOLLUPANTHENE 6 1 0.016 0.016 0.0106 0.01000 0.020 0.	98 9	SS	MG/KG	BARIUM	1		0 05000001	0 050000001	8					1600	No C
SS MGKAG BERZOQNELUORANTHENE 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	989	SS	MG/KG	BENZO(q.h.)PERYLENE	9	-	0 39	12	89					32000	No B
SS MiGMG GREPHLLIUM 1 1 0 6100000000 0 0 000000 0 0 00000 0 0 00000 0 0 000000 0 0 00000 0 0 00000 0 0 00000 0 0 00000 0 0 00000 0 0 00000 0 0 00000 0 0 00000 0 0 00000 0 0 00000 0 0 00000 0 0 00000 0 0 0 0000 0 0 0 0000 0 0 0 0000 0 0 0 0000 0 0 0 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	999	SS	MG/KG	BENZO(k)FLUORANTHENE	9		0 39	12	7.4					67	No B
SS MGANG CALICUMA 1 1 0 6100000002 3.8900 3.8900 5.840 100 0 SS MGANG CALICUMA 1 1 0 1000000000 2.8900 0.0045 0.004 0.00 SS MGANG CHICHORNIUL TOTAL 1 1 0 100000000 2.9 0.00 2.9 2.9 2.9 2.9 1.00 0.00 3.0	999	SS	MG/KG	BERYLLIUM	٦	Ē	0 018999999	0.018999999	0 23			11	16	69	No C
SS MGNG CHLOROCPGNA S 0.012 0.014 0.024 0.026 0.026 0.012 0.014 0.024 0.026 0.024 0.026 0.026 0.012 0.012 0.02	999	SS	MG/KG	CALCIUM	-		0 810000002	0 810000002	33800						NoE
SS MGNG CHROMIUM TOTAL 1 1 0.310000002 210000002 23 22 22 10800 38 SS MGNG CORBALT 1 0.15 0.12 0.12 0.12 0.05 0.05 1 0.15 0.05	999	SS	MG/KG	CHLOROFORM	5	N	0.012	0 0 14	0 00					90	No B
SS MGMC COBALT 1 1 0.06 0.36 17 17 17 10.0000002 3.9 3.9 3.9 3.9 3.9 3.9 3.0 3.	999	SS	MG/KG		-		0 310000002	0 310000002	23	23					No
SS MGKG COPPER 1 0 170000002 0 172000002 39 39 310 1 SS MGKG DOP 1 0 15 0 15 0 12 0 0267 2 2 1 SS MGKG DOP 1 0 15 0 15 0 22 0 16 1 9 54 0 16 1 9 1 9 54 1 9 54 1 9 54 1 9 54 1 9 54 1 9 54 1 9 54 1 9 54 54 56 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 17 0 16	999	SS	MG/KG		1	Ī	0 36	0 36	17	17,					NoC
SS MGKGG DODE 1 0 15 0 15 0 12 0 12 0 020 1 9 1	999	SS	MG/KG	COPPER	1	<u> </u>	0 170000002	0 170000002	39						No B
SS MGKG DDE 1 0 18<	999	SS	MG/KG	000	1	Ē	0 15		0 12				7.2	16	No B
SS MGMC DOT PT NAME O 14 O 14 <th< td=""><td>98 9</td><td>SS</td><td>MG/KG</td><td>DOE</td><td>-</td><td></td><td>0 15</td><td></td><td>0 22</td><td></td><td></td><td></td><td></td><td></td><td>No B</td></th<>	98 9	SS	MG/KG	DOE	-		0 15		0 22						No B
SS MGKG DIBUTYL PHTHALATE 6 1 0.39 12 0.044 0.044 7 7 1 2.800 SS MGKG ILORANTHENE 6 2 0.59 1.2 0.078 1.4 7 1.6 2.30 2.30 SS MGKG ILORANTHENE 1 1 0.28 0.28 6.7 6.7 6.7 3.0 2.30 7 <t< td=""><td>9899</td><td>SS</td><td>MC/KG</td><td>D0T</td><td>1</td><td></td><td>0 15</td><td></td><td>0.57</td><td>250</td><td></td><td>0.074</td><td></td><td></td><td>No B</td></t<>	9899	SS	MC/KG	D0T	1		0 15		0.57	250		0.074			No B
SS MGKG FLORDANTHENE 6 2 0 39 12 0 7 1 1 0 23 0 24700 24700 24700 2	999	SS	MG/KG	DI-n-BUTYL PHTHALATE	9	F	0 39	12	0 044	0 044			780	2300	NolB
SS MGMCG IRON 1 0 29 0 24700 24700 27040 2300 400 SS MGMCG LEAD 1 1 0 28 0 24 57 4600 400 400 SS MGMCG MARCANESULM 1 1 0 0 242 242 242 100 4600 17 SS MGMCG MARCANESULM 1 1 0 0 242 242 242 100 100 17 SS MGMCG METHYL ETHYL ETHYL ETHYL 100 0<	999	SS	MG/KG	FLUORANTHENE	9	2	0 39	12	0 0 0 8	14	7	16	310	4300	No B
SS MGKG LEAD 1 1 0 28 0 28 67 67 30 400 SS MGKG LEAD 1 1 1 0 048999999 242 242 242 1304 100 SS MGKG MANDANESE 1 1 0 0412 0 014 0 016 0 016 0 016 100 4700 17 SS MGKG MANDANESE 1 0 012 0 014 0 016 0 006	999	SS	MG/KG	IHON	l .	Ī	0 29	0 29	24700						No E
SS MGKG MARCHESIUM 1 1 0.048999999 2 6 38:30 38:30 4600 100 SS MGKG MARICANESIUM 1 1 0.048999999 0.048 242 242 1704 170 SS MGKG METHYL KETONE (2 5 1 0.012 0.014 0.016 0.026 <	999	SS	MG/KG	LEAD	1	Ţ	0 28	0.28	67	29		30			S ON
SS MGKIG MANIGANESE 1 0 6048999999 0 468999999 242 242 1304 1100 17 SS MGKIG MEHYL EHYL EHYL EHYL EHYL 6 2016 0 0016 0 006 0 006 0 006 26 <t< td=""><td>999</td><td>SS</td><td>MG/KG</td><td>MAGNESIUM</td><td>1</td><td>1</td><td>2.6</td><td>26</td><td>3630</td><td></td><td></td><td></td><td></td><td></td><td>No</td></t<>	999	SS	MG/KG	MAGNESIUM	1	1	2.6	26	3630						No
SS MGKIG METHYL ETHYL KETONE (2 5 1 0 012 0 014 0 016 0 006	999	88	MG/KG	MANGANESE	1	1	0.048999999	0.048999999	242						No
SS MGKG METHYL ISOBULTAL KETONE (4 5) 5 1 0.012 0.014 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.002 0.00	999	SS	MG/KG	METHYL ETHYL KETONE (2	5	1	0 0 1 2		0 0 0 1 6					17	No B
SS MGKG METHYLENE CHLORIDE 5 1 0.012 0.014 0.004 0.004 0.004 0.00 SS MGKG INCKEL 1 1 0.79 0.79 0.79 16 16 30 160 130 SS MGKG INCKEL 1 0.03 12 0.078 6 2 250 250 SS MGKG POTASSIUM 1 1 1.06 106 401 401 401 1820 20 250 SS MGKG POTASSIUM 6 2 0.39 1/2 0.044 1/2 6.022 1.5 230 860 SS MGKG SODIUM 1 1.3 1.3 1.52 1.52 1.5 2.0 1.0 SS MGKG INTRACHICNOCTHYLENEIPCE 1 1 1 0.044 0.04 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 <td< td=""><td>999</td><td>SS</td><td>MG/KG</td><td>METHYL ISOBUTYL KETONE (4</td><td>9</td><td>1</td><td>0 0 1 2</td><td>0.014</td><td>9000</td><td></td><td></td><td></td><td>930</td><td>26</td><td>No B</td></td<>	999	SS	MG/KG	METHYL ISOBUTYL KETONE (4	9	1	0 0 1 2	0.014	9000				930	26	No B
SS MGKG INCKEL 1 1 0.79 0.79 16 16 150 130 SS MGKG PHENANTHRENE 6 2 0.39 12 0.078 6 2 0.50 250 <t< td=""><td>999</td><td>88</td><td>MG/KG</td><td>METHYLENE CHLORIDE</td><td>5</td><td>Ţ</td><td>0 0 1 2</td><td>0 014</td><td>0 004</td><td></td><td></td><td></td><td></td><td>0 05</td><td>No B</td></t<>	999	88	MG/KG	METHYLENE CHLORIDE	5	Ţ	0 0 1 2	0 014	0 004					0 05	No B
SS MGKG PHENANTHRENE 6 2 0.39 12 0.078 6 3 0.61 230 250 SS MGKG POTASSIUM 1 1 1.06 1.06 401 401 401 1820 230 250 SS MGKG PYRENE 6 2 0.39 1.2 0.644 1.2 6.022 1.5 2.0 890 SS MGKG PYRENE 1 1 1 1 1 1 2 0.044 1.2 6.022 1 5 890	98 9	SS	MG/KG	NICKEL	1	1	62 0	0.79	16	16	16	30		130	S
SS MGKG POTASSIUM 1 106 106 401 401 401 1820 880 SS MGKG PYHENE 6 2 0.39 12 0.044 12 6.022 1.5 230 880 SS MGKG SODIUM 1 1 1.3 1.3 1.52 1.52 1.5 0.0 SS MGKG TETRACHLOHOETHYLENE/PCE 5 1 0.012 0.04 0.04 0.04 0.04 0.04 1.2 0.06 SS MGKG VENADIUM 1 1 0.24 0.24 27 27 48 55 6000 SS MGKG ZNC 2 2 2 2 2 6000 1200	989	SS	MG/KG		9	2	0 39	12	0 078	9	8	0.61	230	250	No B
SS MGKG PYRENE 6 023 12 6 022 15 230 890 SS MGKG SODIUM 1 1 13 13 152 152 152 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 </td <td>999</td> <td>SS</td> <td>MG/KG</td> <td>POTASSIUM</td> <td>1</td> <td>-</td> <td>106</td> <td>106</td> <td>401</td> <td>401</td> <td></td> <td>1820</td> <td></td> <td></td> <td>NoE</td>	999	SS	MG/KG	POTASSIUM	1	-	106	106	401	401		1820			NoE
SS MGKG SODIUM 1 13 13 15 152 152 152 0 SS MGKG TETRACHLOROETHYLENEIPCE) 5 1 0.012 0.014 0.004 <td< td=""><td>999</td><td>SS</td><td>MG/KG</td><td>PYRENE</td><td>9</td><td>2</td><td>0 39</td><td>12</td><td>0.044</td><td>12</td><td></td><td>1.5</td><td>230</td><td>980</td><td>No B</td></td<>	999	SS	MG/KG	PYRENE	9	2	0 39	12	0.044	12		1.5	230	980	No B
SS MGKG TETRACHLOROETHYLENEIPCE 5 1 0.012 0.014 0.004 0.004 0.004 0.004 1 0.006 12 0.006 1 0.006 1 0.006 1 0.006	999	SS	MG/KG	SODIUM	1	1	13	13	152	152					No E
SS MGKG VANADIUM 1 1 0.24 0.24 27 27 27 48 55 6000 ISS MGKG ZINC 1 1 0.1400000001 5.41 5.41 5.41 126 2.350 12000	99 9	SS	MG/KG	TETRACHLOROETHYLENE(PCE)	9	1	0 0 1 2	0.014	0 004				12	900	S O
SS MGKG ZINC 1 1 0.140000001 541 541 541 541 128 2300 1	999	SS	MG/KG	VANADIUM	1	1	0 24	0.24	27	27		48		0009	Ω Q
	999	SS	MG/KG	ZINC	1	-		0 140000001	541	541		126		12000	NoB

TABLE D-30
Constituents of Potential Concern in Screening Site 66 · Surface Soul Memphis Depot Main Installation RI

Ф < в о о п г о в

Exceeds Criteria

Does not exceed Criteria

Does not exceed Background

No Criteria evatlable & exceeds Background, or no Criteria or Background available

Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC

Chemical is a common lab contaminant and professional judgement was used in eliminating it as a COPC

Chemical is a member of a chemical class which contains other COPCs

4

TABLE D-31
Constituents of Potential Concern in Screening Site 66 - Subsurface Soil
Memphis Depot Main Installation RI

		<u>"</u>							Π					T			Π				Π		Ī	\neg	П		T							_		٦
		COPC/BASIS	No B	NoC	No	NoC	NoC	NoF	NoE	No[B	No B	NoC	No	NoC	No B	No 8	No E	No	NoE	No C	No B	NoC	No B	No E	No B	No C	No C									
Regulatory Criteria	for Subsurface Soil	(Leachability)	16		29	1600	63	3600	-	100 O	0.6	38			2300	4300					0 0 0	130	250		880	9000	12000									
	Background	Concentration		21829	17	300	12		2432			26	20	33		0 045	38480	24	4900	1540		37		1800	0 0 42	51	114									
Arithmetic Mean	Detected	Concentration	0 002	11000	12	154	0.26	12	1830	0015	0 025	14	5	61	4400	0 061	9190	11	2050	49	0 0013	20	0 0 0 2 2	835	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17	62.6									
	Maximum Detected	Concentration	9000	11000	12	154	0.26	5.3	1830	0100	0 0 0 0 0 0 0 0	14	5	19	2200	0 061	9190	11	2050	64	0 002	20	0 052	835	990 0	17	62 6									
Minimum	_	Concentration	0 004	11000	1.2	154	0.26	0 046	1830	0 0 1 1	0 005	14	'n	9	7200	0 061	9190	11	2050	64	0 001	20	0 0 0 5 2	835	990 0	17	62.6									
Maximum	Detection	Limit	0 0 13	2.2	0 200000003	0.041999999	0.016000001	12	89 0	0013	0 0 0 13	0.26	60	0 140000001	12	12	0.24	0 23000	22	0 041000001	0013	99 0	12	68	12	0 200000003	0 119999997							COPC		
Minimum	Detection	CIMIT	0.01	22	0 200000003	0.041999999	0 016000001	0 35	890	0.01	0.01	0.26	60	0 140000001	0 35	0 35	0.24	0 230000004	22	0 041000001	100	99 0	0 35	68	035	0 200000003	0 119999997						g it as a COPC	used in eliminating it as a COPC	,	
	Number	Defected	2		1	1	1	S	-	2	9	-	1	1	-	_	-	1	-	-	4	-	1	-	-	-	1					ind available	In eliminatin	is used in eli		
	Number	Analyzed	12	1	_	-	_	13		12	12	-	۲	_	13	13				-	12	-	13		13		1	and below)				a or Backgrou	ent was used	udgement wa	other COPC	
	:	Parameter Name	ACETONE	ALUMINUM	ARSENIC	BARIUM	MG/KG BERYLLIUM	MG/KG bis(2-ETHYLHEXYL) PHTHALATE	MG/KG CALCIUM	MG/KG CARBON TETRACHLORIDE	MG/KG CHLOROFORM	MG/KG CHROMIUM, TOTAL	COBALT	MG/KG COPPER	MG/KG DI-n-BUTYL PHTHALATE	MG/KG FLUORANTHENE	RON	LEAD	MG/KG IMAGNESIUM	MG/KG MANGANESE	MG/KG METHYLENE CHLORIDE	NICKEL	MG/KG PHENANTHRENE	MG/KG POTASSIUM	PYRENE	VANADIUM	ZINC	Data evaluated include field duplicates and normal samples (2 feet and below)		Sriteria	Does not exceed Background	No Criteria available & exceeds Background, or no Criteria or Backgroun	Chemical is an essential nutrient and professional judgement was used in eliminating it as a COPC	Chemical is a common tab contaminant and professional judgement was	Chemical is a member of a chemical class which contains other COPCs	Chemical is a surface soil COPC
	;	_	MG/KG	MG/KG	MG/KG		MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG IRON	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG NICKEL	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	lude field	Criteria	Does not exceed Criteria	exceed E	ia availab	lis an ess	lis a com	lıs a men	lis a surf
		ž		SB						88			88			Γ	SB	Γ	SB	Γ			Γ		Γ		SB	uated Inci	Exceeds Criteria	Does not	Does not	No Criter	Сретіса	Сћетиса	Сћетиса	Chemica
		StelD	666		999						Γ			1					Γ	Π	999	I	999			Γ		Data eval	∢	20	ပ	۵	ш	IL.	g	I
	:	톍		آ		آ		ľ	ľ	ľ			ľ	ľ		ľ	ľ	آ	آ		آ	آ	آ	آ	آ	ľ		Note								

5

MGL MGL MGL MGL MGL MGL MGL MGL MGL MGL	THANE THANE THANE THANE THANE THANE THANE	Analyse Analys Analyse Analyse Analyse Analyse Analyse Analyse Analyse Analyse	Defected of 13 1 13 1 13 1 13 1 13 1 13 1 13 1 1	Deflection in the first in the	LIMIT O 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0	Cocentration 0002 0002 0001 0	Correstration 0.004 0.004 0.0059 0.0059 0.005 0.002 0.002 0.012 0.12 0.12 0.12 0.12 0	0003 0001 0001 0001 0001 0001 00015 00015 00015 0014 0121 0021 0021 0021 0021 0021 0021	0.0006 0.00094 0.001 0.001 0.001 0.001 0.001 0.001 0.001	Groundwater 0 00053 0 00053 0 00054 0 00055 0 0015 0 0013 0 0013 0 0025 0 0026 0 0026 0 0026	Vest Vest	
MGL MGL MGL MGL MGL MGL MGL MGL MGL MGL	ACHLOROETHANE IZENE TOTAL ILOROMETHANE GROETHANE GROETHANE GROETHANE GROETHANE M M M M M M M M M M M M M	2	2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4		0.0014 0.00015 0.00016 0.0018 0.0018 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017	0 0002 0 00018 0 00001 0 0001 0 00011 0 00011 0 0001 0 000	0.004 0.0059 0.0059 0.0059 0.0059 0.0072 0.017 0.128 0.028 0.028 0.028 0.029 0.019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019	0.003 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0016 0.0016 0.002 0.003 0.00	0.0006 0.0014 0.001 0.001 0.001 0.001 0.001	0 000003 0 005 0 004 0 0015 0 0015 0 011 0 0013 0 013 0 013 0 005 0 005 0 005 0 005 0 006 0 0 0 0	Yes Yes Yes Yes Yes Yes Yes Yes	
MIGH MIGH MIGH MIGH MIGH MIGH MIGH MIGH	ZENE TOTAL LIONOMETHANE E ETHYLENE(PCE) ETHYLENE(PCE) ETHYLENE(PCE) CROETHANE E ETHYLENE E E REXTL) PHTHALATE E E REXTL) PHTHALATE E E E HONOMETHANE M M M M M M M M M M M M M M M M M M M	8	2 2 8 - 2 2 2 3 8 9 2 3 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2		0 0024 0 00015 0 0018 0 0012 0 0022 0 0002 0 0017 0 001 0 01 0 01 0 01 0 01 0 01 0	0 0016 0 00019 0 0001	0.081 0.0059 0.004 0.007 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	00014 00025 00005 00015 00016 00017 0001 0001 0001 0001 0001 00	0.0006 0.004 0.001 0.001 0.001 0.001 0.001 0.004	0.05 0.004 0.0035 0.0035 0.0015 0.011 0.0113 0.013 0.013 0.026	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	
MGL MGL MGL MGL MGL MGL MGL MGL MGL MGL	IZENE TOTAL ILOROMETHANE ETHYLENE (TCE) CROETHANE COETHANE CRETHANE CRETHANE ETHYLENE M M M M M M M M M M M M M	7	2 2 2 3 2 3 4 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		0.00015 0.0018 0.001 0.01 0.00	6 00018 6 0001 0 0	0 0059 0 004 0 004 0 002 0 002 0 012 0 11 0 12 0 001 0 001 0 003 0	0.0014 0.0026 0.0015 0.0015 0.0016 0.0014 0.0028 0.0028 0.0038 0.0038 0.001 0.001 0.001 0.001 0.002 0.	0.0004 0.0034 0.0031 0.0031 0.0034 0.0034 0.0034	0 0004 0 0015 0 0015 0 0115 0 0 015 0 0 013 0 073 0 073 0 073 0 073 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005	Yes Yes Yes Yes Yes Yes Yes Yes	
MIGHT MIGHT	TENE TOTAL TOTAL TOTAL CONOMETHANE GRETHYLENE (TE) CROETHANE E HEXYL) PHTHALATE HEXYL) PHTHALATE M M M M M M M M M M M M M	8	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		0.0018 0.01 0.01 0.01 0.0022 0.0023 0.0077 0.0077 0.01 0.01 0.01 0.01 0.01	0.0003 0.0001 0.0011 0.0011 0.0011 0.0010 0.0010 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.0025 0.0025 0.0015 0.0015 0.0016 0.0021 0.0021 0.003 0.003 0.005 0.005 0.007 0.001 0.001 0.001 0.001 0.001 0.001	0.0004 0.0004 0.001 0.000 0.000 0.000	0 00035 0 0015 0 011 0 0013 0 013 0 013 0 005 0 005 0 005 0 006 0 006	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	
MIGHT MIGHT	TOTAL TOTAL TOTAL I CHOMETHANE É FINTLENE (TCE) ORDETHANE ORDETHANE E E E E NEXTL PHTIALATE I CHOMETHANE M M M M M M M M M M M M M	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 2 2 2 3 2 4 3 8 4 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		0 000 0 00022 0 000 0 000 0 000 0 001 0 0 001 0 0 001 0 0 0 0	0.001 0.	0.002 0.002 0.022 0.023 0.023 0.014 0.014 0.001 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.0015 0.0015 0.0015 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017	0.0054 0.56 0.031 0.001 0.000 0.000 0.000 0.001	0 0015 0 0115 0 0115 0 0105 0 0105 0 0005 0 005 0 005 0 005 0 005 0 006 0 006 0 006	Y 684 Y 684 Y 684 Y 685 Y 685 Y 685 Y 685 Y 685 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N	
MIGH MIGH MIGH MIGH MIGH MIGH MIGH MIGH	TOTAL ILOHOMÉTHANE ILOHOMÉTHANE ETHYLENE (TCE) CROETHANE CRETHANE CRETHANE CRETHANE ETHYLENE (TCE) SETHYLENE STACHLORIDE TRACHLORIDE RM	2	2 2 2 3 3 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		0 00022 0 00033 0 00073 0 0017 0 01 0 01 0 01 0 01 0 01 0 01 0	0001 0001 0001 00002 00002 0001 0001 00	0.002 0.002 0.11 0.11 2.7 0.021 0.001 0.001 0.003 0.00	0 0035 0 0028 0 0014 0 014 0 0021 0 002 0 000 0 001 0 000 0 0 00 0 0 00 0	0.0054 0.556 0.001 0.001 0.000 0.000	0 0005 0 0005	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	
MIGHT MIGHT	ILONOMETHANE ILONOMETHANE IROETHANE ORDETHANE ORDETHANE ILONOMETHANE M M SULFIDE TRACHORIDE RM RM RM	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		0 00022 0 00033 0 00053 0 00077 0 011 0 011 0 011 0 011 0 011 0 001 0 0 001 0 0 0 0	0 0001 0 0001 0 0001 0 0000 0 0001 0 0001 0 001 0 0 001 0 0 001 0 0 0 0	0.02 0.01 0.11 0.12 0.27 0.058 0.058 0.001 0.001 0.003 0.003 0.001 0.001 0.001 0.001	0.0015 0.0016 0.0017 0.0017 0.0014 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019	0.0004 0.0004 0.0001 0.0000 0.0000 0.0001	0 0005 0 0073 0 073 0 073 0 0005 0 0005 0 0005 0 0006 0 0006 0 0006 0 0006 0 0006 0 0006 0 0006 0 0006	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	
MGAL MGAL MGAL MGAL MGAL MGAL MGAL MGAL	ILOHOMETHANE FINTLENE (TCE) ORDETHANE E E E HEXYL) PHTHALATE HOROMETHANE M SULFIDE FINACHUORIDE RM	83 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01	0001 0001 000092 000092 0001 0001 0001 0	0 002 2 7 2 7 2 7 0 21 0 12 0 056 0 056 0 056 0 003 0 003 0 003 0 003 0 003 0 003 0 003 0 003 0 003	00015 00016 0021 0021 0021 0001 0001 0002 0002	0 0001 0 0001 0 0001 0 0001 0 0001 0 0001 0 0001	0 00013 0 013 0 073 0 0 005 0 005 0 005 0 005 0 005 0 005 0 006 0 006	Y 68 Y 768 Y	
MIGH MIGH MIGH MIGH MIGH MIGH MIGH MIGH	FINYLENE (TCE) CROCTINALE COCTINANE CETHANE E E ILONOMETHANE M M SULFIDE TRACHORIDE RM	7 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 2 8 8 8 8 9 0 9 - 9 8 8 9 8 9 2 2		0 0093 0 0077 0 0017 0 010 0 010 0 011 0 011 0 011 0 011 0 011 0 001 0 011 0 001 0 011 0 001 0 001 0 001 0 001	0 00011 0 00002 0 00001 0 0001 0 00001 0 0001 0 0001 0 0001 0 0001 0 0001 0 0001 0 0001 0 0001 0 000	011 021 021 012 0026 0086 0001 0001 0002 0003 0003 0003 0003 0003	0 014 0 023 0 023 0 024 0 004 0 000 0 0 000 0 0 000 0	0 0034 0 031 0 031 0 031 0 034 0 034	0.015 0.073 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006	Yes Yes Yes Yes Wo No No No No No No No No No No No No No	
MIGH MIGH MIGH MIGH MIGH MIGH MIGH MIGH	GOETHAVENER (CE) ETHYLENE (CE) ORDETHANE E E HEXYL) PHTHALATE M M M M TRACHORIDE 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	61 61 61 61 61 61 61 61 61 61 61 61 61 6		0 00077 0 001 0 01 0 01 0 01 0 01 0 01 0	0 00002 0 00008 0 001 0 0001 0 0001 0 0017 0	27 012 012 0056 0056 0014 0001 0005 019 0003 0003 0001 0001 0001 0001	0.23 0.021 0.021 0.039 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0 0001 0 0001 0 0001 0 0001 0 0004	0 0073 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005	Yes Yes Yes Yes No No No No No No No No No No No No No		
MIGH MIGH MIGH MIGH MIGH MIGH MIGH MIGH	FINTENE (PCE) GROETHANE ORDETHANE E E HEXYL PHTHALATE HOROMETHANE M SULFIDE SULFIDE THACHLORIDE RM	76 83 83 83 83 83 83 83 84 85 85 85 85 85 85 85 85 85 85 85 85 85	40 33 33 33 33 33 33 33 33 33 33 33 33 33		00077 001 001 001 001 001 001 001 001	0.00065 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.21 0.056 0.056 0.056 0.005 0.005 0.003 0.003 0.003 0.003 0.003 0.001 0.001	0 0021 0 0021 0 0039 0 0014 0 005 0 005 0 005 0 010 0 011 0 011 0 001 0 001 0 001	0001	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Yes Yes Yes No No No No No No No No No No No No No	
MGAL MGAL MGAL MGAL MGAL MGAL MGAL MGAL	GOCTHYLENE (TCE) CROCTHANE COCTHANE E EVENT PHTHALATE M M M M M M M M M M M M M M M M M M M	83 83 83 83 83 84 85 85 85 85 85 85 85 85 85 85 85 85 85	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		001 001 001 001 001 001 001 001 001	0001 00001 000001 00001 0001 0001 0001	012 0.056 0.056 0.001 0.001 0.002 0.003 0.001 0.001 0.001 0.001 0.001	0 0021 0 0169 0 014 0 001 0 001 0 001 0 002 0 002 0 003 0 003	0001	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	Yes Yes Yes No No No No No No No No No No No No No	
MIGH MIGH MIGH MIGH MIGH MIGH MIGH MIGH	GROETHANE OROETHANE E E E E E E E E E E E E E E E E E E	83 83 83 83 84 85 85 85 85 85 85 85 85 85 85 85 85 85	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		001 001 001 001 001 001 001 001 001	0 0001 0 00031 0 0001 0 001 0 004 0 003 0 004 0 003 0 004 0 0 004 0 0 004 0	0.056 0.014 0.0014 0.001 0.005 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0 0009 0 0014 0 0038 0 0001 0 005 0 005 0 005 0 000 0 0001 0 0011	0000	0 005 0 002 0 005 0 005 0 005 0 0005 0 0005 0 0005	Yes No No No No No No No No No No No No No	
MIGH MIGH MIGH MIGH MIGH MIGH MIGH MIGH	OROETHANE OETHANE E HEXYL) PHTHALATE HOROMETHANE M SULFIDE TRACHLORIDE RM	88 88 88 88 88 88 88 88 88 88 88 88 88	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0 001 0 01 0 01 0 01 0 01 0 01 0 00 0 01 0 001	0 00031 0 001 0 001 0 0014 0 0017 0 003 0 003 0 003 0 001 0 0 0 0	0.26 0.014 0.001 0.005 0.007 0.003 0.003 0.001 0.001 0.001	0 014 0 0038 0 0001 0 005 0 076 0 002 0 003 0 0003	0000	0.026 0.02 0.05 0.05 0.006 0.006 0.006	Yes No No No No No No No No No No No No No	
MGAL MGAL MGAL MGAL MGAL MGAL MGAL MGAL	ORDETHANE OETHANE EETTANE HEXYL) PHTHALATE M M M SULFIDE TRACH ORIDE RM	E	2 2 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2		001 001 0012 0011 0001 001	0 001 0 003 0 0017 0 0017 0 003 0 003 0 001 0 001	0.014 0.001 0.005 0.19 0.002 0.003 0.003 0.002 0.001 0.002	0 00038 0 005 0 005 0 076 0 002 0 11 0 003 0 003 0 0015	0.001	0.2 0.005 0.15 0.37 0.006 0.008	2 2 2 2 2 2	
MGL MGL MGL MGL MGL MGL MGL MGL MGL MGL	DETHANE E HEXYL) PHTHANATE HOMOMETHANE M SULFIDE TRACHLORIDE RM	83 83 84 85 85 85 85 85 85 85 85 85 85 85 85 85	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		001 001 0012 0011 000055 001	0 001 0 004 0 0017 0 0031 0 0031 0 001 0 001	0 001 0 19 0 0025 0 10 0 003 0 001 0 001 0 001	0 001 0 005 0 076 0 002 0 011 0 003 0 007	0.034	0.005 0.15 0.37 0.006 2 2 0.005 0.005	2 2 2 2 2	
MEST. MEST. MEST. MEST. MEST. MEST.	E ITANE HEXTL PHTHALTE HONOMETHANE M TRACHORIDE TRACHORIDE RM	3	5 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.005 0.0017 0.0017 0.003 0.003 0.001 0.001 0.001	0 005 0 19 0 002 0 003 0 003 0 002 0 002	0 005 0 076 0 002 0 11 0 003 0 007	0.034	0 15 0 37 0 006 2 0 005 0 0048	2222	
MAGIC MAGIC	HEXYL) PHTHALATE MOTORETHANE MISSULFIDE TRACHLORIDE RAN	25 25 25 25 25 25 25 25 25 25 25 25 25 2	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0012 0011 000055 001 001	0 0017 0 0017 0 003 0 003 0 001 0 001	0 100 0 0003 0 003 0 0003 0 0001 0 0010	0076 0002 011 0003 00015	0.034	0 006 2 2 2 0 005 0 005 0 0048	2 2 2 2	
MAGIL MAGIL	HEXYL) PHTHALATE HLOROMETHANE M SULFIDE TFACHLORIDE RM	57 57 57 57 50 50 50 50 50 50 50 50 50 50 50 50 50	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0 012 0 00055 0 001 0 01	0 0014 0 00017 0 0031 0 0001 0 0001 0 0001	0 19 0 0025 0 003 0 0019 0 0010 0 001	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.034	0.006 0.006 0.005 0.005 0.0048	2 2 2	
MGL MGL MGL MGL MGL MGL MGL MGL MGL MGL	HEXYL) PHTHALATE MASULE SULFIDE TRACHLORIDE RIA	76 83 77 83 83	69 1 2 5 1 69 69 69 69 69 69 69 69 69 69 69 69 69		0 00055 0 000 0 01 0 01	0.0017 0.003 0.003 0.001 0.001 0.001	0 0025 0 39 0 003 0 019 0 002 0 001	0.002 0.011 0.003 0.007 0.0015	0 0 2 2	0.006 2 0.005 0.0048 0.08	2 2 2	
MGCL MGCL MGCL MGCL MGCL MGCL MGCL MGCL	HEXYL) PHTHALATE H. CACOMETHANE M. SULFIDE THACH CHIDE RM	2	2 2 2 5 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1		0 001	0003 0001 0001 0001 0001 74	0 39 0 003 0 019 0 002 0 001	0.11 0.003 0.007 0.0015	0.22	0 005	2 2	
MGCL MGCL MGCL MGCL MGCL MGCL MGCL MGCL	HEXYL) PHTHALTE HONOMETHANE M M SULFIDE TRACHORIDE RM	25 25 25 25 25 25 25 25 25 25 25 25 25 2	2 69 2 50		0000	0001 0001 0001 0001 74	0 003 0 018 0 002 0 001	0.003 0.007 0.0015		0.005	-	
MGCL MGCL MGCL MGCL MGCL MGCL MGCL MGCL	EXYL) PHTHALATE MA MA SULFIDE TRACHLORIDE RM	57 88 88 88	5 2 69 2 50		001	0 001	0 0019 0 002 0 001 116	0.007		0.0048	DNI	
MGCL MGCL MGCL MGCL MGCL MGCL MGCL MGCL	ILOROMETHANE M SULFIDE TRACHLORIDE RM	2222	5 69 50	0.005	001	0 00 1 0 00 1 7 4	0 002 0 001 116	0 0015		900	ON N	
MGCL MGCL MGCL MGCL MGCL MGCL MGCL MGCL	M KUFIDE FRACHLORIDE RM	2 8 8	- 69 2 10	0.005		74	116				ş	
MGCL MGCL MGCL MGCL MGCL MGCL MGCL MGCL	SULFIDE TRACHLORIDE RAN	8 8	8 2 2 <u>2</u>	0,0059	100	7.4	116	500		900	٤	w m
MGCL MGCL MGCL MGCL MGCL MGCL MGCL MGCL	INCHLORIDE TRACHLORIDE RM	8	2 01		0.024	1000		23	S		ž	
MGAL MGAL MGAL MGAL MGAL MGAL MGAL MGAL	TACH CRIDE TAM	3	, 0		50		200	0001		10	Š	6
MGAL MGAL MGAL MGAL MGAL MGAL	WE	Ę,		9000	100	1000	0 00	0.0027		0.005	£	1
MGA. MGA. MGA. MGA. MGA.	444	3 8	-	3			1000	95000		0	٤	ď
MGAL MGAL MGAL MGAL MGAL		3	-	683	5 6	200	2000	.000		00000	5	ď
MGL MGL MGL		À	-	100	1000	00000	300	000	9600	0.55	ş	æ
MG/L MG/L MG/L		ã	3/	0.0003	0.0013	90000	0000	- 000	270			١
MGA. MGA. MGA.		92	8	650000	2000	1000	120	6200		2		٠
MGL	THALATE	25	-	100	500	1000	1000	1000		57	2	١
MGAL	PHTHALATE	57	-	001	100	0 005	0 002	0 002		0.37	S	•
MG/L	PHTHALATE	57	1	001	100	0 004	0.004	0 004		0.073	Ş	9
		0,	75	0 0017	0 0039	0048	136	8.2	67	11	S.	ا
Z WG MGA. MAGNESIUM		69	8	0.0024	0.022	28	61	9.5	92		S	u
MGA		92	-	0900000	110000	0 00013	0 00029	0 0002		0 0011	N _O	6
SM	METHYL ETHYL KETONE (2-BLITANONE)	83	7	100	100	0000	0000	0.0063		610	Š	8
MGM		69	S	0.72	1 29	0 B49	139	28	35		β	Е
MGA		92		0.0016	0 0037	0 0041	0 0083	6500 0	95000	900	£	8
P P		92	,	0.00039	0 0022	0.0028	00100	69000		0 018	£	-
MGA		99	8	0013	011	7.0	₽	£	107		cN.	ш
757		84	-	0001	001	0 002	0 002	0 002		-	%	8
MGA	TOTAL 12 DICHLOROFTHENE	52	7	0000	100	0 001	6000	0000		0-1	No	80
100		7.6	8	\$50000	0 0011	0 0027	0.351	0.073		=	ž	-
		2 9	2	1900	1,000	100	961	1.5	-		Yes	٥
200	H444	3 6	3	100	100	000	1000	1000			Yes	۵
WELL CHUCKETTE	2000	3	-	2								
Note Data evaluated includes field duplicates and normal samples	Secales and normal samples											
A full list of all charmicals and the	A full list of all chemicals and their COPC status can be lound in Appendix I											
	e C 6											
	kground											
	No Criteria avaltable & exceeds Background, or no Criteria or Background available	or Backgroun	d available									
E Chemical is an essentia	Chamical is an essential nutrient and professional judgement was used in eliminating it as a COPC	of was used	n eliminating It	as a COPC								
	Chemical is a common lab confaminant and professional judgement was used to eliminating it as a COPC	dgement was	used in ethnin	Jalang it as a COPC								
	Chemical is a member of a chemical class which contains other COPCs	other COPCs										

Constituents of Potential Concern in FU7 - Groundwater

Memphis Depol Main Installation RI

TABLE D-33

Human Health Critena per Chemical Memphis Depot Main Installation RI

	;							
	Surface soils &		Surface, subsurface &		Cuarraturates			
Parameter Name	sediments (direct) (mg/kg)	Source	sediments (leachability) (mg/kg)	Source	Groundwater (mg/L) ¹	Source ¹	Surfacewater	Source
1,1,1,2-TETRACHLOROETHANE	(ilig/kg)	300108	(ingrkg)	Source	(mg/c)	300/09	(mg/L) 0 006	a
1,1,1-TRICHLOROETHANE	160	a	2	С	02	d	0 000	9
1,1,2,2-TETRACHLOROETHANE	3.2	a	0 003	c	0 000053	e	0 0017	q
1,1,2-TRICHLOROETHANE				1	0 005	d		3
1,1-DICHLOROETHANE	780	a	23	С	0.08	е		
1,1-DICHLOROETHENE	11	a	0 06	С	0 007	d	0 00057	g
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-p-DIOXIN	0 000000043	a	0 00005	C	3E-10	đ	1E-11	9
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	0 000000043	а	0 00005	C	3E-10	d	1E-11	g
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	0 000000043	а	0 00005	С	3E-10	d	1E-11	9
1,2,3,4,7,8-HEXACHLORODIBENZO-p-DIOXIN 1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0 00000043	a	0 0005	C	0 000000003	đ	1E-10	9
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	0 00000043 0 00000043	a	0 0005 0 0005	C	0.000000003	d	1E-10	9
1 2,3 6,7,8-HEXACHLORODIBENZOFURAN	0 00000043	a	0 0005	c	0 000000003	d	1E-10 1E-10	9
1 2.3.7 8.9-HEXACHLORODIBENZO-P-DIOXIN	0 00000043	a	0 0005	c	0 000000003	d	1E-10	g g
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	0 00000043	a	0 0005	c	0 000000003	d	1E-10	9
1 2,3,7,8-PENTACHLORODIBENZO-p-DIOXIN	0 00000215	a	0 0025	c		d	5E-10	g
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0 00000215	a	0 0025	c		d	5E-10	g
1,2-DICHLOROETHANE	7	a	0 02	С	0 005	d	0 0038	9
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0 00000043	a	0 0005	С	0 00000003	d	1E-10	9
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0 000000215	а	0 00025	c	1 5E-09	d	5E-11	g
2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN	0 0000043	а	0 005	С	0 00000003	d	0 000000001	9
2.3 7,8-TETRACHLORODIBENZOFURAN	0 00000043	а	0 0005	С	0 000000003	d	1E-10	9
2,4-DIMETHYLPHENOL	160	a	9	C	0 073	е	0 54	g
2-HEXANONE 2-METHYLNAPHTHALENE	310 160	a	14	b	015	e		
4-METHYLPHENOL (p-CRESOL)	160 39	a	0 02	b	0 012	e		
ACENAPHTHENE	470	a	570	C	0.018	e	12	a
ACENAPHTHYLENE	470	a	27	b	022	-	14	19
ACETONE	780	a	16	c	0.37	e		
ALDRIN	0 038	a	0.5	c	0 0000039	e	0 0000013	q
ALPHA ENDOSULFAN	47	a	18	С	0 022	e	0 074	g
ALPHA-CHLORDANE	18	а			0 002	d	0 0000057	g
ALUMINUM	7800	а				<u>L.</u> .		
ANTHRACENE	2300	a	12000	С	11	е	96	9
ANTIMONY	3 1	а	5	С	0 006	d	0 014	9
ARSENIC BARIUM	0 43	a	29 1600	С	0.05	<u>d</u>	0 000018	9
BENZENE	550 22	a	0.03	c	0 005	d	0 012	7
BENZO(a)ANTHRACENE	087	a	2	c	0 000092	e	0 000044	9
BENZO(a)PYRENE	0 087	a	8	c	0 000	d	0 000044	9
BENZO(b)FLUORANTHENE	0.87	a	5	c	0 000092	8	0 0000044	f
BENZO(g,h,i)PERYLENE	230	а	32000	ь	-	f		f
BENZO(k)FLUORANTHENE	87	а	49	С	0 00092	е	0 000044	g
BENZYL BUTYL PHTHALATE	1600	а	930	С	0 73	e	3	9
BERYLLIUM	16	а	63	С	0 004	d		
BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	0 35	а	0 003	С	0 000037	е	0 00014	9
bis(2-ETHYLHEXYL) PHTHALATE	46	a	3600	c	0 0048	e	0 0018	9
BROMODICHLOROMETHANE	10	a	06	c	0 08	d	0 0027	9
BROMOFORM BROMOMETHANE	81 11	a	08	C	0.000	10	0 043	9
CADMIUM	78	a	02 8		0 00085	d		-
CARBAZOLE	32	a	06	c c	0 0033	e		
CARBON DISULFIDE	780	a	32	C	0 1	e		
CARBON TETRACHLORIDE	4 9	a	0 07	c	0 005	d	0 0025	a
			1	c	0 0035	8	0 68	9
CHLOROBENZENE	160	a						-
	160 100	a	06	c	01	d	0 057	la
CHLOROBENZENE		•		c b			0 057	9
CHLOROBENZENE CHLOROFORM CHLOROMETHANE CHROMIUM III	100 49 12000	a	06		0 1 0 0015 5 5	d	0 057	g
CHLOROBENZENE CHLOROFORM CHLOROMETHANE CHROMIUM III CHROMIUM, HEXAVALENT	100 49 12000 23	a a a	0 6 0 0 1 38	b c	0 1 0 0015 5 5 0 011	d e e	0 057	g
CHLOROBENZENE CHLOROFORM CHLOROMETHANE CHROMIUM III CHROMIUM, HEXAVALENT CHROMIUM, TOTAL	100 49 12000 23 10800	a a a a a*	0 6 0 0 1 38 38	c c	0 1 0 0015 5 5 0 011 0 011	d e e e		9
CHLOROBENZENE CHLOROFORM CHLOROMETHANE CHROMIUM III CHROMIUM, HEXAVALENT CHROMIUM, TOTAL CHRYSENE	100 49 12000 23 10800 87	a a a a a*	0 6 0 0 1 38	b c	0 1 0 0015 5 5 0 011 0 011 0 0092	d e e e	0 000044	9
CHLOROBENZENE CHLOROFORM CHLOROMETHANE CHROMIUM III CHROMIUM, HEXAVALENT CHROMIUM, TOTAL CHRYSENE COBALT	100 49 12000 23 10800 87 470	a a a a* a	0 6 0 0 1 38 38	c c	0 1 0 0015 5 5 0 011 0 011 0 0092 0 22	d e e e e	0 000044	9
CHLOROBENZENE CHLOROFORM CHLOROMETHANE CHROMIUM III CHROMIUM, HEXAVALENT CHROMIUM, TOTAL CHRYSENE COBALT COPPER	100 49 12000 23 10800 87 470 310	a a a a a* a a	0 6 0 0 1 38 38 160	c c	01 00015 55 0011 0011 00092 022 13	d e e e e e e	0 000044	9 f
CHLOROBENZENE CHLOROFORM CHLOROMETHANE CHROMIUM III CHROMIUM, HEXAVALENT CHROMIUM, TOTAL CHRYSENE COBALT COPPER CYANIDE	100 49 12000 23 10800 87 470 310	a a a a* a a a	0 6 0 0 1 38 38 160	c c c	01 00015 55 0011 0011 0092 022 13	d e e e e e e	0 000044 1 3 0 7	19 f g
CHLOROBENZENE CHLOROFORM CHLOROMETHANE CHROMIUM III CHROMIUM, HEXAVALENT CHROMIUM, TOTAL CHRYSENE COBALT COPPER CYANIDE DDD	100 49 12000 23 10800 87 470 310 160 2 7	a a a a a* a a a a	0 6 0 0 1 38 38 160	c c c c	01 00015 55 0011 0011 0092 022 13 02 000028	d e e e e e d d d d e	0 000044 1 3 0 7 0 0000083	9 f
CHLOROBENZENE CHLOROFORM CHLOROMETHANE CHROMIUM III CHROMIUM, HEXAVALENT CHROMIUM, TOTAL CHRYSENE COBALT COPPER CYANIDE	100 49 12000 23 10800 87 470 310	a a a a* a a a	0 6 0 0 1 38 38 160	c c c	01 00015 55 0011 0011 0092 022 13	d e e e e e e	0 000044 1 3 0 7 0 0000083 0 00000059	19 f g

TABLE D-33 Human Health Criteria per Chemical Memphis Depot Main Installation RI

	Surface soils & sediments (direct)		Surface, subsurface & sediments (leachability)		Groundwater		Surfacewater	
Parameter Name	(mg/kg)	Source	(mg/kg)	Source	(mg/L) ¹	Source ¹	(mg/L)	Source
DI-n-OCTYLPHTHALATE	160	a	10000	C	0 073	e		
DIBENZ(a,h)ANTHRACENE	0 087	a	2	С	0 0000092	е	0 000044	g
DIBENZOFURAN	31	а	15	b ·	0 0024	е		<u> </u>
DIBROMOCHLOROMETHANE	76	а	0 003	С	0 00013	8	0 0041	9
DIELDRIN	0 04	а	0 004	b	0 0000042	8	0 00000014	9
DIETHYL PHTHALATE	6300	а	470	С	29	e	23	g
DIMETHYL PHTHALATE	78000	a	380	Þ	37	е	313	g
ENDRIN	23	a	1	С	0 002	d	0 00076	9
ENDRIN ALDEHYDE	23	а	11	С	0 002	d	0 00076	g
ETHYLBENZENE	780	а	13	C	07	d	31	9
FLUORANTHENE	310	а	4300	С	0 15	e	03	g
FLUORENE	310	а	560	С	0 15	е	13	g
GAMMA BHC (LINDANE)	0 49	а	0 009	С	0 0002	d	0 00019	9
GAMMA-CHLORDANE	18	а		<u> </u>	0 002	d	0 0000021	f
HEPTACHLOR	0 14	а	23	С	0 0004	d	0 0000021	g
INDENO(1,2,3-c,d)PYRENE	0.87	a	14	c	0 000092	e	0 000044	g
IRON	2300	a			11	е	03	f
ISOPHORONE	670	a	0.5	C	0 07	е	0 36	g
LEAD	400	a			0 015	d		
MANGANESE	1100	a			0 073	e	0 05	f
MERCURY	23	a	2	c	0 002	d	0 00005	f
METHYL ETHYL KETONE (2-BUTANONE)	4700	a	17	b	0 19	8		
METHYL ISOBUTYL KETONE (4-METHYL-2-	630	а	26	b	0 29	е		
METHYLENE CHLORIDE	85	a	0 02	C	0 0041	8	0 047	9
N-NITROSODIPHENYLAMINE	130	а	1	С	0 014	е	0 05	g
NAPHTHALENE	160	а	84	С	0 073	е		
NICKEL	160	a	130	C	01	d	0.61	9
OCTACHLORODIBENZO-p DIOXIN	4 3E-09	а	0 000005	c	3E-11	d	1E-12	g
OCTACHLORODIBENZOFURAN	4 3E-09	а	0 000005	C	3E-11	đ	1E-12	9
PCB-1260 (AROCHLOR 1260)	0 32	a	17	b	0 0005	d	0 00000044	g
PENTACHLOROPHENOL	53	а	0 03	C	0 001	d	0 0028	9
PETROLEUM HYDROCARBONS	34	a	340	С	5	d		
PHENANTHRENE	230	а	250	b				<u> </u>
PHENOL	4700	а	100	C	22	8	21	9
PYRENE	230	a	880	b	0 11	е	0 96	g
SELENIUM	39	а	5	С	0 05	d	0 17	f
SILVER	39	а	34	С	0 018	е		
TCDD Equivalent	0 0000043	a	0 005	С	0 00000003	d	0 000000001	g
TETRACHLOROETHYLENE(PCE)	12	а	D 06	c	0 005	d	0 008	g
THALLIUM	0 55	a	07	С	0 002	d	0 0017	9
TOLUENE	1600	a	12	c	1	d	6 B	g
TOTAL 1,2-DICHLOROETHENE	70	a			01	đ	07	1
Total Xylenes	16000	a	02	b	10	ď		
TRICHLOROETHYLENE (TCE)	58	а	0 06	C	0 005	d	0 027	9
VANADIUM	55	а	6000	c	0 026	е		
ZINC	2300	a	12000	c	11	le	91	if

a = EPA Region III Residential Soil RBCs, 1999 (Note *EPA III Residential Soil Value was calculated for total chromium from its isomers)

- b = Brownfield's Groundwater Cleanup Target Level for Soil, 1998
- c = EPA Soil Screening Level, 1996
- d = EPA Maximum Contaminant Levels for Groundwater, 1996
- e = EPA Region III Tap Water RBCs, 1999
- ! = EPA Ambient Water Quality Criteria, 1999
- g = Environmental Law Reporter Tenn Environmental H2O & Organism Values for Surface Water, 1996

concern. None of the other chemicals had a change in their status of "Yes/No" as COPCs.

The criteria used in this table were revisited to compare with the current (April 1999) EPA Ambient Water Qualify criteria. The comparative criteria represent Human Health for Consumption of Water and Organism. The review indicated that the mercury criterion has been changed to 0 00005 mg/L. This criterion is slightly above the site-reported concentration in a single sample. Of 31 surface water samples analyzed for mercury, a single detection of 0 00009 mg/L mercury occurred. This detected value marginally exceeded the new criterion of 0 00005 mg/L. In addition, the detected value did not exceed the RBC value of 0 00011 mg/L. Therefore, the new EPA criteria only affect mercury, which considering the above-described issues, would not be a constituent of significant

488 308

THIS PAGE INTENTIONALLY LEFT BLANK.

TAB

Appendix E

TAB

Appendix E Preliminary Risk Evaluation for all Surface Soils

APPENDIX E

Preliminary Risk Evaluation for All Surface Soils

A PRE was conducted previously for the data from the Main Installation (CH2M HILL, April 1998), and these calculations are provided as an update of the additional data collected since the last PRE.

These tables include carcinogenic and noncarcinogenic PRE calculations for the surface soils in all applicable FUs for the Main Installation. Maximum PRE ratios are used to identify a worst-case representative surrogate site per functional unit. Exceptions to choosing the highest PRE include sites where the next highest PRE site is near the maximum PRE site, and also has a larger list of COPCs (such as dieldrin). Then the second highest site is selected as the surrogate site, and is identified with a footnote.

Maximum PRE values across FUs also were identified, and these highest PRE locations (single data points) are used for residential risk estimations.

The following are included in this appendix:

- Table E-1-Summary of Surrogate Sites Within the Functional Units
- Table E-2-Summary of Carcinogenic Preliminary Risk Evaluation for Surface Soils
- Table E-3—Carcinogenic Preliminary Risk Evaluation for Surface Soils
- Table E-4—Summary of Noncarcinogenic Preliminary Risk Evaluation for Surface Soils
- Table E-5–Summary of Noncarcinogenic Preliminary Risk Evaluation for Surface Soils

NOTE: Only the first 6 pages of this appendix are included hard-copy, because of its large size. The complete appendix is included on the enclosed CD-ROM. The full hard-copy appendix is found starting in Volume 5, which is found in the Administrative Record.

APPENDIX E-PRELIMINARY RISK EVALUATION FOR ALL SURFACE SOILS

THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE E-1 Summary of Surrogate Sites within the Functional Units (Surface Soits Maximum Detected Concentrations) Memphis Depot Main Installation RI

Functional	Surrogate	⊢	Maxii	mum Prelimina	ry Risk Evaluation	<u> </u>
Unit	Surrogate		Carcinogenic Risk Ratio	Station	Noncarcinogenic Risk Ratio	Station
1	57		9 17E-03	SS42	23	SS42
1	65	a	9 41E-04	SS65A	02	SS65E
1	BRAC		2 57E-04	SS8A	03	E(10 2
1	66		2 03E-04	SS66E	0.0	SS668
2	BRAC	b	2.50E-04	B(3 5)	0 02	N(3 5
2	51		1 71E-04	\$\$14	0 05	SS518
2	59	C	1.33E-04	\$\$37	0 06	SS50
2	52		1 24E-04	SS52B	02	\$852
2	92		3 59E-06	TEÇ92A	0 0000008	TEC92
2	69		0 00E+00	, d	0	d
3	BRAC	Ь	5 46E-04	B(26 2)	01	B(35 2
3	34	e	1.40E-04	SS34G	0.6	SS39
3	27		1 23E-04	SS27F	24	SS27
3	32		1 09E-04	SB32A	24	\$\$16
3	89		6 18E-05	SS89H	0 1	SS89
3	82		5 66E-05	SS82C	0 05	SB82
3	33		5 57E-05	SS33K	0.5	SS33
3	31		4 80E-05	SB31A	02	SS31
3	84		8 46E-07	SB84B	0 02	SB84
3	87		0 00E+00	d	0	d
3	93		0 00E+00	d	0 003	TEC93
4	BRAC	b	1.92E-04	SS14A	03	E(31
4	46	_	1 70E-04	SS46E	0	_(J
4	36	С	1 32E-04	\$\$52B	3.5	SS5
4	79	•	1 07E-04	SS79A	0.08	SS79
4	54		9 69 E-05	\$B54B	0 07	SB54
4	70		8 29E-05	SS23	0 4	SS2:
4	43		8 13E-05	SS43B	0 01	SS43
4	35		7 67E-05	SS4	11	SS35
4	80		7 33E-05	SS24	0 07	SB80
4	72		6 77E-05	SS72A	0 08	SS4
4	28		5 01 E-05	SB28A	01	\$\$28
4	56		4 77E-05	SS56B	31	SS56
4	42		3 96E-05	SS42A	0 005	SS42
4	42 84				0.05	SS84
			3 89E-05	SS84C	34	SS20
4	83		1 92E-05	\$\$20 \$\$55		
4	55 34		9 07E-06	SB55A	0	d SS34
4			2 67E-06	SS34E	0 009 0 008	
4	74		8 13E-08	SB74C		SB74
4	57		0 00E+00	d	0 0000002	SB57
4	81		0 00E+00	d	0	d
5	77 8840		3 81E-04	SS77C	02	SS77
5	BRAC		2 25E-04	A(20 6)	0.1	A(20
5	75 01		6 74E-05	SS75D	0 005	SS75
5	91		4 34E-05	TEC91A	0 01	TEC9
5	76		7 25E-06	SB76A	0.04	SB76
6	BRAC	f	1 38E-04	A(2 7)	0 0000004	SS1.
6	66	e	9 62E-05	SS66A	0.05	SS66
6	67		5 85E-05	SS67A	0 04	SS67
6	48		4 38E-06	SS48E	0 0000007	SS48
6	58		3 10E-06	SB58A	0 002	\$858
6	68		0 00E+00	d	0 002	SB68
6	69		0 00E+00	d	00	d

- a = Site 65 and station SS65A selected over sites with maximum risk, because maximum risk was due to historic Law data
- b = Residential carcinogenic risk estimates are on these maximum PRE ratio samples from BRAC samples
- c = Industrial surrogate site selected over site with maximum risk due to greater number of COPCs & higher risk due to Dieldrin
- d = Concentration is below Background, therefore no risk calculations are necessary
- e = Industrial surrogate site selected over BRAC site
- f = Residential carcinogenic risk estimates not from BRAC sample because it has been excavated

TABLE E-2
Summary of Carcinogenic Preliminary Risk Evaluation for Surface Soils Memphis Depot Main Installation RI

Cunette			Residential PRE	Industrial PRE	Residential PRE	Industrial PRE
Functional	64-		Carcinogenic Risk		Carcinogenic Risk Ratio	
Unit	Site		Ratio	Ratio	- All Results	- All Results
1	57	Max	9.17E-03	1.02E-03		1.03E-03
1	65	Max	9 41E÷04	1 05E-04	9 41E-04	1 05E-04
1	BRAC	Max	2 57E-04	2 88E-05	2 57E-04	2 88E-05
1	66	Max	2 03E-04	2 28E-05	2 03E-04	2 28E-05
2	BRAC	Max	2.50E-04	2.78E-05	2.50E-04	2.78E-05
2	51	Max	1.71E-04	1.92E-05	1.82E-04	2.05E-05
2	59	Max	1 33E-04	1 50E-05	1 48E-04	1 66E-05
2	52	Max	1 24E ¹ 04	1 41E-05	1 28E-04	1 45E-08
2	92	Max	3 59E ₇ 06	4 25E-07	5 01E-05	5 69E-06
2	69	Max	0 00E+00	0 00E+00		3 68E-06
3	BRAC	Max	5 46E-04	6.10E-05	5 47E-04	6.11E-0
3	34	Max	1.40E-04	1.56E-05	1.40E-04	1.56E-0
3	27	Max	1 23E-04	1 38E-05	1 57E-04	1 76E-05
3	32	Max	1 09E-04	2 16E-05	1 13E-04	2 16E-05
3	89	Max	6 18E-05	8 76E-06	6 18E-05	8 76E-06
3	82	Max	5 66E-05	6 45E-06	5 80E-05	6 59E-06
3	33	Max	5 57E-05	7 62E-06	5 66E-05	7 72E-06
3	31	Max	4 80E-05	5 47E-06	4 80E-05	5 47E-06
3	84	Max	8 46E-07	1 47E-07	4 70E-05	5 32E-06
3	87	Max	0 00E+00	0 00E+00	0 00E+00	0 00E+00
3	93	Max	0 00E+00	0 00E+00	2 68E-05	
4	BRAC	Max	1.92E-04	2.17E-05	1.92E-04	2.17E-0
4	46	Max	1 70E-04	1.93E-05	1.70E-04	
4	36	Max	1 32E-04	1 65E-05	1 79E-04	2 17E-05
4	79	Max	1 07E ¹ 04	1 29E-05	1 11E-04	1 33E-0
4	54	Max	9 69E-05	1 11E-05		
4	70	Max	8 29E-05	9 41E-06		
4	43	Max	8 13E-05	9 20E-06		
4	35	Max	7 67E-05	8 68E-06		
4	80	Max	7 33E-05	8 35E-06		
4	72	Max	6 77 E ¹ 05	7 73E-06		
4	28	Max	5 01E , 05	5 70E-06		
4	56	Max	4 77E-05	5 62E-06		
4	42	Max	3 96E-05	4 49E-06		
4	84	Max	3 89E-05	4 37E-06		
4	83	Max	1 92E . 05	7 68E-06		
4	55	Max	9 07E-06	1 03E-06		
4	34	Max	2 67E±06	5 43E-07		
4	74	Max	8 13E-08	3 25E-08		
4	57	Max	0 00E+00	0 00E+00		
4	81	Max	0.00E+00	0 00E+00		
5	77	Max	3.81E÷04	4 26E-05		
5	BRAC	Max	2 25E-04	2 52E-05		
5	75	Max	6 74E-05	7 63E-06		
5	91	Max	4 34E-05	4 84E-06		
5	76	Max	7 25E-06	8 06E-07		
6	BRAC	Max	1.38E-04	1.53E-05		
6	66	Max	9.62E-05	1.08E-05		
6	67	Max	5.85E-05	6 64E-06		
6	48	Max	4 38E-06	4 83E-07		
6 e	58 69	Max	3 10E-06	3 75E-07		
6	68	Max	0 00E+00 0 00E+00	0 00E+00 0 00E+00		

Carcinogenic Preliminary Risk Evaluation for Surface Solls (mg/kg) Memphis Depot Main Installation RI

TABLE E-3

Functional				Upper	Lower		Residential	Industrial Land-use	Residential PRE Industrial PRE Carcinogenic Risk Carcinogenic Risk Ratio	Industrial PRE Sarcinogenic Risk
į	Site	Station	Parameter	_	neptu	Concentration Background	<u>ا</u> :	Criteria	Dano	Cliga
_		FS57A	ARSENIC	0	-	17 05 20	43	38		1
-	21	FS57A	BENZO(a)ANTHRACENE	0	-	1 05 71	87	7.8	1 21E-06	1 35E-07
_	23	FS57A	BENZO(a)PYRENE	0	-		087	78	1 21E-05	135E-06
-	22	FS57A	BENZO(b)FLUORANTHENE	0	-	6 6 0	87	7.8		
-		FS57A	BENZO(k)FLUORANTHENE	0	-	115 78	8.7	78	1 32E-07	1 47E-08
-		FS57A	CHRYSENE	0	-	11 94	87	780	1 26E-08	1 41E-09
-		FS57A	DIBENZ(a,h)ANTHRACENE	0	-	0 26	780	78		
-		FS57A	INDENO(1,2,3-c,d)PYRENE	0	-	0 65 7	87	7.8		
-		FS57A	LEAD	0	-	21 6 30	400	1000		
-	22	FS57A Total	otal						1 34E-05	1 50E-06
-		FS57B	BENZO(a)ANTHRACENE	0	-	22 71	87	7.8	2 53E-06	2 82E-07
_		FS57B	BENZO(a)PYRENE	0	-		780	78	2 41E-05	2.69E-06
-		FS57B	BENZO(b)FLUORANTHENE	0	-	199	87	7.8	2 18E-06	2 44E-07
		FS57B	BENZO(k)FLUORANTHENE	0	-	23 78	8.7	78	2 64E-07	2 95E-08
		FS57B	CHRYSENE	0	-	2 25 94	87	780	2 59E-08	2 88E-09
-	_	FS57B	DIBENZ(a,h)ANTHRACENE	0	-	0 26	087	78		
· -		FS57B	INDENO(1,2,3-c,d)PYRENE	0	-	117	87	7.8	1 26E-06	1 41E-07
-		FS57B Total	otal						3 04E-05	3 39E-06
1	_	FS57C	ARSENIC	0	-	10 1 20	43	38		
-		FS57C	BENZO(a)ANTHRACENE	0	-	25 5 71	87	7.8	2 93E-05	3 27E-06
-	22	FS57C	BENZO(a)PYRENE	0	-		087	78	2 99E-04	3 33E-05
-	_	FS57C	BENZO(b)FLUORANTHENE	0	-	25.9	87	7.8	2 87E-05	3 21E-06
_		FS57C	BENZO(k)FLUORANTHENE	0	-		8.7	78	3 28E-06	3 65E-07
_		FS57C	CHRYSENE	0	-	315 94	87	780	3 62E-07	4 04E-08
_		FS57C	DIBENZ(a,h)ANTHRACENE	0	-	0 26	087	78		
_		FS57C	INDENO(1,2,3-c,d)PYRENE	0	-	19.7	87	7.8	2 18E-05	2 44E-06
_		FS57C	LEAD	0	-	297 30	400	1000	7 43E-07	2 97E-07
_	57	FS57C Total	otal						3 83E-04	4 29E-05
_		FS57D	BENZO(a)ANTHRACENE	0	-	30 71	87	7.8	3 45E-05	3 85E-06
-		FS57D	BENZO(a)PYRENE	0	-	29 5 96	087	78	3 39E-04	3 78E-05
-		FS57D	BENZO(b)FLUORANTHENE	0	-	2759	87	7.8	3 16E-05	3 53E-06
		FS57D	BENZO(k)FLUORANTHENE	0	-	32 78	8.7	78	3 68E-06	4 10E-07
		FS57D	CHRYSENE	0	-	35.5.94	87	780	4 08E-07	4.55E-08
		FS57D	DIBENZ(a,h)ANTHRACENE	0	-	0 26	087	78		
		FS57D	INDENO(1,2,3-c,d)PYRENE	0	-	2097	87	7.8	2 40E-05	2 68E-06
-	_	FS57D Total	otal						4 33E-04	4 83E-05
-	22	SB57C	1,1,2,2-TETRACHLOROETHANE	0	7	O NA	32	29		
_	22	SB57C	1,1,2-TRICHLOROETHANE	0	8	O NA	Ξ	100		•
-		SB57C	1.1-DICHLOROETHENE	0	2	O NA	=	95	. •	,
-	į	1							· f,	

TABLE E-3 Carcnogenic Preliminary Risk Evaluation for Surface Soits (mg/kg) Memphis Depot Main Installation RI

Industrial PRE Carcinogenic Risk Ratio								1																															
RE Indus								 																															
Residential PRE Carcinogenic Risk Ratio																																							
Industrial Land-use Criteria	631	NA A	N A	A A	¥	ΑĀ	¥	ΑĀ	34	AA A	2	38	200	7.8	78	7.8	78	32	Ϋ́	410	92	720	290	44	940	440	780	¥	NA	Y Y	Y.	78	68	36	44	16	13	Z A	NA
Residential Land-use Criteria	7	NA AN	NA	ΑN	NA NA	ΥN	Y A		038	ΑN	18	43	22	87	087	87	87	35	NA	46	10	81	32	4.9	100	49	87	Y.	NA	Ϋ́	Y A	087	9 /	04	49	18	4	¥N V	ΑA
Background											6																		75				,	5		9			_
Concentration B	O NA	O NA	O NA	O NA	O NA	O NA	O NA	YN 0 , .	O NA	O NA	0 029	11 6 20	O NA	0 71	96 0	6 0	0 78	O NA	O NA	0 064 NA	O NA	O NA	0 067	O NA	O NA	o NA	0 94	O NA	2900 0	0 0025 16	0 074	0 26	O NA	0 086	O NA	0 026	O NA	0 0045	O NA
Lower Depth Conce	2	2	8	7	0	α	~	8	8	7	Ø	α	Ŋ	8	8	81	cu	63	N	CI.	8	۲۷	Q	7	N	8	8	8	7	2	8	N	7	8	7	8	α	2	۲۵
Upper Lo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Parameter	1.2-DICHLOROETHANE	1,2-DICHLOROPROPANE	1,4-DICHLOROBENZENE	2,4,6-TRICHLOROPHENOL	2,4-DINITROTOLUENE	2,6-DINITROTOLUENE	2-METHYLPHENOL (o-CRESOL)	3,3':DICHLOROBENZIDINE	ALDRIN	ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXANE)	ALPHA-CHLORDANE	ARSENIC	BENZENE	BENZO(a)ANTHRACENE	BENZO(a)PYRENE	BENZO(b)FLUORANTHENE	BENZO(k)FLUORANTHENE	BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	bis(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHI	bis(2-ETHYLHEXYL) PHTHALATE	BROMODICHLOROMETHANE	BROMOFORM	CARBAZOLE	CARBON TETRACHLORIDE	CHLOROFORM	CHLOROMETHANE	CHRYSENE	cis-1,3-DICHLOROPROPENE	COO	DDE	D0T	DIBENZ(a,h)ANTHRACENE	DIBROMOCHLOROMETHANE	DIELDRIN	GAMMA BHC (LINDANE)	GAMMA-CHLORDANE	HEPTACHLOR	HEPTACHLOR EPOXIDE	HEXACHLOROBENZENE
Station	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C
Functional Site	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57

E-7

TABLE E-3
Carcinogenic Preliminary Risk Evaluation for Surface Soils (mg/kg)
Memphis Depot Main Installation RI

Industrial PRE Carcinogenic Risk Ratio																	0 00E+00																,	 ^	e1.				
Residential PRE Carcinogenic Risk C Ratio																	0 00E+00																		•	7 3 w	G +7		
Industrial Land-use Criteria	ΑĀ	ΝA	7.8	0009	1000	992	¥	1200	NA A	48	¥	110	NA	Y Y	520	NA A		29	100	98	631	¥	¥	NA	NA A	NA NA	NA NA	¥	34	¥	16	38	200	7.8	78	7.8	78	32	¥.
Residential Land-use Criteria	ΑN	NA	87	670	400	85	¥.	130	Y.	53	¥Z	12	¥	NA A	58	¥.		32	1	11	7	NA	NA NA	NA	Y Y	Y.	NA	Ϋ́Α	038	AN A	18	43	22	87	280	87	87	35	A A
Background	O NA	0 NA	0 7	0 NA	7 30	o NA	o NA	O NA	o NA	o NA	o NA	O NA	o NA	0 NA	o NA	O NA		o NA	0 NA	O NA	o NA	O NA	o NA	0 NA	o NA	o NA	O NA	o NA	O NA	O NA	0 029	17 20	O NA	0 71	96 0	6 0	0 78	O NA	AN 0
Concentration		•		•	13					•						•			•	•	_				•	•	•			•	•	13	_	_	•	_		J	
Lower	2	8	2	8	8	2	8	2	8	8	8	61	8	8	C1	N		2	2	8	8	Ø	8	8	8	α	N	8	8	8	2	8	8	8	8	81	2	8	8
Upper Depth	ł	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Parameter	HEXACHLOROBUTADIENE	HEXACHLOROETHANE	INDENO(1,2,3-c,d)PYRENE	ISOPHORONE	LEAD	METHYLENE CHLORIDE	N-NITROSODI-n-PROPYLAMINE	N-NITROSODIPHENYLAMINE	NITROBENZENE	PENTACHLOROPHENOL	STYRENE	TETRACHLOROETHYLENE(PCE)	TOXAPHENE	trans-1,3-DICHLOROPROPENE	TRICHLOROETHYLENE (TCE)	VINYL CHLORIDE	Total	1,1,2,2-TETRACHLOROETHANE	1,1,2-TRICHLOROETHANE	1,1-DICHLOROETHENE	1,2-DICHLOROETHANE	1,2-DICHLOROPROPANE	1,4-DICHLOROBENZENE	2,4,6-TRICHLOROPHENOL	2,4-DINITROTOLUENE	2,6-DINITROTOLUENE	2-METHYLPHENOL (o-CRESOL)	3,3'-DICHLOROBENZIDINE	ALDRIN	ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXANE)	ALPHA-CHLORDANE	ARSENIC	BENZENE	BENZO(a)ANTHRACENE	BENZO(a)PYRENE	BENZO(b)FLUORANTHENE	BENZO(k)FLUORANTHENE	BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	bis(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHI
Station	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C	SB57C T	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D	SB57D
Functional Site	ऻॱऀ	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57	1 57

TABLE E-3 Caronogenic Preliminary Risk Evaluation for Surface Solls (mg/kg) Memphis Depot Main Installation RI

Functional Unit	Site	Station		Upper Depth	Lower Depth	Concentration Background	Residential Land-use d Criteria	industrial Land-use Criteria	Residential PRE Carcinogenic Risk Ratio	Industrial PRE Carcinogenic Risk Ratio
-	22	SB57D	bis(2-ETHYLHEXYL) PHTHALATE	0	8	O NA	46	410		
-	22	SB57D	BROMODICHLOROMETHANE	0	8	O NA	10	92		
-	23	SB57D	ВКОМОГОЯМ	0	8	0 NA	81	720		
-	22	SB57D	CARBAZOLE	0	7	0 067	32	290		
-	22	SB57D	CARBON TETRACHLORIDE	0	8	o NA	49	44		
-	22	SB57D	CHLOROFORM	0	8	0 NA	100	940		
-	22	SB57D	CHLOROMETHANE	0	2	O NA	49	440		
	-57	SB57D	CHRYSENE	0	2 -	0 94	- 28	780	!	!!!!!!
-	22	SB57D	cis-1,3-DICHLOROPROPENE	0	8	0 NA	N A	AN		
-	23	SB57D	000	0	8	0 0028 0067	¥.	NA		
-	22	SB57D	DDE	0	2	0 0063 16	ΑN	¥		
_	22	SB57D	DDT	0	2	0 021 074	A A	NA		
-	_	SB57D	DIBENZ(a,h)ANTHRACENE	0	8	0 26	280	78		
-	22	SB57D	DIBROMOCHLOROMETHANE	0	2	O NA	7.6	89		
-	57	SB57D	DIELDRIN	0	8	980 0	8	36		
-	57	SB57D	GAMMA BHC (LINDANE)	0	8	0 0029 NA	49	4 4		
-1	22	SB57D	GAMMA-CHLORDANE	0	N	0 026	18	16		
-	57	SB57D	HEPTACHLOR	0	2	O NA	4	13		
-	25	SB57D	HEPTACHLOR EPOXIDE	0	01	0 0045	ΑN	A.		
-	22	SB57D	HEXACHLOROBENZENE	0	7	O NA	Y Y	NA NA		
_	25	SB57D	HEXACHLOROBUTADIENE	0	C)	O NA	Y Y	ΑĀ		
-	24	SB57D	HEXACHLOROETHANE	0	Ø	O NA	¥.	NA		
_	25	SB57D	INDENO(1,2,3-c,d)PYRENE	0	67	0 7	87	7.8		
-	24	SB57D	ISOPHORONE	0	8	O NA	670	0009		
	22	SB57D	LEAD	0	63	16 30	400	1000		
-	22	SB57D	METHYLENE CHLORIDE	0	8	O NA	85	092		
	57	SB57D	N-NITROSODI-n-PROPYLAMINE	0	8	O NA	NA	AA		
-	22	SB57D	N-NITROSODIPHENYLAMINE	0	7	o NA	130	1200		
-	22	SB57D	NITROBENZENE	0	7		Υ	¥		
_	57	SB57D	PENTACHLOROPHENOL	0	7	O NA	53	48		
_	22	SB57D	STYRENE	0	7	O NA	ΑĀ	¥		
-	22	SB57D	TETRACHLOROETHYLENE(PCE)	0	N	O NA	12	110		
-	22	SB57D	TOXAPHENE	0	2	O NA	N A	٧Z		
-		SB57D	trans-1,3-DICHLOROPROPENE	0	2	O NA	NA	AA		
_	57	SB57D	TRICHLOROETHYLENE (TCE)	0	7	O NA	28	520		
_	22	SB57D	VINYL CHLORIDE	0	8	V N 0	Y Y	₹		
_		SB57D Total	otal						0 00E+00	0 00E+00
_	23	SB57E	1,1,2,2-TETRACHLOROETHANE	0	7	V O	32	29		
-	22	SB57E	1,1,2-TRICHLOROETHANE	0	7	O NA	-	100		

TAB

Appendix F

488 320 : 5 % €

TAB

Relative Exposure Comparisons for Potential Worker Scenarios

APPENDIX F

Relative Exposure Comparisons for Potential Worker Scenarios

This appendix includes a comparison of the ingestion exposures for all workers and exhibits the level of protection that maintenance workers/utility workers/industrial workers offer. These comparisons are included to document the relative exposures that justify not quantifying some of the lower exposure pathways. The higher exposure populations are assumed to cover for the lower exposure populations.

The following is included in this appendix:

Table F-1–Relative Exposure Comparisons for Potential Workers

In accordance with Section 4.7.1.4 of the Statement of Work, the following persons performed and checked calculations contained in this appendix:

Full Name
Title
Date
Stizabeth R. Harland Eurir. Scientist 2 01/10/00
Ugaya Mylavanagu. Exoject Scientist 5 1/10/2000

THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE F-1
Relative Exposure Comparisons for Potential Workers
Memphis Depot Main Installation RI

Exposure Scenario Specific Parameters for Potential Workers

Intake Estimation formulas:

Cs*IR*FI*EF*ED*CF

Intake =

BW * AT

Exposure Scenarios	Carcinogenic	Noncarcinogenic
Landscape Worker		
Cs = concentration in soil (mg/kg)	1	1
IR = Soil ingestion rate (mg/day)	200	200
FI = Fraction ingested from contaminated area (unitless)	1	1
ET = Exposure Time (hours/8 hr workday)	8	8
EF = Exposure frequency (days/yr)	250	250
ED = Exposure duration (years)	1	1
CF= Conversion factor (kg/mg)	0 000001	0 000001
BW = Body weight (kg)	70	70
AT = Averaging time(days/yr. x years)	25550	365
Intake =	2.80E-08	0.000002
RATIO for comparison to Industrial Worker	0.16	4
RATIO for comparison to Maintenance Worker	1.6	40
	12 MONTHS/YEAR	
Factory/Lumberyard/Office Worker/etc.		
Cs = concentration in soil (mg/kg)	1	1
IR = Soil ingestion rate (mg/day)	50	50
FI = Fraction ingested from contaminated area (unitless)	05	05
ET = Exposure Time (hours/8 hr workday)	1	1
EF = Exposure frequency (days/yr.)	50	50
ED = Exposure duration (years)	25	25
CF= Conversion factor (kg/mg)	0 000001	0.000001
BW = Body weight (kg)	70	70
AT = Averaging time(days/yr. x years)	25550	9125
Intake =	2.18E-09	0.000000006
RATIO for comparison to Industrial Worker	0.01	0.01
RATIO for comparison to Maintenance Worker	0.1	0.1
	partial days 12 MON	ITHS/YEAR
Maintenance Worker	_	
Cs = concentration in soil (mg/kg)	1	1
IR = Soil ingestion rate (mg/day)	50	50
FI = Fraction ingested from contaminated area (unitless)	0.5	05
ET = Exposure Time (hours/8 hr workday) EF = Exposure frequency (days/yr.)	8 50	8
ED = Exposure duration (years)	50 25	50
• •	0 000001	25 0.000001
CF= Conversion factor (kg/mg)		
BW = Body weight (kg)	70	70
AT = Averaging time(days/yr x years)	25550	9125
Intake =	1.75E-08	0.00000005
RATIO for comparison to Industrial Worker	0.1	0.1
Heilita Maukay (naus minalina installas)	once a week/50wee	ks of year
Utility Worker (new pipeline installer)	4	4
Cs = concentration in soil (mg/kg) IR = Soil ingestion rate (mg/day)	1 100	1
FI = Fraction ingested from contaminated area (unitless)	0.5	100
ri = riaction ingested from contaminated area (unitiess)	0.5	05

488 326

TABLE F-1

Relative Exposure Comparisons for Potential Workers Memphis Depot Main Installation RI

Exposure Scenario Specific Parameters for Potential Workers

Intake Estimation formulas

Cs*IR*FI*EF*ED*CF

Intake =

BW * AT

Exposure Scenarios	,	Carcinogenic	Noncarcinogenic
ET = Exposure Time (hours/8 hr workday)		8	8
EF = Exposure frequency (days/yr)	ı	60	60
ED = Exposure duration (years)	,	1	1
CF= Conversion factor (kg/mg)		0 000001	0 000001
BW = Body weight (kg)	1	70	70
AT = Averaging time(days/yr x years)	ı	25550	365
Intake =	1	1.68E-09	0.0000001
RATIO for comparison to Industrial Work	er .	0.01	0.0000001
RATIO for comparison to Utility Worker (r		0.1	2.5
THE TO TO COMPANSON TO CHILLY TRUINE (1	3 MONTHS/YEAR	2.4
Utility Worker (routine maintainer)		O MONTHO LEAN	
Cs = concentration in soil (mg/kg)		1	1
IR = Soil ingestion rate (mg/day)		100	100
FI = Fraction ingested from contaminated are	ea (unitless)	0.50	0 50
ET = Exposure Time (hours/8 hr workday)	(7	8	8
EF = Exposure frequency (days/yr)	•	24	24
ED = Exposure duration (years)		25	25
CF= Conversion factor (kg/mg)	1	0 000001	0 000001
BW = Body weight (kg)	•	70	70
AT = Averaging time(days/yr x years)		25550	9125
Intake =		1.68E-08	0.00000005
RATIO for comparison to Industrial Work	er '	0.1	0.1
•		once a month/12 me	onths a year
Industrial Worker (from PRE report)			•
Cs = concentration in soil (mg/kg)		1	1
IR = Soil ingestion rate (mg/day)	1	50	50
FI = Fraction ingested from contaminated are	ea (unitless)	1	1
ET = Exposure Time (hours/8 hr workday)		8	8
EF = Exposure frequency (days/yr)	1	250	250
ED = Exposure duration (years)		25	25
CF= Conversion factor (kg/mg)		0 000001	0.000001
BW = Body weight (kg)		70	70
AT = Averaging time(days/yr. x years)		25550	9125
Intake =		1.75 E- 07	0.0000005
		Every working day	per year

TAB

Appendix G

> ~ *

TAB

Supporting Information for Exposure Factors Development

APPENDIX G

Supporting Information for Exposure Factors Development

The following are included in this appendix:

- **Table G-1–**Exposure Factors for Soil
- Table G-2-Exposure Factors for Sediment and Surface Water
- Table G-3—Exposure Factors for Groundwater
- Table G-4–Surface Areas per Receptor
- **Table G-5**—Chemical-specific Dermal Permeability Factors
- Table G-6-Soil Loading Information
- Table G-7-Soil Loading Information: Calculation of UCL 90 for Soil Loading of Body **Parts**
- Table G-8–Soil Loading Information: Calculation of Adherence Factors for Child Receptors
- Table G-9-Soil Loading Information: Calculation of Adherence Factors for Adult Receptors

In accordance with Section 4.7.1.4 of the Statement of Work, the following persons performed and checked calculations contained in this appendix:

Full Name

Stizabeth R. Harland Smir. Scientist 2 01/10/00 lengage hydoronopu Project Scientist 5 1/10/2000

THIS PAGE INTENTIONALLY LEFT BLANK.

3

					FUTURE						
		Maintenance		-			Onsite Resident		Onsite Resident	Т	
Symbols	Parameter	Worker	Utility Worker	orker	Industrial Worker		(Adult)		(Child)		
BW	Body Weight (kg)	70	a 70		a 70	g	20	ĸ	15	۵	
IR Inh	Inhalation Rate (m³/day)	50	a 20		a 20	rd	20	æ	15	в	
IR inhad	Inhalation Rate age-adjusted	NA	ΝA		ΥN		12.86	a,m	N/A		
AT C	Averaging Time - Carcinogenic	2	a 70x365		a 70x365	8	70x365	89	ΥN		
AT NC	Averaging Time - Noncamingtonic	T			L	6	30x365	100	6x365	e2	
		T							:	Γ	
	Solls					L		L		ı –	
B foo	Incidental Ingestion Rate (mo/day)	l	100		8	۵	100	۵	200	۵	
IR ad mo	т	N/N				t	114 29	5	ΥN	F	
-	т	ľ	90		-	_	_	ء	-	ء	
45	Chin Cudana Araa (cm²)	Ĺ	ľ		2679		5,049	τ	2.351	- ا	
5	Comit Surface Crist /	Ì			l	+		,	7774	T	
SA ad	Age adjusted 5kin 5urface Area (cm.)	ΑN	N/A		¥A.	†	7,0/7	o,	¥ .	T	
ΑF	Adherence Factor for dry soil (mg/cm²)	0.03	10 01	7	g 003		0 03		0.15	ے	
PEF	Particulate Emission Factor (m³/kg)	1 32E+09	1 32E+09	6	1 32E+09	=	132E+09	-	1 32E+09	_	
ET	Exposure Time (hours/day)	8	8		9	В	*		4	 -	
111	Exposure Fremiency (days/year)			-	750	8	350	G	350	æ	
9	Exposure Duration (years)	\$2	a 25		a 25	8	98	6	9	- RS	
: T # -	Rasidemital acut soil apposure is adapted from EPA Exposure Factor Handbook August 1997 & is protective of 1/2 head (aco), hands forearms & lower legs & feet Appositute Sasteminal child soil exposure is adapted from EPA Exposure Factor Handbook August 1997 & is protective of 1/2 head (face) hands, forearms lower legs & feet (see Appendix G) 0.03 = Groundskeeper No 2 (exposure scenarios similar to urban horitculture center campus grounds arbonetum) AFs chosen from Soil Loading calculations (see Appendix G)	1997 & is protective of 1997 & is protective of apus grounds arboretus	1/2 head (face), hand: 1/2 head (face) hands m) AFs chosen from St	is forearms & K s, forearms low oil Loading calc	ower legs (see Appendix rer legs & feet (see App utations (see Appendix (G) endix G) 3)					
54	0.1 = Construction Worker (heavy digging exposure to mixed bare earth concrete surfaces dust & debns) AFs chosen from Soil Loading calculations (see Appendix G)	ses dust & debns) AFs	chosen from Soil Load	ding calculation.	s (see Appendix G)						
£	0 15 = Deycare Kids No 15 (mdoor exposure to linoteum outdoor exposure to grass bare earth no shoes) Affs chosen from Soil Leading cakulations (see Appendix G)	e earth no shoes) AFs	chosen from Soil Load	ding calcufations	s (see Appendix G)						
-	PEF adapted from EPA 1996 So# Screening Guidance Technical Background Document	# [']									
	4 hours soil exposure are assumed for residential dermal contact and litheliation exposure time.	e time									
۷ -	Worker both exposure to debut red to the driver per year, thereby washed have										
- Е	Workel soft exposure to assumed to be two annotation. And achieved inheletion rate for reskiential achie.	R-Inhada -	- IR Inhox EDo	EDe	+ (R Inha x (EDa - EDc)		15 x 6	+	20 x (30-6)	- 121	12.86 (m ³ -year)/(kg-day)
:		•			BWa	,	15		70		
c	Age edjusted ingestion rate for residential adult	Radi	= IBc x EDc BWc	පු	+ iBax (EDa.: EDc) 8Wa		200.x.6 15	+	100 x (30-6) 70	7.	114 29 (mg·yəar)/(kg·day)
0	Age-क्योusled dermal contact for residentlal क्याक्ष	SAad	SAC X EDS	ä	+ SAA.X.(EDAEDc) BWa		2351 x 6 15	+	5049 x (30-6) 70	.56	2671 (cm²-year)/kg)
۵	ingestion rates adapted from EPA Supplemental Guktance to RAGS. Region 4 Bulletins. Human Health Risk Assessment Interm. November 1995	Human Health Risk As	sessment Interm Nov	vember 1995							
Ę	centimeters squared										
days/year	days per year										
hours/day	hours per day										
<u>6</u>	kilograms										
m /day	cubic meters per day										
ξ¥.E	cubic meters per kilogram										
mg/cm	malligrams per centimeters squared										
mg/day	miligrams per day										
Y.	Not appacable for this receptor										

TABLE G.1 Exposure Factors for Soil Memphs Depot Main installation RI

TABLE G-2 Exposure Factors for Sediment and Surface Water Memphis Depot Main Installation RI

		- 4				FUTURE					
Cympole	Darameter	Maintenance	Industrial Worker)rker	Industrial Worker - sumos/ditches	Residential/ Recreational	*	Residential/Recreational (Youth)		Residential/ Recreational (Child)	
BW	Body Weight (kg)	T	70	В	1	a 70	65		8	15	I ue
	Inhalation Rate (m²/day)	T		T					В	15	~
AT C	Averaging Time - Carcinogenic	70x365	a 70x365	r¢	70x365	a 70x365	а	70x365	а	NA	
AT NC	Averaging Time - Noncarcinogenic	25x365	3 25x365	П	25x365	a 30x365	63	10x365	83	6x365	æ
				\dagger			+		\downarrow		Τ
or or	Surface Water	100	100	٤	100	4 /N	+	N/A	\downarrow	ΝA	Τ
k 1	Incidental Ingestion - Wading (Dilout)	T		+			١		-	0.05	T
R Ing.s	Skin Surface Area - Wading (cm²)		2 679	+	ľ	D WA	<u>, </u>		+	N/A	1
4 V	Skin Surface Area -Swimming (cm²)	T		+		2	8		E	6,557	٩
Į.	Exposure Time (hours/day)	İ	4	6		ر 9	Ē		£	6	ڃ
i ii	Exposure Frequency (days/year)	 	1	**	!	s . 45	=	45	E	45	Э
9	Exposure Duration (years)		a 25	8		a 30	а	10		9	æ
				H			\vdash				
	Sediments						-		+		1
tR_ing	Incidental Ingestion - Wading (mg/day)	20	20	¥	20	100	*	100	×	200	¥
FI	Fraction Ingested			-	-	-	-[=	-	-[
SA	Skin Surface Area - Wading (cm²)	_	d 2,679	P	``	. ,	Е	`	c	1,851	न
AF	Adherence Factor for wet soil (mg/cm*)		Ĭ	•		0.1	٩		•	0.1	न.
Е	Exposure Time (hours/day)		9	6	-		-		=	9	- آ-
ΕF	Exposure Frequency (days/year)	12	2	**	20	s 45	1	45	-	45	=
9	Exposure Duration (years)	25	a 25	-	25	a 30	В	10		9	a
Notes.	All current scenario exposure factors are subject	rs are subject to re-evaluation based on site-specific information	fon site-specify	morm	ation						-
8	Defauit exposure factors adapted from EPA. Human Health Evaluation Manual Supplemental Guidance "Standard Delauit Exposure Factors" OSWER Directive 9285 6-03. March 25, 1991	an Health Evaluation	Manual Supple	mental	Guidance "Standard De	fault Exposure Factors* OSV	VER D	frective 9285 6-03, March 25,	5, 1991		
Φ	Surface water Ingestion while wading adapted from Supptemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interm, November 1995	m Supptemental Guid	lance to RAGS	Region	4 Bulletins, Human Heal	th Risk Assessment, Interim,	Nover	nber 1995			
o	Surface water Ingestion while swimming adapted from Supplemental Guidance to HAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995	from Supplemental G	uidance to FLAC	S Reg	ion 4 Bulletins, Human H	ealth Risk Assessment, Inter-	, N	vember 1995			_
Đ	Worker surface water/sediment exposure is adapted from EPA Exposure Factor Handbook. August 1997 & is protective of 1/2 head (face). hands & forearms. (see Appendix G)	ted from EPA Exposu	re Factor Hand	Dook A	ugust 1997 & is protectiv	re of 1/2 head (face) hands &	forea	rms (see Appendix G)			
9	Recreational adult total body surface area is adapted from EPA Exposure Factor Handbook, August 1997 & is protective of all body parts (see Appendix G)	sted from EPA Exposi	ıre Factor Hank	book,	lugust 1997 & is protecth	re of all body parts (see Appr	×pu	€			
-	Recreational youth total body surface area is adapted from EPA Exposure Factor Handbook. August 1997 & is protective of all body parts. (see Appendix G)	pted from EPA Expos	ure Factor Han	dbook .	August 1997 & is profecti	ve of all body parts (see App	endix	©			
6	4 hours surface water/sediment exposure are assumed for workers based on the nature of the activities	umed for workers ba:	sed on the natu.	e of the	activities						
£	6 hours surface water/sediment exposure are assumed for recreational adults/youths based on the nature of the activities	umed for recreations	adults/youths (ased o	n the nature of the activit.	es					
_	Maintenance Worker surface water/sediment exposure is assumed to be once a month	osure is assumed to I	se once a month	_							
_	Recreational factors adapted from Supplemental	Guidance to RAGS 6	tegion 4 Bultetis	S. Hum	an Health Risk Assessm	Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Inlerim, November 1995					
¥	Sediment ingestion rates adapted from Suppleme	ental Guidance to RA(3S Region 4 B.	alletans,	Human Health Risk Asst	Irom Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995	332				
_	Fraction ingested assumed by the nature of the activity	clivity						i			
ε	Recreational adult sediment exposure is adapted from EPA Exposure Factor Handbook, August 1997 & is protective of hands, forearms, lower legs & feet (see Appendix 9)	from EPA Exposure	Factor Handboo	ik, Augu	st 1997 & is protective o	hands, forearms, lower legs	e tee	(see Appendix G)			
_	Recreational youth sediment exposure is adapted from EPA Exposure Factor Handbook, August 1997 & is protective of hands, forearms, lower legs & freet (see Appendix G)	from EPA Exposure	Factor Handbo	ok, Aug	ust 1997 &is protective or	hands, forearms, lower legs	를 .	(see Appendix G)			
0	0.1 = Construction Worker (heavy digging exposure to mixed bare earth, concrete surfaces dust & debris) Ar's chosen from Soil Loading calculations (see Appendix Li)	ure to mixed bare ear	th, concrete sur	faces c	lust & debris) Ars chosel	rom Soil Loading calculation	S .	ee Appendix G			
٩	Recreational child total body surface area is adapted from EPA Exposure Factor Handbook, August 1997 & is protective or all body parts. (see Appendix G.)	fed from EPA Exposi	ire Factor Hand	DOOK, A	ugust 1997 & is protectiv	e or all body parts (see Appe	žė.) /			
-		from EPA Exposure	actor Handboo	K, Aug	St 1997 & IS protective of	nands, rorearms, lower legs	e leef	(see Appendix G)			
	1-2 hours exposure to sump (1) or ditch (2) sedin	drich (2) sediment is assumed for workers based on the nature of the activities	orkers based of	i me na	Ture of the activities						
s Ì	Industrial yrother surface water a sediment exposure (sunk), order or impoundment is assumed to de once a week	sure (sump, untarior m	inpominanti is	Deep.	TO DO ON POR A MARKY						
doughood	date per pear										
Daysycar house/day	barre age day										
Hours day	House per day										
2	interes men thous										
M'/dav	Cubic meters per day										
m'/ka	cubic meters per kilogram										
mg/cm ²	miligrams per centimeters squared										_
mg/day	milligrams per day										
ΝA	Not applicable for this receptor			1							٦

																*	EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive		head (face), hands & forearms (see Appendix G)	ve of all body parts (see Appendix G)	/e of all body parts (see Appendix G)	day	1.x.6 + $2 \times (30-6)$ = 1.09 (L-year)/(kg-day) 15 70	+ $SAax(EDaEDc) = 6557x.6 + 20000x(30.6) = 9480 (cm2-year)/(kg) BWa 15$							
Г	Ę		æ			G		a		Р		Ф	æ	В		bolic	dard [11/21	otectn	stectiv	vent/c	∥ 77	॥ च							
	Onsite Resident	(Child)	15	•	N/A	6x365		-	N/A	6,557	N/A	0 007	350	9		ir EPA Region IV	Guidance "Stank		& is protective o	just 1997 & is pr	just 1997 & is pro	hours = 0 007 e	+ IBa.x (EDa.EDc) = BWa	SAa x (EDa - EDo BWa							
	Ę		æ		а	а		В	a,f	υ	c,g	9	æ	а		as be	ental		1997	k, Auç	k, Aug	ay/ 24	+	+							
FUTURE	Onsite Resident	(Adult)	70	٠	70x365	30×365		2	11	20,000	9480	0 007	350	30		estion exposures	danual, Supplem		andbook, August	Factor Handboo	Factor Handbool	60 minutes x 1 da	IRc x EDc BWc	SAC X EDG BWc							
			æ		а	æ		В		q		e	а	В		e mg	ation A		tor Ha	osure	osure	hour/	lRadj ≕	SAadj =							
	Industrial	Worker	70	•	70x365	25x365		-	N/A	2679	N/A	0 007	250	25		are equal to th	Health Evalua		Exposure Fac	from EPA Exp	from EPA Exp	inute event x 1	IRa	SAa							
		Parameter	Body Weight (kg)	Inhalation Rate (m³/day)	Averaging Time - Carcinogenic	Averaging Time - Noncarcinogenic '	Groundwater	Ingestion Rate of Water (Uday)	6	Skin Surface Area (cm²)	Age-adjusted Skin Surface Area (cm²)	Exposure Time (hours/day)	Exposure Frequency (days/year)	Exposure Duration (years)		Inhalation exposures to volatiles in the groundwater are equal to the ingestion exposures as per EPA Region IV policy	Default exposure factors adapted from EPA, Human	9285 6-03, March 25, 1991	Worker groundwater exposure is adapted from EPA Exposure Factor Handbook, August 1997 & is protective of 1/2 head (face), hands & forearms (see Appendix G)	Residential adult total body surface area is adapted from EPA Exposure Factor Handbook, August 1997 & is protective of all body parts (see Appendix G)	Residential child total body surface area is adapted from EPA Exposure Factor Handbook, August 1997 & is protective of all body parts (see Appendix G)	Calculation for Shower dermal exposure time 10 minute event x 1 hour/60 minutes x 1 day/ 24 hours = 0 007 event/day	Age-adjusted ingestion rate for residential adult	Age-adjusted dermal contact for residential adult	centimeters squared	r days per year		kılograms	liters per day	cubic meters per day	Not applicable for this receptor
		Symbols	BW	IR Inh	AT_C	AT_NC		IR Ing	IR_ad_Ing	Ϋ́	SA_adj	=	占	<u>a</u>	Notes:	•	æ		۵	v	0	Đ	-	5	cm ²	days/year	hours/day	ķ	L/day	m³/day	N/A

TABLE G-4 Surface Areas per Receptor Memphis Depot Main Installation RI Surface Area Calculations for Adult Receptors Surface Area for Residential Adults for soil exposure Forearms Lower legs 1/2 Head Hands Arms Legs Feet 602 5 903 5 1805 1172 5 5049 1/2 head, hands, forearms, 2370 5930 N/A & lower legs Surface Area for Adults Workers for soil & water exposure
1/2 Head Hands Arms | Forearms Lower legs Legs Feet 1172 5 602 5 903 5 1805 N/A N/A N/A 2679 1/2 head, hands & forearms Surface Area for Recreational Adults for sediment (wading) exposure 1/2 Head Hands Arms Forearms Lower legs Legs N/A 903 5 1805 1172 5 1225 5671 hands, forearms, lower legs & feet Forearms = 45% whole Arms if not available Lower legs = 40% entire Leg if not available All values are averages of 50th percentife Male-Female Adults from EPA, Exposure Factors Handbook, 1997 (Tables 6.2 & 6.3) Mean Total Body Surface Area (TBSA) for male/female adults = TBSA is central tendency value for Male-Female Adults from EPA, Exposure Factors Handbook, 1997. (Table 6.14) Surface Area Calculations for Child Receptors Total Body Surface Area for Male-Female Children 50th percentile Male 0>1 6030 5790 1>2 6030 5790 6030 2>3 5790 3>4 6640 6490 4>5 7310 7060 7930 7790 Mean TBSA for Child 6557 All values are averages of 50th percentile Male-Female Children from EPA, Exposure Factors Handbook, 1997 (Tables 6 6 & 6 7) Percent of Total Body Surface Area for Male-Female Children by Body Part 1/2 Head Hands Feet Forearms Lower legs Age 0>1 182 53 6 54 13 7 206 1>2 165 5 68 6 27 13 23 1 2>3 142 53 7 07 118 23 2 3>4 136 6.07 7 21 14 4 26.8 455 13 B 5.7 7 29 14 27 B 5>6 Mean % 15 ĥ Percentage of TBSA for Child 2351 500 368 451 395 637 Calculated Surface Area for Child for sediment (wading) exposure 1851 Percentage of TBSA for Child (sed exposure) 368 451 637 For comparison Arms (entire) Legs (entire) Mean % 13 24 877 1593 All values are mean values of Percentage of TBSA by body part for Male-Fernale Children from EPA, Exposure Factors Handbook, 1997. (Table 6.8) Forearms = 45% whole Arms if not available

G-6

Lower legs = 40% entire Leg if not available

(Surface areas for Youth receptors on next page)

P\147543'AppG.xis\SA

TABLE G-4 Surface Areas per Receptor Memphis Depot Main Installation RI

Surface Areas per Receptor			•••
Memphis Depot Main Install	ation RI		,
Surface Area Calculat	ions for Youth Rece	ptors	-*
Total Body Surface Area fo	r Male-Female Youths	•	
50th percentile	Male	Female	موري
6>7	86	60 8430	
7>0	93	60 9170	
8>9	100	10000	
9>10	107	700 10600	
10>11	118	11700	
11>12	123	13000	
12>13	134	100 14000	
13>14	147	700 14800	
14>15	161	00 15500	
15>16	170	000 15700	
16>17	176	600 16000	
17>18	180	000 16300	
			A for Youth 13118

All values are averages of 50th percentile Male Female Children from EPA, Exposure Factors Handbook, 1997 (Tables 6 6 & 6 7)

Age	Head	Arms	Handa	Legs	Feet	
6>7		13 1	13 1	4.71	27 1	6 9
9>10		12	123	53	28 7	7 58
12>13		8 74	34 7	5 39	30 5	7 03
13>14		9 97	32 7	5 1 1	32	8 02
16>17		7 96	32 7	5 68	33 6	6 93
17>18		7 58	31 7	5 13	30 8	7 28
Mean %		10	26	5	30	7
% TBSA		1208	3437	685	3004	956

% TBSA 1298 3437 685 3994 956
All values are mean values of Percentage of TBSA by body part for Male-Female Children from EPA Exposure Factors Handbook, 1997 (Table 6.8)

Calculated Surface	Area for You	th for soil avecass	

	1/2 Head	Forearms	Hands	Lower legs	Feet	72	 %
	649	1547	685	1598	N/A	447B	Percentage of TBSA for Youth (soil)
						•	1/2 head, hands, forearms & lower legs
Calculated Surface Area fo	or Youth for se	diment (wading) exposure				
	1/2 Head	Forearms	Handa	Lower legs	Feet	69	ן%
	N/A	1547	685	1598	956	4785	Percentage of TBSA for Youth (sed)
							hands forearms lower legs & feet

Lower legs = 40% entire Leg if not available

P1147543'AppG.xls\SA G-7

TABLE G-5 Chemical-specific Dermal Permeability Factors Memphis Depot Main Installation RI

	1	Dermal Absorption	Permeability Co.	netant
Chemical Name		ABS	PC	
1,1,2 2-Tetrachloroethane	1%	EPA Reg 4 1995	9 0E-03	EPA 1992
2,4-Dimethylphenol	1% ,	EPA Reg 4 1995	1 5E-02	EPA 1992
2,3,7,8-TCDD	3%	EPA Reg 3 1995	1 4E+00	EPA 1992
2-Methylnaphthalene	1%	EPA Reg 4 1995	1 6E-04	EPA 1992
4-Methylphenol	1%	EPA Reg 4 1995	1 0E-02	EPA 1992
Acenaphthene	1%	EPA Reg 4 1995	1 6E-04	EPA 1992
alpha-Chlordane	4%	Wester 1992	5 2E-02	EPA 1992
Atuminum	0 1%	EPA Reg 4 1995	1 6E-04	EPA 1992
Antimony	01%	EPA Reg 4 1995	1 6E-04	EPA 1992
Aroclor-1260	6%	EPA 1992	1 6E-04	EPA 1992
Arsenic	3% (Wester 1993	1 6E-04	EPA 1992
Barium	0.1%	EPA Reg 4 1995	1 6E-04	EPA 1992
Benzene	1%	EPA Reg 4 1995	2 1E-02	EPA 1992
Benzo(a)anthracene	10%	EPA Reg 3 1995	8 1E-01	EPA 1992
Benzo(a)pyrene	13%	EPA Reg 3 1995	1 2E+00	EPA 1992
Benzo(b)fluoranthene	10%	EPA Reg 3 1995	1 2E+00	EPA 1992
• • •				
Benzo(k)fluoranthene	10%	EPA Reg 3 1995 EPA Reg 4 1995	1 6E-04	EPA 1992 EPA 1992
Beryllium beta-BHC	0 1% 10%	-	1 6E-04 1 6E-04	EPA 1992 EPA 1992
		EPA Reg 3 1995		
Cadmium	1%	EPA Reg 4 1995	1 0E-03	EPA 1992
Carbazole	10%	EPA Reg 3 1995	1 6E-04	EPA 1992
Carbon tetrachlonde Chlorobenzene	1% 1%	EPA Reg 4 1995	2 2E-02	EPA 1992
0111010001120110		EPA Reg 4 1995	4 1E-02	EPA 1992
Chloroethane	1%	EPA Reg 4 1995	8 0E-03	EPA 1992
Chloromethane	1%	EPA Reg 4 1995	4 2E-03	EPA 1992
Chromium total	0.1%	EPA Reg 4 1995	1 0E-03	EPA 1992
Chrysene	10%	EPA Reg 3 1995	8 1E-01	EPA 1992
Cobalt	0 1% 0 1%	EPA Reg 4 1895	4 0E-04	EPA 1992 EPA 1992
Copper		EPA Reg 4 1995	1 6E-04	
DDD	10%	EPA Reg 3 1995	2 8E-01	EPA 1992
DDE	10%	EPA Reg 3 1995	2 4E-01	EPA 1992
DDT	10%	EPA Reg 3 1995	4 3E-01	EPA 1992
Dibromochloromethane	1%	EPA Reg 4 1995	3 9E-03	EPA 1992
Dibenz(a h)anthracene	10%	EPA Reg 3 1995	2 7E+00	EPA 1992
Dieldmin	10%	Ryan 1987	1 6E-02	EPA 1992
Fluoranthene	1%	EPA Reg 4 1995	3 6E-01	EPA 1992
Fluorene	1%	EPA Reg 4 1995	1 6E-04	EPA 1992
gamma-Chlordane	4%	Wester 1992	5 2E-02	EPA 1992
Indeno(1,2,3-cd)pyrene	10%	EPA Reg 3 1995	1 9E+00	EPA 1992
Lead	0 1%	EPA Reg 4 1995	4 0E-06	EPA 1992
Manganese	0 1%	EPA Reg 4 1995	1 6E-04	EPA 1992
Mercury	01%	EPA Reg 4 1995	1 0E-03	EPA 1992
Methylene chlonde	1%	EPA Reg 4 1995	4 5E-03	EPA 1992
Naphthalene	1%	EPA Reg 4 1995	6 9E-02	EPA 1992
Nickel	0 1%	EPA Reg 4 1995	1 0E-04	EPA 1992
Pentachlorophenol	24%	Wester 1993	6 5E-01	EPA 1992
Petroleum Hydrocarbons	1%	EPA Reg 4 1995	1 6E-04	EPA 1992
Phenanthrene	1%	EPA Reg 4 1995	2 3E-01	EPA 1992
Pyrene	1%	EPA Reg 4 1995	1 6E-04	EPA 1992
Selenium	0 1%	EPA Reg 4 1995	1 6E-04	EPA 1992
Silver	0 1%	EPA Reg 4 1995	6 0E-04	EPA 1992
Tetrachloroethene	1%	EPA Reg 4 1995	4 8E-02	EPA 1992
Thallrum	0 1%	EPA Reg 4 1995	1 6E-04	EPA 1992
Total 1 2-Dichloroethene	1%	EPA Reg 4 1995	1 0E-02	EPA 1992
Trichloroethene	1%	EPA Reg 4 1995	1 6E-02	EPA 1992
Vanadium	0 1%	EPA Reg 4 1995	1 6E-04	EPA 1992
Xylenes (total)	1%	EPA Reg 4 1995	8 0E-02	EPA 1992 *
Zinc	0.1%	EPA Reg 4 1995	6 0E-04	EPA 1992

References	·
EPA Reg 3 1995	EPA Region III Technical Guidance Manual. Risk Assessment. Assessing Dermal Exposure from Soil. August 1995
EPA Reg 4 1995	EPA Region IV Supplemental Guidance to RAGS. November 1995
Ryan 1987	Ryan: E.A. E.T. Hawkuns, et al. 1987. Assessing Risk from Dermal Exposure at Hazardous Waste Sites. in
	Bennett G and J Bennett, eds. Superfund 87 Proceedings of the Eighth National Conference, November 16-18,
	Washington D.C. The Hazardous Materials Control Research Institute pp. 166-168
EPA 1992	EPA Dermal Exposure Assessment. Principles and Applications. Interim. January 1992
	(Default PC for water (1 6e-4) applied if missing from reference)
Wester 1992	Wester, R.C., H.I. Maibach, L. Sedik, J. Melendres, C.L. Liao, S. DiZio, 1992. Percutaneous absorption of
	[14C] chlordane from soil Journal of Toxicological and Environmental Health, Vol. 35, pp. 269-277
Wester 1993	Wester R.C. H.I. Maibach, et al. 1993, in vivo and in vitro percutaneous absorption and skin decontamination
	of arsenic from water and soil. Fundamental and Applied Toxicology, Vol. 20 No. 3, pp. 336-340

G-8

P \147543AppG xls\ABS&PC

^{* ∈} Value for m-Xylene used for (total) Xylenes

TABLE G-6 Soil Loading Information Memphis Depot Main Installation RI

Activity	N	Hands		Arms		Legs		Face	? S		Feet		
		Geo. Mean	std dev	Geo. Mean	std dev	Geo Mear	std dev	Geo	Mean	std dev	Geo	Mean	std dev
indoor:													
Tae Kwon Do	7	0.0063		0 0019	4 1	0.00	2 2	2				0 0022	2 '
Greenhouse Workers	2	0 043	-	0 0064	-	0 001	5 -		0 005	•			
Indoor Kids No 1	4	0.0073	19	0 0042	19	0 004	1 2.3	3				0 012	1 4
Indoor Kids No 2	6	0.014	1.5	0 0041	2	0 003	1 15	;				0 0091	1.
Daycare Kids No 1a	6	0 11	19	0 026	19	0.0	3 1.7	,				0 079	2 -
Daycare Kids No.1b	6	0 15	2.1	0 031	1.8	0 02	3 12	!				0 13	1.
Daycare Kids No 2	5	0 073	16	0 023	1.4	0.01	1 1,4					0 044	1.3
Daycare Kids No.3	4	0 036	1 3	0 012	1.2	0.01	4 3	3				0.0053	5
Outdoor:													
Soccer No 1	8	0 11	18	0 011	2	0 03	1 38	}	0 012	1 5	;		
Soccer No 2	8	0 035	39	0 0043	2 2	0.01	4 5.3	}	0 016	1.5	;		
Soccer No 3	7	0 019	1 5	0 0029	22	0 008	1 16	3	0 012	1.6	i		
Groundskeepers No 1	2	0.15	-	0.005	-				0 0021	-		0 018	
Groundskeepers No 2	5	0 098	2 1	0 0021	26	0 00	1 15	;	0.01	2) -		
Groundskeepers No 3	7	0 03	23	0 0022	19	0 000	9 18	}	0 0044	2 6	;	0 004	2.
Groundskeepers No 4	7	0 045	19	0 014	18	0 000	8 19)	0 0026	16	;	0.018	1.3
Groundskeepers No 5	8	0 032	17	0 022	28	0 00	1 14	ļ	0 0039	21			
Landscape/Rockery	4	0 072	2 1	0 03	2.1				0 0057	1.9)		
Irrigation Installers	6	0 19	16	0.018	3 2	0 005	4 18	}	0.0063	13	}		
Gardeners No 1	8	0.2	19	0.05	2.1	0.07	2 1.4	,	0 058	16)	0 17	1 (
Gardeners No 2	7	0 18	3 4	0.054	2.9	0 02	2 2	2	0 047	16	}	0 26	1.4
Rugby No 1	8	0 4	1.7				6 17	,	0 059				
Rugby No 2	8	0 14	14	0 11	1.6	0.1	5 16	5	0 046	14	ļ		
Rugby No 3	7	0 049	17	0 031	1.3	0 05	7 12	?	0 02	1.5	i		
Archeologists	7	0 14	13	0 041			8 4.1		0.05			0 24	1.4
Construction Workers	8	0 24	1.5	0 098			-	ļ	0 029	16	;	•	
Utility Workers No 1	5	0 32			-		•		01	-			
Utility Workers No 2	6	0 27							01				
Equipment Operators No 1	4	0 26							01				
Equipment Operators No.2	4	0 32							0 223				
Farmers No 1	4	0 41					8 27	,	0.018				
Farmers No 2	6	0 47			-		-		0.010				
Reed Gatherers	4	0 66							5571		•	0 63	7
Kids-in-mud No 1	6	35										24	
Kids-in-mud No.2	6	58				_						6.7	

⁼ substituted information

Kissel et al., 1996b, Holmes et al., 1996 (submitted for publication) adapted from EPA, Exposure Factors Handbook, 1997 (Table 6 12)

N = Number of subjects

Sources

488 339

THIS PAGE INTENTIONALLY LEFT BLANK.

;;;

TABLE G-7
Soil Loading Information
Memphis Depot Main Installation RI

B. Calculation of UCL90 for Soil Loading of	or Soil L	oading of	Body Parts	, n													- {- ^-				,
Activity	z	Hands	Hands		Hands SL	Arms A	Arms	Αľ	Arms SL Le	Legs L	Legs	Le	egs SL	Faces	Faces		Faces SL	Feet	Feet	F	Feet SL
		H _{0.90}	In(Geom mean)	ln(sd)	OCT30	Ir H _{0.90}	In(Geom mean) In)N (ps)ul	UCL90 H ₀	1 In Ho.90	In(Geom mean) In	(ps)uj	ОСТЭО	H 0.90	In(Geom mean)	(ps)ul	06TON	Н _{0.90}	In(Geom mean)	ln(sd) U	0CT30
Indoor:									•												
Tae Kwon Do	7	1.9020	-5.0672	0.64	0.0127	3.1435	-6.2659	1.41	0.0314	1.9700	-6 2146	69.0	0.0044				A	2.0445	-6.1193	0.74	0.0054
Greenhouse Workers 11 - 11	- 5	A PARTY PROPERTY AND IN	-3,1466	建筑线流	の の の の の の の の の の の の の の の の の の の		-5.0515			(A. 18)	-6.5023	理が続ける		计设置数据	5.2983			STATE OF THE PARTY OF THE			
Indoor Kids No.1	4	3.0115	1	0.64	0.0274	3.0115	-5 4727	0.64	0.0158	3.6225	-5.4968	0.83	0.0331				× 1	2.01475	-4.4228	0.34	0.0188
Indoor Kids No.2	9	1.6810	-4.2687	0.41	0.0206	2.1270	-5.4968	69.0	0.0101	1.68	-5.7764	0.41	0.0046				*****	1.8095	-4.6995	0.53	0.0161
Daycare Kids No.1a	9	2.0430		0.64	0.2430	2.0430	-3.6497	0.64	0.0574	1.8095	-3.5066	0.53	0.0531					2.5080	-2 5383	0.88	0.3094
Daycare Kids No.1b	9	2.2190	-1.8971	0.74	0.4125	1.9590	-3.4738	0 59	0.0617	1.4820	-3.7723	0.18	0.0264				14344	1 63		0.34	0.1757
Daycare Kids No.2	5	1.9070	-2 6173	0 47	0.1276	1 6910	-3 7723	0.34	0.0323	1.691	-4.5099	0.34	0.0155				, ,	1 5745		0.26	0.0560
Daycare Kids No.3	4	1.7975		0.26	0.0489	1.7035	-4.4228	0.18	0.0146	5.0045	-4.2687	1.10	0.6120				1 4 1	7.1683		1.63	17
			•														, ,				
Outdoor:													•				,				
Soccer No.1	8	2.096	-2.2073	0.59	0.2083	2.2514	-4 5099	69.0	0.0252	3.5926	-3.4738	1 34	0.4631	1.8366	-4.4228	0 41	0.0173				
Soccer No.2	80	3.5926	-3.3524	1.36	0.5609	2.4217	-5.4491	0.79	0.0121	4.1486	-4.2687	167	0.7687	1.8366	-4.1352	0 41	0.0230				
Soccer No.3	7	1.6070	-3.9633	0.41	0.0269	2.1190	-5.8430	0.79	0.0078	1.71	-4.8159	0.47	0.0126		-4.4228	0 47	0.0186				
Groundskeepers No.1	2	10,18,535,517~	-1.8971		Water Care	A 1744 A 277 4 34	-5.2983	******	et al casalla			<i>\$</i> ~		*					,	#'s 	
Groundskeepers No.2	5	2.3935		0 74	0.3136	2.9800	-6.1658	96.0	0.0138	1.7550	-6.9078	0 41	0.0015	2.2840	-4.6052	69 0	0.0281				
Groundskeepers No.3	7	2.1190		0 83	0 0872	1 9020	-6.1193	0 64	0.0044	1.834	-7.0131	0.59	0.0017	2.45	-5.4262	96 0	0.0181	2 4500	-5.5215	96.0	0.0164
Groundskeepers No.4	7	1.9020	-3 1011	0 64	0.0910	1 8340	-4.2687	0 59	0.0258	1.902	-7.1309	0 64	0.0016	1.71	-5.9522	0 47	0.0040			0.41	0.0255
Groundskeepers No.5	8	1.9566		0 53	0 0545	28	-3 8167	1 03	0.1111	1.7852	-6.9078	0 34	0.0013	2.3366	-5.5468	0 74	6600.0				
Landscape/Rockery	4	3 4163	-2.6311	0.74	0.4096	3 4163	-3 5066	0.74	0.1707					3.0115	-5.1673	0 64	0.0214				
Irrigation Installers	9	1 8095		0.47	0.3104	2.9878	-4.0174	1.16	0.1675	1.9590	-5.2214	0 59	0.0107	1.5270	-5.0672	0.26	0.0078				
Gardeners No.1	8	2 1737		0.64	0.4164	2.3366	-2.9957	0.74	0.1268	1.7852	-2 6311	0.34	0.0956	1.9566	-2.8473	0.47	0.0917		-1.7720	\$2. ^·	0.2688
Gardeners No.2	7	2.9040	-1.7148	1.22	1.6240	2.4500	-2.9188	1.06	0.2761	1.9700	-3 8167	69 0	0.0488	1.71	-3.0576	0.47	0.0729	1.712	-1.3471	0.47	0.4033
Rugby No.1	80	1.9566	ŀ	0.53	0.6817	1.9566	-1.3093	0.47	0.4269	1.9566	-1 0217	0.53	0.6136	2.8	-2.8302	0.99	0.2764				
Rugby No 2	8	1.7852	-1.9661	0.34	0.1859	1.9566	-2.2073	0.47	0.1739	1.9566	-1.8971	0.47	0.2371	1.7852	-3.0791	0.34	0.0611				
Rugby No 3	_	1.7120	-3 0159	0.53	0.0817	1.4795	-3.4738	0.26	0.0376	1.4420	-2 8647	0.18	0.0645	1.61	-3.9120	0.41	0.0283				
Archeologists	7	1.4795		0.26	0.1698	1.9020	-3.1942	0 64	0.0829	3.1435	-3.5756		0.4633	1.834	-2.9957	0.59	0.0923	1.5620	-1.4271	0.34	0.3148
Construction Workers	8	1.8366	ᆡ	0.41	0.3453	1.8366	-2.3228	0 41	0.1410	1.7852	-2.7181	0 34	0.0876	1.9566	-3 5405	0.47	0.0458				
Utility Workers No 1	2	1.9070	- 1	0 53	0.6110	2.9800	-1 6094	0.99	1.4388					1.755	-2.3026	0.41	0.1550				
Utility Workers No.2	9	2.2190		0 74	0.7424	1.9590	-1.2040	0.59	0.5967					1.68	-2.3026	0.41	0.1473				
Equipment Operators No.1	4	4.0425	-1.3471	0.92	3.3578	2.4485	-2.4191	0 47	0.1932					2.01475	-2 3026	0.34	. 0.1565				
Equipment Operators No.2	4	2.4485		0.47	0.6945	2.0148	-1.3093	0.34	0.4226					2 4485	-1.5006	0 53	0.5435				
Farmers No.1	4	2.4485	-0 8916	0.47	0.8898	5.0045	-2.8302	1.16	3.3434	4.4675	-5 1499	66 0	0.1231	2.01475	-4.0174	0 34	0.0282				
Farmers No.2	9	1.6265		0.34	0.6353	2.3110	-2.0402	0.79	0.4007	3.5450	-3 2968	1.36	0.8081	2.98775	-3.1942	1 10	0.3254				
Reed Gatherers	4	2.8130		0.59	2	3.4163	-3.3242	0.74	0.2048	9.8920	-1.8326	2.22	599620					8 7995	Ì	1.96	90853
Kids-in-mud No.1	9	2.3110	3 5553	0.83	117	4.4105	2 3979	1.81	1997	2.1270	3.5835	69 0	89					2.98775		1.28	302
Kids-in-mud No.2	9	2 3110	4 0604	0.83	194	3 5450	2 3979	1.34	223	2.3110	2.2513	0 83	32					6.1900	1.9021	2.52	169587
=missing information															i		ļ-				

Sources: Kissel et al., 1996b, Holmes et al., 1996 (submitted for publication) adapted from EPA, Exposure Factors Handbook, 1997 (Table 6 12). H⁹⁰ values adapted from R.O Gilbert, 1987 Statistical Methods for Environmental Pollution Monitoring (Table A10).

<u>۾</u> ±

P \147543\AppG xis\SL calcs

A TABLE G-8
Soil Loading Information
Memphis Depot Main Installation RI

C. Calculation of Adherence Factors for Child Receptors	ence Facto	ors for Chi	ld Recepto	8															ł						
Activity	z	Hands	Hands Hands SL Hands	Hands		Arms	Arms SL	Arms v	Arms SL Arms vs Forearms	S	Legs	Legs SL	Legs vs	Lower legs	<i>y</i>	Faces	Faces SL Faces	Faces		Feet	Feet SL Feet	Feet		x =Final SA*SL (all)	Final AF
									•				۔ ح											Hands Ecrosmo Louer	
		H _{0 90}	UCL90	SA	SL*SA	H _{0.90}	UCT30	SA	SA	SL*SA	H ₀ 90	UCL90	SA	SA	SL*SA	H _{0.90}	UCL90	SA	AS*1S	I	UCL90	SA	SL*SA	legs, Faces, Feet	x/SA
Indoor:																0,90		!		90	000	+	2	rogo, accourt con	NO.
Indoor Kids No.1	4	3.0115	0.0274	368	0	3 01 15	0.0158	877	77 395	5	3 6225	0 0331	1503	627	3					201		;	2		
Indoor Kids No 2	9	1.6810	0.0206	368	20	2 1270	0 0101	877				T		3 8	,					2/4/07	_	5	α	46	0.025
Daycare Kids No 1a	n n	3 0430	05750	320	s,	2000	0 0 0 0	2 9				1	-	03/	3					1.8095	0.0161	451	7	22	0.012
Dayona Kida Na 1h	, (1.0100	0.1100	200	9	2.0400	0.00/4	0//		23	١.	0.0531	1593	637	7 34					2.5080	0.3094	451	140	285	0.15
Daycare Mas No 10		2 2 1 3 0	0.4160	000	õ	1 9090	0.0617	8//	7/	5 24	1.4820	0.0264	1593	637	7) 17					1.63		451	79	272	0 15
Daycare Nids No Z	U	0.706.1	0.12/6	368	47	1.6910	0 0323	877	77 395	5 13	1.691	0.0155	1593	637	_					1 5745		2	J.	On	200
Daycare Kids No 3	4	1 7975	0.0489	368	.	1.7035	0.0146	877			٦	I	-		T					- 0		1	20	90	0.001
											T		- 1000	00/	,					/ 1683	1/	457	/642	8055	4.4
Outdoor:																									
Soccer No 1	8	2.096	0.1192	368	44	2.2514	0.0127	877	77 395	ת	3 5006	0 4831	1503	50	Ī	1 0200	2000		,			-			
Soccer No 2	8	3.5926	0.1938	368	21	2 4217	0.0054	877			1		1503	637	Ī	1 0000	0.0176	Τ	٥		_			352	0.19
Soccer No 3	7	1 6070	0.0194	368	7	o 1100	- 1	07			,	1	1000		1	-	0.0200	l	Ī					5/5	0.30
	-	. 00,0	0.0.0	000	Ŀ	2,1100	ŀ	0//	CEC	_	1/1	0.0126	1593	637	8	1 71	0186	<u>.</u>	٥					36	0 044

2

יייייייייייייייייייייייייייייייייייייי	20.000	701017	nair necept	2										-											
Activity	z	Hands	Hands SL Hands	L Hand	S	Arms	Ш	Arms SL Arms vs	ms vs F	Forearms		Legs	Legs SL Legs vs	Legs vs	Lower legs		Faces	Faces SL Faces	Faces		Feet	Feet SL	Feet		Y =Final SA*SI (all)
		·												_											>a. 0> 0- (a.
		ı Z	UCL90	SA.	SL*SA	I S				S A	<u>n</u>	.	<u>5</u> 8	S	2	2				2	:				Hands, Forearms, Lower
Outdoor:					1	ヿ	+	+	- :		9	0 90	00100	3	OX.	OL OA	70 90	טכרשט	SA.	SL'SA	7090	OCT30	SA	SL'SA	legs, Faces, Feet
Groundskeepers No.2	5	2 3935	0 1051	004	113	Т	Т	5		1	1	1	,	-											
mindskeeners No.3	1	3 1 4 6	T	T		Ţ,	Τ	0.00	000	1/3	Ü	1 /550	0.0015	5930	2370	4	2 2840	0.0281	603	17					138
Controlled Services	-	7.1130	0.0365	904	35	1.9020	20 0 0024	0024	1805	1173	ω	1.834	0.0017	5930	2370	4	2.45	0.0181	603	1	2 4500	0.0164 1995	1005	30	72
Giodiluskeepers No.4	-	1.9020	0.0499	904)4 45	5 1.8340		0.0151	1805	1173	18	1.902	0.0016	\$ 5930	2370	4	1 71		3	s ·	1-6070	0.0055 1005	3 1	2 5	100
Groundskeepers No.5	α	1 9566	6 0.0338	38 904	31		28 0.0	0.0392	1805	1173	46	1.7852		- 5030	2270	3	3325	7	603	0 1		0.000	222		200
Gardeners No.1.	ω	2.1737	7 0.2229	904	201	2 3366		0.0599	1805	1173	70	1 7850	20058	5030	2270	227	1 000	T							00
Gardeners No.2	7	2,9040	2555 U	٦		٦	Т	000	8	1		1 7700	0.000		2070	122	-		000	55	1 9500	0.258 1225	1225	329	883
Construction Workers		1000		T	T	Т	L	,900	1000	11/3	ī	00/8.1	0.0488	5930	2370	116	1 71	0.0729	603	44	1.712	0.4033 1225	1225	494	1251
tilb: Modern Workers		1 0300	Ī	904	4 222	1.8366	66 0 1003	03	1805	1173	118	1 7852	0.0876) 5930	2370	802	1.9566		603	28					575
Canty Profession I	o	1 9070	0.3436	904	310	2 9800	00 0.4150	150	1805	1173	487		t,	_			1		503	02			1		800
Utility Workers No.2	თ	2.2190	0 0.3307	7 904	299	1 9590		0.3279	1805	1173	78£			- -				Ī	200	92					080
				Ī	Ī	ĺ	Γ		.000		007			_			1 08	0.14/3	603	89					772
=missing information was estimated	mated																								

TABLE G-9
Soil Loading Information
Memphis Depot Main Installation RI

TAB

AppendixA

TAB

UCL 95% Calculation Methodology

1 E K

UCL 95% Calculation Methodology

A detailed UCL 95% methodology is provided for the development of current EPC values. The following are included in this appendix:

- Table H-1–Data Summaries for all Detected Chemicals for all Functional Units and Surrogate Sites
- H2-RADB Statistics

In accordance with Section 4.7.1.4 of the Statement of Work, the following persons performed and checked calculations contained in Appendix H2:

Full Name		Title	Date
Slizabeth R.	Starland	Swir. Scientist 2	01/10/00
Slizabeth R. Verjaya Mi	plavaragu	Project Scients+5	1/10/2000
- (. \		

THIS PAGE INTENTIONALLY LEFT BLANK.

3 3 .

E E

MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET MAXDET MAXDET MAXDET NORM MAXDET MAXDET LOGNORM MAXDET MAXDET MAXDET MAXDET MAXDET MAXDET MAXDET MAXDET MAXDET MAXDET MAXDET MAXDET MAXDET MAXDET MAXDET MAXDET MAXDET 912 10 24200 24200 3030 1090 3190 88 8 Normal 00061 33 33 UCL95 188 040 ĸ 8 8 3 Lognormal Ş ଶଧୟ Mean Value 25 25 25 88 25 25 25 88 16800 12 147 0 41 912 38 121 073 083 5 Concentration Detected 16800 49 49 147 2 2 2 912 912 10 52 52 52 24200 980 3030 1090 3190 377 45 0000 0003 0000 00003 49 0000 0003 시<u>왕</u>[2]양 212 Concentration Detected 24200 6800 3190 0.48 0.37 0.002 0.002 0.002 0.002 2030 9227 MG/KG Detects Numbe ō Number of Andlyses Parameter Name DIBENZ(O D)ANTHRACENE FLUORANTHENE FLUORENE ANTHRACENE
BENZOKOJANTHRACENE
BENZOKOJPYRENE
BENZOKOJEUORANTHENE
BENZOKO, I I JERYLENE ANTHRACENE
BENZO(QJANIHRACENE
BENZO(QJANIHRAE
BENZO(QLA)PERNIENE
BENZO(QLA)PERNIENE
BENZO(QLA)PERNIENE
BENZO(QLA)PERNIENE
CHRYSENE Total Xylenes IRICHLOROETHYLENE (TCE) INDENO(1 2,3-c d)PYRENE BENZORYFLUORANTHENE CHRYSENE ACETONE
METHYLENE CHLORIDE
TOLUENE BARIUM
BERYLLIUM
CADMIUM
CALCIUM
CHROMIUM TOTAL BERYLLUM CADMIUM CHRCMIUM, TOTAL COPPER LEAD NICKEL ACENAPHTHENE ACENAPHTHENE PHENANTHREN MAGNESIUM MANGANESE NICKEL POTASSIUM VANADIUM ALUMINUM COPPER Ş ≧ Metor Metal Metal Metal 필필필 **BEEF** Area of Concern 34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL
34 SURFSOIL MA SURFIGIE

Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites

Memphis Depot Main Installation RI

TABLE H-1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation R1

				Number		Minimum	Maximum	Arithmetic				
tion of the state of		amon reference	Number of Anglyses	of Officers	į	Concentration	Detected	Mean Value	UCL95	Normal	<u>.</u>	Breis
34 SLIPESOIL	PAH	DIBENZ(D. D)ANTHRACENE	0	2	MG/KG	0.21		-	٥	2	-	MAXIDET
34 SURFSOIL	PAH	FLUORANTHENE	٥	_	MG/KG	80	24	7	40	13	24	MAXDET
34 SURFSOIL	¥	FLUORENE	٥	n	MG/KG	0 14	2	_	50	2	2	MAXDET
34 SURFSOIL	PAH	INDENO(123-c,d)PYRENE	ó	7	MG/KG	0.48	9	3	٥	4	٥	MAXDET
34 SURFSOIL	PAH	PHENANTHRENE	٥	7	MG/KG	041	9	2	33	Ď	92	MAXDET
34 SURFSOIL	РАН	PYRENE	6	_	MG/KG	0 94	17	2	39	٥	17	MAXDET
34 SURFSOIL	200	ACETONE	2	7	MG/KG	0 002	0 035	0.012	0.43	0 025	0 035	MAXDET
34 SURFSOIL		METHYLENE CHLORIDE	3		MG/KG	0000	0.002	00033	9/000	00000	0 002	MAXDET
SA SURFISOR		Total Videos	3	-	MG/KG	0000	0000		70000	2000	2000	MANDE
34 SURFSOIL	757	ALLOKAINDIKA	•	ŀ	MC/NG	2000	15,400	12501	15704	14843	15400	MAN VOICE
30 DEEP	Merca	ALTINOM	- -	1.	04/50 04/50	36	3 2		90/6	4000	300	
36 065	Matol	ADSFNIC	3 4	45	MG/KG	8	30	8	, ,	21	, ~	Nac Nac Nac Nac Nac Nac Nac Nac Nac Nac
36 DFFP	Metal	BARILIM	4	4	MG/KG	86	121	108	131	124	121	MAXDET
36 DEEP	Metal	BERYLLIUM	45	15	MG/KG	03)	-	0.54	0.58	650	0 58	LOGNORM
36_DEEP	Metal	CADMIUM	45	5	MG/KG	0.44	4	690	077	0.84	22.0	LOGNORM
36_DEEP	Metal	CALCIUM	4	4	MG/KG	510	1990	1213	18939	2120	1990	MAXDET
36 DEEP	Metal	CHROMIUM TOTAL	45	\$	MG/KG	10	33	52	27	56	27	LOGNORM
36 DEEP	Metal	COBALT	4	7	MG/KG	7	٥	6 0	0	٥	٥	MAXDET
36 DEEP	Metal	COPPER	45	45	MG/KG	16	8	33	37	8	37	LOGNORM
36 DEFP	Metal	IRON	4	4	MG/KG	15600	26400	50075	30858	25988	26400	MAXDEI
36 DEEP	Metal	LEAD	42	45	MG/KG	0 ;	14.2	62	31	8	31	COGNORM
36 DEFP	Metal	MAGNESIUM	4	4	MG/KG	1740	25/0	2108	2/50	2540	25/0	MAXDEI
36 OEFP	Metal	MANGANESE	4	9	MG/KG	418	1000	227	SOC	2000	DECI .	MAXDE
30 OFFP	Merci	MERCURY	43		MG/KG	900	/00	200	ACO I	/cn n	0.00	LOGING TO THE PROPERTY OF THE
36 OFFP	Merci	NICKEL	69	g .	MG/KG	556	9 6	3	2007	33	3,00	LOGINGRA
S OFF	Merci	POLASSIUM	45	4 0	MG/KG	02/	38	0.7.	0002	/577	300	MAXDE
36 DEEP	Metor	SECTION	£ £	-	MG/KG	670	190	,	2	100	26.0	MAXDEL
34 DEED	Motor	MINOCO	? <		MG/KG	Si.	310	25	320	Įξ	011	MAXDET
34 DEED	No.	VANIADISM	-		MENTE	3,5	17	26	150	3 5	16	MAXDET
25.05	Meto	SNIC	\$2	45	MG/KG	2 28	380	118	300	128	130	LOGNORM
3% DEEP	OCPest	ALPHA-CHLORDANE	4	6	MG/KG	0.0016	1100	19000	0 0027	0014	0 0027	LOGNORM
36 DEEP	OCPest	DDE	44	4	MG/KG	0.0013	036	0013	0 0000	0.027	0.0067	LOGNORM
36 DEEP	OCPest	[ppr	44	5	MG/KG	60000	0.23	0 0 0 0 0 0	0.012	0.038	0.012	LOGNORM
36_DEEP	OCPest	DIELDIZIN	77	9	MG/KG	0 0012	3	0 063	0.0098	0 16	8600 0	LOGNORM
36 DEEP	OCPest	GAMMA-CHLORDANE	P\$	2	MG/KG	0.0024	0 02	0 0062	0 0029	0.014	0 0020	LOGNORM
36 DEEP	PAH	ANTHRACENE	8		MG/KG	0.058	0.058	0.20	0.21	0.20	8500	MAXDET
36 DEEP	¥ i	BENZO(O)ANTHRACENE	9	•	MG/KG	0.042	0 14	610	021	88	0 14	MAXDEL
30 DEEP	E S	BENZOAD PRIENE	g ¥		MG/KG	0.054	0 13	2 2	100	88	2 2 2	MAYDET
36 065	Z 4	SENZOYON PREDZIENE	£ 5		MC/KG	0000	110	010	021	880	110	MAXDET
36 DEEP	PAH	BENZOXVELUORANTHENE	45	9 4	MG/KG	0.061	0	610	021	0.50	0.1	MAXDET
36 DEEP	PAH	CHRYSENE	45	4	MG/KG	0.063	910	610	0.21	0.20	0 16	MAXDET
36_DEEP	PAH	FLUORANTHENE	45	4	MG/KG	011	0.34	0.20	0.21	0.21	0.21	LOGNORM
36 DEEP	PAH	INDENO(1,2,3-c,d)PYRENE	45	4	MG/KG	0.045	1.0	0.19	0.21	0.20	0.1	MAXDET
36 DEEP	PAH	PHENANTHRENE	45	4	MG/KG	0.053	0.27	020	021	0.21	0.21	LOGNORM
36 DEEP	PAH	PYRENE	45	7	MG/KG	0.086	031	0.20	021	0.21	0.21	LOGNORM
36 DEEP	SVOC	bis(2-ETHYLHEXYL) PHTHALATE	44	-17	MG/KG	0.042	3	0.30	0.36	0.42	038	LOGNORM
36 DEEP	SVOC	CARBAZOLE	44	-	MG/KG	0.048	0 048	020	02)	0.21	0 048	MAXDET
36 DEEP	SVOC	OF-n-BUTYL PHTHALATE	44	o	MG/KG	190	0 12	0 18	021	0.20	0 12	MAXDET
36 DEEP	88	PENTACHLOROPHENOL	44		MG/KG	011	013	010	0 10	0 10	0 0	LOGNORM

£

				Number		Minimum	Maximum	Arithmetic			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Number of	5 6	4	Detected	Defected	Mean Volus	UCL95	UCL95	24
Ared of Concern	200	1 1 2 2 TETDACHI ODOETHANE	Andiyses	Cellecis	MG/KG	0.004	0.02	0 0008	0.0072	0 0075	0 0072
36 DEFP	S S		44	-	MG/KG	1000	1000	0.0059	0 0065	0.0061	1000
36_DEEP	00×	ACETONE	44	10	MG/KG	0 007	0.27	0 023	0.024	0 036	0 024
36 DEEP	VOC	BENZENE	44	2	MG/KG	1000	0005	0.0058	0.0065	00061	0000
36 DEEP	VOC		44	_	MG/KG	1000	1000	00050	0.0000	0000	000
36 DEEP		METHYL ETHYL KETONE (2-BUTANONE)	44	0;	MG/KG	0.000	0035	0.00/2	00000	0.0050	300
36 DEEP	NOC.	METHYLENE CHLORIDE	44		MG/KG	000	100	2000	0000	2000	
36 DEEP		TOTAL 12-DICHLOROETHENE	44	\\	MG/KG	1000	0.057	00073	0.0081	0000	0000
36 OFF	Metal	ATTAININ	,	~	MG/KG	00111	11200	1150	11335	11466	1200
S SIPPOIL	Metal	ANIMONY	17	~	MG/KG	2	18	4	01	5	10
36 SURFSOIL	Metal	ARSENIC	17	11	MG/KG	ı	28	8	22	22	22
36 SURFSOIL	Metal	BARIUM	2	2	MG/KG	107	114	111	125	133	114
36 SURFSOIL	Metal	BERYLLIUM	17	7	MG/KG	03)	-	053	090	0 00	090
36 SURFSOIL	Metal	CADMIUM	17	4	MG/KG	0.84	4	0.89	1	-	-
36 SURFSOIL	Metal	CALCIUM	2	2	MG/KG	1760	1990	1875	2383	2801	8
36 SURFSOIL	Metal	CHROMIUM TOTAL	17	-	MG/KG	12	32	25	&	28	₽,
36 SURFSOIL	Metal	COBALT	2	2	MG/KG	7	^	/	,	,	\ \$
36 SURFSOIL	Metal	COPPER	1,	2,	MG/KG	7	88	33,	42	10001	25.53
36 SURFSOIL	Metal	NON	7 ::	, !	MG/KG	1300	000	neno,	1,000	200 2	35
36 SURFSOR	Metal	LEAD MESSINA	<u>`</u>	,	MG/KG	1740	Jan	1830	2160	2325	200
30 SURFSOIL	Meto	MANGANESE	2	,	MG/KG	418	\$	492	1033	959	8
36 SURFSOIL	Metal	MERCURY	17	2	MG/KG	900	200	0.052	1900	0.058	0.061
36 SURFSOIL	Meta	NICKEL	17	- 21	MG/KG	6	43	30	40	35	00
36 SURFSOIL	Metat	POTASSIUM	2	2	MG/KG	2020	2060	2040	2118	2166	2000
36 SURFSOIL	Metat	SELENIUM	17	9	MG/KG	62.0	2	0.81	_	_	-
36 SURFSOIL	Metal	SILVER	17	-	MG/KG	0.63	063	0.89	2	-	3
36 SURFSOIL	Metal	VANADIUM	2	2	MG/KG	26	36	8	27	27	8
36 SURFSOIL	Metal	ZINC	17	1,	MG/KG	57	300	125	153	146	3
36 SURFSOIL	OCPest	ALPHA-CHLORDANE	9	e	MG/KG	0.0016	1100	0015	1700	0.037	000
36 SURFSOIL	5000	DOE	_ ₹	7 4	MG/NG	00000	200	0050	0.37	010	0.23
SO SURFACIO	5000	Naci di Control di Con	2 4	,	MG/KG	0,000	200	71.0	036	0.46	036
S SUBSION		GAMMA-CHI ORDANE	2 92	9	MG/KG	0.0024	0 02	0.015	0.024	0 038	0 020
36 SURFSOIL	PAH	ANTHRACENE	17	_	MG/KG	0.058	0.058	0 18	0.23	0.50	0.058
36 SURFSOIL	PAH	BENZO(a)ANTHRACENE	17	4	MG/KG	0.042	0.14	0 17	0.22	0.50	0 14
36 SURFSOIL	PAH	BENZO(a)PYRENE	17	P	MG/KG	0.048	0 13	017	0.22	0 10	2
36 SURFSOIL	РАН	BENZOXD)FLUORANTHENE	17	7	MG/KG	0.056	021	0.18	0.22	0.50	021
36 SURFSOIL	PAH	BENZO(g,h I)PERYLENE	17	, ,	MG/KG	0.044	100	/ 0	0.23	910	5
36 SURFSOIL	PAH	BENZOKI)FLUORANTHENE	<u> </u>	4	MG/KG	0.00	7,0	200	0.21	200	2,5
36 SURFSOIL	HAH	CHRYSENE	17		MG/KG	110	200	200	0.00	0.20	200
34 GIDESOIL	HVI	INDENOCIO 2 2-2 ASSOBINE	17		MG/KG	0.045	10	210	0 22	610	5
IICS NOT SE	PAH		12	4	MG/KG	0.063	0.27	61.0	0.23	021	023
36 SURFSOIL	PAH	PYRENE	- 11	v	MG/KG	9800	031	0.20	0.22	0.22	0.22
36 SURFSOIL	SVOC	DIS(2-ETHYLHEXYL) PHTHALATE	91	٥	MG/KG	0.051	3	0.38	990	690	068
36 SURFSOIL	SVOC	CARBAZOLE	16	-	MG/KG	0.048	0.048	610	0.23	0.21	0 048
36 SURFSOIL	SVOC	DH-n-BUTYL PHTHALATE	16	2	MG/KG	0000	0 12	0 18	120	20	0 12
36 SURFSOIL	SVOC	PENTACHLOROPHENOL	91	-	MG/KG	031	011	0.10	0 10	0.10	010
36 SURFSOIL										4.4.4	

BOUSE
LOGENOISM
MAXDET
LOGENOISM
LOGENOISM
LOGENOISM
LOGENOISM
MAXDET
LOGENOISM
MAXDET
LOGENOISM
MAXDET
LOGENOISM
MAXDET
LOGENOISM
MAXDET
LOGENOISM
MAXDET
LOGENOISM
MAXDET
LOGENOISM
MAXDET
LOGENOISM
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET
MAXDET

TABLE H-1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation R1

	_							-		_	
		Number of	ō		Detected	Detected	Mean	UCL95	ncrss		
Area of Concern Class	Parameter Name	Analyses	Defects	Units	Concentration	Concentration	Value.	Lognormal	Normal	2	Basis
VOC	ACETONE	91	4	MG/KG	0000	0.27	0.035	0 029	0.000	0.059	LOGNORM
Š	BENZENE	91	_	MG/KG	0 005	0 002	0 0057	99000	0 0062	0 0000	MAXDET
XQC	CARBON DISULFIDE	16	1	MG/KG	0001	0001	0 0057	0 0074	0 0062	0 000 0	MAXDET
8	METHYL ETHYL KETONE (2-BUTANONE)	91	2	MG/KG	0.025	0 035	06000	1100	0013	1100	LOGNORM
χQ	METHYLENE CHLORIDE	16	3	MG/KG	0001	100	9000	00081	0 0067	0 0081	LOGNORM
XOC VOC	TRICHLOROETHYLENE (TCE)	16	-	MG/KG	0 005	0 005	0 00 00	19000	0 0000	0 0050	MAXDET
Metal	ALUMINUM	2	2	MG/KG	9650	15600	12625	60870	31409	15600	MAXDET
Metor	ANTIMONY	2	-	MG/KG	0.58	0.58	074	9	2	0.58	MAXDET
Meta	ARSENIC	2	2	MG/KG	8	12	10	30	22	12	MAXDET
Metor	BARIUM	2	2	MG/KG	45	103	8	112	119	103	MAXDET
Meta	BERYLLIUM	2	-	MG/KG	043	0.41	021	2 87E+39	-	041	MAXDET
Metor	CADMIUM	2	-	MG/KG	0.15	0 15	91.0	0.35	0.33	0 15	MAXDET
Metai	CALCIUM	2	2	MG/KG	986	1980	1483	37072	4621	1980	MAXDET
Metal	CHROMIUM TOTAL	5	2	MG/KG	13	91	15	24	52	91	MAXDET
Metal	COBALT	2	2	MG/KG	5	9	٥	12	11	ø	MAXDET
Metal	COPPER	2	2	MG/KG	14	61	16	31	30	61	MAXDET
Metal	NOW	2	2	MG/KG	16500	21300	18900	33854	34054	21300	MAXDET
Metal	lead	2	2	MG/KG	80	15	Ξ	149	33	15	MAXDET
Metal	MAGNESIUM	2	2	MG/KG	2380	2590	2485	2020	3148	2590	MAXDET
Metal	MANGANESE	2	2	MG/KG	334	499	417	1314	937	405	MAXDET
Metal	NICKEL	2	2	MG/KG	14	17	16	22	24	17	MAXDET
Metal	POTASSIUM	2	2	MG/KG	2060	2900	2480	6057	5132	2300	MAXDET
Metal	SELENIUM	2	-	MG/KG	_	_	7	4	3		MAXDET
Metal	VANADIUM	2	2	MG/KG	%	31	28	42	45	31	MAXDET
Metal	ZINC	2	2	MG/KG	39	છ	51	242	127	ಚ	MAXDET
OCPest	ALPHA-CHLORDANE	15	3	MG/KG	0.015	0 08	0 00086	0.021	0.018	0 021	LOGNORM
OCPest 1	000	15	9	MG/KG	0 0028	0017	0014	0.040	0 025	2100	MAXDET
OCPes	- DDE	15	٥	MG/KG	0.002	690	1800	20	/10	Z,	COSNORM
OCPes:	1001	15		MG/KG	0 0017	0.77	9800	0.81	918	220	MAXDEF
OCPest	DIELDRIN	15	67	MG/KG	0.016	0.58	0000	0.15	0.12	0.15	LOGNORM
OCPest	GAMMA-CHLORDANE	35	£ .	MG/KG	0015	1900	0,000	9100	0014	9100	LOGNOSM
PAH	ACENAPHIHENE	32	-	MG/KG	0.059	0.059	800	6600	0.054	ASO D	MAXDE
PAH	BENZO(o)ANTHRACENE	52	2	MG/KG	0 14	0.21	0.083	0 14	011	0 14	TOGNORM OCCUPANT
TAT S	BENZO(Q)PYRENE BENZOASSI (CONNECTION)	0 4	7 .	MG/KG	0.14	200	0000	0.14		210	LOGINO SAN
147	BENZO(D)FUOLIANIHENE	2 4		MG/KG	0.0	0.1	1200		000	0 14	MAYDET
PAH	BENZO/CVELLODANTHENE	2 5	- ^	MG/KG	0.14	91.0	0.078	0 13	11.0	0.13	LOGNORM MACHINE
PAH	CHRYSENE	15	2	MG/KG	0 14	0.2	0800	0 14	110	0 14	LOGNORM
PAH	FLUORANTHENE	5	60	MG/KG	008	0.37	010	021	0.15	021	LOGNORM
PAH	INDENO(1,2 3-c,d)PYRENE	15	,	MG/KG	0 12	0 12	9200	0 12	110	0 12	MAXDET
РАН	PHENANTHRENE	15	3	MG/KG	0.076	0.24	1600	0 17	0.13	0 17	LOGNORM
PAH	PYRENE	15	3	MG/KG	0 064	0.27	1600	0 17	0 13	0 17	LOGNORM
SVOC	DIS(2-ETHYLHEXYL) PHTHALATE	2	ļ	MG/KG	0.13	0.13	0 165	090	0.39	0 13	MAXDET
χQC	ACETONE	3	-	MG/KG	0.095	0.095	9900	184	0.14	0.095	MAXDET
χQC	CARBON DISULFIDE	3	-	MG/KG	0.002	0.002	0 0047	021	98000	0 0020	MAXDET
Š	METHYL ETHYL KETONE (2-BUTANONE)	၈	_	MG/KG	8000	6000	0000	0015	1100	06000	MAXDET
XQX	METHYLENE CHLORIDE	۳,	_ (MG/KG	0 002	0.002	0.0047	0.21	00086	0.0020	MAXDET
200	TETRACHLOROETHYLENE(PCE)	n (7	MG/KG	0000	0.073	0.028	34993/000	0.007	0.0/3	MAXIDE
200	IOIAL (2-DICHLOROEIHENE	9	- -	MG/KG	0.004	0.004	2000	/4000	000/3	0.000	MAXDE
200	Total Xylenes	۲,		MG/KG	000	000	0.0043	0110	0.0002	0.000	MAXDE
کار ا	IIIQUECHICIENE (ICE)	7	-	MG/KG	0,003	2000	neman neman	0.023	, mn	0.000	
Metal	ALUMINUM	-	-	MG/KG	2000	moci	1300E]	1300	MAALUEI
		CIOSS VOC VOC CARBON DISULFIDE VOC METHYLE ETHYL KETON VOC METHYLE ETHYL KETON VOC METHYLE ETHYLE RETONE VOC METHYLE ETHYLE RETONE Metod Metod Metod Metod Metod Metod Metod Metod Metod Metod Metod Metod CALCLUM Metod Metod CALCUM Metod CALCULM Metod CALCU	Class Parameter Name VOC REVERIO VOC METHYLENE CHORDE VOC METHYLENE CHORDE VOC METHYLENE CHORDE VOC TIRICH/LOROETHYLENE (TCE) Merical ALUSANIAM Merical ARSENC Merical ARSENC Merical ARSENLA Merical ARSENLA Merical CACLUM Merical CACLUM Merical CACLUM Merical CHROMILIM TORAL Merical CACLUM Merical CACLUM Merical REVILLA Merical CACLUM Merical REVENTIONA Merical RECOLUM Merical RECOLUM	Cidas Parameter Name Anactyses VOC GENZENE 16 VOC GERAZON 16 VOC METHYLENE CH-CORDE 16 VOC METHYLENE CH-CORDE 16 VOC METHYLENE CH-CORDE 16 VOC METHYLENE CH-CORDE 16 NOC METHYLENE CH-CORDE 16 NOC METHYLENE CH-CORDE 16 NOC METHYLENE CH-CORDE 2 Metol ARENAC 2 Metol ARENAC 2 Metol CACCHAM 3 Metol CACCHAM 4 Metol CACCHAM 4 Metol CACCHAM 4<	OCIOSS PATICALINE PATICALINE Analysis Delication VOC BENZENE 16 1 VOC BENZENE 16 3 VOC METHATI EHAT, EELONE (C-BUTANONE) 16 3 VOC METHATI EHAT, EELONE (C-BUTANONE) 16 3 VOC METHATIER CHARDE 16 3 VOC METHATIER CHARDE 16 3 VOC METHATIER CHARDE 2 2 Metor ANTIMONY 2 1 Metor ANTIMONY 2 1 Metor ANTIMONY 2 2 Metor ANTIMONY 2 2 Metor ANTIMONY 2 2 Metor ANTIMONY 2 2 Metor CACDALIAM 2 2 Metor CACDALIAM 2 2 Metor CACDALIAM 2 2 Metor CACDALIAM 2 2	Chass Potannele Name Analysis Delects Unith VOC ACETONE POTATIONE 10 4 MeSING VOC CAREDNE 10 1 MeSING VOC METHAT ETHAL RELONE (C.B.UIANONE) 10 2 MeGING VOC METHATE ETHAL RELONE (C.B.UIANONE) 10 2 MeGING VOC METHATE ETHAL RELONE (C.B.UIANONE) 10 2 1 MeGING VOC METHATERE CALCANOR (C.B.UIANONE) 2 1 MeGING MeGING Medical ALIUMANUM 2 1 MeGING 2 1 MeGING Medical ALIUMANUM 2 2 1 MeGING 1 MeGING Medical ALIUMANUM 2 2 2 1 MeGING Medical ALIUMANUM 2 2 2 1 MeGING Medical COLOMANI 2 2 2 1 MeGING Medical COLOMANI 2 2 2 1 MeGING	OCTOR TROCHORIED PROTONIE TO BOOK VOC CREADOR DOUBLINGE 10 1 MAGINE 0.003 VOC CREADOR DOUBLINGE 10 1 MAGINE 0.003 VOC CREADOR DOUBLINGE 10 1 MAGINE 0.003 VOC DOUBLINGE DOUBLINGE DOUBLINGE DOUBLINGE	OCKES MASSESSIME PROPRING Link CONCRIT CONTRICT C	CODE POTOMINA FORTINGE TOTOMINA ACTICNE FORTINGE CONCENTRATION OTATION ACTICNE CONCENTRATION CONCENTRAT	CASE AMONITY (MARCH CONTROLLAR) AMONTAN (MARCH CONTROLLAR) AMONTAN (MARCH CONTROLLAR) AMONTAN (MARCH CONTR	CVC CARRELLY PROTOGRAPH NAME Analyten Dakest bild Days of Content of Conte

Č

TABLE H-1

Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites

Memphis Depot Main Installation R1

				Number		Minimum	Maximum	Arithmetic	90,01	10 C		
Area of Concern	Class	Parameter Name	Analyses	Defects	- Figure 1	Concentration	Concentration	Value*	Lognormal	Normal	EPC	Basis
59 SURFSOIL	Metal	ARSENIC	-	-	MG/KG	12	12	12	0		12	MAXDET
59 SURFSOIL	Metol	BARIIM	_	_	MG/KG	103	103	103	0		103	MAXDET
59 SURFSOIL	Metal	CALCIUM	-	-	MG/KG	986	986	986	0		986	MAXDET
S9 SURFSOIL	Metal	CHROMIUM, TOTAL	_	-	MG/KG	16	91	16	0		16	MAXDET
59 SURFSOIL	Metal	COBALT	1	-	MG/KG	6	9	9	0		9	MAXDET
59 SURFSOIL	Metal	COPPER	-	-	MG/KG	19	6	19	0		δί	MAXDET
59 SURFSOIL	Metal	IRON	-	-	MG/KG	21300	21300	21300	0		21300	MAXDET
59 SURFSOIL	Metal	LEAD	_	-	MG/KG	15	15	15	0		2	MAXDET
59 SURFSOIL	Metal	MAGNESIUM	-	-	MG/KG	2590	2590	2590	0		2590	MAXDE
59_SURFSOIL	Metal	MANGANESE	-	-	MG/KG	499	400	499	٥		8	MAXDET
59 SURFSOIL	Metal	NICKEL	-	-	MG/KG	17	17	17	0		17	MAXDET
59 SURFSOIL	Metal	POTASSIUM	-	-	MG/KG	2060	2060	2060	٥		2060	MAXDET
59 SURFSOIL	Metal	VANADIUM	-	-	MG/KG	31	31	31	0		31	MAXDET
SO SURFSOIL	Metof	ZNC	-	-	MG/KG	જ	જ	જ	٥		83	MAXDEL
59 SURFSOIL	OCPest	ALPHA-CHLORDANE	10	F)	MG/KG	0015	0.08	0012	9 0	0.027	2830	WAXDE
59 SURFSOIL	OCPest	DDD	2	°	MG/KG	0 0028	7100	0020	0 4	003/	100	MAXDE
59 SURFSOIL	OCPest	DDE	2	٥	MG/KG	0.002	690	210		0.50	200	MAXUE
59 SURFSOIL	OCPest	DDT	0	8	MG/KG	0 0017	077	0 13	-1	0.28	//0	MAXDEI
59 SURFSOIL	OCPest	DIELDRIN	10	8	MG/KG	0016	0.58	0 07398	3	0 18	92.5	MAXDET
59 SURFSOIL	OCPest	GAMMA-CHLORDANE	0	8	MG/KG	0.015	1900	66000	9600	0.02	1000	MAXDEL
59 SURFSOIL	РАН	ACENAPHTHENE	01	-	MG/KG	0.059	650.0	9900	0.11	2600	6000	MAXDET
59 SURFSOIL	РАН	BENZC(a)ANTHRACENE	01	7	MG/KG	0 14	0.21	0.088	0.50	0 0	2 2	TO COMP
59 SURFSOIL	РАН	BENZO(a)PYRENE	2	2	MG/KG	0 14	2.0	/and	0.70	200	0.50	CONCOR
59 SURFSOIL	PAH	BENZO(b)FLUORANTHENE	01	7	MG/KG	0 13	0.5	0.080	2 5	5 0 0	200	CGNORM
S9 SURFSOIL	PAH	BENZO(g,h)PERYLENE	01	-	MG/KG	0.1	10	00/2	0 13	010	3	MAXDE
59 SURFSOIL	PAH	BENZO(k)FLUORANTHENE	01	2	MG/KG	0 14	0 10	0.083	8 0	210	0 2	MAXUE
59 SURFSOIL	PAH	CHRYSENE	2 :	7	MG/KG	0.00	200	0.10	07.0	2 2	250	COSNORA
59 SURFSOIL	HAH	FLUCKANIMENE	2	7-	MG/KG	000	0.10	1800	25	5	21.0	MAXDET
SO SURFICILI	HAH	INDENO(1.2.5-C.0)PYKENE	2 5	- 6"	MG/KG	0.076	200	010	0.00	0.15	029	MAXDET
S SURFACIL	E .	PHEIN FLANCE OF THE PRESENCE O	2	,	ON ON	0.000	200	200	92.0	5	25	MONUCO
SO SORFICIE	HAT S	ACETONE	3,	7-	MQ/KG	0 005	0.095	0.003	010	10	0005	MAXDET
FO CHDECOL		CADRON DISH BIDE	,	-	MG/KG	0000	0 002	0 0040	12	0 0 1 7	0 0020	MAXDET
So Supesoil	XOX	METHYL ETHYL KETONE (2-BUTANONE)	2	-	MG/KG	6000	6000	06000	06000	600.0	00000	MAXDET
S9 SURFSOIL	NOC	METHYLENE CHLORIDE	2	-	MG/KG	0 002	0 002	0 0040	12	0.017	0.0020	MAXDET
59 SURFSOIL	NOC	TETRACHLOROGIHYLENE(PCE)	2	2	MG/KG	0000	0.073	0 039	1 22E+23	0.56	0.073	MAXDET
59 SURFSOIL	voc	TOTAL 1 2-DICHLOROETHENE	2	-	MG/KG	0 004	0.004	0 005	0016	1100	0 0040	MAXDET
59 SURFSOIL	χQC	_	2	-	MG/KG	0003	0003	0 0045	110	0.004	0.0030	MAXDEL
65 DEEP	GenChem	_	2	2	MG/KG	203000	000859	2000	1082394	CESA001	oneco V	MAXDEL
65 DEEP	Genchem	Т	,	,	PHINIT	0	0	0	0	•	0	MAXDET
00 DEF	Georgan	TOTAL CIRCANIC CARRON	2	, ~	MG/KG	13000	15700	14350	21295	22874	15700	MAXDET
45 DEFP	GeoPhys	т	2	T	MEQ/100G	3	3	6	4	4	3	MAXDET
65 DEEP	GeoPhys	SIEVE NO 100 PERCENT PASSING	2	2	PERCENT	42	42	42	43	44	42	MAXDET
65 DEEP	GeoPhys	SIEVE NO 20, PERCENT PASSING	2	2	PERCENT	7.5	85	8	짇	113	85	MAXDET
65 DEEP	GeoPhys	SIEVE NO 200 PERCENT PASSING	2	2	PERCENT	34	37	35	41	44	37	MAXDET
65 DEEP	GeoPhys	SIEVE NO 200L PERCENT PASSING	2	2	PERCENT	33	36	35	4	44	36	MAXDET
65 DEEP	GeoPhys	SIEVE NO 40, PERCENT PASSING	2	2	PERCEN!	88	99	62	81	88	8	MAXDET
65 DEEP	GeoPhys	SIEVE NO 80 PERCENT PASSING	2	2	PERCENT	45	45	45	45	45	45	MAXDET
65 DEEP	Metal	ALUMINUM	6	6	MG/KG	3740	13300	689	858874	16201	13300	MAXDEI
65 DEEP	Metal	ANTIMONY		2	MG/KG	6/0	7	- -	40,	2,5	,	MAXDE
65 DEEP	Metal	Arsenic	3	F	MG/KG	4	14	2	404		<u> </u>	MAAUE

_

P\147543\AppHdata xIs\APPHDATA

TABLE H-1
Data Summaries for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main installation RI

				Number		Minimum	Maximum	Arithmetic				
			Number of	5		Detected	Detected	Mean	UC195	OCL95		
Area of Concern	Class	Parameter Name	Analyses	Detects	Units	Concentration	Concentration	Vatue	Lognormai	Normal	EPC	Basis
65 DEEP	Metal	BARIUM	3	3	MG/KG	44	121	82	686	147	121	MAXDET
65 DEEP	Metal	BERYLLIUM	3	3	MG/KG	0.27	0.47	0.35	0.80	0.53	0.47	MAXDET
65 DEEP	Metal	CADMIUM	3	3	MG/KG	0 12	4	2	1 61E+13	\$	4	MAXDET
65 DEEP	Metal	CALCIUM	3	3	MG/KG	1620	144000	93207	2 87E+32	227189	144000	MAXDET
65 DEEP	Metal	CHROMIUM TOTAL	3	3	MG/KG	10	30	17	427	36	30	MAXDET
65 DEEP	Metal	COBALT	3	3	MG/KG	2	7	5	81	8	7	MAXDET
65_DEEP	Metal	COPPER	3	3	MG/KG	10	21	16	70	25	21	MAXDET
65 DEEP	Metal	NON	m	3	MG/KG	4410	00661	10863	2343608	24454	00%1	MAXDET
65 DEEP	Metol	LEAD	6	၉	MG/KG	15	86	52	169638	123	86	MAXDET
65 DEEP	Metal	MAGNESIUM	m	3	MG/KG	2180	0026	7157	7600352	14423	9700	MAXDET
65 DFFP	Metal	MANGANESE	67	3	MG/KG	76	28	266	496148	672	2	MAXDET
AS DEFP	Metal	MERCHEY	67	2	MG/KG	0.03	0.05	000	0.080	0.057	0.05	MAXDFT
AS DEED	Z ta W	NICKE	-	67	MG/KG		41	=	152	2	2	MAXDET
AS DEED	Metal	DOTASHIM			MG/KG	ROR	282	1353	07870	7070	220	MAXDET
AS DEEP	Metal	SEENITM	6		MG/KG	-	-		3	·	-	MAXDET
AS DEEP	Metal	Milidos	6	-	MG/KG	70%	200	147	126195	354	700	MAXDET
66 DFFP	Metal	VANADIUM	6	67	MG/KG	60	26	15	389	3.	28	MAXDET
65 DFFP	Metal	SNZ	14	14	MG/KG	28	979	28	213	225	213	LOGNORM
AS DFFP	OCPest	JOG	_	,	MG/KG	0000	,	2	28412	4	,	MAXDET
65 DEEP	OCPest	IOC	7	7	MG/KG	0 0057	10	က	54178	5	00	MAXDET
65 DEEP	OCPest	DIELDRIN	7	3	MG/KG	100	0.83	0.55	42	960	0.83	MAXDET
65 DEEP	ORG	Total Polynuclear Aromatic Hydrocarbons	8	14	MG/KG	0 265	723	124	69088	202	723	MAXDET
65 DEEP	HAY		8	3	MG/KG		9	2	2	2	2	LOGNORM
65 DEEP	PAH	ACENAPHTHYLENE	R	-	MG/KG	10	01	2	5	9	2	LOGNORM
65 DEEP	PAH	ANTHRACENE	8	8	MG/KG	0 048	12	2	11	3	-	LOGNORM
45 DEEP	PAH	9ENZO(d)ANTHRACENE	23	12	MG/KG	0.085	55	10	278	16	55	MAXDET
65 DEEP	PAH	BENZO(a)PYRENE	20	12	MG/KG	0.081	29	12	370	61	29	MAXDET
65 DEEP	PAH	BENZO(b)FLUORANTHENE	20	12	MG/KG	0.098	99	12	406	20	65	MAXDET
65_DEEP	PAH	BENZO(g h I)PERYLENE	20	12	MG/KG	0.062	48	æ	214	14	48	MAXDET
65_DEEP	PAH	BENZO(X)FLUORANTHENE	8	12	MG/KG	0.073	7	12	456	20	71	MAXDET
65 DEEP	РАН	CHRYSENE	R	22	MG/KG	0.05	88	13	88	21	8	MAXDET
65 DEEP	РАН	FLUORANTHENE	R	14	MG/KG	9000	130	21	1204	8	051	MAXDET
65 DEEP	PAH	FLUORENE	2	9	MG/KG	0.82	52	-	4	2	4	LOGNORM
65 DEEP	PAH	INDENO(123-c d)PYRENE	8	72	MG/KG	0.056	44	Ď,	208	7,	44	MAXDE
65 DEEP	PAH	NAPHTHALENE	ଛ :	- !	MG/KG	990	990	-	3	2	90	MAXDET
65 DEEP	PAH	PHENANTHRENE	8	2	MG/KG	0.089	19	6	135	\$ 2	10	MAXDE
S DEF	TA S	PYRENE	2	7 .	MG/KG	800	25	2 3	800	₹,	120	MAXDE
99 DEEP		DISC-EINTHEAYL) PHIMALAIE	2 2	,	MS/KG	9000	150	0 /4	1		100	MAYOFT
AS DEED		CLO-RITOR DHITAN ATE	2 5	,	MG/KG	0000	4500	72.0	2 6	,	\$200	MAXDET
AS DEFP	Š	DIBENZOSIIRAN	7	~	MG/KG	25.0	2	800	6	2	2	MAXDET
65 DEEP	202	BENZENE		2	MG/KG	1000	0.004	0 0035	8	0 0074	0 0040	MAXDET
65 DEEP	200	BROMOMETHANE	6	-	MG/KG	0 002	0 005	0 0042	0 078	0 0074	0 0020	MAXDET
65 DEEP	202	CARBON DISULFIDE	m	-	MG/KG	1000	1000	0 0038	23	08000	0.000	MAXDET
65 DEEP	VOC	ETHYLBENZENE	3	1	MG/KG	0.006	9000	0.0055	99000	0.0063	09000	MAXOET
65 DEEP	NOC	METHYL ETHYL KETONE (2-BUTANONE)	۳)	2	MG/KG	9000	0.024	0.012	7	0030	0.024	MAXDET
65 DEEP	VOC	TOLUENE	6	-	MG/KG	2100	0.012	0.0075	0.065	0014	0.012	MAXDET
65 DEEP	VOC	Total Xylenes	6	-	MG/KG	6000	6000	0 0065	0017	0000	6000	MAXDEI
65 SURFSOIL	GenChem	ALKALINITY TOTAL (AS CaCO3)	2	2	MG/KG	503000	928000	580500	1082394	1069835	658000	MAXDET
65 SURFSOIL	GenChem		2	2	PERCENT	ro.	9	5	٥	9	9	MAXDET
65 SURFSOIL	GenChem	Ha	~	2	PH UNITS	6	6	6	6	٥	٥	MAXDET
65 SURFSOIL	GenChem	Genchem TOTAL ORGANIC CARBON	2	2	MG/KG	13000	15700	14350	21295	22874	15/00	MAXDEL

6 E

TABLE H:1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main installation R!

			A so de se	Number		Minimum	Maximum	Arithmetic	10105	10.105		
Area of Concern	Class	Parameter Name	Analyses	Defects	Units	Concentration	Concentration	Value*	Lognormal	Normal	EPC	Basis
65 SURFSOIL	GeoPhys	CATION EXCHANGE CAPACITY	2	2	MEG/100G	6	3	3	4	4	3	MAXDET
65 SURFSOIL	GeoPhys	SIEVE NO 100 PERCENT PASSING	2	2	PERCENT	42	75	42	43	44	42	MAXDET
65 SURFSOIL	GeoPhys	SIEVE NO 20, PERCENT PASSING	2	2	PERCENT	22	98	80	절	113	85	MAXDET
65 SURFSOIL	GeoPhys	SIEVE NO 200 PERCENT PASSING	2	7	PERCENT	34	37	35	41	44	37	MAXDET
65 SURFSOIL	GeoPhys	SIEVE NO 2001, PERCENT PASSING	2	2	PERCENT	33	3%	35	41	44	88	MAXDET
65 SURFSOIL	GeoPhys	SIEVE NO 40 PERCENT PASSING	2	2	PERCENT	58	93	62	81	89	8	MAXDET
65 SURFSOIL	GeoPhys	SIEVE NO 80 PERCENT PASSING	2	2	PERCENT	45	45	45	45	45	45	MAXDET
65 SURFSOIL	Metal	ALUMINUM	3	3	MG/KG	3740	13300	6997	858874	16201	13300	MAXDET
65 SURFSOIL	Metal	ANTIMONY	3	- 2	MG/KG	0.73	2	-	41	3	2	MAXDET
65_SURFSOIL	Metal	ARSENIC	3	3	MG/KG	4	14	8	484	17	14	MAXDET
65_SURFSOIL	Metal	BARIUM	e	3	MG/KG	44	121	82	686	147	121	MAXDET
65 SURFSOIL	Metal	BERYLLIUM	60	က	MG/KG	0.27	0.47	0.35	080	0.53	0.47	MAXDET
65_SURFSOIL	Metal	CADMIUM	6	9	MG/KG	0 12	4	2	1616+13	ιΩ	4	MAXDET
65 SURFSOIL	Metal	CALCIUM	3	3	MG/KG	1620	144000	93207	2 87E+32	227189	144000	MAXDET
65 SURFSOIL	Metal	CHROMIUM, TOTAL	3	၉	MG/KG	10	30	17	427	ક	30	MAXDET
65 SURFSOIL	Metal	COBALT	3	3	MG/KG	2	7	5	18	80 3	7	MAXDET
65 SURFSOIL	Metal	COPPER	e	6	MG/KG	2	21	16	20	25	21	MAXDEI
65 SURFSOIL	Metal	RON	3	9	MG/KG	4410	19900	10863	2343608	24454	19900	MAXDET
65 SURFSOIL	Metal	LEAD	3	3	MG/KG	15	86	52	169638	123	8	MAXDET
65 SURFSOIL	Metal	MAGNESIUM	3	6	MG/KG	2180	0026	7357	7600352	14423	9700	MAXDET
65 SURFSOIL	Metal	MANGANESE	3	3	MG/KG	76	ጀ	566	496148	672	22	MAXDET
65 SURFSOIL	Metal	MERCURY	3	2	MG/KG	003	0.05	0 040	0.080	0.057	0000	MAXDET
65 SURFSOIL	Metal	NICKEL	3	9	MG/KG	ş	92	=	191	ρĹ	9	MAXDET
65_SURFSOIL	Metal	POTASSIUM	3	3	MG/KG	808	2200	1353	24860	2727	2230	MAXDET
65 SURFSOIL	Metal	SELENIUM	3	-	MG/KG	-	-	-	6	2		MAXDEI
65 SURFSOIL	Metal	SODIUM	3	_	MG/KG	294	707	147	126195	384	204	MAXDET
65 SURFSOIL	Metal	VANADIUM	3	6	MG/KG	8	26	15	389	31	56	MAXDET
65 SURFSOIL	Metal	ZINC	0	0	MG/KG	75	646	167	286	208	, ,	LOGNORM
65 SURFSOIL	OCPest	DDE	,	/	MG/KG	7000	,	2	28412	4	\!	MAXUE
65 SURFSOIL	OCPest	DDI	_	_	MG/KG	0.0057	0	6	341/8	c		MAXDE
65 SURFSOIL	OCPest	DIELDIRIN	_	6	MG/KG	(00	0.83	3	42	860	0.83	MAXUE
65 SURFSOIL	ORG ORG	Total Polynuclear Aromatic Hydrocarbons	91	13	MG/KG		723	8	,11/3	70,	57/	MAXDE
65 SURFSOIL	PAH	ACENAPHTHENE	9	3	MG/KG	_ !	٥	2	9 1	7) (۰	MAXUE
65 SURFSOIL	PAH	ACENAPHHYLENE	9 :		MG/KG	000	2 5	7 6	75	2	, 61	MAYDET
SS SURFICIE	TAY C	ANIHIKACENE BENJOCHANIELDA OENE	0 1	2 0	MG/KG	0.046	71	٠ ٢	OU8	, 5	7 5	MAXDET
OS SOIGEON	DVC.	BENZOCOONERING	2 4	20	MG/KG	0.081	29	35	1146	24	29	MAXDET
65 SURFSOIL	PAH	BENZO(b)FLUORANTHENE	9	12	MG/KG	8600	65	15	1230	25	99	MAXDET
65 SURFSOIL	PAH	BENZO(g,h,n)PERYLENE	91	15	MG/KG	0.062	48	ιι	749	17	43	MAXDET
65 SURFSOIL	PAH	BENZO(K)FLUORANTHENE	91	12	MG/KG	0.073	17	15	1493	24	71	MAXDET
65 SURFSOIL	PAH	CHRYSENE	9	12	MG/KG	011	89	91	1179	25	88	MAXDET
65 SURFSOIL	PAH	FLUORANTHENE	91	13	MG/KG	0.26	130	%	1824	42	33	MAXDET
65 SURFSOIL	PAH	FLUORENE	91	3	MG/KG	0.82	5	2	Ŷ	2	20	MAXDET
65 SURFSOIL	PAH	INDENO(1,2,3-c, d)PYRENE	91	12	MG/KG	0.056	44	-	1014	17	44	MAXDET
65 SURFSOIL	PAH	NAPHTHALENE	9]	-	MG/KG	900	980	2	5	2	80	MAXDET
65 SURFSOIL	ран	PHENANTHRENE	9	12	MG/KG	0 18	19		227	18	٦	MAXDE
65 SURFSOIL	РАН	PYRENE	- 16	13	MG/KG	0.2	22	23	1289	37	130	· MAXDET
65 SURFSOIL	SVOC	bis(2-ETHYLHEXYL) PHTHALATE	0	3	MG/KG	0)	031	-	5	2	031	MAXDET
65 SURFSOIL	SVOC	CARBAZOLE	01	7	MG/KG	0.048	12	2	149	2	2 2	MAXDEI
65 SURFSOIL	SVOC	DI-n-BUTYL PHTHALATE	CI S	,	MG/KG	90020	0.050	-	,	ž	800	MAXDE
65 SURFSOIL	SVOC	DIBENZOFURAN	، و	2	MG/KG	20 00	2000	10000	æ e	2002	2 200	MAXDE
65 SURFSOIL	XOC	BENZENE	, -	2	MG/KG	1000	U UUVA	0.0035	0	0.0074	n total	MAAUEL

٠.

TABLE H-1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation RI

				Number	Minimum	Maximum	Arithmetic	3			
Area of Concern	Closs	Parameter Name	Anglyses	Detects Units	Concentration	Concentration	Watue,	Lognormal	Nomol	O.	F. S. S. S. S. S. S. S. S. S. S. S. S. S.
65 SURFSOIL	Ş	BROMOMETHANE	9	2	0 002	0 002	0.0042	0.078	0.0074	0000	MAXDET
65 SURFSOIL	O O O	CARBON DISULFIDE	6) MG/KG	000	0001	0.0038	23	0.0080	1000	MAXDET
65 SURFSOIL	S S S	ETHYLBENZENE	65	1 MG/KG	9000	9000	0 0055	99000	0000	900	MAXDET
65 SURFSOIL	VOC	METHYL ETHYL KETONE (2-BUTANONE)	3	2 MG/KG	9000	0.024	0012	7	0 030	0 024	MAXDET
65 SURFSOIL	voc	TOLUENE	9	1 MG/KG	0012	0012	0.0075	0.065	0014	0012	MAXDET
65 SURFSOIL	VOC	Total Xylenes	3	1 MG/KG	6000	6000	0 00065	7100	0000	0 000	MAXDET
66 DEEP	Metal	ALUMINUM	2	2 MG/KG	5120	1000	8060	388279	26623	11000	MAXDET
66 DEEP	Metal	ANTIMONY	2	MG/KG	3	6	2	17102	8	3	MAXDET
66 DEFP	Metal	ARSENIC	2	2 MG/KG	~	4	2	7325	2	4	MAXDET
∞ DEEP	Metai	BARIUM	2	2 MG/KG	8	15	128	488	301	152	MAXDET
66 DEEP	Metat	BERYLLIUM	2	2 MG/KG	0.23	0.26	0.25	0.31	034	026	MAXDET
& DEEP	Metal	CALCIUM	2	2 MG/KG	1830	33800	17815	8 97E+28	118744	33800	MAXDET
∞ DEEP	Metal	CHROMIUM, TOTAL	2	2 MG/KG	14	23	19	82	45	23	MAXDET
66 DEEP	Metal	COBALT	2	2 MG/KG	5	17	=	258125	40	17	MAXDET
66 DEEP	Metal	COPPER	2	2 MG/KG	92	39	8	1010	83	8	MAXDET
& DEEP	Metal	IRON	2	2 MG/KG	0616	24700	16945	11190493	65910	24700	MAXDET
& DEEP	Metal	ILEAD	2	2 MG/KG	=	67	æ	3 60E+11	217	67	MAXDET
≪ DEEP	Metal	MAGNESIUM	2	2 MG/KG	2050	3630	2840	24878	7828	3630	MAXDET
∞ DEEP	Metal	MANGANESE	2	2 MG/KG	40	242	146	2958561894	757	242	MAXDET
≪ DEEP	Metal	NICKEL	2	2 MG/KG	91	8	18	&	31	8	MAXDET
66 DEEP	Metal	POTASSIUM	2	2 MG/KG	401	835	618	21798	1988	835	MAXDET
∞ DEFP	Metal	MUIOOS	2	1 MG/KG	152	152	3	219	240	152	MAXDET
66 DEEP	Metal	VANADIUM	2	2 MG/KG	17	27	22	110	S	27	MAXDET
66 DEEP	Metal	ZINC	2	2 MG/KG	83	ষ্ট	302	9.24E+15	1812	22	MAXDET
66 DEEP	OCPest tse	000	2	1 MG/KG	0 12	0.12	0062	3 39E+28	0.43	0 12	MAXDET
G DEEP	OCPest	DDE	2	1 MG/KG	0.22	0.22	110	151E+41	0 70	022	MAXDET
& DEFP	OCPest	DDI	2	MG/KG	0.57	0.57	0.50	2 60E+65	2	0.57	MAXDET
S DEEP	HAH.	BENZO(0)ANIHRACENE	2 5	MG/KG	ę,	s.	20 0	D 94	- (0.04	LOG-NORM
8 OFF	HA.	BENZO(G)PYRENE	2 5	MG/KG	٥	٥	270		2	-	COGNORM
8	H	BENZO(D)FLUCIONIMENE	2 .	MG/KG	0		600	,	7	,	CONCINE CONCINCINE CONCINE CONCINE CONCINE CONCINE CONCINE CONCINE CONCINE CON
8 DEF	LAN	SENZO(Q n JPEKYLENE SENZONAE HODANITUENE	2 52	MG/KG	,	,	9/0		7	-	
3 3	HVA	DENKOANTOORONGHEINE	12 2	1 MC/KG	٥	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ð		,	-	NO CNO
66 DFFP	PAH	FLUORANTHENE	12	3 MG/KG	0.061	71	1		v e		MacNec
66 DEEP	PAH	INDENO(123-c d)PYRENE	12	1 MG/KG	9	٥	120) -	2	-	LOGNORM
OEEP	PAH	PHENANTHRENE	12	3 MG/KG	0.052	9	190	-	2	-	LOGNORM
66 DEEP	PAH	PYRENE	12	3 MG/KG	0.044	12	-	3	3	3	LOGNORM
69 DEEP	SVOC	bis(2-ETHYLHEXYL) PHTHALATE	12	2 MG/KG	0.046	S.	-	P	2	4	LOGNORM
& DEEP	SVOC	CARBAZOLE	12	1 MG/KG	2	2	0.32	0.42	051	0.42	LOGNORM
& DEEP	Soc	Di-n-Butyl PhthALATE	12	MG/KG	0.044	0 044	0.65	5	2	0.044	MAXDET
44 DEEP	3	CARBON EIRACHLORIDE	2 5	MG/KG	1000	100	8000	0,000	/000	0000	
00 OCET	35	METHY: ETAY: KETONE (2-BLITANONE)	2 5	NG/KG	7000	0.045	0.0073	0001	0000	O OOR	MODING
45 OFFP	Ş	METHYL ISORITYL KETONE (4-METHYL-2-PENTANONE)	0	MG/KG	9000	9000	0,000	9000	0000	0000	MAXDET
86 DEEP	200		02	3 MG/KG	0001	9000	0.0052	96000	00064	0 00040	MAXDET
66 DEEP	VOC	TETRACHLOROETHYLENE(PCE)	10	1 MG/KG	0004	0000	0 00005	990000	00065	0 0040	MAXDET
66 SURFSOIL	Metal	ALUMINUM	1	1 MG/KG	5120	5120	5120	0		5120	MAXDET
66 SURFSOIL	Metal	ANTIMONY	1	1 MG/KG	3	3	9	0		3	MAXDET
66 SURFSOIL	Metal	ARSENIC	-	1 MG/KG	4	4	4	0		4	MAXDET
66_SURFSOIL	Metal	BARIUM	-	1 MG/KG	8	8	8	0		8	MAXDET
66 SURFSOIL	Metol	BERYLLIUM	_	1 MG/KG	0.23	0.23	0.23	٥		023	MAXDEL
8 SURFSOIL	Metal	ICALCIUM		1 MG/KG	33800	33800	33800	0		33800	MAXDEI

MAXDET LOGNORM MAXDET NORM MAXDET

8

Metal

P1147543tAppHdata xistAPPHDATA

UCL95 Normal 0.0071 0.0064 0.0074 0.0069 0.57 Lognormal 0.0076 0.031 0.0055 0.0065 0.0091 UCL9S 54866 316 983 983 8 8 8 2 080 Mean Votue 0.0061 0.0061 0.0059 0.0056 77300 88 050 056 2020 21 21 9 3630 242 5 5 5 E 022 Concentration Maximum Detected 10100 0 K K 022 6280 33 7512121212 Concentration Detected 0078 MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MEO/100G PERCENT PERCENT PERCENT MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG PERCENT MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG PH UNITS MG/KG MG/KG ş Delects Number 0 Number of Analyses METHYL ETHYL KETONE (2-BUTANONE)
METHYL ISOBUTYL KETONE (4-METHYL-2-PENIANONE)
METHYLENE CHLORIOE
IETRACHLOROETHYLENE(PCE)

TALKALINITY TOTAL (AS COCO3)

TMOSTURE PERCENT Data Summaries for all Detected Chemicals for All Functional Units and Surrogate Sites Parameter Name GeoPhys CATION-EXCHANGE CAPACITY
GeoPhys SIEVE NO 100 PERCENT PASSING
GeoPhys SIEVE NO 20 PERCENT PASSING
GeoPhys SIEVE NO 200 PERCENT PASSING
GeoPhys SIEVE NO 200L, PERCENT PASSING
GeoPhys SIEVE NO 40 PERCENT PASSING
GeoPhys SIEVE NO 40 PERCENT PASSING TOTAL ORGANIC CARBON BENZO(b)FLUORANTHENE BENZO(g h J)PERYLENE BENZO(k)FLUORANTHENE INDENO(1 2 3-c, d)PYRENE PHENANTHRENE BENZO(o)ANTHRACENE CARBAZOLE DI-n-BUTYL PHTHALATE CALCIUM CHROMIUM TOTAL COBALT CHROMIUM TOTAL MANGANESE NICKEL POTASSIUM ARSENIC BARIUM BERYLLIUM CADMIUM ALUMINUM GenChem GenChem GenChem GenChem Metal Metal Metal Metal Metal Memphis Depot Main Installation RI Area of Concern

MAXDET MAXDET MAXDET MAXDET

MAXDET

2

MAXDET MAXDET MAXDET MAXDET MAXDET

MAXDET

39

TABLE H-1

MAXDET MAXDET MAXDET MAXDET MAXDET

0.004 0.006 0.004 0.004 0.004 0.004

MAXDET NORM MAXDET MAXDET MAXDET

88

2 2 2

6 6

L

TABLE H-1

Data Summares for all Detected Chemicals for All Functional Units and Surrogate Sites

Memphis Depot Main Installation RI

				Number	Minimum	Maximum	Arithmetic				
Ared of Concern	Closs	Parameter Name	Number of Anglyses	of Detects Units	Concentration	Concentration	Mean Value	UCL95	Normal	0	Bosis
77 DEEP	Metal	COPPER	┿	2	10	52	92	25	3)	æ	OGNORM
77_DEEP	Metal	IRON	-		18300	18300	18300	0		18300	MAXDET
77_DEEP	Metal	(EAD	13	13 MG/KG	12	11	26	37	35	37	LOGNORM
77_DEEP	Metal	MAGNESIUM	_	1 MG/KG	2500	2290	2290	0		2290	MAXDET
77_DEEP	Metal	MANGANESE	1	1 MG/KG	552	552	552	0		552	MAXDET
77_DEEP	Metal	MERCURY	13	4 MG/KG	100	0 14	900	010	900	010	LOGNORM
77 DEEP	Metal	NCKEL	13	13 MG/KG	5	46	24	37	31	37	LOGNORM
77_DEEP	Metal	POTASSIUM	-	1 MG/KG	626	939	636	0		939	MAXDET
77_DEEP	Metal	SELENIUM	13	1 MG/KG		1	0.56	1	0.73	l .	LOGNORM
77_DEEP	Metal	NOIDOS	-	1 MG/KG	192	192	192	0		192	MAXDET
77_DEEP	Metal	VANADIUM		1 MG/KG		25	25	0		25	MAXDET
77 DEEP	Metal	ZINC	13	13 MG/KG	8	121	76	%	68	68	NORM
77 DEEP	OCPest	ALPHA-CHLORDANE	01	2 MG/KG	0 0027	0 024	0015	0 18	0 033	0 024	MAXDET
77_DEEP	OCPest	300	10	3 MG/KG	0013	0.077	0 036	0 79	1/00	0 077	MAXDET
77_DEEP	OCPest	loor	10	5 MG/KG	0.0022	0.26	1200	8	0.13	0.26	MAXDET
77_DEEP	OCPest	DIELDRIN	10	2 MG/KG	0 032	0.26	0.051	2	110	0.26	MAXDET
77_DEEP	OCPest	GAMMA-CHLORDANE	10	2 MG/KG	0 0036	004	0.017	0.25	0.035	0.04	MAXDET
77_DEEP	PAH	ACENAPHTHENE	13	3 MG/KG	0 086	Ą	0.76	2	ı	2	LOGNORM
77 DEEP	PAH	ANTHRACENE	13	3 MG/KG	014	7	0.07	2	2	2	LOGNORM
77_DEEP	РАН	BENZO(0)ANTHRACENE	13	5 MG/KG	0 086	26	4	31	8	26	MAXDET
77 DEEP	PAH	BENZO(G)PYRENE	13	5 MG/KG	011	26	4	30	8	56	MAXDET
77_DEEP	РАН	BENZO(D)FLUORANTHENE	13	5 MG/KG	0 13	26	4	59	8	26	MAXDET
77_DEEP	РАН	BENZO(g h I)PERYLENE	13	4 MG/KG	0.1	18	3	19	7	18	MAXDET
77_DEEP	РАН	BENZO(k)FLUORANTHENE	13	5 MG/KG	011	20	9	23	7	20	MAXDET
77 DEEP	РАН	CHRYSENE	13	5 MG/KG	0 12	88	V	35	٥	30	MAXDET
77 DEEP	РАН	FLUORANTHENE	13	7 MG/KG	021	19	80	137	71	67	MAXDET
77 DEEP	PAH	FLUORENE	13	3 MG/KG	0.061	3	0.64	2	-	2	LOGNORM
77_DEEP	РАН	INDENO(1,2,3-c,d)PYRENE	13	4 MG/KG	0.093	17	8	18	9	17	MAXDET
77 DEEP	ЬАН	PHENANTHRENE	13	6 MG/KG	0.1	æ	S	49	2	8	MAXDET
77_DEEP	PAH	PYRENE	13	7 MG/KG	02	\$2	^	6	14	8	MAXDET
77 DEEP	3,000	BENZYL BUTYL PHTHALATE	<u>.</u>	1 MG/KG	0077	200	-	5	2	0.077	MAXDET
77 DEEP	3000	DISCE-EIHYLHEXYL) PHIHALAIE	2 5	2 MG/KG	0.082	750	8	2458	*/	3	MAXDE
23 055	300	DENTACLE	2 5	S MG/KG	0.12	2000	0 /4/3	7	-	200	TOGING OF THE PARTY OF THE PART
77 0550	3 4	Marchine Total	2 -	MG/NG	0.00015	0000	30000	7 0	-	0000	MAYDET
77 DEED	2	Ziec TCI D	-	MC/L	2000	2000	2000	0 0		0.22	MAXDET
77 DEFP	Z CX	ACETONE	=	3 MG/KG	0000	9000	0.0057	0.0062	0 0061	0000	MAXDET
77 DEEP	Ş Ş	METHYL ETHYL KETONE (2-BUTANONE)	2	1 MG/KG	0000	0000	0 0058	00063	0 0062	000	MAXDET
77_DEEP	voc	METHYLENE CHLORIDE	2	4 MG/KG	0 002	0003	0.0047	0 0065	0 0057	0.003	MAXDET
77 SURFSOIL	GenChem	ALKALINITY, TOTAL (AS CGCO3)	1	1 MG/KG	77300	77300	77300	0		77300	MAXDET
77 SURFSOIL	GenChem	MOISTURE, PERCENT	_	1 PERCENT	11	- 11	n	0		-	MAXDET
77 SURFSOIL	GenChem	На	9	6 PH UNITS	7	ó	8	6	6	٥	MAXDET
77 SURFSOIL	GenChem	_	-	1 MG/KG	6280	6280	6280	0		6280	MAXDET
77 SURFSOIL	GeoPhys	CATION-EXCHANGE CAPACITY	-	1 MEQ/100G		7	7	o		7	MAXDET
77_SURFSOIL	GeoPhys	SIEVE NO 100, PERCENT PASSING	-	1 PERCENT	71	1,	1,	0		7	MAXDET
77 SURFSOIL	GeoPhys	STEVE NO 20 PERCENT PASSING	-	1 PERCENT	87	87	87	0		83	MAXDET
77 SURFSOIL	GeoPhys	SIEVE NO 200 PERCENT PASSING	-	1 PERCENT	29	67	67	0		67	MAXDET
77 SURFSOIL	GeoPhys	SIEVE NO 200L PERCENT PASSING	_	1 PERCENT	29	29	67	0		67	MAXDET
77 SURFSOIL	GeoPhys	SIEVE NO 40, PERCENT PASSING	_	PERCENT	70	20	70	0		2	MAXDET
77 SURFSOIL	GeoPhys	SIEVE NO 80 PERCENT PASSING) PERCENT	72	72	72	٥		2/2/	MAXDEL
77 SURSOIL	Metol	ALUMINUM	~	MG/KG	0100	00170	36	5	\	MIN.	MAXDEL
ייטטוווטט יי	5		-	Curterial 1 2				2	,		I ALCONOLI I

H 13

TABLE H-1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation RI

				Number		Minimum	Maximum	Arithmetic				
,	;	;	Number of	jo	:	Detected	Detected	Mean	OCI95	UCL95	į	<u>-</u>
Area of Concern	Class	Parameter Name	Analyses	Detects	Units	Concentration	Concentration	Valine	Lognormal	DELICK.	3	BOSIS
77 SURFSOIL	Metol	ARSENIC	٥	٥	MG/KG	2	61	= :	3	4	1	MAXDE
77 SURFSOIL	Metal	BARIUM	-	-	MG/KG	7	114	114	0		7	MAXDE
77 SURFSOIL	Metal	BERYLLIUM	٥	5	MG/KG	0 18	0.39	0.43	0.59	0.53	030	MAXDE
77 SURFSOIL	Metal	CADMIUM	٥	4	MG/KG	027	,	0.53	0.82	0.70	_	MAXDET
77 SURFSOIL	Metal	CALCIUM	~	-	MG/KG	2020	2020	2020	0		2020	MAXDET
77 SURFSOIL	Metal	CHROMIUM TOTAL	٥	6	MG/KG	ø	27	17	25	21	27	MAXDET
77_SURFSOIL	Metal	COBALT	, ,	-	MG/KG	٥	6	٥	0		88	MAXDET
77_SURFSOIL	Metal	COPPER	٥	6	MG/KG	10	52	54	38	33	52	MAXDET
77 SURFSOIL	Metal	IRON		1	MG/KG	18300	18300	18300	0		18300	MAXDET
77_SURFSOIL	Metal	[EAD	6	6	MG/KG	12	7.1	ଛ	ક્ષ	43	1,	MAXDET
77 SURFSOIL	Metal	MAGNESIUM	, ,	ı	MG/KG	2290	2290	2290	0		2240	MAXDET
77 SURFSOIL	Metal	MANGANESE	,	~	MG/KG	552	552	552	0		552	MAXDET
77 SURFSOIL	Metal	MERCURY	6	4	MG/KG	0.01	0 14	900	0 16	0.087	0 14	MAXDET
77 SURFSOIL	Metal	NICKEL	6	6	MG/KG	5	39	18	æ	24	36	MAXDET
77 SURFSOIL	Metal	POTASSIUM	1	J	MG/KG	939	939	636	0		939	MAXDET
77 SURFSOIL	Metal	SELENIUM	6	1	MG/KG	,	-	0.53	2	0.78	-	MAXDEI
77 SURFSOIL	Metal	MUIGOS	,		MG/KG	192	192	192	0		192	MAXDET
77 SURFSOIL	Metal	VANADIUM	ı	l	MG/KG	25	25	25	0		25	MAXDET
77 SURFSOIL	Metal	ZINC	6	6	MG/KG	&	108	7.1	96	87	108	MAXDET
77 SURFSOIL	OCPest	ALPHA-CHLORDANE	. 9	2	MG/KG	0 0027	0.024	0.025	5	0.056	0 024	MAXDET
77 SURFSOIL	OCPest	300	9	3	MG/KG	0013	0 0 7 7	0.058	&	0.12	0077	MAXDET
77 SURFSOIL	OCPest	DOT	٥	5	MG/KG	0 0022	0.26	0.12	217	120	0.26	MAXDE
77 SURFSOIL	OCPest	DIELDIRIN	٥	2	MG/KG	0.032	0.26	0.083	187	0.18	0.26	MAXDET
77 SURFSOIL	OCPest	GAMMA-CHLORDANE	6	2	MG/KG	0 0036	0 04	0.027	7	0 029	Š	MAXDET
77 SURFSOIL	PAH	ACENAPHTHENE	٥	3	MG/KG	0.086	4	1	7	2	Þ	MAXDET
77 SURFSOIL	PAH	ANTHRACENE	6	3	MG/KG	0 14	7	1	٥	3	7	MAXDET
77_SURFSOIL	РАН	BENZO(a) ANTHRACENE	٥	5	MG/KG	0 080	26	Ŷ	403	21	56	MAXDET
77 SURFSOIL	PAH	BENZO(Q)PYRENE	٥	5	MG/KG	011	28	ş	344	12	20	MAXDEL
77 SURFSOIL	РАН	BENZO(to)FLUORANTHENE	٥	2	MG/KG	0.13	36	Ŷ	282	12	28	MAXDET
77_SURFSOIL	РАН	BENZOKA H DPERYLENE	٥	4	MG/KG	0.1	18	5	197	٥	18	MAXDET
77 SURFSOIL	ЬАН	BENZO(k)FLUORANTHENE	٥	2	MG/KG	011	R	5	253	2	20	MAXDET
77 SURFSOIL	ЬАН	CHRYSENE	٥	2	MG/KG	0 12	S	9	394	13	30	MAXDET
77 SURFSOIL	ьАн	FLUORANTHENE	٥	7	MG/KG	021	67	11	1407	52	64	MAXDET
77 SURFSOIL	ЬАН	FLUCIRENE	6	3	MG/KG	1900	σ;	0 83	æ [5]	-	2	MAXDE
77 SURFSOIL	РАН	INDENO(1 2 3-C d)PYRENE		4	MG/KG	5000) **	- 4	ξ	, "	۶ ا	MAXDE
77 SURFSOIL	HAT	PHENANIHKENE	,	٩	MG/NG	- 6	8 4	٤	82	2 6	3 8	MAXDET
77 SUBFSOIL		NECO-ETHYLHEXYLY PHIHALATE	Ŷ	_	MG/KG	250	250	43	877086565	126	250	MAXDET
77 SURFSOIL	SVOC	CARBAZOLE	°	3	MG/KG	0 12	4	1	اه	2	4	MAXDET
77 SURFSOIL	SVOC	PENTACHLOROPHENOL	9	-	MG/KG	0.32	0.32	060	67	2	0.32	MAXDET
77 SURFSOIL	tpq.	Mercury ICLP	-	-	MG/L	0.00015	0 00015	0.00015	0		0 00015	MAXDET
77 SURFSOIL	pa	Zinc TCLP	-	-	MG/L	0.22	0.22	0 22	0		0.22	MAXDEL
77 SURFSOIL	χος	ACETONE	9	-	MG/KG	0004	0.00	0 0056	0 0065	0 0062	000	MAXDET
77 SURFSOIL	VOC	METHYLENE CHLORIDE	Ŷ	3	MG/KG	0 003	0 003	0 0044	99000	0 0057	0003	MAXDET
FU1 DEEP	GenChem		2	2	MG/KG	503000	658000	280500	1082394	1069835	658000	MAXDET
FU1 DEEP	GenChem	MOISTURE, PERCENT	2	2	PERCENT	5	9	ς,	9	ŷ	9	MAXDET
FU1 DEEP	GenChem	Hd	2	2	PH UNITS	6	0	٥	٥	٥	٥	MAXDET
FU1 DEEP	GenChem	T	2	2	MG/KG	13000	15700	14350	21295	22874	15/00	MAXDEL
FUI DEEP	GeoPhys	CATION-EXCHANGE CAPACITY	2	2	MEQ/ 100G	60	2	6	4	7	, , , , , , , , , , , , , , , , , , ,	MAXDE
FUI DEEP	GeoPhys	SIEVE NO 100, PERCENT PASSING	7,	~	PERCENT	42	42	27 8	E 2	244	42	MAXDE
FUI DEEP	GeoPhys	SIEVE NO 20 PERCENT PASSING	2	2	PERCENT	£ 2	2 2	na e	3	?	92	MAXUE
FUI DEEP	GeoPhys	SIEVE NO 200 PERCENT PASSING	2	7	PERCEN	Ż.	3/	ဇန	E 4	44	۸,	MAAUEL

P 1147543/AppHdata xistAPPHDATA

TABLE H-1
Data Summaries for all Defected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation R1

				Number		Minimum	Maximum	Arthmetic				
			Number of	ō		Detected	Detected	Mean	UC195	NCI95		
Area of Concern	Class	ıme	Analyses	Detects	Units	Concentration	Concentration	Value"	Lognormal	Normal		Basis
FU) DEEP	GeoPhys	SIEVE NO. 2001, PERCENT PASSING	2	2	PERCENT	33	36	35	41	44	36	MAXDET
FU) DEEP	GeoPhys	SIEVE NO 40, PERCENT PASSING	2	2	PERCENT	58	8	73	81	89	8	MAXDET
FU1 DEEP	GeoPhys	SIEVE NO 80 PERCENT PASSING	2	2	PERCENT	45	45	45	45	45	45	MAXDET
FU)_DEEP	Metal	ALUMINUM	18	18	MG/KG	3740	18700	10186	12656	11709	11709	NORM
FU1 DEEP	Metal	ANTIMONY	47	91	MG/KG	0.73	8	2	2	5	2	LOGNORM
FU1 DEEP	Metal	ARSENIC	5	છ	MG/KG	_	55	12	15	15	15	LOGNORM
FU1_DEEP	Metal	BARIUM	18	18	MG/KG	77	164	112	131	125	125	NORM
FU1 DEEP	Metal	BERYLLIUM	5	14	MG/KG	0.23	2	0.28	0.84	0.35	0.84	LOGNORM
FUI_DEEP	Metal	CADMIUM	51	18	MG/KG	0 04	4	0 40	0.47	0.53	0.47	LOGNORM
FUI_DEEP	Metal	CALCIUM	18	18	MG/KG	978	144000	18959	40500	37145	40500	LOGNORM
FU1 DEEP	Metal	CHROMIUM, TOTAL	51	51	MG/KG	10	35	4	15	15	15	LOGNORM
FUI DEEP	Metal	COBALT	18	18	MG/KG	2	17	7	6	6	٥	LOGNORM
FUI DEEP	Metal	COPPER	51	51	MG/KG	8	39	17	19	16	61	LOGNORM
FU1 DEEP	Metal	RON	18	18	MG/KG	4410	24700	17144	21186	12161	19171	NORM
FUI DEEP	Metal	LEAD	51	51	MG/KG	7	297	25	28	35	28	LOGNORM
FUI DEEP	Metal	MAGNESIUM	18	18	MG/KG	1670	9700	3166	3913	4150	3913	LOGNORM
FU1_DEEP	Metal	MANGANESE	18	18	MG/KG	94	1110	476	652	267	287	NORM
FU1 DEEP	Metal	MERCURY	51	11	MG/KG	0 03	2	0 087	0.076	0 16	9200	LOGNORM
FUI DEEP	Metal	NICKEL	51	51	MG/KG	4	&	16	18	17	18	LOGNORM
FU1_DEEP	Metal	POTASSIUM	18	18	MG/KG	401	2780	2077	2787	2358	2780	MAXDET
FUL DEEP	Metal	SELENIUM	5)	გ	MG/KG	-	3	0.45	0.56	0.58	0.56	LOGNORM
FU1_DEEP	Metal	SILVER	51	ę	MG/KG	ίO	0.67	0.51	-	063	0.67	MAXDET
FULDEEP	Metal	SODIUM	18	2	MG/KG	152	294	8	133	88	133	LOGNORM
FU1_DEEP	Metal	VANADIUM	18	18	MG/KG	8	38	25	30	27	30	LOGNORM
FUI_DEEP	Metal	ZINC	62	62	MG/KG	æ	646	88	77	109	94	LOGNORM
FU1 DEEP	OCPest	ALPHA-CHLORDANE	69	2	MG/KG	0019	0.21	0.058	0.23	0.084	021	MAXDET
FU1 DEEP	OCPest	000	\$	2	MG/KG	0.0028	0 12	011	0 44	910	0 12	MAXDET
FU1 DEEP	OCPest	DDE	\$	45	MG/KG	91000	7	037	6	8	3	OGNORM
FU1 DEEP	OCPest	DDI	60	45	MG/KG	0 0016	01	0.45	3	0.73	3	LOGNORM
FU1 DEEP	OCPest	DIELDRIN	\$	&	MG/KG	0 0049	4	038	2	0.51	4	MAXDET
FU1 DEEP	OCPest	GAMMA BHC (LINDANE)	S	6	MG/KG	0 0022	0,0029	0056	021	0.082	0002%	MAXDET
FU) DEEP	OCPest	GAMMA-CHIORDANE	\$ (2	MG/KG	200	e: 1) Onn	770700	/855	616	MAXDEL
FUI DEEP	S C	PERIODEUM HYDIACCARBONS	7 5	7 6	MG/KG MG/KG	010	8 2	9 -	41002533	3 ~	3 2	MAXDET
FUI DEFP	PAH	ACENAPHTHENE	2	0	MG/KG	0.093	9	_	2	2	2	LOGNORM
FUI DEEP	PAH	ACENAPHIHYLENE	Ω	-	MG/KG	10	01	1	2	2	2	LOGNORM
FULDEEP	PAH	ANTHRACENE	0/	61	MG/KG	0.045	12	-	3	2	3	LOGNORM
FUI_DEEP	PAH	BENZO(a)ANTHRACENE	70	52	MG/KG	0.085	55	4	18	7		LOGNORM
FUI DEEP	РАН	BENZO(a)PYRENE	02	55	MG/KG	0.081	67	5	٥Į	7	19	LOGNORM
FU1 DEEP	PAH	BENZO(b)FLUORANTHENE	20	22	MG/KG	9600	65	5	8	7	Ì	LOGNORM
FUI DEEP	PAH	BENZO(g h I)PERYLENE	20	22	MG/KG	0.062	48	60	<u>0</u>	5	0;	LOGNORM
FUI DEEP	PAH	BENZO(k)FLUORANTHENE	20	25	MG/KG	0073	71	S	21	8	21	LOGNORM
FU1_DEEP	РАН	CHRYSENE	2	27	MG/KG	0.047	89	•	26	8	26	LOGNORM
FU1_DEEP	PAH	DIBENZ(a h)ANTHRACENE	70	2	MG/KG	0.078	2	_	2	2	2	MAXDET
FUI DEEP	PAH	FLUORANTHENE	2	R	MG/KG	9900	130	٥	73	14	73	LOGNORM
FUI DEEP	PAH	FLUORENE	2	₽	MG/KG	9000	5	-	2	2	2	LOGNORM
FU1_DEEP	PAH	INDENO(1,2 3-c, d)PYRENE	20	22	MG/KG	0.056	44	4	12	2	12	LOGNORM
FUI DEEP	РАН	NAPHTHALENE	2	၈	MG/KG	03%	-	-	2	2	-	MAXDET
FU1 DEEP	РАН	PHENANTHRENE	2	8	MG/KG	0 089	19	4	20	9	20 !	COGNORM
FU1 DEEP	PAH	PYRENE	20	æ	MG/KG	0.058	120	8	47		47	CGNORM
FUI DEEP	S S	PCB-1260 (AROCHLOR 1260)	45	2	MG/KG	3	9	2	= ;	9	0	MAXUEI
FU1_DEEP	SVOC	bis(2-ETHYLHEXYL) PHTHALATE	28	24	MG/KG	0047	2	081	0.08	-	8	LOGINORM

H 15

TABLE H-1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main installation R1

_				•				-				
A control of Control	į	Down Memory	Number of	o of	<u> </u>	Concentration	Concentration	Value.	tognormal	Nomal	S S	Basis
ELI DECO		CADBA7OLE	5	15	UW/UM	0.045	13	-	0 97	2	260	LOGNORM
100 CEP	200	Charles and Physical Are	3 28	-	MG/KG	0.052	0.058	0.51	0.52	071	9900	MAXDET
EII DEED	300	DIRENZORIDAN	8 8	•	MG/KG	0.065	2	0.75	690	-	690	LOGNORM
FILL DEEP		2-HEXANONE	\$	2	MG/KG	0 002	0003	9000	0 0064	0 0062	0 003	MAXDET
13. CEB	S	ACEONE	45	24	MG/KG	9000	0.078	0 027	0.033	0.038	0 033	LOGNORM
FULL DEEP	S	BENZENE	45	4	MG/KG	1000	9000	0 0059	99000	0 0062	9000	MAXDET
FUI DEEP	Š	BROMOMETHANE	45	9	MG/KG	1000	0 002	0 0057	9900 0	09000	0 002	MAXDET
FUI DEEP	ည လ	CARBON DISULFIDE	45	3	MG/KG	1000	0 002	0 0058	0 0068	0 0062	0 002	MAXDET
FUI DEEP	200	ETHYLBENZENE	45	_	MG/KG	900 0	0000	19000	0 0063	0 0003	9000	MAXDET
FUI DEEP	VOC	METHYL ETHYL KETONE (2-BUTANONE)	45	۰	MG/KG	1000	0.049	0 0008	1100	0.012	0 011	LOGNORM
FUI DEEP	200	METHYL SOBUTYL KETONE (4-METHYL-2-PENTANONE)	45	_	MG/KG	900.0	0 000	0,000	0 0062	0 0062	9000	MAXDET
FUI DEEP	200		45	-	MG/KG	1000	1000	9000	99000	0 00062	0001	MAXDET
FUI DEEP	ပ (၁၀)	TETRACHLOROETHYLENE(PCE)	45	3	MG/KG	0 002	0007	09000	0 0063	0 00062	0 0063	LOGNORM
FUI DEEP	202	TOLUENE	45	3	MG/KG	1000	0012	0 0061	89000	0000	0 00068	LOGNORM
FU1 DEEP	XOC	Total Xylenes	45	-	MG/KG	6000	0000	0 0062	0 0064	0 000	00064	LOGNORM
FUI_DEEP	VOC	TRICHLOROETHYLENE (TCE)	45	-	MG/KG	0 002	0 002	09000	00064	0 0062	0 005	MAXDET
FU1 SURFSOIL 6	GenChem	ALKALINITY TOTAL (AS COCO3)	2	2	MG/KG	203000	658000	280500	1082394	1069835	028900	MAXDEL
FUI SURFSOIL G	GenChem	MOISTURE PERCENT	2	2	PERCENT	5	٥	2	Ŷ	9	٥	MAXDET
<u> </u>	GenChem	На	2	2	PH UNITS	٥	6	٥	٥	٥	6	MAXDET
FUI SURFSOIL G	GenChem	TOTAL ORGANIC CARBON	2	2	MG/KG	13000	15700	14350	21295	22874	15700	MAXDET
L.	GeoPhys	CATION-EXCHANGE CAPACITY	2	2	MEG/100G	3	3	3	4	9	0	MAXDEI
FUT SURFSOIL (GeoPhys	SIEVE NO 100 PERCENT PASSING	2	2	PERCENT	42	42	45	43	44	42	MAXDE
FU1 SURFSOIL (GeoPhys	SIEVE NO 20 PERCENT PASSING	2	~	PERCENT	75	88	8	20	113	92	MAXDET
FU1 SURFSOIL (GeoPhys	SIEVE NO 200 PERCENT PASSING	2	2	PERCENT	34	37	35	41	44	37	MAXDEL
FU1 SURFSOIL (GeoPhys	SIEVE NO 2001, PERCENT PASSING	2	7	PERCENT	33	38	35	41	44	8:	MAXDE
1	GeoPhys	SIEVE NO 40 PERCENT PASSING	2	2	PERCENT	83	\$	29	Ē,	À,	8 4	MAXDEI
+	GeoPhys	SIEVE NO 80, PERCENT PASSING	25.	. 7	PERCEN	45	45	43	13005	25000	10001	Mack
FUI SURFSOIL	Metal	ALUMINUM	2 3	،	MG/KG	3740	0000	ç c	2	2	4	Macino
FU1 SURFSOIL	Metal	ANTIMONY	7 2	ة اح	MS/KG	0/3	20	, .	0 2	3 5	76	NO CONCOL
FUI SURFSOIL	Metal	ARSENIC	ę	2	MG/KG	9	CC.	١	87	77	25	NO NO
FUI SURFSOIL	Metal	BARIUM	2 8	2 :	MG/KG	0.23	8	22.0	8 .	150	2	Majone
FUI SURFSOIL	Metal	BERYLLIUM	82	4 0	MG/XG	270	7	200	600	280	200	MacNaco
FUI SURFICIA	Merci	CAUMIUM	3 5	9 9	MG/KG	1550	144000	3264D	821098	65664	144000	MAXDET
FUI SURFOUL	Motol	CHDOMIIM TOTAL	25	5	MG/KG	01	35	15	16	17	91	LOGNORM
FLIT SURFSOIL	Metal	COBALI	2	2	MG/KG	2	17	7	10	٥	10	LOGNORM
FU1 SURFSOIL	Metal	COPPER	25	52	MG/KG	8	39	61	21	21	21	LOGNORM
FU1_SURFSOIL	Metal	NON	10	۵	MG/KG	4410	24700	15579	23466	19027	19027	NORM
FU1 SURFSOIL	Metal	IEAD	22	52	MG/KG	7	287	42	22	0	2007	COCNORM
FU1 SURFSOIL	Metal	MAGNESIUM	e ا	2	MG/KG	1670	00/6	3705	8555 5.3	900	833	LOGINORM
FU1 SURFSOIL	Metal	MANGANESE	D 5	₽ ;	MG/KG	000	ĝ	200	650	200	120	MONOO
FUI SURFSOIL	Metal	MERCURY	62	- 2	MG/KG	900	, (31	17	14,	17	OGNODA
FUI SURFSOIL	Metol	NICKEL POTE CRITE	9	3 5	MG/KG	* 5	2630	1817	10101	2284	2284	Nacy
FUI SURFICIL	Meid	POLASSICIA	¥	2 4	MC/KG	-		3	-	80	-	LOGNORM
FUI SURSOIL	Math	SELENDING	3 %	, -	MG/KG	190	0.67	80	070	0.44	0.67	MAXDET
FILE SURFSOIL	Metal	Milioos	2	~	MG/KG	152	294	81	518	131	294	MAXDET
FILL SURFSOIL	Metal	VANADIUM	0	2	MG/KG	8	29	z	8	26	82	MAXDET
FUT SURFSOIL	Metal	ZINC	32	32	MG/KG	35	646	114	134	153	134	LOGNORM
FU1 SURFSOIL	OCPest	ALPHA-CHLORDANE	43	2	MG/KG	0019	0.21	0 0%2	0.50	0.13	120	MAXDET
	OCPest	000	43	2	MG/KG	0.0028	0.12	91.0	-	0.25	0 12	MAXDET
(Casona cris	40		•			-						

¥ 9

TABLE H-1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation R1

				Number		Minimum	Maximum	Arithmetic				
	;		Number of	ō	:	Detected	Detected	Mean	OCI95	nCI95	•	
Ared of Concern	Class	Parameter Name	Andlyses	Defects	Contra	Concentration	Concentration	Value	Lognormal	Norma	EPC.	Basis
FU1 SURFSOIL	OCPest	IOO	43	37	MG/KG	0 0024	Ω.	071	5	-	2	LOGNORM
FUI SURFSOIL	OCPest	DIECORIN	43	2	MG/KG	0.0049	4	850	01	0.81	4	MAXDET
FU1 SURFSOIL	OCPest	GAMMA BHC (LINDANE)	43	-	MG/KG	0 0029	0.0029	800	0.52	0 13	0 0025	MAXDET
FU1_SURFSOIL	OCPest	GAMMA-CHLORDANE	43	2	MG/KG	0.02	0.15	0 0	0.73	0 15	0 15	MAXDET
FUT SURFSOIL	ORG	PETROLEUM HYDROCARBONS	2	2	MG/KG	91	8	40	21063255	193	\$	MAXDET
FUT SURFSOIL	PAH	2 METHYLNAPHTHALENE	9	2	MG/KG	610	090	2	2	3	90	MAXDET
FU1 SURFSOIL	PAH	ACENAPHTHENE	40	٥	MG/KG	0 003	Ģ	2	8	6	9	MAXDET
FUT SURFSOIL	PAH	ACENAPHTHYLENE	40	-	MG/KG	01	10	2	7	3	7	LOGNORM
FU1_SURFSOIL	PAH	ANTHRACENE	40	19	MG/KG	0.045	12	2	13	4	12	MAXDET
FU1_SURFSOIL] PAH	BENZO(a)ANTHRACENE	40	25	MG/KG	0.085	55	8	116	11	55	MAXDET
FU1 SURFSOIL	PAH	BENZO(a)PYRENE	40	25	MG/KG	0.081	- 67	8	136	13	. 67	MAXDET
FUT SURFSOIL	PAH	BENZO(b)FLUORANTHENE	40	25	MG/KG	9600	\$	0	146	13	65	MAXDET
FU1 SURFSOIL	PAH	BENZO(g h I)PERYLENE	\$	25	MG/KG	0.062	48	٥	55	8	48	MAXDET
FU1 SURFSOIL	PAH	BENZO(k)FLUORANTHENE	40	25	MG/KG	0 073	17	6	157	13	1,2	MAXDET
FU1 SURFSOIL	PAH	CHRYSENE	40	25	MG/KG	110	8	10	182	14	8	MAXDET
FU1 SURFSOIL	PAH	DiBENZ(a h)ANTHRACENE	40	2	MG/KG	0 0 78	2	2	7	3	2	MAXDET
FUT SURFSOIL	PAH	FLUORANTHENE	Đ	12	MG/KG	0.26	130	91	537	23	130	MAXDET
FU1 SURFSOIL	PAH	FLUORENE	40	10	MG/KG	9900		2	7	3	5	MAXDET
FU1_SURFSOIL	РАН	INDENO(1,2,3-c,d)PYRENE	40	25	MG/KG	0.056	44	9	80	ó	44	MAXDET
FU1 SURFSOIL	PAH	NAPHTHALENE	40	3	MG/KG	036	-	2	5	3	1	MAXDET
FU1_SURFSOIL	PAH	PHENANTHRENE	40	22	MG/KG	0 18	19	8	109	=	ا9	MAXDET
FU1 SURFSOIL	PAH	PYRENE	40	27	MG/KG	0.2	120	13	325	61	120	MAXDET
FUI_SURFSOIL	PCB	PCB-1260 (AROCHLOR 1260)	34	2	MG/KG	3	Ŷ	2	Ŷ	3	٥	MAXDET
FU1 SURFSOIL	svoc	bs(2-ETHYLHEXYL) PHTHALATE	56	7	MG/KG	0.064	2	ı	3	2	2	MAXDET
FU1_SURFSOIL	SVOC	CARBAZOLE	20	15	MG/KG	0.045	13	2	Ŷ	3	Ŷ	LOGNORM
FUT SURFSOIL	SVOC	DI-n-BUTYL PHTHALATE	26	-	MG/KG	0.056	0.056	0.86	2	_	0.056	MAXDET
FU1 SURFSOIL	SVOC	DIBENZOFURAN	%	٥	MG/KG	0.065	2	~	9	2	2	MAXDET
FU1 SURFSOIL	χQC	2-HEXANONE	16	2	MG/KG	0 005	0003	0 0055	0000	09000	0003	MAXDET
FU1 SURFSOIL	Š	ACETONE	٥١	°	MG/KG	0 00 0	0.078	0.047	0 12	1200	0.078	MAXDET
FU1_SURFSOIL	Š	BENZENE	٥	Ą	MG/KG	0001	9000	0 0054	0.0000	09000	0 006	MAXDET
FU1 SURFSOIL	χ	BROMOMETHANE	٥	3	MG/KG	0 002	0 002	0 0053	0 0005	05000	0 002	MAXDET
FU1 SURFSOIL	Š	CARBON DISULFIDE	٥	e e	MG/KG	1000	0 005	0 0052	0.0074	0000	0 002	MAXDET
FU1 SURFSOIL	S S	ETHYLBENZENE	٥.	-	MG/KG	9000	9000	0 0059	19000	00061	0000	MAXDET
FUI SURFSOIL	SON S		6:	₽ .	MG/KG	0000	0.049	0015	2002	0.050	0.022	CGNOSM
FU1 SURFSOIL	000	METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE)	2 9	-	MG/KG	9000	0000	95000	00000	09000	9000	MAXDE
FUI SURFICIL		MEIHYLENE CHLORIDE	2 9	-	MG/KG	000	1000	0.0035	00000	namn	300	MAXDEL
FUI SURFICIE	200	IEIIRACHIOROEIHYLENE(PCE)	2 9	- -	MG/KG	0004	0000	0.005/	00000	25000	0.004	MAXDE
TOT SURFICIE	١	Total Kalanas	2 2	7	MG/KG	0000	2000	5000	2/000	2000	0000	Wach
FUT SURFSOIL	S S S	TRICHLOROETHYLENE CCE)	02	_	MG/KG	0000	0000	00056	0000	19000	0000	MAXDET
FU2 DEEP	Metal	ALUMINUM	17	12	MG/KG	6550	15900	11075	12375	12187	12375	LOGNORM
FU2 DEEP	Metal	ANIIMONY	35	٥	MG/KG	0.42	2	2	3	3	2	MAXDET
FU2 DEEP	Metal	ARSENIC	37	37	MG/KG	2	51	17	22	8	22	LOGNORM
FU2 DEEP	Metal	BARIUM	11	2	MG/KG	છ	200	127	142	141	142	LOGNORM
FU2_DEEP	Metal	BERYLLIUM	37	23	MG/KG	0.27	,	0.55	l	063	1	LOGNORM
FU2_DEEP	Metal	CADMIUM	37	-	MG/KG	0.03	2	0.50	0.67	0.58	0.67	LOGNORM
FU2 DEEP	Metal	CALCIUM	17	17	MG/KG	986	3550	2109	2393	2349	2393	LOGNORM
FU2 DEEP	Metai	CHROMIUM TOTAL	37	37	MG/KG	80	53	20	24	23	24	LOGNORM
FU2_DEEP	Metal	COBALT	17	17	MG/KG	5	13	8	ó	٥	٥	LOGNORM
FU2 DEEP	Metal	COPPER	37	37	MG/KG	3	55	22	%	25	56	LOGNORM
FU2 DEEP	Metal	IRON	17	-	MG/KG	13800	23000	18282	19676	19544	19544	NORM
FUZ DEEP	Metal	LEAD	37	37	MG/KG	ю	318	42	33	3	3	TOGNORM

P-\147543\AppHdata xis\APPHDATA

TABLE H-1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation RI

				Number	-	Minmum	Maximum	Arithmetic				
,	i	:	Number of			Detected	Defected	Medu	OCL95	UC195	į	e e e
Area of Concern	Class	Parameter Name	Analyses	ő	+	Concentration	Concentration	Value	Comormon	Normal	2	basis
FU2 DEEP	Metal	MAGNESIUM	17	17 MG	MG/KG	1570	3000	2186	2411	2381	2381	NO.
FU2 DEEP	Metal	MANGANESE	17	+	MG/KG	334	988	670	806	818	808	LOGNORM
FU2 DEEP	Metal	MERCURY	37	1	MG/KG	0 03	900	0.049	0000	0.054	000	LOGNORM
FU2 DEEP	Metal	NCKEI,	37	+	MG/KG	P P	88	22	38	25	20	LOGNORM
FU2 DEEP	Metal	POTASSIUM	17	+	MG/KG	<u>8</u>	3360	2220	2743	2556	2556	NSON
FU2 DEEP	Metal	SELENIUM	37	10 MG	MG/KG	0 42	2	0.50	0.79	0.71	0.79	LOGNORM
FU2 DEEP	Metal	SODIUM	17	┪	MG/KG	218	218	33	116	25	116	LOGNORM
FU2 DEEP	Metal	VANADIUM	17	\dashv	MG/KG	17	37	82	8	&	&	NORM
FU2_DEEP	Metal	ZINC	37	37 MG	MG/KG	=	426	85	28	102	8	LOGNORM
FU2_DEEP	OCPest	ALPHA-CHLORDANE	70	5 MG	MG/KG	0015	-	0.065	0.14	010	0.14	LOGNORM
FU2_DEEP	OCPest	aga	70	6 MG	MG/KG	0 0028	0.017	0600	0.20	0.13	0017	MAXDET
FU2 DEEP	OCPest	DDE	70		MG/KG	0 002	-	0.15	0.59	0.20	0.59	LOGNORM
FU2 DEEP	OCPest	DDT	70	33 MG	MG/KG	71000	7	0.25	0.87	0.42	0.67	LOGNORM
FU2 DEEP	OCPest	DIELDRIN	70	48 MG	MG/KG	71000	0	0.38	3	063	3	LOGNORM
FU2_DEEP	OCPest	GAMMA-CHLORDANE	70	5 MG	/KG	0015	-	0 064	0.13	0.10	0.13	LOGNORM
FU2 DEEP	PAH	ACENAPHTHENE	28	3 MG	MG/KG	0.059	0 13	0.083	010	0 10	0 10	LOGNORM
FU2 DEEP	PAH	ANTHRACENE	58	2 MG	MG/KG	0.000	0.27	0.085	010	010	0 10	LOGNORM
FU2 DEEP	PAH	BENZO(a)ANTHRACENE	28	14 MG	MG/KG	0.054	0.57	0 104	0.13	0 13	0 13	LOGNORM
FU2 DEEP	PAH	BENZO(a)PYRENE	88	12 MG	MG/KG	0.054	0.44	0000	0.13	0 12	0 13	LOGNORM
FU2 DEEP	PAH	BENZO(b)FLUORANTHENE	58	H	MG/KG	0.052	0.46	010	0.13	0 12	0 13	LOGNORM
FU2 DEEP	PAH	BENZO(G h DPERYLENE	28		/KG	0.045	0.29	0 088	0.11	110	011	LOGNORM
FU2 DEEP	PAH	BENZO(k)FLUORANTHENE	58	12 MG	MG/KG	0.048	0.4	0 007	0 12	0 12	0 12	LOGNORM
FU2 DEEP	PAH	CHRYSENE	88	15 MG	MG/KG	0 046	0.62	0.008	0 12	0 12	0.12	LOGNORM
FU2 DEEP	PAH	DIBENZ(a h)ANTHRACENE	58	1 MG	MG/KG	0.083	0 083	0.084	0 10	0 10	0.083	MAXDET
FU2_DEEP	PAH	FLUORANTHENE	58	21 MG	MG/KG	800	_	0.13	0 16	0 17	0 16	LOGNORM
FU2_DEEP	PAH	FLUORENE	58	2 MG	MG/KG	0.078	0 14	0.083	0 10	0 D	010	LOGNORM
FU2_DEEP	PAH	INDENO(1 2 3-c d)PYRENE	58	1	MG/KG	9900	0.26	0 080	110	נוס	110	LOGNORM
FU2 DEEP	РАН	PHENANTHRENE	88	+	/KG	0.065	-	11.0	0 14	0 14	0 14	LOGNORM
FU2 DEEP	PAH	PYRENE	58	18 MG	MG/KG	0.046	_	0 12	0 14	0.15	0.14	LOGNORM
FU2 DEEP	SVOC	DIS(2-ETHYLHEXYL) PHTHALATE	25	7 MG	MG/KG	0.078	2	0.32	0.37	0.47	0.37	LOGNORM
FU2 DEEP	SVOC	CARBAZOLE	25	2 MG	MG/KG	0.15	0 18	0.21	0.22	0.23	0 18	MAXOET
FU2 DEEP	SVOC	DIBENZOFURAN	25	MG	MG/KG	9000	0000	0.23	0.23	0.23	0.056	MAXDE
FU2 DEEP	SVOC	PENTACHLOROPHENOL	25	, MG	MG/KG	0064	0.054	0.10	0.11	0 11	0000	MAXDE
FU2 DEEP	00	2-HEXANONE	26	DW C	MG/KG	0,002	0000	8000	0.0004	9000	0.002	MAXDE
FUZ DEEP) ()	ACEIONE	3,40	ON THE	MG/KG	0000	2000	0.0058	0.0054	0.0061	2000	MAXDET
CA10 DEED		PROMOMETHANE	3,5	NO.	MG/KG	2000	0.000	0.0057	0 0004	00001	0 002	MAXDET
FIP DEEP	S S S S S S S	CARBON DISULFIDE	36	- MG	MG/KG	0 002	0 002	95000	0 0064	0.0061	0 002	MAXDET
FU2 DEEP	Š	METHYL ETHYL KETONE (2-BUTANONE)	26	3 MG	MG/KG	0000	0.028	0 0075	0.0083	06000	0.0083	LOGNORM
FU2_DEEP	VOC	METHYLENE CHLORIDE	26	3 MG	MG/KG	0 002	0 003	0 0056	0 0063	0,000	0 003	MAXDET
FU2 DEEP	NOC	TETRACHLOROETHYLENE(PCE)	26	3 MG	MG/KG	0 003	0.073	0 0084	0.0089	0013	0 0089	LOGNORM
FU2 DEEP	VOC	TOLUENE	26	- MG	MG/KG	0 003	0 003	0 0059	0 0062	(900)	0003	MAXDET
FUZ DEEP	VOC	TOTAL 1,2-DICHLOROETHENE	26	- MG	MG/KG	0 004	0 004	0 0059	00061	19000	986	MAXDET
FU2_DEEP	NOC	Total Xylenes	26	2 MG	MG/KG	1000	1000	0 0056	1,000	00061	1000	MAXDET
FU2_DEEP	NOC	TRICHLOROETHYLENE (TCE)	56	1 MG	MG/KG	0003	0.003	0 0059	0 0062	00061	0.003	MAXDET
FU2 SEDIMENT		HEPTACHLORINATED DIBENZO-p-DIOXINS (TOTAL)	4	4 MG	/KG	0.00078	0012	0 0043	7	1100	0012	MAXDET
FU2 SEDIMENT		HEPTACHLORINATED DIBENZOFURANS, (TOTAL)	4	4 MG	MG/KG	0 00017	0.0020	0 00005	0.30	00018	0 0020	MAXDET
FU2 SEDIMENT		HEXACHLORINATED DIBENZO-P-DIOXINS (TOTAL)	4	MG MG	MG/KG	0 000056	0.0010	0 00036	0.75	000089	000010	MAXDETS
FU2 SEDIMENT		HEXACHLORINATED DIBENZOFURANS, (TOTAL)	4	3 MG	MG/KG	0.00029	0,00050	0 00028	4 84E+15	0,00053	0,00050	MAXDE
FU2 SEDIMENT		PENTACHLORINATED DIBENZO-D-DIOXINS, (TOTAL)	4	- G	MG/KG	0 000013	000013	0.000043	0.0028	00000	110000	MAXUE
FU2 SEDIMENT		PENIACHLORINALED DIBENZOFURANS (IOIAL)	4	2	MG/KG	U UVAUSA	0,000012	0000000	00000	110000	00001	MAYDET
FU2 SEDIMENI		IERRACHIORINALED DIBENZOPURANS (TOTAL)	4	1 I WIG	MIS/KG	0.000	U WWW14	USCANAL	0 000053	T CONTROL	1,0000	MONOLI

P \147543\AppHdata xis\APPHDATA

H 35

TABLE H-1
Data Summanes for all Delected Chemicals for All Functional Units and Surrogate Siles
Memphis Depot Main installation R1

CORD CORD <t< th=""><th></th><th></th><th></th><th>Number of</th><th>јо Јо</th><th></th><th>Minimum Detected</th><th>Maximum</th><th>Arithmetic Mean</th><th>UCL95</th><th>UC195</th><th></th><th></th></t<>				Number of	јо Јо		Minimum Detected	Maximum	Arithmetic Mean	UCL95	UC195		
Death 12.4.2.4.2.PerpHICH-GLOCOMEND-POLYMEN 4 4 MeGRO 0.0000	Area of Concern	Class	Parameter Name	Analyses	Detects	Units	Concentration	Concentration	Value	Lognormal	Normal	SP.	Basis
Deam Deam Deam CORRES	EDIMENT	Dioxin	1,2,3,4 6,7,8-HEPTACHLORODIBENZO-p-DIOXIN	Ч	7	MG/KG	0 00039	0 0064	0 0022	9	0 0056	0 0004	MAXDET
Dison 12.20. μεθαλει (ALTA ALTA ALTA ALTA ALTA ALTA ALTA ALT	EDIMENT	Dioxin	1,2 3 4 6 7 8-HEPTACHLORODIBENZOFURAN	4	4	MG/KG	0 000000	950000	0 00029	0 035	0 00053	0 00056	MAXDET
Diamn Diamn CONDAM ORDINA ORDINA <td>EDIMENT</td> <td>Dłoxin</td> <td>1 2 3 6 7 8-HEXACHLORODIBENZO-P-DIOXIN</td> <td>4</td> <td>3</td> <td>MG/KG</td> <td>0 000012</td> <td>0 000093</td> <td>0 000031</td> <td>0.56</td> <td>0 0000080</td> <td>0 000093</td> <td>MAXDET</td>	EDIMENT	Dłoxin	1 2 3 6 7 8-HEXACHLORODIBENZO-P-DIOXIN	4	3	MG/KG	0 000012	0 000093	0 000031	0.56	0 0000080	0 000093	MAXDET
DOWN DOWN CONDAG C00501 C00501 <td>EDIMENT</td> <td>Dioxin</td> <td>1,2 3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN</td> <td>4</td> <td>3</td> <td>MG/KG</td> <td>0.0000043</td> <td>0 00015</td> <td>0 000045</td> <td>85</td> <td>0 00012</td> <td>0.00015</td> <td>MAXDET</td>	EDIMENT	Dioxin	1,2 3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	4	3	MG/KG	0.0000043	0 00015	0 000045	85	0 00012	0.00015	MAXDET
Diam CONDESTIGATION 4 4 Missing 0.00001 0.0000	EDIMENT	Dloxin	OCTACHLORODIBENZO-p-DIOXIN	4	7	MG/KG	0 0043	0.051	0.020	7	0.045	0.051	MAXDET
New Color Michael Micha	EDIMENT	Dioxin	OCTACHLORODIBENZOFURAN	4	4	MG/KG	0 00012	0.0024	11000	7	0.0022	0 0024	MAXDET
Method ARRENO COPER 1	EDIMENT	Doxin	(CDD Equivalent	4	7	MG/KG	0.000010	0 00015	0.000053	0 037	0 00013	0 00015	MAXDET
MARION AMERICANA 21 31 MAGNAGO 1	EDIMENT	Metal	ALUMINUM	9	91	MG/KG	662	17100	6554	13062	8546	8546	NORM
Merical ARSINICA 1 1 1 1 4 0 0 0 Merical ARSINICA 1 1 1 1 1 1 1 1 0 <t< td=""><td>FOIMENT</td><td>Metal</td><td>ANTIMONY</td><td>21</td><td>3</td><td>MG/KG</td><td>0.44</td><td>9</td><td>0.81</td><td>-</td><td>-</td><td>-</td><td>LOGNORM</td></t<>	FOIMENT	Metal	ANTIMONY	21	3	MG/KG	0.44	9	0.81	-	-	-	LOGNORM
Mencal BRENTILIMA 10 In Markot 10 In In In In In In In In In In In In In	EDIMENT	Metal	ARSENIC	23	21	MG/KG	_	14	Ŷ	01	8	02	LOGNORM
Medic BERTILLIAN 21 11 MAGNE 011 1 0.42 0.59 0.50 0.5 <	EDIMENT	Metal	BARIUM	92	91	MG/KG	91	145	84	140	102	102	NORM
MARIDIA CALCAMUMA 10 11 MAGKK 0 15 2 0 52 5 6 0 15 1 1 MAGKK 0 15 1 1 MAGKK 0 15 1 1 MAGKK 0 15 1 2 1 1 MAGKK 0 15 1 2 1 1 MAGKK 0 15 1 2 1 1 1 1 MAGKK 0 15 1 2 1 1 MAGKK 0 15 1 2 1 1 MAGKK 0 10 0 12 1 2 1 1 1 1 MAGKK 0 10 0 12	EDIMENT	Metol	BERYLLIUM	21	18	MG/KG	0.1		0.42	0 29	0.51	0.59	LOGNORM
MANICAL COLONAL LO MEMORY CYSA 19800 7.80 1.80	EDIMENT	Metal	CADMIUM	2)	11	MG/KG	0 15	2	0.52	5	0.75	2	MAXDET
MACHE COZMALI TAIL ALEANOR 37 12 15	EDIMENT	Metal	CALCIUM	16	16	MG/KG	958	158000	26300	130410	48435	130410	LOGNORM
MARICI CONDAM NAMES 0.75 2.07 1.6 2.0 <	EDIMENT	Metal	CHROMIUM TOTAL	23	13	MG/KG	3	37	73	15	15	15	LOGNORM
MARIOL COPPER 1 1 Mayor 7 4 7 4 7 4 7 2 1 Mayor COPPER 1 <td>EDIMENT</td> <td>Metal</td> <td>COBALT</td> <td>٦¢</td> <td>91</td> <td>MG/KG</td> <td>0.76</td> <td>516</td> <td>81</td> <td>30</td> <td>41</td> <td>30</td> <td>LOGNORM</td>	EDIMENT	Metal	COBALT	٦¢	91	MG/KG	0.76	516	81	30	41	30	LOGNORM
MARCIA CRONA 10 NG/MCK 24.0 179.00	EDIMEN‡	Metal	COPPER	21	21	MG/KG	7	49	2 1	22	22	22	LOGNORM
MMCENIMA 10 10 MG/MC 11 MG/MC 18 19 32 22	EDIMENT	Metal	NOW	16	91	MG/KG	2470	19200	19801	17942	13580	17942	LOGNORM
WARDINAMESANDER IN MOREDIAN	EDIMENT	Metal	LEAD	21	21	MG/KG	8	169	32	49	48	46	LOGNORM
MARIOL MARIOL MARIOL 10 10 MARIOL 10 3.2 2.2 2.2 2.2 2.2 1.7 1.0 1.0 3.2 2.2 2.2 2.2 2.2 2.0 1.2 1.0 <t< td=""><td>EDIMENT</td><td>Metal</td><td>MAGNESIUM</td><td>16</td><td>16</td><td>MG/KG</td><td>714</td><td>19100</td><td>3278</td><td>5230</td><td>5218</td><td>5230</td><td>LOGNORM</td></t<>	EDIMENT	Metal	MAGNESIUM	16	16	MG/KG	714	19100	3278	5230	5218	5230	LOGNORM
Medic Discrimentation 21 4 MeS/NG 0.1 0.5 0.0 0.1 0.2 0.2 0.2 1.2 1.2 1.0 0.1	EDIMEN1	Metal	MANGANESE	16	16	MG/KG	24	328	187	502	224	224	NORM
Medic INCKEIL LOS MIGNEIL 21 21 21 AMERICA INCREM 2 20 11 21 14	DIMENT	Metal	MERCURY	21	4	MG/KG	0)	0 53	0.073	0.13	0 12	0 13	LOGNORM
Medic PICHASIUM 16 16 16 MG/MC 17 4 0.88 2 2 1 10 MG/MC 0.73 4 0.84 2 1	DIMENT	Metat	NICKEL	21	21	MG/KG	2	28	12	13	14	14	NORM
Medical SELENHILMA 21 10 MGK/KG 0.71 4 0.68 2 1 0.71 Medical SCDLIMA Medical SCDLIMA 10 1 2 MGK/KG 0.28 9 0.57 0.71 1 0.71 Medical SCDLIMA Medical SCDLIMA 16 1 2 MGK/KG 0.28 6 0.51 1.10 0.71 Medical SCDLIMA 1 1 1 MGK/KG 0.02 0.014 0.014 0.01 0.014 <t< td=""><td>OIMENT</td><td>Metai</td><td>POTASSIUM</td><td>92</td><td>2</td><td>MG/KG</td><td>106</td><td>3240</td><td>1254</td><td>3006</td><td>1695</td><td>1695</td><td>NORM</td></t<>	OIMENT	Metai	POTASSIUM	92	2	MG/KG	106	3240	1254	3006	1695	1695	NORM
Medic SIVURR 0.1 1 0.7 1 0.7 Medic SIVURR Medic 0.7 0.5 0.7 1.1 0.7 Medic SOULIMA Medic 0.0 Medic 3 3 1.8 20 2.2 2.2 CCPSS1 ALDIAN Medic 0.003 0.003 0.013 0.023 0.023 0.014 0.	DIMENT	Metal	SELENIUM	21	2	MG/KG	120	4	0.88	2	-	2	OGNORM
Melod MONDLIAM Io 9 MicRIG 41 282 84 151 110 151 Melod MONDLIAM Io 9 MicRIG 37 18 78 22 23 1170 185 23 23 23 23 23 23 23 23 20	OIMENT	Metal	SILVER	21	2	MG/KG	0.28	6	0.57	120	-	170	LOGNORM
Midical VIANADIMA Mid/Midical VIANADIMA 10 10 Mid/Mid 3 37 12 22 22 22 23 37 12 23 23 230 237 23 23 230 23 23 230 23 23 230 23 23 230 23 23 230 23 23 23 23 23	OMEN	Metal	Wnigos	9	δ.	MG/KG	41	282	84	151	116	151	OSNORM
OCPEST ALPIAN COPEST ALPIAN COPEST ALPIAN COPEST ALPIAN COPEST ALPIAN ALPIAN<	DIMENT	Metal	VANADIUM	9	9 ;	MG/KG	5	36	18	×.	72	77	NORM
OCCESSI ALDIANIA COLOSA COLO	DIMEN	Metal	ZINC	12	7	MG/KG	2	0/17	6	457	/62	AS S	N CONTRACT
COCPest APPLA ENDOSULAN 21 8 MG/KG 0.0045 0.0041 0.013 0.024 0.013 0.014 0.015 0.004 0.004 0.004 0.004 0.005 0.004 0.005 0.004 0.005	DIMENT	OCPest	ALDRIN	21		MG/KG	0.0092	0.014	0014	0.035	0.02/	0014	MAXDE
OCCPOST TOTAL CONTRACTOR	OIMEN	OCPest	ALPHA ENDOSULFAN	2	e .	MG/KG	0 0045	0.0081	0013	0.028	0.027	18000	MAXDE
OCPOS DDI OCPOS D COLOR O COLO	DIMEN	OCPesi	ALPHA-CHLORDANE	7		MG/KG	0.0043	0.034	/100	0000	0000	2000	
OCP96ST DDT OCP96ST DDT OGS O 12 O 102 O 103 OCP96ST DIELDRIN OCP96ST DIELDRIN 0 10 0 0028 0 16 0 003 0 10 0 003 0 10 0	N N N	CCess	200	7 6	0 7	MG/KG	0.0044	0.70	0.00	0.35	0 15	2 0	OGNORM OGNORM
OCPEST DIELDRINA 21 10 MG/KG 0028 0 16 0 037 0 10 0 04 0 10 OCPEST ENDRINA CCPEST ENDRINA 0 027 0 05 0 05 0 05 0 05 0 019 0 05 0 019 0 05 0 019 0 05 0 019 0 05 0 019 0 05 0 019	DIMENI	OCPest	TODI	2	000	MG/KG	0.0037	0.093	0.035	0.12	0.062	0 093	MAXDET
OCP6st ENDRIN COCP6st ENDRIN OCZ6 COCP6 OCZ6 COCP6 OCZ6	DIMENT	OCPest	DIELDRIN	22	2	MG/KG	0 0028	0.16	0.037	Ot O	0.064	010	LOGNORM
OCCPest ENDRIN ALDEHYOE 21 4 MG/KG 0004 0019 0.053 0.051 0.019 OCCPest GAMMA-CHIORDANE 21 1 MG/KG 0.0018 0.019 0.004 0.020 0.0018 OCCPEST HEPIACHICRE CARLAMAR-CHIORDANE 21 1 MG/KG 0.0018 0.003 0.013 0.024 0.003 OCPAST HEPIACHICRE CARLAMAR-CHIORDANIA 21 1 MG/KG 0.0018 0.003 0.013 0.024 0.003 OCPAST HEPIACHICRE CARLAMARIA 0.003 0.018 0.003 0.013 0.025 0.003 PAH ACINAMARIA ACINAMARIA 21 7 MG/KG 0.027 0.046 0.19 0.028 0.020 PAH ACINAMARIA BENZOCIORAMIHENE 21 1 MG/KG 0.044 0.19 0.04 1 0.04 1 PAH BENZOCIORAMIHENE 21 16 MG/KG 0.044 <td< td=""><td>DIMENT</td><td>OCPest</td><td>ENDRIN</td><td>21</td><td>2</td><td>MG/KG</td><td>100</td><td>0.015</td><td>0 027</td><td>9300</td><td>0 052</td><td>0015</td><td>MAXDET</td></td<>	DIMENT	OCPest	ENDRIN	21	2	MG/KG	100	0.015	0 027	9300	0 052	0015	MAXDET
OCP651 GAMMA-CHIORDANE 21 8 MG/KG 0 0051 0 019 0 004 0 003 0 003 OCP651 HEPTACHIOR 21 1 MG/KG 0 0018 0 0013 0 0024 0 003 PAH HEPTACHIOR 21 1 MG/KG 0 0018 0 003 0 013 0 026 0 003 PAH ACENAPHTHENE 21 2 MG/KG 0 018 0 086 0 20 0 32 0 28 0 008 PAH ACENAPHTHENE 21 7 MG/KG 0 027 0 26 0 13 0 28 0 08 PAH ACENAPHTHENE 21 1 MG/KG 0 027 0 08 0 20 0 28 0 28 0 28 0 28 PAH BACNOGANINACENE 21 1 MG/KG 0 040 2 0 44 1 0 04 1 0 04 1 0 04 1 0 04 1 0 04 1 0 04 1 0 04 1 0 04	DIMENT	OCPest	ENDRIN ALDEHYDE	21	4	MG/KG	0.004	6100	0.025	0.053	1500	0100	MAXDET
OCCP68T HEPTACHICIR 21 1 MG/KG 00018 00018 0013 0024 00018	DIMENT	OCPest	GAMMA-CHLORDANE	21	8	MG/KG	0.0051	0.054	0010	0.064	0 032	0.054	MAXDET
OCP681 HEPIACHICAR FROXIDE 21 1 MG/KG 0.0037 0.0037 0.013 0.026 0.0030	DIMENT	OCPest	HEPTACHLOR	21	1	MG/KG	0 0018	0.0018	0.013	0.024	0.026	81000	MAXDET
PAH 2-METHYLNAPHTHAIENE 21 2 MG/KG 0.018 0.086 0.20 0.39 0.28 0.086 PAH ACENAPHTHENE 21 7 MG/KG 0.027 0.25 0.18 0.32 0.26 0.26 PAH ACENAPHTHENE 21 1 MG/KG 0.029 0.056 0.03 0.39 0.27 0.05 PAH ANTHIGACENE 21 1 MG/KG 0.046 2 0.44 1 0.064 1 PAH BENZOGOPARENE 21 1.6 MG/KG 0.040 2 0.42 1 0.04 1 PAH BENZOGOPARHINENE 21 1.6 MG/KG 0.031 2 0.42 1 0.04 1 PAH BENZOGOPARHENE 21 1.6 MG/KG 0.034 2 0.42 0.04 1 PAH BENZOGOPARHENE 21 1.6 MG/KG 0.034 2 0.04 0.05 <	DIMENT	OCPest	HEPTACHLOR EPOXIDE	21	1	MG/KG	0 0037	0 0037	0.013	0 025	0 026	0 0037	MAXDET
PAH ACENAPHTENE 21 7 MGKG 0027 0.25 0.18 0.32 0.26 0.26 PAH ACRIANATHINENE 21 10 MGKG 0.029 0.066 0.00 0.38 0.08 0.06 PAH BENZOGANIHACENE 21 14 MGKG 0.046 2 0.44 1 0.64 1 PAH BENZOGANIHACENE 21 16 MGKG 0.046 2 0.42 1 0.64 1 PAH BENZOGAPINENE 21 16 MGKG 0.031 2 0.42 1 0.64 1 PAH BENZOGAPINENE 21 16 MGKG 0.031 2 0.42 1 0.64 1 PAH BENZOGAPUNENE 21 10 MGKG 0.034 2 0.34 0.92 0.92 PAH GENZOGAPUNENE 21 10 MGKG 0.059 3 0.51 2 0.84 0	DIMENT	PAH	2-METHYLNAPHTHALENE	21	2	MG/KG	0.018	0 086	0.20	0.39	0.28	0.086	MAXDET
PAH ACENAPHTHYLENE 21 3 MG/KG 0.029 0.066 0.20 0.38 0.26 0.06 0.05	DIMENT	PAH	ACENAPHTHENE	21	7	MG/KG	0.027	0.25	0.18	0 32	0.26	0.25	MAXDET
PAH ANTIHOACENE 21 10 MGKG 0.019 0.46 0.19 0.39 0.27 0.39 PAH BENZOOPMENE 21 14 MGKG 0.046 2 0.44 1 0.04 1 0.04 1 0.04 1 0.04 1 0.04 1 0.04 1 0.04 1 0.04 1 0.04 1 0.04 1 0.04 1 0.04 1 0.04 1 0.04 0.04 0.04 1 0.04	DIMENT	PAH	ACENAPHTHYLENE	21	3	MG/KG	6200	9900	0.20	0.38	0.28	7	MAXDET
PAH BENZOOJANTHRACENE 21 14 MG/KG 0.046 2 0.44 1 0.64 1 PAH BENZOOJANTHRANE 21 16 MG/KG 0.041 2 0.42 1 0.64 1 PAH BENZOQA, DERVIENE 21 16 MG/KG 0.053 2 0.54 2 0.82 2 PAH BENZOQA, DERVIENE 21 14 MG/KG 0.034 2 0.34 0.92 0.92 PAH BENZOQA, LUPRANTHENE 21 16 MG/KG 0.041 2 0.40 0.98 0.64 0.98 PAH GENZOGA, LUPRANTHENE 21 16 MG/KG 0.059 3 0.51 2 0.80 0.98 0.64 0.98 PAH CHIRYSENE 21 15 MG/KG 0.029 3 0.51 2 0.80 2 0.80 2 0.80 0.25 0.80 0.25 0.80 0.80 0.	DIMENT	PAH	ANTHRACENE	21	10	MG/KG	0.019	0.46	0 19	0.39	0.27	٦	LOGNORM
PAH BENZOQOPYRENE 21 16 MG/KG 0.041 2 0.42 1 0.64 1 PAH BENZOQELUORANTHENE 21 16 MG/KG 0.053 2 0.55 2 0.82 2 PAH BENZOQELUORANTHENE 21 14 MG/KG 0.034 2 0.34 0.92 0.92 PAH BENZOGN-UORANTHENE 21 10 MG/KG 0.059 3 0.51 2 0.99 PAH CHRYSENE 21 16 MG/KG 0.059 3 0.51 2 0.80 2 PAH DIBENZIOLANTHRACENE 21 15 MG/KG 0.029 3 0.51 2 0.80 2	DIMENT	PAH	BENZO(a)ANTHRACENE	21	14	MG/KG	0.046	2	0.44	-	0.64	-	OGNORM
PAH BENZOOPELLORANTHENE 21 16 MG/KG 0.053 2 0.55 2 0.82 2 PAH BENZOGALUGANTHENE 21 14 MG/KG 0.034 2 0.54 0.92 0.92 0.92 PAH GENZOGALUGANTHENE 21 10 MG/KG 0.059 3 0.51 2 0.09 PAH CHRYSENE 21 15 MG/KG 0.059 3 0.51 2 0.80 2 PAH DIBENZICANANTHRACENE 21 5 MG/KG 0.028 3 0.51 2 0.09	DIMENT	PAH	BENZO(a)PYRENE	21	16	MG/KG	0.041	2	0.42	1	0 64	~	OGNORM
PAH BENZOG I, DERVIENE 21 14 MG/KG 0.034 0.92 0.52 0.92 PAH GENZOKOFLUORANTHENE 21 10 MG/KG 0.041 2 0.40 0.98 0.64 0.98 PAH CHRYSENE 21 15 MG/KG 0.059 3 0.51 2 0.69 PAH DIBENZIGANJANTHRACENE 21 5 MG/KG 0.028 0.25 0.20 0.41 0.29 0.25	DIMENT	РАН	BENZO(b)FLUORANTHENE	21	16	MG/KG	0.053	2	0.55	2	0 82	7	OGNORM
PAH BENZOXOFLUGRANTHENE 21 10 MG/KG 0.041 2 0.40 0.98 0.64 0.98 0.64 0.98 0.5 2 0.59 3 0.51 2 0.80 2 PAH DIBENZIOLA/JANTHRACENE 21 5 MG/KG 0.028 0.25 0.20 0.41 0.29 0.25	DIMENT	PAH	BENZO(g h.i)PERYLENE	21	14	MG/KG	0034	2	0.34	0 02	0.52	1	OGNORM
PAH CHRYSENE 2 16 MG/KG 0.059 3 0.51 2 0.80 2 PAH DIBERIZIO.A)ANTHRACENE 21 5 MG/KG 0.028 0.25 0.20 0.41 0.29 0.25	DIMENT	PAH	BENZOKI)FLUORANTHENE	21	므	MG/KG	000	2	0.40	860	90	T	OGNORM
PAH DIBENZICA)ANTHRACENE 21 5 MG/KG 0028 025 020 041 029 025	DIMENT	PAH	CHRYSENE	21	2	MG/KG	0.059	60	0.51	2	080	7	OGNORM
	DIMENT	РАН	DIBENZ(o,h)ANTHRACENE	21	2	MG/KG	0 028	0.25	0.20	0.41	0.29	0.25	MAXDET

H 13

TABLE H-1
Data Summaries for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation RI

			Mimbor	Number		Minimum	Maximum Detected	Arithmetic	UCL95	UCL95		
Area of Concern	Class	Parameter Name	Analyses	Defects	Units	Concentration	Concentration	Value*	Lognormal	Normal	EPC	Basis
FU2 SEDIMENT	PAH	FLUORANTHENE	61	ũ	MG/KG	0.037	3	0.52	2	180	2	COGNORM
FU2 SEDIMENT	PAH	FLUORENE	21	8	MG/KG	0.029	0 33	0.18	0.32	0.26	0.32	LOGNORM
FU2_SEDIMENT	PAH	INDENO(1,2 3-c c)PYRENE	21	13	MG/KG	0.028	2	0.35	_	051	_	LOGNORM
FU2 SEDIMENT	PAH	NAPHTHALENE	21	2	MG/KG	0.072	0.081	80	0.35	0.28	0.081	MAXDET
FU2_SEDIMENT	PAH	PHENANTHRENE	21	15	MG/KG	0 026	က	0.56	2	0.89	2	LOGNORM
FU2 SEDIMENT	PAH	PYRENE	21	2	MG/KG	0 039	2	0 95	2	2	5	MAXDE
FU2 SEDIMENT	PCB	PCB-1260 (AROCHLOR 1260)	16		MG/KG	0.33	0 33	0 32	- ;	990	0.33	MAXDE
FU2 SEDIMENT	SVOC	BENZYL BUTYL PHTHALATE	δĹ	-	MG/KG	0.084	0.084	0.26	031	9 (S	0.084	MAXOE
FU2 SEDIMENT	3000	bis(2 ETHYLHEXYL) PHTHALATE	٥į :	2	MG/KG	0.051	2	036	100	0.53	100	O CONCINE
FU2 SEDIMENT	SVOC	CARBAZOLE	٥ ;	٥	MG/KG	0.023	0.52	0.25	0.42	0.38	0.045	LOGNORM
FUZ SEDIMENT	SVOC	Olin-BulyL PHIHALAiE	2 5	Σ (MG/KG	0.02	000	0.25	0.32	0.33	000	MAYDET
FUZ SEDIMEN	SVOC	DIPOCITIEMALAIE	2 2		MG/KG	0000	200	0 23	250	250	0.14	MAXDET
CLIS SEDIMEN	300	OBENZOTORAN	2	7 4	MG/NG	0.026	0.50	0.27	0.48	0.35	0.48	LOGNORM
ELIO SEDIMENT	200	DIMETRY BUTHALATE	2	, -	MG/KG	0.11	110	0.26	031	0 34	0 11	MAXDET
FLI2 SEDIMENT	SON	PENTACHLOROPHENOL	0	7	MG/KG	0 12	0 14	0.29	0.43	0.36	0 14	MAXDET
FU2 SEDIMENT	200	ACETONE	6	2	MG/KG	0.007	0013	0 039	0.059	6/00	0.013	MAXDET
FU2 SEDIMENT	VOC	BENZENE	61	-	MG/KG	0.004	0000	0 0089	וווסס	0.013	0 004	MAXDET
FU2 SEDIMENT	VOC	CARBON DISULFIDE	٥į	5	MG/KG	0 002	0 032	0 0000	0000	0 0094	0.0089	LOGNORM
FU2_SEDIMENT	200	CARBON TETRACHLORIDE	61	4	MG/KG	0.005	110	0.017	0 024	0 027	0.024	LOGNORM
FU2_SEDIMENT	VOC	METHYL ETHYL KETONE (2-BUTANONE)	19	8	MG/KG	0.003	0 12	0.014	9100	0.025	0019	LOGNORM
FU2_SEDIMENT	VOC	METHYLENE CHLORIDE	10	7	MG/KG	1000	0 008	0 0002	0.013	0014	0000	MAXDET
FU2 SURFSOIL	Metal	ALUMINUM	92	٤	MG/KG	6550	15000	110	12570	12341	12570	LOGNORM
FU2 SURFSOIL	Metal	ANTIMONY	26		MG/KG	0.42	2	2	3	2	2	MAXDET
FU2 SURFSOIL	Metal	ARSENIC	28	8	MG/KG	2	51	10	25	22	25	LOGNORM
FU2 SURFSOIL	Metal	BARIUM	Jo	92	MG/KG	93	8	8	145	144	145	LOGNORM
FU2 SURFSOIL	Metal	BERYLLIUM	28	8	MG/KG	0.27	_	0 40	-	950	- :	MAXDE
FU2 SURFSOIL	Metal	CADMIUM	28	2	MG/KG	0 03		0.45	800	200	000	TO SOUGH
FUZ SURFSOIL	Metal	CALCIUM	9[92 8	MG/KG	986	3550	211/	2420	23/3	2420	
FU2 SURFSOIL	Metal	CHROMIUM IOIAL	2	8	MG/KG		700		8	30	0	N C C C
FU2 SURFSOIL	Metal	COBALT	9 8	2 2	MG/KG	0	13	٤ د	7.0	× %	27	MODISO
FUZ SURPOIL	DIAM	200	97 4	2 5	MG/KG	13800	23000	18304	19888	19726	19726	NORM
FID SUPEOIL	Metol	I FAD	28	28	MG/KG	6	318	49	74	69	74	LOGNORM
FUZ SURFSOIL	Metal	MAGNESIUM	9	16	MG/KG	1570	3000	2174	2412	2381	2381	NORM
FU2 SURFSOIL	Metal	MANGANESE	91	١٩	MG/KG	371	1860	691	827	844	827	LOGNORM
FU2 SURFSOIL	Metal	MERCURY	28	=	MG/KG	003	900	0.049	0.058	0.054	0.058	LOGNORM
FU2 SURFSOIL	Metal	NICKEL	58	28	MG/KG	4	88	21	22	24	25	LOGNORM
FU2 SURFSOIL	Metol	POTASSIUM	0 8	، ہ	MG/KG	6	3300	21/8	71/7	0707	0707	NO CAN
FUZ SURFSOIL	Metal	SOCIEM	07	, -	MG/KG	218	218	8	70	53	20	LOGNORM
FILD SUIPSOIL	Dielo:	VANADIIM	9	2	MG/KG	2	37	27	&	&	&	MSON
FID SUPPOR	Metal	ZINC	28	88	MG/KG	=	426	8	107	110	107	LOGNORM
FU2 SURFSOIL	OCPest	ALPHA-CHLORDANE	51	5	MG/KG	0.015	ı	0.088	0.25	0 14	0.25	LOGNORM
FU2 SURFSOIL	OCPest	QQQ	5	Ŷ	MG/KG	0 0028	0.017	0 12	0.28	0 18	7100	MAXDET
FU2 SURFSOIL	OCPest	JDD[51	35	MG/KG	0 002	-	0.20	690	0.27	000	LOGNORM
FU2 SURFSOIL	OCPest	labi	51	32	MG/KG	0 0017	7	0.35	1	0.58	_	LOGNORM
FU2 SURFSOIL	OCPest	DIELDRIN	51	42	MG/KG	0.0085	10	0.52	3	0.86	6	LOGNORM
FU2 SURFSOIL	OCPest	GAMMA-CHLORDANE	51	S	MG/KG	0.015	-	600	023	0 14	0.23	LOGNOGM
FU2 SURFSOIL	PAH	ACENAPHTHENE	41	e (MG/KG	0 059	0 13	0.00	0 14	0 12	2013	MAXDE
FU2 SURFSOIL	PAH	ANTHRACENE	9;	1	MG/KG	0000	720	0 10	0 14	710	2 2	
FUZ SURFSOIL	PAH	BENZO(a) ANTHRACENE	17	14	NIG/NG	tion o	00)	2 5	0 10	2)	<u> </u>	LOGINO CIENT

H 20

1ABLE H-1
Data Summaries for all Defected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation R1

				Number		Minimum	Maximum	Arithmetic				
			Number of	ð		Detected	Detected	Mean	UC195	UCL95		
Area of Concern	Class	Parameter Name	Analyses	Detects	Units	Concentration	Concentration	Value.	Lognormal	Normal	EPC	Basis
FU2 SURFSOIL	PAH	BENZO(a)PYRĘNE	4	12	MG/KG	0.054	0 44	0 12	0.17	0.15	017	LOGNORM
FU2 SURFSOIL	PAH	BENZO(b)FLUORANTHENE	4	12	MG/KG	0.052	0 46	0 13	0.18	0 15	0 18	LOGNORM
FU2 SURFSOIL	PAH	BENZO(g h I)PERYLENE	41	,	MG/KG	0.045	0.50	5	0.15	0 13	0.15	LOGNOGM
FUZ SURFSOIL	PAH	BENZO(k)FLUORANTHENE	14	12	MG/KG	0.048	0.4	0 12	017	0.15	017	LOGNORM
FU2 SURFSOIL	PAH	CHRYSENE	4	12	MG/KG	0046	0.62	0 12	017	0 15	017	LOGNORM
FUZ SURFSOIL	РАН	DIBENZ(G N)ANIHIVACENE	4	- :	MG/KG	0.083	0.083	0 0	0 14	0.12	0.083	MAXDET
FUZ SURFSOIL	PAH	FLUCISANIHENE	₽	77	MG/KG	DIM	_ ;	9 9	22.0	0.22	0.23	LOGNORM
FU2 SURFSOIL	PAH	FLUORENE	4	2	MG/KG	9/00	0 14	0 :	0 14	0 12	0 14	LOGNORM
FU2 SURFSOIL	PAH	INDENC(123-c,d)PYRENE	4	°	MG/KG	9000	0.70	- 1	0.15	0 13	0 15	LOGNORM MACON PROPERTY OF THE
FU2_SURFSOIL	PAH	PHENANTHRENE	41	Jó	MG/KG	0.065		0 14	0.19	0 18	010	COCNORM
FU2 SURFSOIL	PAH	PYRENE	٩١	18	MG/KG	0.046	1	0.15	0.20	0 10	80	LOGNORM
FU2 SURFSOIL	SVOC	bis(2-ETHYLHEXYL) PHTHALATE	ଯ	3	MG/KG	0.078	0.23	010	021	021	021	TOGNORM
FU2 SURFSOIL	SOC	CARBAZOLE	8	2	MG/KG	0.15	0 18	020	0%	0.20	0 18	MAXDET
FU2 SURFSOIL	SOC	DIBENZOFURAN	8	-	MG/KG	0.056	9500	0 10	0.22	021	0.056	MAXDET
FU2 SURFSOIL	80C	PENTACHLOROPHENOL	8	_	MG/KG	0.054	0.054	0 0	0 10	0,0	0.054	MAXDET
FU2 SURFSOIL	δ Σ	2-HEXANONE	21	-	MG/KG	0 002	0 002	0 0058	0 0064	19000	0 002	MAXDET
FU2 SURFSOIL	٥٥ ٥٥	ACETONE	21	4	MG/KG	0 004	0 005	0021	0 034	0033	0 034	LOGNOBA
FU2 SURFSOIL	200	BENZENE	21	-	MG/KG	0 002	0 002	0.0058	0.0064	19000	0 002	MAXDET
FU2 SURFSOIL	S S	BROMOMETHANE	21	-	MG/KG	0 002	0 002	0 00 58	0000	19000	0 002	MAXDET
FU2 SURFSOIL	NOC	CARBON DISULFIDE	2)	_	MG/KG	0.002	0 002	0 0058	0000	19000	0 002	MAXDET
FU2 SURFSOIL	8	METHYL ETHYL KETONE (2-BUTANONE)	21	3	MG/KG	0000	0 028	0.0078	06000	96000	06000	LOGNORM
FU2 SURFSOIL	200	METHYLENE CHLORIDE	21	3	MG/KG	0 002	0 003	0 0054	0000	0 00059	0 003	MAXDET
FU2_SURFSOIL	000	TETRACHLOROETHYLENE(PCE)	21	3	MG/KG	0 003	0.073	0 0080	00000	0014	0,000	LOGNORM
FU2 SURFSOIL	VOC	TOLUENE	7	-	MG/KG	0.003	0 003	0 0058	0 0062	19000	0 003	MAXDET
FU2 SURFSOIL	٥٥ ١	TOTAL 1,2-DICHLOROETHENE	21	-	MG/KG	0004	0 004	0 0059	00061	19000	0004	MAXDET
FUZ SURFSOIL	8	Total Xylenes	21	-	MG/KG	000	1000	0 0057	00000	0 00062	1000	MAXDET
FU2 SURFSOIL	8	TRICHLOROETHYLENE (TCE)	21	_	MG/KG	0.003	0 003	0 0058	0 0062	0 00001	0 003	MAXDET
FU2 SURFWATER	DissMetal	Aluminum, Dissolved	4	2	MG/L	0.014	0.081	0 030	2	0 0 0 0	0.081	MAXDET
FUZ SURFWATER	DissMetal	Arsenic Dissolved	8	15	MG/L	0 00 18	0 041	0.0078	6100	0012	0010	LOGNORM
FU2 SURFWATER	DissMetal	Calcium, Dissolved	4	4	MG/L	2	01	Ŷ	69	0	10	MAXDET
FU2_SURFWATER	DissMetal	Iron Dissolved	P	-	MG/L	0.25	0.25	0.078	840	0.22	0.25	MAXDET
FU2 SURFWATER	DissMetal	Lead, Dissolved	ଛ	7	MG/L	0 0023	0031	0 00030	0.0034	95000	0 0034	LOGNORM
FU2 SURFWATER	DissMetal	Magneslum, Dissolved	4	7	MG/L	0.21	2	0.87	413	2	2	MAXDET
FUZ SURFWAIER	Dissmeral	Manganese Dissolved	4	,	MG/L	0.00/4	nozi	è considera	8 :	Ain	0.021	MAXDE
FUZ SURFWATER	Dissideral	Porassium Dissolved	4	,	MG/L	6/0	200	- 070	I C	7 0	200	MAXDE
CITO CLIDENANTED	DistMotal	Zoo Derokiod	4 5		WS/L	2000	Š	0.00	3000	0000	0000	NOON O
FUZ SURFWATER	GenChem	Т	91	, 2	MG/I	0.02/	1180	217	30,00	370	1180	MAXDEL
FU2 SURFIWATER	GenChem	TOTAL ORGANIC CARBON	15	2	MG/L	~	8	101	91	13	13	WYON
FU2 SURFWATER	Metal	т	12	٥	MG/L	0.052	0.58	0.16	0.45	025	0.45	LOGNORM
FU2 SURFWATER	Metal	ARSENIC	28	15	MG/L	0 0026	7,00	0.012	0 027	0.018	0.027	LOGNORM
FU2_SURFWATER	Metal	BARIUM	12	8	MG/L	0.0127	0.018	0.012	2100	0.014	0014	NORM
FU2 SURFWATER	Metal	CALCIUM	12	12	MG/L	2	6	7	6	8	8	NORM
FU2 SURFWATER	Metal	CHROMIUM TOTAL	28	5	MG/L	11000	0010	0.0029	0 0042	0 0044	0 0042	LOGNORM
FU2 SURFWATER	Metal	COPPER	28	3	MG/L	0 0046	0 022	0.0042	29000	0 0059	0 0057	LOGNORM
FU2 SURFWATER	Metal	NOZII	15	=	MG/L	0.15	0.84	0.38	0.86	0.52	0.84	MAXDET
FU2 SURFWATER	Metal	LEAD	28	17	MG/L	0 0022	0.059	0.0085	0.020	0013	0 020	LOGNORM
FU2 SURFWATER	Metal	MAGNESIUM	12	12	MG/L	0.29	2	-	2	2	2	LOGNORM
FU2 SURFWATER	Metal	MANGANESE	12	12	MG/L	0 0084	0.068	0.035	0 0 0 0 5 0	0 046	0.059	LOGNOGM
FU2 SURFWATER	Metal	NICKEL	58	9	MG/L	0 00049	0.018	0 0032	0 0062	0.0047	0 0062	LOGNORM
FU2 SURFWATER	Metal	POTASSIUM	12	0	MG/L	-	4	2	4	2	4	LOGNORM
FU2_SURFWATER	Metol	SELENIUM	28	_	MG/L	0 0058	0 0058	11000	0 0013	00014	00013	LOGNORM

H 21

TABLE H-1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation RI

			Mumber	Number		Minimum	Maximum	Arithmetic	UC195	UCI95		
Area of Concern	Class	Parameter Name	Analyses	Detects	Units	Concentration	Concentration	Value.	Lognormal	Normal	EPC	Basis
FUZ_SURFWATER	Metal	NUIDOS	12	3	MG/L	0.06	-	0.58	0.70	0.73	0.79	LOGNORM
FU2_SURFWATER	Metal	VANADIUM	12	2	MG/L	0 0041	0 0043	0.0012	0 0037	91000	0 0037	LOGNORM
FU2_SURPWATER	Metal	ZINC	28	61	MG/L	0.0098	0.47	0 064	0.15	0002	0.15	LOGNORM
FU2 SURFWATER	OCPest	DDE	æ	4	MG/I	0 000026	0.00058	0.00000	0.000054	0 000054	7	COGNORM
FU2 SURFWATER	OCPest	DDI	78 78	6	MG/L	0.000047	0.00015	0.00000	0,00000	110000	000000	MacNega
CITO SURPWATER	Servo	DIELDRIN	2 1	-	MG/I	1000	1000	2,7000	19000	0.0052	1000	MAXDET
FUZ SUKFWATER	SVCC Dioxin	1.2.3.4.6.7.8.HFPTACHIODOOBENZOEIIRAN	2 2	9	MG/KG	0 000004	620000	0 00055	900	1600000	0 00029	MAXDET
FU3 DEEP	Dioxin	1 2 3 4 7.8.9-HEPTACHLORODIBENZOFURAN	2	2	MG/KG	0 000002	0 000003	01000	5	0.0013	0 000003	MAXDET
FU3 DEEP	Dioxin	1 2 3 4 7 8-HEXACHLORODIBENZOFURAN	01	2	MG/KG	0 000004	000000	01000	-	0 0013	0 000004	MAXDET
FU3_OEEP	Dioxin	1 2 3 6 7 8-HEXACHLORODIBENZO-P-DIOXIN	01	-	MG/KG	0 000008	8000000	11000	6200	00014	0 000008	MAXDET
FU3 DEEP	Dloxin	1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	10	2	MG/KG	0 000001	0.000002	0.0010	38	0 0013	0 000002	MAXDET
FU3 DEEP	DloxIn	1 2 3 7 8 9 HEXACHLORODIBENZO-P-DIOXIN	2	2	MG/KG	0 000005	0 000005	0 00010	0.77	0 0013	000000	MAXDET
FU3_DEEP	Dloxin	2 3,4 6 7 8-HEXACHLORODIBENZOFURAN	₽	-	MG/KG	0 000003	000003	0.0001	011	00014	000003	MAXDE
FU3 DEEP	Dlaxin	OCTACHLORODIBENZO-p-DIOXIN	2 :	2	MG/KG	0.0028	0.000	0.0052	000/4	/9000	0.00/4	CONCIN
FU3 DEEP	Dioxin	OCTACHLORODIBENZOFURAN	2 9	5 5	MG/KG	0.000002	0,000,0	0.000000	0.00000	200000	0,0000	SONORM
rus Derr	UXOKT C	ALVA INITIAL AS COCOS	2	2 2	MG/KG	737	444000	100876	1054040	140062	444000	MAXDET
Elia Deep		_	7	-	MG/KG	0.12	0 12	0.073	0.17	110	0 12	MAXDET
FIJA DEEP	GenChem	-	12	12	PERCENT	Ŷ	82	14	61	18	61	LOGNORM
FU3 DEEP	GenChem	HO	61	٥	PH UNITS	٥	6	8	8	8	8	NORM
FU3_DEEP	GenChem	TOTAL ORGANIC CARBON	12	12	MG/KG	1650	26900	0086	21568	13629	21568	LOGNORM
FU3_DEEP	GeoPhys	CATION-EXCHANGE CAPACITY	12	12	MEQ/100G	-	14	7	12	٥	ô	NORM
FU3_DEEP	GeoPhys	SIEVE NO 100 PERCENT PASSING	12	12	PERCENT	44	86	29	79	77	7	LOGNORM
FU3 DEEP	GeoPhys	SIEVE NO 20 PERCENT PASSING	12	12	PERCENT	83	001	8	93	8	1	LOGNORM
FU3 DEEP	GeoPhys	SIEVE NO 200, PERCENT PASSING	12	12	PERCENT	&	96	19	77	73	77	LOGNORM
FU3 DEEP	GeoPhys	SIEVE NO 2001, PERCENT PASSING	12	12	PERCENT	28	26	80	77	72	77	LOGNORM
FU3_DEEP	GeoPhys	SIEVE NO 40 PERCENT PASSING	12	12	PERCENT	67	8	80	8	8	86	LOGNORM
FU3_DEEP	GeoPhys	SIEVE NO 80 PERCENT PASSING	12	12	PERCENT	47	8	69	8	8/8	T	COGNORM
FU3_DEEP	Metal	ALUMINUM	48	8	MG/KG	2840	00561	8774	09101	3,	_	LOGNOCH COCK
FU3 DEEP	Metal	ANTIMONY	081	8	MG/KG	0.23	22	7 5	4 5	7	2 2	TOUND OF
FU3 DEEP	Metal	ARSENIC	187	£2 :	MG/KG	0.43	45	0) 52	21,0	911	2 2	S COLOGINA
FU3 DEEP	Metol	BARIUM	187	8 8	MG/KG	300	432	290	200	150	T	MACNEC
9000	Motor	DENTIFICATION	187	2 2	MG/KG	002	8	990	0.89	0.70	Γ	COGNORM
FU3 DEEP	Metal	CALCIUM	48	8	MG/KG	912	227000	23105	37247	35681	37247	LOGNORM
FU3 DEEP	Metat	CHROMIUM III	9	4	MG/KG	13	403	142	256532285	357	403	MAXDET
FU3_DEEP	Metat	CHROMIUM, TOTAL	187	187	MG/KG	Ŷ	915	25	40	\$	40	LOGNORM
FU3 DEEP	Metal	COBALT	48	89	MG/KG	_	01	9	7	0 8	\;	O SOUGH
FU3 DEEP	Metal	COPPER	187	<u>3</u>	MG/KG	4	235	27	31	8	3006	CONORM
FU3 DEEP	Metal	NON	48	84 ;	MG/KG	3960	21300	/1691	14393	19971	143	CONCIN
FU3 DEEP	Metol	LEAD NACONICHIA	<u> </u>	<u>è</u>	MG/KG	243	Doors Doors	2432	3123	2000	3123	MacNega
FUS OFFE	Merce	NACSINE SIGNAL ASSESSMENT OF THE SECOND ASSESSMENT OF THE SECOND ASSESSMENT OF THE SECOND OF THE SEC	9	ş	MG/KG	3 4	1170	403	524	\$8	200	MOONOCI
103 Off	Metol	MARKATIDA	187	£ 5	MC/KG	0015	2	0.057	0.056	0.075	9000	LOGNORM
EN DEED	Match		187	187	MG/KG	3	92	8	22	21	22	LOGNORM
ELIA DEED	Metal	POTASSIUM	48	44	MG/KG	0 <u>6</u> t	4650	1262	1665	1511	1005	LOGNORM
FU3 DEEP	Metal	SELENIUM	187	39	MG/KG	0.29	10	990	0.72	0.77	0.72	LOGNORM
FU3 DEEP	Metal	SILVER	187	5	MG/KG	91.0	3	190	,	290	-	LOGNORM
FU3 DEEP	Metal	SODIUM	48	٥	MG/KG	62	863	105	278	145	278	LOGNORM
FU3 DEEP	Metal	VANADIUM	48	48	MG/KG	7	77	24	27	28	, 27	LOGNORM
FU3 DFEP	Metal	ZINC	187	187	MG/KG	21	4000	180	170	220	0/1	LOGNORM

P\147543\AppHdata xis\APPHDATA

TABLE H-1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites Memphis Depot Main installation RI

٠.,

March Cores Cores Albert Coles Albert Coles Albert Coles March Coles Albert Coles March					Number		Minimum	Maximum	Arithmetic				
OCCEAN INTERPRETACE OFFICIARE 121 12 MASCAGO 0.001 </th <th>Area of Consen</th> <th>Ç</th> <th>Portmeter Name</th> <th>Number of</th> <th>Deteck</th> <th><u> </u></th> <th>Concentration</th> <th>Concentration</th> <th>Medn</th> <th>lognomol</th> <th>Normal Normal</th> <th>9</th> <th>P. C. C.</th>	Area of Consen	Ç	Portmeter Name	Number of	Deteck	<u> </u>	Concentration	Concentration	Medn	lognomol	Normal Normal	9	P. C. C.
OCCORD DISTALLAMONICATION 121 2.9 MESCRO DISTALLAMONICATION ORDIT ORDIT <t< td=""><td>ENA DEED</td><td>Coper</td><td></td><td>121</td><td>1</td><td>MG/KG</td><td>אנשט</td><td>190</td><td>7100</td><td>0.013</td><td>7000</td><td>5100</td><td>MOUNDO</td></t<>	ENA DEED	Coper		121	1	MG/KG	אנשט	190	7100	0.013	7000	5100	MOUNDO
OCCORNI OCCORNI <t< td=""><td>DEED CEET</td><td>E SCO</td><td></td><td>12.</td><td>,</td><td>MG/KG</td><td>0032</td><td>0000</td><td>100</td><td>100</td><td>2000</td><td></td><td>MacNego</td></t<>	DEED CEET	E SCO		12.	,	MG/KG	0032	0000	100	100	2000		MacNego
OCYPERI DESIGNATION 121 23 MASCAGE 0.0012 0.014 0.0014 0	ELIS DEEP	OCPert	JGC .	12.	S	MG/KG	0.0014	017	0014	0.015	6100	0015	NSONOOI
OCYMEN GENERIN CONTRACTOR CARREST 12 2 2 Market 00007 0010 00	FU3 DEEP	OCPest	Idd	121	89	MG/KG	0 005	0.41	0 028	0 031	0 038	0.031	LOGNORM
OCYPER CONTRACT <	FU3 DEEP	OCPest	DIELDRIN	121	22	MG/KG	0 0012	81.0	9100	0 0 1 7	0 021	0.017	LOGNORM
OCEAN HEROSCHANCHOROUNG 1 2 1 4 MAGINE 0.0055 0.0055 0.0050 0.0050 0.0050 0.0051 0.0050 0.0050 0.0050 0.0051	FU3_DEEP	OCPest	GAMMA-CHLORDANE	121	11	MG/KG	0.0017	0.58	0018	0.014	0.027	0014	LOGNORM
PAH CARRILLAMILAMILATION 15 4 Missing 3 2.24 7.7 90011 11 0.03 0.01 11 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04	FU3_DEEP	OCPest	HEPTACHLOR	121	-	MG/KG	0 035	0.035	0 0057	0 0056	0.0077	0 0056	LOGNORM
PAH ALCHARIMENT PRODUCTION OF THE ALCHARIME	FU3 DEEP	ORG ORG	PETROLEUM HYDROCARBONS	5	4	9X/SW	3	274	7.2	9901172	181	274	MAXDET
PAH ACRAM-MINITIRE 15 15 Medice 0.847 0.54 0.32 0.34 0.42 0.84 PAH ACRAM-MINITIRE 16 15 Medice 0.14 0.17 0.14 0.95 0.14 0.25 0.14 PAH AMERICADO, CHIRALIST 16 2.7 Medice 0.03 0.17 0.05 0.17 0.05 <t< td=""><td>FU3_DEEP</td><td>PAH</td><td>2-METHYLNAPHTHALENE</td><td>165</td><td>ဇ</td><td>MG/KG</td><td>0 057</td><td>0.51</td><td>0 33</td><td>038</td><td>0.43</td><td>0.36</td><td>LOGNORM</td></t<>	FU3_DEEP	PAH	2-METHYLNAPHTHALENE	165	ဇ	MG/KG	0 057	0.51	0 33	038	0.43	0.36	LOGNORM
PAH AREAN ORGAN 0.14 0.22 0.14 PAH AREAN ORGAN 0.14 0.25 0.42 0.14 PAH AREAN ORGAN 0.09 0.14 0.05 0.41 0.05 PAH RERZOOP/RENE 1.65 4.3 MeSRG 0.09 3.7 0.05 0.43 0.65 PAH RERZOOP/RENE 1.65 4.3 MeSRG 0.093 3.7 0.05 0.5 0.6 PAH RERZOOP/RENE 1.65 4.0 MeSRG 0.093 3.7 0.05 0.2 0.0 PAH GERZOOP/RENE 1.65 2.0 MeSRG 0.043 4.0 0.05 0.0 PAH GERZOOP/RENE 1.65 2.0 MeSRG 0.043 4.0 0.0 0.0 PAH GERZOOP/RENE 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 DAN CALOR 0.0 <	FU3_DEEP	PAH	ACENAPHTHENE	165	15	MG/KG	0.047	5	0.32	0.37	0.40	0.37	LOGNORM
PANI INTRIMACENE 1 Magines 1 Magines 0 10 1 0.90 0 1 0 20 0 20 0 10 0	FU3_DEEP	PAH	ACENAPHTHYLENE	165	2	MG/KG	0 088	0 14	0.32	0.35	0.42	0.14	MAXDET
PAH RENZONAMINIACENE 165 43 MAGING 0.090 40 0.66 1 0.66 PAH BERZOSOPANTHINGCENE 165 43 MAGING 0.033 32 0.75 1 0.66 PAH BERZOSOPANTHING 165 43 MAGING 0.033 32 0.57 0.52 0.57 0.50 0.66 1 0.66 PAH BERZOSOPANTHING 165 43 MAGING 0.033 32 0.52 0.53 0.66	FU3_DEEP	PAH	ANTHRACENE	165	17	MG/KG	0 0 0	11	0.39	0.41	0.52	041	LOGNORM
PAH BIRDOCRIVENER 165 47 MGMC 0.009 37 0.75 0.65 1 0.65 PAH BIRDOCRIVENERIER 165 43 MGMC 0.003 37 0.75 0.63 1 0.65 PAH BIRDOCRIVENERIER 165 40 MGMC 0.003 37 0.75	FU3_DEEP	PAH	BENZO(a)ANTHRACENE	165	48	MG/KG	0 039	40	0.86	690	-	690	LOGNORM
PAH HENCOGNI-DEFORMHENE 165 48 MGRIGG 0030 35 0.05 0.05 0.05 PAH BERNOGIN-LICHAMHENE 165 40 MGRIGG 0.043 54 0.05 0.05 0.05 0.05 0.05 PAH BERNOGIN-LICHAMHENE 165 40 MGRIGG 0.043 54 0.05	FU3_DEEP	PAH	[BENZO(d)PYRENE	165	47	MG/KG	0 039	33	0.79	0.65	-	990	LOGNORM
PAH GRADIO/OLIA DIFFRACIENE 105 40 MiGRIGO 0.033 3.5 0.5 0.03	FU3 DEEP	PAH	BENZO(b)FLUORANTHENE	165	48	MG/KG	0 038	30	0.82	990	-	990	LOGNORM
PAH REMONSTRAINERS 166 26 Missing 0.043 3.4 0.84 0.1 0.06 PAH BREMONTHERS 165 25 Missing 0.03 1 0.04 1 0.06 PAH DIRPUSAMINENE 165 25 Missing 0.04 7 2 1 0.04 <t< td=""><td>FU3 DEEP</td><td>PAH</td><td>BENZO(g,h i)PERYLENE</td><td>165</td><td>40</td><td>MG/KG</td><td>0.037</td><td>22</td><td>0.57</td><td>0.53</td><td>0.82</td><td>0.53</td><td>LOGNORM</td></t<>	FU3 DEEP	PAH	BENZO(g,h i)PERYLENE	165	40	MG/KG	0.037	22	0.57	0.53	0.82	0.53	LOGNORM
PAH OHYSTORIA 1 (16) 22 MG/MG 0.043 4 (16) 0.04 1 (16) 0.04 1 (16) 0.04 1 (16) 0.04 <td>FU3_DEEP</td> <td>PAH</td> <td>8ENZO(k)FLUORANTHENE</td> <td>165</td> <td>46</td> <td>MG/KG</td> <td>0043</td> <td>R</td> <td>0.84</td> <td>990</td> <td>-</td> <td>690</td> <td>LOGNORM</td>	FU3_DEEP	PAH	8ENZO(k)FLUORANTHENE	165	46	MG/KG	0043	R	0.84	990	-	690	LOGNORM
PAH DIRENGIONALINEACENE 165 55 MG/MG 0.04 71 0.33 0.05 0.05 0.05 1 0.05	FU3 DEEP	PAH	CHRYSENE	165	25	MG/KG	0.043	\$	0 05	0.74	_	0.74	LOGNORM
PAH HUDORANIHARE PAH HUDORANIHARE 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1 1 1 0 2 1<	FU3 DEEP	PAH	DIBENZ(a h)ANTHRACENE	165	2	MG/KG	021	-	033	98	0.43	980	LOGNORM
PAM FROMERIA FRAM FROMERIA 165 18 MBG/MG 0.041 5 0.033 0.37 0.41 0.57 PAM MERIDORANI 165 40 MG/MG 0.066 22 0.03 0.54 0.65 0.55 0.05 0.55 0.05	FU3 DEEP	PAH	FLUORANTHENE	165	જ	MG/KG	0 O	7	2	-	2	_	LOGNORM
PAH INTERVALLE 165 40 MG/MG 0.05 27 0.05	FU3_DEEP	PAH	FLUORENE	165	82	MG/KG	000	2	033	0 37	0.41	0.37	LOGNORM
PAMA INAMINARIANE 1 65 5 M G/MC 0 085 0 65 0 53 0 53 0 53 0 50	FU3 DEEP	PAH	INDENO(1 2 3-c d)PYRENE	165	ş	MG/KG	000	22	090	0.56	0.87	0 56	LOGNORM
PAMI PREMIED PRAMI PREMIED 165 55 MG/MC 0.043 52 1 0.85 2 0.68 SVOC BENZYL BUTY PHINALATIE 68 18 MG/MC 0.043 0.51 0.53 0.50 0.54 0.50 SVOC DARBAZOLE MATRIANTE 68 18 MG/MC 0.04 0.43 0.43 0.54 0.50 0.50 SVOC DARBAZOLE MATRIANTE 68 1 MG/MC 0.09 0.43 0.83 0.5	FU3 DEEP	PAH	NAPHTHALENE	38	ام	MG/KG	0.085	063	0.32	25.0	041	0 34	LOGNORM
PARIE PYRENE COLUSING 71 0.05 2 0.06 SVOC BRAZIOLE 0.083 0.51 0.35 0.54 0.00 SVOC DISZERMUNI PHITALALIE 68 1 MGMC 0.04 0.0 0.04 SVOC CRABAZOLIE 68 1 MGMC 0.0 0.0 0.0 0.0 SVOC CRABAZOLIE 68 1 MGMC 0.0 0.0 0.0 0.0 SVOC DIABAZOLIE 68 1 MGMC 0.0 0.0 0.0 0.0 0.0 SVOC DIABAZOLIE 68 1 MGMC 0.0 <	FU3 DEEP	PAH	PHENANTHRENE	165	49	MG/KG	0.043	25	_	0.85	2	0.85	LOGNORM
SVOC BERVER BITY BITY HANATIE 08 2 MG/MC 0.03 0.51 0.35 0.30 0.54 0.30 SVOC GRERAZOLE 0.04 0.0	FU3 DEEP	РАН	PYRENE	165	8	MG/KG	0.043	7	-	80	2	960	LOGNORM
SVOC CARGALOTIC CARGALOTI	FU3 DEEP	SVOC	BENZYL BUTYL PHTHALATE	89 5	2	MG/KG	0.083	0.51	0.35	0.30	90 S	030	OGNORM
SVCC Chimalanta Company Comp	103 000	2000	ONG-CHITCHEATU FRIDAMIC	80	2	MO/NG	500	2 5	0.47	25.0	970	3 5	NOONO
SVOCC DEFENDED-FRANK 68 4 MIGNEG 0 19 2 0 27 0 27 0 33 0 27 SVOCC DEFENDED-FRANK 68 1 MIGNEG 0 9 0 58 0 31 0 55 0 13 0 55 0 13 0 55 0 13 0 55 0 13 0 15 0 16	EII3 DEEP	300	Character Atte	3 %	,	MG/KG	-	2 -	0.37	200	5	80	WOONEO
SVCC DEHMI PHINALAIE 68 1 MG/MC 0.9 0.9 0.9 0.3 0.31 0.55 0.31 SVCC PENTACHIOROPHENOL 68 1 MG/MC 0.068 0.048 0.19 0.10 0.19 0.10 0.19 0.19 0.19 0.10 0.19 0.10 0.19 0.10 0.19 0.00	FU3 DEEP	SVOC	DIBENZOFURAN	88	4	MG/KG	0 19	2	027	027	0.33	0.27	LOGNORM
SVCC PENTACHLOROPHENOL 68 1 MG/KG 0.68 0.19 0.19 0.19 0.19 0.10 0.00	FU3 DEEP	SVOC	DIETHYL PHTHALATE	89	-	MG/KG	60	60	0.36	031	0.55	0.31	LOGNORM
HDG CINEMILY CINEMILY 0.017 0.013 0.029 0.029 0.039 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.023 0.000 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.023	FU3 DEEP	SVOC	PENTACHLOROPHENOL	88	_	MG/KG	890	890	61.0	910	0.28	0 16	LOGNORM
HDG LEGG TCLP 10 6 MG/L 0.0622 1 0.17 0.45 0.38 0.45 HDG LDG AMG/L 0.0633 0.00030 0.00000 0.0002 0.003 0.003	FU3 DEEP	tpq	Chromium ICIP	10	3	MG/L	0 0086	7,00	0013	0 039	0 027	0 039	LOGNORM
tbd Mecuny ICP 10 4 MG/II 0 00013 0 000000 0 00012 <td>FU3_DEEP</td> <td>pq</td> <td>Lead TCLP</td> <td>10</td> <td>9</td> <td>MG/L</td> <td>0 0622</td> <td>-</td> <td>0.17</td> <td>0.45</td> <td>0.38</td> <td>0.45</td> <td>LOGNORM</td>	FU3_DEEP	pq	Lead TCLP	10	9	MG/L	0 0622	-	0.17	0.45	0.38	0.45	LOGNORM
tbd Nickel, TCIP 10 2 MG/L 0.0538 0.064 0.024 0.024 0.024 0.028 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.005 0	FU3_DEEP	pq	Mercury ICLP	DZ.	٧	MG/L	0 00013	0.00013	0600000	0 00012	110000	0 00012	LOGNORM
VOC CHECALON	FU3 DEEP	pq	Nickel, TCLP	٥	2 5	MG/L	0.0538	0084	0.024	0.042	0.038	0.042	LCGNCIRM SYNCH
VOC REVENUE CORDINATION CORDI	103 Offi		2.HEVANONE	142	2	MCAG	000	9000	2000	0.0061	0500.0	19000	MacNoc
VOC BROWNOMETHANE 143 4 MG/KG 0 001 0 002 0 0051 0 0059 0 0020 VOC BROWNOMETHANE 142 4 MG/KG 0 002 0 003 0 0059 0 0059 0 000 VOC GRABION DISULFIDE 142 4 MG/KG 0 001 0 003 0 0059 0 0050 0 000 VOC METHYL ETHYL KEIONE (4-METHYL-2-PENITANONE) 142 1 MG/KG 0 001 0 004 0 0059 0 0050 0 002 VOC METHYL ETHYL KEIONE (4-METHYL-2-PENITANONE) 142 1 MG/KG 0 001 0 002 0 002 0 0059 0 0050 0 002 VOC INCLEME 142 4 MG/KG 0 001 0 002 0 0059 0 0059 0 002 0 002 VOC INCLEME 143 5 MG/KG 0 001 0 002 0 0059 0 0059 0 0059 0 0059 0 0059 0 0059 0 0059 0 0059 0 0059 0 0059 0 0059	FU3 DEFP	NOC N	ACETONE	142	20	MG/KG	0000	10	0013	0013	000	0013	LOGNORM
VOC BIRCHANDERHANE 142 4 MG/KG 0 002 0 007 0 0056 0 0069	FU3 DEEP	VOC	BENZENE	143	7	MG/KG	1000	0 000	0 0057	19000	0 0059	0 002	MAXDET
VOC CARBON DISULFIDE 142 4 MG/MS 0 001 0 023 0 0069 0 0069 0 0000 0 0000 VOC METHYLL ETHYL KTOONE (2-BUTANIONE) 142 11 MG/MS 0 0023 0 0043 0 0059 0 0007 0 0004 <td< td=""><td>FU3 DEEP</td><td>voc</td><td>BROMOMETHANE</td><td>142</td><td>7</td><td>MG/KG</td><td>0 002</td><td>0000</td><td>0 0058</td><td>09000</td><td>0.0059</td><td>0 0000</td><td>LOGNORM</td></td<>	FU3 DEEP	voc	BROMOMETHANE	142	7	MG/KG	0 002	0000	0 0058	09000	0.0059	0 0000	LOGNORM
VOC MEHYL ETHYL KETONE (2-BuTANONE) 142 11 MG/KG 0.003 0.044 0.0059 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0054 0.0059 0.0054 0.0059 0.0054 0.0054 0.0054 0.0059 0.0054	FU3 DEEP	voc v	CARBON DISULFIDE	142	4	MG/KG	1000	0 023	0.0059	0 0062	1900 0	0 0062	LOGNORM
VOC METHYL ISOBUTYL KETONE (4-METHYL: 2-PENTANONE) 142 1 MG/KG 0.002 0.002 0.0059 0.005	FU3 DEEP	VOC		142	11	MG/KG	0 003	0.044	0 00069	0.0000	0 0076	0.0070	LOGNORM
VCC MEHYTENE CHLORIDE 142 45 MG/KG 0.001 0.006 0.0048 0.0054 <td>FU3_DEEP</td> <td>VOC</td> <td></td> <td>142</td> <td>-</td> <td>MG/KG</td> <td>0 002</td> <td>0 002</td> <td>0 0029</td> <td>09000</td> <td>0.0059</td> <td>0 002</td> <td>MAXDET</td>	FU3_DEEP	VOC		142	-	MG/KG	0 002	0 002	0 0029	09000	0.0059	0 002	MAXDET
VOC IOLIENE 143 5 MG/KG 0.001 0.004 0.0051 0.0051 0.0059 0.004 VOC TRICHI XMONCHINERE (TCE) 143 3 MG/KG 0.001 0.002 0.0058 0.0059 0.002 VOC TRICHI XMONCHINERE (TCE) 1 1 MG/KG 0.001 0.004 0.0059 0.0059 0.002 Metal ANTIMONY 1 1 MG/KG 28 28 0 3550 Metal ANTIMONY 1 1 MG/KG 28 28 0 28 Metal ANTIMONY 1 1 MG/KG 6 0 0 0 Metal ANTIMONY 1 1 MG/KG 6 0 0 0	FU3 DEEP	VOC	METHYLENE CHLORIDE	142	45	MG/KG	10001	9000	0 0048	0.0054	0 00050	0 0054	LOGNORM
VOC Total Xyleness 143 3 MGKG 0.001 0.002 0.0058 0.0050 0.0059 0.002 VOC TRICH-LORCEHYLENE (TCE) 142 4 MG/KG 0.001 0.004 0.0056 0.0059 0.0059 0.004 Metal ARLUMINIAN 1 1 MG/KG 350 350 0 0.059 0.0059 0.004 0.0059 0.004 0.0059 0.004 0.0059 0.004 0.0059 0.004 0.0059 0.0059 0.004 0.0059 0.0059 0.004 0.0059 0.0059 0.0059 0.004 0.0059 0.0059 0.004 0.0059 0.00	FU3 DEEP	NOC.	TOLUENE	143	5	MG/KG	000	0007	0 0057	00061	0 0059	0000	MAXDEL
VOC IRICHIORDEHYLENE (TCE) 142 4 MG/KG 0.001 0.004 0.0059 0.0059 0.004 Metal ALUMINUM 1 1 1 1 1 1 3550 0 3550 0 3550 Metal ANTIMONY 1 1 1 1 1 1 28 28 28 0 28 Metal ANSENIC 1 1 1 1 4 0 0 6 0 6 6 6 6 0 120	FU3 DEEP	XOC	Total Xylenes	143	3	MG/KG	(000	0 002	0 0058	09000	0 0050	0 005	MAXDEL
Metal ANIMONY 1 1 MG/KG 355U 355U 0 28 Metal ANIMONY 1 1 1 MG/KG 28 28 28 0 28 Metal ARSENIC 1 1 1 MG/KG 6 6 6 0 6 Metal ARSENIC 1 </td <td>FU3 DEEP</td> <td>200</td> <td>TRICHLOROETHYLENE (TCE)</td> <td>142</td> <td>7</td> <td>MG/KG</td> <td>1000</td> <td>0000</td> <td>0.0058</td> <td>0,000</td> <td>ASD0 0</td> <td>0.00</td> <td>MAXUE</td>	FU3 DEEP	200	TRICHLOROETHYLENE (TCE)	142	7	MG/KG	1000	0000	0.0058	0,000	ASD0 0	0.00	MAXUE
Metal Antimont	FU3 SEDIMENI	Meta	ALUMINUM		-	MG/KG	3550	3350	OCC C	5 0		2000	MAXDE
NASAS BADENIA 170 0 110 1100 1100 1100 1100 1100 110	CA 19 SEDIMENT	Metal	ASSENIO	-	- -	MG/RG	8	87	9			8	MAXDET
	CUS SEDIMENT	Motor	A COLOR OF THE COL	-	-	ON CAN	85	25	٤			2	MAYOR

H 23

TABLE H-1

Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites

Memphis Depot Main installation R1

Area of Concern FUS SEDIMENT FUS SEDIMENT FUS SEDIMENT FUS SEDIMENT FUS SEDIMENT	_		Nember	70		Detected	Detected	Medi	nc198	UCL95		
FU3 SEDIMENT FU3 SEDIMENT FU3 SEDIMENT FU3 SEDIMENT	200	Parameter Name	Ancilyses	ŧ	Sight	Concentration	Concentration	2	Lognorma	Normal	2	8033
FU3 SEDIMENT FU3 SEDIMENT FU3 SEDIMENT	Metal		-	Ļ	MG/KG	8	84	28	0		84	MAXDET
FU3 SEDIMENT FU3 SEDIMENT	Metal	CALCIUM	_	_	MG/KG	15900	15900	15900	0		15900	MAXDET
FU3 SEDIMENT	Metal	CHROMIUM, TOTAL	_	-	MG/KG	00/1	1700	1700	0		1700	MAXDET
	Metal	COBALT	_	_	MG/KG	44	44	44	0		44	MAXDET
FU3_SEDIMENT	Metal	COPPER	- 1	- I	MG/KG	153	153	153	0		153	MAXDET
FU3 SEDIMENT	Metal	IRON	-	_	MG/KG	24700	24700	24700	0		24700	MAXDET
FU3 SEDIMENT	Metal	LEAD	_	_	MG/KG	3820	3820	3820	0		3820	MAXDET
FU3_SEDIMENT	Metal	MAGNESIUM	-	_	MG/KG	1590	1590	1590	٥		1500	MAXDET
FU3_SEDIMENT	Mefol	MANGANESE	1	^	MG/KG	224	224	224	٥		224	MAXDET
FU3 SEDIMENT	Metal	MERCURY	-	-	MG/KG	0.1	0.1	0 1	0		10	MAXDET
FU3_SEDIMENT	Metal	NICKEL.	-) .	MG/KG	30	30	8	0		30	MAXDET
FU3 SEDIMENT	Metal	POTASSIUM	_	٦.	MG/KG	173	173	173	0		173	MAXDET
FU3_SEDIMENT	Metal	SODIUM	_	٧.	MG/KG	1330	1330	1330	o		1330	MAXDET
FU3_SEDIMENT	Metal	VANADIUM	1		MG/KG	0.1	10	0 1	0		01	MAXDET
FU3_SEDIMENT	Metal	ZINC	-	~	MG/KG	2550	2550	2550	0		2550	MAXDET
FU3 SEDIMENT	ORG	PETROLEUM HYDROCARBONS	1	N 1	MG/KG	2980	0865	5980	0		5980	MAXDET
FU3_SEDIMENT	РАН	2-METHYLNAPHTHALENE	_	1	MG/KG	8	8	8	0		8	MAXDET
FU3_SEDIMENT	PAH	ACENAPHTHENE	,	1 N	MG/KG	0.39	0 39	039	0		0.39	MAXDET
FU3 SEDIMENT	РАН	ANTHRACENE	-	_	MG/KG	0.51	0.51	0.51	0		051	MAXDET
FU3_SEDIMENT	РАН	BENZO(O)ANTHRACENE	1	-	MG/KG	1	1	-	0		_	MAXDET
FU3 SEDIMENT	РАН	[BENZO(a)PYRENE	-	1	MG/KG	0.84	180	0.84	0		0.84	MAXDET
FU3_SEDIMENT	PAH	BENZO(b)FLUORANTHENE	_	-	MG/KG	1	-	-	0		-	MAXDET
FU3 SEDIMENT	РАН	BENZO(k.)FLUORANTHENE	-	_	MG/KG	_	-	-	0		-	MAXDET
FU3_SEDIMENT	РАН	CHRYSENE	1	l N	MG/KG	2	2	2	0		2	MAXDET
FU3 SEDIMENT	РАН	FLUORANTHENE	-	<u>≥</u>	MG/KG	2	2	2	٥		2	MAXDET
FU3 SEDIMENT	PAH	FLUORENE	_	-	MG/KG	,	-	-	0		0,	MAXDET
FU3 SEDIMENT	PAH	NAPHTHALENE	_	2	MG/KG	Ģ	9	ş	a		Ŷ	MAXDET
FU3 SEDIMENT	PAH	PHENANTHRENE		2	MG/KG	3	3	60	0		2	MAXDET
FU3 SEDIMENT	РАН	PYRENE		2	MG/KG	2	2	2	0		2	MAXDET
FU3 SEDIMENT	SVOC	2 4-DIMETHYLPHENOL	-	2	MG/KG	16	16	92	0		9	MAXDET
FU3 SEDIMENT	SVOC	bis(2-ETHYLHEXYL) PHTHALATE	-	≥ : 	MG/KG	12	12	2]	0		2 2	MAXDET
FU3 SEDIMENT	SVOC	CARBAZOLE	1	≥ :	MG/KG	0.4	0.4	0.4			9 0	MAXOF
FU3 SEDIMENI	SNOC	SOPHORONE 1 2 3 4 4 7 6 LEDTA CLI ODODIBENIZOEI DAN	-	2 2	MG/KG	0.4	000000	0.000	ž	010000	0.000	MAXDET
FITS SUBFSOIL	S S S S S S S S S S S S S S S S S S S			t	MG/KG	0.00000	000003	0.00083	2005823	0.0014	0 000003	MAXDET
FU3 SURFSOIL	Dioxin			2 ×	MG/KG	0 000004	000000	0 00083	69926	0 0014	0 000004	MAXDET
FU3 SURFSOIL	Dioxin	1 2 3 6 7 8-HEXACHLORODIBENZO-P-DIOXIN	٥	_	MG/KG	0 000008	0 000008	01000	10	0.0015	0 000008	MAXDET
FU3 SURFSOIL	Dłoxin	1 2 3 6 7 8-HEXACHLORODIBENZOFURAN	9	2	MG/KG	0 000001	0 000002	0.00083	201340234	0 0014	0 000002	MAXDET
FU3 SURFSOIL	Dłoxin	1,2,3,7,8 9-HEXACHLORODIBENZO-P-DIOXIN	9	2	MG/KG	0 000005	9000000	0 00084	23047	0 0014	0 000005	MAXDET
FU3 SURFSOIL	Dioxin	2.3.4.6.7.8-HEXACHEORODIBENZOFURAN	9	+	MG/KG	0.000003	0.00003	00000	493	0.000	0.00003	MAXDE
FU3 SURFSOIL	nxoxu India	OCTACH OPOSIGNACHPUCAIN	٥,	\dagger	MG/RG	0.0000	0,000	10000	,	00000	02000	MAYOET
FUS SURFICE		TODO 5 2 trains	3	+	0/1/0/2	0,000000	20000	0.000072	ormano	110000	0,000,0	MAXDET
FUS SURFICIE	GenChem	Ŧ	1-	2	MG/KG	737	444000	100876	1956040	169062	444000	MAXDET
FIRS SUPESOIL	GenChem	т	7	l	MG/KG	0.12	0.12	0.073	0.17	110	0 12	MAXDET
FU3 SURFSOIL	GenChem	т	12	12 PE	PERCENT	Ŷ	82	14	61	18	61	LOGNORM
FU3 SURFSOIL	GenChem	М	2		PH UNITS	δ	6	8	8	8	8	NORM
FU3 SURFSOIL	GenChem		12	12 M	MG/KG	1650	26900	9800	21568	13629	21568	LOGNORM
FU3 SURFSOIL	GeoPhys	CATION-EXCHANGE CAPACITY	12	12 ME	MEQ/100G	1	71	7	12	6	٥	NORM
FU3 SURFSOIL	GeoPhys	SIEVE NO 100 PERCENT PASSING	2	1	PERCENT	44	88	67	62	77	2	LOGNORM
FU3 SURFSOIL	GeoPhys	SIEVE NO 20 PERCENT PASSING	2	12 FE	PERCENT	83	8	8	82	82	8	LOGNORM
FU3 SURFSOIL	GeoPhys	Sieve no 200 Percent Passing	12	12 1 12	PERCENI	Ŕ	88	١٥	<i>"</i>	73		COGNORM

P\147543\AppHdata xis\APPHDATA

TABLE H1
Data Summarnes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation R1

				Number		Minimum	Maximum	Arithmetic				
			Number of	ō		Detected	Defected	Medin	10C195	OCI95		
Area of Concern	Class	Parameter Name	Analyses	Detects	Units	Concentration	Concentration	Value.	Lognormal	Normal	EPC	Basis
FU3 SURFSOIL	GeoPhys	SIEVE NO 2001, PERCENT PASSING	12	2	PERCENT	28	40	8	77	72	77	LOGNORM
FU3_SURFSOIL	GeoPhys	SIĘVE NO 40 PERCENT PASSING	12	2	PERCENT	29	8	80	8	8	86	LOGNORM
FU3 SURFSOIL	GeoPhys	SIEVE NO 80 PERCENT PASSING	12	12	PERCENT	47	8	\$	80	78	80	LOGNORM
FU3_SURFSOIL	Metal	ALUMINUM	20	8	MG/KG	2840	13600	6607	7922	7617	7922	LOGNORM
FU3 SURFSOIL	Metal	ANTIMONY	112	31	MG/KG	0.23	22	2	၈	3	3	LOGNORM
FU3 SURFSOIL	Metal	ARSENIC	117	114	MG/KG	0.43	49	2	13	Ξ	13	LOGNORM
FU3_SURFSOIL	Metal	BARIUM	56	56	MG/KG	æ	432	8	123	124	123	LOGNORM
FU3_SURFSOIL	Metal	BERYLLIUM	-11	S	MG/KG	0.05	2	041	0.54	0 44	0.54	LOGNORM
FU3_SURFSOIL	Metal	CADMIUM	117	8	MG/KG	0.08	80	0.73	-	0.88	_	LOGNORM
FU3 SURFSOIL	Metal	CALCIUM	26	56	MG/KG	951	227000	39112	143669	61295	143669	LOGNORM
FU3 SURFSOIL	Metal	CHROMIUM III	4	4	MG/KG	13	403	142	256532285	357	403	MAXDET
FU3 SURFSOIL	Metal	CHROMIUM TOTAL	117	117	MG/KG	9	916	69	72	88	72	LOGNORM
FU3 SURFSOIL	Metal	COBAU	56	92	MG/KG	98 0	6	4	9	5	9	LOGNORM
FU3 SURFSOIL	Metal	COPPER	117	115	MG/KG	4	235	30	39	35	36	LOGNORM
FU3 SURFSOIL	Metal	NON	%	8	MG/KG	3960	51300	15935	20218	19584	20218	LOGNORM
Fu3 SURFSOIL	Metal	LEAD	=	117	MG/KG	3	4150	241	311	326	311	LOGNORM
FU3 SURFSOIL	Metat	MAGNESIUM	56	28	MG/KG	263	10900	2374	3775	3213	3775	LOGNORM
Fu3 SURFSOIL	Metal	MANGANESE	56	56	MG/KG	99	634	267	368	325	368	LOGNORM
FU3 SURFSOIL	Metal	MERCURY	117	28	MG/KG	0.015	2	0.063	0.062	0 093	0 062	LOGNORM
FU3 SURFSOIL	Metai	NICKEL	117	117	MG/KG	3	76	18	21	20	23	LOGNORM
FU3 SURFSOIL	Metal	POTASSIUM	56	25	MG/KG	190	4650	1195	1757	1569	1757	LOGNORM
FU3 SURFSOIL	Metal	SELENIUM	117	33	MG/KG	0.29	10	0.72	0.82	0.87	0.82	LOGNORM
FU3 SURFSOIL	Metal	SILVER	117	3	MG/KG	031	3	0.58	,	290	-	LOGNORM
FU3 SURFSOIL	Metal	SODIUM	26	6	MG/KG	62	863	151	1747	223	863	MAXDET
FU3_SURFSOIL	Metal	VANADIUM	20	79	MG/KG	7	77	21	20	26	56	LOGNORM
FU3 SURFSOIL	Metal	ZINC	117	117	MG/KG	21	4000	240	273	321	273	LOGNORM
FU3_SURFSOIL	OCPest	ALPHA-CHLORDANE	76	17	MG/KG	0.0014	190	0.026	0 032	000	0 032	LOGNORM
FU3 SURFSOIL	OCPest	ODD	20	2	MG/KG	0 032	0.046	0016	0.021	0 022	0 021	LOGNORM
FU3 SURFSOIL	OCPest	DDE	92	&	MG/KG	0 0014	017	1200	0.029	0 028	0 020	LOGNORM
FU3_SURFSOIL	OCPest	DDT	92	88	MG/KG	0 002	041	0 043	0.073	0.058	0.073	EOGNOSM
FU3 SURFSOIL	OCPest	DIELDRIN	92	21	MG/KG	0.0012	0 18	0 024	0 037	0.032	0 037	LOGNORM
FU3 SURFSOIL	OCPest	GAMMA-CHLORDANE	92	-	MG/KG	71000	0.58	0.028	0036	0.043	0000	LOGNORM POOLS
FU3 SURFSOIL	OCPest	HEPTACHLOR	20,		MG/KG	0035	0.035	000	0.011	147	100	LOGNORM
FU3 SURFSOIL	9 :	PETROLEUM HYDROCARBONS	2	2	MG/KG	0700	0.51	0 45	0.65	550	150	MAXDET
FILE SUPPOL	PAH	ACENAPHHENE	2 2	, P	MG/KG	0.047	5	0 43	0.56	0.55	920	LOGNORM
FU3 SUPESOI	РАН	ACENAPHTHYLENE	101	~	MG/KG	0.088	0 14	0 43	0.52	0.59	0 14	MAXDET
FU3 SURFSOIL	PAH	ANTHRACENE	101	1,0	MG/KG	0.07	11	0.54	990	0.75	990	LOGNORM
FU3_SURFSOIL	PAH	BENZO(a)ANTHRACENE	101	44	MG/KG	0 039	40	,	-	2	-	LOGNORM
FU3_SURFSOIL	РАН	BENZC/c)PYRENE	101	44	MG/KG	0.039	37	-	-	2	-	LOGNORM
FU3 SURFSOIL	РАН	BENZO(D)FLUORANTHENE	5	45	MG/KG	0 038	30	-	-	2	- ;	LOGNORM
FU3_SURFSOIL	PAH	BENZO(g h I)PERYLENE	[0]	37	MG/KG	0 037	22	0.83	0.95	·	960	LOGNORM LOGNORM
FU3_SURFSOIL	РАН	BENZO(k.)FLUORANTHENE	101	43	MG/KG	0 043	34			2	-	LOG SO
FU3_SURFSOIL	РАН	CHRYSENE	101	47	MG/KG	0.043	\$4	-	2	2	2	LOGNORM
FU3 SURFSOIL	РАН	DIBENZ(a,h)ANTHRACENE	<u>5</u>	2	MG/KG	02)		0.45	25	080	250	LOGNORM
FU3 SURFSOIL	РАН	FLUORANTHENE	101	51	MG/KG	004	۲,	2	3	4	3	OGNOWA OGNO
FU3 SURFSOIL	PAH	FLUORENE	ē	9	MG/KG	000	၁	0 44	0.57	0.57	/\$0	LOGNOSM
FU3 SURFSOIL	РАН	INDENOT 23-c d)PYRENE	<u> </u>		MG/KG	0.00	77	280	100	- 5	- 6	NO ON O
FU3 SURFSOIL	PAH	NAPHIHALENE	<u>ē</u> ;	,	MG/KG	0000	200	0.42	200)en	60	NOONOO!
FU3 SURFSOIL	HAH	PHENANTHICENE	5 5	8 5	MG/KG	0.043	35	,	26	2 4	7	MONOCI
FU3 SURFSOIL	HAH.	PYCENE STATE STATE STATE			MG/KG	0.043	, 000	7	,	200	0.083	MAYDET
FU3 SURFSOIL	SVOC	BENZYL BUTYL PHTHALATE	89	_	MG/KG	0.083	0.083	0.48	U 42	000	2000	MINALE

133 H

0 00050 MAXDET 0 00050 MAXDET 0 00050 MAXDET 0 002 0 002 0 003 0 037 0 037 0 0038 0.002 0.002 0.002 0.002 0.0053 27800 왕일왕 0.0059 0.0058 0.0058 0.0058 0.0074 0.0058 0.0058 0.0039 0.0090 0.0014 0.0012 0001 0 0013 0 0012 0 0013 0 0010 Norma UCL95 00001 0 0057 되짐 0.45 0.00012 0.042 0.0059 0.0059 0.0059 0.0053 0,000 00000 0034 0037 00048 UCL95 0.0062 0.0050 0.0071 4.44E+17 16239 12390 히돌 0.00043 0.00043 155778 10 0.000090 0.0056 00012 10410 Value 0.013 0.024 0.085 0.0057 시의의 Concentration Detected 0.00050 00000 27800 0013 2000 008 0077 0 084 Concentration 0 000005 0 000005 0 000005 0000018 0.000003 0.000009 0.000022 0.000009 0.000000 Detected 0 000003 0 000012 0 0000007 0 000052 000000 0.0086 MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG MG/KG MG/KG MG/KG MG/KG PERCENT PH UNITS MEG/100G MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG
MG/KG MG/KG MG/KG MG/KG Defects ō 91 Number of Analyses CARBON DISULFIDE
METHYL ETHYL KETONE (2-BUTANONE)
METHYL EXBUTN KETONE (4-METHYL-2-PENTANONE)
METHYLEN CHLORIDE
TOLUENE 1.2.3.4.6.7.8-HEPTACHLORODISENZO-D-DIOXIN 1.2.3.4.6.7.8-HEPTACHLORODISENZOFURAN 1.2.3.4.7.8-HEPTACHLORODISENZOFURAN 1.2.3.4.7.8-HEXACHLORODISENZO-DIOXIN 1.2.3.4.7.8-HEXACHLORODISENZO-DIOXIN 1.2.3.4.7.8-HEXACHLORODISENZO-DIOXIN 1 2.3.7 8 9-HEXACHLORODIBENZOFURAN 1 2.3 7 8-PENIACHLORODIBENZO-D-DIOXIN 1 2.3 4 6.7 8-PENIACHLORODIBENZOFURAN 2 3.4 6.7 8-HEXACHLORODIBENZOFURAN 2 3.4 7 8-PENIACHLORODIBENZOFURAN COCTACHLORODIBENZOFURAN OCTACHLORODIBENZOFURAN 1 2.3,6 7 8-HEXACHLORODIBENZOFURAN 1 2 3 7 8 9-HEXACHLORODIBENZO-P-DIOXIN Parameter Name GeoPhys SIEVE NO 100 PERCENT PASSING
GeoPhys SIEVE NO 20, PERCENT PASSING
GeoPhys SIEVE NO 200 PERCENT PASSING
GeoPhys SIEVE NO 200 PERCENT PASSING
GeoPhys SIEVE NO 40 PERCENT PASSING
GeoPhys SIEVE NO 40 PERCENT PASSING
Metal ALUMINIM Genchem ALKALINIY 101AL (AS CGCO3) Genchem MOISTURE, PERCENT
Genchem pH
Genchem TOTAL ORGANIC CARBON
GeoPhys CAILON-EXCHANGE CAPACITY **OCTACHLORODIBENZOFURAN** DISCS ETHYLHEXYL) PHTHALATE TRICHLOROETHYLENE (TCE) CARBAZOLE
DIBENZOFURAN
DIETHYL PHTHALATE
PENTACHLOROPHENOL
Chromlum TCLP BROMOMETHANE Mercury, TCLP 2-HEXANONE ACETONE ANTIMONY ARSENIC Dioxin Dioxin Metal Metal Memphis Depot Main Installation RI Area of Concern FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL
FUS SURFSOIL FU3 SURFSOIL
FU3 SURFSOIL
FU3 SURFSOIL
FU3 SURFSOIL
FU3 SURFSOIL
FU3 SURFSOIL FUA SUPESOL FUA DEEP THE TOTAL OF THE T

Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites

TABLE 141

TABLE H+1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depol Main installation RI

				Mumber		Minimum	Maximum	Arithmetic				
	į		Number of	70 4	<u>.</u>	Detected	Defected	Mean	00195	UCL95	<u>.</u>	3
Ared of Concern	Class	POTOTO NOTE	Andiyses	Delects	VAC IV	COCENTATION	Conceninging	ADIDA	Danomai 0.34	Normal 0.47	2.5	Posis
ALM DEEP	Meta	CADMILIM	25	2,4	MG/KG	0.02	5	750	090	061	190	COSNORM
FUA DEEP	Metal	CALCIUM	5	88	MG/KG	479	306000	14801	23094	23303	23094	LOGNORM
FU4 DEEP	Metal	CHROMIUM TOTAL	250	250	MG/KG	2	4385	62	38	95	38	LOGNORM
FU4 DEEP	Metal	COBALT	٥	ió	MG/KG	0.25	28		10	8	0	LOGNORM
FU4_DEEP	Metal	COPPER	250	250	MG/KG	-	1400	31	&	40	&	LOGNORM
FUA DEEP	Metal	IRON	6	ő	MG/KG	1300	8,100	17990	21024	19634	21024	LOGNORM
FU4 DEEP	Metal	LEAD	250	2 <u>2</u> 2	MG/KG	5	2800	83	99	282	જ્ઞ	LOGNORM
FUA DEEP	Metal	MAGNESIUM	5	6	MG/KG	122	84200	3269	3476	4782	3476	LOGNORM
FU4 DEEP	Metal	MANGANESE	5	5	MG/KG	84	2960	558	787	635	787	LOGNORM
FU4_DEEP	Metal	MERCURY	220	42	MG/KG	001	0.37	0.046	0.051	0.049	0.051	LOGNORM
FU4 DEEP	Metal	NICKEL	250	250	MG/KG	2	99	22	25	24	54	NORM
FU4 DEEP	Metal	POTASSIUM	6	88	MG/KG	89	3710	1349	1809	1499	1499	NORM
FUM DEEP	Metal	SELENIUM	250	9	MG/KG	033	13	0.82	0 80	-	080	LOGNORM
FU4 DEEP	Metal	SILVER	220	8	MG/KG	0.045	063	061	-	0.67	083	MAXDET
FU4 DEEP	Metal	Muldos	5	2	MG/KG	104	1080	63	134	124	134	LOGNORM
FU4 DEEP	Metal	THALLIUM	8	7	MG/KG	3	7	990	0 03	0.75	0 63	LOGNORM
FU4 DEEP	Metal	VANADIUM	5	5	MG/KG	6	\$8	24	27	92	27	TOGNOGM
FU4 DEEP	Metal	ZINC	220	249	MG/KG	01	9915	175	141	247	14	LOGNORM
FOR UPEP	C Pest	ALDININ	SS	- 8	MG/KG	0.00036	U UU3I	0000	0.00/3	0.022	1000	MAXOE
ELIA CEEP		ALTRA-CALOKUANG	202	3 -	MG/KG	0,000	0.033	0000	7,00	0000	7100	OGNODA
DE DE C		ODE	Š	Ę	MG/KG	0.0013		0.052	1200	1800	1200	MOONSO
FIM DEEP	DC Pert	100	1	3 &	MG/KG	0.0024	13	0 12	0.035	0.23	0.035	LOGNORM
FUA DEEP	OCPest	DELOSIN	8	45	MG/KG	0.0012		010	0034	017	0 034	LOGNORM
FUA DEEP	OCPest	GAMMA-CHLORDANE	205	23	MG/KG	260000	က	0 033	0.012	0 000	0.012	LOGNORM
FU4 DEEP	ORG	PETROLEUM HYDROCARBONS	7	3	MG/KG	ال	1300	192	7192816	551	1300	MAXDET
FU4 DEEP	РАН	2-METHYLNAPHTHALENE	227	4	MG/KG	0.051	0.13	0.28	0.28	0 34	013	MAXDET
FU4 DEEP	PAH	ACENAPHTHENE	227	7	MG/KG	0 041	_	0.28	0.29	0 34	0.20	LOGNORM
FU4_DEEP	РАН	ACENAPHTHYLENE	227	-	MG/KG	0.2	0.2	0.28	0.28	0.33	020	MAXDET
FU4 DEEP	PAH	ANTHRACENE	227	14	MG/KG	0 048	2	0.32	030	0.42	030	LOGNORM
FU4 DEEP	РАН	BENZO(a)ANTHRACENE	227	63	MG/KG	0.037	7	0.33	0 32	041	0 32	LOGNORM
FU4 DEEP	PAH	BENZO(Q)PYRENE	227	\$!	MG/KG	000	9	033	0.32	040	032	O C NO S
FUA DEEP	HAH	BENZO(D)FLUCKANIHENE	727	17	MG/KG	900	٥	200	0.32	5	0.30	CONCIN
FILA OFFE	PAH	RENZOVATI DOBANTHENE	227	, PV	MG/KG	0.030	, <	033	0.33	041	0.33	LOGNORM
FU4 OEEP	PAH	CHRYSENE	722	\$	MG/KG	0.045	7	0.35	0.33	0.43	033	LOGNORM
FU4_DEEP	РАН	DIBENZ(α,h)ANTHRACENE	227	Ŷ	MG/KG	0.046	0.87	0.26	0.27	030	0.27	LOGNORM
FU4 DEEP	РАН	FLUORANTHENE	227	49	MG/KG	0.049	14	051	0.41	290	041	LOGNORM
FU4 DEEP	PAH	FLUORENE	227	7	MG/KG	8	0.77	0.32	& 0 0	0.44	0.00	LOGNORM
FU4 DEEP	PAH	INDENO(1 2.3-c, d)PYRENE	227	32	MG/KG	0.042	4	031	031	037	031	LOGNORM
FU4 DEEP	PAH	NAPHIHALENE	727	7	MG/KG	0.045	98.0	0.20	0.28	0.31	97.0	COGNORM
FU4 DEEP	HAH	PHENANIHIZENE		43	MG/KG	989	2 5	0.44	900	600	0,00	TOPINO S
TUA DEF	TAH	PYKENE	/2/	7	MG/KG	U UMA	215	0.44	000	8	8 6	TO CONTROL
FU4 DEEP		PCB-1260 (AROCHLOR 1260)	8	٦	MG/KG	0.28	2 5	250	/BO	9	800	
FUA DEP		BENZYL BUTYL PHIMALASE	3 5	<u>م</u>	MG/KG	0000	\n^2	0.22	0.22	2,48	0.35	NEO NO
CIM DEED		CADRAZOI E	<u>\$</u>	ō =	MG/KG	0000	9	0.22	0.33	800	230	NSCNOO!
27.75.62	200	DI-CRITY BUTUR ATC	100	2 8	MC/KG	000	100	0.50	020	120	120	MAXDET
FIIA OFFD	300	OFFICE OF THE PATHALATE	8	3 -	MG/KG	0.10	010	0.22	220	0.23	0.12	MAXDET
EI M DEEP		DISENZOFIDAN	8		MG/KG	0.05	0.44	0.22	0.22	023	0.22	LOGNORM
DIA DEED		DIETHYI PHTHAI ATE	8	-	MG/KG	81.0	810	0.22	020	230	0.18	MAXDET
217	22.45				MISTING	2,7	2		-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Н 27

TABLE H-1

Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation R1

				Number		Minimum	Maximum	Arithmetic				
	i	;	Number of	ō .		Detected	Detected	Mean	UCL95	UCL95	٥	į
Ared of Concern	Class	POTOTHETE NOTE	Analyses	Derects	Chins	Concentration	Concenitation	anna		20.00	2 0	NA VOC
FU4 DEEP	SVOC	DIMETHYL PHTHALATE	3 8	-	MG/KG	810	2 5	250	0.22	0.23	2 2	MAYDET
rua DEEP	SVOC	N-MI ROSOCIPHENY LAMINE	362	- 6	MG/NG	8000	027	320	27.0	2,2	200	CGNOPM
TO DEFT	SAC L	Chording 12 in	707		MG/NG	15	5.	1	2 (13 F.43)	2	2 5	MAXDET
COM DEEP	2 1	Circulation Cert	,	-	NO.	OOO	0,00	0.043	0.16	0.072	0 080	MAXDET
FUB DEEP	5 5	Mercuy ICLP	4	- 67	MG/L	0,00017	0 00021	910000	0 0014	0 00024	0 00021	MAXDET
FUA DEFP	Ę	Zinc. TCLP	4	60	MG/L	0.15	35	٥	1 90E+24	29	35	MAXDET
FU4 DEEP	ZQX XQX	1 1 2 2-TETRACHLOROETHANE	204		MG/KG	0 004	0 02	0 0062	0 0063	0 0064	0 0063	LOGNORM
FUA DEEP	Š	2-HEXANONE	204	2	MG/KG	0000	0.001	900.0	0 0062	19000	1000	MAXDET
FU4 DEEP	Š	ACETONE	204	53	MG/KG	0.002	031	0.017	0.015	0 022	0.015	LOGNORM
FUA DEEP	200	9ENZENE	204	2	MG/KG	1000	0.002	0 000	00001	19000	0 002	MAXDET
FU4 DEEP	8	BROMOMETHANE	204	4	MG/KG	0000	0.003	0,000	0 00062	19000	0 003	MAXDET
FU4 DEEP	χ	CARBON DISULFIDE	204	2	MG/KG	0.003	0001	09000	0 0062	19000	1000	MAXDET
FU4 DEEP	VOC	CHLOROMETHANE	204	2	MG/KG	0.001	0 002	09000	0 00061	19000	0 002	MAXDET
FU4 DEEP	8	ETHYLBENZENE	204	~	MG/KG	0 008	0000	19000	0.0061	19000	1900-0	LOGNORM
FU4_DEEP	voc	METHYL ETHYL KETONE (2-BUTANONE)	204	17	MG/KG	0.001	0.044	69000	0.0000	0.0075	0.0000	LOGNORM
FU4 DEEP	NOC	METHYLENE CHLORIDE	204	35	MG/KG	0001	001	0.0055	00000	0 0057	00000	LOGNORM
FU4_DEEP	200	TETRACHLOROETHYLENE(PCE)	204	-	MG/KG	0.008	0000	00000	19000	0 00061	1000	LOGNORM
FUA DEEP	VOC	TOLUENE	204	4	MG/KG	0 002	100	19000	0 0062	0 0062	0 0062	LOGNORM
FUA DEEP	δ	TOTAL 1 2-DICHLOROETHENE	204	2	MG/KG	0.042	011	0 0067	99000	0.0076	9000	LOGNOISM
FUA DEEP	VOC	Total Xylenes	204	S	MG/KG	0001	0.002	65000	19000	09000	0 002	MAXDET
FUA_DEEP	VOC	TRICHLOROETHYLENE (TCE)	204	80	MG/KG	0.001	0.057	0 0063	0 0004	0 0067	00064	LOGNORM
FU4_SEDIMENT		HEPTACHLORINATED DIBENZO-D-DIOXINS (TOTAL)	2	-	MG/KG	0 0093	0.0093	0 0047	3.16E+127	0 034	0003	MAXDET
FU4 SEDIMENT		HEPTACHLORINATED DIBENZOFURANS, (TOTAL)	2	7	MG/KG	69000000	0.0043	0 0022	2 03E+118	0016	00043	MAXDET
FUA SEDIMENT	Dioxin	1234678-HEPTACHLORODIBENZO-p-DIOXIN	9	,	MG/KG	0 00018	0.024	0 0047	3	00005	0.024	MAXDET
FU4 SEDIMENT	Dłoxin	1,2,3,4 6,7 8-HEPTACHLORODIBENZOFURAN	6	8	MG/KG	0 00000069	0.0070	00014	0.22	0 0028	0.000	MAXDET
FUA SEDIMENT	Dioxin	1 2 3 4 7 8 9-HEPTACHLORODIBENZOFURAN	٥	e0 -	MG/KG	0 0000021	0.00011	0 00063	027	0.000	110000	MAXDEI
FU4_SEDIMENT	Dioxin	1,2,3,4,7,8-HEXACHLORODIBENZO-p-DIOXIN	6	6	MG/KG	0 000008	0 000014	0 00043	0.28	0.00081	0.00014	MAXDE
FU4_SEDIMENT	Dioxin		6	4	MG/KG	000001	0 000074	0 00046	0.67	0.00083	0.0000/4	MAXDE
FU4 SEDIMENT	Dioxin	1,2 3 6 7 8-HEXACHLORODIBENZO-P-DIOXIN	6	4	MG/KG	0 000000	0 00026	0 000059	2	0,000/8	0,00020	MAXDEL
FU4 SEDIMENT	Dioxin	1 2 3 6 7 8-HEXACHLORODIBENZOFURAN	6	4	MG/KG	000007	0.000079	0 00048	٥	0.00085	0.00000	MAXUE
FU4 SEDIMENT	Dioxin	1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	ó		MG/KG	0.000015	0.00015	0,0000	λ'n	0.0010	CLONO	MAXDE
FU4 SEDIMENT	Dioxin	234678-HEXACHLORODIBENZOFURAN	6	- 0	MG/KG	0.00022	0.00022	00000	2	21000	0.11	MAXDEL
FUA SEDIMENT		OCTACH OPODIRENZO E DAN	•		MG/KG	0.000024	0015	0.0029	2	0.0058	0015	MAXDET
FUA SEDIMENT	Dioxin	ICDD Faulyalent	Ò	0	MG/KG	0 00000030	0 00049	010000	0.041	0 00020	0.00049	MAXDET
FU4 SEDIMENT	GenChem	CYANIDE	2	-	mg/kg	0.6	0.6	0.35	9260755345	2	90	MAXDET
FU4_SEDIMENT	Metal	ALUMINUM	9	Ŷ	MG/KG	203	3180	1726	13281	2547	3180	MAXDET
FU4_SEDIMENT	Metal	ANIIMONY	9	-	MG/KG	-	-	0.95	2	-	-	MAXDET
FU4 SEDIMENT	Metat	ARSENIC	٥	80	MG/KG	0.26	٥	4	32	9	٥١	MAXDET
FU4 SEDIMENT	Metai	BARIUM	٥	Ŷ	MG/KG	Ŷ	76	z	330	જ	9/	MAXDEI
FU4_SEDIMENT	Metal	BERYLLIUM	6	ş	MG/KG	0.05	0.32	0.085	0.59	0.14	0.32	MAXDET
FU4 SEDIMENT	Metat	CADMIUM	٥	9	MG/KG	-	9	0.89	5	2	3	MAXDET
FUA SEDIMENT	Metal	CALCIUM	٥	ş	MG/KG	24800	243000	118517	1108859	201172	243000	MAXDET
FU4 SEDIMENT	Metal	CHROMIUM, TOTAL	ó	٥	MG/KG	4	69	22	26	35	8	MAXDET
FU4 SEDIMENT	Metal	COBALT	9	9	MG/KG	2	11	4	12	7	=	MAXDET
FUA SEDIMENT	Metal	COPPER	ó	۰	MG/KG	3	જ	8	8	32	53	MAXDET
FU4 SEDIMENT	Metai	IRON	9	Ŷ	MG/KG	2960	11200	6397	12878	7116	11200	MAXDET
FU4 SEDIMENT	Metal	1EAD	٥	٥	MG/KG	2	484	74	915	170	484	MAXDET
FU4 SEDIMENT	Metal	MAGNESIUM	9		MG/KG	1620	7780	3585	8587	5586	7780	MAXDET
FU4 SEDIMENT	Metal	MANGANESE	٩		MG/KG	3/	313	/11	419	3	313	MAXDEL
FU4 SEDIMENT	Metal	IMERCURY	,	7	MG/KG	- 5	0 12	0.048	0	0.00	210	MAXDEL

 $\{(x,y,y) \mid x \in \{y,y\} \mid x \in \{y,y\} \mid x\}$

,, _{*}, -

TABLE H-1

Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites

Memphis Depot Main installation RI

				Number		Minimum	Maximum	Arithmetic				
	Č	Description Marine	Number of) o	-	Defected	Defected	Mean	UC195	UCL95	į	1
CLIA SECTIONATION	Motol		٥	a de la constante de la consta	ON ON	COLCOLLICION	or or	ACING 2	Dullolling.	No.	5 2	MAYOUT
FUA SEDIMENT	Metol	POTASHIM		•	MG/KG	26	410	230	223	331	419	MAXDET
FUA SEDIMENT	Metal	SELENUM	0	, _	MG/KG	0.87	0.87	0.43	2	990	0.87	MAXDET
FUA SEDIMENT	Matat	Mudos	٥	S	MG/KG	29	158	8	222	348	158	MAXDET
FUA SEDIMENT	Metor	VANADIUM	Ŷ	ç	MG/KG	2	18	Ó	30	13	18	MAXDET
FU4 SEDIMENT	Metat	ZINC	٥	٥	MG/KG	16	260	73	188	120	260	MAXDET
FU4 SEDIMENT	OCPest	AIPHA-CHLORDANE	٥	7	MG/KG	0 0032	0.53	0 075	2	0 18	0.53	MAXDET
FU4 SEDIMENT	OCPest	DDD	٥	2	MG/KG	003	80	0 15	4	0.35	80	MAXDET
FU4 SEDIMENT	OCPest	DDE	٥	۰	MG/KG	0015	0.25	0.069	0.77	0 12	025	MAXDET
FU4_SECIMENT	OCPest	DDT	٥	80	MG/KG	0 022	027	0 12	3	0 18	027	MAXDET
FU4_SEDIMENT	OCPest	DIELDIRIN	٥	Ŷ	MG/KG	0 038	031	0 10	4	71.0	031	MAXDET
FU4_SEDIMENT	OCPest	ENDRIN	٥	-	MG/KG	0.048	0 048	0.0471	0.59	0.081	0.048	MAXDET
FU4 SEDIMENT	OCPest	ENDRIN ALDEHYDE	٥	-	MG/KG	0 026	0.029	0 045	0.51	0000	&0.0	MAXDET
FU4 SEDIMENT	OCPest	GAMMA-CHLORDANE	٥	7	MG/KG	0 0038	0.65	1600	4	0.22	0.65	MAXDET
FU4 SEDIMENT	PAH	2-METHYLNAPHTHALENE	٥	2	MG/KG	0 026	10	-	27	3	õ	MAXDET
FU4 SEDIMENT	PAH	ACENAPHTHENE	6	-	MG/KG	0 001	1900	0.50	3		1900	MAXDET
FU4 SEDIMENT	PAH	ACENAPHTHYLENE	٥	-	MG/KG	0.038	0 038		=	2	0038	MAXDET
FU4_SEDIMENT	PAH	ANTHRACENE	٥	7	MG/KG	0.094	7	-	8	2	_	MAXDET
FU4 SEDIMENT	PAH	BENZO(o)ANTHRACENE	٥	æ	MG/KG	900	8	6	8	7	50	MAXDET
FUA SEDIMENT	PAH	BENZO(o)PYRENE	-	æ	MG/KG	0.085	61	2	61	٥	2	MAXDE
FU4 SEDIMENT	PAH	BENZO(b)FLUORANTHENE	0.	œ.	MG/KG	910	56	3	25	٥	82	MAXDET
FU4 SEDIMENT	PAH	BENZO(g h !)PERYLENE	6	,	MG/KG	0.095	0 32	0 80	4	2	0.32	MAXDE
FU4 SEDIMENT	PAH	BENZO(k)FLUORANTHENE	٥	8	MG/KG	0 12	25	9	20	8	52	MAXDET
FU4 SEDIMENT	PAH	CHRYSENE	٥		MG/KG	0 16	30	4	42	0	8	MAXDET
FU4 SEDIMENT	PAH	OIBENZ(a h)ANTHRACENE	٥	-	MG/KG	600	000	_	,	2	8	MAXDE
FU4 SEDIMENT	PAH	FLUORANTHENE	٥	8	MG/KG	0 16	30	4	8	0]	8,	MAXDE
FUA SEDIMENT	PAH	FLUORENE	٥	,	MG/KG	800	/ 0	- 8	,	2) (, ;;	MAXDE
FU4 SEDIMEN	HAH	INDENO(1.2.3-c.d)PYRENE	> 0	٠.	MG/KG	- 60	0.39	۱ <u>۸</u>	930	,	33	MANOCT
FU4 SEDIMENI	T V	PHENANITACENE	, .		MIS/RG	0.02	25. 25	7 1-	145	ă,	3 4	MAXDET
FU4 SEDIMEN	HAH CC.	PYKENE 4 4 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,		MG/KG	0 13	33	97.0	2	- □	3 2	MANYDET
FUA SECIMENT	SVOC SVOC	A-METAYLPHENOL (N-CNESOL)	•	- ~	MC/KG	0.074	, ,	0.53	,	860	, ,	MAXDET
FLIA SECIMENT		CAPBAZOLE		4	MG/KG	[0	2	0.53	2	-	2	MAXDET
FUA SEDIMENT	SVOC	DI-n-BUTYL PHTHALATE	٥	_	MG/KG	0 034	0 034	0.59	4	-	0 034	MAXDET
FU4_SEDIMENT	SVOC	DIETHYL PHTHALATE	٥	1	MG/KG	8	8	-	7	3	8	MAXDET
FU4 SEDIMENT	SVOC	PENTACHLOROPHENOL	٥	2	MG/KG	0.08	0.26	080	5	2	0.26	MAXDET
FU4 SEDIMENT	8	ACETONE	٥	-	MG/KG	0.025	0 025	0.0082	0012	0.012	0 025	MAXDET
FU4 SEDIMENT	8	CARBON TETRACHLORIDE	٥	_	MG/KG	0.078	0 078	0014	6200	200	8/00	MAXDE
FU4 SEDIMENT	8	METHYLENE CHLORIDE	٥	_	MG/KG	0.045	0.045	0000	0018	0.018	500	MAXDE
FUA SECIMENI	S S S	1910I AYIBINAS	3	- %	MG/KG	90000	0003	00043	0000	9000	0023	MAXDET
FU4 SURFSOIL	Dioxin	11.2.3 4.6.7.8-HEPTACHLORODIBENZOFURAN	£	22	MG/KG	0 000003	0012	0.0018	0020	0 0030	0 0 1 2	MAXDET
FUA SURFSOIL	Dioxin	1 2 3 4 7 8 9-HEPTACHLORODIBENZOFURAN	23	7	MG/KG	0000000	0 00018	0 00089	0 0062	0 0011	0 00018	MAXDET
FU4 SURFSOIL	Dloxin	1 2 3 4 7 8-HEXACHLORODIBENZO-p-DIOXIN	23	5	MG/KG	0 000022	0.00013	0,00099	0 0053	0 0012	0.00013	MAXDET
FU4 SURFSOIL	Dioxin	1,2,3 4 7,8 HEXACHLORODIBENZOFURAN	23	6	MG/KG	0 000009	0 00040	0 000000	0100	0,000	0 000040	MAXDET
FU4_SURFSOIL	Dloxin	1,2,3 6,7,8-HEXACHLORODIBENZO-P-DIOXIN	23	15	MG/KG	0.000012	0.0013	0 00056	0 0032	0 000077	0 0013	MAXDET
FUA SURFSOIL	DioxIn	1.2.3.6.7.8-HEXACHLORODIBENZOFURAN	23	8	MG/KG	0 000005	0 00014	000083	0013	0.000	000014	MAXDE
FU4 SURFSOIL	Dioxio	1 2 3 7 8 9-HEXACHLORODIBENZO-P-DIOXIN	2 2	8	MG/KG	900000	0.00029	0.00082	0,000,0	0000	000000	MAXDE
FU4 SURFSOIL		1.2.3.7.8 9-HEXACHLORODIBENZO-FURAN	8 8	,	MG/KG	0.000012	0.00012	2000	0.002	0.0013	0 000055	MAXDET
IIOSOGO TO	Cixol	1.9.3.7 & PENTACHI ODODIBENZORISAN	3 5	, ,	MG/KG	2100000	0,000012	0000	0.0027	0.0013	0.000012	MAXDET
FLM SLIPESON	i di	2.3.7.6.TENIOCHLOCOBENZOFIDAN	23	- 4	MG/KG	0 0000028	0.00043	0000	0.0039	11000	0 00041	MAXDET
2000 2000		CONTRACTOR CONTRACTOR	3	,	NO.	20000	2000					

TABLE H-1
Data Summanes for all Detected Chemicals for Alf Functional Units and Surrogate Sites
Memphis Depoi Main instalation RI

				Missohae		Minimum	Maymin	Arthmetic				
			Number of	o d		Detected	Detected	Medn	UC195	UC195		
Area of Concern	Class	Parameter Name	Analyses	Detects	Units	Concentration	Concentration	Vakue*	Lognormal	Nomal	EPC	Basis
FU4_SURFSOIL	Dloxin	2,3,4,7,8-PENTACHLORODIBENZOFURAN	23	-	MG/KG	0 000014	0 000014	0 0012	0 0026	0 0013	0.000014	MAXDET
FU4 SURFSOIL	Dioxin	OCTACHLORODIBENZO-p-DIOXIN	29	ଯ	MG/KG	0.0011	0.072	9100	0 048	0 027	0 048	LOGNORM
FU4_SURFSOIL	Dioxin	OCTACHLORODIBENZOFURAN	23	22	MG/KG	0 000003	0 040	99000	030	1100	0070	MAXDET
FU4 SURFSOIL	Dioxin	TCDD Equivalent	23	23	MG/KG	11000000	0 00047	0 00011	0 00058	000015	0 00047	MAXDET
FU4_SURFSOIL	GenChem	ALKAUNITY TOTAL (AS CaCO3)	6	3	MG/KG	805	465000	155778	6 16E+55	607242	465000	MAXDET
FU4 SURFSOIL	GenChem	MOISTURE, PERCENT	3	3	PERCENT	8	13	2	50	15	13	MAXDET
FU4 SURFSOIL	GenChem			3	PH UNITS	٥	8	8	=	0	8	MAXDE
FU4 SURFSOIL	GenChem	_	6	1	MG/KG	734	27800	19111	4 44E+17	35/12	2/800	MAXUEL
FU4 SURFSOIL	GeoPhys	CATION-EXCHANGE CAPACITY	6	1	MEQ/100G	-	12	٥	253/15	٥	2 8	MAXIDE
FU4_SURFSOIL	GeoPhys	SIEVE NO 100, PERCENT PASSING	3	9	PERCENT	&	8	22	2316	120	8	MAXDET
FU4 SURFSOIL	GeoPhys	SIEVE NO 20 PERCENT PASSING	3	6	PERCENT	81	Œ	8	[]	8	00	MAXDEL
FUA_SURFSOIL	GeoPhys	SIEVE NO 200, PERCENT PASSING	3	3	PERCENT	27	8	51	10083	121	8 8	MAXDEI
FUA SURFSOIL	GeoPhys	SIEVE NO 2001, PERCENT PASSING	3	3	PERCENT	24	8	S	16239	122	3	MAXDEL
FUA_SURFSOIL	GeoPhys	SIEVE NO 40 PERCENT PASSING	3	6	PERCENT	28	00[22	111	2 5	8	MAXUE
FU4 SURFSOIL	GeoPhys	SIEVE NO 80, PERCENT PASSING	2	6	PERCENI	15	3	3 6	À COL	<u> </u>	20201	NOV.
FU4 SURFSOIL	Metal	ALUMINUM	38	88	MG/KG	6/4	2/600	0,00	12121	١	77,77	TO GIVE
FUA SURFSOIL	Metat	ANTIMONY	128	4	MG/KG	0.37	28	7	7	9	7	COGNOCIAL COGNOCIAL
FU4_SURFSOIL	Metat	ARSENIC	62	126	MG/KG	_	8	13	17	14	/1	COGNORM
FU4 SURFSOIL	Metal	BARIUM	38	38	MG/KG	7	300	83	38	20	82	LOGNORM
FU4 SURFSOIL	Metal	BERYLLIUM	128	72	MG/KG	0 02	2	0.42	1/0	0.43	1/0	COSNORM
FUA SURFSOIL	Metal	CADMIUM	2%	2	MG/KG	0 12	9	690	0.75	080	0/0	CONCIN
FUA_SURFSOIL	Metal	CALCIUM	38	8	MG/KG	479	30000	33583	618114	53235	00000	MAXDE!
FU4_SURFSOIL	Metal	CHROMIUM TOTAL	13%	2	MG/KG	5	4385	183	29	/9	ò	LOGNORA LOGNORA
FU4_SURFSOIL	Metal	COBALT	38	38	MG/KG	0.25	61	0	0	\	2 ;	LOGNORM DOS TO
FU4 SURFSOIL	Metal	COPPER	129	&	MG/KG	-	1400	37	Z,	ß	25	LCG-NORM
FU4 SURFSOIL	Metal	IRON	38	88	MG/KG	1360	00199	16196	22286	19/44	98777	COGNORM
FU4 SURFSOIL	Metal	LEAD	13%	82	MG/KG	2	2800	165	79	/22	20 5	CONCIN
FU4 SURFSOIL	Metal	MAGNESIUM	38	88	MG/KG	122	2000	2263	4043	2/44	4043	COUNTRY
FU4 SURFSOIL	Metal	MANGANESE	38	89	MG/KG	34	2260	402	718	231	1	COGNORM
FU4_SURFSOIL	Metal	MERCURY	<u>&</u> 2	န္က	MG/KG	100	[0]	0.043	0.053	0040	.1	LOGNORM
FU4_SURFSOIL	Metal	NICKEL	- 1 ₂	82	MG/KG	2	44	18	22	R	22	OGNORM
FUA SURFSOIL	Metal	POTASSIUM	38	37	MG/KG	86	3140	1150	1954	1395	75.	LOGNORM
FU4 SURFSOIL	Metal	SELENIUM	82	35	MG/KG	033	13	960	- -	- 0	- 640	LOGNORM
FUA SURFSOIL	Metos	SILVER	82.5	- 5	MG/KG	0.045	000	60	40.7	000	3 287	CONDE
FUA SURFSOIL	Metai	SODIUM	F) 5	⊇ ,	MG/KG	20 -	1000	3	700	220	800	MacNeso
FUA SURFISOIL	Mera	I I MALLIUM	Č P	7 8	N/G/NG	6	, 5	7	2,5	27	27	LOGNORM
CLA CLIDESOIL	Metol	CNIC	8	8°.	MG/KG	2	9015	260	222	397	222	LOGNORM
FUA SURFSOIL	OCPest	ALPHA-CHLORDANE	26	22	MG/KG	0 00075	8	0.070	0.074	0.13	0.074	LOGNORM
FUA SURFSOIL	OCPest	QQQ	8	,	MG/KG	0.033	0.033	0.065	1800	0 092	0 033	MAXDET
FU4 SURFSOIL	OCPest	DDE	65	30	MG/KG	0 0013	3	11.0	0 15	0.18	0 15	LOGNORM
FU4 SURFSOIL	OCPest	DDT	92	44	MG/KG	0 0024	13	027	031	051	031	LOGNORM
FU4 SURFSOIL	OCPest	DIELDRIN	92	33	MG/KG	0.0012	9	0.23	036	9%	030	LOGNORM
FU4 SURFSOIL	OCPest	GAMMA-CHLORDANE	25	22	MG/KG	0 00097	3	0.072	0 087	013	0 087	LOGNORM
FU4 SURFSOIL	ORG	PETROLEUM HYDROCARBONS	2	-	MG/KG	1300	1300	550	1 09E+160	4752	1300	MAXDEL
FUA SURFSOIL	PAH	2-METHYINAPHTHALENE	107	4	MG/KG	0.051	0 13	038	040	0.50	2 0	MAXDE
FU4 SURFSOIL	РАН	ACENAPHTHENE	107	7	MG/KG	0041	_	0 36	0.42	180	0.42	COSNORM
FU4 SURFSOIL	РАН	ACENAPHIHYLENE	107	_	MG/KG	02	0.5	0.37	030	2013	200	MAXDE
FU4 SURFSOIL	PAH	ANTHRACENE	107	15	MG/KG	0 048	2	9 6	0 40	/00	040	LOGNOCIA POCINO
FUA SURFSOIL	РАН	BENZO(o)ANTHRACENE	201	Q;	MG/KG	003/	,	200	7 2	200	200	T S C S C S C S C S C S C S C S C S C S
FU4 SURFSOIL	PAH	BENZO(O)PYRENE) j	3	MG/KG	200	٥	200	2 2	300	3 2	NOON OF
FUA SURFSOIL	PAH	BENZO(b) FLUORANIHENE)QI	44	MG/KG	0.048	٥	0.47	3,00	3	5	ranoalion.

TABLE H-1
Data Summaries for all Defected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation RI

				Jequin		Minimum	Maximum	Arithmetic				
Area of Concern		Portameter Name	Number of Anglyses	of Detects	Units	Concentration	Detected	Mean Vatue	10cmormal	UCL95	â	R
FLIA SUPESOII	PAH	BENZOCO N DPERVIENE	701	╄	MG/KG	0.041	4	0.42	0.47	25.0	0.47	WGCNEC
FU4 SURFSOIL	РАН	BENZO(K)FLUORANTHENE	101	42 N	MG/KG	800	°	050	0.55	0.65	0.55	LOGNORM
FU4 SURFSOIL	PAH	CHRYSENE	107	H	MG/KG	0.045	7	0.53	950	07.0	0.58	LOGNORM
FU4 SURFSOIL	PAH	DIBENZ(a h)ANTHRACENE	107		MG/KG	0.046	0.87	0.33	0.37	0.42	0.37	LOGNORM
FU4 SURFSOIL	РАН	FLUORANTHENE	107	44 N	MG/KG	0.049	14	0.86	0.85	-	0.85	LOGNORM
FU4 SURFSOIL	РАН	FLUORENE	107		MG/KG	000	077	0.47	0.43	0.72	0.43	LOGNORM
FU4 SURFSOIL	PAH	INDENO(1 2 3-c d)PYRENE	107	\forall	MG/KG	0.042	4	0.44	0.49	920	0.40	LOGNORM
FU4_SURFSOIL	РАН	NAPHTHALENE	107	δ.	MG/KG	0.045	0.38	0.35	0.38	0.45	0.38	MAXDET
FU4 SURFSOIL	PAH	PHENANTHRENE	<u>1</u> 0	1	MG/KG	0.038	10	0.73	69 0		690	LOGNORM
FU4 SURFSOIL	PAH	PYRENE	107	46 N	MG/KG	0.05	12	0.73	0.74	-	0.74	LOGNORM
FU4 SURFSOIL	PCB	PCB-1260 (AROCHLOR 1260)	47	2	MG/KG	0.28	18	2	7	3	7	LOGNORM
FU4_SURFSOIL	SVOC	BENZYL BUTYL PHTHALATE	83		MG/KG	0.11	0.7	0 22	0.23	0.25	0.23	LOGNORM
FU4_SURFSOIL	SNOC	DIS(2-ETHYLHEXYL) PHTHALATE	83	36 N	MG/KG	0 038	3	08.0	0.34	98 0	034	LOGNORM
FU4 SURFSOIL	SVOC	CARBAZOLE	83	┞	MG/KG	0 035	2	0.24	0.26	620	0.26	LOGNORM
FUA SURFSOIL	SVOC	DI-n-BUTYL PHTHALATE	83	6	MG/KG	1200	0 13	021	0.23	0.24	0.13	MAXDET
FU4 SURFSOIL	SVOC	DI-n-OCTYLPHTHALATE	83	2	MG/KG	0.12	0.12	0 23	0.24	0.25	0 12	MAXDET
FU4_SURFSOIL	SVOC	DIBENZOFURAN	83	4	MG/KG	0.05	0.44	0.24	0.25	0.27	0.25	LOGNORM
FU4 SURFSOIL	SVOC	DIETHYL PHTHALATE	83	-	MG/KG	810	81.0	0.23	0.24	0.25	81.0	MAXDET
FU4 SURFSOIL	SVOC	PENTACHLOROPHENOL	83	7	MG/KG	0.048	03	0 12	21.0	0.13	0 12	LOGNORM
FU4 SURFSOIL	pqı	Chromium, TCLP	4	-	MG/L	15	15	4	2 035+41	12	15	MAXDEF
FU4_SURFSOIL	tpq	Lead, TCLP	4	~	MG/L	080 0	080 0	0.043	91.0	0.072	0900	MAXDET
FU4 SURFSOIL	ρg	Mercury, TCLP	4	8	MG/L	0 00017	0 00021	0 00016	0.0014	0 00024	0 00021	MAXDET
FU4_SURFSOIL	pqı	Zinc ICLP	4	3	MG/L	015	35	D	1 90€+24	&	35	MAXDET
FU4_SURFSOIL	200	1,1,2,2-TETRACHLOROETHANE	88	2	MG/KG	0 004	0000	0.0058	69000	0 0059	69000	LOGNORM
FU4 SURFSOIL	voc	2-HEXANONE	88		MG/KG	1000	1000	0 0058	19000	0 0059	1000	MAXDET
FU4_SURFSOIL	voc	ACETONE	88	26 M	MG/KG	0 002	180	0.021	9100	0.030	9100	LOGNORM
FU4 SURFSOIL	νoc	BENZENE	88	-	MG/KG	0 002	0 002	0 0058	09000	0 0059	0 002	MAXDET
FU4 SURFSOIL	χ	BROMOMETHANE	88	2 N	MG/KG	1000	0 003	0.0058	0,0061	0.0059	0 003	MAXDET
FU4 SURFSOIL	ò	CARBON DISULFIDE	88	2	MG/KG	1000	1000	0 0057	19000	0 0059	1000	MAXDET
FU4_SURFSOIL	Š	ETHYLBENZENE	88	<u>≥</u>	MG/KG	0 008	0 008	0 0059	09000	09000	0,000 0	LOGNORM
FU4 SURFSOIL	QQ.	METHYL ETHYL KETONE (2-BUTANONE)	88	80	MG/KG	9000	0 044	0 00073	0.0075	0 0084	0 0075	LOGNORM
FU4 SURFSOIL	NOC.	METHYLENE CHLORIDE	8	18	MG/KG	1000	(00	00054	19000	0 0057	19000	LOGNORM
FU4 SURFSOIL	200	(TETRACHLOROETHYLENE(PCE)	88	≥ : 	MG/KG	9000	800 0	0 0059	0,000	0,000	0 0000	LOGNORM
FU4 SURFSOIL	300	TOLUENE	20 00	2 3	MG/KG	7000	/100	0000	00000	0000	0000	LOGNORM
FU4 SURFISOR	ک ک	TOTAL APPENDIX	8 8	2 -	MG/NG	300	2000	6000	0000	2000	0.002	MAXOET
FUA SURFWATER	Sizel Sizel	1234678-HPTACHIOPODIBENZOFIRAN	3 -	P P	MG/I	0.000000071	0.00000071	0.0000055	0.074	0000010	0.00000071	MAXDET
FU4 SURFWATER	Dłoxin	1.2.3.7 8.9-HEXACHLORODIBENZOFURAN	_	H	MG/L	90000000	0 00000023	0 0000072	0.51	0000012	0 00000023	MAXDET
FU4 SURPWATER	Dioxin	2 3 4 6 7 8-HEXACHLORODIBENZOFURAN	7	4	MG/L	0.0000015	0 0000051	0 0000052	0 000064	0 000009	0 0000051	MAXDET
FU4_SURFWATER	Dioxin	OCTACHLORODIBENZO-p-DIOXIN	7	7	MG/L	0 00000016	0 000027	0 0000071	0 00037	0 000014	0 000027	MAXDET
FU4 SURFWATER	Dioxin	OCTACHLORODIBENZOFURAN	7	9	MG/L	0.000000081	0 0000013	0.0000039	0 00069	11000000	0 0000013	MAXDET
FU4_SURFWATER	Dioxin	TCDD Equivalent	7	7	MG/L	0.00000000000	0 00000054	0 00000017	090	0 00000031	0 00000054	MAXDET
FU4 SURFWATER	DissMetal	Aluminum Dissolved	4	- -	MG/L	0.32	0 32	0 1071	390	0.28	0 32	MAXDET
FU4_SURFWATER	DissMetal	Arsenic, Dissolved	_	2	MG/L	0 0042	0.089	0017	0.79	0041	0.089	MAXDET
FU4 SURFWATER	DissMetol	Barlum Dissolved	4	4	MG/L	0019	620 O	0 023	0.031	0 028	0000	MAXDET
FU4 SURFWATER	DissMetor	Calclum Dissolved	7	4	MG/L	7	24	17	73	25	24	MAXDET
FU4 SURFWATER	DissMetal	Chromium, Dissolved	7	2	MG/L	0 0022	9000	0 0017	0 0028	0 0025	0 004	MAXDET
FU4 SURFWATER	DissMetal	Copper Dissolved	7	1	MG/L	0 030	0030	0 0000	0 050	0014	0 030	MAXDET
FU4 SURFWATER	DissMetal	Iron, Dissolved	4	+	MG/L	0 072	0.45	021	7	0.41	0.45	MAXDET
FU4 SURFWATER	DissMetal	Lead Dissolved	7	+	MG/L	0 0028	0.0071	0 0021	0.0055	0 0038	0.0071	MAXDET
FU4_SURFWAILR	Dissimetal	Magnestum, Dissolved	4	4	MG/L	2	2	2	2	2	2	MAXDEL
FU4 SURFWAIER	DissMetal	Manganese Lissaived	4	4	MG/L	0.0031	0.000	90000	0.028	0010	0.0102	MAXDEL

H 31

TABLE H-1

Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites

Memphis Depot Man Instalation R1

Defects Def		Jo redenin	Number		Minimum Detected	Maximum Detected	Arithmetic	UCL95	UC195		
Deschaelad Pertassum, Dissolvoed 4 4 A Deskhaelad Sederum, Dissolvoed 7 1 Deskhaelad Sederum, Dissolvoed 4 4 4 Deskhaelad Sederum, Dissolvoed 7 2 Deskhaelad Sederum, Dissolvoed 7 4 4 Deskhaelad Sederum, Dissolvoed 7 7 4 4 Merical Activation 7 7 4 4 Merical Activation 7 7 4 4 Merical Coppera Activation 7 7 4 Merical Copera Disciplina 7 7 4 Merical Coppera Activation 7 7 4 Merical Coppera Activation 7 7 4 Merical Coppera Activation 7	Parameter Name	Analyses	Detects	Units	Concentration	Concentration	Value"	Lognormai	Normal	FPC	Basis
Deskhelol Selentum Dissohed 7 7 Deskhelol Sodem Dissohed 7 7 Disshelol Sodem Dissohed 4 2 Disshelol Sodem Dissohed 4 2 Disshelol Sodem Dissohed 7 2 Marcial Sodem Dissohed 7 2 Marcial BARIUM 4 4 4 Metrol Robert Activation 4 4 4 Metrol Coperation Activation 4 4 4 Metrol MANGANESE Activation 4 4 4 Metrol MANGANESE Activation 4 4 4 Metrol MANGANESE Activation 4 4 4 Metrol Marcial Activation 4 4 4 Metrol Marcial Activation 4		4	4	MG/L	2	3	2	4	3	3	MAXDET
Dissibilition Sociation Dissolved 4 4 2 Dissibilition Dissibilition 7 2 2 Medical Altrocolum, Dissolved 7 2 2 Medical CALCELIAM 7 4 4 4 Medical CALCELIAM 4 4 4 4 4 Medical CALCELIAM 4	Dissolved	7	~	MG/L	0010	0100	0 00020	0.0079	0 0047	10100	MAXDET
Disswherid Vorzoblum, Dissoved 4 2 Disswherid Vorzoblum, Dissoved 7 4 4 Merid Altikhiu, Mingrafile 4 4 4 Merid Altikhiu, Mingrafile 4 4 4 Merid Altikhiu, Mingrafile 7 1 4 Merid Coppellum 10 Altikhiu 7 1 Merid Coppellum 10 Altikhiu 7 1 Merid LEAD Markin 7 1 Merid LEDIAIN 20 Colum 4 4 Merid Markin 10 Colum 4 4 Merid Markin 10 Column 7 7 5 SYCC ENCERNING 7 7 3 3 GeorChem Most Column ALLALINITY COLUMN 7 7 4 GeorChem Most Column ALLALINITY COLUMN	Jissolved	4	P	MG/L	0.67	2	-	7	2	2	MAXDET
Dissibledia (200c) Dissibledia (200c) Education (200c) ALLE Discolved 7 2 Melota (200c) Ariseno 7 4 <td< td=""><td>n, Dissolved</td><td>4</td><td>2</td><td>MG/L</td><td>00018</td><td>0 0003</td><td>0.0032</td><td>6</td><td>00000</td><td>0.0003</td><td>MAXDE</td></td<>	n, Dissolved	4	2	MG/L	00018	0 0003	0.0032	6	00000	0.0003	MAXDE
Metal AREA AREA Metal AREALINION 7 5 Metal CACICIMIM 7 4 4 Metal CHACENIAM 7 1 4 4 Metal CHACENIAM 7 1 4 4 4 Metal CCOPER CCOPER 7 7 1 4	olved	7	2	MG/L	0000	0.059	0015	0.074	0030	0.03	MAXDE
Metal ARSENIC 4 Metal ARSENIC 4 4 Metal CALCUM 4 4 Metal CHROMIUM TOTAL 7 1 Metal CHROMIUM TOTAL 7 1 Metal CHROMIUM TOTAL 7 1 Metal CHROMIUM TOTAL 4 4 Metal CHROMIC 7 1 Metal MANGANESE 4 4 Metal MANGANESE 7 7 Metal MANGANESE 7 7 Metal MANGANESE 7 4 Metal MANGANITA 7 7 SOCON MANGANITA 7 7 SOCO MANGANITA 7 7 <td< td=""><td>></td><td>4</td><td>7</td><td>MG/L</td><td>0.23</td><td>2</td><td>071</td><td>49</td><td>2 2003</td><td>2</td><td>MAXDE</td></td<>	>	4	7	MG/L	0.23	2	071	49	2 2003	2	MAXDE
Merical BARJUM A d 4 4 4 A d <td></td> <td>7</td> <td>ιŋ.</td> <td>MG/L</td> <td>0 0046</td> <td>0.013</td> <td>0.0052</td> <td>0.035</td> <td>19000</td> <td>0003</td> <td>MAXDE</td>		7	ιŋ.	MG/L	0 0046	0.013	0.0052	0.035	19000	0003	MAXDE
Metod CACICIUM TOAL 4 4 4 Metod COPPER 7 1 4 4 4 Metod IRON 7 7 1 4 4 4 Metod IRON 7 7 1 4		P	4	MG/L	0.020	0.034	0.026	6000	0.033	0.034	MAXDE
Metod CCHROMIUM TOTAL 7 4 Metod CCDPER 7 1 Metod LEAD 4 4 Metod IRCON 7 6 Metod MANGANESUM 4 4 Metod MANGANESUM 7 6 Metod MANGANESUM 4 4 Metod MANGANESUM 3 3 GeoChys SICKENDERCENI PASSING 3 3 GeoChys SICKE NO 200 PERCENI PASSING 3 3 GeoChys SICKE NO 200 PERCENI PASSING 3 4 GeoChys SICKE NO 20		4	7	MG/L	9	8	18	195	2.00	3000	MAXDE
Metod COPPER 7 1 Metod IECON 4 4 Metod IECON 7 6 Metod MANGANESE 7 6 Metod MANGANESE 7 6 Metod MANGANESE 7 6 Metod POZASSUM 4 4 4 Metod POZASSUM 4 4 4 Metod ZINC 4 4 4 Metod ZINC 4 4 4 Metod ZINC 7 7 7 CCPest DDI 7 7 7 COCPest DDI 7 7 3 SVCC Dig2-ETHYLHEXVI PHTALATE 7 7 4 SVCC Dig2-ETHYLHEXVI PHTALATE 7 7 5 GenChan MOSTURE PERCENT PASSING 3 3 3 GenChan MOSTURE PERCENT PASSING 3 3 3	IM TOTAL		7	MG/t	0 0020	0.0082	0.0031	00089	0000	2800	MAXDEL
Metical (EAD) Metical (EAD) Metical (EAD) A d Metical (EAD) MAGNESULM 4 4 4 Metical (MACKEL A d 4 4 4 Metical (MACKEL MACKEL 7 7 6 Metical (POLDER) A d 4 4 4 SVCC PENACHICAR (PORCENT) 3 3 3 3 3 Georphys SIEVE NO 200 PERCENT PASSING 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4			-	MG/L	0.059	6500	100	/90.0	7200	0.024	MAXDEL
Metor LEAD Metor Metor LA Metor MACHESIUM 4 Metor MANGANESE 4 Metor MOCKEL 4 Metor MOCKEL 4 Metor MOCKEL 4 Metor MANGANIM 4 COCPest DIT 4 COCPest DIT 7 SVCC DERINACHICANI, PHILALATE 7 SVCC PERINACHICANI, PHILALATE 7 SVCC DERINACHICANI, PHILALATE 7 SVCC DERINACHICANI 7 GeoPhys SIEVE NO 200 PERCENT GeoPhys SIEVE NO 200 PERCENT GeoPhys SIEVE NO 200 PERCENT PASSING		4	7	MG/L	0.372	5000	750	BS C	200	0000	MAXOE
Matical MASCARESIUM Matical MANGANESE 4		/	٥.	MG/L	0.0026	0.039	100	0.080	000	0030	MAXDEL
Matical MARICA MARICA 7 6 Matical POIASSIUM 4 4 4 Matical POIASSIUM 4 4 4 Matical SODIUM 4 2 Matical JUNC 7 7 7 COCPEST DDT 7 7 7 COCPEST DDISZETHYLHEXYL) PHITHALATE 7 7 4 COCPEST DDISZETHYLHEXYL) PHITHALATE 7 7 4 COCPEST DDISZETHYLHEXYL) PHITHALATE 7 3 3 COCPEST DDISZETHYLHEXYL) PHITHALATE 7 7 4 SVOC PENTACHICINCOPHENIOL 7 3 3 3 3 GENCCHEM DATACHALOROPHENIOL 7 3	MU	7	4	MG/L	- 150	2	200	35.0	7000	ONO	MAXDET
Matical Matical Moderation 4	ESE	7	4 4	MGA	900	0013	0.0078	0.013	0100	0012	MAXDET
Matric SODIUM 4 4 Matric VANADUM 4 2 COCPest DIT 7 4 COCPest DIT 7 4 COCPest DIT 7 4 SVOC PERTACHLOROPHEND 7 4 SVOC PERTACHLINITY PRITACLE 7 3 GenChem MOSTURE PERCENT 7 3 GenChem MOSTURE PERCENT 3 3 GenChem MOSTURE PERCENT PASSING 3 3 Geochys SIEVE NO. 200 PERCENT PASSING 3 3 Geochys SIEVE NO. 200L, PERCENT PASSING 3 3 Geochys SIEVE NO. 200L, PERCENT PASSING 3 4 Geochys SIEVE NO. 200L, PERCENT PASSING 3 4 Geochys SIEVE NO. 200L, PERCENT PASSING 3 4 Matric AMBIOL ANTIMONY 3 4 Matric CADMILIA 40 40 Matric C	2	,	4	MG/L	2	3	2	4	3	3	MAXDET
Metical VANADIUM 4 2 Metical ZINC 7 7 7 OCPOSAT DELDORIN 7 7 7 7 COCPOST DISQUELIDARIN 7 3		4	-	MG/L	850	2	-	°	2	2	MAXDET
Merici ZINC OCPest DDT OCPest DDT OCPest DDT OCPest DDT SVOC BISLEDRYLHEXYL) PHTHALATE 7 SVOC PENTACHLOROPHENOL 7 GenChem ALKALINITY, TOTAL (AS CACCAS) 3 GenChem DATE DATE CATIONE PRICENT GenChem DATE GenChem DATE GenChem DATE GenChem TOTAL ORGANIC CARBON 3 GenChem DATE GenChem DATE GenChem TOTAL ORGANIC CARBON 3 GenChem TOTAL ORGANIC CARBON 3 GeoPhys SIEVE NO. 100 PERCENT PASSING 3 GeoPhys SIEVE NO. 200 PERCENT PASSING 3 Matcal CADMILIM AMetcal <td>×</td> <td>4</td> <td>~</td> <td>MG/L</td> <td>0 0032</td> <td>0000</td> <td>0 0022</td> <td>0 094</td> <td>0 0041</td> <td>0 004</td> <td>MAXDET</td>	×	4	~	MG/L	0 0032	0000	0 0022	0 094	0 0041	0 004	MAXDET
OCPest DDI OCPest DICIDIAN OCPest DICLDRIN SVCC PENZ-ETHYLHEXLY, PHIHALATE 7 SVCC PENZ-ETHYLHEXLY, PHIHALATE 7 SVCC PENZ-ETHYLHEXLY, PHIHALATE 7 GenChem ALKALINITY, TOTAL, CASCOCO3) 3 GenChem MOST UNE PERCENT 3 GenChem TOTAL ORGANIC CARRON 3 GenChys SIEVE NO. 200 PERCENT PASSING 3 GenChys SIE		7	~	MG/L	0 025	0.063	0.043	0.056	1500	0.063	MAXDET
OCPOST DIELDRIN SVOC Bis2-EIHYTHEXYL) PHTHALATE 7 1 SVOC PENTACHOROPHEROL 7 3 GenChem CARALINITY, LOZOH(KOL) 3 3 GenChem DH 20 20 GenChem DH 3 3 GenChem SIEVE NO 200 PERCENT PASSING 3 3 GeoPhys SIEVE NO 200 PERCENT PASSING 3 4 GeoPhys SIEVE NO 200 PERCENT PASSING 3 4 GeoPhys SIEVE NO 200 PERCENT PASSING 3 4 <tr< td=""><td></td><td>7</td><td>4</td><td>MG/L</td><td>990000</td><td>0 00022</td><td>0 000084</td><td>0 00014</td><td>0 00013</td><td>0 00022</td><td>MAXDET</td></tr<>		7	4	MG/L	990000	0 00022	0 000084	0 00014	0 00013	0 00022	MAXDET
SVOC DISQ-ETHYLHEXYL) PHITHALATE 7 1 SVOC PENTACHICOROPHENOL 7 3 GenChem ALEKTACHICOROPHENOL 3 3 GenChem MASTURIE PERCENT 3 3 GenChem PRASTURIE PROCENT 3 3 GenChem PRASTURIE PROCENT 3 3 GenChem PREVENO 100 PERCENT PASSING 3 3 GeoPhys SIEVE NO 200 PERCENT PASSING 3 4 Matci ALUMINIUM 14 14 Matci BERYLLUM 14 14 Matci CALCIMIM 40 40 Matci COPPER 40 40		7	5	MG/L	0 000034	0 00024	0.00012	0 00036	0 00018	0 00024	MAXDET
SVOC PENTACHLOROPHENOL 7 3 GenChem AlkAlivilly, TOTAL (AS CACCOS) 3 3 3 GenChem AMOSTUTE PERCENT 20 20 20 GenChem DH 20 20 20 20 GenChem IOTAL ORGANIC CARBON 3 4 4 4 4	(LHEXYL) PHTHALATE	7	-	MG/L	0019	00019	0007	1100	1100	0019	MAXDET
GenChem AtkAlinIIV, 101A (AS COCO3) 3 4	LOROPHENOL	7	E	MG/L	9000	0.013	0 0051	1100	0 00080	0013	MAXDET
GenChem MOSSURE PERCENT 3	Y, TOTAL (AS COCO3)	3	6	MG/KG	77300	752000	485100	1 88E+12	1089887	752000	MAXDET
GenChem DH 20 20 GenChem IOTAL ORGANIC CARRON 3 3 GeoPhys SIEVE NO 100 PERCENT PASSING 3 3 GeoPhys SIEVE NO 20 PERCENT PASSING 3 3 GeoPhys SIEVE NO 200 PERCENT PASSING 3 3 GeoPhys SIEVE NO 200 PERCENT PASSING 3 3 GeoPhys SIEVE NO 200 PERCENT PASSING 3 3 GeoPhys SIEVE NO 200 PERCENT PASSING 3 3 GeoPhys SIEVE NO 200 PERCENT PASSING 3 3 Metal ALUMINAM 3 4 Metal ALUMINAM 3 4 Metal ALUMINAM 3 4 Metal BERYLLUM 40 40 Metal CALCHIIM 40 40 Metal CALCHIIM 40 40 Metal CALCHIIM 40 40 Metal CALCHIIM 40 40 Metal COPATER <t< td=""><td>PERCENT</td><td>3</td><td>၈</td><td>PERCENT</td><td>3</td><td>=</td><td>Ŷ</td><td>337</td><td>13</td><td>=</td><td>MAXDET</td></t<>	PERCENT	3	၈	PERCENT	3	=	Ŷ	337	13	=	MAXDET
GeorChem TOTAL ORGANIC CARBON 3 3 3 3 6 3<		20	R	PH UNITS	9	٥	8	80	8	8	LOGNORM
GeoPhys CATION EXCHANGE CAPACITY 3 2 GeoPhys SIEVE NO 100 PERCENT PASSING 3 3 3 GeoPhys SIEVE NO 200 PERCENT PASSING 3 3 3 3 GeoPhys SIEVE NO 200, PERCENT PASSING 3 3 3 3 3 GeoPhys SIEVE NO 200, PERCENT PASSING 3 3 3 3 3 GeoPhys SIEVE NO 200, PERCENT PASSING 3 3 3 3 4<	GANIC CARBON	3	1	MG/KG	6280	12300	9487	29421	14594	12300	MAXDET
GeoPhys SIEVE NO 100 PERCENT PASSING 3 3 3 3 3 3 3 3 3	XCHANGE CAPACITY	3	2	MEQ/100G	0.8	7	3	3519010326	٥	,	MAXDET
GeoPhys SIEVE NO. 200 PERCENI PASSING 3	100 PERCENT PASSING	3	8	PERCENT	40	71	51	135	88	7	MAXDET
GeoPhys SIEVE NO 200 PERCENT PASSING 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20 PERCENT PASSING	3	e	PERCENT	20	87	80	23	8 ;	87	MAXDEL
GeoPhys SIEVE NO 200L PERCENT PASSING	200 PERCENT PASSING	en	e	PERCENT	32	29	44	216	8 5	/6	MAXDE
GeoPhysics SEVENCIAN PASSING 1	200L PERCENT PASSING	6		PERCEN	32	/6/2	44	70	77	۵ ک	MAXDET
Metrol ANTIMONY Metrol ANTIMONY Metrol ANTIMONY Metrol ANTIMONY Metrol ANTIMONY Metrol ANTIMONY Metrol BERNLLUM Metrol CADMIUM Metrol MANGARISE Metrol MANGARISE Metrol MANGARISE Metrol METROLIPPE Metrol MANGARISE Metrol MANGARI	40 PERCENI PASSING	2	2 6	PEDCENT	8	77	3 2	122	6	72	MAXDET
Metol ANTIMONY 36 4 Metol ARSENIC 40 40 Metol BERYLLUM 14 14 Metol CADRIM 40 13 Metol CALCRIM 10 13 Metol CHROMIUM, TOTAL 40 13 Metol CHROMIUM, TOTAL 40 40 Metol COPPER 40 40 Metol IEAD 40 40 Metol LEAD 40 40 Metol Metol 14 14 Metol MicRell 40 40 Metol MicRell 40 40 Metol MicRell 40 40 Metol MicRell 14 11	SO PERCEINI POSSING	, I	, 71	MG/KG	1950	12200	9619	12952	10803	12200	MAXDET
Metod ARSENIC 40 40 Metod BARRIUM 14 14 Metod CALCILIA 40 20 Metod CALCILIA 40 13 Metod CHROMIUM, TOTAL 40 40 Metod COPPER 40 40 Metod COPPER 40 40 Metod LEAD 40 40 Metod Metod 14 14 Metod Metod 40 40 Metod Metod 14 14 Metod Metod 14 14 Metod Metod 14 14 Metod Metod 14 14 Metod McCLIRY 40 40 Metod NICKEL 40 40 Metod POLYSSIUM 11 11	<u> </u>	36	4	MG/KG	0.87	,	3	4	3	4	LOGNORM
Metol BARIUM 14 14 14 14 14 14 14 14 14 20		40	40	MG/KG	4	82	13	15	14	14	NORM
Metral BERYLLUUM 40 20 Metral CADMIUM 13 40 13 Metral CALDMIUM, TOTAL 14 14 14 Metral CORALT 40 40 40 Metral COPPER 40 40 40 Metral IRAD 14 14 14 Metral MACNESIUM 14 14 14 Metral METRAL 40 40 40 Metral METRAL 40 40 40 Metral METRAL 40 40 40 Metral NICKEL 40 40 40 Metral POTASSIUM 11 11 11		14	77	MG/KG	22	122	10	122	- 105	105	NORM
Metral CADMILIM 40 13 Metral CALCANILIM, TOTAL 14 14 Metral CHECANILIM, TOTAL 40 40 Metral COBALT 14 14 Metral RODN 40 40 Metral LEAD 40 40 Metral LEAD 40 40 Metral MAGNESIUM 14 14 Metral MERCURY 40 7 Metral NICKEL 40 40 Metral NICKEL 40 40 Metral POTASSIUM 11 11	V	40	8	MG/KG	0.18	_	0.54	190	0.59	0.61	LOGNOSM
Metral CALCULM 14 11 Metral Metral Molecular	V	40	2	MG/KG	200	77	3	3	9	3	COGNORM
Metal Copper	IN TOTAL	14	4 6	MG/KG	90	39800	22 22	900	<u> </u>	200	MODIA
Metral COPPER 40 40 Metral IRON 14 14 Metral IEAD 40 40 Metral IEAD 40 40 Metral MANGANESE 14 14 Metral MARCOLINY 40 7 Metral NICKEL 40 40 Metral POTASSIUM 14 11	M, ICCA	1	140	MG/KG	3 67	17	,	0	20	30	LOGNORM
Metric IRON 14 14 14 14 14 14 14 14 14 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 7 40 7 40 <th< td=""><td></td><td>40</td><td>8</td><td>MG/KG</td><td>•</td><td>52</td><td>23</td><td>26</td><td>52</td><td>8</td><td>LOGNORM</td></th<>		40	8	MG/KG	•	52	23	26	52	8	LOGNORM
Metral LEAD 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 14 14 11 14 11 14 11 11 Mortal Mortal NCT & NCKEL 40 40 40 40 Mortal Mortal 11 Mortal 11 11 11 11 11 11 11		14	7	MG/KG	6430	24800	16274	19373	18307	18307	NORM
Metric MACINESIUM 14 14 14 Metric MANGANESE 14 14 14 Metric Metric METCURY 40 7 Metric NICKEL 40 40 Metric POTASSUIM 11 11		40	8	MG/KG	٥	601	24	28	&	28	LOGNORM
Metal MANGANESE 14 14 14 14 14 14 14 14 11 Metal NICKEL 40 7 40	NM	14	14	MG/KG	917	2390	1785	2103	2015	2015	NORM
Metal MERCURY 40 7 Metal NICKEL 40 40 40 Metal POTASSIUM 14 11	IESE	14	14	MG/KG	44	2260	246	1147	7%	1147	LOGNORM
Metal NICKEL 40 40 A0 Metal POTASSIUM 11 14 11		40	7	MG/KG	100	0 14	0 050	0.067	0.058	000/	MSO SO S
Metal POTASSIUM		40	Q:	MG/KG	4	46	23	28	98	202	LOGNORM
	Σ	1 14		MG/KG	523	2500	128/	3222	C0/1	1/03	SOKIN

.:

TABLE H-1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation R1

				Number		Minimum	Maximum	Arithmetic				
			Number of	_		Detected	Detected	Mean	UCL95	OCI95		
Area of Concern	Class	Parameter Name	Analyses	Defects	Units	Concentration	Concentration	Value	Lognormai	Norma	S S	Basis
FU5_DEEP	Metal	SELENIUM	8	٥	MG/KG	0.76	2	0.59	0.81	0.70	0.81	LOGNORM
FUS DEEP	Metal	SILVER	8	-	MG/KG	90	9.0	0.68	3	0.84	90	MAXDET
FUS DEEP	Metal	SODIUM	14	2	MG/KG	133	261	63	8	85	æ	LOGNORM
FUS DEEP	Metal	THALLIUM	Ş	-	MG/KG	0 23	0.23	0.69	_	0.84	0.23	MAXDET
FUS_DEEP	Metal	VANADIUM	14	14	MG/KG	7	37	25	31	28	28	NORM
FUS_DEEP	Metal	ZINC	Q7	40	MG/KG	21	132	72	&	81	18	NORM
FUS DEEP	OCPest	AIPHA CHLORDANE	32	ø	MG/KG	0.00068	0.14	0.034	011	0900	0.11	LOGNORM
4330 SUF	OCPest	DDD	32	2	MG/KG	0.013	0 022	0 058	0 15	11.0	2200	MAXDET
FUS DEEP	OCPest	IDDE	32	15	MG/KG	0 002	0.077	0064	021	120	0.077	MAXDET
FUS DEEP	OCPest	DDT	32	91	MG/KG	0 0022	0.26	0.088	0 44	0 14	0 26	MAXDET
FUS DEEP	OCPest	DIELDRIN	32	92	MG/KG	0 0041		0 19	_	0.35	_	LOGNORM
FUS DEEP	OCPest	GAMMA-CHLORDANE	32	ø	MG/KG	0 000069	0.15	0.035	0.12	0.061	0 12	LOGNORM
FUS DEEP	РАН	2-METHYLNAPHTHALENE	23	-	MG/KG	0 12	0.12	0.57	0.57	0.85	0 12	MAXDET
FUS DEEP	PAH	ACENAPHTHENE	21	7	MG/KG	0 086	4	0.53	0.58	0.72	0.58	LOGNORM
FUS DEEP	PAH	ANTHRACENE	25	=	MG/KG	0 008	7	0 62	890	80	890	LOGNORM
FUS DEEP	PAH	BENZO(o)ANTHRACENE	21	22	MG/KG	0.054	92	2	2	6	2	LOGNORM
FUS DEEP	PAH	BENZO(a)PYRENE	જ	2	MG/KG	0.057	20	2	2	e	2	LOGNORM
FUS DEEP	PAH	BENZO(b)FLUORANTHENE	2	2	MG/KG	0.05	26	2	2	8	2	LOGNORM
FUS DEEP	PAH	BENZO(g h i)PERYLENE	<u>ا</u>	- 1	MG/KG	0.062	18	- (2	2	2 0	LOGNORM
FUS DEEP	HAH	BENZO(K)FLUOKANIHENE	0	7	MG/KG	004/	70	7	7	9 6	7	LOGNORM
FUS DEEP	HAH.	CHRYSENE	<u> </u>	२	MG/KG	0.04	ος •	,	,;;	200	7 5	NEON CONTRACT
HUS DEEP	TAH.	DIBENZ(O h)ANTHIZACENE	7	7 5	MG/KG	- 6	4	3	non'	2	100	LOGNOISM CONTRACTOR
FUS DEEP	HAH	FLUORANIMENE	7	1	MG/KG	0004	ò	4	٥	٥	٥	COGNOCIA
FUS DEEP	рАН	FLUORENE	<u>.</u>	,	MG/KG	0.00	2 3	9,	3	200	3	COUNTY OF THE PROPERTY OF THE
FUS DEEP	PAH	INDENO(1,2 3-c,d)PYRENE	2	g,	MG/KG	6000	<u>.</u>	_ ;	7	2	7 2	WOON O
FUS DEEP	PAH	NAPHTHALENE	z 5	7 5	MG/KG	0.00	- 76	8,0	0.23	181	20.	CONCIN
FUS OPER	HA.	PHEINANIFIKENE	ត	Q E	MG/KG	0.033	8 3	2	9 Y	1 4	2 4	NO CNOCK
FUS DEEP	£ 0	A MACTUAL BUILDING (S. ODESOL)	5	8 -	ONG/NG	200	200	2 0	200	080	7500	MAYDET
FUS OFFP		APINE INTERFERENCE (INC.) CONTROLL APINE INTERFERENCE INT	7	-	MG/KG	0020	0 077	0.48	0.43	080	7200	MAXDET
FIIS DEEP	200	SEASTER DOTTER THE METHON ATE	1	ŀ	MG/KG	0.046	250	7		1	-	LOGNORM
FUS DEEP	SVOC	CARBAZOLE	-4	_	MG/KG	0.048	4	0.45	0.46	990	0.46	LOGNORM
FU5 DEEP	SVOC	DI-n-BUTYL PHTHALATE	41	9	MG/KG	007	0.14	0.47	0.43	0.79	0 14	MAXDET
FUS DEEP	SVOC	DIBENZOFURAN	۱۵	3	MG/KG	011	1.2	0.45	0 40	0.75	0.40	LOGNORM
FU5 DEEP	SVOC	PENTACHLOROPHENOL	41	2	MG/KG	000	0.32	0.25	0.23	0.41	0.23	LOGNORM
FUS DEEP	pq	Mercury TCLP	-	-	MG/L	0 00015	0 00015	0 00015	0		0 00015	MAXDET
FU5 DEEP	PQ	Zinc ICLP	-	_	MG/L	0.22	022	0.22	0	,,,,,,	0.22	MAXDET
FUS DEEP	OO/	2-HEXANONE	9	~ ;	MG/KG	0.002	0003	0.005	0.000	0000	0003	MAXUE
FUS DEEP		ACEIONE	9 5	2 -	MG/KG	0.004	0000	5200	0,000	0000	on co	MAXDET
FUS DEEP	XOX	BROMOMETHANE	41	-	MG/KG	0 002	0 002	09000	0 0004	0 0005	0 002	MAXDET
FUS DEEP	8	CARBON DISULFIDE	٩	-	MG/KG	0 037	0 037	69000	0.0073	0 0082	0 0073	LOGNORM
FUS DEEP	voc	ETHYLBENZENE	4)	-	MG/KG	0 002	0 002	0,000	0 0064	0 0065	0 005	MAXDET
FUS DEEP	VOC	METHYL ETHYL KETONE (2-BUTANONE)	4)	8	MG/KG	0.002	0.076	00000	1100	0.013	0.011	LOGNORM
FUS DEEP	VOC	METHYLENE CHLORIDE	4)	10	MG/KG	0 002	9000	0.0051	0 0058	0 0055	0 0058	LOGNORM
FUS DEEP	VOC	TETRACHLOROETHYLENE(PCE)	4)	2	MG/KG	0001	0 002	0.0059	99000	0 0064	0005	MAXDET
FUS DEEP	200	TOLUENE	41	2	MG/KG	0001	0000	00000	0 0067	0 0065	0 000	LOGNORM
FUS DEEP	8	TOTAL 1,2-DICHLOROETHENE	41	-	MG/KG	0 002	0 002	9000	0 0064	0 0004	0 005	MAXDET
FUS_DEEP	000	Total Xylenes	41	-	MG/KG	0000	6000	0 0062	0 0065	0 0006	0 00065	LOGNORM
FUS DEEP	NOC.	TRICHLOROETHYLENE (TCE)	4	2	MG/KG	0.085	0.4	0017	0.012	0.034	2100	COGNORM
FUS SURFSOIL	GenChem	ALKALINITY, TOTAL (AS COCO3)	6	3	MG/KG	77300	752000	485100	1 88E+12	1089887	752000	MAXDEL
FUS SURFSOIL	GenChem	GenChem MOISTURE, PERCENT	6	3	PERCENT	8		9	337	22	=	MAXDET

TABLE H1
Data Summaries for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation R1

MINIONA DESCRIPTION OF THE CALICINA CONTROL OF THE CALICINA CONTROL OF THE CALICINA	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	300200000000000000000000000000000000000	PH UNITS MG/KG MEQ/100G PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT	7 6280 0.8	12300	9487	9 29421 3519010326	14594	12300	MAXDET
GenChen GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		MG/KG MG/KG EQ/I00G ERCENT ERCENT ERCENT ERCENT ERCENT	0.8	12300	9487	3519010326	14594	12300	MAXDET
Geoffys Geoffys Geoffys Geoffys Geoffys Geoffys Geoffys Geoffys Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		EQ/ING ERCENT ERCENT ERCENT ERCENT ERCENT	80			3519010326			1105
GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys Metal			ERCENT ERCENT ERCENT ERCENT			~		•	_	MAXIX
GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol			EROENT EROENT			, ,	135	OR I	7	MAXDET
GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys GeoPhys Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol			ERCENT ERCENT ERCENT	2,2	6	S	8	8	В7	MAXDET
GeoPhys GeoPhys GeoPhys GeoPhys Metol			ERCENT	0/	,,	3 ;	2	2 5	5 5	1700
GeoPhys GeoPhys GeoPhys Metol	9		EBOEN E	35	ò!	44	210	0/	à	
GeoPhys GeoPhys Metal			ERCENT	35	γ)	4	677	,	ò	MAADEL
Geochys Metol			ERCENT	58	70	8	55	85	۶	MAXDET
Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol			V	43	7.5	S	122	81	72	MAXDET
Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol	20 20 20 20 20 20 20 20 20 20 20 20 20 2		- COVE	1950	12200	8068	15006	10707	12200	MAXDET
Metrol Me	20 20 20 20 20 20 20 20 20 20 20 20 20 2		021	78.0	-	ſ	•	۴	,	MGCNECI
Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol Metrol	20 20 20 20 20 20 20 20 20 20 20 20 20 2	 	NG/NG	òò		7	,	,	,	
Metral Me	20 20 20 20 20 20 20 20 20 20 20 20 20 2		MG/KG	c	Α,	2	C	4	2	CONTROL
Metal Metal Metal Metal Metal Metal Metal Metal Metal	20 20 20 20 20 20 20 20 20 20 20 20 20 2		MG/KG	22	122	102	173	22	122	MAXDE
Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		MG/KG	0 18	256	0.45	0.54	0.51	0 54	LOGNORM
Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal	20 20 20 20 20 20 20 20 20 20 20 20 20 2		MG/KG	200	9	0.78	4	-	4	WYON SOI
Metal Metal Metal Metal	20 20 20 20 20 20 20 20 20 20 20 20 20 2		NG AVO	1580	30800	7330	26274	15155	30800	MAXIDET
Metal Metal Metal	20 20 20 20 20 20 20 20 20 20 20 20 20 2	++++	200	3	2006			1	2	V VOCINGO
Metal Metal Metal	20 20 20 20 20 20 20 20 20 20 20 20 20 2	111	MG/KG	ô	SS.	-	77	7	37	L CONSCIENT
Metal Metal Metal	20 20 20 20 20 20 20 20 20 20 20 20 20 2	+	MG/KG	3	12	7	0	٥	12	MAXDEI
Metal Metal	20 20 9 9 20 20 20 20 20	\parallel	MG/KG	2	25	23	22	32	25	LOGNORM
Metal	20 9 9 20 20 20 9 9	t	MG/KG	A430	10800	15526	20258	18030	19800	MAXDET
Metal	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0 100	c	2	ű,	90	43	S	I OGNODA
Wetal	20 20 20 9	+	MG/NG	,	A)	82	2500	ò	5 8	100
	20 20 20 9	†	WG/KG	20	200	7/6	333	777	26.5	TOWN.
Metal MANGANESE	20 20 20 9	0	MG/KG	44	/13	487	45	À	2	MAXILEI
Metal MERCURY	20	7	MG/KG	100	0 14	0020	0.085	0005	0.085	LOGNORM
Metal NICKEL	6	8	MG/KG	7	æ	82	24	2	2	NORM
Γ	,	H	MG/KG	67/2	2500	1645	2005	2167	2500	MAXDET
T	- 100	t	0/10/14	42.0	-	0.51	OR C	140	08.0	MOONSO
Ī	07	†	00/00	3	- 2	3 5	ŝ	à		10000
Ī	CZ.	-	MG/KG	00	90	048	2	600	٥٥	MAADE
Metal SODIUM	6	2 I N	MG/KG	133	192	9/	131	2	25	MAXDE
Metal VANADIUM) ó	0	MG/KG	7	28	21	S	25	28	MAXDET
Metal ZINC	92	8	MG/KG	53	901	8	77	75	77	LOGNORM
Ĺ	23	 	MG/KG	890000	0.14	0.047	0.24	0.08	0.14	MAXDET
1000	25	t	MOW	2100	2000	1800	0.0	0.15	0.00	MAXDET
OCT 63	22	t	01/01	200	2000		200	2	1000	THE PARTY
+	53	†	MG/KG	0.0038	0.0//	Agn	770	2	///	MAAC
FUS SURFSOIL OCPest DDT	23	1	MG/KG	0 0022	0.26	0 12	0.37	010	0.26	MAXDEI
OCPest DIELDRIN	23	5	MG/KG	0000	_	027	2	0.48	,	MAXDET
	53	1	MC/KG	0,000,0	0.15	O CAR	0.26	0.084	0.15	MAXDET
3		t			25	160	-	-	5.5	1700
1	90	-	MG/KG	71.0	710	790	_	-	710	MACLE
PAH ACENAPHTHENE	93	_	MG/KG	0 086	4	0.75	- 1	1	1	COGNORM
Γ	30	4	WC/KG	71.0	7	000	-	-	,	MACNEO
	8	t	2							200
	R	†	MG/KG	00/	0	2	,	n	,	COSINCIGN
PAH BENZO(a)PYRENE	30	9	WG/KG	000	26	3	8	5	8	LOGNORM
PAH RENZONNELLIONANTHENE	Œ	-	MG/KG	800	8		8	ĸ	8	LOGNORM
Ī			040	0,000	αį	·	~	×	\ \	MOONOCI
Ī		t	Ou i	3	֭֓֡֜֜֝֜֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	,	,			
PAH BENZO(k)FLUOKANIHENE	30	1	WG/KG	//00	3	,	•	a	٥	NO PION
PAH CHRYSENE	900	- 1	MG/KG	1800	8	ო	0	S	2	LOGNORM
	US.	l	WG/KG	-	P	OAR	-	-	,	MUNSOI
T		t				,		. ç	1	
	€	17	MG/KG	OUA/	ò	0	41	0	17	COSING
PAH FLUORENE	30		MG/KG	1900	es.	0 65	-	160	-	LOGNOSM
PAH INDENOX123-C d)PYRENE	30	14 N	MG/KG	6900	-/1	2	•	9	9	LOGNORM
Ī	UE.	1	MOVE	01.0	_	0.78	_	-	_	MOUNTO
T	8	t	2							
PAH IPHENANIHIZENE	30	2	MG/KG	cenn	8	4	0	٥	٥	LCGNCKM
P \147543AppHdata xis\APPHDATA			쫎							

P 1147543/AppHdata xtstAPPHDATA

н 35

YABLE H-1
Data Summaries for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Installation R1

		Number	7		Defected	Detected	Macin	50101	50 00		
	Parameter Name	Analyses	Detects	Units	Concentration	Concentration	Value	Lognormal	Normal	D.	Basis
•	PYRENE	S S	22	MG/KG	000	56	5	32	6	32	LOGNORM
H	4-METHYLPHENOL (p-CRESOL)	23	1	MG/KG	0.056	0.056	077	-	_	9500	MAXDET
┪	bis(2-ETHYLHEXYL) PHTHALATE	20	7	MG/KG	0.1	250	13	11	35	11	LOGNORM
Ē	CARBAZOLE		9	MG/KG	0.12	4	120	-	-	-	LOGNORM
	DIBENZOFURAN	20	3	MG/KG	011	1	0.70	0.87	-	0.87	LOGNORM
П	PENTACHLOROPHENOL	20	2	MG/KG	0.04	0.32	0.40	0.59	0.74	0 32	MAXDET
	Mercury TCLP	-	-	MG/L	0 00015	0 00015	0 000015	0		0 00015	MAXDET
	Zinc, 1CLP	-	-	MG/L	0.22	0.22	0.22	٥		0.22	MAXDET
Г	2-HEXANONE	20	3	MG/KG	0 005	0.003	0 0053	0 00061	0 0058	0003	MAXDET
Г	ACETONE	20	P	MG/KG	0.004	0.005	0.037	0.087	0 062	0 000	MAXDET
Г	BENZENE	20	1	MG/KG	0 000	0.002	0 0055	0 00061	0 0059	0 002	MAXDET
Г	BROMOMETHANE	20	ı	MG/KG	0 002	0 002	0 0055	19000	0 0059	0 002	MAXDET
	CARBON DISULFIDE	20	· l	MG/KG	0 037	0.037	0 0073	0 0083	0000	0 0083	LOGNORM
	ETHYLBENZENE	20	_	MG/KG	0 002	0 002	0.0055	0.0061	0.0059	0 002	MAXDET
Ι.	METHYL ETHYL KETONE (2-BUTANONE)	20	5	MG/KG	9100	0.076	0.013	0.019	0.020	0019	LOGNORM
П	METHYLENE CHLORIDE	8	7	MG/KG	0 003	9000	0 0052	0.0058	0 0056	0 0058	LOGNORM
	TOLUENE	20	2	MG/KG	1000	0000	0 0055	0 0068	0 0000	99000	LOGNORM
	Total Xylenes	20	٦.	MG/KG	0000	0000	0.0059	0 0062	0 0062	0 0062	LOGNORM
٦	ALUMINUM	14	14	MG/KG	5120	14200	10934	12487	11994	11994	NOON
Metal	ANTIMONY	23	٥	MG/KG	0.42	3	-	2	2	2	LOGNORM
٦	ARSENIC	24	24	MG/KG	-	35	14	22	17	22	LOGNOUM
7	BARIUM	14	14	MG/KG	78	163	107	82	911	120	LOGNORM
Metal	BERYLLIUM	24	81	MG/KG	0.23	190	0.43	077	0.48	190	MAXDET
T	CADMIUM	77	14	MG/KG	004	0.62	0.37	0.53	0.45	0.53	LOGNORM
T	CALCIUM	4	14	MG/KG	200	33800	/Q	24/2	8128	2780	LOGINORM
Ī	CHROMIUM TOTAL	7.7	24	MG/KG	<u> </u>	28	/	2 ∘	≥ c	<u>^</u>	LOGNORM LOGNORM
Ť	COBALI	77	24	MG/NG	9 0	- 13	23	0 00	, %	ď	MOONOO
Merc	COPPEIX	-	7.7	0//0/4	\	00276	80091	18081	17,00	18081	Machine
T		5 5	24	MC WG	7	11.6	RC RC	2	3,8	CP.	MacNeto
T	NA O NICELLINA		P.C	MORG	1480	3630	2184	2432	2426	25.80	MacNocol
T	MANGALOGO	PI	2	MG/KG	07	189	448	735	521	521	NORM
Γ	MERCURY	24	8	MG/KG	0 02	0.12	0 037	0.054	0.046	0.054	LOGNORM
	NICKEL	24	54	MG/KG	12	42	20	23	24	23	LOGNORM
Metal	POTASSIUM	14	14	MG/KG	401	2740	1823	2762	2191	2740	MAXDET
Metal	SELENIUM	24	11	MG/KG	990	2	0.85	2	-	1	NORM
Metal	Muidos	14	7	MG/KG	152	274	8	145	125	145	LOGNORM
Metol	VANADIUM	14	14	MG/KG	17	32	25	27	56	26	NO SA
Metal	ZINC	24	77	MG/KG	27	25	5	116	127	116	LOGNORM
	ALPHA-CHLORDANE	30	2	MG/KG	0.0032	0.049	0 026	011	0 039	0.049	MAXDET
. [ODO	90	3	MG/KG	0 0056	0 13	0.053	0.23	0/00	0 13	MAXDE
T	DDE	8	13	MG/KG	0.0086		0 11	072	6 0	2/0	COUNCIENT
T	DDI	8	13	MG/KG	0 0068	2	910	2	031	25.5	LCGNCIAN CANCIAN
1	DIFLORIN	30	12	MG/KG	9100	0.73	0 14	7 3	170	0 /3	MAXDE
OCPest	GAMMA-CHLORDANE	8	2	MG/KG	0 0037	0.055	0.027	0.12	nogo S	0.055	MAXUE
1	Total Polynuclear Aramatic Hydrocarbons	33	٥	MG/KG	0 18	3 ,	٥	\8	71	0.00	NOONOO
1	ANTHRACENE	33	3	MG/KG	0.038	6	0.00	3,	0.94	860	LOGNOKW LOGNOKW
7	BENZO(o)ANTHRACENE	33	9	MG/KG	0.049	7	680	- ;		_ 6	LOGNORM.
1	BENZO(a)PYRENE	33	9	MG/KG	900	9	690	860		96.0	LOGNORAL DOSNORAL
1	BENZO(b)FLUORANTHENE	33	5	MG/KG	88	8	0 78	- 3	-	- 8	CONCIN
7	BENZO(g,h I)PERYLENE	33	9	MG/KG	0.044	_	3	250		74.0	CONCENT
_		22	4	(2)				•			

H 38

P1147543AppHdata xis\APPHDATA

TABLE #1
Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main installation R1

				2		Minimum	Maximum	Arithmetic				
Ared of Concern	Š	Portmeter Name	Number of Anglyses	Detects		Concentration	Concentration	Mean Value	lognormal	Normal	EPC.	Basis
FU6 DEEP	PAH		33	9	MG/KG	6900	6	0 86	-	-	-	LOGNORM
FU6 DEEP	PAH	FLUORANTHENE	33	٥	MG/KG	0.061	8	1	2	3	2	LOGNORM
FU6 DEEP	PAH	FLUORENE	33	-	MG/KG	2	2	650	0.87	160	0.87	LOGNORM
FU6 DEEP	РАН	INDENO(1.2.3-c,d)PYRENE	33	2	MG/KG	0.042	Ŷ	900	_	_	_	LOGNORM
FU6 DEEP	PAH	PHENANTHRENE	æ	7	MG/KG	0.048	18	_	_	2	_	OGNORM
FU6 DEEP	РАН	PYRENE	æ	٥	MG/KG	D 044	14	-	2	2	2	LOGNORM
FU6 DEEP	PCB	PCB-1260 (AROCHLOR 1260)	2		MG/KG	9	9 '	980	7	- -	96	MAXDET
FUG DEP	SACC	DIS(2-E-HYLHEXYL) PHINALATE	2 2	4 0	MG/KG	0.040	nc	5	86.0	- 6	3 6	NO OF THE PARTY OF
FIM DEED		DESCRIPTION DATHALATE	2 2		MG/KG	0000	0.044	070	0.87	8	0.044	MAXDET
Elk Dep		2.HEYANONE	\$ 8	- 6	MG/KG	2000	0.004	0010	0.013	0034	0000	MAXDET
FU6 DEFP	Ş	ACETONE	8	_	MG/KG	7000	0004	0.035	0.053	0.055	0000	MAXDET
FU6 DEEP	Š	BENZENE	8	5	MG/KG	1000	2	0 093	0.068	021	0.068	LOGNORM
FU6 DEEP	voc	BROMOMETHANE	&	4	MG/KG	000	0000	9100	0.013	0 034	0.004	MAXDET
FU6 DEEP	VOC	CARBON DISULFIDE	&	1	MG/KG	0 008	0.008	0.017	0013	0.034	9000	MAXDET
FU6 DEFP	VOC	CARBON TETRACHLORIDE	&	-	MG/KG	1100	1100	0017	0013	0 034	1100	MAXDEf
FU6_DEEP	Š	CHLOROFORM	&	3	MG/KG	0 005	0043	0018	0.015	0 035	0015	LOGNORM
FU6 DEEP	VQC	CHLOROMETHANE	&	-	MG/KG	0 002	0 002	0016	0013	0 034	0 002	MAXDET
FU6 DEEP	XQC	ETHYLBENZENE	8	8	MG/KG	000	036	1200	0018	0.042	0.018	LOGNORM
FU6 DEEP	VOC		&	60	MG/KG	9000	2100	0010	0.018	0 037	100	MAXDET
FU6 DEEP	OO S	METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE)	8 8	1	MG/KG	9000	9000	0000	2000	0.034	900	MAXDE
TUO DEED	کارچ پرک	MEINYLENE CHLORIDE	\$ 8	•	MG/KG	800	0000	2000	5000	0.034	500	MOONO
FII6 DEP	Ş Ş	TOTILENE	8	-	MG/KG	0004	2000	9100	0.012	0.034	0000	MAXDET
FU6 DEEP	NOV VOC	Total Xylenes	8		MG/KG	1000	0.57	0.046	0.047	0.087	0.047	LOGNORM
FU6_DEEP	VOC	TRICHLOROETHYLENE (TCE)	29	2	MG/KG	0 002	0 002	0016	0013	0.034	0 002	MAXDET
FU6_SEDIMENT	Metal	ALUMINUM	2	2	MG/KG	3270	8210	5740	1591849	21336	8210	MAXDET
FU6_SEDIMENT	Metal	ANTIMONY	2	2	MG/KG	152	1210	682	142E+15	4016	1210	MAXDET
FU6_SEDIMENT	Metal	ARSENIC	2	-	MG/KG	5	5	62	69830844889	17	S	MAXDET
FU6 SEDIMENT	Metal	BARIUM	2	2	MG/KG	3630	3650	3640	3676	3703	3050	MAXDET
FU6 SEDIMENT	Metal	BERYLLIUM	2	-	MG/KG	0.33	0.33	017	1 11E+48	-	033	MAXDET
FU6 SEDIMENT	Metal	CADMIUM	2	200	MG/KG	17.	33	30	43	47	33	MAXDE
FUG SEDIMEN	Metal	CHOOMIN FOTAL	2 6	2 6	MG/KG	158	757	208	1039	520	757	MAXDET
FU6 SEDIMENT	Metal	COBALT	2	2	MG/KG	55	16	7.8	181	691	اه	MAXDET
FU6 SEDIMENT	Metal	СОРРЕР	2	2	MG/KG	2500	14200	8350	4 56E+12	45287	14200	MAXDET
FU6_SEDIMENT	Metal	IRON	2	2	MG/KG	00656	133000	114450	263246	231575	133000	MAXDET
FU6 SEDIMENT	Metal	LEAD	2	2	MG/KG	3110	3570	3340	4374	4792	3570	MAXDET
FU6 SEDIMENT	Metol	MAGNESIUM	2	2 0	MG/KG	11600	320	14300	41372	31348	000/1	MAXDE
FUO SEDIMENT	Metal	MEDCLIDA	7 0	1-	0/0/00	200	0.67	77.0	3 005,40	300	790	MAXDEL
FILE SEDIMENT	Metal	NOSE	,	,	MG/KG	83	139	1	209	289	130	MAXDET
FU6 SEDIMENT	Metal	POTASSIUM	2	2	MG/KG	1050	1400	1225	2431	2330	1400	MAXDET
FU6_SEDIMENT	Metai	SELENIUM	2	2	MG/KG	8	182	116	8004619	533	182	MAXDET
FU6_SEDIMENT	Metat	SILVER	2	-	MG/KG	40	49	25	4 68E+82	179	46	MAXDET
FU6 SEDIMENT	Metat	SODIUM	2	2	MG/KG	804	1750	1277	70344	4264	1750	MAXDET
FU6 SEDIMENT	Metaí	THALLIUM	2	-	MG/KG	21	21	Ξ	4 79E+34	75	21	MAXDET.
FU6 SEDIMENT	Metaí	VANADIUM	2	2	MG/KG	12	15	13	27	92	15	MAXDET
FU6 SEDIMENT	Metal	ZINC	2	2 0	MG/KG	4980	5570	5275	6562	7138	5570	MAXDET
FUG SEDIMENT	SAL DAG	PELIKULEUM HYDIKUCARBONS	,	1	MG/KG	1410	1400 54	<u> </u>	1333	200	1400	MAXIDEL
TUO SEDIMENT		ANTIONOCINE	,	-	20/20/2	87-	37	-	3	3 (8-	MAXOU
ייין אייין אייין אייין	1701		-	-	פאינפואו	-	_				1	MINORIL

TABLE H-1
Data Summaries for all Defected Chemicals for All Functional Units and Surrogate Sites
Memphis Depot Main Instalfation R1

				Number		Minimum	Maximum	Arithmetic				
			Number of	ō		Detected	Detected	Mean	nc195	OC195		
Area of Concern	Class	Parameter Name	Analyses	Defects	Units	Concentration	Concentration	Value	Годионта	Normal	S.	Scrsis
FU6_SEDIMENT	PAH	BENZO(O)ANTHRACENE	7	2	MG/KG	3	7	5	250	91	7	MAXDET
FU6 SEDIMENT	РАН	BENZO(a)PYRENE	2	2	MG/KG	9	5	4	42	12	2	MAXDET
FU6_SEDIMENT	РАН	BENZO(b)FLUORANTHENE	2	2	MG/KG	5	ó	7	83	61	٥	MAXDET
FU6_SEDIMENT	PAH	BENZO(G h.))PERYLENE	2	~	MG/KG	0.39	2	_	1779262792	_	2	MAXDET
FU6_SEDIMENT	PAH	BENZO(k)FLUORANTHENE	2	-	MG/KG	3	3	4	Ŷ	Ŷ	60	MAXDET
FU6_SEDIMENT	PAH	CHRYSENE	2	2	MG/KG	5	0	7	149	23	0	MAXDET
FU6_SEDIMENT	РАН	DIBENZ(G h)ANTHRACENE	7	-	MG/KG	086	0.86	-	ó	3	0.86	MAXDET
FU6_SEDIMENT	РАН	FLUORANTHENE	2	~	MG/KG	6	٥	9	11502	22	٥	MAXDET
FU6_SEDIMENT	РАН	FLUORENE	7	-	MG/KG	90	90	_	277	4	90	MAXDEI
FU6 SEDIMENT	РАН	INDENO(1 2 3-c d)PYRENE	2	-	MG/KG	2	2	7	3	3	2	MAXDET
FU6_SED!MENT	PAH	PHENANTHRENE	2	7	MG/KG	2	7	4	167076	61	7	MAXDET
FU6 SEDIMENT	PAH	PYRENE	2	2	MG/KG	ş	10	8	57	21	10	MAXDET
FU6_SEDIMENT	SVOC	4-METHYLPHENOL (p-CRESOL)	2	-	MG/KG	5	5	3	6874	14	5	MAXDET
FU6_SEDIMENT	SVOC	DIS(2-ETHYLHEXYL) PHTHALATE	2	2	MG/KG	80	13	10	77	28	13	MAXDET
FU6_SEDIMENT	SVOC	CARBAZOLE	2	-	MG/KG	0.83	0.83	_	12	3	0.83	MAXDET
FU6_SEDIMENT	SVOC	PHENOL	2	-	MG/KG	0.76	0.76	-	127	4	0.76	MAXDET
HOSPAIUS_BUT	Metal	ALUMINUM	,	,	MG/KG	5120	13400	10617	14321	12632	13400	MAXDET
FU6_SURFSOIL	Metal	ANTIMONY	13	4	MG/KG	0.7	3	_	2	2	2	LOGNORM
FU6_SURFSOIL	Metal	Arsenic	14	14	MG/KG	4	35	18	&	23	8	LOGNORM
FU6_SURFSOIL	Metal	BARIUM	7	7	MG/KG	87	163	110	131	129	163	MAXDET
FU6_SURFSOIL	Metal	BERYLLIUM	٦q	1	MG/KG	0.23	0.53	0.42	-	0.49	0 53	MAXDET
FU6 SURFSOIL	Metal	CADMIUM	14	ó	MG/KG	000	0.62	039	0.74	0.51	051	NORM
FU6 SURFSOIL	Metal	CALCIUM	7	_	MG/KG	\$5	33800	6508	38526	15359	33800	MAXDET
FU6_SURFSOIL	Metal	CHROMIUM, TOTAL	77	4	MG/KG	11	28	17	<u>6</u>	61	61	LOGNORM
TIOS JUNE SOIL	Metal	COBALT	7	_	MG/KG	5	17	8	12	=	17	MAXDET
FU6 SURFSOIL	Metal	СОРРЕЙ	2	14	MG/KG	12	51	26	33	31	33	LOGNORM
FU6 SURFSOIL	Metal	IRON	^	7	MG/KG	14700	24700	18086	21159	20773	24700	MAXDE
FU6 SURFSOIL	Metas	LEAD	2	14	MG/KG	2	136	40	20	8	0/3	COGNORM
FU6 SURFSOIL	Metat	MAGNESIUM	7	7	MG/KG	1480	3630	2320	2980	7.82	3530	MAXUE
FU6 SURFSOIL	Metal	MANGANESE	_	_	MG/KG	242	109	989	014	78	3	MAXDE
FU6 SURFSOIL	Metai	MERCURY	7	, ;	MG/KG	0.05	0.12	0043	0.062	0000	0.002	LOGNORM
FU6_SURFSOIL	Metal	NICKEL	27	7	MG/KG	12	40	2	57	570	27.5	COST
FU6 SURFSOIL	Metal	POTASSIUM	_ ;	,	MG/KG	401	2650	80/	8 6	7354	60,	MAXDE
FU6 SURFSOIL	Metal	SELEMUM	<u> </u>	- ه	MG/KG	000	15.9	8 2	711	90	152	MAXDET
FINE SUIPESOIL	Metol	VANADIIM	, _	7	MG/KG	20	82	54	27	27	&	MAXDET
IOSEGIS 911	Metol	ZNC	, PI	14	MG/KG	40	ક્રિ	116	165	741	165	LOGNORM
FU6 SURFSOIL	OCPest	ALPHA-CHLORDANE	83	2	MG/KG	0 0032	0.049	0 033	0.23	0 0 0 0	0 049	MAXDET
FU6 SURFSOIL	OCPest	add	23	3	MG/KG	0.0056	0.13	0.068	0.47	010	0 13	MAXDET
FU6 SURFSOIL	OCPest	DDE	g	13	MG/KG	0 0086		0.15	2	0.24	- (MAXOET
FU6 SURFSOIL	OCPest	DDT	23	13	MG/KG	0 0068	2	0.23	4	0.40	25.0	MAXOE
FU6 SURFSOIL	OCPest	DIELDRIN	82	12	MG/KG	0010	0.73	0 18	4	07.0	0.05	MAXOET
FU6 SURFSOIL	OCPest		3	, ,	MG/KG	0.003/	0.000	25.0	07.0	2000	8	MAXDET
FUS SURFSOIL	200	ANTILIDA CENIE	2 1	, c	MG/NG	0.038	3	700	3 4	,		MAXDET
ICOSORIO SILI	140	SENZO SENE	2 2	,	MG/KG	0000	,	-		2	5	LOGNORM
IIOS SUBESOII	PAH	BENZONDEVENE	2	,	MG/KG	800	. •	-	4	2	4	LOGNORM
FUA SURFSOIL	₽¥	BENZOCDYFLUORANTHENE	2	2	MG/KG	900	8	-	9	2	þ	LOGNORM
FU6 SURFSOIL	PAH	BENZO(g h, n)PERYLENE	91	9	MG/KG	0 044	7	-	4	2	4	LOGNORM
FU6 SURFSOIL	PAH	BENZOKOFLUORANTHENE	91	5	MG/KG	0.066	7	-	7	2	7	LOGNORM
FU6 SURFSOIL	PAH	CHRYSENE	91	9	MG/KG	6900	٥	2	Ŷ	£ .	ø.	LOGNORM
FU6_SURFSOIL	РАН	FLUORANTHENE	16	œ	MG/KG	0.078	8	6	13	2	13	LOGNORM

LOGNORM

LOGNORN LOGNORN LOGNORN LOGNORN LOGNORN

LOGNORI LOGNORI LOGNORI LOGNORI LOGNORI

OGNO

¥37

0 13 0 00025 0 0 10 0.0018 0000 030 0000073 0016 0.00042 0.00018 0 0050 0 0052 0 0050 0 0050 00061 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0027 0 0050 0 00060 00051 00051 00051 00051 0 0087 UCL95 0 000 Lognormai 0 00071 0 00062 0 00067 0.0028 0 00025 0.000068 0.0018 0 0050 0 0050 0 0050 0 0051 0 00053 0 00053 0 00053 UCL95 0 0062 1900 0 002 0 0067 0 0056 0 0056 0 0055 0.00 0.000063 0.010 0 00016 0.0037 0.0037 0.0049 0.0049 000049 0 12 0 00025 0 0041 Mean Value 0.0055 0.0055 0.0055 0.0055 0.0017 0.0017 0 0024 0 0055 Concentration Maximum Detected 0000 Concentration Minimum Defected 0.0003 0.00088 0.00088 0.0011 0.00092 0.003 0.002 0.00113 0.0017 0.0023 0 00013 0 00085 0 85 0 0041 0 042 1000 000 MORKO MG/L MG/L MG/L MG/L MG/KG MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/I Detects ŏ 윙 쉐 গ্রহাপ্ত Number of Analyses 꾀임임임임 8 ଅଧୃକ୍ଷମ ଥାୟ <u>ଅ</u>ଥାୟ ଅଧିକ 8 2 ଅଧେଶଶଶ EHYLBENZENE
METHYLETYLKETONE (2-BUJANONE)
METHYLSOBUTN KETONE (4-METHYL-2-PENIANONE)
METHYLENE CHLORIDE
IEITRACHLOROEITHYLENE(PCE) Parameter Name CHRYSENE

DECENT PHINALATE

DIETAN PHINALATE

DI-DEUTH PHINALATE

DI-DCT/UPHTMALATE 1 1 2 2-TETRACHLOROETHANE
1 1 2 2-TETRACHLOROETHANE
1 2-DICHLOROETHANE PCB-1260 (AROCHLOR 1260) DIS(2-ETHYLHEXYL) PHTHALATE Total Xylenes TRICHLOROETHYLENE (TCE) ALUMINUM FLUORENE INDENCY123-c d)PYRENE PHENANTHRENE PYRENE OI-n-BUTYL PHTHALATE CHROMIUM TOTAL CHLOROMETHANE BENZENE BROMOMETHANE CHLOROFORM MAGNESIUM MANGANESE CARBAZOLE ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM SODIUM Metal Metal PAH Memphis Depot Main Installation RI FLG SURFSOIL FLG SURFSOIL FLG SURFSOIL FLG SURFSOIL FLG SURFSOIL FU6 SURFSOIL FU6 SURFSOIL FU6 SURFSOIL FU6 SURFSOIL FU6 SURFSOIL FU6 SURFSOIL FU6 SURFSOIL FU6 SURFSOIL FU6 SURFSOIL FU6 SURFSOIL FU6 SURFSOIL FU6 SURFSOIL HIG SURFSOIL
HIG GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW
HIJ GW FU6_SURFSOIL FU6_SURFSOIL

LOGNORM LOGNORM MAXDET

MAXDE

Data Summaries for all Detected Chemicals for All Functional Units and Surrogate Sites

P\147543\AppHdata.xis\APPHDATA

TABLE H-1

Data Summanes for all Detected Chemicals for All Functional Units and Surrogate Sites

Memphis Depot Main installation R1

				Number		Minimum	Maximum	Arithmetic				
			Number of	ŏ		Defected	Detected	Mean	OCL95	UCL95		
Area of Concern	Closs	Parameter Name	Analyses	Detects	Silco	Concentration	Concentration	Value.	Lognormal	Normal	S S	Basis
FU7 GW	Ş	2-HEXANONE	73	_	MG/L	0.005	0 005	00000	0.0050	0 005	0 005	MAXDET
FU7 GW	202	ACETONE	7.3	3	MG/L	0.014	0.19	0 0081	00000	0.012	69000	LOGNORM
FU7 GW	Ş	BENZENE	74	-	MG/L	0.003	0000	0.0048	0 0052	0 00 0	0 003	MAXDET
FU7 GW	200	BROMODICHLOROMETHANE	73	2	MG/L	1000	0 002	0 0048	0.0051	09000	0 002	MAXDET
FU7 GW	202	BROMOFORM	7.3	1	MG/L	1000	1000	0 0049	0.0051	09000	1000	MAXDET
FU7 GW	202	CARBON DISULFIDE	7.3	,	MG/L	1000	1000	0 0049	0.0051	09000	1000	MAXDET
FU7 GW	NOC	CARBON TETRACHLORIDE	7.3	10	MG/L	1000	0.004	0 0046	0.0051	87000	0000	MAXDET
FU7 GW	202	CHLOROBENZENE	7.3	2	MG/L	1000	P00 0	0 0049	0.0051	05000	0 000	MAXDET
FU7 GW	200	CHLOROETHANE	7.3	ŀ	MGAL	1000	1000	0 0049	0.0052	0500.0	1000	MAXDET
FU7 GW	200	CHLOROFORM	73	6	MGAL	1000	9000	0 0045	0 0052	0.0048	0 000	MAXDET
FU7 GW	202	CHLOROMETHANE	7.3	1	MG/L	1000	1000	0 0049	0.0052	0.0050	1000	MAXDET
FU7 GW	202	DIBROMOCHLOROMETHANE	73	2	MG/L	1000	0 002	0 0048	0 0051	0 0020	0 005	MAXDET
FU7 GW	202	METHYL ETHYL KETONE (2-BUTANONE)	73	4	MG/L	0 000	600 0	15000	0.0051	0 0052	0.0051	LOGNORM
FU7 GW	VOC	TETRACHLOROETHYLENE(PCE)	73	28	MG/L	1000	0.12	2100	0.013	0016	0.013	LOGNORM
FU7 GW	202	TOLUENE	74	1	MG/L	0 002	0 002	0 0048	0 0052	0 0050	0 0000	MAXDET
FU7 GW	202	TOTAL 1 2-DICHLOROETHENE	1.3	7	MG/L	1000	0000	0.0048	0 0053	0 0050	0.0053	LOGNORM
FL7 GW	200	TRICHLOROETHYLENE (TCE)	7.3	25	MG/L	1000	8500	19000	99000	0.0076	99000	LOGNORM

= Arithmetic Mean Value consists of both detects and half the detection limit of nondetects.
 DEEP = Soil column, D-10 feet bgs
 GW = Groundwater
 SURPSOIL = Surface soil D-2 feet bgs

1 APPENDIX H2

RADB Statistics

- 3 This section describes the statistics used in the RADB toolset. The exposure point
- 4 concentration (EPC) is calculated in the RADB toolset. The EPC is defined as the highest
- 5 exposure that is reasonably expected to occur at a site (EPA, 1989). The EPC is used to
- 6 calculate the potential risk posed by a site and is calculated using EPA guidance for
- 7 statistical analysis of groundwater monitoring data (EPA, 1989 and EPA, 1992a), where
- 8 appropriate.

15

- 9 The specific statistical methodology used to evaluate the EPC is described below. Section 1.1
- describes the methodology for small data sets (data sets with less than ten analytical
- 11 results). Section 1.2 describes the basic tests and equations used to select the statistical
- 12 protocol. Section 1.3 describes the specific statistical tests used to evaluate the normality of
- the data set, thereby selecting the appropriate equations for calculating the EPC. Section 1.4
- presents the references that serve as the basis of the statistical protocol.

1.1 EPC for Data Sets with Less than 10 Analytical Results

- 16 For data sets consisting of nine or less valid analytical results, the maximum detected
- 17 concentration is used as the EPC.

1.2 EPC for Data Sets with 10 or More Analytical Results

- 19 For data sets with ten or more analytical results, the methodology used for calculating the
- 20 EPC is described below.
- 21 There are two different ways to calculate the EPC in the RADB toolset, using a frequency of
- 22 non-detect analysis or a simple EPC calculation. The methodology for the simple EPC
- 23 calculation used for the Depot is presented graphically in Figure 1-1.

24 1.2.1 Calculation of 95% Upper Confidence Limit (UCL₉₅)

- 25 If the data set was distributed normally, the 95 percent UCL was calculated using the
- 26 following formula (EPA, 1992a):

$$UCL = \overline{x} + t \left(\frac{s}{\sqrt{n}}\right) \tag{1}$$

- 28 Where:
- 29 UCL = upper confidence limit
- x = mean of the untransformed data

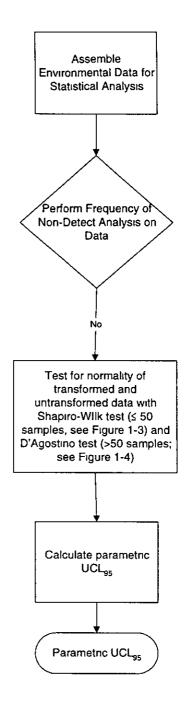


FIGURE 1-1 Overview of Statistical Protocol

- t = Student-t statistic (e.g., from Table A2 published in Gilbert, 1987)
- 2 s = standard deviation of the untransformed data
- n = number of samples
- 4 If the data set was distributed lognormally, the 95 percent UCL was calculated using the following formula (EPA, 1992a):

$$UCL = e^{(\bar{x} + 0.5s^2 + sH/\sqrt{n-1})}$$
 (2)

- 7 Where:
- 8 UCL = upper confidence limit
- 9 e = constant (base of the natural log, equal to 2.718)
- \overline{x} = mean of the log-transformed data
- 11 s = standard deviation of the log-transformed data
- 12 H = H-statistic (Table A12 in Gilbert, 1987)
- n = number of samples
- 14 If the Shapiro-Wilk test indicated that the data for data sets between 9 and 50 samples
- 15 follow both normal and lognormal distributions, the distribution with the largest W-test
- statistic was selected, and the 95 percent UCL was calculated using either Equation 1 or
- 17 Equation 2, as appropriate.
- 18 If the D'Agostino test indicated that the data of sets with more than 50 samples fit both
- 19 normal and lognormal distributions, the assumption was that the data was distributed
- 20 lognormally and the 95 percent UCL was calculated using log-transformed data and
- 21 Equation 2. This assumption was based on Gilbert's Statistical Methods for Environmental
- 22 Pollution Monitoring (1987) and the Resource Conservation and Recovery Act (RCRA)
- 23 guidance for statistical analysis of data (EPA, 1989). These references state that, in general,
- 24 environmental data most closely follow a lognormal distribution. The RCRA guidance
- 25 explains that pollutant sources are randomly and repeatedly diluted by mixing in the
- 26 environmental media, which leads mathematically to a lognormal distribution of
- 27 concentrations. Therefore, the lognormal distribution is usually more appropriate as a
- 28 default statistical model than the normal distribution.
- 29 If either test (Shapiro-Wilk or D'Agostino) indicated that the data set did not fit either the
- 30 normal or lognormal distributions, a nonparametric confidence interval was calculated
- 31 according the methodology in the RCRA guidance (EPA, 1989) described in Section 1.3.3
- 32 below.
- 33 All calculated 95 percent UCLs were compared to the maximum detected concentration,
- and if the 95 percent UCL was greater than the maximum detected concentration, then the
- 35 maximum detected concentration was used as the EPC.

1.3 Statistical Tests for Calculating Sample Set Normality

- 2 The statistical tests used to evaluate the normality of the sample set are described below.
- 3 The normality of the sample set was used for selecting the most representative equation for
- 4 calculating the EPC.

5 1.3.1 Shapiro-Wilk Test (10 to 50 Analytical Results)

- 6 The Shapiro-Wilk test (W-test) was used for data sets with 4 to 50 analytical results. The
- W-test is based on the assumption that if a set of data (or the natural log values of a data
- 8 set) is normally distributed, the ordered values should be highly correlated with
- 9 corresponding quantiles taken from a normal distribution. The W-test gives substantial
- weight to evidence of non-normality in the tails of the distribution, where the robustness of
- statistical tests based on the normality assumption is most severely affected (EPA, 1992b).
- 12 The methodology used to calculate the EPC based on the W-test is presented graphically in
- 13 Figure 1-2. The following steps were followed to calculate the W-test statistic:
- 14 1. Begin with the log transformed data set and order the data from smallest to largest
- concentration $(x_{(t)})$ and from largest to the smallest concentration $(x_{(n-t+1)})$; where n is
- the number of observations.
- 17 2. Compute the differences $x_{(n-t+1)} x_{(t)}$.
- 3. Compute *k* as the greatest integer less than or equal to *n*/2, where *n* is the number of samples and *k* is used to identify the coefficients for the W-test.
- Look up the coefficient a_{n-i+1} from Table A-1 in the Statistical Analysis of Groundwater
 Monitoring Data at RCRA Facilities Addendum to Interim Final Guidance (EPA, 1992b).
- 22 5 Compute the mean (\bar{x}) and standard deviation (SD) of the log transformed data set using the following formulas:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{3}$$

Where:

26

n = total number of observations

 $x_{i} = i^{th}$ observation

 \bar{x} = mean of the log transformed data

30 and

$$SD = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$
 (4)

1 Where:

2

SD = standard deviation of the log transformed data

4 $x_i = i^{th}$ observation

 \overline{x} = mean of the log transformed data (from Equation 3)

n = total number of observations

7

6

8 6. Calculate the W-test statistic using the following equation:

$$W = \left[\frac{b}{SD\sqrt{n-1}} \right]^2 \tag{5}$$

10 and

11
$$b = \sum_{i=1}^{k} a_{n-i+1} \left(x_{(n-i+1)} - x_{(i)} \right)$$
 (6)

12 Where:

13 14

16

SD = standard deviation of the log transformed data

n = total number of observations

 a_{n-i+1} = coefficient for the W-test

- Compare the W-test statistic to the 5 percent critical value for sample size n in Table A-2 of Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Addendum to
 Interim Final Guidance (EPA, 1992b). If the W-statistic is greater than the critical value, the data set is considered normally distributed.
- 21 8. The same tests for normality are conducted on the untransformed data using the 22 methods described above. If both the untransformed data set and log-transformed data 23 set had W-test statistics greater than the critical value, the distribution with the greater 24 test statistic was selected for calculating the 95 percent UCL.
- 9 If the W-test indicated that the data set deviated from both the normal and lognormal
 distributions, a nonparametric UCI was calculated according to methodology described
 in Section 1.3.3.

1.3.2 D'Agostino's Test (More than 50 Analytical Results)

- 29 The D'Agostino test was used to evaluate the normality of the data sets with more than
- 30 50 samples. The methodology used to calculate the EPC based on the D'Agostino test is
- 31 presented graphically in Figure 1-3. The test uses the following steps (Gilbert, 1987):
- 32 1. Order the data from smallest to largest.
- 2. Compute the D statistic from the following equation:

34

28

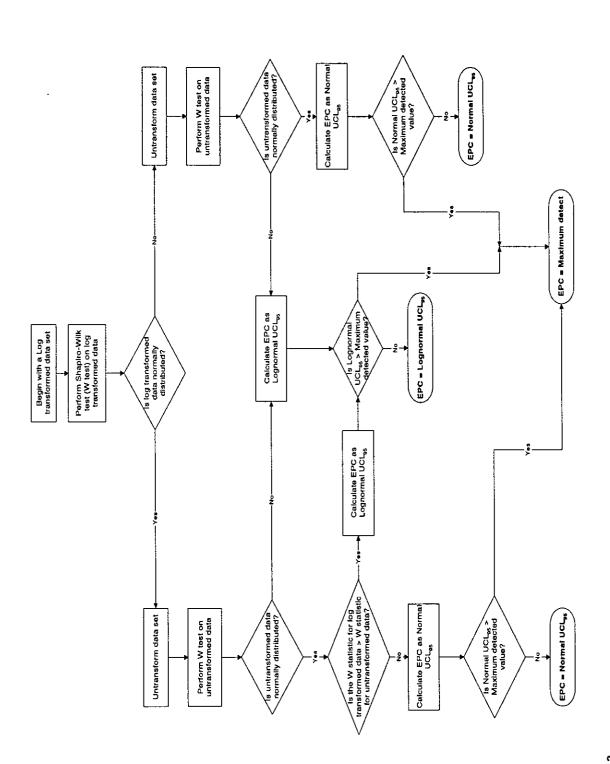
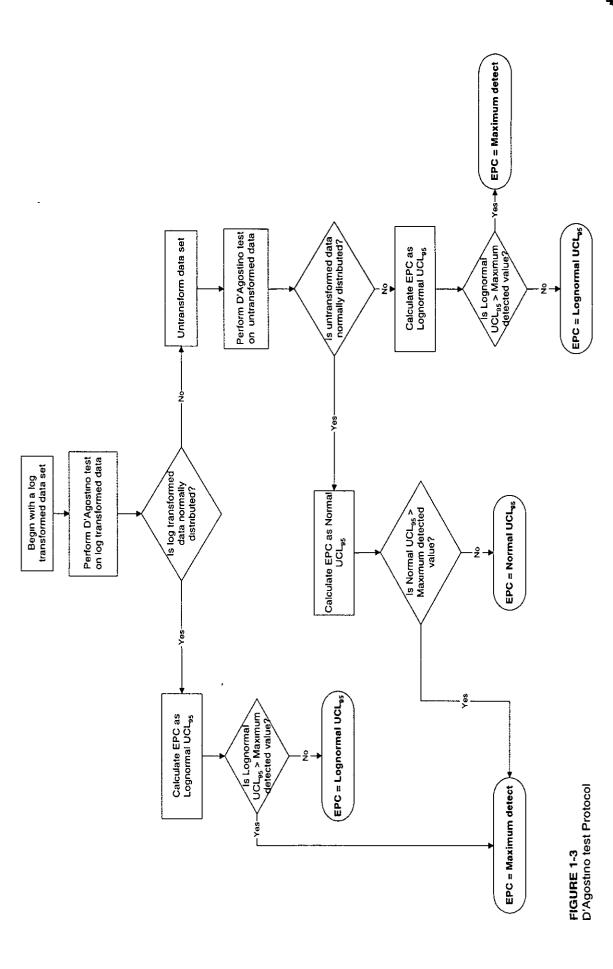



FIGURE 1-2 Shapiro-Wilk test (W test) Protocol

Ŧ

$$D = \frac{\sum_{i=1}^{n} \left[i - \frac{1}{2} (n+1) \right] x_{[i]}}{n^2 s}$$
 (7)

where

$$s = \left[\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2\right]^{\frac{1}{2}}$$
 (8)

and

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{9}$$

3. Transform the D statistic to the statistic Y by computing:

$$Y = \frac{D - 0.28209479}{0.02998598 / \sqrt{n}} \tag{10}$$

If n is large and the data are drawn from a normal distribution, then the expected value of Y is zero. For nonnormal distributions, Y will tend to be either less than or greater than zero, depending on the particular distribution. This fact necessitates a two-tailed test

If Y is less than the $\frac{\alpha}{2}$ (i.e., 0.025) quantile or greater than the $1-\frac{\alpha}{2}$ (i.e., 0.975) quantile of the distribution of Y (Table A8 in Gilbert, 1987), the untransformed data do not fit a normal distribution at the 95 percent significance level (or $\alpha = 0.05$).

If the data do not follow a normal distribution, then the values are transformed by taking the natural logarithm of each concentration value to check if the data are distributed lognormally. The same tests for distribution fit were conducted on the log-transformed data using the methods described above. If the test indicated the untransformed data set and log transformed data set do not follow a normal distribution, a nonparametric upper confidence interval is evaluated (Section 1.3.3).

1.4 References

EPA, 1989. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities - Interim Final Guidance. Office of Solid Waste Management Division. PB89-151047. April.

EPA, 1992a. Supplemental Guidance to RAGS: Calculating the Concentration Term. Office of Solid Waste and Emergency Response. Publication 9285.7-081. May.

EPA, 1992b. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Addendum to Interim Final Guidance. Office of Solid Waste, Permits and State Programs Division. June.

Gilbert, 1987. R.O. Gilbert. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold. New York.

THIS PAGE INTENTIONALLY LEFT BLANK.

TAB

Appendix I

TAB

Risk and Hazard Estimations for all FUS/ Surrogate Sites

Risk and Hazard Estimations for all FUs and Surrogate Sites

The following are included in this appendix:

- I-1–Risk estimation methodology tables
- I-2-FU1 Soils
- I-3-FU2 Soils (Parcel 3 and Site 59, FU2 Sediments; FU2 Surface Water
- I-4-FU3 Soils; FU3 Sediments
- I-5-FU4 Soils; FU4 Sediments
- I-6-FU5 Soils
- I-7-FU6 Soils; FU6 Sediments
- I-8-FU7 Groundwater

In accordance with Section 4.7.1.4 of the Statement of Work, the following persons performed and checked calculations contained in this appendix:

Full Name

Title

Date

Dizabeth L. Harland Envir. Scientist 2 01/10/00

Dujong hyloranapu. Project Scientist 5 /1/10/2000.

THIS PAGE INTENTIONALLY LEFT BLANK.

Appendix I-1 Risk Methodology Table THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE 11-1

Risk Methodology for Ingestion of Soll/Sediment

Memphis Depot Main Installation RI

Carcinogenic

Noncarcinogenic

Intake

$$mg = Cs \times IR \times FI \times EF \times ED \times CF$$

$$kg - day \qquad BW \times ATnc$$

where

Example calculations for an industrial worker are provided below TCDD EPC = 130E-05

Carcinogenic

Intake mg =
$$Csx IRxFIxEFxEDxCF$$
 = $EPCx50x1x250x25x1E-6$ = $4.06E-06$ = $2.27E-12$ kg-day $BWxATc$ 70 x 25550 179E+06

Noncarcinogenic

$$mg = CsxIRxFIxEFxEDxCF = EPCx50x1x250x25x1E-6 = kg-day BWxATnc 70x9125$$

TABLE 11-2

Risk Methodology for Dermal Exposure to Soil/Sediment

Memphis Depot Main Installation RI

Carcinogenic

Cs x SA x AF x ABS x ET x EF x ED x CF BW x ATc 11 mg ntake

kg-day

Noncarcinogenic

Intake

Cs x SA x AF x ABS x ET x EF x ED x CF BW x ATno kg-day шg

concentration of chemical (e.g., mg/kg soil)

where

soil-skin adherence factor (mg/cn²) surface area (cm²)

chemical-specific absorption factor (unitless)

exposure time (hours/hours)

exposure frequency (days/year)

exposure duration (years)

conversion factor (kg/mg)

body weight (kg) CS SA AF ABS ET EF CF CF ATC

carcinogenic averaging time (lifetime over which exposure is averaged, in days) noncarcinogenic averaging time (ED over which exposure is averaged, in days)

Example calculations for an industrial worker are provided below

= 130E-05

= 3.00E-02

EPCx2679 x 03 x ABS x 1 x 250 x 25 x 1E-6 II Cs x SA x AF x ABS x ET x EF x ED x CF mg kg-day Carcinogenic Intake

1 10E-13

11

1 96E-07

Ħ

70 x 25550

3 07E-13

11

1 96E-07 6 39E+05

II

Cs x SA x AF x ABS x ET x EF x ED x CF

BW x ATno

mg kg-day

Noncarcinogenic

Intake

EPCx2679 x 03 x ABS x 1 x 250 x 25 x 1E-6

70 x 9125

سو. سې

2 33E-13

Ħ

8 33E-14

Ħ

TABLE 11-3

Risk Methodology for Inhalation of Soil Particulates

Memphis Depot Main Installation RI

Carcinogenic

Intake

$$mg = Cs \times ((1/PEF)+(1/VFind)) \times IRinh \times FI \times EF \times ED$$

$$kg-day = BW \times ATc$$

Noncarcinogenic

Intake
$$mg = Cs \times ((1/PEF)+(1/NFind)) \times IRinh \times FI \times EF \times ED$$

$$kg-day \qquad BW \times ATnc$$

where

₽W

Example calculations for an industrial worker are provided below

= 130E-05

$$VFind = 110E+07$$

Carcinogenic

Intake mg =
$$\frac{\text{Cs} \times ((1/\text{PEF}) + (1/\text{MFind})) \times |\text{Rinh} \times \text{Fl} \times \text{EF} \times \text{ED}}{\text{BW} \times \text{ATc}} = \frac{\text{EPC} \times (1/1326 + 9) \times (1/\text{MFind}) \times 20 \times 1 \times 250 \times 25}{70 \times 25550} = \frac{149\text{E} - 07}{179\text{E} + 96}$$

Noncarcinogenic

$$\frac{\text{Intake}}{\text{kg-day}} = \frac{\text{Cs} \times ((1/\text{PEF}) + (1/\text{VFind})) \times |\text{Binh} \times \text{Fl} \times \text{EF} \times \text{ED}}{\text{BW} \times \text{Afnc}} = \frac{\text{EPC} \times (1/1326 + 9) \times (1/\text{VFind}) \times 20 \times 1 \times 250 \times 25}{70 \times 9125} = \frac{149\text{E-07}}{639\text{E+05}}$$

<u>--</u>

TABLE 11-4

Risk Methodology for Ingestion of Groundwater

Memphis Depot Main Installation RI

Carcinogenic

intake

Noncarcinogenic

Intake
$$mg = Cgw \times IR \times EF \times ED$$
 $kg-day$ $BW \times ATnc$

where

concentration of chemical (e.g., mg/L in water)

media intake rate (e.g., L water ingested/day)

exposure frequency (days/year)

exposure duration (years)

body weight (kg)

carcinogenic averaging time (lifetime over which exposure is averaged, in days)

noncarcinogenic averaging time (ED over which exposure is averaged, in days) ATc ATnc

Example calculations for an industrial worker are provided below TCDD

= 130E-05

Carcinogenic

Intake mg =
$$\frac{\text{Cgw x IR x EF x ED}}{\text{Rg-day}}$$
 = $\frac{\text{Cgw x IR x EF x ED}}{\text{RW x ATc}}$ = $\frac{\text{EPC x }50 \text{ x }250 \text{ x }25}{70 \text{ x }25550}$ = $\frac{4 \text{ 06E} + 00}{1 \text{ 79E} + 06}$ = $\frac{2 27 \text{E} - 06}{1 \text{ 79E} + 06}$

Noncarcinogenic

Intake

$$\frac{\text{genite}}{\text{mg}} = \frac{\text{Cgw x IR x EF x ED}}{\text{BW x ATnc}} = \frac{\text{EPC x 50 x 250 x 25}}{\text{70 x 9125}} = \frac{4.06E+00}{6.39E+05} = \frac{4.06E+00}{6.39E+05}$$

6 36E-06

<u>م</u> '

Risk Methodology for Dermal Exposure to Groundwater

Memphis Depot Main Installation RI

Carcinogenic

Noncarcinogenic

where

= surface area (cm²)

= chemical-specific permeability constant (cm/hr)

= exposure time (hours/hours)

= exposure frequency (days/year)

5 F F G 5

= exposure duration (years) = conversion factor (L/crr³)

= carcinogenic averaging time (lifetime over which exposure is averaged, in days) body weight (kg) ₽

= noncarcinogenic averaging time (ED over which exposure is averaged, in days) ATnc

Example calculations for an industrial worker are provided below

EPC =
$$130E-05$$

= 14E+00

Noncarcinogenic

the mg =
$$\frac{\text{Cgw} \times \text{SA} \times \text{PC} \times \text{ET} \times \text{EF} \times \text{ED} \times \text{CF}}{\text{Kg-day}} = \frac{\text{Cgw} \times \text{SA} \times \text{PC} \times \text{ET} \times \text{EF} \times \text{ED} \times \text{CF}}{\text{FV} \times \text{CV}} = \frac{\text{EPC} \times 2679 \times \text{PC} \times 1 \times 250 \times 25 \times 1 \text{E} \cdot 3}{70 \times 9125} = \frac{3.05 \text{E} \cdot 01}{6.39 \text{E} \cdot 05} = \frac{4}{6.39 \text{E} \cdot 05}$$

.

THIS PAGE INTENTIONALLY LEFT BLANK.

Appendix I-2 A. FU1 Soils THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE 12-1a FU1 Surface Soil - Hypothetical Current/Future Maintenance Worker Scenario Memphis Depot Main Installation RI

			488
TABLE 12-14	9		
FU1 Surfac	e Soil -Hypothetical Current/Future Maintenance Worker Scenar	io	<*
Memphis De	pot Main Installation RI		C.,
Ingestion	•	Carcinogenic	<u>Noncarcinogenic</u>
CDI =	Cs*IR*FI* EF*ED*CF		
· · ·	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 c	50 c
FI =	Fraction ingested (unitless)	0.5	0.5
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2679 e,f	2679 e,f
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03 e,g	0 03 e,g
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Inhalatio	n:	for volatiles	
CDI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/PEF)	<u>) * IR </u>
	BW * AT	BW '	
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 ı	1 32E+09 I
VFind =	Volatilization Factor (m3/kg)	(Chemical Specific) j	(Chemical Specific) j
IR =	Inhalation Rate (m3/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285.6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas based on the nature of the activity, assuming full workday
- c = Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- d = Maintenance activity assumed to be once a week throughout the year (excluding vacation)
- e= U S EPA Exposure Factors Handbook, August 1997
- f = Surface area of 1/2 head, forearms and the hands of an adult worker
- g = AF calculated for soil adherence can be found in Appendix G
- h = Chemical-specific absorption factors are found in Appendix G
- I = Particulate emission factor (PEF), adapted from U.S. EPA, Soil Screening Guidance. Technical Background Document, May 1996
- j = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, FAC,

December 1998

. .

TABLE I2-1b
FU1 Surface Soil -Hypothetical Current/Future Maintenance Worker Carcinogenic Scenario Memphis Depot Main Installation RI

										Ingestion	tlon	Der	Dermal	Inha	Inhalation	
Units	Chemical	WOE	SFo	SFd	Ŗ	VFind	EPC	ABSgi	ABS	<u>10</u>	ELCR	CD	ELCR	G	ELCR	
MG/KG	ANTIMONY	۵					4 62E+00	2 00E-02	0 001	8 08E-08		2 60E-10		4 90E-11		
MG/KG	ARSENIC	∢	1 50E+00	50E+00 3 66E+00	151E+01		2 63E+01	4 10E-01	0 03	4 59E-07	6 9E-07	4 43E-08	1 6E-07	2 78E-10	4 2E-09	
MG/KG	MERCURY	٥					1 22E-01	1 00E-04	0 001	2 13E-09		6 84E-12		1 29E-12		
MG/KG	DDE	B2	3 40E-01	4 86E-01			5 82E+00	7 00E-01	0.1	1 02E-07	3.5E-08	3 27E-08	1 6E-08	6 17E-11		
MG/KG	DDT	B2	3 40E-01	4 86E-01	3 40E-01		5 30E+00	7 00E-01	0.1	9 27E-08	3 2E-08	2 98E-08	1 4E-08	5 62E-11	1 9E-11	
MG/KG	DIELDRIN	B2	1 60E+01	3 20E+01	1 60E+01		8 08E-01	5 00E-01	0.1	1 41E-08	23E-07	4 54E-09	1 5E-07	8 56E-12	1 4E-10	
MG/KG	PCB-1260 (AROCLOR 1260)	B2	2 00E+00	2 22E+00	2 00E+00		3 23E+00	9 00E-01	900	5 65E-08	1 1E-07	1 09E-08	2 4E-08	3 42E-11	6 8E-11	
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	2 35E+00	3 10E-01		1 11E+01	3 10E-01	0.1	1 94E-07	1 4E-07	6 24E-08	1.5E-07	1 18E-10	3 6E-11	
MG/KG	BENZO(a)PYRENE	B2	7 30E+00	2 35E+01	3 10E+00		1 26E+01	3 10E-01	0 13	2 20E-07	1 6E-06	9 18E-08	2 2E-06	1 33E-10	4 1E-10	
MG/KG	BENZO(b)FLUORANTHENE	B2	7 30E-01	2 35E+00	3 10E-01		1 28E+01	3 10E-01	0	2 24E-07	1 6E-07	7 21E-08	1 7E-07	1 36E-10	4 2E-11	
MG/KG	BENZO(k)FLUORANTHENE	82	7 30E-02	235E-01	3 10E-02		1 30E+01	3 10E-01	0	2 27E-07	1 7E-08	7 29E-08	1 7E-08	1 37E-10	4 3E-12	
MG/KG	CARBAZOLE	82	2 00E-02	2 86E-02			3 06E+00	7 00E-01	0.1	5 36E-08	1 1E-09	1 72E-08	4 9E-10	3 25E-11		
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	3 10E-03		1 38E+01	3 10E-01	0	2 42E-07	1 8E-09	7 77E-08	1 8E-09	1 47E-10	4 5E-13	
MG/KG	DIBENZ(a,h)ANTHRACENE	B2	7 30E+00	2 35E+01	3 10E+00		3 04E+00	3 10E-01	0.1	5 31E-08	3 9E-07	1716-08	4 0E-07	3 22E-11	1 0E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	82	7 30E-01	2 35E+00	3 10E-01		8 97E+00	3 10E-01	0	1 57E-07	1 1E-07	5 04E-08	1 2E-07	9 50E-11	2 9E-11	
MG/KG	PETROLEUM HYDROCARBONS					9 13E+11	6 41E+01	5 00E-01	0.01	1 12E-06		3 60E-08		6 80E-10		
	Total Risk										4E-06		3E-06		5E-09	
												J.	Total Risk =	. 7E-06		

15

P/147543/APPI2FU1soits xisFU1SSMW-Noncarcinogenic

TABLE 12-1c
FU1 Surface Soil -Hypothetical Current/Future Maintenance Worker Non-carcinogenic Scenano
Memphis Depot Main Installation RI

										Ingestion	Lion	Cermai	Da:		Innalation
Units	Chemical	WOE	RfDo	RfDd	RfDi	VFind	EPC	ABSgi	ABS	<u> </u>	ğ	CD	오	ΩΩ	오
MG/KG	ANTIMONY	۵	4 00E-04	8 00E-06			4 62E+00	2 00E-02	0 001	2 26E-07	9000 0	7 27E-10	600000	1 37E-10	
MG/KG	ARSENIC	∢	3 00E-04	1 23E-04			2 63E+01	4 10E-01	0 03	1 29E-06	0 004	1 24E-07	0 00	7 79E-10	
MG/KG	MERCURY	۵			8 57E-05		1 22E-01	1 00E-04	0 001	5 96E-09		1 91E-11		361E-12	0 00000004
MG/KG	DDE	B2					5 82E+00	7 00E-01	0	2 85E-07		9 16E-08		1 73E-10	
MG/KG	DOT	B2	5 00E-04	3 50E-04			5 30E+00	7 00E-01	0	2 60E-07	0 0005	8 34E-08	0 0002	1 57E-10	
MG/KG	DIELDRIN	B 2	5 00E-05	2 50E-05			8 08E-01	5 00E-01	0	3 95E-08	0 0008	1 27E-08	0 0005	2 40E-11	
MG/KG	PCB-1260 (AROCLOR 1260)	B 2					3 23E+00	9 00E-01	900	1 58E-07		3 05E-08		9 59E-11	
MG/KG	BENZO(a)ANTHRACENE	88					1 11E+01	3 10E-01	0	5 43E-07		1 75E-07		3 29E-10	
MG/KG	BENZO(a) PYRENE	B 2					1 26E+01	3 10E-01	0 13	6 15E-07		2 57E-07		3 73E-10	
MG/KG	BENZO(b)FLUORANTHENE	B2					1 28E+01	3 10E-01	0.1	6 28E-07		2 02E-07		3 80E-10	
MG/KG	BENZO(k)FLUORANTHENE	BS					1 30E+01	3 10E-01	0	6 35E-07		2 04E-07		3 85E-10	
MG/KG	CARBAZOLE	B3					3 06E+00	7 00E-01	0	1 50E-07		4 82E-08		9 09E-11	
MG/KG	CHRYSENE	B2					1 38E+01	3 10E-01	0	6 77E-07		2 18E-07		4 10E-10	
MG/KG	DIBENZ(a,h)ANTHRACENE	85					3 04E+00	3 10E-01	0	1 49E-07		4 78E-08		9 00E-11	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2					8 97E+00	3 10E-01	0	4 39E-07		1 41E-07		2 66E-10	
MG/KG	PETROLEUM HYDROCARBONS		4 00E-02	4 00E-02 2 00E-02 6 00E-02		9 13E+11	6 41E+01	5 00E-01	0 01	3 14E-06	0 00008	1 01E-07	0 000005	1 90E-09	0 00000003
	Hazard Index										900.0		0.002		0.00000007
	•												Total HI=	00	
Notes	WOF = Weinht of Evidence, CDI = Chronic Daily Intake. EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	Darly Intake, E	PC = Expo	sure Point C	oncentration.	HO = Haz	ard Outster	II. HI = Haz	ard Inde	×					

TABLE 12-2a
FU1 Surface Soil -Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

	, <u>- , - , - , - , - , - , - , - , - , -</u>	Carcinogenic	Noncarcinogenic
ngestior			
CDI =	Cs*IR*FI* EF*ED*CF		
_	BW * AT		
)s =	Concentration in soil (mg/kg)	EPC	EPC
R =	Ingestion Rate (mg/day)	50 a	50 a
-1 =	Fraction Ingested (unitless)	1	1
F =	Exposure Frequency (day/year)	250 a	250 a
D =	Exposure Duration (year)	25 a	25 a
F =	Conversion Factor (kg/mg)	1.00E-06	1 00E-06
3W =	Body Weight (kg)	70 a	70 a
\T =	Averaging Time (days)	25550 a	9125 a
ermal:			
DI =	Cs *SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
)s =	Concentration in soil (mg/kg)	EPC	EPC
A =	Surface Area (cm2)	2679 c,d	2679 c,d
F =	Soil-Skin Adherence Factor (mg/cm2)	0 03 c,e	0 03 c,e
.B\$ =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
T =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
F =	Exposure Frequency (day/year)	250 a	250 a
D =	Exposure Duration (year)	25 a	25 a
F =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
3W =	Body Weight (kg)	70 a	70 a
\T =	Averaging Time (days)	25550 a	9125 a
nhalatio	n:	for volatiles	
DI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/PEF)) * IR * ET * EF * ED
	BW * AT	BW 1	* AT
s =	Concentration in soil (mg/kg)	EPC	EPC
EF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1 32E+09 g
Find =	Volatilization Factor (m3/kg)	(Chemical Specific) h	(Chemical Specific) h
₹ =	Inhalation Rate (m3/day)	20 a	20 a
T =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
F =	Exposure Frequency (day/year)	250 a	250 a
D =	Exposure Duration (year)	25 a	25 a
3W =	Body Weight (kg)	70 a	70 a
λT =	Averaging Time (days)	25550 a	9125 a

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity
- c = U S EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance Technical Background Document, May 1996
- h = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, FAC,

December 1998

TABLE 12-2b
FU1 Surface Soil Hypothetical Future Industrial Worker Carcinogenic Scenaric
Memphis Depot Main Installation R1

										Ingestion	tion	Derma	mal	Inhali	Inhalation
Units	Chemical	WOE	SFo	SFd	SFI	VFind	EPC	ABSgi	ABS	G	ELCR	ᄗ	ELCR	Ö	ELCR
MG/KG	ANTIMONY	۵					4 62E+00	2 00E-02	0 001	8 08E-07		1 30E-09		2 45E-10	
MG/KG	ARSENIC	∢	150E+00 366	3 66 6 + 00	1 51E+01		2 63E+01	4 10E-01	0 03	4 59E-06	6 9E-06	2 21E-07	8 1E-07	1 39E-09	2 1E-08
MG/KG	MERCURY	۵					1 22E-01	1 00E-04	0 00	2 13E-08		3 42E-11		6 45E-12	
MG/KG	ODE	B2	3 40E-01	4 86E-01			5 82E+00	7 00E-01	0	1 02E-06	3 SE-07	1 64E-07	7 9E-08	3 08E-10	
MG/KG	TOO	85	3 40E-01		3 40E-01		5 30E+00	7 00E-01	0	9 27E-07	3 2E-07	1 49E-07	7 2E-08	2 81E-10	9 5E-11
MG/KG	DIELDRIN	85	1 60E+01	32	1 60E+01		8 08E-01	5 00E-01	0 1	141E-07	2 3E-06	2 27E-08	7.3E-07	4 28E-11	6 8E-10
MG/KG	PCB-1260 (AROCLOR 1260)	85	2 00E+00	2 22E+00	2 00E+00		3 23E+00	9 00E-01	900	5 65E-07	1 1E-06	5 45E-08	1 2E-07	1.71E-10	3.4E-10
MG/KG	BENZO(a) ANTHRACENE	85	7 30E-01		3 10E-01		1 11E+01	3 10E-01	0	1 94E-06	1 4E-06	3 12E-07	7 3E-07	5 88E-10	1 8E-10
MG/KG	BENZO(a)PYRENE	95	7 30E+00	2 35E+01	3 10E+00		1 26E+01	3 10E-01	0 13	2 20E-06	1 6E-05	4 59E-07	1 1E-05	6 66E-10	2 1E-09
MG/KG	BENZO(b)FLUORANTHENE	85	7 30E-01	2 35E+00	3 10E-01		1 28E+01	3 10E-01	0	2 24E-06	1 6E-06	3 60E-07	8 5E-07	6 79E-10	2 1E-10
MG/KG	BENZO(k)FLUORANTHENE	B2	7 30E-02	2 35E-01	3 10E-02		1 30E+01	3 10E-01	0	2 27E-06	1 7E-07	3 65E-07	8 6E-08	6 87E-10	2 1E-11
MG/KG	CARBAZOLE	85	2 00E-02	2 86E-02			3 06E+00	7 00E-01	0	5 36E-07	1 1E-08	8 61 E-08	2 SE-09	1 62E-10	
MG/KG	CHRYSENE	BZ	7 30E-03	2 35E-02	3 10E-03		1 38E+01	3 10E-01	0	2 42E-06	1 8E-08	3 89E-07	9 2E-09	7 33E-10	2 3E-12
MG/KG	DIBENZ(a,h)ANTHRACENE	B2	7 30E+00	2 35E+01	3 10E+00		3 04E+00	3 10E-01	0	5 31E-07	395-06	8 53E-08	2 0E-06	1 61E-10	5 0E-10
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	3 10E-01		8 97E+00	3 10E-01	0	1 57E-06	1 1E-06	2 52E-07	5 9E-07	4 75E-10	1 5E-10
MG/KG	PETHOLEUM HYDROCARBONS					9 13E+11 6 41E+01	641E+01	5 00E-01	0 01	1 12E-05		1 80E-07		3.40E-09	
	Total Risk										4E-05		2E-05		3E-08
												Total Risk =	13	5E-05	
Notes	WOE - Waicht of Endance CDI - Chronic Date Intake EPC - Evinositie Point Concentration ELCB - Eviness I fettine Cancer Exposure	no Osda Intaka	EPC - Ev	Poor Point	Concentration	1 00 13	Evenee 1 m	and Cante	Fynns	9					

۲,

TABLE 12-2c FUT Surface Soil -Hypothetical Future Industrial Worker Noncarcinogenic Scenario Memphs Depot Main Instalfator RI

										Ingestion	H	Dermar	펂	Inhalation	ition	
Units	Chemical	WOE	WOE RIDO	RfDd	RfDi VF	VFInd	EPC	ABSgi	ABS	CDI	오	5	오	8	홋	
MG/KG	VNCMITNA	۵	4 00E 04	8 00E-06		4 6	62E+00 2	2 00E-02	0 001	2 26E-06	9000	3 64E-09	0 0005	6 85E-10		
MG/KG	CINDAGA	<	3 00E 04	1 23E-04		26	63E+01 4	10E-01	003	: 29E-05	004	6 20E-07	0 005	3 90E-09		
WG/KG	MERCHRY	٥			8 57E-05	12	22E 01 1	00E-04	0 001	5 96E-08		9 57E-11		1 80E-11	0 0000002	
MG/KG	HOO.	B2				58	5 82E+00 7	00E-01	0.1	95E-06		4 58E-07		8 63E-10		
MGMG	Idu	82	5 00E-04	3 50E-04		53	30E+00 7	00E-01	0 1 2	90-309	0 005	4 17E-07	000	7 86E-10		
MG/KG	NIBIO	82	5 00E-05	2 50E-05		80	8 08E-01 5	5 00E-01	010	195E-07	0 008	6 35E-08	0 003	1 20E-10		
MG/KG	PCB-1260 (AROCLOR 1260)	85				32	3 23E+00 9	9 00E-01	0.06	58E-06		1 53E-07		4 79E-10		
MG/KG	BENZOTAVANTHRACENE	B2				Ξ	11E+01 3	3 10E-01	0.0	43E-06		8 73E-07		1 65E-09		
MG/KG	BENZO(a)PYRENE	B2				12	26E+01 3	10E-01	0.13	15E-06		1 29E-06		1 86E-09		
MG/KG	BENZO(b)FLUORANTHENE	B2				12	28E+01 3	10E-01	10	3 28E-06		1 01E-06		1 90E 09		
MG/KG	BENZO(k)FLUORANTHENE	B2				- 3	30E+01 3	105-01	0.10	35E-06		1 02E-06		1 92E 09		
MG/KG	CARBAZOLE	82				30	106E+00 7	.00E-01	10	50E-06		2 41E-07		4 54E 10		
MG/KG	CHRYSENE	85				÷	38E+01 3	3 10E-01	010	3 77E-06		1 09E-06		2 05E-09		
MG/KG	OBENZ(a b)ANTHRACENE	85				30	3 04E+00 3	3 10E-01	0.1	49E-06		2 39E-07		4 50E-10		
MG/KG	INDENO(123-c.d)PYRENE	B2				8	97E+00 3	3 10E-01	0.1	139E-06		7 06E-07		1 33E-09		
MG/KG	PETROLEUM HYDROCARBONS		4 00E-02	2 00E-02	2 00E-02 6 00E-02 9 13E+11	E+11 64	6 41E+01 5	5 00E-01	001	3 14E-05	0 0008	5 04E-07	0 00003	9 52 E-09 0 00000002	0 0000002	
	Hazard Index										90 0		600 0		0 0000004	
	× 2011											•	Total HI=	-		

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

TABLE 12-3a
FU1 Soil Column -Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

	· · · · · · · · · · · · · · · · · · ·	Carcinogenic	Noncarcinogenic
Ingestion	:	-	_
CDI =	Cs*IR*FI* EF*ED*CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a	50 a
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2679 c,d	2679 c,d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03 c,e	0 03 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Inhalatio	n:	for volatiles	
CDI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/PEF)) * IR * ET * EF * ED
	BW * AT	BW	* AT
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1 32E+09 g
VFind =	Volatilization Factor (m3/kg)	(Chemical Specific) h	(Chemical Specific) h
IR =	Inhalation Rate (m3/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance *Standard Default Exposure Factors* OSWER Directive 9285 6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity.
- c = U S EPA Exposure Factors Handbook, August 1997.
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- $\mathbf{e} = \mathbf{AF}$ calculated for soil adherence can be found in Appendix \mathbf{G}
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance Technical Background Document, May 1996
- h = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F A C ,
 December 1998

. . ;

YABLE 12-36 FU1 Soil Column -Hypothetical Future Industral Worker Caronogenic Scenanc Memphis Depot Main Installation RI

									Ingestion	ton	Derma	ᇛ	Inhafation	tlon
Chemical	WOE	SFo	SFd	SFI	VFind	EPC	ABSgi	ABS	<u> </u>	ELCR	CD	ELCR	00	ELCR
ANTIMONY	0					2 39E+00	2 00E-02	0001	4 17E-07		6.71E-10		1 27E-10	
ARSENIC	∢	1 50E+00	50E+00 3 66E+00	1 51E+01		1 49E+01	4 10E-01	0 03	2 60E-06	3 9E-06	1 26E-07	4 6E-07	7 89E-10	1 2E-08
RCURY	٥					7 56E-02	1 00E-04	000	1 32E-08		2 12E-11		4 00E-12	
ĮŲ.	B2	3 40E-01	4 86E-01			3 24E+00	7 00E-01	0	5 66E-07	1 9E-07	9 10E-08	4 4E-08	1 72E-10	
	B2	3 40E-01	4 86E-01	3 40E-01		321E+00	7 00E-01	0 1	5 61E-07	1 9E-07	9 03E-08	4 4E-08	1 70E-10	5 8E-11
LDRIN	B2	1 60E+01	3 20E+01	1 60E+01		4 00E+00	5 00E-01	0 1	6 99E-07	1 1E-05	1 12E-07	3 6E-06	2 12E-10	3.4E-09
VZO(a)ANTHRACENE	B2	~	2 35E+00	3 10E-01		1 81E+01	3 10E-01	0	3 15E-06	2 3E-06	5 07E-07	1 2E-06	9 56E-10	3 0E-10
VZO(a)PYRENE	B2	7 30E+00	2 35E+01	3 10E+00		1 92E+01	3 10E-01	0 13	3 36E-06	2 5E-05	7 02E-07	1 7E-05	1 02E-09	3 2E-09
VZO(b)FLUORANTHENE	B2	^	2 35E+00	3 10E-01		2 05E+01	3 10E-01	0	3 57E-06	2 6E-06	5 75E-07	1 4E-06	1 08E-09	34E-10
VZO(k)FLUORANTHENE	82	_	2 35E-01	3 10E-02		2 09E+01	3 10E-01	0	3 65E-06	2 7E-07	5 86E-07	1 4E-07	1 10E-09	34E-11
RBAZOLE	82	LV	2 86E-02			9 74E-01	7 00E-01	0	1 70E-07	3 4E-09	2 74E-08	7 8E-10	5 16E-11	
RYSENE	82	_	2 35E-02	3 10E-03		2 60E+01	3 10E-01	0 1	4 55E-06	3 35-08	7.31E-07	1 7E-08	1 38E-09	4 3E-12
(ENZ(a,h)ANTHRACENE	B2	7 30E+00	2 35E+01	3 10E+00		2 10E+00	3 10E-01	0 1	3 67E-07	2 7E-06	5 90E-08	1 4E-06	1116-10	3.4E-10
JENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35	3 10E-01		1 16E+01	3 10E-01	0 1	2 03E-06	1 5E-06	3 26E-07	7 7E-07	6,16E-10	1 9E-10
9-1260 (AROCLOR 1260)	B2	2 00E+00	2 22E+00	2 00E+00		6 30E+00	9 00E-01	900	1 10E-06	2 2E-06	1 06E-07	2 4E-07	3 34E-10	6 7E-10
TROLEUM HYDROCARBONS					9 13E+11	6 41E+01	5 00E-01	0.01	1 12E-05		1 80E-07		3 40E-09	
al Risk										5E-05		3E-05		2E-08
											Total Risk	п	8E-05	
	MERCURY DDE DDE DOTE DOTELDRIN DELECA(a) ANTHRACENE BENZO(a) PYRENE BENZO(b) FLUORANTHENE GRARZO(LG CARRAZOLG CHRYSENE INDENO(1,2,3-c,d) PYRENE PCB-1260 (AROCLOR 1260) PETROLEUM HYDROCARBONS		D B2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	D B2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	D B2 340E-01 486E-01 B2 340E-01 486E-01 B2 160E-01 320E+01 B2 730E-01 235E+00 B2 730E-01 235E+00 B2 730E-01 235E-01 B2 730E-01 235E-01 B2 730E-02 235E-01 B2 730E-02 235E-01 B2 730E-02 235E-01 B2 730E-02 235E-02 B2 730E-00 235E+00 B2 730E-00 235E+00 B2 730E-00 235E+00	D B2 340E-01 486E-01 B2 340E-01 340E-01 B2 340E-01 340E-01 B2 730E-01 235E+01 310E-01 B2 730E-01 235E+00 310E-01 B2 730E-02 235E+01 310E-00 B2 730E-02 235E+01 310E-02 B2 730E-03 235E-01 310E-02 B2 730E-03 235E-02 310E-03 B2 730E-03 235E-02 310E-03 B2 730E-03 235E-02 310E-00 B2 730E-03 235E+00 310E-01 B2 730E-01 235E+00 310E-01 B2 730E-01 235E+00 310E-01	D B2 340E-01 486E-01 B2 340E-01 486E-01 B2 160E+01 320E+01 160E+01 B2 730E-01 230E+00 10E-01 B2 730E-01 235E+00 310E-01 B2 730E-02 235E+00 310E-01 B2 730E-02 235E-01 310E-02 B2 730E-02 235E-03 310E-02 B2 730E-02 235E-03 310E-02 B2 730E-02 235E-01 310E-02 B2 730E-02 235E+00 310E-03 B2 730E-02 235E+00 310E-03 B2 730E-02 235E+00 310E-01 B2 200E+02 235E+00 310E-01 B2 200E+02 235E+00 310E-01 B3 220E+00 235E+00 310E-01 B3 236E-01 235E+00 310E-01 B3 B3 B4 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5	D 756E-02 1 1 26E-01 4 86E-01 3.24E-00 7 56E-02 1 1 2.24E-01 3.24E-01 3.24E	D 756E-02 100E-04 C 106E-04 C 106E-04 C 106E-04 C 106E-04 C 106E-04 C 106E-01 C 106E-0	D 3 40E-01 486E-01 340E-01 32E+00 700E-01 01 5 B2 340E-01 486E-01 340E-01 32E+00 700E-01 01 5 B2 160E-01 320E+01 160E+01 400E+05 500E-01 01 5 B2 730E-01 23EE+00 310E-01 192E+01 310E-01 01 3 B2 730E-02 23EE+00 310E-01 20E+01 310E-01 01 3 B2 730E-02 23EE+01 310E-02 20EE+01 310E-01 01 3 B2 730E-02 23EE+01 310E-02 20EE+01 310E-01 01 3 B2 730E-02 23EE+01 310E-02 20EE+01 310E-01 01 3 B2 730E-02 23EE+01 310E-02 210E+01 310E-01 01 3 B2 730E-03 23EE+02 310E-03 250E+01 310E-01 01 3 B2 730E-03 23EE+02 310E-00 210E+01 310E-01 01 3 B2 730E-03 23EE+02 310E-01 116E+01 310E-01 01 3 B2 730E-03 23EE+02 310E-01 116E+01 310E-01 01 3 B2 730E-03 23EE+00 310E-01 116E+01 310E-01 01 3	D 756E-02 1 00E-04 0 001 132E-08 B2 340E-01 4 86E-01 340E-01 326E-01 326E-01 36E-01 326E-01 32	D S24E-01 486E-01 B2 340E-01 486E-01 B2 340E-01 486E-01 B2 340E-01 486E-01 B2 340E-01 30E-01 30E-01 B2 160E+01 30E+01 160E+01 B2 730E-01 235E+00 310E-01 B2 730E-02 235E+00 310E-01 B2 730E-02 235E+00 310E-01 B2 730E-02 235E-01 310E-02 B2 730E-02 235E-01 310E-02 B2 730E-03 235E-01 310E-02 B2 730E-03 235E-01 310E-02 B2 730E-03 235E-01 310E-02 B2 730E-03 235E-01 310E-02 B2 730E-03 235E-01 310E-02 B2 730E-03 235E-01 310E-02 B2 730E-03 235E-01 310E-02 B2 730E-03 235E-01 310E-03 B2 730E-03 235E-01 310E-03 B2 730E-03 235E-01 310E-03 B2 730E-03 235E-01 310E-03 B2 730E-03 235E-01 310E-03 B3 730E-03 235E-01 310E-03 B4 730E-03 235E-01 310E-03 B5 730E-03 235E-03 310E-03 B6 730E-03 235E-03 310E-03 B7 730E-03 235E-03 310E-03 B7 730E-03 235E-03 310E-03 B7 730E-03 235E-03 310E-03 B7 730E-03 235E-03 310E-03 B7 730E-03 235E-03 310E-03 B7 730E-03 235E-03 310E-03 B7 730E-03 235E-03 310E-03 B7 730E-03 235E-03 310E-03 B7 730E-03 235E-03 310E-03 B7 730E-03 235E-03 310E-03 B7 730E-03 10E-03 D 346-01 486-01 B2 340E-01 486E-01 B2 340E-01 30E-01 B2 160E-01 30E-01 B2 730E-01 23EE+00 310E-01 B2 730E-01 23EE+00 310E-01 B2 730E-02 23EE+01 310E-02 B2 730E-02 23EE+01 310E-02 B2 730E-02 23EE+01 310E-02 B2 730E-02 23EE+01 310E-02 B2 730E-02 23EE+02 B2 730E-02 23EE+01 310E-02 B2 730E-02 23EE+02 B2 730E-03 10E-03 B2 730E-03 10E-03 B2 730E-03 10E-03 B2 730E-03 10E-03 B2 730E-03 10E-03 B2 730E-03 10E-03 B2 730E-03 130E-03 B2 730E-03 10E-03 B2 730E-03 1	D	

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

t: Va

121

P/147543/APPI2FU1sods xlsFU1SBIW Noncarcinogenic

															1-6
										Ingestion	Hon	Cerma	la.		Musiation
Units	Chemical	WOE	RfDo	RfDd	RfDI	VFind	EPC	ABSgl	ABS	<u>0</u>	오	CDI	오	COI	HQ
MG/KG	ANTIMONY	٥	4 00E-04	8 00E-06			2 39E+00	2 00E-02	0 00	1 17E-06	0 003	1 88E-09	0 0002	3 54E-10	
MG/KG	ARSENIC	∢	3 00E-04	1 23E-04			1 49E+01	4 10E-01	0 03	7 29E-06	0 02	3 52E-07	0 003	2 21E-09	
MG/KG	MERCURY	٥			8 57E-05		7 56E-02	1 00E-04	0 001	3 70E-08		5 95E-11		1 12E-11	0 0000001
MG/KG	DDE	B2					3 24E+00	7 00E-01	0	1 58E-06		2 55E-07		4 80E-10	
MG/KG	TOO		5 00E-04	3 50E-04			321E+00	7 00E-01	0	1 57E-06	0 003	2 53E-07	0 0007	4 76E-10	
MG/KG	DIELDRIN		5 00E-05	2 50E-05			4 00E+00	5 00E-01	0	1 96E-06	8	3 15E-07	001	5 93E-10	
MG/KG	BENZO(a)ANTHRACENE						181E+01	3 10E-01	0	8 83E-06		1 42E-06		2 68E-09	
MG/KG	BENZO(a)PYRENE	88					1 92E+01	3 10E-01	0 13	941E-06		1 97E-06		2 85E-09	
MG/KG	BENZO(b)FLUORANTHENE	88					2 05E+01	3 10E-01	0	1 00E-05		1 61E-06		3 03E-09	
MG/KG	BENZO(K)FLUORANTHENE	88					2 09E+01	3 10E-01	0	1 02E-05		1 64E-06		3 09E-09	
MG/KG	CARBAZOLE	83					9 74E-01	7 00E-01	0	4 77E-07		7 66E-08		1 44E-10	
MG/KG	CHRYSENE	88					2 60E+01	3 10E-01	0	1 27E-05		2 05E-06		3 86E-09	
MG/KG	DIBENZ(a.h)ANTHRACENE	ä					2 10E+00	3 10E-01	0	1 03E-06		1 65E-07		3 11E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	85					1 16E+01	3 10E-01	0	5 69E-06		9 14E-07		1 72E-09	
MG/KG	PCB-1260 (AROCLOR 1260)	B2					6 30€+00	9 00E-01	900	3 08E-06		2 97E-07		9 34E-10	
MG/KG	PETROLEUM HYDROCARBONS		4 00E-02	2 00E-02	00E-02 2 00E-02 6 00E-02 9 13E+11 6 41E+01	9 13E+11	6 41E+01	5 00E-01	0.01	3 14E-05	0 0008	5 04E-07	0 00003	9 52E-09	0 0000002
	Hazard Index										0 07		0.02		0.0000003
												•="	Total HI=	0.09	

TABLE I2-3c FU1 Soil Column-Hypothetical Future Industrial Worker Non-carcinogenic Scenand Memphis Depot Main Installation RI WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

TABLE 12-4a

FU1 (SS65A) Surface Soit - Hypothetical Future On-site Residential (Adult) Scenario Memphis Depot Main Installation RI

Ingestion:		<u>Carcinogenic</u>	Noncarcinogenic
	on-carcinogenic compounds	Age-specific intake (for carcino	genic compounds only)
CDI =	Cs * IR * FI * EF * ED * CF		*FI *EF * CF * IRadi
	BW * AT		AT
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	N/A	100 a
!Radj =	Age-adjusted Ingestion Rate (mg - year)/(kg - day)	114 29 a,b	N/A
FI = '	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	350 a	350 a
=- ED =	Exposure Duration (year)	N/A	30 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	N/A	70 a
AT =	Averaging Time (days)	25550 a	10950 a
Dermal-			
	on-carcinogenic compounds	Age-specific intake (for carcino	genic compounds only)
CDI =	Cs * SA * AF * ABS * ET * EF * ED * CF		*SAadj * AF * ABS * ET * EF * (
	BW * AT		AT
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	N/A	5049 d.e
SAadi =	Age-adjusted Surface Area (cm2 - year)/(kg)	2671 d,e,	·
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03 d,g	0 03 d,g
MF= ABS=	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
465 = ET =	Exposure Time (4 hours per 24-hour day)	(Chemical Specific) n 0 167 c	(Chemical Specific) n 0.167 c
=	Exposure Frequency (day/year)		
cr = ED =	Exposure Prequency (day/year) Exposure Duration (year)	350 a N/A	350 a
	•		30 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	N/A	70 a
AT =	Averaging Time (days)	25550 a	10950 a
Inhalation:			
Intake for no	on-carcinogenic compounds	Age-specific intake (for carcino	genic compounds only)
CDI =	Cs * (1/PEF) * IR Inh * ET * EF * ED		* (1/PEF) * IR_Inhad; * ET * EF
	BW * AT	• —	AT
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 i	1 32E+09 ı
IR_inh =	Inhalation Rate (m3/day)	N/A	20 a
_	Age-adjusted Inhalation Rate (m3 - year)/(kg - day)	12 85714286 a,j	N/A
ET =	Exposure Time (4 hours per 24-hour day)	0 167 c	0 167 c
EF =	Exposure Frequency (day/year)	350 a	350 a
_, _ ED =	Exposure Duration (year)	N/A	30 a
BW =	Body Weight (kg)	N/A	70 a
AT =	Averaging Time (days)	25550 a	10950 a
	Averaging Time (days)	25550 4	10000 4
References			
a=US EP	A, Human Health Evaluation Manual, Supplemental Guida Factors," OSWER Directive 9285 6-03, March 25, 1991	nce "Standard Detault Exposure	
h = Aaa ad	usted ingestion rate for adults, adjusted for body weight an	d time for caroinggenic expenses	
- nye-auj	· · · · · · · · · · · · · · · · · · ·	=	100 × (20-6)
	· · · · · · · · · · · · · · · · · · ·	•	
	BWc BWa	15	70
. T	114.29 (mg-year)/(kg-day)	en of the actually	
,	ent outdoors in the contaminated areas based on the natur	re or the activity	
	A Exposure Factors Handbook, August 1997		
	area of 1/2 head, hands, forearms, lower legs & feet of an		
	usted surface area for adults, adjusted for body weight and		
= Age-adji	SAadj = <u>SAc x EDc</u> + <u>SAa x (EDa-</u>		5049 x (30-6)
= Age-adji	BWc BWa	15	70
i = Age-adji			
f = Age-adjı	2671 (cm2-year)/(kg)		
	2671 (cm2-year)/(kg) ulated for soil adherence can be found in Appendix G		
g = AF calc			
g = AF calc h = Chemic	ulated for soil adherence can be found in Appendix G al-specific absorption factors are found in Appendix G	eening Guidance Technical Background	Document, May 1996
g = AF calc h = Chemic i = Particula	ulated for soil adherence can be found in Appendix G al-specific absorption factors are found in Appendix G ite emission factor (PEF), adapted from U.S.EPA, Soil Scre		Document, May 1996
g = AF calc h = Chemic i = Particula	ulated for soil adherence can be found in Appendix G al-specific absorption factors are found in Appendix G ite emission factor (PEF), adapted from U S EPA, Soil Scre isted inhalation rate for adults, adjusted for body weight an	d time for carcinogenic exposure	•
g = AF calc h = Chemic i = Particula	ulated for soil adherence can be found in Appendix G al-specific absorption factors are found in Appendix G ite emission factor (PEF), adapted from U.S.EPA, Soil Scre	d time for carcinogenic exposure	

F33

TABLE i2-4b
FU1 (SS65A) Surface Soil - Hypothetical Future On-site Residential (Adult) Carcinogenic Scenario
Memphis Depot Main Installation RI

									Ingestion	tion	Del	Dermal	Inhalation	ation
Units	Chemical	WOE	SFo	SFd	SFI	EPC	ABSgi	ABS	CDlad	ELCR	CDladj	ELCR	CDIadj	ELCR
MG/KG	Acenaphthylene	۵				9 50E+00	3 10E-01	100	1 49E-05		1 74E-08		2115-10	
MG/KG	Anthracene	۵				3 50E+00	7 60E-01	0 01	5 48E-06		6 40E-09		7 78E-11	
MG/KG	Benzo(a)anthracene	B 2	7 30E-01	2 35E+00	3 10E-01	3 70E+01	3 10E-01	0	5 79E-05	4 2E-05	6 77E-07	1 6E-06	8 23E-10	2 6E-10
MG/KG	Benzo(a)pvrene	B2	7 30E+00	2 35E+01	3 10E+00	6 70E+01	3 10E-01	0 13	1 05E-04	7 7E-04	1 59E-06	3 8E-05	1 49E-09	4 6E-09
MG/KG	Benzo(b)fluoranthene	B2		2 35E+00	3 10E-01	6 50E+01	3 10E-01	0	1 02E-04	7,4E-05	1 19E-06	2 8E-06	1 45E-09	4 SE-10
MG/KG	Benzo(q,h,i)perylene	۵				4 20E+01	3 10E-01	0 01	6 58E-05		7 695-08		9 34E-10	
MG/KG	Benzo(k)fluoranthene	B2	7 30E-02	2 35E-01	3 10E-02	7 10E+01	3 10E-01	0.1	1 11E-04	8 1E-06	1 30E-06	3 1E-07	1 58E-09	4 9E-11
MG/KG	Carbazole	B2	2 00E-02	2 86E-02		1 60E+00	7 00E-01	0.1	2 50E-06	5 0E-08	2 93E-08	8 4E-10	3 56E-11	
MG/KG	Chrysene	B2		2 35E-02	3 10E-03	4 70E+01	3 10E-01	0.1	7 36E-05	5 4E-07	8 60E-07	2 0E-08	1 05E-09	3 2E-12
MG/KG	Fluoranthene	Ω				4.40E+01	3 10E-01	0 01	6 89E-05		8 05E-08		9 78E-10	
MG/KG	Indeno(1,2,3-c,d)pyrene	B 2	7 30E-01	2 35E+00	3 10E-01	3 90E+01	3 10E-01	0.1	6 11E-05	4 5E-05	7,14E-07	1 7E-06	8 67E-10	2 7E-10
MG/KG	Phenanthrene	۵				7 30E+00	7 30E-01	0 01	114E-05		1 34E-08		1 62E-10	
MG/KG	Pyrene	۵				5 20E+01	3 10E-01	0 01	8 14E-05		9 51E-08		1 16E-09	
MG/KG	Zinc	۵				6 46E+02	2 00E-01	0 001	1 01E-03		1 18E-07		1 44E-08	
	Total Risk									9.4E-04		4.4E-05		5.6E-09
												Total Risk =	1E-03	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC	Ic Daily I	ntake, EPC	= Exposure	Point Conc	sentration, E	= Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	ss Lifetii	ne Cancer	Exposure				

TABLE I2-4c FU1 (SS65A) Surface Soil - Hypothetical Future On-site Residential (Adult) Noncarcinogenic Scenario Memphis Depot Main Installation RI

									Ingestion	tion	Dermal	mai	Inhalation
Units	Chemical	WOE	WOE RIDO	RfDd	RfDi	EPC	ABSgi	ABS	CD	HQ	CDI	НΩ	CDI
MG/KG	Acenaphthylene	٥	6 00E-02	1 86E-02		9 50E+00	3 10E-01	0.01	1 30E-05	0 0002	3 29E-08	0 000002	3 29E-10
MG/KG	Anthracene	٥	3 00E-01	2 28E-01		3 50E+00	7 60E-01	0 01	4 79E-06	0 00002	1 21E-08	0 00000005	121E-10
MG/KG	Benzo(a)anthracene	82				3 70E+01	3 10E-01	0.1	5 07E-05		1 28E-06		1 28E-09
MG/KG	Benzo(a)pyrene	82				6 70E+01	3 10E-01	0 13	9 18E-05		3 01E-06		2 32 E- 09
MG/KG	Benzo(b)fluoranthene	B2				6 50E+01	3 10E-01	0 1	8 90E-05		2 25E-06		2 25E-09
MG/KG	Benzo(q,h,ı)perylene	٥	3 00E-02	9 30E-03		4 20E+01	3 10E-01	0 01	5 75E-05	0 002	1 45E-07	0 00002	1 45E-09
MG/KG	Benzo(k)fluoranthene	B2				7 10E+01	3 10E-01	0.1	9 73E-05		2 46E-06		2 46E-09
MG/KG	Carbazole	B2				1 60E+00	7 00E-01	0 1	2 19E-06		5 53E-08		5 53E-11
MG/KG	Chrysene	B2				4 70E+01	3 10E-01	0.1	6 44E-05		1 63E-06		1 63E-09
MG/KG	Fluoranthene	۵	4 00E-02	1 24E-02		4 40E+01	3 10E-01	0 01	6 03E-05	0 002	1 52E-07	0 00001	1 52E-09
MG/KG	Indeno(1,2,3-c,d)pyrene	B2				3 90E+01	3 10E-01	0 1	5 34E-05		1 35E-06		1 35E-09
MG/KG	Phenanthrene	٥				7 30E+00	7 30E-01	0 01	1 00E-05		2 52E-08		2 53E-10
MG/KG	Pyrene	۵	3 00E-02	9 30E-03		5 20E+01	3 10E-01	0 01	7 12E-05	0 002	1 80E-07	0 00002	1 80E-09
MG/KG	Zinc	٥	3 00E-01	6 00E-02		6 46E+02	2 00E-01	0 001	8 85E-04	0 003	2 23E-07	0 000004	2 23E-08
	Hazard Index									600 0		0.00005	
												Total H1=	600 0

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HO = Hazard Quotient, HI = Hazard Index

Notes

\

TABLE I2-5a
FU1 (SS65A) Surface Soil - Hypothetical Future On-site Residential (Child) Scenaric
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestion	:	(optional - do not use)	
CDI =	Cs*IR*FI*EF*ED*CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	200 a	200 a
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dermal:			
CDI =	Cs * SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2351 c,d	2351 c,d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 15 c,e	0 15 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (4 hours per 24-hour day)	0 167 b	0 167 b
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Inhalatio	·		
CDI =	<u>Cs * (1/PEF) * IR * ET * EF * ED</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1 32E+09 g
IR =	Inhalation Rate (m3/day)	15 a	15 a
ET =	Exposure Time (4 hours per 24-hour day)	0 167 b	0.167 b
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas based on the nature of the activity
- c= U S EPA Exposure Factors Handbook, August 1997.
- d = Surface area of 1/2 head, hands, forearms, lower legs & feet of a child (age 1-6 years).
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance: Technical Background Document, May 1996

· :

TABLE I2-5b
FU1 (SS42) Surface Soil - Hypothetical Future On-Site Residential (Child) Carcinogenic Scenario (Optional Use)
Memphis Depot Main installation Ri

									Ingestion	tion	Dermal	nai	Inhalation	ation
Units	Chemical	WOE	SFo	SFd	SFI	EPC	ABSgi	ABS	CDI	ELCR	G	ELCR	ē	ELCR
MG/KG	Acenaphthylene	۵				9 50E+00	3 10E-01	0.01	1 04E-05		3 06E-08		9 86E-11	
MG/KG	Anthracene	۵				3 50E+00	7 60E-01	00	3 84E-06		1 13E-08		3 63E-11	
MG/KG	Benzo(a)anthracene	B2	7 30E-01	235E+00	3 10E-01	3 70E+01	3 10E-01	0.1	4 05E-05	2 96E-05	1 19E-06	2 81E-06	3.84E-10	1 19E-10
MG/KG	Benzo(a)pyrene	B2	7 30E+00	2 35E+01	3 10E+00	6 70E+01	3 10E-01	0.13	7 34E-05	5 36E-04	2 81E-06	6 61E-05	6 95E-10	2 16E-09
MG/KG	Benzo(b)fluoranthene	B2	7 30E-01	2 35E+00	3 10E-01	6 50E+01	3 10E-01	0.1	7 12E-05	5 20E-05	2 09E-06	4 93E-06	6 75E-10	2 09E-10
MG/KG	Benzo(a,h,)perylene	٥				4 20E+01	3 10E-01	0 01	4 60E-05		1 35E-07		4 36E-10	
MG/KG	Benzo(k)fluoranthene	B2	7 30E-02	2 35E-01	3 10E-02	7 10E+01	3 10E-01	0 1	7 78E-05	5 68E-06	2 29E-06	1 67E-07	7 37E-10	1 74E-10
MG/KG	Carbazole	82				1 60E+00	7 00E-01	0.1	1 75E-06		5 15E-08		1 66E-11	
MG/KG	Chrysene	B2				4 70E+01	3 10E-01	0.1	5 15E-05		1,51E-06		4 88E-10	
MG/KG	Fluoranthene	۵				4 40E+01	3 10E-01	0 01	4 82E-05		1 42E-07		4 57E-10	
MG/KG	Indeno(1.2.3-c.d)pvrene	B2				3 90E+01	3 10E-01	01	4 27E-05		1 26E-06		4 05E-10	
MG/KG	Phenanthrene	۵				7 30E+00	7 30E-01	0 01	8 00E-06		2 35E-08		7 58E-11	
MG/KG	Pyrene	۵				5 20E+01	3 10E-01	0 01	5 70E-05		1 67E-07		5 40E-10	
MG/KG	Zine	۵				6 46E+02	2 00E-01	0 001	7 08E-04		2 08E-07		6 70E-09	
	Total Risk									6E-04		7E-05		3E-09
										<u> </u>	Total Risk =		7E-04	

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

١.

1-27

TABLE I2-5c FUT (SS65A) Surface Soil - Hypothetical Future On-site Residential (Child) Noncarcinogenic Scenario Memphis Depot Main Installation RI

									Ingestion	tion	Dec	Dermal	Inhalation
Juits	Chemical	WOE	RfDo	RfDd	ΚĎ	EPC	ABSgi	ABS	CD	모	CD	E P	CD
MG/KG	Acenaphthylene	٥	6 00E-02	1 86E-02		9 50E+00	3 10E-01	001	121E-04	0 002	3 57E-07	0 00002	1 15E-09
MG/KG	Anthracene	۵	3 00E-01	2 28E-01		3 50E+00	7 60E-01	001	4 47E-05	0 0001	1 32E-07	90000000	4 24E-10
MG/KG	Benzo(a)anthracene	. B				3 70E+01	3 10E-01	0	4 73E-04		139E-05		4 48E-09
MG/KG	Benzo(a)nyrene	B2				6 70E+01	3 10E-01	0 13	8 57E-04		3 27E-05		8 11E-09
MG/KG	Benzo(b)fluoranthene	82				6 50E+01	3 10E-01	0	8 31E-04		2 44E-05		7 87E-09
MG/KG	Benzo(a.h.lipervlene	۵	3 00E-02	9 30E-03		4 20E+01	3 10E-01	0 0 1	5 37E-04	0 02	1 58E-06	0 0002	5 09E-09
MG/KG	Benzo(k)fluoranthene	B2				7 10E+01	3 10E-01	0	9 08E-04		2 67E-05		8 60E-09
MG/KG	Carbazole	B2				1 60E+00	7 00E-01	0	2 05E-05		6 01E-07		1 94E-10
MG/KG	Chrysene	85				4 70E+01	3 10E-01	0.1	6 01E-04		1 77E-05		5 69E-09
MG/KG	Fluoranthene	۵	4 00E-02	1 24E-02		4 40E+01	3 10E-01	001	5 63E-04	0 01	1 65E-06	0 0001	5 33E-09
MG/KG	Indeno(1,2,3-c.d)ovrene	B2				3 90E+01	3 10E-01	0	4 99E-04		1 47E-05		4 72E-09
MG/KG	Phenanthrene	٥				7 30E+00	7 30E-01	0 01	9 33E-05		2 74E-07		8 84E-10
MG/KG	Pyrene	٥	3 00E-02	9 30E-03		5 20E+01	3 10E-01	0 0	6 65E-04	0 02	1 95E-06	0 0002	6 30E-09
MG/KG	Zinc	۵	3 00E-01	6 00E-02		6 46E+02	2 00E-01	0 001	8 26E-03	0 03	2 43E-06	0 00004	7 82E-08
	Hazard Index									90.0		9000'0	
												Total HI=	0.08
Notes	WOE = Weight of Evidence, CDt = Chronic Daily Intake, EPC = 1	Chronic Daily Intal	O FPC = F	Exposure Point Concentration. HO = Hazard Quotient. HI = Hazard Index	Concent	ration HO = I	Azard Quote	ent. Hait	azard Index				

P/147543/APPI2FU1soils xis/FU1SSRC Noncarcinogenic

TABLE 12-6a
Site #65 Surface Soil -Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestio			
CDI =	Cs*IR*FI*EF*ED*CF BW*AT		
Cs =		500	EB0
IR =	Concentration in soil (mg/kg)	EPC	EPC
in = Fl =	Ingestion Rate (mg/day)	50 a	50 a
rı = EF =	Fraction Ingested (unitless)	1	1
Er = ED =	Exposure Frequency (day/year)	250 a	250 a
CF =	Exposure Duration (year)	25 a	25 a
Cr= BW=	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF		
_	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2679 c,d	2 679 c,d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03 c,e	0.03 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Particula	ate Inhalation:		
CDI =	<u>Cs * (1/PEF) * IR * ET * EF * ED</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1 32E+09 g
IR =	Inhalation Rate (m3/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	100% b	100% b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors" OSWER Directive 9285.6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity
- c = U S EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from U.S.EPA, Soil Screening Guidance Technical Background Document, May 1996

159

TABLE 12-6b
Site 65 Surface Soil - Hypothetical Future Industrial Worker Carcinogenic Scenaric Memphis Depot Main Installation RI

								T	Ingestion		Dermal	nai		inhalation	
Units	Средіса	WOE	SFo	SFd	SFI	EPC	ABSgi	ABS	50	ELCR	CDI	ELCR	CD	ELCR	
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	2 35E+00	235E+00 310E-01 200E+01	2 00E+01	3 10E-01	1 00E-01	3E-06	2 55E-06	5 61E-07	1 32E-06	1 06E-09 3 28E-10	3 28E-10	
MG/KG	BENZO(a)PYRENE	B2	7 30E+00	2 35E+01	235E+01 310E+00 240E+01	2 40E+01	3 10E-01	1 30E-01	4E-06	3 06E-05	8 77E-07	2 06E-05	1 27E-09	3 94E-09	
MG/KG	BENZO(b)FLUORANTHENE	85	7 30E-01	2 35E+00	3.10E-01	2 47E+01		1 00E-01	4E-06	3 14E-06	6 92E-07	1 63E-06	131E-09	4 05E-10	
MG/KG	BENZO(k)FLUORANTHENE	85	7 30E-02	2 35E-01	3 10E-02	2 45E+01		1 00E-01	4E-06	3 12E-07	6 88E-07	1 62E-07	130E-09	4 02E-11	
MG/KG	CARBAZOLE	B2	2 00E-02	2 86E-02		4 64E+00	7 00E-01	1 00E-01	8E-07	1 62E-08	1 30E-07	3 72E-09	2 46E-10		
MG/KG	CHRYSENE	83	7 30E-03	2 35E-02	3 10E-03	2 54E+01	3 10E-01	1 00E-01		3 23E-08	7 12E-07		1 68E-08 1 34E-09	4 16E-12	
MG/KG	DDE	82	3 40E-01	4 86E-01		374E+00	7 00E-01	1 00E-01	7E-07	2 22E-07	1 05E-07	5 10E-08	1 98E-10		
MG/KG	100	B2	3 40E-01	4 86E-01	86E-01 3 40E-01	5 35E+00		1 00E-01	9E-07	3 18E-07	1,50E-07	7 30E-08	2 83E-10 9 62E-11	9 62E-11	
MG/KG	DIELDRIN	88	1 60E+01	3 20E+01		9 80E-01		1 00E-01	2E-07	2 74E-06	2 75E-08	8 80E-07	5 19E-11	8 30E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	28	7 30E-01	2 35E+00	235E+00 310E-01 171E+01	1 71E+01	3 10E-01	1 00E-01	3E-06	2 18E-06	4 80E-07	1,13E-06		9 05E-10 2 80E-10	
	Total Risk									4.21E-05		2.59E-05		5.92E-09	
											ř	Total Risk =	7E-05		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	hronic Daily t	ntake, EPC =	Exposure P	oint Concen	tration, ELC	R = Excess	Lifetime Ca	ncer Expo	Sure					

P/147543/APPI2FU1soils xis65SStW Noncarcinogenic

TABLE 12-6c
Site 65 Surface Soil -Hypothetical Future Industnal Worker Noncarcinogenic Scenario Memphis Depot Main installation RI

									Ingestion		Der	Dermal	inhalation	tion	
Units	Chemical	WOE	RCDo	RfDd	RfD	EPC	ABSgi	ABS	G	오	<u> </u>	오	<u>.</u>	오	
MG/KG	BENZO(a)ANTHRACENE	B2				2 00E+01		1 00E-01	9 768E-06		1 57E-06		2 96E-09		
MG/KG	BENZO(a)PYRENE	B2				2 40E+01	3 10E-01	1 30E-01	1 175E-05		2 45E-06		3 56E-09		
MG/KG	BENZO(b)FLUORANTHENE	B2				2 47E+01	3 10E-01	1 00E-01	1 206E-05		1 94E-06		3 66E-09		
MG/KG	BENZO(k)FLUORANTHENE	B2				2 45E+01	3 10E-01	1 00E-01	1 198E-05		1 93E-06		3 63E-09		
MG/KG	CARBAZOLE	B2				4 64E+00	7 00E-01	1 00E-01	2 27E-06		3 65E-07		6 88E-10		
MG/KG	CHRYSENE	B2				2 54E+01	3 10E-01	1 00E-01	1 24E-05		1 99E-06		3 76E-09		
MG/KG	DDE	B2				3 74E+00	7 00E-01	1 00E-01	1 828E-06		2 94E-07		5 54E-10		
MG/KG	DDT	B2	5 00 E -04	3 50E-04		5 35E+00	7 00E-01	1 00E-01	2 619E-06	0 005	4 21E-07	0 001	7 94E-10		
MG/KG	DIELDRIN	B2	5 00E-05	2 50E-05		9 80E-01	5 00E-01	1 00E-01	4 792E-07	0 01	7 70E-08	0 003	1 45E-10		
MG/KG	INDENO(1,2,3-c,d)PYRENE	82				1 71E+01	3 10E-01	1 00E-01	8 361E-06		1 34E-06		2 53E-09		
	Hazard Index	:								0.01		0.004			
												Total HI=	0 02		

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

TABLE 12-7aSite 65 Soil Column -Hypothetical Future Industrial Worker Scenario *Memphis Depot Main Installation RI*

		Carcinogenic		Noncarcinogenic
Ingestion	:			
CDi =	Cs*IR*FI*EF*ED*CF			
	BW • AT			
Cs =	Concentration in soil (mg/kg)	EPC		EPC
IR =	Ingestion Rate (mg/day)	50	а	50 a
FI =	Fraction Ingested (unitless)	1		1
EF =	Exposure Frequency (day/year)	250	а	250 a
ED =	Exposure Duration (year)	25	a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06		0.00001
BW =	Body Weight (kg)	70	а	70 a
AT =	Averaging Time (days)	25550	а	9125 a
Dermal:				
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC		EPC
SA =	Surface Area (cm2)	2679		2679 c,d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0.03	c,e	0 03 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific)	f	(Chemical Specific) f
ET =	Exposure Time (8 hours per 8 hour workday)	1.000	b	1 b
EF =	Exposure Frequency (day/year)	250	а	250 a
ED =	Exposure Duration (year)	25	а	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06		0 000001
BW =	Body Weight (kg)	70	а	70 a
AT =	Averaging Time (days)	25550	а	9125 a
	te Inhalation:			
CDI =	Cs * (1/PEF) * IR * ET * EF * ED BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC		EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09	g	1.32E+09 g
IR =	Inhalation Rate (m3/day)	20	а	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1.000	b	1 b
EF =	Exposure Frequency (day/year)	250	а	250 a
ED =	Exposure Duration (year)	25	а	25 a
BW =	Body Weight (kg)	70	а	70 a
AT =	Averaging Time (days)	25550	а	9125 a

- a = U S. EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure Factors" OSWER Directive 9285.6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity
- c = U S EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance Technical Background Document, May 1996

P/147543/APPI2FU1 soils xis65SBIW-Carcinogenic

TABLE 12-7b
Site 65 Soil Column - Hypothetical Future Industrial Worker Carcinogenic Scenario
Memohis Denot Main Installation RI

							1		400000		Dogwood	100		1262128	
								_	ngestion		Dell			Innalation	
Units	Chemical	WOE	SFo	SFd	SFI	EPC	ABSgi	ABS	ᆼ	ELCR	CDI	ELCR	ā	ELCR	
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	7 30E-01 2 35E+00 3 10E-01 1 62E+01	3 10E-01	1 62E+01	3 10E-01	1 00E-01			4 56E-07		8 59E-10	2 66E-10	
MG/KG	BENZO(a)PYRENE	B2	7 30E+00	2 35E+01	3 10E+00	1 95E+01	3 10E-01	1 30E-01	3E-06	2 48E-05	7 10E-07	1 67E-05	1 03E-09	3,19E-09	
MG/KG	BENZO(b)FLUORANTHENE	B2	7 30E-01	2 35E+00	10E-01	2 00E+01	3 10E-01	1 00E-01	3E-06	2 55E-06	5 62E-07	1 32E-06	1 06E-09	3 28E-10	
MG/KG	BENZO(k)FLUORANTHENE	B2	7 30E-02	2 35E-01 3	10E-02	1 99E+01	3 10E-01	1 00E-01	3E-06		5 58E-07		1 05E-09	3 26E-11	
MG/KG	CARBAZOLE	85		2 86E-02		3 38E+00	7 00E-01	1 00E-01		1 18E-08	9 50E-08		1 79E-10		
MG/KG	CHRYSENE	B2		2 35E-02	10E-03	2 06E+01	3 10E-01	1 00E-01	4E-06		5 79E-07			3 38E-12	
MG/KG	DDE	B2		4 B6E-01		3.74E+00	7 00E-01	1 00E-01		2 22E-07	1 05E-07	5 10E-08	1 98E-10		
MG/KG	DDT	85	3 40E-01	4 86E-01	4 86E-01 3 40E-01	5 35E+00	7 00E-01	1 00E-01	9E-07	3 18E-07	1 50E-07	7 30E-08	2 83E-10	9 62E-11	
MG/KG	DIELDRIN	B2	1 60E+01		1 60E+01	9 80E-01	5 00E-01		2E-07	2 74E-06	2 75E-08	8 80E-07	5 19E-11	8 30E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	E+00 3 10E-01 139E+01 3 10E-01	1 39E+01	3 10E-01	1 00E-01	2E-06	77E-06	3 90E-07	9 18E-07	7 35E-10	2 28E-10	
	Total Risk									4.21E-05		2.59E-05		5.92E-09	
											υ	Total Risk =	7E-05		
								,		,					

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

<u>છ</u>

P/147543/APPI2FU1soits xls65SBIW-Noncarcinogenic

=	오	
Dermal	5	1 28E-06
	오	
Ingestion	50	1 00E-01 7 941E-06
	ABS	1 OOE-01
	ABSqi	100F+00 162F+01 3 10F-01 1
	EPC	1 62F±01
	RfDi	0.005+00
	RfDd	
	RfDo	0.05+00
	WOE	2
	Chemical	MACKG BENIZO(2) ANTHRACENE
	Units	MGKG

TABLE 12-7c Site 65 Soil Column - Hypothetical Future Industrial Worker Noncarcinogenic Scenario Memphis Depot Main Installation RI

									Ingestion		Dermal	<u>e</u>	Inhalation	uo
Units	Chemical	WOE	RfDo	RfDd	RfDi	EPC	ABSgi	ABS	CD	Ð	CDI	모	CDI	오
MG/KG	BENZO(a)ANTHRACENE	B2	0 00E+00		0 00E+00	1 62E+01	3 10E-01	1 00E-01	00E-01 7 941E-06		1 28E-06		2 41E-09	
MG/KG	BENZO(a)PYRENE	B2	0 00E+00		0 00E+00	1 95E+01	3 10E-01	1 30E-01	9 518E-06		1 99E-06		2 88E-09	
MG/KG	BENZO(b)FLUORANTHENE	B2	0 00E+00		0 00E+00	00E+00 2 00E+01	3 10E-01	1 00E-01	9 783E-06		1 57E-06		2.96E-09	
MG/KG	BENZO(k)FLUORANTHENE	B2	0 00E+00		0 00E+00	1 99E+01	3 10E-01	1 00E-01	9 719E-06		1 56E-06		2 95E-09	
MG/KG	CARBAZOLE	85	0 00E+00		0 00E+00		7 00E-01	1 00E-01	1 655E-06		2 66E-07		5 02E-10	
MG/KG	CHRYSENE	85	00000		0 00E+00	2 06E+01	3 10E-01	1 00E-01	1 008E-05		1 62E-06		3 05E-09	
MG/KG	DDE	85	0 00E+00		0.00E+00		7 00E-01	1 00E-01	1 828E-06		2 94E-07		5 54E-10	
MG/KG	TOO	B2	5 00E-04	3 50E-04	0 00E+00	5 35E+00	7 00E-01	1 00E-01	2 619E-06	0 005	4 21E-07	0.001	7 94E-10	
MG/KG	DIELDRIN	B2	5 00E-05	2 50E-05	0 00E+00	9 BOE-01	5 00E-01	1 00E-01	4 792E-07	0 01	7 70E-08	0 003	1 45E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	0 00E+00		0 00E+00	00E+00 139E+01	3 10E-01	1 00E-01	6 794E-06		1 09E-06		2 06E-09	
	Hazard Index									0.01		0.004		
											•	Total HI=	0.02	
Notes	WOE = Weight of Evidence, CD! = Chronic Daily Intake, EPC	hronic Da	ily Intake, EF	C = Exposu	ire Point Co	ncentration,	HQ = Hazarc	1 Quotient, 1-		qex				

TABLE I2-8a
Site 65 Soil Column -Hypothetical Current/Future Utility Worker Scenano
Memphis Depot Main Installation RI

•		Carcinogenic		Noncarcinogenic
ingestion				
CDI =	Cs * IR * FI * EF * ED * CF			
C= -	BW * AT			ED 0
Cs = IR =	Concentration in soil (mg/kg)	EPC		EPC
	Ingestion Rate (mg/day)	100	С	100 c
Fi =	Fraction Ingested (unitless)	0.5		0.5
EF =	Exposure Frequency (day/year)	24	d	24 d
ED =	Exposure Duration (year)	25	а	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06		0 000001
BW =	Body Weight (kg)	70	а	70 a
AT =	Averaging Time (days)	25550	а	9125 a
Dermal:				
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF			
Cs =	BW * AT Concentration in soil (mg/kg)	EPC		EPC
SA =	Surface Area (cm2)	2679	o f	2679 e,f
AF =	Soil-Skin Adherence Factor (mg/cm2)		e,g	2075 e,i 0 1 e,g
ABS =	Absorption Factor (unitless)	(Chemical Specific)	b,y	(Chemical Specific) h
ET =	Exposure Time (8 hours per 8 hour workday)	1	 b	1 b
EF =	Exposure Frequency (day/year)	24	d	24 d
ED =	Exposure Duration (year)	25	a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	-	0.000001
BW =	Body Weight (kg)	70	а	70 a
AT =	Averaging Time (days)	25550	a	9125 a
Particula	te Inhalation:			
CDI =	Cs * (1/PEF) * IR * ET * EF * ED BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC		EPC
PEF =	Particulate Emission Factor (m3/kg)	1.32E+09	1	1.32E+09 ı
IR =	Inhalation Rate (m3/day)	20	а	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	100%	b	1 b
EF =	Exposure Frequency (day/year)	24	đ	24 d
ED =	Exposure Duration (year)	25	а	25 a
BW =	Body Weight (kg)	70	а	70 a
AT =	Averaging Time (days)	25550	а	9125 a

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285.6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas based on the nature of the activity, assuming full workday
- c = Supplemental Guidance to RAGS' Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- d = Utility activity assumed to be twice a month throughout the year
- e= U S EPA Exposure Factors Handbook, August 1997
- f = Surface area of 1/2 head, forearms and the hands of an adult worker
- g = AF calculated for soil adherence can be found in Appendix G
- h = Chemical-specific absorption factors are found in Appendix G
- ı = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance. Technical Backgrounc

Document, May 1996

TABLE I2-8b
Site 65 Soil Column -Hypothetical Current/Future Utility Worker Carcinogenic Scenano
Memphis Depot Main Installation Rt

									Ingestion		Dermal	nai		Inhalation	
Units	Chemical	WOE	SFo	SFd	SFi	EPC	ABSgi	ABS	5	ELCR	CDI	ELCR	CD	ELCR	
MG/KG	BENZO(a)ANTHRACENE	82	7 30E-01	2 35E+00	35E+00 3 10E-01	1 62E+01	3 10E-01	1 00E-01		3E-07 1 99E-07	1 46E-07	3 44E-07	8 25E-11	2 56E-11	
MG/KG	BENZO(a)PYRENE	82	7 30E+00	2 35E+01	3 10E+00	1 95E+01	3 10E-01	1 30E-01	3E-07	2 38E-06	2 27E-07	5 35E-06	9 89E-11	3 07E-10	
MG/KG	BENZO(b)FLUORANTHENE	B2	7 30E-01	2 35E+00	3 10E-01	2 00E+01	3 10E-01	1 00E-01	3E-07	2 45E-07	1 80E-07	4 23E-07	1 02E-10	3 15E-11	
MG/KG	BENZO(k)FLUORANTHENE	B2	7 30E-02	2 35E-01		1 99E+01			3E-07	2 43E-08	1 79E-07	4 20E-08	1 01E-10	3 13E-12	
MG/KG	CARBAZÓLE	82	2 00E-02	2 86E-02		3 38E+00	7 00E-01	1 00E-01	6E-08	1 14E-09	3 04E-08	8 69E-10	1 72E-11		
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	235E-02 310E-03	2 06E+01	3 10E-01	1 00E-01	3E-07	2 52E-09	1 85E-07	4 36E-09	1 05E-10	3 25E-13	
MG/KG	DDE	B2	3 40E-01	4 86E-01		3 74E+00	7 00E-01	1 00E-01	6E-08	2 13E-08	3 36E-08	1 63E-08	1 90E-11		
MG/KG	DDT	B2	3 40E-01	4 86E-01	3 40E-01	5 35E+00		1 00E-01	9E-08	3 05E-08	4 81E-08	2 34E-08 2 72E-11	2 72E-11	9 24E-12	
MG/KG	DIELDRIN	82	1 60E+01	3 20E+01	20E+01 1 60E+01	9 80E-01	5 00E-01	_	2E-08	2 63E-07	8 80E-09	2 82E-07	4 98E-12	7 97E-11	
MG/KG	INDENO(1,2,3-c,d)PYRENE	82	•		235E+00 310E-01 139E+01	1 39E+01	3 10E-01	1 00E-01	2E-07	2E-07 1 70E-07	1 25E-07	2 94E-07	7 06E-11	2 19E-11	
	Total Risk									3 34E-06	2	6.78E-06	15.05	4.78E-10	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	Chronic Dail	ly Intake, El	PC = Exposu	ire Point Co	ncentration,	ELCR = Ex	sess Lifetime	3 Cancer	Exposure			3		

TABLE I2-8c Site 65 Soil Column -Hypothetical Current/Future Utility Worker Noncarcinogenic Scenario Memphs Depot Main Installation Rt

									monsafur		neusa	<u> </u>	Innalation	22	
Units	Chemical	WOE	RfDo	RfDd	Ę.	EPC	ABSgi	ABS	CDI	НО	CDI	오	CD	오	
MG/KG	BENZO(a)ANTHRACENE	85				1 62E+01	3 10E-01	1 00E-01	7 623E-07		4 08E-07		2 31E-10		
MG/KG	BENZO(a)PYRENE	85				1 95E+01	3 10E-01	1 30E-01	9 138E-07		6 36E-07		2 77E-10		
MG/KG	BENZO(b)FLUORANTHENE	85				2 00E+01	3 10E-01	1 00E-01	9 392E-07		5 03E-07		2 85E-10		
MG/KG	BENZO(k)FLUORANTHENE	B 2				1 99E+01	3 10E-01	1 00E-01	9 33E-07		5 00E-07		2 83E-10		
MG/KG	CARBAZOLE	B 2				3 38E+00	7 00E-01	1 00E-01	1 589E-07		8 51E-08		4 82E-11		
MG/KG	CHRYSENE	85				2 06E+01	3 10E-01	1 00E-01	9 675E-07		5 18E-07		2 93E-10		
MG/KG	DDE	85				3 74E+00	7 00E-01	1 00E-01	1 754E-07		9 40E-08		5 32E-11		
MG/KG	DDT	85	5 00E-04	3 50E-04		5 35E+00	7 00E-01	1 00E-01	2 514E-07	0 0005	1 35E-07	0 0004	7 62E-11		
MG/KG	DIELDRIN	B2	5 00E-05	2 50E-05		9 80E-01	5 00E-01	1 00E-01	4 601E-08	60000	2 46E-08	0 001	1 39E-11		
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2				1 39E+01	3 10E-01	1 00E-01	6 522E-07		3 49E-07		1 98E-10		
	Hazard Index									0.001		0.001			
											,-	Total HI=	0.003		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC	ronic Daily	/ Intake, EP	C = Exposure	Point Con	centration, F	10 = Hazard	Quotient, HI	= Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	ex					

Appendix I-3
A. FU2 Soils (Parcel 3 & Site 59)

B. FU2 Sediments

C. FU2 Surface Water

THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE 13-1a
Soil - Hypothetical Future On-site Worker Scenario
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
ngestion			
CDI =	Cs * IRing * FI * EF * ED * CF		
	BW * AT		EPC
Cs =	Concentration in soil (mg/kg)	EPC	 -
Ring =	Ingestion Rate (mg/event)	50 a	50 a
F1 =	Fraction Ingested (unitless)	100%	100%
EF =	Exposure Frequency (events/year)	250 a	250 a
D =	Exposure Duration (year)	25 a	25 a
)F =	Conversion Factor (kg/mg)	1.00E-06	1 00E-06
3W =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	<u>Cs * SA * AF * ABS * EF * ED * CF</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
25 = SA =	Surface Area (cm2/event)	2458 b	2458 b
\F =	Soil-Skin Adherence Factor (mg/cm2)	1 c	1 c
ABS =	Absorption Factor (unitless)	(Chemical Specific) d	(Chemical Specific) d
EF=	Exposure Frequency (events/year)	250 a	250 a
=:	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
41 =	Averaging Time (days)	20000 a	0120 u
Dust inh CDI =	alation: <u>Cs * ((1/VF)+(1/PEF)) * IRinh * EF * ED</u>		
CDI =	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 e	1 32E+09 e
/F =	Volatilization Factor (m3/kg)	(Chemical Specific) f	(Chemical Specific) f
– Rinh =	Inhalation Rate (m3/event)	20 a	20 a
:::::: = EF =	Exposure Frequency (events/year)	250 a	250 a
-: - ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
	ביטן יייטן ווישן		

References:

- a = U.S. EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991
- b = Surface area of hands, 1/2 arms and 1/2 head (face) of an adult worker, adapted from CEHT,

Technical Report: Soil Cleanup Target Levels for FDEP, September 2, 1997

- c = U.S EPA Dermal Exposure Assessment Principles and Application, January 1992.
- d = Chemical-specific absorption factors are found in Appendix C of the Parcel 3 Streamlined Risk Assessment, 1999.
- e = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance. Technical Background Document, May 1996.
- f = Chemical-specific volatilization factors are found in Appendix C of the Parcel 3 Streamlined Risk Assessment, 1999

TABLE 13-1b
Soil - Future Hypothetical On-Site Worker Carcinogenic Scenanc
Memphis Depot Main Installation RI

								Ingestion	tion	Dermal	nai	Inhalation	ıtion
Units	Chemical	WOE	SFo	SFi	EPC	ABS	VFres	CDI	ELCR	СО	ELCR	CD	ELCR
	Metals and Pesticides							:					
MG/KG	ARSENIC	∢	1 50E+00	1,51E+01	2.93E+01	0 001		5 12E-06	8E-06	2 52E-07	4E-07	1 55E-09	2E-08
MG/KG	CHROMIUM	4		4.20E+01	2 15E+01	0 001		3 76E-06		1.85E-07		1 14E-09	5E-08
MG/KG	COPPER	۵			3 09E+01	0 001		5 40E-06		2.66E-07		1.64E-09	
MG/KG	MANGANESE	Ω			9 83E+02	0 001		1 72E-04		8 44E-06		5 20E-08	
MG/KG	NICKEL	0			2 59E+01	0 001		4 52E-06		2 22E-07		1 37E-09	
MG/KG	LEAD	B 5			7 59E+01	0 001		1 33E-05		6 52E-07		4 02E-09	
MG/KG	ALPHA-CHLORDANE	B 2	3 50E-01	3 50E-01	2 25E-01	0 04		3 94E-08	1E-08	7.74E-08	3E-08	1,19€-11	4E-12
MG/KG	GAMMA-CHLORDANE	B 2	3 50E-01	3 50E-01	2 68E-01	0 04		4 68E-08	2E-08	9 19E-08	3E-08	1 42E-11	5E-12
MG/KG	DIELDRIN	B 2	1 60E+01	1 61E+01	2 21E+00	0 03		3 87E-07	90-39	5 71E-07	9E-06	1 17E-10	2E-09
MG/KG	DDE	B2	3 40E-01		8 05E-01	0.03		1.41E-07	5E-08	2 07E-07	7E-08	4 26E-11	
MG/KG	TOO	B 2	3.40E-01	3 40E-01	9 63E-01	0.03		1.68E-07	6E-08	2 48E-07	8E-08	5 10E-11	2E-11
	Semivolatiles												
MG/KG	BENZO(a)ANTHRACENE	B 5	7.30E-01	3 10E-01	2 51E-01	0.1	1 09E+07	4.38E-08	3E-08	2 15E-07	2E-07	1.62E-09	5E-10
MG/KG	BENZO(a) PYRENE	83	7.30E+00	3 10E+00	2 56E-01	0.1	2 96E+07	4 47E-08	3E-07	2 20E-07	2E-06	6.18E-10	2E-09
MG/KG	BENZO(b)FLUORANTHENE	B 2	7 30E-01	3 10E-01	2 83E-01	0.1	5.72E+06	4 94E-08	4E-08	2 43E-07	2E-07	3 47E-09	1E-09
	Total Risk								1E-05		1E-05		8E-08
										Tot	Total Risk =	3E-05	
Notes:	WOE = Weight of Evidence, CDI = Chronic Daily Intake, El	Daily Intai	ke, EPC = E	Exposure Po	PC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	ration, EL	.CR = Exces	ss Lifetime C	ancer Exp	osure			

-

P \147543\APPI3FU2atl xts[wkr - noncarc]

TABLE 13-1c
Soil - Hypothetical Future On-site Worker Noncarcinogenic Scenano Memphis Depot Main Installation RI

								Toiteearl	4:02	Dorma	8	2	Inhalation
- inite	in circuit	ACW.	ğ	E C	FPC	ABS	VFres	CD	2	G	오		Н
	Metale and Destinides	121	ı		i								
MG/KG	ABSENIC	4	3 00F-04		2 93E+01	0 001		1 43E-05	0 05	7 05E-07	0 005	4 35E-09	
MG/KG	MI IMOBILO	: ∢	3 50E+00	5.71E-07	2 15E+01	0 001		1 05E-05	0 000003	5 18E-07	0 0000001	3 19E-09	900 0
MG/KG	COBDER	: =	3.50F±00		3 09E+01	0 001		1 51E-05	0 000004	7 44E-07	0 0000002	4 59E-09	
MG/KG	MANGANESE	۵ ۵	2 30E-02		9 83€+02	0 001		4 81E-04	0 02	2 36E-05	0 001	1 46E-07	
MG/KG	NOKE	0	2 00E-02		2 59E+01	0 001		1 27E-05	9000 0	6 22E-07	0 00003	3 84E-09	
MG/KG	EAD	B2			7 59E+01	0 001		371E-05		1 82E-06		1 12E-08	
MG/KG	AI PHA-CHI OBDANE	B2	5 00E-04		2 25E-01	0 0		1 10E-07	0 0002	2 17E-07	0 0004	3 34E-11	
MG/KG	GAMMA-CHI ORDANE	B2	5 00E-04		2 68E-01	0 0		1 31E-07	0 0003	2 57E-07	0 0005	3 97E-11	
MG/KG	NING INC	B2	5 00E-05	1 00E+02	2 21E+00	0 03		1 08E-06	0 02	1 60E-06	0 03	3 28E-10	0 000000000000
MG/KG	DDF	B2			8 05E-01	0 03		3 94E-07		581E-07		1 19E-10	
MG/KG	100	B2	5 00E-04		9 63E-01	0 03		4 71E-07	0 0000	6 95E-07	0 001	1 43Ë-10	
	Semiyolatiles												
MG/KG	BENZO(a) ANTHRACENE	B2			2 51E-01	01	1 09E+07	1 23E-07		6 02E-07		4 53E-09	
MG/KG	BENZO(a) PYRENE	B2			2 56E-01	0	2 96E+07	1 25E-07		6 15E-07		1 73E-09	
MG/KG	BENZO(b)FLUORANTHENE	82			2 83E-01	0.1	5 72E+06	1 38E-07		6 80E-07		9 72E-09	
	Hazard Index								60 0		0 04	į	900 0
								:	:		Total Hi=	0.1	
Notes	WOE = Weight of Ewdence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	nic Daily Inte	ake, EPC = 1	Exposure Pc	ount Concentra	atron, HQ =	Hazard Quot	ient, HI = Ha	zard Index				

TABLE 13-2a
Soil - Hypothetical Future Golfer Exposure Scenaric

Memphis Depot Main Installation RI

Carcinogenic Noncarcinogenic Ingestion: CDI = Cs * IRing * FI * EFDadi * CF BW . AT Concentration in soil (mg/kg) Cs = EPC EPC Ingestion Rate (mg/event) IRing = 50 a 50 a Fraction Ingested (unitless) 100% 100% EFDadj = Time-adjusted Exposure Frequency (events, for 30 years) 4680 h 4680 b CF ≂ Conversion Factor (kg/mg) 1 00E-06 1 00E-06 BW = Body Weight (kg) 70 c 70 c AT = Averaging Time (days) 25550 с 9125 c Dermal: CDI = Cs *SA * AF * ABS * ET * EFDadi * CF BW * AT Cs = Concentration in soil (mg/kg) EPC SA = Surface Area (cm2/event) 4371 d 4371 d AF = Soil-Skin Adherence Factor (mg/cm2) 1 e 1 e ABS = Absorption Factor (unitless) (Chemical Specific) f (Chemical Specific) f ET = Exposure Time (event/day) 0 083 g 0 083 g EFDadj = Time-adjusted Exposure Frequency (events, for 30 years) 4680 b 4680 b CF = Conversion Factor (kg/mg) 1.00E-06 1 00E-06 BW = Body Weight (kg) 70 c 70 c AT = Averaging Time (days) 25550 с 9125 c **Dust Inhalation:** CDI = Cs * ((1/VF)+(1/PEF)) * IRinh * EFDadi BW * AT Cs = Concentration in soil (mg/kg) **EPC EPC** PEF = 1 32E+09 h Particulate Emission Factor (m3/kg) 1 32E+09 h VF = Volatilization Factor (m3/kg) (Chemical Specific) i (Chemical Specific) i Inhalation Rate (m3/event) IRinh = 1 67 _L 1 67 r EFDadj = Time-adjusted Exposure Frequency (events, for 30 years) 4680 b 4680 b RW = Body Weight (kg) 70 c 70 c

25550 с

9125 c

References:

Averaging Time (days)

AT =

- a = Best professional judgment based on a golfer's behavior, soil intake is assumed to 50 mg for a 2 hour golfing event
- b = Golf activity over thirty years is assumed to be twice a week for twenty years, and five times a week for ten years, per best professional judgment. This accumulates to 4,680 days over thirty years

EFDadj = (104 days/yr x 20 yrs) + (260 days/yr x 10 yrs) = 4680 days

- c = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.
- d = Surface area of hands, 1/2 arms and 1/2 legs of an adult, adapted from CEHT, Technical Report Soil Cleanup Target Levels, for FDEP, September 2, 1997
- e = U S EPA Dermal Exposure Assessment Principles and Application, January 1992
- f = Chemical-specific absorption factors are found in Appendix C of the Parcel 3 Streamlined Risk Assessment, 1999.
- g = Time spent outdoors playing golf per best professional judgment (2-hour event per 24-hour day)
- h = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance Technical Background Document, May 1996
- ı = Chemical-specific volatilization factors are found in Appendix C of the Parcel 3 Streamlined Risk Assessment, 1999
- j = Inhalation rate is determined by 20 m3/day divided by 24 hours/day, and multiplied by the 2 hours/event.

P \147543\APPI3FU2all xis[gotf - carc]

TABLE 13-2b Soil - Hypothetical Fulture Golfer Carcinogenic Scenand Memphis Depot Main Installation RI

								Ingestion	tion	Dermal	let	Inhafation	tion
Units	Chemical	WOE	SFo	SFI	EPC	ABS	VFres	CD	ELCR	П	ELCR	CDI	ELCR
	Metals and Pesticides												
MG/KG	ARSENIC	4	50E+00	1.51E+01	4 30E+01	000		5 63E-06	8E-06	4 09E-08	6E-08	1 42E-10	2E-09
MG/KG		<		4 20E+01	2 57E+01	0 001		3 36E-06		2 44E-08		8 50E-11	4E-09
MG/KG		۵			2.90E+01	0 001		3 80E-06		2 75E-08		9 58E-11	
MG/KG		B2			1 23E+02	0 001		1 61E-05		1 17E-07		4 07E-10	
MG/KG	MANGANESE	٥			1.86E+03	0 001		2 43E-04		1 77E-06		6 15E-09	
MG/KG	NICKEL				3 18E+01	0 001		4 16E-06		3 02E-08		1 05E-10	
MG/KG	CHLORDANE	B2	3 50E-01	3 50E-01	3 52E-01	0 0		4 61E-08	2E-08	1 34E-08	5E-09	1.16E-12	4E-13
MG/KG	111	B2	3 50E-01	3 50E-01	4 04E-01	0 04		5 28E-08	2E-08	1.53E-08	5E-09	1 33E-12	5E-13
MG/KG		B2 1	60E+01	161E+01	3 38E+00	0 03		4.43E-07	7E-06	9 63E-08	2E-06	1 12E-11	2E-10
MG/KG		B2 (3 40E-01		1 10E+00	0 03		1.44E-07	5E-08	3 13E-08	1E-08	3.63E-12	0E+00
MG/KG		82	3 40E-01	3 40E-01	1 49E+00	0.03		1.95E-07	7E-08	4.24E-08	1E-08	4 92E-12	2E-12
	Semivolatiles												
MG/KG	HRACENE	82	7 30E-01	3 10E-01	2.26E-01	0	1 09E+07	I 09E+07 2 96E-08	2E-08	2 14E-08	2E-08	9.11E-11	3E-11
MG/KG		B2 7	30E+00	3 10E+00	2 32E-01	0	2 96E+07	3 04E-08	2E-07	2,21E-08	2E-07	3 50E-11	1 E -10
MG/KG	NTHENE	B2 7	7 30E-01	3.10E-01	2 78E-01	0	5 72E+06	3 64E-08	3E-08	2.64E-08	2E-08	2 13E-10	7E-11
	Total Risk								2E-05		2E-06		6E-09
										Tota	Total Risk =	1 78E-05	
Notes:	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	uly Inta	ke, EPC =	Exposure F	oint Concer	itration,	ELCR = Ex	sess Lifetim	e Cancer	xposure			

TABLE 13-2c Soil - Hypothetical Future Golfer Noncarcinogenic Scenario Memphis Depot Main Installation RI

					:			Ingestion	stion	Δ	Dermal	_	Inhalation
Units	Chemical	WOE	RfD ₀	R Ö	EPC	ABS	VFres	ᅙ	오	<u>5</u>	오	ō	Đ
	Metals and Pesticides												
MG/KG	ARSENIC	∢	3 00E-04	0 00E+00	4 30E+01	0 001		1 58E-05	0 05	1 14E-07	0 0004	3 98E-10	
MG/KG	CHROMIUM	∢	5 00E-03	5 71E-07	2 57E+01	0 001		9 42E-06	0 002	6 84E-08	0 00001	2 38E-10	0 0004
MG/KG	COPPER	۵	3 50E+00		2 90E+01	0 001		1 06E-05	0 000003	7 71E-08	0 00000002	2 68E-10	
MG/KG	LEAD	B2			1 23E+02	0 001		4 51E-05		3 27E-07		1 14E-09	
MG/KG	MANGANESE	۵	2 30E-02		186E+03	0 001		6 81E-04	0 03	4 94E-06	0 0002	1 72E-08	
MG/KG	NICKEL	0	2 00E-02		3 18E+01	0 001		1 16E-05	9000 0	8 45E-08	0 000004	2 94E-10	
MG/KG	ALPHA-CHLORDANE	B2	5 00E-04		3 52E-01	0 04		1 29E-07	0 0003	3 75E-08	0 00007	3 26E-12	
MG/KG	GAMMA-CHLORDANE	B2	5 00E-04		4 04E-01	0 04		1 48E-07	0 0003	4 29E-08	600000	3 74E-12	
MG/KG	DIELDRIN	B2	5 00E-05	1 00E+02	3 38E+00	0 03		1 24E-06	0 02	2 70E-07	0 005	3 13E-11	0 000000000000
MG/KG	DDE	85			1 10E+00	0 03		4 03E-07		8 77E-08		1 02E-11	
MG/KG	DDT	B 2	5 00E-04		1 49E+00	0 03		5 45E-07	0 001	1 19E-07	0 0002	1 38E-11	
	Semivolatiles												
MG/KG	BENZO(a)ANTHRACENE	85	0 00E+00	0 00E+00	2 26E-01	0.1	1 09E+07	8 28E-08		6 01E-08		2 55E-10	
MG/KG	BENZO(a)PYRENE	B2	0 00E+00	0 00E+00	2 32E-01	0.1	2 96E+07	8 51E-08		6 17E-08		9 80E-11	
MG/KG	BENZO(b)FLUORANTHENE	85	0 00E+00	0 00E+00	2 78E-01	0 1	5 72E+06 1 02E-07	1 02E-07		7 39E-08		5 96E-10	
	Hazard Index								0.1		900 0		0 0004
										Total HI =	0.1		
Notes:	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	onic Daily	/ Intake, EP	C = Exposur	e Point Con	centration	on, HQ = Ha	zard Quotie	nt, HI = Haz	ard Index			

TABLE 13-3a
Soil - Hypothetical Future Ballplayer (Youth) Scenario
Memphis Depot Main Installation RI

			/%:
•		Carcinogenic	Noncarcinogenic
Ingestion	;		•
CDI =	Cs*IRing*FI*EF*ED*CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IRing =	Ingestion Rate (mg/event)	200 a	200 a
F1 =	Fraction Ingested (unitless)	100%	100%
EF =	Exposure Frequency (events/year)	20 b	20 b
ED =	Exposure Duration (year)	8 c	8 c
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	30 d	30 d
AT =	Averaging Time (days)	25550 e	2920 e
Dermal:			
CDI =	Cs * SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2/event)	2080 f	2080 f
AF =	Soil-Skin Adherence Factor (mg/cm2)	1 g	1 g
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (events/day)	0.0625 ı	0 0625 ı
EF =	Exposure Frequency (events/year)	20 b	20 b
ED =	Exposure Duration (year)	8 c	8 c
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	30 d	30 d
AT =	Averaging Time (days)	25550 e	2920 e
Dust Inha			
CDI =	Cs * ((1/VF)+(1/PEF)) * Rinh * EF * ED BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 j	1 32E+09 j
VF =	Volatilization Factor (m3/kg)	(Chemical Specific) k	(Chemical Specific) k
IRinh =	Inhalation Rate (m3/event)	1 25	1 25
EF =	Exposure Frequency (events/year)	20 b	20 b
ED =	Exposure Duration (year)	8 c	8 c
BW =	Body Weight (kg)	30 d	30 d
AT =	Averaging Time (days)	25550 e	2920 e

References:

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991
- b = Outdoor activity assumed to be twice a week during season, plus practice games per U.S. EPA memo, March 1997 (total of 20 days/year).
- c = Exposure duration of 8 years, per U.S EPA memo, March 1997.
- d = Age-adjusted body weight for youth (age 5-13 years) at 50th percentile, per U S EPA memo, March 1997
- e = Best professional judgement
- f = Surface area of 1/2 arms and head of a youth (5-13 years), adapted from CEHT, Technical Report Soil Cleanup Target Levels for FDEP, September 2, 1997
- g = U S. EPA Dermal Exposure Assessment Principles and Application, January 1992
- h = Chemical-specific absorption factors are found in Appendix C of the Parcel 3 Streamlined Risk Assessment, 1999
- i = Time spent outdoors playing baseball per best professional judgment (1.5 hour event/24 hour day)
- j = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance Technical Background Document, May 1996
- k = Chemical-specific volatilization factors are found in Appendix C of the Parcel 3 Streamlined Risk Assessment, 1999
- I = Inhalation rate is determined by 20 m3/day divided by 24 hours/day, and multiplied by the 1.5 hours/event.

44

TABLE 13-3b Soil - Hypothetical Future Ballplayer (Youth) Carcinogenic Scenario Memphis Depot Main Installation RI

								Ingestion	tion	De	Dermal	Inhalation	
Units	Chemical	WOE	SFo	SFi	EPC	ABS	VFres	CDI	ELCR	СОІ	ELCR	CDI	ELCR
	Metals and Pesticides												
MG/KG	ARSENIC	4	1 50E+00	E+00 151E+01	2 18E+01	0 001		9 10E-07	1E-06	5.92E-10	9E-10	4 31E-12	7E-11
MG/KG	CHROMIUM	∢		4 20E+01	1 89E+01	0 001		7 89E-07		5 13E-10		3 74E-12	2E-10
MG/KG	COPPER	۵			2 54E+01	0 001		1 06E-06		6 89E-10		5.02E-12	
MG/KG	LEAD	8			4 86E+01	0 001		2 03E-06		1 32E-09		961E-12	
MG/KG	MANGANESE	۵			9.70E+02	0 001		4 05E-05		2 63E-08		1 92E-10	
MG/KG	NICKEL	0			2 06E+01	0 001		8 60E-07		5 59E-10		4 07E-12	
MG/KG	DIELDRIN	85	1 60E+01	1 61E+01	1 10E+00	0 03		4 59E-08	7E-07	8 95E-10	1E-08	2.17E-13	4E-12
MG/KG	DDE	B 5	3 40E-01		8 60E-02	0 03		3 59E-09	1E-09	7.00E-11	2E-11	1 70E-14	
MG/KG	DDT	85	3 40E-01	3 40E-01	7 10E-02	0 03		2 96E-09	1E-09	5 78E-11	2E-11	1 40E-14	5E-15
	Semivolatiles			ı									
MG/KG	BENZO(a)ANTHRACENE	B 5	7 30E-01	3 10E-01 7 60E-02	7 60E-02	0 1	1 09E+07	1 09E+07 3 17E-09	2E-09	2 06E-10	2E-10	1 83E-12	6E-13
MG/KG	BENZO(a)PYRENE	88	7 30E+00	3 10E+00	8 20E-02	0	2 96E+07 3 42E-09	3 42E-09	2E-08	2 23E-10	2E-09	7 39E-13	2E-12
MG/KG	BENZO(b)FLUORANTHENE	85	7 30E-01	3 10E-01	8 90E-02	0 1	5 72E+06	3 72E-09	3E-09	2 42E-10	2E-10	4 08E-12	1E-12
	Total Risk								2E-06		2E-08		2E-10
											Total Risk =	2E-06	
Notes	WOE = Weight of Evidence; CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	Daily Intak	e, EPC = E	xposure Por	nt Concentr	ration, El	.CR = Exce	ss Lifetime (Sancer Ex	osur			

مد مدر س

. .

								Ingestion	figur	۵	Dermal		Inhalation
Units	Chemica1	WOE	RfDo	H	EPC	ABS	VFres	CDI	H	CD	Ρ	ē	HQ
	Metals and Pesticides												
MG/KG	ARSENIC	∢	3 00E-04		2 18E+01	0 001		7 96E-06	0 03	5 18E-09	0 00002	3 77E-11	
MG/KG	CHROMIUM	∢	5 00E-03	5 71E-07	1 89E+01	0 001		6 90E-06	0 001	4 49E-09	6000000 0	3 27E-11	90000 0
MG/KG	COPPER	٥	3 50E+00		2 54E+01	0 001		9 28E-06	0 000003	6 03E-09	0 000000002	4 39E-11	
MG/KG	LEAD	B2			4 86E+01	0 001		1 78E-05		1 15E-08		8.41E-11	
MG/KG	MANGANESE	٥	2 30E-02		9 70E+02	0 001		3 54E-04	0 05	2 30E-07	0 00001	1.68E-09	
MG/KG	NOKEL	0	2 00E-02		2 06E+01	0 001		7 53E-06	0 0004	4 89E-09	0 0000005	3 56E-11	
MG/KG	DIELDRIN	82	5 00E-05	1 00E+02	1 10E+00	0 03		4 02E-07	0 008	7 84E-09	0 0002	1 90E-12	0 000000000000000
MG/KG	DDE	82			8 60E-02	0.03		3 14E-08		6 13E-10		1 49E-13	
MG/KG	DDT	82	5 00E-04		7 10E-02	0 03		2 59E-08	0 00005	5 06E-10	0 000001	1 23E-13	
	Semivolatiles											!	
MG/KG	BENZO(a)ANTHRACENE	B2			7 60E-02	0	1 09E+07	2 78E-08		1 80E-09		1 61E-11	
MG/KG	BENZO(a)PYRENE	B2			8 20E-02	0 1	2 96E+07	3 00E-08		1 95E-09		6 47E-12	
MG/KG	BENZO(b)FLUORANTHENE	B2			8 90E-02	0 1	5 72E+06	3 25E-08		2 11E-09		3 57E-11	
	Hazard Index								0 05		0 0002 Total HI =	0.05	90000 0

Inhalation HQ

Soil - Hypothetical Future Ballplayer (Youth) Noncarcinogenic Scenario Memphis Depot Man Installation RI

TABLE 13-3c

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

Notes

TABLE i3-4a
Soil - Future Recreational Child Scenario - Playground

Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestion			
CDI =	<u>Cs * IRing * FI * EF * ED * CF</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	500	500
		EPC	EPC
IRing =	Ingestion Rate (mg/event)	200 a	200 a
FI =	Fraction Ingested (unitless)	100%	100%
EF =	Exposure Frequency (events/year)	64 b	64 b
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dermal:			
CDI =	Cs * SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2/event)	2394 с	2394 c
AF =	Soil-Skin Adherence Factor (mg/cm2)	1 d	1 d
AB\$ =	Absorption Factor (unitless)	(Chemical Specific) e	(Chemical Specific) e
ET =	Exposure Time (event/day)	0.167 f	0.167 f
EF =	Exposure Frequency (events/year)	64 b	64 b
ED =	Exposure Duration (year)	6 а	6 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1 00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dust Inha			
CDI =	Cs * ((1/VF)+(1/PEF)) * IRinh * EF * ED BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1.32E+09 g
VF =	Volatilization Factor (m3/kg)	(Chemical Specific) h	(Chemical Specific) h
IRinh =	Inhalation Rate (m3/event)	251	251
EF =	Exposure Frequency (events/year)	64 b	64 b
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a

References:

- a = U.S. EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure Factors," OSWER Directive 9285.6-03, March 25, 1991.
- b = Best professional judgment. Child visiting park 2 days/wk during 8 (waEPCr) months of the year
- c = Surface area of hands, 1/2 arms, 1/2 legs and feet of a child (age 1-6 years), adapted from CEHT,

Technical Report Soil Cleanup Target Levels for FDEP, September 2, 1997.

- d = U.S EPA Dermal Exposure Assessment. Principles and Application, January 1992
- e = Chemical-specific absorption factors are found in Appendix C of the Parcel 3 Streamlined Risk Assessment, 1999.
- f = Time spent outdoors, best professional judgment (4 hour event/24 hour day)
- g = Particulate emission factor (PEF), adapted from U.S.EPA, Soil Screening Guidance Technical Background Document, May 1996
- h = Chemical-specific volatilization factors are found in Appendix C of the Parcel 3 Streamlined Risk Assessment, 1999.
- i = inhalation rate is determined by 15 m3/day divided by 24 hours/day, and multiplied by the 4 hours/event

7

P \147543\APPI3FU2all xis[park - care]

								Ingestion	tion	Derma	nal	Inhalation	ation
Inits	Chemical	WOE	SFo	SFI	EPC	ABS	VFres	CO	ELCR	CDI	ELCA	CDI	ELCR
	Metals and Pesticides											•	
MG/KG	ARSENIC	∢	1 50E+00	50E+00 151E+01	1 94E+01	0 001		3 89E-06	90-39	7 76E-09	1E-08	3 68E-11	6E-10
1G/KG	CHROMIUM	∢		4 20E+01	1 63E+01	0 001		3 27E-06		6.52E-09		3 09E-11	1E-09
IG/KG	COPPER	۵			5 54E+01	0 001		1 11E-05		2 21E-08		1.05E-10	
1G/KG	LEAD	B2			6 88E+01	0 001		1 38E-05		2 75E-08		131E-10	
MG/KG	MANGANESE	۵			8 99E+02	0 001		1 80E-04		3 59E-07		1,71E-09	
1G/KG	NICKEL	0			2 11E+01	0 001		4 23E-06		8.44E-09		4 00E-11	
1G/KG	DIELDRIN	B2	1 60E+01	1 61E+01	7 10E-01	0 03		1,42E-07	2E-06	8 52E-09	1E-07	1.35E-12	2E-11
1G/KG	DDE	B2	3,40E-01		4.30E-01	0 03		8 62E-08	3E-08	5 16E-09	2E-09	8.16E-13	0E+00
fG/KG	DDT	B2	3 40E-01	3 40E-01	2 00E-01	0 03		4 01E-08	1E-08	2 40E-09	8E-10	3.80E-13	1E-13
	Semivolatiles												
JG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	7 30E-01 3 10E-01	5 70E-01	0.1	1 09E+07	1 14E-07	8E-08	2.28E-08	2E-08	1 32E-10	4E-11
MG/KG	BENZO(a)PYRENE	B2	7 30E+00	3 10E+00	4 40E-01	0.1	2 96E+07	8 82E-08	6E-07	1 76E-08	1E-07	381E-11	1E-10
AG/KG	BENZO(b)FLUORANTHENE	B2	7 30E-01	3 10E-01	4 60E-01	0 1	5 72E+06	9 22E-08	7E-08	1 84E-08	1E-08	2 02E-10	6E-11
	Total Risk								9E-06		3E-07		2E-09
										Tol.	Total Risk =	9E-06	

TABLE 13-4b
Soil - Future Recreational Child Carcinogenic Scenario -Playground
Memphis Depot Main Installation RI

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

Notes.

TABLE 13-4c
Soil - Future Recreational Child Noncarcinogenic Scenario - Playground
Memphis Depot Main Installation RI

								Ingestion	tion	Der	Dermal	=	Inhalation
Units	Chemical	WOE	RfDo	RfDi	EPC	ABS	VFres	CDI	НО	CDI	HQ	CDI	단
	Metals and Pesticides												
MG/KG	ARSENIC	∢	3 00E-04		1 94E+01	0 001		4 54E-05	0.2	9 05E-08	0 0003	4 30E-10	
MG/KG	CHROMIUM	∢	5 00E-03	5 71E-07	1 63E+01	0 001		381E-05	0 008	7 60E-08	0 00002	3 61E-10	9000 0
MG/KG	COPPER	۵	3 50E+00		5 54E+01	0 001		1 30E-04	0 00004	2 58E-07	0 00000007	1 23E-09	
MG/KG	LEAD	82			6 88E+01	0 001		1 61E-04		3 21E-07		1 52E-09	
MG/KG	MANGANESE	۵	2 30E-02		8 99E+02	0 001		2 10E-03	60 0	4 19E-06	0 0002	1 99E-08	
MG/KG	NICKEL	0	2 00E-02		2 11E+01	0 001		4 93E-05	0 002	9 84E-08	0 000005	4 67E-10	
MG/KG	DIELDRIN	B2	5 00E-05	1 00E+02	7 10E-01	0 03		1 66E-06	0 03	9 93E-08	0 002	1 57E-11	0 0000000000000
MG/KG	DDE	B2			4 30E-01	0 03		1 01E-06		6 02E-08		9 52E-12	
MG/KG	DDT	B 2	5 00E-04		2 00E-01	0 03		4 68E-07	60000	2 80E-08	90000 0	4 43E-12	
	Semivolatiles												
MG/KG	BENZO(a)ANTHRACENE	B2			5 70E-01	0	1 09E+07	1 33E-06		2 66E-07		1 54E-09	
MG/KG	BENZO(a) PYRENE	B3			4 40E-01	0.1	2 96E+07	1 03E-06		2 05E-07		4 44E-10	
MG/KG	BENZO(b) FLUORANTHENE	B2			4 60E-01	0.1	5 72E+06	1 08E-06		2 15E-07		2 36E-09	
	Hazard Index		0 00E+00						03		0 003		9000 0
											Total HI=	0.3	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC ≈	c Daily Inta	ke, EPC = I	Exposure Po	int Concentra	tion, HO =	Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	ent, HI = Haz	ard Index				

TABLE I3-5a Soil - Hypothetical Future Residential Adult Scenario Memphis Depot Main Installation RI

		Carcinoge	• -
Ingestion		Age-enecific intoko (for carcinogenic compounds only).
intake for CDI =	non-carcinogenic compounds Cs * IR * FI * EF * ED * CF	Age-specific intake (CDladj =	Cs * FI * EF * CF * IRadj
CDI =	BW * AT	CDIadj =	AT
Cs =	Concentration in soil (mg/kg)	EPC	EPC
lRadi ≃	Age-Specific Factor (ingestion) (mg - year)/(kg - day)	114 29 g	na
inauj = IRing =	Ingestion Rate (mg/event)	na na	100 a
FI =	Fraction Ingested (unitless)	100%	100%
FI = EF =	Exposure Frequency (events/year)	350 a	350 a
ED =	Exposure Duration (year)	na	30 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1 00E-06
BW =	Body Weight (kg)	na	70 a
AT =	Averaging Time (days)	25550 a	10950 a
AI =	Averaging Time (days)	25550 a	10950 a
Dermal: CDI =	Cs*SA*AF*ABS*EF*ED*CF		
CDI =	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2/event)	5419 b	5419 b
AF =	Soil-Skin Adherence Factor (mg/cm2)	1 c	1 c
ABS =	Absorption Factor (unitless)	(Chemical Specific) d	(Chemical Specific) d
EF =	Exposure Frequency (events/year)	350 a	350 a
ED =	Exposure Duration (year)	30 a	30 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	10950 a
Dust Inh	alation:		
CDI =	Cs * ((1/VF)+(1/PEF)) * IRinh * EF * ED BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 e	1 32E+09 e
VF =	Volatilization Factor (m3/kg)	(Chemical Specific) f	(Chemical Specific) f
IRinh =	Inhalation Rate (m3/event)	20 a	20 a
EF =	Exposure Frequency (events/year)	350 a	350 a
ED =	Exposure Duration (year)	30 a	30 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	10950 a

References:

- a = U S. EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991
- b = Surface area of hands, 1/2 arms, 1/2 legs and feet of an adult, adapted from CEHT, Technical Report Soil Cleanup Target Levels for FDEP, September 2, 1997.
- c = U S EPA Dermal Exposure Assessment Principles and Application, January 1992
- d = Chemical-specific absorption factors are found in Appendix C of the Parcel 3 Streamlined Risk Assessment, 1999
- e = Particulate emission factor (PEF), adapted from U.S EPA, Soil Screening Guidance Technical Background Document, May 1996
- f = Chemical-specific volatilization factors are found in Appendix C of the Parcel 3 Streamlined Risk Assessment, 1999
- g = Age-adjusted ingestion rate for adults, adjusted for body weight and time for carcinogenic exposure.

IRadj = <u>IRc x EDc</u> + <u>IRa x (EDa - EDc)</u> = 200 x 6 + 100 x (30-6) BWc BWa 15 70 = Data'I\$F\$23 (mg-year)/(kg-day)

TABLE 13-5b Soil - Future Hypothetical Residential Adult Carcinogenic Scenanc Memphis Depot Main Installation RI

					***************************************					i				
								Ingestion	tion	Dermal	lat	Inhalation	tion	
Units	Chemical	WOE	SFo	SFi	EPC	ABS	VFres	CDladj	ELCR	CDI	ELCR	CDI	ELCR	
	Metals and Pesticides													
MG/KG	ARSENIC	∢	1 50E+00	1.51E+01	2.93E+01	0 001		4 59E-05	7E-05	9 33E-07	1E-06	2 61E-09	4E-08	
MG/KG	CHROMIUM	∢		4 20E+01	2 15E+01	0 001		3 37E-05		6 85E-07		1 92E-09	8E-08	
MG/KG	COPPER	Δ			3.09E+01	0 001		4 84E-05		9 84E-07		2.75E-09		
MG/KG	MANGANESE	۵			9 83E+02	0 001		1 54E-03		3 13E-05		8 74E-08		
MG/KG	NICKEL	0			2 59E+01	0 001		4 05E-05		8 23E-07		2 30E-09		
MG/KG	LEAD	B 2			7 59E+01	0 001		1 19E-04		241E-06		6.75E-09		
MG/KG	ALPHA-CHLORDANE	B 2	3 50E-01	3 50E-01	2 25E-01	0 04		3 53E-07	1E-07	2 87E-07	1E-07	2 00E-11	7E-12	
MG/KG	GAMMA-CHLORDANE	B 2	3 50E-01	3 50E-01	2 68E-01	0 04		4 19E-07	1E-07	3 41E-07	1E-07	2 38E-11	8E-12	
MG/KG	DIELDRIN	B 2	1 60E+01	161E+01	2 21E+00	0 03		3 47E-06	6E-05	2.11E-06	3E-05	1 97E-10	3E-09	·
MG/KG	ODE	B 2	3 40E-01		8 05E-01	0 03		1.26E-06	4E-07	7 68E-07	3E-07	7 16E-11		
MG/KG	TOO	B 2	3 40E-01	3 40E-01	9 63E-01	0 03		1.51E-06	5E-07	9 19E-07	3E-07	8 56E-11	3E-11	
	Semivolatiles													
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	3 10E-01	2 51E-01	0.1	1.09E+07	3 92E-07	3E-07	7 97E-07	6E-07	2 72E-09	8 E -10	
MG/KG	BENZO(a)PYRENE	B3	7 30E+00	3 10E+00	2 56E-01	0	2 96E+07	4 01E-07	3E-06	8 14E-07	90- <u>3</u> 9	1.04E-09	3E-09	
MG/KG	BENZO(b)FLUORANTHENE	85	7 30E-01	3.10E-01	2 83E-01	0 1	5 72E+06	4 43E-07	3E-07	9.00E-07	7E-07	5 83E-09	2E-09	
	Total Risk								1E-04		4E-05		1E-07	
										Tot	Total Risk =	2E-04		
Notes.	WOE = Weight of Evidence, CDI = Chronic Daily Intake,	ally Intal		xposure Po	unt Concen	tration, E	EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	ss Lifetime C	ancer Exp	osure				

53

TABLE 13-5c Soil - Hypothetical Future Residential Adult Noncarcinogenic Scenano Memphis Depot Main Installation RI

								Ingestion	tion	Dermal	mail	=	Inhalation
Units	Chemical	WOE	RfDo	RfOi	EPC	ABS	VFres	G	ğ	CDI	НФ	CDI	HQ
	Metals and Pesticides												
MG/KG	ARSENIC	∢	3 00E-04		2 93E+01	0 001		4 02E-05	0.1	2 18E-06	0 007	6 08E-09	
MG/KG	CHROMIUM	∢	3 50E+00	5 71E-07	2 15E+01	0 001		2 95E-05	0 000008	1 60E-06	0 0000005	4 47E-09	900 0
MG/KG	COPPER	۵	3 50E+00		3 09E+01	0 001		4 24E-05	0 00001	2 30E-06	0 0000007	6 42E-09	
MG/KG	MANGANESE	۵	2 30E-02		9 83E+02	0 001		1 35E-03	90 0	7 30E-05	0 003	2 04E-07	
MG/KG	NICKEL	0	2 00E-02		2 59E+01	0 001		3 54E-05	0 002	1 92E-06	0 0001	5 37E-09	
MG/KG	LEAD	B2			7 59E+01	0 001		1 04E-04		5 63E-06		1 57E-08	
MG/KG	ALPHA-CHI.ORDANE	B2	5 00E-04		2 25E-01	0 04		3 09E-07	9000 0	6 69E-07	0 001	4 68E-11	
MG/KG	GAMMA-CHLORDANE	B2	5 00E-04		2 68E-01	0 04		3 67E-07	0 0007	7 95E-07	0 002	5 55E-11	
MG/KG	DIELDRIN	B2	5 00E-05	1 00E+02	2 21E+00	0 03		3 03E-06	90 0	4 93E-06	0.1	4 60E-10	0 000000000000
MG/KG	DDE	B2			8 05E-01	0 03		1 10E-06		1 79E-06		1 67E-10	
MG/KG	TOO	B2	5 00E-04		9 63E-01	0 03		1 32E-06	0 003	2 14E-06	0 004	2 00E-10	
	Semivolatiles	0											
MG/KG	BENZO(a)ANTHRACENE	B2			2 51E-01	0	1 09E+07	3 43E-07		1 86E-06		6 35E-09	
MG/KG	BENZO(a)PYRENE	B2			2 56E-01	0.1	2 96E+07	3 50E-07		1 90E-06		2 42E-09	
MG/KG	BENZO(b)FLUORANTHENE	B2			2 83E-01	0 1	5 72E+06	387E-07		2 10E-06		1 36E-08	
	Hazard Index								03		0.1		0 008
											Total HI=	0.4	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	ronic Darly Intal	ce, EPC = E	xposure Po	int Concentra	tion, HQ =	Hazard Quote	ent, HI = Ha	zard Index				

TABLE 13-6a

Soil - Hypothetical Future Residential Child Scenario

Memphis Depot Main Installation RI

		Carcinogenic (optional)	Noncarcinogenic
Ingestion			
CDi =	Cs * IRing * FI * EF * ED * CF		
•	BW * AT		===
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IRing =	Ingestion Rate (mg/event)	200 a	200 a
FI =	Fraction Ingested (unitless)	100%	100%
EF =	Exposure Frequency (events/year)	350 b	350 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dermal:			
CDI =	Cs * SA * AF * ABS * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2/event)	2394 с	2394 b
AF=	Soil-Skin Adherence Factor (mg/cm2)	1 d	1 c
ABS =	Absorption Factor (unitless)	(Chemical Specific) e	(Chemical Specific) d
EF =	Exposure Frequency (events/year)	350 b	350 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dust Inh	alation:		
CDI =	Cs * ((1/VF)+(1/PEF)) * IRinh * EF * ED		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 f	1.32E+09 e
VF =	Volatilization Factor (m3/kg)	(Chemical Specific) g	(Chemical Specific) f
Rinh =	Inhalation Rate (m3/event)	15 a	15 a
EF =	Exposure Frequency (events/year)	350 b	350 a
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a

References:

- a = U.S. EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure Factors," OSWER Directive 9285.6-03, March 25, 1991.
- c = Surface area of hands, 1/2 arms, 1/2 legs and feet of a child (age 1-6 years), adapted from CEHT, Technical Report: Soil Cleanup Target Levels for FDEP, September 2, 1997.
- d = U.S EPA Dermal Exposure Assessment. Principles and Application, January 1992
- e = Chemical-specific absorption factors are found in Appendix C of the Parcel 3 Streamlined Risk Assessment, 1999.
- $\label{eq:total} \textbf{f} = \text{Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance. Technical}$
 - Background Document, May 1996
- g = Chemical-specific volatilization factors are found in Appendix C of the Parcel 3 Streamlined Risk Assessment, 1999

;

ŝ

TABLE 13-6b
Soil - Future Hypothetical Residential Child Carcinogenic Scenario (optional)
Memphis Depot Main Installation RI

								Ingestion	tion	Dermal	nal E	Inhalation	tion
Units	Chemical	WOE	SFo	SFi	EPC	ABS	VFres	CDI	ELCR	9	ELCR	9	ELCR
	Metals and Pesticides												
MG/KG	ARSENIC	∢	1 50E+00	1 51E+01	2 93E+01	0 001		321E-05	5E-05	3 85E-07	6E-07	1 83E-09	3E-08
MG/KG	CHROMIUM	∢		4 20E+01	2 15E+01	0 001		2 36E-05		2 83E-07		1,34E-09	6E-08
MG/KG	COPPER	٥			3 09E+01	0 001		3 39E-05		4 06E-07		1 93E-09	8+9
MG/KG	MANGANESE	٥			9 83E+02	0 001		1 08E-03		1 29E-05		6 12E-08	00 +00
MG/KG	NICKEL	0			2,59E+01	0 001		2.84E-05		3 39E-07		1 61E-09	0E+00
MG/KG	LEAD	B 2			7 59E+01	0 001		8 31E-05		9 95E-07		4 72E-09	0E+00
MG/KG	ALPHA-CHLORDANE	B2	3 50E-01	3 50E-01	2 25E-01	0 04		2.47E-07	9E-08	1 18E-07	4E-08	1 40E-11	5E-12
MG/KG	GAMMA-CHLORDANE	B 2	3 50E-01	3 50E-01	2 68E-01	0 04		2 93E-07	1E-07	1 40E-07	5E-08	1.67E-11	6E-12
MG/KG	DIELDRIN	B 2	1 60E+01	1 61E+01	2 21E+00	0.03		2 43E-06	4E-05	8 71E-07	1E-05	1 38E-10	2E-09
MG/KG	DDE	85	3 40E-01		8 05E-01	0 03		8 82E-07	3E-07	3 17E-07	1E-07	5 01E-11	0E+00
MG/KG	DDT	B2	3 40E-01	3 40E-01	9 63E-01	0 03		1 06E-06	4E-07	3 79E-07	1E-07	6.00E-11	2E-11
	Semivolatiles												
MG/KG	BENZO(a)ANTHRACENE	B 2	7 30E-01	3 10E-01	2 51E-01	0 1	1 09E+07	275E-07	2E-07	3 29E-07	2E-07	1 90E-09	6E-10
MG/KG	BENZO(a)PYRENE	B 2	7 30E+00	3.10E+00	2 56E-01	0	2 96E+07	2 80E-07	2E-06	3 36E-07	2E-06	7.26E-10	2E-09
MG/KG	BENZO(b)FLUORANTHENE	B2	7 30E-01	3 10E-01	2 83E-01	0.1	5 72E+06	3 10E-07	2E-07	3 71E-07	3E-07	4 08E-09	1E-09
	Total Risk								9E-05		2E-05		9E-08
										Tot	Total Risk =	1E-04	
Notes	WOE = Weight of Evidence: CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	c Daily Intake,	EPC = Expos	ure Point Co	oncentration	, ELCR	= Excess Life	time Cancel	r Exposur	_			

TABLE 13-6c
Soil - Hypothetical Future Residential Child Noncarcinogenic Scenario Memphis Depot Main Installation FI

								Ingestion	tion	Derma	mal	q	Inhalation
Units	Chemical	WOE	RfDo	RfDi	EPC	ABS	VFres	CDI	오	coi	НО	СОІ	НО
	Metals and Pesticides												
MG/KG	ARSENIC	∢	3 00E-04		2 93E+01	0 001		3 75E-04	12	4 49E-06	001	2 13E-08	
MG/KG	CHROMIUM	4	3 50E+00	5 71E-07	2 15E+01	0 001		2 75E-04	0 00008	3 30E-06	60000000	1 56E-08	0 03
MG/KG	COPPER	٥	3 50E+00		3 09E+01	0 001		3 95E-04	0 0001	4 73E-06	0 000001	2 25E-08	
MG/KG	MANGANESE	۵	2 30E-02		9 83E+02	0 001		1 26E-02	0.5	1 50E-04	0 007	7 14E-07	
MG/KG	NICKEL	0	2 00E-02		2 59E+01	0 001		331E-04	0 02	3 96E-06	0 0002	1 88E-08	
MG/KG	LEAD	B2			7 59E+01	0 001		9 70E-04		1 16E-05		5 51E-08	
MG/KG	ALPHA-CHLORDANE	B2	5 00E-04		2 25E-01	0 04		2 88E-06	900 0	1 38E-06	0 003	1 64E-10	
MG/KG	GAMMA-CHLORDANE	B2	5 00E-04		2 68E-01	0 04		3 42E-06	0 007	1 64E-06	0 003	1 94E-10	
MG/KG	DIELDRIN	B2	5 00E-05	1 00E+02	2 21E+00	0 03		2 83E-05	90	1 02E-05	02	1 61E-09	0 0000000000
MG/KG	DDE	B2			8 05E-01	0 03		1 03E-05		3 70E-06		5 85E-10	
MG/KG	100	B2	5 00E-04		9 63E-01	0 03		1 23E-05	0 02	4 42E-06	600 0	6 99E-10	
	Semivolatites												
MG/KG	BENZO(a) ANTHRACENE	B2			2 51E-01	0 1	1 09E+07	3 20E-06		3 83E-06		2 22E-08	
MG/KG	BENZO(a)PYRENE	B2			2 56E-01	0 1	2 96E+07	3 27E-06		391E-06		8 47E-09	
MG/KG	BENZO(b)FLUORANTHENE	B2			2 83E-01	0 1	5 72E+06	3 61E-06		4 33E-06		4 76E-08	
	Hazard Index								2.4		0.2		0 03
											Total HI=	2.7	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HO = Hazard Quotient, HI = Hazard Index	nc Daily Inte	ike, EPC = E	xposure Pc	unt Concentra	tion, HQ =	Hazard Quoti	ent, HI = Ha.	zard Index				

TABLE 13-7a
Site #59 Surface Soil -Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		Carcinogenic		Noncarcinogenic
Ingestion				
CDI =	Cs*IR*FI*EF*ED*CF BW*AT			
Cs =	Concentration in soil (mg/kg)	EPC		EPC
IR =	Ingestion Rate (mg/day)	50	а	50 a
F! =	Fraction ingested (unitless)	1		1
EF =	Exposure Frequency (day/year)	250	а	250 a
ED =	Exposure Duration (year)	25	а	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06		1 00E-06
BW =	Body Weight (kg)	70	а	70 a
AT =	Averaging Time (days)	25550	а	9125 a
Dermal:				
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC		EPC
SA =	Surface Area (cm2)	2679	c,d	2679 c.d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0.03	c,e	0 03 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific)	f	(Chemical Specific) f
ET =	Exposure Time (8 hours per 8 hour workday)	1	b	1 b
EF =	Exposure Frequency (day/year)	250	a	250 a
ED =	Exposure Duration (year)	25	а	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06		1 00E-06
BW =	Body Weight (kg)	70	а	70 a
AT =	Averaging Time (days)	25550	а	9125 a
Particula	te Inhalation:	for volatiles:		
CDI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/F	PEF)) *	R 'ET'EF'ED
	BW * AT		V * AT	
Cs =	Concentration in soil (mg/kg)	EPC		EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09	g	1 32E+09 g
VFind =	Volatilization Factor (m3/kg)	(Chemical Specific)	h	(Chemical Specific) h
lR ⊭	Inhalation Rate (m3/day)	20	а	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1	b	1 b
EF =	Exposure Frequency (day/year)	250	а	250 a
ED =	Exposure Duration (year)	25	а	25 a
BW =	Body Weight (kg)	70	а	70 a
AT =	Averaging Time (days)	25550	а	9125 a

References

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance *Standard Default Exposure *85 6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity
- c = U S EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker.
- $\mathbf{e} = \mathbf{AF}$ calculated for soil adherence can be found in Appendix \mathbf{G}
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance Technical Background Document, May 1996
- h = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F.A.C.,
 December 1998

TABLE 13-7b
Site #59 Surface Soil -Hypothetical Future Industrial Worker Carcinogenic Scenario Memphis Depot Main Installation Rt

									Ingestion	stion	Dermal	nal	Inhai	Inhalation	
Units	Chemical	WOE	SFo	SFd	SFI	EPC	ABSgì ABS	ABS	CDI	ELCR	ᅙ	CDI ELCR	CD	ELCR	
MG/KG	DIELDRIN	82	1 60E+01	3 20E+01	1 60E+01	5 80E-01	320E+01 160E+01 580E-01 500E-01 01 101E-07 162E-06 163E-08 521E-07 307E-11 491E-10	0.1	1 01E-07	1 62 E -06	1 63E-08	5 21E-07	3 07E-11	4 91E-10	
MG/KG	TETRACHLOROETHYLENE(PCE)	C-85	C-B2 5 20E-02	5 20E-02	2 00E-03	7 30E-02	5 20E-02 2 00E-03 7 30E-02 1 00E+00 0 01 1 28E-08 6 3E-10 2 05E-10 1 07E-11 1 79E-06 3 57E-09	0 01	1 28E-08	6 63E-10	2 05E-10	1 07E-11	1 79E-06	3 57E-09	
	Total Risk									1,62E-06		5 21E-07		4.06E-09	
											₽	Fotal Risk = 2E-06	2E-06		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC	nic Daily Ir	ıtake, EPC	= Exposure	Point Conce	intration, EL	= Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	s Lifetim	e Cancer Ex	posnre					

. . . . ,

Inhalation CDI 8 60E-11 5 00E-06

Dermal

Ingestion

HQ 0 00000006 0.002 Total HI=

CDI 4 56E-08 5 74E-10

0 1 0 0 1

 WOE
 RIDo
 RIDd
 RIDi
 EPC
 ABSgi

 B2
 5 00E-05
 2 50E-05
 0 00E+00
 5 80E-01
 5 00E-01

 C-B2
 1 00E-02
 1 00E-02
 1 40E-01
 7 30E-02
 1 00E+00

Chemical
DIELDRIN
TETRACHLOROETHYLENE(PCE)
Hazard Index

Units MG/KG MG/KG

Notes

Site #59 Surface Soil - Hypothetical Future Industrial Worker Noncarcinogenic Scenario

Memphis Depot Main Installation RI

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

0.008

55

P/147543/APPI3FU2aft xls59SSfW-Noncarcinogenic

TABLE I3-8a Site #59 Soil Column -Hypothetical Future Industrial Worker Scenario Memphis Depot Main Installation Ri

	, 1	Carcinogenic		Noncarcinogenic
Ingestion				
CDI =	Cs*IR*FI*EF*ED*CF BW*AT			
Cs =	Concentration in soil (mg/kg)	rno.		rno
IR =		EPC		EPC
ın = Fl =	Ingestion Rate (mg/day)	50	а	50 a
	Fraction Ingested (unitless)	1		1
EF =	Exposure Frequency (day/year)	250	а	250 a
ED =	Exposure Duration (year)	25	а	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06		1.00E-06
BW =	Body Weight (kg)	70	а	70 a
AT =	Averaging Time (days)	25550	а	9125 a
Dermal:				
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC		EPC
SA =	Surface Area (cm2)	2679	c,d	2679 c,d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03	•	0 03 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific)	f	(Chemical Specific) f
ET =	Exposure Time (8 hours per 8 hour workday)	1.000	Ь	1 b
EF =	Exposure Frequency (day/year)	250	a	250 a
ED =	Exposure Duration (year)	25	a	250 a
CF =	Conversion Factor (kg/mg)	1 00E-06	u	1 00E-06
BW =	Body Weight (kg)	70	а	700 <u>L</u> -00
AT =	Averaging Time (days)	25550	a	9125 a
Particula	te Inhalation:	for volatiles:		
CDI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/F	EF)) '	* IR * ET * EF * ED
	BW * AT	BW		
Cs =	Concentration in soil (mg/kg)	EPC		EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09	g	1.32E+09 g
VFind =	Volatilization Factor (m3/kg)	(Chemical Specific)	h	(Chemical Specific) h
IR =	Inhalation Rate (m3/day)	20 000	a	20 a
FT =	Exposure Time (8 hours per 8 hour workday)	1	b	1 b
EF =	Exposure Frequency (day/year)	250	a	250 a
ED =	Exposure Duration (year)	25	a	25 a
BW =	Body Weight (kg)	70	a	70 a
			_	9125 a
AT =	Averaging Time (days)	25550	а	9125 a

References:

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure 285 6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity
- c = U S. EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G.
- g = Particulate emission factor (PEF), adapted from U.S.EPA, Soil Screening Guidance Technical Background Document, May 1996.
- h = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F.A.C., December 1998.

TABLE 13-8b Site #59 Sot Column -Hypothetical Future Industrial Worker Carcinogenic Scenario Memphis Depot Main Installation RI

									Ingestion	tion	Dermal	nal	Inhalation	ıtion
Units	Chemical	WOE	SFo	SFd	SFI	EPC	ABSgi	ABS	ō	ELCR	CD	ELCR	CDI	ELCR
MG/KG	DIELDRIN	B2	1 60E+01	3 20E+01	1 60E+01	1 55E-01	3 20E+01 1 60E+01 1 55E-01 5 00E-01 01 2 71E-08 4 33E-07 4 35E-09 1 39E-07 8 20E-12 1 31E-10	01	2 71E-08	4 33E-07	4 35E-09	1 39E-07	8 20E-12	1 31E-10
MG/KG	TETRACHLOROETHYLENE(PCE)	C-85	C-82 5 20E-02	5 20E-02	2 00E-03	7 30E-02	5 20E-02 2 00E-03 7 30E-02 1 00E+00 0 01 1 28E-08 6 63E-10 2 05E-10 1 07E-11 1 79E-06 3 57E-09	0 01	1 28E-08	6 63E-10	2 05E-10	1 07E-11	1 79E-06	3 57E-09
	Total Risk									4.34E-07		1.39E-07		3.70E-09
											Ĺ	Fotal Risk =	6E-07	

WOE = Weight of Evidence, CDI * Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

Notes

0.00004

HQ 0 00000006 0.0005 Total HI=

CDI 1 22E-08 5 74E-10

| Ingestion | CDI | HQ | 7 58E-08 | 0 0002 | 3 57E-08 | 0.002 |

0 1 0 0 1

 WOE
 RIDo
 RIDd
 RIDi
 EPC
 ABSgi

 B2
 5 00E-05
 2 50E-05
 0 00E+00
 1 55E-01
 5 00E-01

 C-B2
 1 00E-02
 1 00E-02
 1 40E-01
 7 30E-02
 1 00E+00

DIELDRIN TETRACHLOROETHYLENE(PCE) Hazard Index

Chemical

Units MG/KG MG/KG

Notes

TABLE 13-8c Site #59 Soil Column - Hypothetical Future Industrial Worker Noncarcinogenic Scenario

Memphis Depot Main Installation RI

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

0.002

Inhalation CDI HQ 2 30E-11 5 00E-06 0 00004

Dermal

<u>2</u>2

P/147543/APPI3FU2all xis59SBIW Noncarcinogenic

TABLE I3-9a
Site #59 Soil Column -Hypothetical Current/Future Utility Worker Scenario
Memphi Depot Main Installation RI

		Carcinogenic		Noncarcinogenic
Ingestion				
CDI =	Cs * IR * FI * EF * ED * CF			
	BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC		EPC
IR =	Ingestion Rate (mg/day)	100	С	100 c
FI =	Fraction Ingested (unitless)	05		0.5
EF =	Exposure Frequency (day/year)	24	d	24 d
ED =	Exposure Duration (year)	25	а	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06		1.00E-06
BW =	Body Weight (kg)	70	а	70 a
AT =	Averaging Time (days)	25550	а	9125 a
Dermal:				
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC		EPC
SA =	Surface Area (cm2)	2679	e,f	2679 e,f
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 1	e,g	0 1 e,g
ABS =	Absorption Factor (unitless)	(Chemical Specific)	ĥ	(Chemical Specific) h
ET =	Exposure Time (8 hours per 8 hour workday)	i i	b	1 b
EF =	Exposure Frequency (day/year)	24	d	24 d
ED =	Exposure Duration (year)	25	а	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06		1 00E-06
BW =	Body Weight (kg)	70	а	70 a
AT =	Averaging Time (days)	25550	а	9125 a
Particula	te Inhalation:	for volatiles:		
CDI =	Cs * (1/PEF) * IR * ET * EF * ED	<u>Cs * ((1/VFind)+(1/P</u>	EF)) *	IR *ET*EF*ED
	BW * AT		/ * AT	
Cs =	Concentration in soil (mg/kg)	EPC		EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09	1	1 32E+09 ı
VFind =	Volatilization Factor (m3/kg)	(Chemical Specific)	j	(Chemical Specific) j
IR =	inhalation Rate (m3/day)	20	а	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1	b	1 b
EF =	Exposure Frequency (day/year)	24	d	24 d
ED =	Exposure Duration (year)	25	а	25 a
BW =	Body Weight (kg)	70	а	70 a
	Averaging Time (days)	25550		

References:

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure '85 6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas based on the nature of the activity, assuming full workday
- c = Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- d = Utility activity assumed to be twice a month throughout the year
- e= U S EPA Exposure Factors Handbook, August 1997
- f = Surface area of 1/2 head, forearms and the hands of an adult worker.
- g = AF calculated for soil adherence can be found in Appendix G
- h = Chemical-specific absorption factors are found in Appendix G
- i = Particulate emission factor (PEF), adapted from U.S.EPA, Soil Screening Guidance: Technical Background
 Document, May 1996
- j = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F.A C. December 1998

TABLE 13-9b
Site #59 Soil Column -Hypothetical Current/Future Utility Worker Carcinogenic Scenano
Memphis Depot Main Installation RI

									Ingestion	tion	Decmal	nai	Inhali	nhalation
Units	Chemical	WOE		SFd	SFI	EPC	SFd SFI EPC ABSg1 ABS CD1 ELCR CD1 ELCR CD1	ABS	CO	ELCR	ᄗ	ELCH	ᅙ	ELCR
MG/KG	DIELDRIN	B2	1 60E+01	3 20E+01	1 60E+01	1 55E-01	5 00E-01	0.1	2 60E-09	4 16E-08	1 39E-09	4 46E-08	7 88E-13	1 26E-11
MG/KG	TETRACHLOROETHYLENE(PCE)	C-B2	C-B2 5 20E-02	5 20E-02	2 00E-03	7 30E-02	5 20E-02 2 00E-03 7 30E-02 1 00E+00 0 01 1 22E-09 6 37E-11 6 56E-11 3 41E-12 1 71E-07 3 43E-10	0 01	1 22E-09	6 37E-11	6 56E-11	3 41E-12	1 71E-07	3 43E-10
	Total Risk									4.16E-08		4.46E-08		3.55E-10
											န	Fotal Risk =	9E-08	
Notes	WOE = Weight of Evidence, CDI ≈ Chronic Daily Intake, EPC	nic Daily In	take, EPC:	= Exposure	Point Conce.	ntration, EL(= Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	Lifetime	Cancer Ex	posure				

P/147543/APPI3FU2ali xls59SSMW-Noncarcinogenic

TABLE 13-9c
Site #59 Soil Column - Hypothetical CurrenVFuture Utility Worker Noncarcinogenic Scenario
Memphs Depot Main Installation RI

									Ingestion	tion	Derma	mai	Inhalation	tion	
Units	Chemical	WOE	RfDo	RfDd	RſĎ	EPC		ABS	CDI	알	<u>5</u>	오	<u>5</u>	ğ	
MG/KG	DIELDRIN	B2	5 00E-05	5	0E-05 0 00E+00 1 55E-01	1 55E-01	1 5 00E-01	0.1	7 28E-09	0 0001	3 90E-09	0 0002	2 21E-12		
MG/KG	TETRACHLOROETHYLENE(PCE)	C-B2	C-B2 100E-02 104	1 00€-02	1 40E-01	0E-02 1 40E-01 7 30E-02 1 00E+00	1 00E+00	0 01	3 43E-09	0 0000003	11 3 43E-09 0 0000003 1 84E-10 0 00	0 00000002 4 80E-07 0 000003	4 80E-07	0 000003	
	Hazard Index									10000		0,0002	•	0 000003	
												Total Hl≖	0.0003		

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

TABLE 13-10a

FU2 Sediment- Hypothetical Future Recreational (Youth) Scenario Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic	
Ingestion				
CDI =	Csd * IR * FI * EF * ED * CF			
	BW * AT			
Csd =	Concentration in sediment (mg/kg)	EPC	EPC	
IR =	Ingestion Rate (mg/day)	100 a, b	100 a, b	
F1 =	Fraction Ingested (unitless)	100%	100%	
EF =	Exposure Frequency (day/year)	45 a	45 a	
ED =	Exposure Duration (year)	10 a	10 a	
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06	
BW =	Body Weight (kg)	45 a	45 a	
AT =	Averaging Time (days)	25550 с	3650 c	
Dermal:				
CDI =	Csd * SA * AF * ABS * ET * EF * ED * CF			
	BW * AT			
Csd =	Concentration in sediment (mg/kg)	EPC	EPC	
SA =	Surface Area (cm2) - wading	4785 d	4785 d	
AF =	Soil-Skin Adherence Factor (mg/cm2)	01e	0 1 e	
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f	
ET =	Exposure Time (6 hours per 24 hour day)	0 25 g	0 25 g	
EF=	Exposure Frequency (day/year)	45 a	45 a	
ED =	Exposure Duration (year)	10 a	10 a	
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06	
BW =	Body Weight (kg)	45 a	45 a	
AT =	Averaging Time (days)	25550 c	3650 c	

References:

- a = Values suggested by Supptemental Guidance to RAGS Region 4 Butletins, Human Health Risk Assessment, Interim, November 1995
- b = A conservative ingestion rate based on residential soil intake is assumed
- c = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure
 - Factors," OSWER Directive 9285 6-03, March 25, 1991
- d = Surface area of hands, 1/2 arms, 1/2 legs and feet of a youth (9-18 yrs) assumed to be same for sediment and surfacewater, adapted from U S EPA Exposure Factors Handbook, August 1997
- $\mathbf{e} = \mathsf{AF}$ calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = 6 hours per a 24 hour day are assumed to be spent in Depot retention ponds for recreation

TABLE I3-10b
FU2 Sediment- Hypothetical Future Recreational (Youth) Scenano
Memphis Depot Main Installation RI

	· · · · · · · · · · · · · · · · ·							inges	tion	Derr	nai
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ABS	CDI	ELCR	ÇDi	ELCR
MG/KG	ALUMINUM				8 55E+03	01	0 001	3 34E-04	0E+00	4 00E-07	
MG/KG	ARSENIC	Α	1 50E+00	3 66E+00	9 72E+00	0 41	0 03	3 80E-07	6E-07	1 37E-08	5E-08
MG/KG	DIELDRIN	82	1 60E+01	3 20E+01	1 05E-01	05	01	4 10E-09	7E-08	4 91E-10	2E-08
MG/KG	BENZO(a)ANTHRACENE	82	7 30E-01	2 35E+00	1 46E+00	0 31	0.1	5 70E-08	4E-08	6 82E-09	2E-08
MG/KG	BENZO(a)PYRENE	B2	7 30E+00	2 35E+01	1 21E+00	0 31	0 13	4 73E-08	3E-07	7 35E-09	2E-07
MG/KG	BENZO(b)FLUORANTHENE	B2	7 30E-01	2 35E+00	1 99E+00	0 31	01	7 79E-08	6E-08	9 32E-09	2E-08
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	1 64E+00	0 31	01	6 43E-08	5E-10	7 70E-09	2E-10
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	1 02E+00	0 31	0 1	4 00E-08	3E-08	4 78E-09	1E-08
MG/KG	PCB-1260 (AROCLOR 1260)	B2	2 00E+00	2 11E+00	3 30E-01	0 95	0 15	1 29E-08	3E-08	2 32E-09	5E-09
MG/KG	PENTACHLOROPHENOL	B2	1 20E-01	1 20E-01	1 40E-01	1	0 24	5 48E-09	7E-10	1 57E-09	2E-10
MG/KG	TCDD Equivalent	B2	1 50E+05	3 00E+05	5 34E-05	05	0 03	2 09E-12	3E-07	7 49E-14	2E-08
MG/KG	CARBON TETRACHLORIDE	B2	1 30E-01	2 00E-01	2 40E-02	0 65	0 01	9 39E-10	1E-10	1 12E-11	2E-12
	Total Risk								1E-06		3E-07
								To	tal Risk =	2E-06	
Notes	WOE = Weight of Evidence, CDI = Ch	ronic Daily Intal	ce, EPC = E	xposure Poi	nt Concentra	ation, EL	CR = Ex	cess Lifetim	e Cancer E	xposure	

TABLE I3-10c FU2 Sediment- Hypothetical Future Recreational (Youth) Scenano Memphis Depot Main Installation RI

								Inge	stion	Der	mal
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	ABS	CDI	HQ	CDI	HQ
MG/KG	ALUMINUM		1 00E+00	1 00E-01	8 55E+03	01	0 001	2 34E-03	0 002	2 80E-06	0 00003
MG/KG	ARSENIC	Α	3 00E-04	1 23E-04	9 72E+00	0 41	0 03	2 66E-06	0 009	9 56E-08	0 0008
MG/KG	DIELDRIN	B2	5 00E-05	2 50E-05	1 05E-01	05	01	2 87E-08	0 0006	3 44E-09	0 0001
MG/KG	BENZO(a)ANTHRACENE	B2			1 46E+00	0 31	01	3 99E-07		4 77E-08	
MG/KG	BENZO(a)PYRENE	B2			1 21E+00	0 31	0 13	3 31E-07		5 15E-08	
MG/KG	BENZO(b)FLUORANTHENE	B2			1 99E+00	0 31	01	5 45E-07		6 52E-08	
MG/KG	CHRYSENE	B2			1 64E+00	0 31	0.1	4 50E-07		5 39E-08	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2			1 02E+00	0 31	01	2 80E-07		3 35E-08	
MG/KG	PCB-1260 (AROCLOR 1260)	B2	2 00E-05	1 90E-05	3 30E-01	0 95	0 15	9 04E-08	0 005	1 62E-08	0 0009
MG/KG	PENTACHLOROPHENOL	B2	3 00E-02	3 00E-02	1 40E-01	1	0 24	3 84E-08	0 000001	1 10E-08	0 0000004
MG/KG	TCDD Equivalent	B2			5 34E-05	05	0 03	1 46E-11		5 25E-13	
MG/KG	CARBON TETRACHLORIDE	B2	7 00E-04	4 55E-04	2 40E-02	0 65	0 01	6 57E-09	0 000009	7 86E-11	0 0000002
	Hazard Index								0 02		0.002
										Total HI⊨	0 02

TABLE I3-11a
FU2 Sediment- Hypothetical Future Recreational (Adult) Scenario
Memphis Depot Main Installation RI

	,	Carcinogenic	Noncarcinogenic	
Ingestio	n:			
CDI =	Csd * IR * FI * EF * ED * CF			
	BW * AT			
Csd =	Concentration in sediment (mg/kg)	EPC	EPC	
IR =	Ingestion Rate (mg/day)	100 a, b	100 a, b	
FI =	Fraction Ingested (unitless)	100%	100%	
EF =	Exposure Frequency (day/year)	45 a	45 a	
ED =	Exposure Duration (year)	30 c	30 c	
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06	
BW =	Body Weight (kg)	70 c	70 c	
AT =	Averaging Time (days)	25550 с	10950 c	
Dermal:				
CDI =	Csd * SA * AF * ABS * ET * EF * ED * CF			
	BW * AT			
Csd =	Concentration in sediment (mg/kg)	EPC	EPC	
SA =	Surface Area (cm2) - wading	5671 d	5671 d	
AF =	Soil-Skin Adherence Factor (mg/cm2)	01e	0 1 e	
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f	
ET=	Exposure Time (6 hours per 24 hour day)	0 25 g	0 25 g	
EF=	Exposure Frequency (day/year)	45 a	45 a	
ED =	Exposure Duration (year)	30 c	30 c	
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06	
	Body Weight (kg)	70 c	70 c	
BW =		25550 c	10950 c	

References:

- a = Values suggested by Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- b = A conservative ingestion rate based on residential soil intake is assumed
- c = U.S. EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure

Factors," OSWER Directive 9285 6-03, March 25, 1991

- d = Surface area of hands, 1/2 arms, 1/2 legs and feet of an adult assumed to be same for sediment and surfacewater, adapted from U S EPA Exposure Factors Handbook, August 1997
- $\mathbf{e} = \mathbf{AF}$ calculated for soil adherence can be found in Appendix \mathbf{G}
- f = Chemical-specific absorption factors are found in Appendix G
- g = 6 hours per a 24 hour day are assumed to be spent in Depot retention ponds for recreation

TABLE 13-11b
FU2 Sediment- Hypothetical Future Recreational (Adult) Carcinogenic Scenario Memphis Depot Main installation RI

								Ingestion	tion	Dermal	nal	
Units	Chemical	WOE	SFo	SFd	CPC	ABSgi	ABS	СБІ	ELCR	CDI	ELCR	
MG/KG	ALUMINUM				8 55E+03	0.1	0 001	6 45E-04	0E+00	9 15E-07		
MG/KG	ARSENIC	⋖	1 50E+00	3 66E+00	9 72E+00	0 41	0 03	7 34E-07	1E-06	3 12E-08	1E-07	
MG/KG	DIELDRIN	B 2	1 60E+01	3 20E+01	1 05E-01	0.5	0	7 92E-09	1E-07	1.12E-09	4E-08	
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	235E+00	1 46E+00	031	0	1 10E-07	8E-08	1.56E-08	4E-08	
MG/KG	BENZO(a)PYRENE	B 2	7.30E+00	2 35E+01	121E+00	031	0 13	9 12E-08	7E-07	1.68E-08	4E-07	
MG/KG	BENZO(b)FLUORANTHENE	B2	7 30E-01	2 35E+00	1.99E+00	031	0	1 50E-07	1E-07	2.13E-08	5E-08	
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	1 64E+00	031	0	1 24E-07	9E-10	1 76E-08	4E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	1 02E+00	031	0	7 71E-08	6E-08	1.09E-08	3E-08	
MG/KG	PCB-1260 (AROCLOR 1260)	B2	2.00E+00	2 11E+00	3 30E-01	0 95	0.15	2 49E-08	5E-08	5 30E-09	1E-08	
MG/KG	PENTACHLOROPHENOL	B 2	1 20E-01	1 20E-01	1 40E-01	-	0.24	1 06E-08	1E-09	3 60E-09	4E-10	
MG/KG	TCDD Equivalent	B2	1.50E+05	3 00E+05	5 34E-05	0.5	0 03	4 03E-12	6E-07	1.71E-13	5E-08	
MG/KG	CARBON TETRACHLORIDE	B2	1 30E-01	2 00E-01	2 40E-02	0 65	0 01	1 81E-09	2E-10	2.57E-11	5E-12	
	Total Risk		0.00E+00						3E-06		7E-07	
								Tot	Total Risk =	4E-06		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake; EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	ılly Intak	e; EPC = E	xposure Po	int Concenti	ration, El	.CR = E	xcess Lifetin	ne Cancer	Exposure		

TABLE 19-11c
FU2 Sediment- Hypothetical Future Recreational (Adult) Noncarcinogenic Scenaric Memphis Depot Main Installation RI

								Ingestion	tion	Dermal	nal	
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	ABS	CDI	НО	CDI	오	
MG/KG	ALUMINUM		1 00E+00	1 00E-01	8 55E+03	0.1	0 001	1 51E-03	0 002	2.13E-06	0 00002	
MG/KG	ARSENIC	∢	3 00E-04	1 23E-04	9 72E+00	0 41	0.03	1.71E-06	900 0	7.28E-08	9000 0	
MG/KG	DIELDRIN	85	5 00E-05	2 50E-05	1 05E-01	0.5	0 1	1 85E-08	0 0004	2.62E-09	0 0001	
MG/KG	BENZO(a)ANTHRACENE	B2			1,46E+00	0.31	0 1	2 57E-07		3 64E-08		
MG/KG	BENZO(a)PYRENE	B 2			121E+00	0.31	0.13	2 13E-07		3.92E-08		
MG/KG	BENZO(b) FLUORANTHENE	B 2			1 99E+00	0 31	0 1	3 50E-07		4 97E-08		
MG/KG	CHRYSENE	8			1 64E+00	031	0 1	2.90E-07		4 11E-08		
MG/KG	INDENO(1,2,3-c,d)PYRENE	B 2			1 02E+00	031	0 1	1 80E-07		2 55E-08		
MG/KG	PCB-1260 (AROCLOR 1260)	82	2 00E-05	1 90E-05	3 30E-01	0 95	0 15	5.81E-08	0 003	1.24E-08	0 0007	
MG/KG	PENTACHLOROPHENOL	B2	3 00E-02	3 00E-02	1 40E-01	-	0 24	2 47E-08	0 0000008	8 39E-09	0.0000003	
MG/KG	TCDD Equivalent	B 2			5 34E-05	0.5	0 03	9 40E-12		4 00E-13		
MG/KG	CARBON TETRACHLORIDE	85	7 00E-04	4 55E-04	2 40E-02	0 65	0 01	4.23E-09	0 00000	5 99E-11	0 0000001	
	Hazard Index								0.01		0.001	
										Total HI=	0.01	
Notes:	WOE = Weight of Evidence; CDI = Chronic Daily Intak	ally Intak	e, EPC = E)	posure Poin	t Concentra	ion, HQ	= Hazar	d Quotient, H	ke, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	dex		

TABLE I3-12a
FU2 Sediment- Hypothetical Future Recreational (Child) Scenario
Memphis Depot Main Installation RI

Ingostic	n.	Carcinogenic	Noncarcinogenic
Ingestion	n: Csd * IR * FI_ * EF * ED * CF		
CDI =	BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	200 a, b	200 a, t
F1 =	Fraction Ingested (unitless)	100%	100%
EF =	Exposure Frequency (day/year)	45 a	45 a
ED =	Exposure Duration (year)	6 a	6 а
CF =	Conversion Factor (kg/mg)	1.00E-06	1 00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 c	2190 с
Dermal:			
CDI =	Csd * SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
SA =	Surface Area (cm2) - wading	1851 d	1851 d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0.1 e	01 e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (6 hours per 24 hour day)	0 25 g	0.25 g
EF =	Exposure Frequency (day/year)	45 a	45 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 c	2190 c

Inhalation: Not an applicable pathway

References:

a = Values suggested by Supplemental Guidance to RAGS. Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

b = A conservative ingestion rate based on residential soil intake is assumed

c = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991.

d = Surface area of hands, 1/2 arms, 1/2 legs and feet of a child (1-6 yrs) assumed to be same for sediment and surfacewater, adapted from U S EPA Exposure Factors Handbook, August 1997

e = AF calculated for soil adherence can be found in Appendix G

f = Chemical-specific absorption factors are found in Appendix G.

g = 6 hours per a 24 hour day are assumed to be spent in Depot retention ponds for recreation

TABLE 13-12b
FU2 Sediment- Hypothetical Future Recreational (Child) Carcinogenic Scenaric Memphis Depot Main Installation RI

								Ingestion	tion	Dermal	nai	
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ABS	CDI	ELCR	CDI	ELCR	
MG/KG	ALUMINUM				8 55E+03	0.1	0 001	1 20E-03	0E+00	2 79E-07		
MG/KG	ARSENIC	4	1 50E+00	3 66E+00	9 72E+00	0.41	0 03	137E-06	2E-06	9 51E-09	3E-08	
MG/KG	DIELDRIN	82	1 60E+01	3 20E+01	1 05E-01	0.5	0 1	1 48E-08	2E-07	3 42E-10	1E-08	
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	2.35E+00	1 46E+00	031	0	2 05E-07	1E-07	4 75E-09	1E-08	
MG/KG	BENZO(a)PYRENE	82	7 30E+00	2 35E+01	1 21E+00	0 31	0 13	1.70E-07	1E-06	5 12E-09	1E-07	
MG/KG	BENZO(b)FLUORANTHENE	B 5	7 30E-01	2 35E+00	1 99E+00	0 31	0	2 80E-07	2E-07	6 49E-09	2E-08	
MG/KG	CHRYSENE	B 2	7 30E-03	2 35E-02	1.64E+00	031	0	2 32E-07	2E-09	5 36E-09	1E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B 2	7 30E-01	2.35E+00	1 02E+00	031	0.1	1 44E-07	1E-07	3 33E-09	8E-09	
MG/KG	PCB-1260 (AROCLOR 1260)	B2	2 00E+00	2 11E+00	3 30E-01	0 95	0 15	4 65E-08	9E-08	1 61E-09	3E-09	
MG/KG	PENTACHLOROPHENOL	B 5	1 20E-01	1 20E-01	1 40E-01	-	0 24	1 97E-08	2E-09	1.10E-09	1E-10	
MG/KG	TCDD Equivalent	B 2	1 50E+05	3 00E+05	5 34E-05	0.5	0 03	7.52E-12	1E-06	5 22E-14	2E-08	
MG/KG	CARBON TETRACHLORIDE	B 2	1 30E-01	2 00E-01	2 40E-02	0 65	0 01	3 38E-09	4E-10	7.82E-12	2E-12	
	Total Risk		0.00E+00						90-3S		2E-07	
								Tot	Total Risk =	5E-06		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake; EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	ally Intak	e; EPC = E	xposure Pol	int Concentr	ation, El	CR = E	xcess Lifetin	ne Cancer	Exposure		

TABLE 13-12c FU2 Sediment- Hypothetical Future Recreational (Child) Noncarcinogenic Scenario Memphis Depot Main Installation RI

								Ingestion	tion	Derma	nai
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	ABS	CDI	오	CDI	НО
MG/KG	ALUMINUM		1.00E+00	1 00E-01	8 55E+03	0.1	0 001	1 40E-02	0.01	3.25E-06	0.00003
MG/KG	ARSENIC	4	3 00E-04	1 23E-04	9.72E+00	0.41	0 03	1 60E-05	0 05	1.11E-07	6000 0
MG/KG	DIELDRIN	B2	5.00E-05	2 50E-05	1 05E-01	0 5	0 1	1 72E-07	0 003	3 99E-09	0 0002
MG/KG	BENZO(a)ANTHRACENE	B2	1		1.46E+00	031	0 1	2 39E-06		5 54E-08	
MG/KG	BENZO(a)PYRENE	B 2			1.21E+00	031	0 13	1 99E-06		5.97E-08	
MG/KG	BENZO(b)FLUORANTHENE	B 2			1 99E+00	031	0.1	3 27E-06		7.57E-08	
MG/KG	CHRYSENE	B 2			1 64E+00	031	0	2 70E-06		6 25E-08	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B 2			1 02E+00	031	0 1	1 68E-06		3 88E-08	
MG/KG	PCB-1260 (AROCLOR 1260)	B2	2 00E-05	1 90E-05	3 30E-01	0 95	0 15	5 42E-07	0 03	1.88E-08	0 001
MG/KG	PENTACHLOROPHENOL	B2	3 00E-02	3 00E-02	1 40E-01	-	0.24	2.30E-07	0 000008	1 28E-08	0 0000004
MG/KG	TCDD Equivalent	B 2			5 34E-05	0.5	0 03	8 77E-11		6 09E-13	
MG/KG	CARBON TETRACHLORIDE	B2	7 00E-04 4 55E-04	4 55E-04	2 40E-02	0 65	0.01	3 94E-08	0 00000	9 13E-11	0 0000002
	Hazard Index								0.1		0.002
										Total HI=	0.1
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake; EPC = Exposure Point Concentration, HQ = Hazard Quotient; HI = Hazard Index	ıly Intake	3; EPC = Ex	osure Point	Concentrat	on, HQ	Hazarc	Quotient; F	II = Hazard Ir	yapı	

TABLE 13-13a
FU2 Impoundment/Ditch Sediment -Hypothetical Future Industrial Worker Scenano
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestion	n:	-	-
CDI =	Csd * IR * Fl * EF * ED * CF		
	BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a, b	50 a, b
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	50 ı	50 ı
ED ≈	Exposure Duration (year)	25 d	25 d
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	70 d	70 d
AT =	Averaging Time (days)	25550 d	9125 d
Dermal:			
CDI =	Csd *SA * AF * ABS * ET * EF * ED * CF BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
SA =	Surface Area (cm2) - wading	2679 e,f	2679 e,f
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 1 g,f	0.1 g,f
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (4 hours per 8 hour workday)	05c	0.5 c
EF =	Exposure Frequency (day/year)	50 ı	50 i
ED =	Exposure Duration (year)	25 d	25 d
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 d	70 d
AT =	Averaging Time (days)	25550 d	9125 d

Inhalation: No values available for inhalation pathway

References:

- a = Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- b = A conservative ingestion rate based on industrial soil intake is assumed
- c = 2 hours of an 8-hour workday is assumed to be spent outdoors in the contaminated areas based on the nature of the activity
- d = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure

Factors," OSWER Directive 9285 6-03, March 25, 1991

- e = Surface area of hands, 1/2 arms and face (1/2 head) of an adult worker
- f = U S EPA Exposure Factors Handbook, August 1997.
- g = AF calculated for soil adherence can be found in Appendix G.
- h = Chemical-specific absorption factors are found in Appendix G
- r = Once a week is assumed to be spent outdoors in the contaminated areas based on the nature of the activity

TABLE 13-13b FUZ Impoundment/Ditch Sediment -Hypothetical Future Industrial Worker Carcinogenic Scenario Memphis Depot Main Installation RI

								agui	Ingestion	Der	Dermal	
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ABS	CDI	ELCR	CD	ELCR	
MG/KG	ALUMINUM	0	0 00E+00		8 55E+03	1.00E-01	0 001	2 99E-04	0 00E+00	8.00E-07		
MG/KG	ARSENIC	⋖	1 50E+00	3 66E+00	9 72E+00	4 10E-01	0 03	3 40E-07	5 09E-07	2 73E-08	9 99E-08	
MG/KG	DIELORIN	85	1 60E+01	3 20E+01	1 05E-01	5 00E-01	0 1	3 66E-09	5 86E-08	9 82E-10	3.14E-08	
MG/KG	BENZO(a)ANTHRACENE	85	7.30E-01	2 35E+00	1 46E+00	3 10E-01	0.1	5 09E-08	3.72E-08	1 36E-08	3 21E-08	
MG/KG	BENZO(a)PYRENE	B 2	7 30E+00	2 35E+01	1 21E+00	3 10E-01	0 13	4 22E-08	3 08E-07	1 47E-08	3 46E-07	
MG/KG	BENZO(b) FLUORANTHENE	B 2	7 30E-01	2 35E+00	1 99E+00	3 10E-01	0 1	6 95E-08	5 08E-08	1 86E-08	4 39E-08	
MG/KG	CHRYSENE	85	7 30E-03	2 35E-02	1 64E+00	3 10E-01	0 1	5 74E-08	4 19E-10	1 54E-08	3 62E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	1.02E+00	3 10E-01	0.1	3 57E-08	2 61E-08	9 56E-09	2 25E-08	
MG/KG	PCB-1260 (AROCHLOR 1260)	82	2 00E+00	2 11E+00	3 30E-01	9 50E-01	0 15	1 15E-08	2 31E-08	4 63E-09	9 76E-09	
MG/KG	PENTACHLOROPHENOL	B 2	1 20E-01	1 20E-01	1 40E-01	1 00E+00	0 24	4 89E-09	5 87E-10	3 15E-09	3 77E-10	
MG/KG	TCDD Equivalent	B 2	1 50E+05	3 00E+05	5 34E-05	5 00E-01	0.03	1 86E-12	2 80E-07	1,50E-13	4 50E-08	
MG/KG	CARBON TETRACHLORIDE	B2	1,30E-01	2 00E-01	2 40E-02	6 50E-01	0 01	8 38E-10	1 09E-10	2 25E-11	4 49E-12	
	Total Risk								1.3E-06		6.3E-07	
									Total Risk=	2E-06		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake,	any Inte	ike, EPC =	Exposure P.	oint Concen	tration, ELC	R = Exc	ess Lifetime	EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	sure]

TABLE 13-13c
FU2 Impoundment/Ditch Sediment -Hypothetical Future Industrial Worker Non-carcinogenic Scenaric Memphis Depot Main Installation RI

								Inge	Ingestion	Der	Dermal	
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	ABS	CDI	HQ	CDI	유	
MG/KG	ALUMINUM	0	1 00E+00	1 00E-01	8.55E+03	1 00E-01	0 001	8 36E-04	0 0008	2.24E-06	0.00002	
MG/KG	ARSENIC	⋖	3 00E-04	1 23E-04	9 72E+00	4 10E-01	0 03	9 51E-07	0 003	7 64E-08	9000 0	
MG/KG	DIELDRIN	B2	5 00E-05	2 50E-05	1 05E-01	5 00E-01	0 1	1 03E-08	0 0002	2.75E-09	0 0001	
MG/KG	BENZO(a)ANTHRACENE	B2	0 00E+00		1 46E+00	3 10E-01	0 1	1 43E-07		3 82E-08		
MG/KG	BENZO(a)PYRENE	B2	0 00E+00		1.21E+00	3 10E-01	0 13	1 18E-07		4.12E-08		
MG/KG	BENZO(b)FLUORANTHENE	B2	0 00E+00		1.99E+00	3 10E-01	0 1	1.95E-07		5 22E-08		
MG/KG	CHRYSENE	82	0 00E+00		1 64E+00	3 10E-01	0 1	1 61E-07		4 31E-08		
MG/KG	INDENO(1.2.3-c.d)PYRENE	B2	0 00E+00		1 02E+00	3.10E-01	0 1	9 99E-08		2.68E-08		
MG/KG	PCB-1260 (AROCLOR 1260)	B 2	2 00E-05	1 90E-05	3 30E-01	9 50E-01	0 15	3.23E-08	0 002	1.30E-08	0 0007	
MG/KG	PENTACHLOROPHENOL	B2	3.00E-02	3.00E-02	1 40E-01	1 00E+00	0 24	1 37E-08	0 0000005	8 81E-09	0 0000003	
MG/KG	TCDD Equivalent	82	0 00E+00		5 34E-05	5 00E-01	0 03	5 22E-12		4 20E-13		
MG/KG	CARBON TETRACHLORIDE	B2	7.00E-04	4 55E-04	4 55E-04 2 40E-02	6.50E-01	0 0 1	2 35E-09	0 000003	6 29E-11	0 0000001	
	Hazard Index								900'0		0.001	
									Total HI =	0.007		

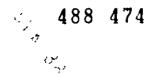
WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

Notes

TABLE I3-14a
FU2 Sediment -Hypothetical Current/Future Maintenance Worker Scenaric
Memphis Depot Main Installation RI

Inmedia		Carcinogenic	Noncarcinogenic
Ingestion			
CDI =	Csd * IR * FI * EF * ED * CF BW * AT		
Cod -		FBC	-
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a, b	50 a, b
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	12 d	12 d
ED =	Exposure Duration (year)	25 e	25 e
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 e	70 e
AT =	Averaging Time (days)	25550 e	9125 e
Dermal:	C-4 104 1 4E 1 4DC 1 ET 1 EE 1 ED 1 OF		
CDI =	Csd *SA * AF * ABS * ET * EF * ED * CF BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
SA =	Surface Area (cm2) - wadıng	2679 f,g	2679 f,g
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 1 g,h	0 1 g,h
ABS =	Absorption Factor (unitless)	(Chemical Specific) i	(Chemical Specific) i
ET =	Exposure Time (4 hours per 8 hour workday)	0.5 c	0.5 c
EF =	Exposure Frequency (day/year)	12 d	12 d
ED =	Exposure Duration (year)	25 e	25 e
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 e	70 e
AT =	Averaging Time (days)	25550 e	9125 e

Inhalation: No values available for inhalation pathway


- a = Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- b = A conservative ingestion rate based on industrial soil intake is assumed
- c = Half a workday is assumed to be spent outdoors in the contaminated areas based on the nature of the activity.
- d = Once a month maintenance activity throughout the year is assumed
- e = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991.
- f = Surface area of hands, 1/2 arms and face (1/2 head) of an adult worker
- g = U S.EPA Exposure Factors Handbook, August 1997.
- h = AF calculated for soil adherence can be found in Appendix G
- i = Chemical-specific absorption factors are found in Appendix G

FU2 Sediment -Hypothetical Current/Future Maintenance Worker Carcinogenic Scenario Memphis Depot Main installation RI TABLE 13-14b

								Ingestion	tion	Dermal	mai	
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ABS	CD	ELCR	CDI	ELCR	- 1
MG/KG	ALUMINUM				8 55E+03	1 00E-01	0 001	7.17E-05	00+300	1 92E-07	0.0E+00	
MG/KG	ARSENIC	∢	1 50E+00	3 66E+00	9 72E+00	4.10E-01	0 03	8 15E-08	1 2E-07	6 55E-09	2 4E-08	
MG/KG	DIELDRIN	82	1 60E+01	3 20E+01	1 05E-01	5 00E-01	0 1	8 80E-10	1 4E-08	2 36E-10	7 5E-09	
MG/KG	BENZO(a)ANTHRACENE	B 2	7 30E-01	2 35E+00	1.46E+00	3 10E-01	01	1 22E-08	8 9E-09	3.27E-09	7.7E-09	
MG/KG	BENZO(a)PYRENE	B 2	7 30E+00	2 35E+01	1.21E+00	3.10E-01	0 13	1 01E-08	7 4E-08	3 53E-09	8 3E-08	
MG/KG	BENZO(b)FLUORANTHENE	82	7 30E-01	2 35E+00	1 99E+00	3 10E-01	0 1	1 67E-08	1 2E-08	4 47E-09	1.1E-08	
MG/KG	CHRYSENE	B 2	7 30E-03	2 35E-02	1 64E+00	3.10E-01	0 1	1 38E-08	1 0E-10	3 69E-09	8 7E-11	
MG/KG	INDENO(1,2,3-c,d)PYRENE	82	7 30E-01	2 35E+00	1 02E+00	3 10E-01	0 1	8 57E-09	6 3E-09	2 29E-09	5.4E-09	
MG/KG	PCB-1260 (AROCLOR 1260)	85	2 00E+00	2 11E+00	3 30E-01	9 50E-01	0 15	2.77E-09	5 SE-09	1.11E-09	2 3E-09	
MG/KG	PENTACHLOROPHENOL	82	1 20E-01	1 20E-01	1.40E-01	1 00E+00	0 24	1.17E-09	1 4E-10	7 55E-10	9.1E-11	
MG/KG	TCDD Equivalent	B 2	1 50E+05	3 00E+05	5 34E-05	5 00E-01	0 03	4 48E-13	6 7E-08	3 60E-14	1 1E-08	
MG/KG	CARBON TETRACHLORIDE	B2	1 30E-01	2 00E-01	2 40E-02	6 50E-01	0 01	2 01E-10	2 6E-11	5 39E-12	1 1E-12	- 1
	Total Risk								3.1E-07		1.5E-07	
								ř	Total Risk=	5E-07		
Notes	WOE = Weight of Evidence, CDI = Chronic Dail	Daily Intal	(e, EPC = (Exposure Po	unt Concent	ration, ELCI	7 = Exc	ly Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	Cancer Ex	posure		

TABLE 13-14c FU2 Sediment -Hypothetical Current/Future Maintenance Worker Noncarcinogenic Scenaric Memphis Depot Main Installation RI

								Ingestion	tion	Dermal	nal		
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	ABS	CDI	ğ	CDI	오		
MG/KG	ALUMINUM		1 00E+00	1 00E-01	8 55E+03	1 00E-01	0 001	0 001 2 01E-04	2 0E-04	5 38E-07	5.4E-06	•	
MG/KG	ARSENIC	∢	3 00E-04	1 23E-04	9 72E+00	4 10E-01	0 03	2 28E-07	7 6E-04	1 83E-08	1.5E-04		
MG/KG	DIELORIN	B2	5 00E-05	2 50E-05	1 05E-01	5 00E-01	0 1	2 46E-09	4 9E-05	6 60E-10	2.6E-05		
MG/KG	BENZO(a) ANTHRACENE	B 2			1 46E+00	3 10E-01	0 1	3 42E-08		9 16E-09			
MG/KG	BENZO(a)PYRENE	B 2			1 21E+00	3 10E-01	0 13	2 84E-08		9 88E-09			
MG/KG	BENZO(b)FLUORANTHENE	B 2			1 99E+00	3 10E-01	0 1	4 67E-08		1 25E-08			
MG/KG	CHRYSENE	B2			1 64E+00	3 10E-01	0 1	3 86E-08		1 03E-08			
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2			1 02E+00	3 10E-01	0 1	2 40E-08		6 43E-09			
MG/KG	PCB-1260 (AROCLOR 1260)	B2	2 00E-05	1 90E-05	3 30E-01	9 50E-01	0.15	7.75E-09	3 9E-04	3.11E-09	1 6E-04		
MG/KG	PENTACHLOROPHENOL	B2	3 00E-02	3 00E-02	1 40E-01	1 00E+00	0 24	3 29E-09	1 1E-07	2 11E-09	7 05-08		
MG/KG	TCDD Equivalent	B 2			5 34E-05	5 00E-01	0 03	1 25E-12		1 01E-13			
MG/KG	CARBON TETRACHLORIDE	B2	7 00E-04	4 55E-04	7 00E-04 4 55E-04 2 40E-02	6 50E-01	0 0 1	5 63E-10 8 0E-07 1 51E-11	8 0E-07	1 51E-11	3.3E-08		
	Hazard Index								0.001		0.0003		
									Total HI=	0.002			
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	Intake,	EPC = Exp	sure Point	Concentrati	on, HQ = H	azard Q	uotient, HI =	Hazard In	dex			

TABLE 13-15a FU2 Surface Water- Hypothetical Future Recreational (Youth) Scenario Memphis Depot Main Installation RI

Ingestio	n•	Carcinogenic	Noncarcinogenic
CDI =	Csw * IR * ET * EF * ED	Agrainageme	Honos emogenio
55 . –	BW * AT		
Csw =	Concentration in surfacewater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/hour) - wading	0 05 a	0 05 a
ET =	Exposure Time (hours/day)	6 b	6 b
EF =	Exposure Frequency (day/year)	45 a	45 a
ED =	Exposure Duration (year)	10 a	10 a
BW =	Body Weight (kg)	45 a	45 a
AT =	Averaging Time (days)	25550 a,c	3650 a,c
Dermai.			
CDI =	Csw *SA * PC * ET * EF * ED * CF		
	BW * AT		
Csw =	Concentration in surfacewater (mg/L)	(EPC)	(EPC)
5A =	Surface Area (cm2) - wading	13118 d	13118 d
PC =	Dermal PeEPCability Constant (cm/hr)	(Chemical Specific) e	(Chemical Specific) e
ET =	Exposure Time (hours/day)	6 b	6 b
EF =	Exposure Frequency (day/year)	45 a	45 a
EÐ =	Exposure Duration (year)	10 a	10 a
CF =	Conversion Factor (L/cm3)	1 00E-03	1 00E-03
	Dardy March (Ca)	45 a	45 a
BW =	Body Weight (kg)	70 0	

- a = Values suggested by Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- b = 6 hours per a 24 hour day are assumed to be spent in Depot retention ponds for recreation
- c = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure
 - Factors," OSWER Directive 9285 6-03, March 25, 1991
- d = Total Body Surface Area represents whole body (average of male & female youths), calculated from data withdrawn from U S EPA Exposure Factors Handbook, August 1997
- e = Dermal PeEPCability Constant for water (0 001) used for constituents without a PC value, all values adapted from U S EPA Dermal Exposure Assessment Principles and Applications, January 1992 (see Appendix G)

TABLE i3-15b
FU2 Surface Water- Hypothetical Future Recreational (Youth) Carcinogenic Scenario Memphis Depot Main Installation RI

Units Chemical MG/L ARSENIC MG/L DDE MG/L DDT MG/L DIELDRIN MG/L DIELDRIN							HARSANI				
	WOE	SFo	SFd	EPC	ABSgi	PC	CDI	ELCR	CDI	ELCR	i
	A	1 50E+00	4E+00	2.75E-02	4 10E-01	2.75E-02 4 10E-01 1 60E-04	3.23E-06	5E-06	1 355E-07	5E-07	
	B2	3 40E-01	5E-01	5 39E-05	5 39E-05 7 00E-01 2.40E-01	2.40E-01	6.33E-09	2E-09	3.988E-07	2E-07	
	B2	3 40E-01	5E-01	5.97E-05	5.97E-05 7.00E-01 4 30E-01	4 30E-01	7.01E-09	2E-09	7.909E-07	4E-07	
	B2	1.60E+01	3E+01	9.72E-05	9.72E-05 5.00E-01 1.60E-02	1.60E-02	1.14E-08	2E-07	4.79E-08	2E-06	
	B2			1.97E-02	.97E-02 1 50E-01 4 00E-06	4 00E-06	2.31E-06		2 423E-09		
	۵			1 50E-01	2 00E-01	50E-01 2 00E-01 6.00E-04 1.76E-05	1.76E-05		2.766E-06		
								5E-06		3E-06	
							75	Total Risk=	8E-06		
Notes: WOE = Weight of Evic	WOE = Weight of Evidence, CDI = Chronic Daily		PC = Expo	sure Point (Soncentration	on, ELCR =	Excess Life	time Canc	Intake; EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure		

TABLE 13-15c FU2 Surface Water- Hypothetical Future Recreational (Youth) Noncarcinogenic Scenano Memphis Depot Main Installation RI

								Ingestion	tion	Derma	nal	
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	ည	<u>0</u>	오	CDI	HQ	
MG/L	ARSENIC	4	3 00E-04	1 23E-04	1 23E-04 2 75E-02	4.10E-01 1 60E-04	1 60E-04	2.26E-05	0.08	9 48E-07	0.008	
MG/L	DDE	B 2			5 39E-05	7 00E-01 2.40E-01	2.40E-01	4 43E-08		2.79E-06		
MG/L	TOO	82	5 00E-04	00E-04 3.50E-04	5 97E-05	7.00E-01	7.00E-01 4 30E-01	4.91E-08	0 0001	5,54E-06	0.05	
MG/L	DIELDRIN	82	5 00E-05	2 50E-05	9 72E-05	5.00E-01	5.00E-01 1 60E-02	7.99E-08	0 002	3.35E-07	0.01	
MG/L	LEAD	B2			1 97E-02	1 50E-01	1 50E-01 4.00E-06	1 62E-05		1.70E-08		
MG/L	ZINC	۵	3.00E-01	6 00E-02	3,00E-01 6 00E-02 1 50E-01 2 00E-01 6.00E-04	2 00E-01	6.00E-04	1 23E-04	0.0004	1.94E-05	0 0003	
	Hazard Index								90.0		0.04	
									Total HI=	1.0		
Notes:	WOE = Weight of Evidence, CDI = Chronic Dai	ronic D	aily Intake,	EPC = Expo	sure Point C	oncentratio	n; HQ = Ha	lly Intake, EPC = Exposure Point Concentration; HQ = Hazard Quotient; HI = Hazard Index	it; H! = Haz	ard Index	ļ	

TABLE 13-16a

FU2 Surface Water- Hypothetical Future Recreational (Adult) Scenario

Memphis Depot Main Installation RI

Ingestio	n:	Carcinogenic	Noncarcinogenic
CDI =	Csw * IR * ET * EF * ED		
	BW * AT		
Csw =	Concentration in surfacewater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/hour) - wading	0 05 a	0 05 a
ET =	Exposure Time (hours/day)	6 b	6 b
EF =	Exposure Frequency (day/year)	45 a	45 a
ED =	Exposure Duration (year)	30 a	30 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a,c	10950 a,c
Dermal:			
CDI =	Csw *SA * PC * ET * EF * ED * CF		
	BW * AT		
Csw =	Concentration in surfacewater (mg/L)	(EPC)	(EPC)
SA =	Surface Area (cm2) - wading	20000 d	20000 d
PC =	Dermai PeEPCability Constant (cm/hr)	(Chemical Specific) e	(Chemical Specific) e
ET =	Exposure Time (hours/day)	6 b	6 b
EF =	Exposure Frequency (day/year)	45 a	45 a
ED =	Exposure Duration (year)	30 a	30 a
CF =	Conversion Factor (L/cm3)	1 00E-03	1 00E-03
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a,c	10950 a,c

Inhalation: Not an applicable pathway

- a = Values suggested by Supplemental Guidance to RAGS. Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995.
- b = 6 hours per a 24 hour day are assumed to be spent in Depot retention ponds for recreation
- c = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure
 - Factors," OSWER Directive 9285 6-03, March 25, 1991
- d = Total Body Surface Area represents whole body (average of male & female adults), calculated from data withdrawn from U S EPA Exposure Factors Handbook, August 1997
- e = Dermal PeEPCability Constant for water (0 001) used for constituents without a PC value, all values adapted from U S EPA Dermal Exposure Assessment Principles and Applications, January 1992 (see Appendix G)

TABLE 13-16b
FU2 Surface Water- Hypothetical Future Recreational (Adult) Carcinogenic Scenario Memphis Depot Main Installation RI

<u> </u>								Ingestion	tion	Dermal	na l	
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ည	CD	ELCR	CDI	ELCR	
MG/L	ARSENIC	\ \	1 50E+00	4E+00	2 75E-02	4 10E-01	1 60E-04	2 75E-02 4 10E-01 1 60E-04 6.22E-06	9E-06	3.983E-07	1E-06	
MG/L	DDE	B2	3.40E-01	5E-01	5 39E-05	7.00E-01	5 39E-05 7.00E-01 2 40E-01	1 22E-08	4E-09	1 173E-06	6E-07	
MG/L	DDT	B2	3 40E-01	5E-01	5 97E-05	7.00E-01	5 97E-05 7.00E-01 4 30E-01	1 35E-08	5E-09	2 325E-06	1E-06	
MG/L	DIELDRIN	B2	1 60E+01	3E+01	9 72E-05	5.00E-01	9 72E-05 5.00E-01 1 60E-02 2 20E-08	2 20E-08	4E-07	1,408E-07	5E-06	
MG/L	LEAD	B2			1.97E-02	1 50E-01	1.97E-02 1 50E-01 4.00E-06	4 45E-06		7 125E-09		
MG/L	ZINC	Ω			1 50E-01	2.00E-01	50E-01 2.00E-01 6 00E-04 3 39E-05	3 39E-05		8 132E-06		
	Total Risk								1E-05		8E-06	
								2	Total Risk=	2E-05		
Notes	WOF = Weight of Evidence: CDI = Chronic Daily	OI = Chronic D.		EPC = Exp	/ Intake. EPC = Exposure Point Concentration; ELCR = Excess Lifetime Cancer Exposure	Soncentrati	on; ELCR =	Excess Life	time Canci	er Exposure		

TABLE I3-16c
FU2 Surface Water- Hypothetical Future Recreational (Adult) Noncarcinogenic Scenario Memphis Depot Main installation RI

								Ingestion	tion	Derma	mai	
	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	PC	CDI	ğ	CD	9	
	ARSENIC	A	3 00E-04	3 00E-04 1.23E-04	2.75E-02	4.10E-01	4.10E-01 1 60E-04	1.45E-05	0.05	9.29E-07	0 008	
	DDE	B2			5 39E-05	7 00E-01	7 00E-01 2 40E-01	2 85E-08		2.74E-06		
	TOO	B2	5.00E-04	3 50E-04	5.97E-05	7 00E-01	7 00E-01 4 30E-01	3 15E-08	0.0001	5 43E-06	0.02	
	DIELDRIN	B2	5 00E-05	2 50E-05	9 72E-05	5.00E-01	5.00E-01 1 60E-02	5.13E-08	0 001	3.29E-07	0 01	
	LEAD	B2			1 97E-02	1 50E-01	1 50E-01 4 00E-06	1 04E-05		1 66E-08		
MG/L	ZINC	D	3.00E-01	DE-01 6 00E-02	1.50E-01	2.00E-01	2.00E-01 6.00E-04 7 91E-05	7 91E-05	0 0003	1.90E-05	0 0003	
	Hazard Index								0.05		0.04	
									Total HI=	0.1		
Notes:	WOE = Weight of Evidence; CDI = Chronic Daily	nce; CDI = Chronic D		EPC = Expo	sure Point C	oncentration	in, HQ = Ha	Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient; HI = Hazard Index	nt; HI = Haz	zard Index		

TABLE 13-17a
FU2 Surface Water- Hypothetical Future Recreational (Child) Scenario
Memphis Depot Main Installation RI

Ingestion	n;	Carcinogenic	Noncarcinogenic
CDI =	Csw * IR * ET * EF * ED	<u> </u>	
	BW * AT		
Csw =	Concentration in surfacewater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/hour) - wading	0 05 a	0 05 a
ET =	Exposure Time (hours/day)	6 a	6 a
EF =	Exposure Frequency (day/year)	45 a,b	45 a,b
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a,c	2190 a,c
Dermal:			
CDI =	Csw *SA * PC * ET * EF * ED * CF		
	BW * AT		
Csw =	Concentration in surfacewater (mg/L)	(EPC)	(EPC)
SA =	Surface Area (cm2) - wading	6557 d	6557 d
PC =	Dermal PeEPCability Constant (cm/hr)	(Chemical Specific) e	(Chemical Specific) e
ET =	Exposure Time (hours/day)	6 a	6 a
EF =	Exposure Frequency (day/year)	45 a	45 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (L/cm3)	1 00E-03	1 00E-03
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a,c	2190 a,c

a = Values suggested by Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

b = 6 hours per a 24 hour day are assumed to be spent in Depot retention ponds for recreation

c = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991

d = Total Body Surface Area represents whole body (average of male & female children), calculated from data withdrawn from U S EPA Exposure Factors Handbook, August 1997

e = Dermal PeEPCability Constant for water (0 001) used for constituents without a PC value, all values adapted from U S EPA Dermal Exposure Assessment Principles and Applications, January 1992 (see Appendix G)

TABLE 13-17b
FU2 Surface Water- Hypothetical Future Recreational (Child) Carcinogenic Scenario Memphis Depot Main Installation RI

								Ingestion	t <u>ion</u>	Dermal	nal	!
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ည	CDI	ELCR	CDI	ELCR	
MG/L	ARSENIC	A	1.50E+00	4E+00	2 75E-02	2 75E-02 4 10E-01 1 60E-04	1 60E-04	5.81E-06	9E-06	1.219E-07	4E-07	
MG/L	DDE	B2	3 40E-01	5E-01	5 39E-05	5 39E-05 7 00E-01 2 40E-01	2 40E-01	1 14E-08	4E-09	3.588E-07	2E-07	
MG/L	DOT	92	3.40E-01	5E-01	5.97E-05	7.00E-01 4.30E-01	4.30E-01	1 26E-08	4E-09	7.116E-07	3E-07	
MG/L	DIELDRIN	B2	1 60E+01	3E+01	9 72E-05	9 72E-05 5 00E-01 1 60E-02	1 60E-02	2 05E-08	3E-07	4 309E-08	1E-06	
MG/L	LEAD	B2			1 97E-02	97E-02 1 50E-01 4 00E-06	4 00E-06	4.16E-06		2.18E-09		
MG/L	ZINC	۵			1 50E-01	50E-01 2.00E-01 6.00E-04	6.00E-04	3 16E-05		2 488E-06		
	Total Risk								9E-06		2E-06	
								7	Fotal Risk=	1E-05		
Notes.	WOE = Weight of Evidence, CDI = Chronic Daily I	CDI = Chronic D		PC = Expo	ntake; EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	oncentration	in, ELCR =	Excess Life	time Cance	er Exposure		

5.

-83

P/147543/APPI3FU2all xIsFU2SWRC-Noncarcinggenic

TABLE 13-17c
FU2 Surface Water- Hypothetical Future Recreational (Child) Noncarcinogenic Scenario
Memphis Depot Main installation Ri

								Ingestion	ion	Dermal	mal	
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi PC	ည	CDI	엳	CDI	HQ	
MG/L	ARSENIC	٧	3 00E-04	1 23E-04	00E-04 1 23E-04 2 75E-02	١,٧	60E-04	6.78E-05	0.2	1.42E-06	0 012	
MG/L	DDE	B2			5 39E-05	7 00E-01 2 40E-01	40E-01	1.33E-07		4.19E-06		
MG/L	DDT	82	5 00E-04	00E-04 3.50E-04	5 97E-05	7 00E-01 4 30E-01	30E-01	1 47E-07	0 0003	8 30E-06	0.02	
MG/L	DIELDRIN	B 2	5 00E-05	2 50E-05	9.72E-05	5 00E-01 1.60E-02	.60E-02	2 40E-07	0 005	5 03E-07	0.02	
MG/L	LEAD	B 2			1.97E-02	1.50E-01 4 00E-06	00E-06	4.85E-05		2.54E-08		
MG/L	ZINC	۵	3 00E-01	30E-01 6.00E-02	•	1 50E-01 2 00E-01 6 00E-04 3 69E-04	00E-04	3 69E-04	0 001	2 90E-05	0.0005	
	Hazard Index								0.2		90.0	
									Total HI=	0.3		
Notes	WOE = Weight of Evidence; CDI = Chronic Daily	hronic Da	-	EPC = Expo	sure Point C	Intake, EPC = Exposure Point Concentration; HQ = Hazard Quotient; HI = Hazard Index	HQ = Ha	zard Quotien	t; HI = Haz	ard Index		

TABLE i3-18a
FU2 Surface Water - Hypothetical Future Industrial Worker Scenaric

Memphis Depot Main Installation RI

Ingestion	:		
CDI =	Csw * IR * ET * EF * ED	Carcinogenic	Noncarcinogenic
	BW * AT		
Csw =	Concentration in surfacewater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/hour) - wading	0.01 a	0 01 a
ET =	Exposure Time (hours/day)	4 b	4 b
EF =	Exposure Frequency (day/year)	50 g	50 g
ED =	Exposure Duration (year)	25 c	25 c
BW =	Body Weight (kg)	70 c	70 c
AT =	Averaging Time (days)	25550 c	9125 c
Dermal: CDl =	Csw *SA * PC * ET * EF * ED * CF BW * AT		
Csw =	Concentration in surfacewater (mg/L)	(EPC)	(EPC)
SA =	Surface Area (cm2) - wading	2679 d,e	2679 d,e
PC =	Dermal PeEPCability Constant (cm/hr)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (hours/day)	4 b	4 b
EF =	Exposure Frequency (day/year)	50 g	50 g
ED =	Exposure Duration (year)	25 c	25 c
CF =	Conversion Factor (L/cm3)	1 00E-03	1 00E-03
BW =	Body Weight (kg)	70 c	70 c
AT =	Averaging Time (days)	25550 c	9125 c

Inhalation: No values available for inhalation pathway

a = Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

b = Half a work-day is assumed to be spent in the lake/pond while working.

c = U.S. EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285.6-03, March 25, 1991.

d = U S EPA Exposure Factors Handbook, August 1997

e = Surface area of hands, 1/2 arms, and face (1/2 head) of an adult worker is assumed to be same for sediment and surfacewater

f = Dermal PeEPCability Constant for water (0 001) used for constituents without a PC value, all values adapted from U S. EPA Dermal Exposure Assessment. Principles and Applications, January 1992. (see Appendix G)

g = Once a week is assumed to be spent outdoors in the contaminated areas based on the nature of the activity

.: -

TABLE 13-18b
FU2 Surface Water - Hypothetical Future Industrial Worker Carcinogenic Scenario Memphis Depot Main Installation RI

								Ingestion	tion	Dermai	mai	
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ည	CDI	ELCR	CDI	ELCR	
MG/L	ARSENIC	A	1.50E+00	3 66E+00	2 75E-02	4,10E-01	1.50E+00 3 66E+00 2 75E-02 4.10E-01 1 60E-04 7.68E-07 1 2E-06 3.29E-08	7.68E-07	1 2E-06	3.29E-08	1.2E-07	
MG/L	DDE		3 40E-01	4 86E-01	5.39E-05	7 00E-01	7 00E-01 2.40E-01 151E-09 5.1E-10	1 51E-09	5.1E-10	9.70E-08	4.7E-08	
MG/L	DDT	BZ	3.40E-01	4 86E-01	3.40E-01 486E-01 597E-05		7.00E-01 430E-01 1.67E-09 57E-10	1.67E-09	5 7E-10	1.92E-07	9.3E-08	
MG/L	DIELDRIN	B2	1 60E+01	3 20E+01	9 72E-05	5.00E-01	5.00E-01 1.60E-02	2.72E-09 4 3E-08	4 3E-08	1.16E-08	3.7E-07	
MG/L	LEAD	B2			1 97E-02	1.50E-01	1.50E-01 4 00E-06 5.50E-07	5.50E-07		5.89E-10		
MG/L	ZINC	۵			1 50E-01	2 00E-01	50E-01 2 00E-01 6.00E-04 4 18E-06	4 18E-06		6 72E-07		
	Total Risk							To	1E-06 Total Risk=	2E-06	6E-07	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration; ELCR = Excess Lifetime Cancer Exposure	DI = Chronic D	ally Intake,	EPC = Exp	osure Point	Concentrat	ion; ELCR =	Excess Life	stime Can	er Exposure		

TABLE 13-18c
FU2 Surface Water - Hypothetical Future Industrial Worker Noncarcinogenic Scenario Memphis Depot Main Installation RI

								Ingestion	stion	Dermai	nai	
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	PC	CDI	오	CDI	ΗQ	
MG/L	ARSENIC	∢	3 00E-04	1 23E-04	2.75E-02	4,10E-01	1 23E-04 2.75E-02 4.10E-01 1 60E-04 2.15E-06	2.15E-06	0 007	9 22E-08	0 0007	
MG/L	DDE	B2			5 39E-05	7 00E-01	7 00E-01 2 40E-01	4.22E-09		2.72E-07		
MG/L	DDT	B2	5 00E-04	3 50E-04	5 97E-05	7.00E-01	4.30E-01	4 67E-09 0	6000000	5 38E-07	0 002	
MG/L	DIELDRIN	85	5 00E-05	2.50E-05	9.72E-05	5 00E-01	5 00E-01 1 60E-02	7 61E-09	0 0002	3 26E-08	0 001	
MG/L	LEAD	B 2			1 97E-02	1.50E-01	4.00E-06	1.54E-06		1.65E-09		
MG/L	ZINC	O	3 00E-01		1.50E-01	2 00E-01	6 00E-04	2 00E-01 6 00E-04 1 17E-05 0 00004	0 00004	1 88E-06		
	Hazard Index								0.007		0.004	
									Total HI=	0.01		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily	= Chronic E		EPC = Exp(sure Point	Concentrati	on; HQ = H	Intake, EPC = Exposure Point Concentration; HQ = Hazard Quotient, HI = Hazard Index	ent, HI = H	azard Index		,

TABLE I3-19a
FU2 Surface Water - Hypothetical Current/Future Maintenance Worker Scenaric
Memphis Depot Main Installation RI

Ingestion	:		
CDI =	Csw * IR * ET * EF * ED	<u>Carcinogenic</u>	Noncarcinogenic
	BW * AT		
Csw =	Concentration in surfacewater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/hour) - wading	0 01 a	0.01 a
ET =	Exposure Time (hours/day)	4 b	4 b
EF =	Exposure Frequency (day/year)	12 c	12 c
ED =	Exposure Duration (year)	25 d	25 d
BW =	Body Weight (kg)	70 d	70 d
AT =	Averaging Time (days)	25550 d	9125 d
Dermal:			
CDI =	Csw *SA * PC * ET * EF * ED * CF		
	BW * AT		
Csw =	Concentration in surfacewater (mg/L)	(EPC)	(EPC)
SA =	Surface Area (cm2) - wading	2679 e,f	2679 e,f
PC =	Dermal PeEPCability Constant (cm/hr)	(Chemical Specific) g	(Chemical Specific) g
ET =	Exposure Time (hours/day)	4 b	4 b
EF =	Exposure Frequency (day/year)	12 c	12 c
ED =	Exposure Duration (year)	25 d	25 d
CF =	Conversion Factor (L/cm3)	1 00E-03	1.00E-03
BW =	Body Weight (kg)	70 d	70 d
AT =	Averaging Time (days)	25550 d	9125 d

Inhalation: No values available for inhalation pathway

- a = Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- b = Half a work-day is assumed to be spent in the lake/pond while sampling/maintenance.
- c = Once a month maintenance activity at lake/pond throughout the year.
- d = U S EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure Factors" OSWER Directive 9285.6-03, March 25, 1991.
- e = U S EPA Exposure Factors Handbook, August 1997.
- f = Surface area of hands, 1/2 arms, and face (1/2 head) of an adult worker is assumed to be same for sediment and surfacewater
- g = Dermal PeEPCability Constant for water (0.001) used for constituents without a PC value; all values adapted from U.S. EPA Dermal Exposure Assessment. Principles and Applications, January 1992. (see Appendix G.)

FU2 Surface Water - Hypothetical Current/Future Maintenance Worker Carcinogenic Scenano Memphis Depot Main Installation RI

								Ingestion	tion	Darmal	Tall	
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ည	D D	ELCR	D .	ELCR	
MG/L	ARSENIC	\ V	1 50E+00	3 66E+00	2 75E-02	4 10E-01	1 60E-04	50E+00 366E+00 275E-02 410E-01 160E-04 1.84E-07 2.8E-07 7 90E-09	2.8E-07	7 90E-09	2.9E-08	
MG/L	DDE	B2	3.40E-01	4 86E-01	5.39E-05	7.00E-01	2 40E-01	3 62E-10	1 2E-10	2.33E-08	1.1E-08	
MG/L	DDT	B2	3.40E-01	4.86E-01	5.97E-05	7.00E-01	4.30E-01	3.40E-01 4.86E-01 5.97E-05 7.00E-01 4.30E-01 4.01E-10 1.4E-10 4.61E-08	1.4E-10	4.61E-08	2.2E-08	
MG/L	DIELDRIN	B2	1 60E+01	3 20E+01	9 72E-05	5 00E-01	1.60E-02	6.52E-10	1 0E-08	2.79E-09	8.9E-08	
MG/L	LEAD	B 2			1 97E-02	1 50E-01	4 00E-06	1 32E-07		1.41E-10		
MG/L	ZINC	Q			1 50E-01	2 00E-01	50E-01 2 00E-01 6 00E-04 1.00E-06	1.00E-06		1 61E-07		
i	Total Risk								3E-07		2E-07	
								10	Total Risk=	4E-07		
Notes.	WOE = Weight of Evidence, CDI = Chronic Daily Ir	ronic Da	ıly Intake, I	EPC = Expo	sure Point	Concentrati	on, ELCR =	Excess Life	stime Canc	ntake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	6	

TABLE 13-19c

FU2 Surface Water - Hypothetical Current/Future Maintenance Worker Noncarcinogenic Scenano Memphis Depot Main Installation RI

								sagui	ngestion	Der	Dermal	
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	ည	CDI	PO	CDI	ΗQ	
MG/L	ARSENIC	A	3 00E-04	1 23E-04	3E-04 1 23E-04 2.75E-02 4.10E-01 1 60E-04 5.16E-07	4.10E-01	1 60E-04	5.16E-07	0 002	2 21E-08	0.0002	
MG/L	DDE	82			5.39E-05	7 00E-01	5.39E-05 7 00E-01 2.40E-01	1.01E-09		6.52E-08		
MG/L	DOT	B 2	5 00E-04	3 50E-04	0E-04 3 50E-04 5 97E-05 7.00E-01 4 30E-01 1.12E-09 0 000002	7.00E-01	4 30E-01	1,12E-09	0 000002	1.29E-07	0 0004	
MG/L	DIELDRIN	B2	5 00E-05		2.50E-05 9 72E-05 5 00E-01 1 60E-02 1.83E-09	5 00E-01	1 60E-02	1.83E-09	0.00004	7 83E-09	0.0003	
MG/L	LEAD	B2			1,97E-02	1.97E-02 1 50E-01 4.00E-06	4.00E-06	3.69E-07		3.96E-10		
MG/L	ZINC	۵	3.00E-01	6 00E-02	3.00E-01 6 00E-02 1 50E-01 2.00E-01 6 00E-04 2.81E-06 0 000009 4.52E-07 0.000008	2.00E-01	6 00E-04	2.81E-06	60000000	4.52E-07	0.000008	
	Hazard Index								0.002		0.000	
									Total HI=	0.003		
Notes:	WOE = Weight of Evidence; CDI = Chronic Daily	Shronic D		EPC = Expo	Intake, EPC = Exposure Point Concentration; HQ = Hazard Quotient; HI = Hazard Index	Concentrati	on; HQ = H	azard Quoti	ent; HI = H	azard Index		

THIS PAGE INTENTIONALLY LEFT BLANK.

Appendix I-4 A. FU3 Soils B. FU3 Sediments THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE I4-1a
FU3 Surface Soil -Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		Carcinogenic	<u>Noncarcinogenic</u>
Ingestior			
CDI =	Cs*IR*FI*EF*ED*CF BW*AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a	50 a
F1 =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	<u>Cs *SA * AF * ABS * ET * EF * ED * CF</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm²)	2679 c,d	2679 c,d
AF =	Soil-Skin Adherence Factor (mg/cm²)	0 03 c,e	0 03 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (8 hours per 8 hour workday)	ì í b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Inhalatio	n:	for volatiles	
CDI ≃	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/PEF	
	BW * AT		* AT
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m³/kg)	1.32E+09 g	1 32E+09 g
VFind =	Volatilization Factor (m ³ /kg)	(Chemical Specific) h	(Chemical Specific) h
IR =	Inhalation Rate (m³/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = U.S EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity
- c = U.S. EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix L.
- f = Chemical-specific absorption factors are found in Appendix L
- g = Particulate emission factor (PEF), adapted from U.S.EPA, Soil Screening Guidance Technical Background Document, May-1996.
- h = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F A C., December 1998

TABLE 14-1b FU3 Surface Soil -Hypothetical Future Industrial Worker Carcinogenic Scenario Memphis Depot Main installation RI

										Ingestion	io.	Dermal		Inha	Inhalation	
Units	Chemical	WOE	SFo	SFd	SFI	VFind	EPC	ABSgi	ABS	5	ELCR	00	ELCR	<u>5</u>	ELCR	
MG/KG	ANTIMONY	۵				63	47E+00 2	2 00E-02 (0 001 6	6 06E-07		9 74E-10		1 84E-10		
MG/KG	ARSENIC	•	50E+00 3	3 66E+00 1 51E+01	51E+01	-	25E+01 4	10E-01	0 03 2	2 19E-06	3 3E-06	1 06E-07	3 9E-07	6 63E-10	1 0E-08	
MG/KG	CADMIUM	<u>.</u>		9	30E+00	•	26E+00	00E-02	001 2	2 20E-07		3 54E-09		6 67E-11	4 2E-10	
MG/KG	CHROMIUM, TOTAL	∢		4	4 20E+01	7	20E+01 2	: 00E-02	0 001	26E-05		2 02E-08		3 81E-09	1 6E-07	
MG/KG	MERCURY	٥				•	19E-02	00E-04	100	08E-08		1 74E-11		3 28E-12		
MG/KG	SELENIUM	۵				w	121E-01 4	140E-01	0 001	43E-07		231E-10		4 35E-11		
MG/KG	VANADIUM					N	56E+01	00E-02	0 001	47E-06		7 19E-09		1 36E-09		
MG/KG	ZINC	۵				C)	2 73E+02 3	: 00E-01	0 001	77E-05		7 67E-08		1 45E-08		
MG/KG	DIELDRIN	_	60E+01 3	3 20E+01 1 60E+0	60E+01	(7)	174E-02	3 00E-01	010	54E-09	1 0E-07	1 05E-09	3.4E-08	1 98E-12	3 2E-11	
MG/KG	BENZO(a)ANTHRACENE	7	30E-01 2	235E+00 3	3 10E-01	_	40E+00 3	3 10E-01	012	2 45E-07	1 8E-07	3 93E-08	9 3E-08	7 42E-11	2 3E-11	
MG/KG	BENZO(a)PYRENE	7	30E+00 2	235E+013	3 10E+00	-	31E+00 3	3 10E-01	0 13 2	2 29E-07	1 7E-06	4 78E-08	1 1E-06	6 94E-11	2 2E-10	
MQ/KG	BENZO(b)FLUORANTHENE	B2 7	30E-01 2	235E+00 3	3 10E-01	-	39E+00	3 10E-01	012	2 42E-07	1 8E-07	3 89E-08	9 2E-08	7.34E-11	2 3E-11	
MG/KG	BENZO(k)FLUORANTHENE	7	30E-02 2	235E-013	3 10E-02	-	43E+00 3	3 10E-01	012	2 51E-07	1 8E-08	4 03E-08	9 5E-09	7.59E-11	2 4E-12	
MG/KG	CARBAZOLE	2	00E-02 2	2 86E-02		u,	51E-01 7	, 00E-01	019	9 63E-08	1 9E-09	1 55E-08	4 4E-10	2 92E-11		
MG/KG	CHRYSENE	^	30E-03 2	2 35E-02 3	3 10E-03	-	61E+00	10E-01	012	2 82E-07	2 1E-09	4 53E-08	1 1E-09	8 54E-11	2 6E-13	
MG/KG	DIBENZ(a,h)ANTHRACENE	7	30E+00 2	2 35E+01 3	3 10E+00	ш,	5 40E-01	10E-01	019	9 44E-08	6 9E-07	1 52E-08	3 6E-07	2 86E-11	8 9E-11	
MG/KG	INDENO(1,2,3-c,d)PYRENE	7	30E-01 2	235E+00 3	3 10E-01	-	05E+00	3 10E-01	01	84E-07	1 3E-07	2 95E-08	7 0E-08	5 56E-11	1 7E-11	
MG/KG	PENTACHLOROPHENOL	-	20E-01 1	1 20E-01		.,	42E-01 1	00E+00	24 4	23E-08	5 1E-09	1 63E-08	2 0E-09	1 28E-11		
MG/KG	PETROLEUM HYDROCARBONS				6	9 13E+11 2	274E+02 5	5 00E-01	001	79E-05		7 70E-07		1 45E-08		
MG/KG	TCDD Equivalent	B2 1	50E+05 3	00E+05 1	1 50E+05 3 00E+05 1 50E+05 1 12E+07	12E+07 1	1 31E-05	5 00E-01	0 03 2	2 29E-12	34E-07	1 10E-13	3 3E-08	8 22E-14 1 2E-08	1 2E-08	
	Total Risk										6.6E-06		2.2E-06		1.8E-07	
											•	Total Alsk =		9E-06		
	Total street of the second of	1111		1		COL	1 100									

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

-10

P./147543/APPI4FU3all xls/SSIW-NonCarcinogenic

	re Industrial Worker Noncarcinogenic Scenario		
TABLE M·1c	FU3 Surface Soil -Hypothetical Future Indus	Memphis Depot Main Installation RI	

										Ingestion	IO1	Dermai	nai	mnaiatton	Ittori
Units	Chemical	WOE	RfDo	RfDd	H.O.	VFind	EPC	ABSgi	ABS	CDI	õ	CDI	오	CDI	오
MG/KG	ANTIMONY	۵	4 00E-04	8 00E-06			3 47E+00 2 00E-02	2 00E-02	0 001	1 70E-06	0 004	2 73E-09	0 0003	5 14E-10	
MG/KG	ARSENIC	∢	3 00E-04	1 23E-04			1 25E+01	4 10E-01	0 03	6 13E-06	0 05	2 95E-07	0 005	1 86E-09	
MG/KG	CADMIUM	<u>8</u>	1 00E-03	1 00E-05			1 26E+00	1 00E-02	0 01	6 16E-07	90000	60-306 6	0 001	1 87E-10	
MG/KG	CHROMIUM, TOTAL	∢	3 00E-03	6 00E-05 2 86E-05	86E-05		7 20E+01	2 00E-02	0 001	3 52E-05	00	5 66E-08	6000 0	1 07E-08	0 0004
MG/KG	MERCURY	٥		30	8 57E-05		6 19E-02	1 00E-04	0 001	3 03E-08		4 87E-11		9 18E-12 (18E-12 0 0000001
MG/KG	SELENIUM	٥	5 00E-03	2 20E-03			8 21E-01	4 40E-01	0 001	4 02E-07	0 00008	6 46E-10 (0 0000003	1 22E-10	
MG/KG	VANADIUM		7 00E-03	7 00E-05			2 56E+01	1 00E-02	0 001	1 25E-05	0 002	2 01E-08	0 0003	3 80E-09	
MG/KG	ZINC	٥	3 00E-01	6 00E-02			2 73E+02	2 00E-01	0 001	1 34E-04	0 0004	2 15E-07	0 000004	4 05E-08	
MG/KG	DIELDRIN	B2	5 00E-05	2 50E-05			3 74E-02	5 00E-01	0	1 83E-08	0 0004	2 94E-09	0 0001	5 55E-12	
MG/KG	BENZO(a)ANTHRACENE	B2					1 40E+00	3 10E-01	0	6 85E-07		1 10E-07		2 08E-10	
MG/KG	BENZO(a) PYRENE	B2					1 31E+00	3 10E-01	0 13	6 41E-07		1 34E-07		1 94E-10	
MG/KG	BENZO(b) FLUORANTHENE	B2					1 39E+00	3 10E-01	0	6 78E-07		1 09E-07		2 06E-10	
MG/KG	BENZO(k) FLUORANTHENE	B2					1 43E+00	3 10E-01	0	7 02E-07		1 13E-07		2 13E-10	
MG/KG	CARBAZOLE	B2					5 51E-01	7 00E-01	0	2 70E-07		4 33E-08		8 17E-11	
MG/KG	CHRYSENE	B2					1 61E+00	3 10E-01	0	7 89E-07		1 27E-07		2 39E-10	
MG/KG	DIBENZ(a,h)ANTHRACENE	B2					5 40E-01	3 10E-01	0	2 64E-07		4 25E-08		8 01E-11	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2					1 05E+00	3 10E-01	0	5 14E-07		8 26E-08		1 56E-10	
MG/KG	PENTACHLOROPHENOL	B2	3 00E-02	00E-02 3 00E-02			2 42E-01	1 00E+00	0 24	1 18E-07 0 000004	000004	4 57E-08	0 000002	3 59E-11	
MG/KG	PETROLEUM HYDROCARBONS		4 00E-02	2 00E-02 6	2 00E-02 6 00E-02 9 13E+11 2 74E+02	13E+11	2 74E+02	5 00E-01	0 01	1 34E-04	0 003	2 15E-06	0 0001	4 07E-08 0 0000007	0000000
MG/KG	TCDD Equivalent	B2			-	12E+07	131E-05	5 00E-01	0 03	6 41E-12		3 09E-13		2 30E-13	
	Hazard Index										0.04		0.005		0.0004
													Total HI=	0.05	

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

TABLE I4-2a
FU3 Surface Soil -Hypothetical Current/Future Maintenance Worker Scenario
Memphis Depot Main Installation Ri

		Carcinogenic	Noncarcinogenic
Ingestion		·	
CDI =	Cs*IR*FI* EF*ED*CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 c	50 c
FI =	Fraction Ingested (unitless)	0.5	0.5
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm²)	2679 e,f	2679 e,f
AF =	Soil-Skin Adherence Factor (mg/cm²)	0.03 e.g	0.03 e,g
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Inhalatio	n:	for volatiles.	
CDI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/PEF)) * IR * ET * EF * ED
	BW * AT		* AT
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m³/kg)	1 32E+09 ı	1 32E+09 ı
VFind =	Volatilization Factor (m³/kg)	(Chemical Specific) j	(Chemical Specific) j
IR =	Inhalation Rate (m³/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	20 a 1 b
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
			£5 a
BW =	Body Weight (kg)	70 a	70 a

- a = U.S. EPA, Human Health Evaluation Manual, Supplemental Guidance⁻ "Standard Default Exposure Factors" OSWER Directive 9285.6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas based on the nature of the activity, assuming full workday.
- c = Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995.
- d = Maintenance activity assumed to be once a week throughout the year (excluding vacation).
- e= U S EPA Exposure Factors Handbook, August 1997
- f = Surface area of 1/2 head, forearms and the hands of an adult worker.
- g = AF calculated for soil adherence can be found in Appendix L.
- h = Chemical-specific absorption factors are found in Appendix L.
- i = Particulate emission factor (PEF), adapted from U.S.EPA, Soil Screening Guidance. Technical Background Document, May 1996
- j = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F A C., December 1998.

0

TABLE 14-2b
FU3 Surface Soil -Hypothetical Current/Future Maintenance Worker Carcinogenic Scenario Memphis Depot Main Installation RI

														-	
										Indestion	tion	Derma	nal	Inhalation	tion
Units	Chemical	WOE	SFo	SFd	SFI	VFind	EPC	ABSqi	ABS	5	ELCR	CDI	ELCR	ᅙ	ELCR
MG/KG	ANTIMONY	۵					3 47E+00	2 00E-02	0 001	6 06E-08		1 95E-10		3 67E-11	
MG/KG	ABSENIO	∢	1 50E+00	50E+00 3 66E+00	151E+01		1 25E+01	4 10E-01	0 03	2 19E-07	3 3E-07	2 11E-08	7 7E-08	1 33E-10	2 OE-09
MG/KG	CADMIUM	10			6 30E+00		1 26E+00	1 00E-02	0 0 1	2 20E-08		7 07E-10		1 33E-11	8 4E-11
MG/KG	CHROMIUM, TOTAL	∢			4 20E+01		7 20E+01	2 00E-02	0 001	1 26E-06		4 04E-09		7 62E-10	3 2E-08
MG/KG	MERCURY	Δ					6 19E-02	1 00E-04	0 001	1 08E-09		3 48E-12		6 56E-13	
MG/KG	SELENIUM	۵					8 21E-01	4 40E-01	0 00	1 43E-08		4 61E-11		8 70E-12	
MG/KG	VANADIUM						2 56E+01	1.00E-02	0 001	4 47E-07		1.44E-09		2 71E-10	
ØX/X	ZINC	۵					2 73E+02	2 00E-01	0 001	4 77E-06		1 53E-08		2 89E-09	
MG/KG	DIELDRIN	B 2	1 60E+01	3 20E+01	1 60E+01		3 74E-02	5 00E-01	0	6 54E-10	1 0E-08	2 10E-10	6 7E-09	3 97E-13	6 3E-12
MG/KG	BENZO(a)ANTHRACENE	88			3 10E-01		1 40E+00	3 10E-01	0	2 45E-08	1 8E-08	7 87E-09	1 9E-08	1,48E-11	4 6E-12
MG/KG	BENZO(a) PYRENE	B2	7 30E+00	2 35E+01	3 10E+00		1 31E+00	3 10E-01	0 13	2 29E-08	1.7E-07	9 57E-09	2 3E-07	1 39E-11	4 3E-11
MG/KG	BENZO(b)FLUOBANTHENE	82	7 30E-01		3 10E-01		1 39E+00	3 10E-01	0	2 42E-08	1 8E-08	7 79E-09	1 8E-08	1 47E-11	4 6E-12
MG/KG	BENZO(k)FLUOBANTHENE	88	7 30E-02	2 35E-01	3 10E-02		1 43E+00	3 10E-01	0	251E-08	1 8E-09	8 06E-09	1 9E-09	1 52E-11	4 7E-13
MG/KG	CABBAZOIF	83	2 00E-02	2 86E-02			5 51E-01	7 00E-01	0	9 63E-09	1 9E-10	3 10E-09	8 8E-11	5 84E-12	
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	3 10E-03		1 61E+00	3 10E-01	0	2 82E-08	2 1E-10	9 05E-09	2 1E-10	171E-11	5 3E-14
MG/KG	DIBENZ(a.h)ANTHRACENE	B2	7 30E+00		3 10E+00		5 40E-01	3 10E-01	0	9 44E-09	6 9E-08	3 03E-09	7 1E-08	5 72E-12	1 8E-11
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	3 10E-01		1 05E+00	3 10E-01	0	184E-08	135-08	5 90E-09	1 4E-08	1 11E-11	3 4E-12
MG/KG	PENTACHLOROPHENOL	B2	1 20E-01	1 20E-01			2 42E-01	1 00E+00	0 24	4 23E-09	5 1E-10	3 26E-09	3 9E-10	2 56E-12	
MG/KG	PETROL EUM HYDROCARBONS				G)	9 13E+11	2 74E+02	5 00E-01	0 01	4 79E-06		1 54E-07		2 91E-09	
MG/KG	TCDD Equivalent	B2	1 50E+05	3 00E+05	50E+05 3 00E+05 1 50E+05 1 12E+07	12E+07	131E-05	5 00E-01	0 03	2 29E-13	3 4E-08	2 21E-14	6 6E-09	1 64E-14	2 5E-09
	Total Risk										6.6E-07		4.4E-07		3.7E-08
												Ē	Total Risk =	15-06	

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

TABLE 14-2c FU3 Surface Soil -Hypothetical Current/Future Maintenance Worker Noncarcinogenic Scenano Memphis Depot Main Installation R1

										Ingestion	stion	2	<u>Dermal</u>	inha	inhalation
Units	Chemical	WOE	RfDo	RfDd	RfDi	VFind	EPC	ABSgi	ABS	CDI	오	CDI	ð	G	ğ
MG/KG	ANTIMONY	۵	4 00E-04	8 00E-06			3 47E+00	2 00E-02	0 001	1 70E-07	0 0004	5 46E-10	0 00007	1 03E-10	
MG/KG	ARSENIC	∢	3 00E-04	1 23E-04			125E+01	4 10E-01	0 03	6 13E-07	0 002	5 91E-08	0 0005	371E-10	
MG/KG	CADMIUM	<u>—</u>	1 00E-03	1 00E-05			1 26E+00	1 00E-02	0 01	6 16E-08	900000	1 98E-09	0 0005	3 73E-11	
MG/KG	CHROMIUM, TOTAL	∢	3 00E-03	6 00E-05	2 86E-05		7 20E+01	2 00E-02	0 001	3 52E-06	0 001	1 13E-08	0 0002	2 13E-09	0 00007
MG/KG	MERCURY	۵			8 57E-05		6 19E-02	1 00E-04	0 00	3 03E-09		9 74E-12		1.84E-12	0 00000002
MG/KG	SELENIUM	۵	5 00E-03	2 20E-03			8 21E-01	4 40E-01	0 001	4 02E-08	0 000008	1 29E-10	900000000	2 43E-11	
MG/KG	VANADIUM		7 00E-03	7 00E-05			2 56E+01	1 00E-02	000	125E-06	0 0002	4 03E-09	900000	7 59E-10	
MG/KG	ZINC	۵	3 00E-01	6 00E-02			2 73E+02	2 00E-01	0 001	1 34E-05	0 00004	4 29E-08	0 0000007	8 10E-09	
MG/KG	DIELDRIN	85	5 00E-05	2 50E-05			374E-02	5 00E-01	0	1 83E-09	0 00004	5 89E-10	0 00002	1 11E-12	
MG/KG	BENZO(a)ANTHRACENE	85					1 40E+00	3 10E-01	0	6 85E-08		2 20E-08		4 15E-11	
MG/KG	BENZO(a)PYRENE	85					131E+00	3 10E-01	0 13	6 41E-08		2 68E-08		3 89E-11	
MG/KG	BENZO(b)FLUORANTHENE	B 5					1 39E+00	3 10E-01	0	6 78E-08		2 18E-08		4 11E-11	
MG/KG	BENZO(k)FLUORANTHENE	85					1 43E+00	3 10E-01	0	7 02E-08		2 26E-08		4 25E-11	
MG/KG	CARBAZOLE	82					5 51E-01	7 00E-01	0	2 70E-08		8 67E-09		1 63E-11	
MG/KG	CHRYSENE	85					161E+00	3 10E-01	0	7 89E-08		2 54E-08		4 78E-11	
MG/KG	DIBENZ(a,h)ANTHRACENE	85					5 40E-01	3 10E-01	0	2 64E-08		8 49E-09		1 60E-11	
MG/KG	INDENO(1,2,3-c,d)PYRENE	82					1 05E+00	3 10E-01	0	5 14E-08		1 65E-08		3 12E-11	
MG/KG	PENTACHLOROPHENOL	82	3 00E-02	3 00E-02			2 42E-01	1 00E+00	0.24	1 18E-08	0 0000004	9 14E-09	0 0000003	7 18E-12	
MG/KG	PETROLEUM HYDROCARBONS		4 00E-02	2 00E-02	6 00E-02 9 13E+11 2 74E+02	13E+11	2 74E+02	5 00E-01	0 01	1 34E-05	0 0003	4 31E-07	0 00002	8 14E-09	0 0000001
MG/KG	TCDD Equivalent	85			1	12E+07	131E-05	5 00E-01	0 03	641E-13		6 18E-14		4 61E-14	
	Hazard Index										0 004		0 001		0.00007
													Total HI=	0 005	
Alaban	WOE - Worth of Europe On - Observe Date Interior	h. Intoles		Co. Co.	Topic Property III topic O Property III Topic Property III Topic Property III	2	Character	III decode	10101	d locket					

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

TABLE 14-3a
FU3 Soil Column -Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		<u>Carcinogenic</u>	Noncarcinogenic Noncarcinogenic	
ngestio: CDI =				37
,DI =	Cs*IR*FI* EF*ED*CF BW*AT			•
S =	Concentration in soil (mg/kg)	EPC	EPC	
3 =	Ingestion Rate (mg/day)	50 a	50 a	
1 =	Fraction Ingested (unitless)	30 a	30 α 1	
 F=	Exposure Frequency (day/year)	250 a	250 a	
D =	Exposure Duration (year)	25 a	25 a	
F=	Conversion Factor (kg/mg)	1 00E-06	1 00E-06	
3W =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	
Dermal:				
DI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT			
s=	Concentration in soil (mg/kg)	EPC	EPC	
A =	Surface Area (cm²)	2679 c.d	2679 c,d	
F=	Soil-Skin Adherence Factor (mg/cm²)	0 03 c,e	0.03 c.e	
BS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f	
T =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
F≃	Exposure Frequency (day/year)	250 a	250 a	
D =	Exposure Duration (year)	25 a	25 a	
F =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06	
3W =	Body Weight (kg)	70 a	70 a	
\T =	Averaging Time (days)	25550 a	9125 a	
nhalatio	· '-	for volatiles.		
DI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/PEF		
_	BW * AT		* AT	
:s =	Concentration in soil (mg/kg)	EPC	EPC	
EF =	Particulate Emission Factor (m³/kg)	1 32E+09 g	1 32E+09 g	
Find =		(Chemical Specific) h	(Chemical Specific) h	
₹ =	Inhalation Rate (m³/day)	20 a	20 a	
T =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
F =	Exposure Frequency (day/year)	250 a	250 a	
D =	Exposure Duration (year)	25 a	25 a	
3W =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity.
- c = U S EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker.
- $\mathbf{e} = \mathbf{AF}$ calculated for soil adherence can be found in Appendix \mathbf{L}
- f = Chemical-specific absorption factors are found in Appendix L.
- g = Particulate emission factor (PEF), adapted from U.S EPA, Soil Screening Guidance Technical Background Document, May 1996.

TABLE 14-3b
FU3 Soil Column - Hypothetical Future Industrial Worker Carcinogenic Scenario Memphis Depot Main Installation RI

										Ingestion	tion	Derma	<u>nal</u>	Inhalation	tion
Units	Chemical	WOE	SFo	SFd	SFi	VFInd	EPC	ABSgl	ABS	CDI	ELCR	CDI	ELCR	ᅙ	ELCR
MG/KG	ANTIMONY	۵					3 50E+00	2 00E-02	0 001	6 12E-07		9 84E-10		1 85E-10	
MG/KG	ARSENIC	∢	1 50E+00	50E+00 3 66E+00	1 51E+01		1 20E+01	4 10E-01	0 03	2 09E-06	3 1E-06	1 01E-07	3 7E-07	6 34E-10	9 6E-09
MG/KG	CADMIUM	91			6 30E+00		8 88E-01	1 00E-02	0 01	1 55E-07		2 50E-09		4 70E-11	3 0E-10
MG/KG	CHROMIUM, TOTAL	⋖			4 20E+01		4 92E+01	2 00E-02	0 001	8 60E-06		1 38E-08		2 61E-09	1 1E-07
MG/KG	COPPER	۵					3 09E+01	3 00E-01	0 001	5 39E-06		8 67E-09		1 63E-09	
MG/KG	MERCURY	۵					5 63E-02	1 00E-04	0 001	9 84E-09		1 58E-11		2 98E-12	
MG/KG	SELENIUM	۵					7 17E-01	4 40E-01	0 001	1 25E-07		2 01E-10		3 80E-11	
MG/KG	VANADIUM						2 69E+01	1 00E-02	0 001	4 71E-06		7 57E-09		1 43E-09	
MG/KG	ZINC	۵					1 70E+02	2 00E-01	0 001	2 96E-05		4 76E-08		8 98E-09	
MG/KG	DIELDRIN	B2	1 60E+01	3 20E+01	1 60E+01		1 75E-02	5 00E-01	0	3 05E-09	4 9E-08	4 90E-10	1 6E-08	9 25E-13	1 5E-11
MG/KG	BENZO(a) ANTHRACENE	B2	7 30E-01	2 35E+00	3 10E-01		6 87E-01	3 10E-01	0 1	1 20E-07	8 8E-08	1 93E-08	4 5E-08	3 64E-11	1.1E-11
MG/KG	BENZO(a)PYRENE	85	7 30E+00	2 35E+01	3 10E+00		651E-01	3 10E-01	0 13	1 14E-07	8 3E-07	2 38E-08	5 6E-07	3 45E-11	1 1E-10
MG/KG	BENZO(b)FLUORANTHENE	B5	7 30E-01	2 35E+00	3 10E-01		6 76E-01	3 10E-01	01	1 18E-07	8 6E-08	1 90E-08	4 SE-08	3 58E-11	11E-11
MG/KG	BENZO(k) FLUORANTHENE	B2	7 30E-02	2 35E-01	3 10E-02		6 91E-01	3 10E-01	0	121E-07	8 8E-09	1 94E-08	4 6E-09	3 66E-11	1.1E-12
MG/KG	CARBAZOLE	B2	2 00E-02	2 86E-02			3 39E-01	7 00E-01	0 1	5 93E-08	1 2E-09	9 53E-09	2 7E-10	1 80E-11	
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	3 10E-03		7 44E-01	3 10E-01	0 1	1 30E-07	9 5E-10	2 09E-08	4 9E-10	3 94E-11	1 2E-13
MG/KG	DIBENZ(a,h)ANTHRACENE	B2	7 30E+00	2 35E+01	3 10E+00		3 59E-01	3 10E-01	0	6 27E-08	4 6E-07	1 01E-08	2 4E-07	1 90E-11	5 9E-11
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	3 10E-01		5 63E-01	3 10E-01	0 1	9 84E-08	7 2E-08	1 58E-08	3 7E-08	2 98E-11	9 2E-12
MG/KG	PENTACHLOROPHENOL	82	1 20E-01	1 20E-01			1 57E-01	1 00E+00	0 24	2 75E-08	3 3E-09	1 06E-08	13E-09	8 35E-11	
MG/KG	PETROLEUM HYDROCARBONS					9 13E+11	2 74E+02	5 00E-01	00	4 79E-05		7 70E-07		1 45E-08	
MG/KG	TCDD Equivalent	82	1 50E+05		1 50E+05	1 12E+07	1 00E-05	5 00E-01	0 03	1 75E-12	2 6E-07	8 44E-14		6 29E-14	9 4E-09
	Total Risk										5 0E-06		1.3E-06		1.3E-07
												Total Risk =	u	6E-06	
									4						

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

107

P 147543/APPI4FU3all xls/SBIW-NonCarcinogenic

										Ingestion	ion	Dermal	mal	Inha	Inhalation
Units	Chemical	WOE	RfDo	RfDd	RfDi VF	VFind	EPC	ABSgi	ABS	CD	Б	CDI	ᄄ	뎡	오
MG/KG	ANTIMONY	۵	4 00E-04	00E-04 8 00E-06			3 50E+00	2 00E-02	0 001	171E-06	0 004	2 75E-09	0 0003	5 19E-10	
MG/KG	ARSENIC	∢	3 00E-04	1 23E-04		_	20E+01	4 10E-01	0 03	5 86E-06	0 05	2 83E-07	0 002	1 78E-09	
MG/KG	CADMIUM	<u>6</u>	1 00E-03	1 00E-05		-	8 88E-01	1 00E-02	0 01	4 35E-07	0 0004	6 99E-09	0 0007	1 32E-10	
MG/KG	CHROMIUM, TOTAL	∢	3 00E-03	6.00E-05 286E-05	86E-05	`	4 92E+01	2 00E-02	0001	2 41E-05	0 008	3 87E-08	9000 0	7 29E-09	0 0003
MG/KG	COPPER	۵	3 70E-02	1 11E-02		.,	3 09 5+01	3 00E-01	0 001	1 51E-05	0 0004	2 43E-08	0 000002	4 58E-09	
MG/KG	MERCURY	۵		89	57E-05		5 63E-02	1 00E-04	0 001	2 76E-08		4 43E-11		8 35E-12	0 0000001
MG/KG	SELENIUM	۵	5 00E-03	2 20E-03			7 17E-01	4 40E-01	0 001	3 51E-07	0 00007	5 64E-10	0 0000003	1 06E-10	
MG/KG	VANADIUM		7 00E-03	7 00E-05			2 69E+01	1 00E-02	0 001	1 32E-05	0 002	2 12E-08	0 0003	3 99E-09	
MG/KG	ZINC	۵	3 00E-01	6 00E-02		_	1 70E+02	2 00E-01	0 001	8 30E-05	0 0003	1 33E-07	0 000002	2 52E-08	
MG/KG	DIELDRIN	B2	5 00E-05	2 50E-05		•	75E-02	5 00E-01	0	8 54E-09	0 0002	1 37E-09	0 00005	2 59E-12	
MG/KG	BENZO(a)ANTHRACENE	B2				Ī	6 87E-01	3 10E-01	0	3 36E-07		5 40E-08		1 02E-10	
MG/KG	BENZO(a) PYRENE	B2				_	6.51E-01	3 10E-01	0 13	3 19E-07		6 66E-08		9 65E-11	
MG/KG	BENZO(b) FLUORANTHENE	B2				Ī	6 76E-01	3 10E-01	0	3 31E-07		5 32E-08		1 00E-10	
MG/KG	BENZO(k) FLUORANTHENE	B2				Ī	3 91E-01	3 10E-01	0	3 38E-07		5 44E-08		1 02E-10	
MG/KG	CARBAZOLE	B2				``	3 39E-01	7 00E-01	0	1 66E-07		2 67E-08		5 03E-11	
MG/KG	CHRYSENE	B2					7 44E-01	3 10E-01	0	3 64E-07		5 85E-08		1 10E-10	
MG/KG	DIBENZ(a,h)ANTHRACENE	B2				• •	3 59E-01	3 10E-01	0	1 76E-07		2 82E-08		5 32E-11	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2				-,	5 63E-01	3 10E-01	0	2 75E-07		4 43E-08		8 35E-11	
MG/KG	PENTACHLOROPHENOL	B2	3 00E-02	3 00E-02		•	57E-01	1 00E+00	0 24	7 70E-08 0 000003	000003	2 97E-08	0 000001	8 35E-11	
MG/KG	PETROLEUM HYDROCARBONS		4 00E-02	2 00E-02 6	2 00E-02 6 00E-02 9 13E+11 2 74E+02	E+11 2		5 00E-01	0 01	134E-04	0 003	2 15E-06	0 0001	4.07E-08	0 0000000
MG/KG	TCDD Equivalent	B2			1 12	12E+07	1 00E-05	5 00E-01	0 03	4 90E-12		2 36E-13		1,76E-13	
	Hazard Index										0.04		0.004		0.0003
													Total HI=	0.04	
									-	- -					

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

١,

TABLE 14-4a

FU3 Surface Soil - Hypothetical Future On-Site Residential (Adult) Scenario Memphis Depot Main Installation RI

Ingestion	1:	Carcinogenic	<u>Noncarcinogenic</u>
	non-carcinogenic compounds	Age-specific intake (for carcino	genic compounds aniv)
DI =	Cs * IR * FI * EF * ED * CF	CDI _{sdi} = Cs * FI * EF * CF * IR _{sdi}	S - 1 1 1 (p canes only)
	BW * AT	AT	
s =	Concentration in soil (mg/kg)	EPC	EPC
R =	Ingestion Rate (mg/day)	N/A	100 a
R _{adj} =	Age-adjusted Ingestion Rate (mg - year)/(kg - day)	114 29 a,b	N/A
1=	Fraction Ingested (unitless)	1	1
F =	Exposure Frequency (day/year)	350 a	350 a
D =	Exposure Duration (year)	N/A	30 a
F = W =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
AT =	Body Weight (kg) Averaging Time (days)	N/A 25550 a	70 a 10950 a
–	Averaging Time (days)	2555U a	10950 a
ermal:			
	non-carcinogenic compounds	Age-specific intake (for carcino	
:DI =	Cs * SA * AF * ABS * ET * EF * ED * CF	Cs * SA _{adi} * AF * ABS * ET	* EF * CF
	BW * AT	AT	
's =	Concentration in soil (mg/kg)	EPC	EPC
A =	Surface Area (cm²)	N/A	5049 d,
A _{edj} =	Age-adjusted Surface Area (cm ² - year)/(kg)	2671 d,e,f	N/A
F=	Soil-Skin Adherence Factor (mg/cm²)	0 03 d,g	0 03 d,
B\$ =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
T =	Exposure Time (4 hours per 24-hour day)	0 167 c	0 167 c
F =	Exposure Frequency (day/year)	350 a	350 a
D =	Exposure Duration (year)	N/A	30 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
8W = \T =	Body Weight (kg) Averaging Time (days)	N/A 25550 a	70 a 10950 a
halation			
	non-carcinogenic compounds	Age-specific intake (for carcino	genic compounds only)
CDI =	Cs * (1/PEF) * IR Inh * ET * EF * ED	CDI = Cs*	(1/PEF) * IR_Inh_d * E
	BW * AT		AT
)s =	Concentration in soil (mg/kg)	EPC	EPC
EF =	Particulate Emission Factor (m ³ /kg)	1 32E+09 ı	1 32E+09 i
R_Inh ≃	Inhalation Rate (m³/day)	N/A	20 a
R Inhair	= Age-adjusted inhalation Rate (m3 - year)/(kg - day)	12 85714286 a,ı	N/A
T =	Exposure Time (4 hours per 24-hour day)	0 167 c	0 167 с
F =	Exposure Frequency (day/year)	350 a	350 a
D =	Exposure Duration (year)	N/A	30 a
3W =	Body Weight (kg)	N/A	70 a
AT =	Averaging Time (days)	25550 a	10950 a
	BC-		
lejerenci		uidance "Standard Default Exposure	
	EPA, Human Health Evaluation Manual, Supplemental G		
	Factors," OSWER Directive 9285 6-03, March 25, 199	91	
a≃USE	Factors," OSWER Directive 9285 6-03, March 25, 199 djusted ingestion rate for adults, adjusted for body weigh	91 It and time for carcinogenic exposure	100 x (30-6)
a≃USE	Factors," OSWER Directive 9285 6-03, March 25, 199	91 If and time for carcinogenic exposure	<u>100 x (30-6)</u> 70
ı≃USE	Factors," OSWER Directive 9285 6-03, March 25, 199 djusted ingestion rate for adults, adjusted for body weight IRadj = <u>IRc x EDc</u> + <u>IRa x (EDa -</u>	e1 nt and time for carcinogenic exposure <u>EDc)</u> = <u>200 x 6</u> +	
= USE = Age-a = Time s	Factors," OSWER Directive 9285 6-03, March 25, 198 dijusted ingestion rate for adults, adjusted for body weight IRadj = <u>IRc x EDc</u> + <u>IRa x (EDa -</u> BWc BWa 114.29 (mg-year)/(kg-day) spent outdoors in the contaminated areas based on the i	e1 nt and time for carcinogenic exposure EDc) = 200 x 6 + 15	
e USE e = Age-a e = Time s e USE	Factors," OSWER Directive 9285 6-03, March 25, 198 dijusted ingestion rate for adults, adjusted for body weight IRadj = IRC x EDc + IRa x (EDa - BWc BWa 114.29 (mg-year)/(kg-day) spent outdoors in the contaminated areas based on the iPA Exposure Factors Handbook, August 1997	e1 nt and time for carcinogenic exposure EDc) = 200 x 6 + 15 nature of the activity	
= USE = Age-a = Time s = USE = Surfac	Factors," OSWER Directive 9285 6-03, March 25, 198 dijusted ingestion rate for adults, adjusted for body weight in the factor of	ent and time for carcinogenic exposure EDc) = 200 x 6 + 15 hature of the activity of an adult	
≃ US E = Age-a = Time s = US E = Surfac	Factors," OSWER Directive 9285 6-03, March 25, 198 dijusted ingestion rate for adults, adjusted for body weight IRadj = IRC x EDc + IRa x (EDa - BWa BWa 114.29 (mg-year)/(kg-day) spent outdoors in the contaminated areas based on the interpretation of the properties of 1/2 head, hands, forearms, lower legs & feet of dijusted surface area for adults, adjusted for body weight	ent and time for carcinogenic exposure EDc) = 200 x 6 + 15 hature of the activity of an adult and time for carcinogenic exposure	70
≃ US E = Age-a = Time s = US E = Surfac	Factors," OSWER Directive 9285 6-03, March 25, 198 dijusted ingestion rate for adults, adjusted for body weight IRadj = IRc x EDc	and time for carcinogenic exposure EDc) = 200 x 6 + 15 hature of the activity of an adult and time for carcinogenic exposure EDc) = 2351 x 6 + +	70 5049 x (30-6)
≃ US E = Age-a = Time s = US E = Surfac	Factors," OSWER Directive 9285 6-03, March 25, 198 dijusted ingestion rate for adults, adjusted for body weight IRadj = IRc x EDc BWC BWa 114.29 (mg-year)/(kg-day) spent outdoors in the contaminated areas based on the interpretation of the in	ent and time for carcinogenic exposure EDc) = 200 x 6 + 15 hature of the activity of an adult and time for carcinogenic exposure	70
= US E = Age-a = Time s = US E = Surfac = Age-ac	Factors," OSWER Directive 9285 6-03, March 25, 198 dijusted ingestion rate for adults, adjusted for body weight IRadj = IRc x EDc	and time for carcinogenic exposure EDc) = 200 x 6 + 15 hature of the activity of an adult and time for carcinogenic exposure EDc) = 2351 x 6 + +	70 5049 x (30-6)
= US E = Age-a = Time s = US E = Surfac = Age-ac = AF cal	Factors," OSWER Directive 9285 6-03, March 25, 198 dijusted ingestion rate for adults, adjusted for body weight IRadj = IRC x EDc	and time for carcinogenic exposure EDc) = 200 x 6 + 15 hature of the activity of an adult and time for carcinogenic exposure EDc) = 2351 x 6 + +	70 5049 x (30-6)
= US E = Age-a = Time s = US EI = Surfac = Age-ac = AF cal = Chem	Factors," OSWER Directive 9285 6-03, March 25, 198 dijusted ingestion rate for adults, adjusted for body weight IRadj = IRc x EDc	ent and time for carcinogenic exposure EDc) = \frac{200 \times 6}{15} + \text{ nature of the activity} of an adult and time for carcinogenic exposure EDc) = \frac{2351 \times 6}{15} + \text{ 15}	70 5049 x (30-6) 70
= USE = Age-a = Time s = USE = Surfac = Age-ac = AF cal = Chem = Particu	Factors," OSWER Directive 9285 6-03, March 25, 198 dijusted ingestion rate for adults, adjusted for body weight IRadj = IRc x EDc BWc BWa 114.29 (mg-year)/(kg-day) spent outdoors in the contaminated areas based on the interpretable of 1/2 head, hands, forearms, lower legs & feet of dijusted surface area for adults, adjusted for body weight SAadj = SAC x EDC BWc BWa BWa 2671 (cm²-year)/(kg) diculated for soil adherence can be found in Appendix Lutical-specific absorption factors are found in Appendix Lutical-specific absorption facto	ent and time for carcinogenic exposure EDc) = 200 x 6 + 15 nature of the activity of an adult and time for carcinogenic exposure EDc) = 2351 x 6 + 15 Screening Guidance Technical Backgr	70 5049 x (30-6) 70
= USE = Age-a = Time s = USE = Surfac = Age-ac = AF cal = Chem = Particu	Factors," OSWER Directive 9285 6-03, March 25, 198 dijusted ingestion rate for adults, adjusted for body weight IRadj = IRc x EDc BWc BWa 114.29 (mg-year)/(kg-day) spent outdoors in the contaminated areas based on the interpretation of the series of 1/2 head, hands, forearms, lower legs & feet of dijusted surface area for adults, adjusted for body weight SAadj = SAC x EDC BWc BWa 2671 (cm²-year)/(kg) alculated for soil adherence can be found in Appendix L. Inical-specific absorption factors are found in Appendix L. Inical-specific absorption factors are found in Appendix L. Inical-specific absorption factors are found in Appendix L. Inical-specific absorption factors are found in Appendix L. Inical-specific absorption factors are found in Appendix L. Inical-specific absorption factors are found in Appendix L. Inical-specific absorption factors are found in Appendix L. Inical-specific absorption factors are found in Appendix L. Inical-specific absorption factors are found in Appendix L. Inical-specific absorption factors are found in Appendix L. Inical-specific absorption factors are found in Appendix L. Inical-specific absorption factors are found in Appendix L. Inical-specific absorption factor (PEF), adapted from U S EPA, Soil dijusted inhalation rate for adults, adjusted for body weight	and time for carcinogenic exposure EDc = 200 x 6	70 5049 x (30-6) 70 ound Document, May 19
= US E = Age-a = Time s = US E = Surfac = Age-ac = AF cal = Chem = Particu	Factors," OSWER Directive 9285 6-03, March 25, 198 dijusted ingestion rate for adults, adjusted for body weight IRadj = IRc x EDc BWc BWa 114.29 (mg-year)/(kg-day) spent outdoors in the contaminated areas based on the interpretable of 1/2 head, hands, forearms, lower legs & feet of dijusted surface area for adults, adjusted for body weight SAadj = SAC x EDC BWc BWa BWa 2671 (cm²-year)/(kg) diculated for soil adherence can be found in Appendix Lutical-specific absorption factors are found in Appendix Lutical-specific absorption facto	and time for carcinogenic exposure EDc = 200 x 6	70 5049 x (30-6) 70

TABLE 14-4b FU3 B(26 2) Surface Soil - Hypothetical Future On-Site Residential (Adult) Carcinogenic Scenario Memphis Depot Main Installation RI

									Ingestion	tion	힑	Dermal	Inhalation	텒
Units	Chemical	WOE	SFo	SFd	SFI	EPC	ABSgi	ABS	CD	ELCR	CO	ELCR	CDI, ELCR	ELCR
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	2 35E+00	3 10E-01	4.00E+01	7 30E-01 2 35E+00 3 10E-01 4.00E+01 3 10E-01 0 1 6 26E-05 4.6E-05 7 32E-07	0 1	6 26E-05	4.6E-05	7 32E-07	1.7E-06	8 90E-10	2 8E-10
MG/KG	BENZO(a)PYRENE	82	7 30E+00 2 35E+01 3 10E+00 3 70E+01 3 10E-01	2 35E+01	3 10E+00	3 70E+01	3 10E-01	0 13	5 79E-05 4 2E-04 8 80E-07	4 2E-04	8 80E-07	2 1E-05	8 23E-10 2 6E-09	2 6E-09
MG/KG	BENZO(b)FLUORANTHENE	B 2	7 30E-01 2 35E+00 3 10E-01 3 90E+01 3 10E-01	2 35E+00	3 10E-01	3 90E+01		0 1	6 11E-05 4 5E-05 7 14E-07	4 5E-05	7 14E-07	1 7E-06	8.67E-10 2.7E-10	2.7E-10
MG/KG	BENZO(K)FLUORANTHENE	B2	7 30E-02	7 30E-02 2 35E-01 3 10E-02 3 40E+01 3 10E-01	3 10E-02	3 40E+01	3 10E-01	0 1	5 32E-05 3 9E-06 6 22E-07	3 9E-06	6 22E-07	1.5E-07	7 56E-10 2 3E-11	2 3E-11
MG/KG	CHRYSENE	B2	7,30E-03 235E-02 310E-03 460E+01 310E-01	2 35E-02	3 10E-03	4 60E+01		0	7 20E-05 5 3E-07 8 42E-07	5 3E-07	8 42E-07	2 0E-08	1 02E-09	3.2E-12
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	3 10E-01	2 20E+01	7 30E-01 2 35E+00 3 10E-01 2 20E+01 3 10E-01 0 1	0 1	3 44E-05 2 5E-05 4.03E-07	2 5E-05	4.03E-07	9 5E-07	4.89E-10 1 5E-10	1 5E-10
	Total Risk									5.4E-04		2 5E-05		3.3E-09
											F	Total Risk =	6E-04	

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

TABLE 14-4c FU3 B(26 2) Surface Soil - Hypothetical Future On-Site Residential (Adult) Noncarcinogenic Scenario Defense Depot Main Installation RI

									Ingestion	jon	Dermal		inhalation	
Units	Chemical	WOE	RfDo	RfDd	RO	EPC	ABSgi	ABS	CO	오		약	CDI	_
MG/KG	BENZO(a)ANTHRACENE	B2				4.00E+01	3.10E-01	0,1	5 48E-05		1.38E-06		1 38E-09	
MG/KG	BENZO(a)PYRENE	B2				3 70E+01	3 10E-01	0 13	5 07E-05		1 66E-06		1 28E-09	
MG/KG	BENZO(b)FLUORANTHENE	B2				3 90E+01	3.10E-01	0	5 34E-05		1 35E-06		1.35E-09	
MG/KG	BENZO(k)FLUORANTHENE	B 2				3 40E+01	3 10E-01	0	4 66E-05		1.18E-06		1 18E-09	
MG/KG	CHRYSENE	B2				4,60E+01	3 10E-01	0.1	6 30E-05		1.59E-06		1 59E-09	
MG/KG	INDENO(1,2,3-c,d)PYRENE	82				2 20E+01	3 10E-01	0	3 01E-05		7 61E-07		7.61E-10	
	Hazard Index													l
											F	Total Hil-		

Notes WOE ≈ Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Inde

TABLE 14-5a FU3 Surface Soil - Hypothetical Future On-Site Residential (Child) Scenario Memphis Depot Main Installation RI

.,	Carcinogenic (optional)	Noncarcinogenic
gestion:		•
DI = Cs*IR*FI*EF*ED*CF BW*AT		,
= Concentration in soil (mg/kg)	EPC	EPC .
= Ingestion Rate (mg/day)	200 a	<u>-</u>
= Fraction Ingested (unitless)		200 a
= Exposure Frequency (day/year)	1 350 a	•
= Exposure Duration (year)	6 a	350 a
= Conversion Factor (kg/mg)	1 00E-06	6 a
/= Body Weight (kg)		1 00E-06
= Averaging Time (days)	15 a	15 a
= Averaging Time (days)	25550 a	2190 a
rmal:		
DI = Cs * SA * AF * ABS * ET * EF * ED BW * AT	* CF	
 Concentration in soil (mg/kg) 	EPC	EPC
. = Surface Area (cm²)	2351 c,d	2351 c,d
= Soil-Skin Adherence Factor (mg/cm²) 0 15 c.e	0 15 c.e
SS = Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
= Exposure Time (4 hours per 24-hour		0 167 b
= Exposure Frequency (day/year)	350 a	350 a
= Exposure Duration (year)	6 a	6 a
= Conversion Factor (kg/mg)	1 00E-06	1 00E-06
V = Body Weight (kg)	15 a	15 a
= Averaging Time (days)	25550 a	2190 a
	20000 a	2130 a
nafation: DI = <u>Cs * (1/PEF) * IR * ET * EF * ED</u>		
BW * AT		
= Concentration in soil (mg/kg)	EPC	EPC
F = Particulate Emission Factor (m³/kg)	1 32E+09 g	1 32E+09 g
= Inhalation Rate (m³/day)	1 522+09 g	1 32E+09 g
= Exposure Time (4 hours per 24-hour		
= Exposure Frequency (day/year)	350 a	0.167 b
= Exposure Duration (year)	350 a 6 a	350 a
V = Body Weight (kg)	6 a 15 a	6 a
= Averaging Time (days)	15 a 25550 a	15 a
- Averaging Time (days)	25550 a	2190 a

 $a = U S \;\; EPA$, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991

b = Time spent outdoors in the contaminated areas based on the nature of the activity

c= U S EPA Exposure Factors Handbook, August 1997

d = Surface area of 1/2 head, hands, forearms, lower legs & feet of a child (age 1-6 years)

e = AF calculated for soil adherence can be found in Appendix L.

f = Chemical-specific absorption factors are found in Appendix L
g = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance Technica Background Document, May 1996

TABLE 14-5b
FU3 B(26 2) Surface Soil - Hypothetical Future On-Site Residential (Child) Carcinogenic Scenario (optional use)
Memphis Depot Main installation RI

									Ingestion	lon	Dermai	nat	Inhalation	ition
Units	Chemical	WOE	SFo	SFd	SFi	EPC	ABSgi	ABS	CDI	ELCH	ᅙ	ELCA	CDI	ELCR
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	2 35E+00	3 10E-01	4,00E+01	3,10E-01	0.1	B2 730E-01 235E+00 310E-01 4.00E+01 3.10E-01 01 438E-05 320E-05 129E-06 303E-06 4.15E-10 129E-10	120E-05 1	29E-06	3 03E-06	4.15E-10	1 29E-10
MG/KG	BENZO(a)PYRENE	82	7 30E+00 2	2.35E+01	3 10E+00	2.35E+01 3 10E+00 3 70E+01 3 10E-01	3 10E-01	0 13	4 05E-05 2.96E-04 1.55E-06 3 65E-05 3.84E-10	.96E-04 1	.55E-06	3 65E-05	3.84E-10	1 19E-09
MG/KG	BENZO(b)FLUORANTHENE	85	7 30E-01	2 35E+00	3 10E-01	2 35E+00 3 10E-01 3 90E+01 3.10E-01 0 1	3.10E-01	0	4 27E-05 3 12E-05 1 26E-06 2 96E-06 4.05E-10	12E-05 1	26E-06	2 96E-06	4.05E-10	1.25E-10
MG/KG	BENZO(k)FLUORANTHENE	82		2 35E-01	3 10E-02	7 30E-02 2 35E-01 3 10E-02 3 40E+01 3 10E-01	3 10E-01	0	3 73E-05 2 72E-06 1 09E-06 2.58E-07 3.53E-10	72E-06 1	. 90-360	2.58E-07	3.53E-10	1 09E-11
MG/KG	CHRYSENE	B 2	7.30E-03 235E-02 310E-03 460E+01 310E-01	2 35E-02	3 10E-03	4 60E+01	3 10E-01	0 1	5 04E-05 3 68E-07 1 48E-06 3 49E-08 4.77E-10	1 68E-07 1	48E-06	3 49E-08	4.77E-10	1 48E-12
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	3 10E-01	2 20E+01	3.10E-01	0.1	235E+00 310E-01 220E+01 3.10E-01 0.1 2.41E-0 <u>5 176E-05 709E</u> -07 167E-06 2.28E-10 708E-11	76E-05 7	, 09E-07	1 67E-06	2.28E-10	7 08E-11
	Total Risk									4E-04		4E-05		2E-09
					;	:				To	Total Risk =		4E-04	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EP(Daily Int	ake, EPC =	Exposure	Point Conc	entration; E	LCR = Exc	ess Lif	C = Exposure Point Concentration; ELCR = Excess Lifetime Cancer Exposure	r Exposure	•			

Inhafation HQ

CDI 4 84E-09 4 48E-09 4 72E-09 4 12E-09 5 57E-09 2 66E-09

CDI 1 50E-05 1 81E-05 1 47E-05 1 28E-05 1 73E-05 8 27E-06

CDI HQ 5 11E-04 4 73E-04 4 99E-04 1 4 35E-04 1 5 88E-04

0 0 1 0 1 0 1 0

3 10E-01 3 10E-01 3 10E-01 3 10E-01 3 10E-01 3 10E-01

4 00E+01 3 70E+01 3 90E+01 3 40E+01 4 60E+01 2 20E+01

82 83 83 83

Chemical
BENZO(a)ANTHRACENE
BENZO(a)PYRENE
BENZO(b)FLUORANTHENE
BENZO(k)FLUORANTHENE
CHRYSENE
INDENO(1,2,3-c,d)PYRENE
Hazard Index

Units MG/KG MG/KG MG/KG MG/KG

ЯЮ

RfDd

RfDo

FU3 B(26.2) Surface Soil - Hypothetical Future On-Site Residential (Child) Noncarcinogenic Scenario

Memphis Depot Main Installation RI

Total HI=

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

-113

P /147543/APP14FU3atl xls/SSRC-NonCarcinogenic

TABLE 14-6a
Surrogate Site #34 Soil Column -Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		<u>Carcinogenic</u>	Noncarcinogenic
Ingestio			
CDI =	Cs * IR * FI * EF * ED * CF		
_	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a	50 a
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm²)	2679 c.d	2679 c,d
AF =	Soil-Skin Adherence Factor (mg/cm²)	0 03 c.e	0 03 c.e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Particul	ate Inhalation:		
CDI =	Cs * (1/PEF) * IR * ET * EF * ED		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m³/kg)	1 32E+09 g	1.32E+09 g
IR =	Inhalation Rate (m ³ /day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity.
- c = U S EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker.
- e = AF calculated for soil adherence can be found in Appendix L.
- f = Chemical-specific absorption factors are found in Appendix L.
- g = Particulate emission factor (PEF), adapted from U.S EPA, Soil Screening Guidance Technical Background Document, May 1996

: ; =

							:		Ingestion	tion	Dermai	mai	Inhalation	ition
Units	Chemical	WOE	NOE SFo	SFd	SFI	EPC	ABSgi ABS	ABS	ᅙ	ELCR	00	ELCR	<u>5</u>	ELCR
MG/KG	ARSENIC	4	1 50E+00	50E+00 3 66E+00 1 51E+01 2 46E+01 4 10E-01	151E+01	2 46E+01	4 10E-01	0 03	0 03 4 30E-06	6 5E-06	6 5E-06 2 08E-07	7 6E-07	1 30E-09	2 0E-08
MG/KG	CHROMIUM, TOTAL	∢			4 20E+01 7 27E+01 2 00E-02	7 27E+01	2 00E-02	0 001	1 27E-05		2 04E-08		3 85E-09	1 6E-07
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	7 30E-01 2 35E+00 3 10E-01 1 00E+01	3 10E-01	1 00E+01	3.10E-01	0	1 75E-06	1 3E-06	75E-06 13E-06 281E-07 66E-07	6 6E-07	5 29E-10	1.6E-10
MG/KG	BENZO(a)PYRENE	B2 7	7 30E+00	7 30E+00 2 35E+01 3 10E+00 9 50E+00 3 10E-01	3 10E+00	9 50E+00	3 10E-01	0 13	1.66E-06	1,2E-05	1.2E-05 3 47E-07 8 2E-06	8 2E-06	5 03E-10	1 6E-09
MG/KG	BENZO(b)FLUORANTHENE	B2	7 30E-01	7 30E-01 2 35E+00 3 10E-01 9 50E+00 3 10E-01	3 10E-01	9 50E+00		0	1 66E-06	1.2E-06	2 67E-07 6 3E-07	6 3E-07	5.03E-10	1.6E-10
MG/KG	BENZO(k)FLUORANTHENE	B2	7 30E-02	7 30E-02 2.35E-01 3 10E-02 1 20E+01 3 10E-01	3 10E-02	1 20E+01	3 10E-01	0	2 10E-06 1.5E-07	1.5E-07	3.37E-07 7.9E-08	7.9E-08	6.35E-10	2 0E-11
MG/KG	CHRYSENE	•	7 30E-03	7 30E-03 2 35E-02 3 10E-03 1 20E+01 3.10E-01	3 10E-03	1 20E+01	3.10E-01	0 1	2 10E-06 1 5E-08	1 5E-08	3.37E-07 7 9E-09	7 9E-09	6 35E-10	2.0E-12
MG/KG	DIBENZ(a,h)ANTHRACENE	82 7	7 30E+00	7 30E+00 2 35E+01 3 10E+00 1 20E+00 3 10E-01	3 10E+00	1 20E+00	3 10E-01	0 1	2 10E-07 1 5E-06 :	1 5E-06	3.37E-08	7 9E-07	6 35E-11	2.0E-10
MG/KG		. 85	7 30E-01	B2 7 30E-01 2 35E+00 3,10E-01 6 20E+00 3 10E-01 0 1	3,10E-01	6 20E+00	3 10E-01	0		7.9E-07	108E-06 7.9E-07 174E-07 41E-07 328E-10	4 1E-07	3 28E-10	1 0E-10
										2.4E-05		1.2E-05		1.8E-07
											Tot	Total Risk =	4E-05	

WOE = Weight of Evidence; CDI = Chronic Daily Intake, EPC = Exposure Point Concentration; ELCR = Excess Lifetime Cancer Exposure

TABLE 14-6c Surrogate Site #34 Soil Column -Hypothetical Future Industrial Worker Noncarcinogenic Scenario Memphis Depot Main Installation RI

									Ingestion	tion	Dermal	nal i	Inhalation	tion
Units	Chemical	WOE	RfDo	RfDd	RED	EPC	ABSgi	ABS	CDI	오	<u>a</u>	오	CDI	오
MG/KG	ARSENIC	4	A 3 00E-04 1 23E-04	1 23E-04		2 46E+01	4 10E-01	0 03	1 21E-05	0 04	5 81E-07	0 005	3 65E-09	
MG/KG	CHROMIUM, TOTAL	∢	3 00E-03	6 00E-05	2 86E-05	3 00E-03 6 00E-05 2 86E-05 7 27E+01	2 00E-02	0 001	3 56E-05	0 01	5 72E-08	0 001	1 08E-08	0 0004
MG/KG	BENZO(a) ANTHRACENE	B 2				1 00E+01	00E+01 3 10E-01	0.1	4 89E-06		7 86E-07		1 48E-09	
MG/KG	BENZO(a)PYRENE	B 2				9 50E+00	3 10E-01	0 13	4 65E-06		9 71E-07		1 41E-09	
MG/KG	BENZO(b)FLUORANTHENE	B 2				9 50E+00	3 10E-01	0	4 65E-06		7 47E-07		1.41E-09	
MG/KG	BENZO(k)FLUORANTHENE	B2				1 20E+01	3 10E-01	0	5 87E-06		9 44E-07		1 78E-09	
MG/KG	CHRYSENE	B 2				1 20E+01	3 10E-01	0	5 87E-06		9 44E-07		1 78E-09	
MG/KG	DIBENZ(a,h)ANTHRACENE	B2				1 20E+00 :	3 10E-01	0.1	5 87E-07		9 44E-08		1 78E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B 2				6 20E+00	20E+00 3 10E-01	0 1	3 03E-06		4 88E-07		9 19E-10	
	Hazard Index									0.05		900.0		0.0004
											_	Total HI≖	90.0	
Notes	WOE = Weight of Evidence; CDI = Chronic Daily		ke, EPC = 1	Exposure F	oint Conce	entration, h	Q = Hazarc	Ouote	Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Inde	ard Inde				

		Carcinogenic	Noncarcinogenic
Ingestion			
CDI =	Cs * IR * FI * EF * ED * CF		,
_	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC '
IR =	Ingestion Rate (mg/day)	100 c	100 c 🤧
FI =	Fraction Ingested (unitless)	0.5	0.5
EF =	Exposure Frequency (day/year)	24 d	24 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm²)	2679 e,f	2679 e,f
AF =	Soil-Skin Adherence Factor (mg/cm²)	0.1 e,g	0 1 e,g
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	24 d	24 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Particula	ate Inhalation:		
CDI =	Cs * (1/PEF) * IR * ET * EF * ED		
_	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m³/kg)	1 32E+09 ı	1 32E+09 ı
IR =	Inhalation Rate (m³/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	24 d	24 d
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991

b = Time spent outdoors in the contaminated areas based on the nature of the activity, assuming full workday

c = Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

d = Utility activity assumed to be twice a month throughout the year

e= U S EPA Exposure Factors Handbook, August 1997

f = Surface area of 1/2 head, forearms and the hands of an adult worker

g = AF calculated for soil adherence can be found in Appendix L.

h = Chemical-specific absorption factors are found in Appendix L

ı = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance Technical Background Document, May 1996

TABLE 14-7b
Surrogate Site #34 Soil Column -Hypothetical Current/Future Utility Worker Carcinogenic Scenario Memphis Depot Main Installation RI

									Ingestion	tion	Dermal	nal	Inhalation	ition
Units	Chemical	WOE	SFo	SFd	SFI	EPC	ABSgi	ABS	ᅙ	ELCR	CDI	ELCR	<u>1</u>	ELCR
MG/KG	ARSENIC	¥	1 50E+00	A 150E+00 366E+00 151E+01 246E+01 410E-01	1 51E+01	2 46E+01	4 10E-01	0.03	4 13E-07	6 2E-07	4 13E-07 6 2E-07 6.64E-08 2 4E-07	2 4E-07	1 25E-10	1.9E-09
MG/KG	CHROMIUM, TOTAL	⋖			4 20E+01 7 27E+01 2 00E-02	7 27E+01	2 00E-02	0 001	1 22E-06		6 54E-09		3.70E-10	1.6E-08
MG/KG	BENZO(a) ANTHRACENE	B2	7 30E-01	7 30E-01 2 35E+00 3 10E-01 1 00E+01	3 10E-01	1 00E+01	3 10E-01	0 1	1 68E-07	1 2E-07	1 2E-07 8 99E-08	2.1E-07	5 08E-11	1.6E-11
MG/KG	BENZO(a)PYRENE	B2	7.30E+00	7.30E+00 235E+01 3 10E+00 9 50E+00	3 10E+00	9 50E+00	3 10E-01	0 13	1.59E-07	1 2E-06	1,11E-07	2 6E-06	4.83E-11	1.5E-10
MG/KG	BENZO(b)FLUORANTHENE	B2	7.30E-01	7.30E-01 2.35E+00 3 10E-01 9 50E+00	3 10E-01	9 50E+00	3.10E-01	0	1 59E-07	1 2E-07	8.54E-08	2 0E-07	4 83E-11	1.5E-11
MG/KG	BENZO(k)FLUORANTHENE	B2	7.30E-02	7.30E-02 235E-01 310E-02 120E+01	3 10E-02	1 20E+01	3 10E-01	0	2 01E-07	1.5E-08	1 08E-07	2 5E-08	6 10E-11	1.9E-12
MG/KG	CHRYSENE	B2	7 30E-03	7 30E-03 2 35E-02 3.10E-03 1 20E+01 3 10E-01	3.10E-03	1 20E+01	3 10E-01	0	2 01E-07	1 SE-09	1.08E-07	2 5E-09	6 10E-11	1 9E-13
MG/KG	DIBENZ(a,h)ANTHRACENE	B2	7 30E+00	7 30E+00 2.35E+01 3 10E+00 1 20E+00 3 10E-01	3 10E+00	1 20E+00	3 10E-01	0.1	2 01E-08	1 5E-07		1 08E-08 2 5E-07	6 10E-12	1 9E-11
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7.30E-01	32 7.30E-01 2.35E+00 3.10E-01 6.20E+00 3.10E-01	3 10E-01	6 20E+00	3 10E-01	0.1	1 04E-07	7.6E-08	7.6E-08 5.57E-08 1.3E-07	1 3E-07	3 15E-11	9 8E-12
	Total Risk									2.3E-06		3.7E-06		1.8E-08
											Tot	Total Risk =	6E-06	

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

TABLE 14-7c
Surrogate Site #34 Soil Column - Hypothetical Current/Future Utility Worker Noncarcinogenic Scenario Memphis Depot Main Installation RI

									Indestion	ion	Dermal	lai	Inhalation	rtion
Units	Chemical	WOE	RfDo	RfDd	ÄÖ	EPC	ABSgi	ABS	<u>8</u>	모	<u>5</u>	웃	CO	ᄗ
MG/KG	ABSENIC	V	3 00E-04	1 23E-04		2 46E+01	4 10E-01	0 03	1 16E-06	0 004	1 86E-07	0 002	3 51E-10	
MG/KG	CHROMIUM, TOTAL	∢	3 00E-03	6 00E-05	6 00E-05 2 86E-05 7 27E+01	7 27E+01	2 00E-02	0 001	3 42E-06	0 001	1 83E-08	0 0003	1 04E-09	0 00004
MG/KG	BENZO(a)ANTHRACENE	B2				1 00E+01		0	4 70E-07		2 52E-07		1 42E-10	
MG/KG	BENZO(a)PYRENE	B2				9 50E+00	6.3	0 13	4 46E-07		3 11E-07		1 35E-10	
MG/KG	BENZO(b)FLUORANTHENE	B2				9 50E+00		0 1	4 46E-07		2 39E-07		1 35E-10	
MG/KG	BENZO(k)FLUORANTHENE	B2				1 20E+01	6.7	0	5 64E-07		3 02E-07		1 71E-10	
MG/KG	CHRYSENE	B2				1 20E+01		0 1	5 64E-07		3 02E-07		1 71E-10	
MG/KG	DIBENZ(a.h)ANTHRACENE	B2				1 20E+00	c	0	5 64E-08		3 02E-08		171E-11	
MG/KG	INDENO(1.2.3-c.d)PYRENE	B 2				6 20E+00	3 10E-01	0 1	2 91E-07		1 56E-07		8 82E-11	
	Hazard Index									0.005		0.002		0.00004
											_	Fotal HI=	0.007	

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

TABLE I4-8a Surrogate Site #34 Surface Soil -Hypothetical Future Industrial Worker Scenario Memphis Depot Main Installation RI

		<u>Carcinogenic</u>	Noncarcinogenic
Ingestio			
CDI =	Cs * IR * FI * EF * ED * CF		
0-	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a	50 a
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm²)	2679 c,d	2679 c,d
AF =	Soil-Skin Adherence Factor (mg/cm²)	0.03 c,e	0 03 c.e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (8 hours per 8 hour workday)	(Chemical Specific) 1	(Chemical Specific) 1
EF=	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	250 a 25 a	250 a 25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	25 a 1 00E-06
BW =	Body Weight (kg)		
AT =		70 a	70 a
AI =	Averaging Time (days)	25550 a	9125 a
	te Inhalation:		
CDI =	Cs * (1/PEF) * IR * ET * EF * ED BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m³/kg)	1 32E+09 g	1 32E+09 g
IR =	Inhalation Rate (m³/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
	V. V	u	7120 51

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity c = U S EPA Exposure Factors Handbook, August 1997.
- d = Surface area of 1/2 head, forearms and the hands of an adult worker.
- e = AF calculated for soil adherence can be found in Appendix L.
- f = Chemical-specific absorption factors are found in Appendix L.
- g = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance: Technical Background Document, May 1996

, :

TABLE 14-8b
Surrogate Site #34 Surface Soil -Hypothetical Future Industrial Worker Carcinogenic Scenario Memphis Depot Main Installation RI

									Ingestion	lion	Derma	nal	Inhalation	tion
Units	Chemical	WOE	WOE SFo	SFd	SFI	EPC	EPC ABSgi ABS	ABS	<u>0</u>	ELCR	CD	ELCR	ᄗ	ELCR
MG/KG	ABSENIC	4	1 50E+00	A 150E+00 366E+00 151E+01 492E+01 410E-01	151E+01	4 92E+01	4 10E-01	0 03	0 03 8 60E-06	1 3E-05	1 3E-05 4 15E-07		1.5E-06 2 61E-09	3.9E-08
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	7 30E-01 2 35E+00 3 10E-01 1 00E+01 3 10E-01	3 10E-01	1 00E+01	3 10E-01	0	1 75E-06	1 3E-06	175E-06 13E-06 281E-07	6.6E-07	6.6E-07 5 29E-10	1 6E-10
MG/KG	BENZO(a)PYBENE	B2	7 30E+00	7 30E+00 2 35E+01 3 10E+00 9 50E+00 3 10E-01	3 10E+00	9 50E+00	3 10E-01	0 13	1 66E-06	1 2E-05	1 66E-06 1 2E-05 3 47E-07	8.2E-06	8.2E-06 5 03E-10	1.6E-09
MG/KG	BENZO(b)FLUORANTHENE	85	7 30E-01	7 30E-01 2 35E+00 3 10E-01 9 50E+00 3 10E-01	3 10E-01	9 50E+00		0	1.66E-06	1 2E-06	1 2E-06 2 67E-07	6.3E-07	6.3E-07 5 03E-10	1 6E-10
MG/KG	BENZO(K)FLUORANTHENE	B2	7 30E-02	7 30E-02 2 35E-01 3 10E-02 1 20E+01 3 10E-01	3 10E-02	1 20E+01	3 10E-01	0.1		1.5E-07	337E-07 7.9E-08	7.9E-08	6 35E-10	2 0E-11
MG/KG	CHROMILIM TOTAL	<			4 20E+01	1 24E+02	4 20E+01 1 24E+02 2 00E-02	0 001			3.48E-08		6 57E-09	2 8E-07
MG/KG	CHRYSENE		7 30E-03	7 30E-03 2 35E-02 3 10E-03 1 20E+01 3 10E-01	3 10E-03	1 20E+01	3 10E-01	0 1	2 10E-06	1 5E-08	2 10E-06 1 5E-08 3 37E-07 7 9E-09 6 35E-10	7 9E-09	6 35E-10	2 0E-12
MG/KG	DIBENZIADIANTHRACENE	B2	7.30E+00	7.30E+00 2.35E+01 3.10E+00 1.20E+00 3.10E-01	3 10E+00	1 20E+00	3 10E-01	0		1 5E-06	2 10E-07 1 5E-06 3 37E-08 7.9E-07 6 35E-11	7.9E-07	6 35E-11	2.0E-10
MG/KG	INDENO(1.2.3-c.d)PYRENE	B2	7,30E-01	B2 7,30E-01 235E+00 3 10E-01 6 20E+00 3 10E-01 0.1	3 10E-01	6 20E+00	3 10E-01	0.1	•	7 9E-07	1 08E-06 7 9E-07 1 74E-07 4 1E-07 3 28E-10	4 1E-07	3 28E-10	
	Total Risk									3.0E-05		1.2E-05		3.2E-07
											Ţ	Total Risk = 4E-05	4E-05	

WOE = Weight of Evidence; CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

. į

;

TABLE 14-8c
Surrogate Site #34 Surface Soil -Hypothetical Future Industrial Worker Noncarcinogenic Scenario Memphis Depot Main Installation RI

		:							ndestion	틸	Derma	ᅙ	Inhalation	tion
Units	Chemical	WOE	OE RfDo	RfDd	ΗÖ	EPC	ABSgi ABS	ABS	CDI	ğ	CDI	ğ	CDI	Ğ
MG/KG	ARSENIC	٧	3 00E-04 1 23E-04	1 23E-04		4.92E+01	4 10E-01	0 03	2 41E-05	900	1 16E-06	6000	7 29E-09	
MG/KG	BENZO(a)ANTHRACENE	B2				1 00E+01	3.10E-01	0	4 89E-06		7 86E-07		1 48E-09	
MG/KG	BENZO(a)PYRENE	B2				9 50E+00	3 10E-01	0 13	4 65E-06		9 71E-07		1,41E-09	
MG/KG	BENZO(b)FLUORANTHENE	B2				9.50E+00	3 10E-01	0	4 65E-06		7 47E-07		1.41E-09	
MG/KG	BENZO(k)FLUORANTHENE	B2				1 20E+01	3 10E-01	0	5 87E-06		9 44E-07		1.78E-09	
MG/KG	CHROMIUM, TOTAL	<	3 00E-03 6 00E-05 2 86E-05	6 00E-05	2 86E-05	1 24E+02	2 00E-02	0 001	6 07E-05	0 02	9 75E-08	0 002	1 84E-08	9000 0
MG/KG	CHRYSENE	B2				1.20E+01	3 10E-01	0	5 87E-06		9 44E-07		1.78E-09	
MG/KG	DIBENZ(a,h)ANTHRACENE	B2				1.20E+00	3 10E-01	0	5 87E-07		9 44E-08		1 78E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2				6 20E+00	20E+00 3 10E-01	0 1	3 03E-06		4 88E-07		9 19E-10	
	Hazard Index									0 1		0.01		0.0006
											L	otal HI=	0.1	

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Inde

TABLE I4-9a FU3 Sump Sediment -Hypothetical Current/Future Maintenance Worker Scenano Memphis Depot Main Installation RI

		<u>Carcinogenic</u>	<u>Noncarcinogenic</u>
ingestio			*
CDI =	Csd * IR * FI * EF * ED * CF BW * AT		`
Csd =		EPC	EDC
Csu	Concentration in sediment (mg/kg)		EPC
	Ingestion Rate (mg/day)	50 a, b	, ,50 a, b
1=	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	12 d	12 d
D =	Exposure Duration (year)	25 e	25 e
F=	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
3W =	Body Weight (kg)	70 e	70 e
\ T =	Averaging Time (days)	25550 e	9125 e
Dermal:			
CDI =	Csd *SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
SA =	Surface Area (cm²) - wading	2679 f,g	2679 f,g
AF =	Soil-Skin Adherence Factor (mg/cm²)	0.1 g,h	0.1 g,h
ABS =	Absorption Factor (unitless)	(Chemical Specific) i	(Chemical Specific) i
T =	Exposure Time (4 hours per 8 hour workday)	05 с	05 c
F =	Exposure Frequency (day/year)	12 d	12 d
D =	Exposure Duration (year)	25 e	25 e
F=	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
3W =	Body Weight (kg)	70 e	70 e
AT =	Averaging Time (days)	25550 e	9125 e

- a = Supplemental Guidance to RAGS. Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- b = A conservative ingestion rate based on industrial soil intake is assumed.
- c = Half a workday is assumed to be spent outdoors in the contaminated areas based on the nature of the activity
- d = Once a month maintenance activity throughout the year is assumed.
- e = U S EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors," OSWER Directive 9285.6-03, March 25, 1991
- f = Surface area of hands, 1/2 arms and face (1/2 head) of an adult worker
- g = U S EPA Exposure Factors Handbook, August 1997.

Inhalation: No values available for inhalation pathway

- h = AF calculated for soil adherence can be found in Appendix L
- i = Chemical-specific absorption factors are found in Appendix L.

ι:

TABLE 14-9b
FU3 Sump Sediment -Hypothetical Current/Future Carcinogenic Maintenance Worker Scenario Memphis Depot Main Installation RI

								Ingestion	tion	Dormal	lec
Loite	ر بن بن الله و الله و الله و الله و الله و الله و الله و الله و الله و الله و الله و الله و الله و الله و الله	200	SEC.	ZH.	Z	ABSG	ABA	COI	20		<u> </u>
0	Ciletilical	1	2	3	֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֡֡	5525	2	5	-	3	ורכו
MG/KG	ANTIMONY	۵			2 84E+01	2 00E-02	0.001	2.38E-07		6.38E-10	
MG/KG	BARIUM	۵			1.12E+03	7.00E-02	0 001	9 39E-06		2.52E-08	
MG/KG	CADMIUM	20			8 43E+01	1 00E-02	0.01	7.07E-07		1.89E-08	
MG/KG	CHROMIUM, TOTAL	∢			1.70E+03	2 00E-02	0 001	1.43E-05		3 82E-08	
MG/KG	ZINC	۵			2.55E+03	2.00E-01	0.001	2.14E-05		5.73E-08	
MG/KG	2,4-DIMETHYLPHENOL				1.60E+01	6 50E-01	0 01	1.34E-07		3.59E-09	
MG/KG	2-METHYLNAPHTHALENE	Ω			8.20E+00	8.00E-01	0.01	6 88E-08		1.84E-09	
MG/KG	PETROLEUM HYDROCARBONS				5 98E+03	5 00E-01	0.01	5 02E-05		1.34E-06	
	Total Risk										
								To	Fotal Risk=		

WOE = Weight of Evidence, CDI = Chronic Daily Intake; EPC = Exposure Point Concentration; ELCR = Excess Lifetime Cancer Exposure

TABLE 14-9c FU3 Sump Sediment -Hypothetical Current/Future Noncarcinogenic Maintenance Worker Scenario Memphis Depot Main Installation RI

								Ingestion	tion	Ö	Jermal	
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	ABS	CDI	오	CDI	엳	
MG/KG	ANTIMONY	۵	4.00E-04	8 00E-06	2 84E+01	2.00E-02	0 001	6.67E-07	0.002	1.79E-09	0.0002	
MG/KG	BARIUM	۵	7 00E-02	4.90E-03	1 12E+03	7 00E-02	0.001	2 63E-05	0 0004	7.05E-08	0.00001	
MG/KG	CADMIUM	<u>8</u>	1.00E-03	1.00E-05 8	8.43E+01	1 00E-02	0 01	1 98E-06	0.002	5 30E-08	0.005	
MG/KG	CHROMIUM, TOTAL	⋖	3 00E-03	6.00E-05	1.70E+03	2 00E-02	0.001	3.99E-05	0 01	1.07E-07		
MG/KG	ZINC	۵	3 00E-01	6.00E-02	2 55E+03	2.00E-01	0 001	5 99E-05	0 0002	1 60E-07	_	
MG/KG	2,4-DIMETHYLPHENOL		2.00E-02	1.30E-02	1 60E+01	6 50E-01	0.01	3 76E-07	0 00002	1 01E-08	0.0000008	
MG/KG	2-METHYLNAPHTHALENE	۵	2.00E-02	1.60E-02 8	8 20E+00 8	8 00E-01	0 01	1.93E-07	0.00001	5 16E-09	0.0000003	
MG/KG	PETROLEUM HYDROCARBONS		4 00E-02	2 00E-02	5.98E+03	5 00E-01	0.01	1.40E-04	0 004	3.76E-06	0.0002	
	Hazard Index								0.02		0.008	
								•	Total HI=	0.03		

WOE = Weight of Evidence; CDI = Chronic Daily Intake, EPC = Exposure Point Concentration; HQ = Hazard Quotient, HI = Hazard Index

TABLE I4-10a FU3 Sump Sediment -Hypothetical Future Industrial Worker Scenario Memphis Depot Main Installation RI

		Carcinogenic	<u>Noncarcinogenic</u>
Ingestio			
CDI =	Csd * IR * FI * EF * ED * CF		
	BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a, b	50 a, b
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	250 d	250 d
ED =	Exposure Duration (year)	25 d	25 d
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 d	70 d
AT =	Averaging Time (days)	25550 d	9125 d
Dermal:			
CDI =	Csd *SA * AF * ABS * ET * EF * ED * CF BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
	Surface Area (cm²) - wading		
SA =	· · · ·	2679 e,f	2679 e,f
AF =	Soil-Skin Adherence Factor (mg/cm²)	0.1 g,f	0 1 g,f
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (4 hours per 8 hour workday)	0.5 c	0.5 c
F =	Exposure Frequency (day/year)	250 d	250 d
ED =	Exposure Duration (year)	25 d	25 d
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 d	70 d
AT =	Averaging Time (days)	25550 d	9125 d

Inhalation: No values available for inhalation pathway

- a = Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995.
- b = A conservative ingestion rate based on industrial soil intake is assumed
- c = Half a workday is assumed to be spent outdoors in the contaminated areas based on the nature of the activity.
- d = U.S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991.
- e = Surface area of hands, 1/2 arms and face (1/2 head) of an adult worker
- f = U.S EPA Exposure Factors Handbook, August 1997
- g = AF calculated for soil adherence can be found in Appendix L
- h = Chemical-specific absorption factors are found in Appendix L

TABLE 14-10b FU3 Sump Sediment -Hypothetical Future Industrial Worker Carcinogenic Scenario Memphis Depot Main Installation RI

								Indestion	ž	Dermal	lar
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ABS	CDI	ELCR	CDI	ELCR
MG/KG	ANTIMONY	٥			2 84E+01 2 00E-02 0.001	2 00E-02	0.001	4 96E-06		1 33E-08	
MG/KG	BARIUM	۵			1 12E+03	12E+03 7.00E-02	0 001	1.96E-04		5.24E-07	
MG/KG	CADMIUM	B			8 43E+01	1 00E-02	0 0 1	1 47E-05	-•	3 95E-07	
MG/KG	CHROMIUM, TOTAL	∢			1.70E+03	.70E+03 2 00E-02	0 001	2.97E-04	•	7.96E-07	
MG/KG	ZINC	۵			2 55E+03	2.00E-01	0 001	4 46E-04		1.19E-06	
MG/KG	2,4-DIMETHYLPHENOL				1.60E+01	6.50E-01	0.01	2 80E-06		7.49E-08	
MG/KG	2-METHYLNAPHTHALENE	۵			8.20E+00 8 00E-01	8 00E-01	0 01	1 43E-06	-•	3 84E-08	
MG/KG	PETROLEUM HYDROCARBONS				5.98E+03 5.00E-01	5 00E-01	0.01	1 04E-03	- •	2 80E-05	
	Total Risk							Total	Tota! Risk=		
Notes	WOE = Weight of Evidence; CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	onic Daily I	ntake, EP	C = Expo	sure Point Co	oncentration	n, ELCR	= Excess Life	etime Ca	incer Expo	sure

THIS PAGE INTENTIONALLY LEFT BLANK.

Appendix I5 FU4 Soils FU4 Sediment THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE I5-1a
FU4 Surface Soil -Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

_		Carcinogenic	Noncarcinogenic	
ngestio	n:			
DI =	Cs*iR*FI* EF*ED*CF			
	BW * AT			
S =	Concentration in soil (mg/kg)	EPC	EPC	
₹ =	Ingestion Rate (mg/day)	50 a	50 a	
i =	Fraction Ingested (unitless)	1	1	
F =	Exposure Frequency (day/year)	250 a	250 a	
D =	Exposure Duration (year)	25 a	25 a	
F =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06	
8W =	Body Weight (kg)	70 a	70 a	
\T =	Averaging Time (days)	25550 a	9125 a	
ermal:				
DI =	Cs *SA * AF * ABS * ET * EF * ED * CF			
	BW * AT			
cs =	Concentration in soil (mg/kg)	EPC	EPC	
SA =	Surface Area (cm2)	2679 c,d	2679 c₁d	
\F =	Soil-Skin Adherence Factor (mg/cm2)	0 03 c,e	0 03 c,e	
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f	
T=	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
:F =	Exposure Frequency (day/year)	250 a	250 a	
D =	Exposure Duration (year)	25 a	25 a	
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06	
3W =	Body Weight (kg)	70 a	70 a	
\T =	Averaging Time (days)	25550 a	9125 a	
nhalatio	on:	for volatiles		
DI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/PEF	<u>)) * IR * ET * EF * ED</u>	
	BW * AT	BW	* AT	
)s =	Concentration in soil (mg/kg)	EPC	EPC	
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1 32E+09 g	
/Find ≃	Volatilization Factor (m3/kg)	(Chemical Specific) h	(Chemical Specific) h	
R =	Inhalation Rate (m3/day)	20 a	20 a	
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
EF =	Exposure Frequency (day/year)	250 a	250 a	
ED =	Exposure Duration (year)	25 a	25 a	
BW =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity
- c = EPA Exposure Factors Handbook, August 1997.
- d = Surface area of 1/2 head, forearms and the hands of an adult worker.
- e = AF calculated for soil adherence can be found in Appendix G.
- f = Chemical-specific absorption factors are found in Appendix G.
- g = Particulate emission factor (PEF), adapted from U.S.EPA, Soil Screening Guidance. Technical Background Document, May 1996
- h = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F A C , December 1998.

TABLE 15-1b
FU4 Surface Soil -Hypothetical Future Industnal Worker Carcinogenic Scenano
Memphis Depot Main Installation RI

										Ingestion	tion	Decma	nal	Inhalation	Ition
Units	Chemical	WOE	SFo	SFd	SFi	VFind	EPC	ABSgi	ABS	CDI	ELCR	G	ELCR	5	ELCA
MG/KG	ALUMINUM						1 27E+04	1 00E-01	0 001	2 22E-03		3 57E-06		6 74E-07	
MG/KG	ANTIMONY	۵					4 33E+00	2 00E-02	0 001	7 56E-07		1 22E-09		2 29E-10	
MG/KG	ARSENIC	∢	1 50E+00	3 66E+00	1 51E+01		1 69E+01	4 10E-01	0 03	2 95E-06	4 4E-06	1 42E-07	5 2E-07	8.94E-10	1 4E-08
MG/KG	CHROMIUM, TOTAL	∢			4 20E+01		6 69E+01	2 00E-02	0 001	1 17E-05		1 88E-08		3 54E-09	1 5E-07
MG/KG	COPPER	٥					3 43E+01	3 00E-01	0 001	6 00E-06		9 64E-09		1 82E-09	
MG/KG	MANGANESE	٥					7 18E+02	4 00E-02	0 001	1 25E-04		2 02E-07		3 80E-08	
MG/KG	SELENIUM	٥					1 12E+00	4 40E-01	0 001	1 95E-07		3 14E-10		5 92E-11	
MG/KG	THALLIUM	۵					9 84E-01	1 50E-01	0 001	1 72E-07		2 76E-10		5 21E-11	
MG/KG	ZINC	۵					2 22E+02	2 00E-01	0 001	3 88E-05		6 24E-08		1 18E-08	
MG/KG	ALPHA-CHLORDANE	B2	3 50E-01	7 00E-01	3 50E-01		7 37E-02	5 00E-01	0 04	1 29E-08	4 5E-09	8 28E-10	5 8E-10	3 90E-12	1 4E-12
MG/KG	DDE	B 5	3 40E-01	4 86E-01			1 50E-01	7 00E-01	0	2 63E-08	8 9E-09	4 22E-09	2 1E-09	7 96E-12	
MG/KG	DDT	B2	3 40E-01	4 86E-01	3 40E-01		3 08E-01	7 00E-01	0	5 38E-08	1 8E-08	8 64E-09	4 2E-09	1 63E-11	5 5E-12
MG/KG	DIELDRIN	B2	1 60E+01	3 20E+01	1 60E+01		3 90E-01	5 00E-01	0	6 81E-08	1 1E-06	1 09E-08	3 5E-07	2 06E-11	3 3E-10
MG/KG	GAMMA-CHLORDANE	B2	3 50E-01	7 00E-01	3 50E-01		8 70E-02	5 00E-01	0 04	1 52E-08	5 3E-09	9 77E-10	6 8E-10	4 61E-12	1 6E-12
MG/KG	PCB-1260 (AROCLOR 1260)	B2	2 00E+00	2 22E+00	2 00E+00		6 64E+00	9 00E-01	900	1 16E-06	2 3E-06	1 12E-07	2 5E-07	3 52E-10	7 0E-10
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	2 35E+00	3 10E-01		5 44E-01	3 10E-01	0	9 51E-08	6 9E-08	1 53E-08	3 6E-08	2 88E-11	8 9E-12
MG/KG	BENZO(a)PYRENE	B 5	7 30E+00	2 35E+01	3 10E+00		5 38E-01	3 10E-01	0 13	9 40E-08	6 9E-07	1 96E-08	4.6E-07	2 85E-11	8 8E-11
MG/KG	BENZO(b)FLUORANTHENE	85	7 30E-01	2 35E+00	3 10E-01		5 40E-01	3 10E-01	0	9 44E-08	6 9E-08	1 52E-08	3 6E-08	2 86E-11	8 9E-12
MG/KG	CARBAZOLE		2 00E-02	2 86E-02			2 64E-01	7 00E-01	0	4 62E-08	9 2E-10	7 42E-09	2 1E-10	1 40E-11	
MG/KG	CHRYSENE		7 30E-03	2 35E-02	3 10E-03		5 82E-01	3 10E-01	0	1 02E-07	7 4E-10	1 63E-08	3 8E-10	3 08E-11	9 5E-14
MG/KG	DIBENZ(a,h)ANTHRACENE	85	7 30E+00	2 35E+01	3 10E+00		3 66E-01	3 10E-01	0	6 40E-08	4 7E-07	1 03E-08	2 4E-07	1 94E-11	6 0E-11
MG/KG	INDENO(1,2,3-c,d)PYRENE	B 2	7 30E-01	2 35E+00	3 10E-01		4 87E-01	3 10E-01	0	8 50E-08	6 2E-08	1 37E-08	3 2E-08	2 58E-11	8 0E-12
MG/KG	PENTACHLOROPHENOL	85	1 20E-01	1 20E-01			1 21E-01	1 00E+00	0 24	2 12E-08	2 5E-09	1 63E-09	2 0E-10	1 28E-12	
MG/KG	PETROLEUM HYDROCARBONS						1 30E+03	5 00E-01	0 01	2 27E-04		3 65E-06		6 88E-08	
MG/KG	1,1,2,2-TETRACHLOROETHANE	ပ	2 00E-01	2 86E-01	2 03E-01	1 58E+04	5 94E-03	7 00E-01	001	1 04E-09	2 08E-10	1 67E-11	4 77E-12	2 63E-08	5 33E-09
MG/KG	TCDD Equivalent	85	1 50E+05	3 00E+05	1 50E+05		4 66E-04	5 00E-01	0 03	8 15E-11	1 2E-05	3 93E-12	1 2E-06	2 47E-14	3 7E-09
	Total Risk										2E-05		3E-06		2E-07
												٢	Total Risk =	2E-05	

WOE ≈ Weight of Evidence, CDI ≈ Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

TABLE 15-1c
FU4 Surface Soil -Hypothetical Future Industrial Worker Noncarcinogenic Scenario
Memphis Depot Main Installation RI

										Ingestion	tion	Derma	mal	Inhalation	ation
Units	Chemicat	WOE	RfDo	RfOd	RfDi	VFind	EPC	ABSgi	ABS	CDI	НО	CDI	ΗQ	G	오
MG/KG	ALUMINUM		1 00E+00	1 00E-01	1 00E-03		127E+04	1 00E-01	0 001	6 23E-03	900 0	1 00E-05	0 0001	1 89E-06	0 002
MG/KG	ANTIMONY	۵	4 00E-04	8 00E-06			4 33E+00	2 00E-02	0 001	2 12E-06	0 005	3 40E-09	0 0004	6 42E-10	
MG/KG	ARSENIC	∢	3 00E-04	1 23E-04			1 69E+01	4 10E-01	0 03	8 26E-06	0 03	3 98E-07	0 003	2 50E-09	
MG/KG	CHROMIUM, TOTAL	4	3 00E-03	6 00E-05	2 86E-05		6 69E+01	2 00E-02	0 001	3 27E-05	0 01	5 26E-08	60000	9 92E-09	0 0003
MG/KG	COPPER	٥	4 00E-02	1 20E-02			3 43E+01	3 00E-01	0 001	1 68E-05	0 0004	2 70E-08	0 000002	5 09E-09	
MG/KG	MANGANESE	٥	1 40E-01	5 60E-03	1 43E-05		7 18E+02	4 00E-02	0 001	351E-04	0 003	5 65E-07	0 0001	1 06E-07	0 007
MG/KG	SELENIUM	۵	5 00E-03	2 20E-03			1 12E+00	4 40E-01	0 001	5 47E-07	0 0001	8,79E-10	0 0000004	1 66E-10	
MG/KG	THALLIUM	٥	7 00E-05	105E-05			9 84E-01	1 50E-01	0 001	4 81E-07	0 007	7 74E-10	0 00007	1,46E-10	
MG/KG	ZINC	۵	3 00E-01	6 00E-02			2 22E+02	2 00E-01	0 001	1 09E-04	0 0004	175E-07	0 000003	3 29E-08	
MG/KG	ALPHA-CHLORDANE	B2	5 00E-04	2 50E-04	2 00E-04		7 37E-02	5 00E-01	0 04	3 61E-08	0 00007	2 32E-09	6000000	1 09E-11	0 00000000
MG/KG	DDE	82					1 50E-01	7 00E-01	0 1	7 35E-08		1 18E-08		2 23E-11	
MG/KG	100	B2	5 00E-04	3 50E-04			3 08E-01	7 00E-01	0 1	1 51E-07	0 0003	2 42E-08	0 00007	4 56E-11	
MG/KG	DIELDRIN	85	5 00E-05	2 50E-05			3 90E-01	5 00E-01	0 1	1 91E-07	0 004	3 06E-08	0 001	5 78E-11	
MG/KG	GAMMA-CHLORDANE	B2	5 00E-04	2 50E-04	2 00E-04		8 70E-02	5 00E-01	0 04	4 26E-08	600000	2 74E-09	0 00001		900000000
MG/KG	PCB-1260 (AROCLOR 1260)	B2					6 64E+00	9 00E-01	900	3 25E-06		3 13E-07		9 84E-10	
MG/KG	BENZO(a)ANTHRACENE	8					5 44E-01	3 10E-01	0.1	2 66E-07		4 28E-08		8 07E-11	
MG/KG	BENZO(a)PYRENE	B2					5 38E-01	3 10E-01	0 13	2 63E-07		5 50E-08		7.98E-11	
MG/KG	BENZO(b) FLUORANTHENE	B 2					5 40E-01	3 10E-01	0	2 64E-07		4 25E-08		8 01E-11	
MG/KG	CARBAZÓLE	B2					2 64E-01	7 00E-01	0	1.29E-07		2 08E-08		3.92E-11	
MG/KG	CHRYSENE	B2					5 82E-01	3 10E-01	0	2 85E-07		4 57E-08		8 62E-11	
MG/KG	DIBENZ(a,h)ANTHRACENE	B2					3 66E-01	3 10E-01	0	1 79E-07		2 88E-08		5 43E-11	
MG/KG	INDENO(1,2,3-c,d)PYRENE	ä					4 87E-01	3 10E-01	0	2 38E-07		3 83E-08		7.21E-11	
MG/KG	PENTACHLOROPHENOL	85	3 00E-02	3 00E-02			121E-01	1 00E+00	0 24	5 93E-08	0 0000020	2 29E-08	0 0000008	1 80E-11	
MG/KG	PETROLEUM HYDROCARBONS		4 00E-02	2 00E-02	6 00E-02		1 30E+03	5 00E-01	0 01	6 36E-04	0 02	1 02E-05	0 0005	1 93E-07	0 000003
MG/KG	1,1,2,2-TETRACHLOROETHANE	O				1 58E+04	5 94E-03	7 00E-01	0 0 1	2 91E-09		4 67E-11		7 36E-08	
MG/KG	TCDD Equivalent	B 2					4 66E-04	5 00E-01	0 03	2 28E-10		1 10E-11		6 92E-14	
	Hazard lodex										0.08		0.007		0.01
													Total HI=	0.1	

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

TABLE IS-2a FU4 Soil Column -Hypothetical Future Industrial Worker Scenario

Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestic			
CDI =	Cs * IR * FI * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC `
R =	Ingestion Rate (mg/day)	50 a	50 a
i =	Fraction Ingested (unitless)	1	1
:F =	Exposure Frequency (day/year)	250 a	250 a
D =	Exposure Duration (year)	25 a	25 a
)F =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
3W =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
)ermal:			
DI =	Cs *SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
cs =	Concentration in soil (mg/kg)	EPC	EPC
6A =	Surface Area (cm2)	2679 c,d	2679 c,d
\F =	Soil-Skin Adherence Factor (mg/cm2)	0.03 c,e	0 03 c,e
BS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
T =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
F =	Exposure Frequency (day/year)	250 a	250 a
D =	Exposure Duration (year)	25 a	25 a
F =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
3W =	Body Weight (kg)	70 a	70 a
\T =	Averaging Time (days)	25550 a	9125 a
nhalatio	on:	for volatiles	
DI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/PEF))	* IR * ET * EF * ED
	BW * AT	BW	'AT
:s =	Concentration in soil (mg/kg)	EPC	EPC
EF =	Particulate Emission Factor (m3/kg)	1.32E+09 g	1.32E+09 g
Find =	Volatilization Factor (m3/kg)	(Chemical Specific) h	(Chemical Specific) h
R =	Inhalation Rate (m3/day)	20 a	20 a
T =	Exposure Time (8 hours per 8 hour workday)	1 b	['] 1 b
F =	Exposure Frequency (day/year)	250 a	250 a
D =	Exposure Duration (year)	25 a	25 a
3W =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure Factors" OSWER Directive 9285.6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas using best professional judgment, based on the nature of the activity
- c = EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance: Technical Background Document, May 1996.
- h = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F.A.C. December 1998

9.

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

TABLE IS-2b
FU4 Soil Column -Hypothetical Future Industrial Worker Carcinogenic Scenario
Memphis Depot Main Installation RI

										Indestion	Loi	Derma	le le	Inhalation	tion	
Units	Chemical	WOE	SFo	SFd	SF	VFind	EPC	ABSgi	ABS	ᄗ	ELCR	G	ELCR	CD	ELCR	
MG/KG	ALUMINUM						1 24E+04	1 00E-01	0 001	2 16E-03		3 48E-06		6 56E-07		
MG/KG	ANTIMONY	۵					3 45E+00	2 00E-02	0 001	6 03E-07		9 70E-10		183E-10		
MG/KG	ARSENIC	∢	1 50E+00	3 66E+00	1 51E+01		157E+01	4 10E-01	0 03	2 74E-06	4 1E-06	1 32E-07	4 8E-07	8 31E-10	1 3E-08	
MG/KG	CHROMIUM, TOTAL	∢			4 20E+01		3 76E+01	2 00E-02	0 001	6 56E-06		1 05E-08		1 99E-09	8 4E-08	
MG/KG	COBALT						9 91E+00	8 00E-01	0 001	1 73E-06		2 78E-09		5 25E-10		
MG/KG	COPPER	۵					2 94E+01	3 00E-01	0 001	5 14E-06		8 26E-09		1 56E-09		
MG/KG	MANGANESE	٥					7 87E+02	4 00E-02	0 001	1 38E-04		2 21E-07		4 17E-08		
MG/KG	SELENIUM	٥					7 96E-01	4 40E-01	0 001	1 39E-07		2 24E-10		4 22E-11		
MG/KG	THALLIUM	۵					9 33E-01	1 50E-01	0 001	1 63E-07		2 62E-10		4 94E-11		
MG/KG	ZINC	٥					141E+02	2 00E-01	0 001	2 47E-05		3 97E-08		7 48E-09		
MG/KG	DOE	8	3 40E-01	4 86E-01			2 06E-02	7 00E-01	0 1	3 60E-09	1 2E-09	5 78E-10	2 8E-10	1 09E-12		
MG/KG	TOO	85	3 40E-01	4 86E-01	3 40E-01		3 53E-02	7 00E-01	0.1	6 17E-09	2 1E-09	9 92E-10	4 8E-10	1 87E-12	6 4E-13	
MG/KG	ALPHA-CHLORDANE	85	3 50E-01	7 00E-01	3 50E-01		1 06E-02	5 00E-01	0 0 4	1 85E-09	6 5E-10	1 19E-10	8 3E-11	5 59E-13	2 0E-13	
MG/KG	DIELDRIN	B 2	1 60E+01	3 20E+01	1 60E+01		3 44E-02	5 00E-01	0 1	6 01E-09	9 6E-08	9 66E-10	3 1E-08	1 82E-12	2 9E-11	
MG/KG	GAMMA-CHLORDANE	B 2	3 50E-01	7 00E-01	3 50E-01		1 18E-02	5 00E-01	0 04	2 06E-09	7 2E-10	1 32E-10	9 3E-11	6 24E-13	2 2E-13	
MG/KG	PCB-1260 (AROCLOR 1260)	82	2 00E+00	2 22E+00	2 00E+00		8 65E-01	9 00E-01	900	151E-07	3 0E-07	1 46E-08	3 2E-08	4 58E-11	9 2E-11	
MG/KG	BENZO(a) ANTHRACENE	B 5	7 30E-01	2 35E+00	3 10E-01		3 23E-01	3 10E-01	0	5 65E-08	4 1E-08	9 08E-09	2 1E-08	1 71E-11	5 3E-12	
MG/KG	BENZO(a)PYRENE	B2	7 30E+00	2 35E+01	3 10E+00		3 20E-01	3 10E-01	0 13	5 60E-08	4 1E-07	1 17E-08	2 8E-07	1 70E-11	5 3E-11	
MG/KG	BENZO(b)FLUORANTHENE	B 2	7 30E-01	2 35E+00	3 10E-01		3 22E-01	3 10E-01	0.1	5 63E-08	4 1E-08	9 05E-09	2 1E-08	171E-11	5 3E-12	
MG/KG	CARBAZOLE	B2	2 00E-02	2 B6E-02			2 29E-01	7 00E-01	0	3 99E-08	8 0E-10	6 42E-09	18E-10	1.21E-11		
MG/KG	CHRYSENE	B 2	7 30E-03	2 35E-02	3 10E-03		3 35E-01	3 10E-01	0	5 85E-08	4 3E-10	9 40E-09	2 2E-10	1 77E-11	5 5E-14	
MG/KG	DIBENZ(a,h)ANTHRACENE	B2	7 30E+00	235E+01	3 10E+00		2 70E-01	3 10E-01	0	4 72E-08	3 4E-07	7 58E-09	1 8E-07	1 43E-11	4 4E-11	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	3 10E-01		3 07E-01	3 10E-01	0	5 37E-08	3 9E-08	8 63E-09	2 0E-08	1 63E-11	5 0E-12	
MG/KG	PENTACHLOROPHENOL	B2	1 20E-01	1 20E-01			1 44E-01	1 00E+00	0 24	2 52E-08	3 0E-09	9 74E-09	1 2E-09	7 65E-12		
MG/KG	PETROLEUM HYDROCARBONS	0					1 30E+03	5 00E-01	0 01	2 27E-04		3 65E-06		6 88E-08		
MG/KG	TOTAL 1,2-DICHLOROETHENE	0				2 61E+03	6 58E-03	1 00E+00	0 01	1 15E-09		1 85E-11		1.76E-07		
MG/KG	1,1,2,2-TETRACHLOROETHANE	O	2 00E-01	2 86E-01	2 03E-01	1 58E+04	6 30E-03	7 00E-01	0 01	1 10E-09	2 2E-10	1 77E-11	5 1E-12	2 78E-08	5 6E-09	
MG/KG	TRICHLOROETHYLENE (TCE)	B 2	1 10E-02	7 33E-02	6 00E-03	3 65E+03	6 41E-03	1 50E-01	0 01	1 12E-09	1 2E-11	1 80E-11	1 3E-12	1 23E-07	7 4E-10	
MG/KG	TCDD Equivalent	B 2	1 50E+05	3 00E+05	1 50E+05		9 62E-04	5 00E-01	0 03	1 68E-10	2 5E-05	8 11E-12	2 4E-06	5 09E-14	7 6E-09	
	Total Risk										3E-05		3E-06		1E-07	
	W011										•	Total Risk =	!	3E-05	!	

٠,

TABLE 15-2c FU4 Soil Column Hypothetical Future Industral Worker Noncarcinogenic Scenaric Memphis Depot Main Installation RI

Inhalation	НО	0 002			0 0002			900 0						0 000000008		600000000 0										0 000003					0.01	
Inha	CD	1 84E-06	5 12E-10	2 33E-09	5 57E-09	1 47E-09	4 36E-09	1 17E-07	1 18E-10	1 38E-10	2 10E-08	3 05E-12	5 24E-12	1 57E-12	5 10E-12	1 75E-12	1 28E-10	4 79E-11	4 75E-11	4 78E-11	3 39E-11	4 96E-11	4 00E-11	4 55E-11	2 14E-11	1 93E-07	4 94E-07	7 79E-08	3 43E-07	1 43E-13		90 0
Dermal	욧	0 0001	0 0003	0 003	0 0005	0 00000016	0 000002	0 0001	0 0000003	0 00007	0 000002		900000 0	0 000001	0 0001	0 000001									60000000	0 0005			900000000		0 005	Tota! HI=
Der	CDI	9 74E-06	2 71E-09	3 70E-07	2 95E-08	7 79E-09	2 31E-08	6 19E-07	6 26E-10	7 34E-10	1 11E-07	1 62E-09	2 78€-09	3 32E-10	2 70E-09	3 71E-10	4 06E-08	2 54E-08	3 27E-08	2 53E-08	1 80E-08	2 63E-08	2 12E-08	2 42E-08	2 73E-08	1 02E-05	5 17E-11	4 95E-11	5 04E-11 (2 27E-11		
ngestion	НΩ	900 0	0 004	0 03	900 0	0 00008	0 0004	0 003	0 00008	200 0	0 0002		0 00003	0 00001	0 0003	0 00001									0 000002	0 02			0 0000005		0.07	
agu	CDI	6 06E-03	1 69E-06	7 68E-06	1 84E-05	4 85E-06	1 44E-05	3 85E-04	3 90E-07	4 56E-07	6 92E-05	1 01E-08	1 73E-08	5 17E-09	1 68E-08	5 77E-09	4 23E-07	1 58E-07	1 57E-07	1 58E-07	1 12E-07	1 64E-07	1 32E-07	1 50E-07	7 07E-08	6 36E-04	3 22E-09	3 08E-09	3 13E-09	4 71E-10		
	ABS	0.001	0 00	0 03	0.00	0 001	0 00	0 00	000	0 001	0 00	0	0	0 04	0	00	900	0	0 13	0	0	0	0	01	0 24	0 01	00	0 0	0 01	0 03		
	ABSgi	1 00E-01	2 00E-02	4 10E-01	2 00E-02	8 00E-01	3 00E-01	4 00E-02	4 40E-01	1 50E-01	2 00E-01	7 00E-01	7 00E-01	5 00E-01	5 005-01	5 00E-01	9 00E-01	3 10E-01	3 10E-01	3 10E-01	7 00E-01	3 10E-01	3 10E-01	3 10E-01	1 00E+00	5 00E-01	1 00E+00	7 00E-01	1 50E-01	5 00E-01		
	EPC	1 24E+04	3 45E+00	1 57E+01	3 76E+01	9 91E+00	2 94E+01	7 87E+02	7 96E-01	9 33E-01	1 41E+02	2 06E-02	3 53E-02	1 06E-02	3 44E-02	1 18E-02	8 65E-01	3 23E-01	3 20E-01	3 22E-01	2 29E-01	3 35E-01	2 70E-01	3 07E-01	1 44E-01	1 30E+03	6 58E-03	6 30E-03	6 41E-03	9 62E-04		
	VFind														•												2 61 E+03	158E+04	3 65E+03			
	RfDi	1 00E-03			2 86E-05			1 43E-05						2 00E-04	•	2 00E-04										6 00E-02			•			
	RfDd	1 00E-01	8 00E-06	1 23E-04	6 00E-05	4 80E-02	1 20E-02	5 60E-03	2 20E-03	1 05E-05	6 00E-02		3 50E-04	2 50E-04	2 50E-05	2 50E-04									3 00E-02	2 00E-02			9 00E-04			
	RfDo	1 00E+00 1	4 00E-04 8	3 00E-04	3 00E-03 (6 00E-02 4	4 00E-02	1 40E-01	5 00E-03	7 00E-05	3 00E-01		5 00E-04	5 00E-04 2	5 00E-05	5 00E-04 2									3 00E-02	4 00E-02 2			6 00E-03			
	WOE		0	⋖	∢		۵	۵	۵	۵	۵	B 2	B 5	B2	B2	B	B 2	B 2	B 2	BS	BS	B5	B2	B2	B2			ပ	B 2	B2		,
	Chemical	ALUMINUM	ANTIMONY	ARSENIC	CHROMIUM, TOTAL	COBALT	COPPER	MANGANESE	SELENIUM	THALLIUM	ZINC	DDE	DDT	ALPHA-CHLORDANE	DIELDRIN	GAMMA-CHLORDANE	PCB-1260 (AROCLOR 1260)	BENZO(a) ANTHRACENE	BENZO(a) PYRENE	BENZO(b)FLUORANTHENE	CARBAZOLE	CHRYSENE	DIBENZ(a,h)ANTHRACENE	INDENO(1,2,3-c,d)PYRENE	PENTACHLOROPHENOL	PETROLEUM HYDROCARBONS	TOTAL 1,2-DICHLOROETHENE	1,1,2,2-TETRACHLOROETHANE	TRICHLOROETHYLENE (TCE)	TCDD Equivalent	Hazard Index	4
	Units	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG		

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

TABLE 15-3a
FU4 Surface Soil -Hypothetical Current/Future Maintenance Worker Scenano
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestion	:	•	
CDI =	Cs * IR * FI * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 c	50 c
FI =	Fraction Ingested (unitless)	0.5	0.5
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	<u>Cs *SA * AF * ABS * ET * EF * ED * CF</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2679 e,f	2679 e,f
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03 e,g	0.03 e,g
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
8W =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Inhalatio	•••	for volatiles.	
CDI =	Cs * (1/PEF) * IR * ET * EF * ED	<u>Cs * ((1/VFind)+(1/PEF))</u>	
	BW * AT	BW *	
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 ı	1.32E+09 ı
VFind =	Volatilization Factor (m3/kg)	(Chemical Specific) j	(Chemical Specific) j
IR =	Inhalation Rate (m3/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors" OSWER Directive 9285.6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas based on the nature of the activity, assuming full workday
- c = Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- d = Maintenance activity assumed to be once a week throughout the year (excluding vacation).
- e= U.S. EPA Exposure Factors Handbook, August 1997
- f = Surface area of 1/2 head, forearms and the hands of an adult worker.
- g = AF calculated for soil adherence can be found in Appendix G.
- h = Chemical-specific absorption factors are found in Appendix G
- i = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance. Technical Background Document, May 1996.
- j = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F A C ,
 December 1998

TABLE 15-3b
FU4 Surface Soil -Hypothetical Current/Future Maintenance Worker Carcinogenic Scenario Memphis Depot Main Instaliation RI

										Ingestion	Stion	ă	Dermal	Inhalation	ation
Units	Chemical	WOE	SFo	SFd	SFI	VFind	EPC	ABSgi	ABS	ᅙ	ELCR	CDI	ELCR	CD	ELCR
MG/KG	ALUMINUM						1 27E+04	1 00E-01	0 001	2 22E-04		7 15E-07		1 35E-07	
MG/KG	ANTIMONY	۵					4 33E+00	2 00E-02	0 001	7 56E-08		2 43E-10		4 58E-11	
MG/KG	ARSENIC	∢	1 50E+00	3 66E+00	1 51E+01		1 69E+01	4 10E-01	0 03	2 95E-07	4 4E-07	2 85E-08	1 0E-07	1 79E-10	2 7E-09
MG/KG	CHROMIUM, TOTAL	∢			4 20E+01		6 69E+01	2 00E-02	0 001	1 17E-06		3 76E-09		7 09E-10	3 0E-08
MG/KG	COPPER	۵					3 43E+01	3 00E-01	0 001	6 00E-07		1 93E-09		3 64E-10	
MG/KG	MANGANESE	۵					7 18E+02	4 00E-02	0 001	1 25E-05		4 03E-08		7 60E-09	
MG/KG	SELENIUM	۵					1 12E+00	4 40E-01	0 001	1 95E-08		6 28E-11		1 18E-11	
MG/KG	THALLIUM	۵					9 84E-01	1 50E-01	0 001	1 72E-08		5 53E-11		1 04E-11	
MG/KG	ZINC	۵					2 22E+02	2 00E-01	0 001	3 88E-06		1 25E-08		2 35E-09	
MG/KG	ALPHA-CHLORDANE	85	3 50E-01	7 00E-01	3 50E-01		7 37E-02	5 00E-01	0 04	1 29E-09	4 5E-10	1 66E-10	1.2E-10	7 80E-13	2 7E-13
MG/KG	ODE	B 5	3 40E-01	4 86E-01			1 50E-01	7 00E-01	0	2 63E-09	8 9E-10	8 44E-10	4 1E-10	1 59E-12	
MG/KG	DOT	85	3 40E-01	4 86E-01	3 40E-01		3 08E-01	7 00E-01-	0	5 38E-09	1 8E-09	1 73E-09	8 4E-10	3 26E-12	1 1E-12
MG/KG	DIELDRIN	85	1 60E+01	3 20E+01	1 60E+01		3 90E-01	5 00E-01	0	6 81E-09	1 1E-07	2 19E-09	7 0E-08	4 13E-12	6 6E-11
MG/KG	GAMMA-CHLORDANE	B 5	3 50E-01	7 00E-01	3 50E-01		8 70E-02	5 00E-01	0 0	1 52E-09	5 3E-10	1 95E-10	1 4E-10	921E-13	3 2E-13
MG/KG	PCB-1260 (AROCLOR 1260)	B5	2 00E+00	2 22E+00	2 00E+00		6 64E+00	9 00E-01	900	1 16E-07	2 3E-07	2 24E-08	5 0E-08	7 03E-11	1 4E-10
MG/KG	BENZO(a)ANTHRACENE	B 2	7 30E-01	235E+00	3 10E-01		5 44E-01	3 10E-01	0	951E-09	6 9E-09	3 06E-09	7 2E-09	5 77E-12	1 8E-12
MG/KG	BENZO(a)PYRENE	B 5	7 30E+00	2 35E+01	3 10E+00		5 38E-01	3 10E-01	0 13	9 40E-09	6 9E-08	3 93E-09	9 3E-08	5 70E-12	1 8E-11
MG/KG	BENZO(b)FLUORANTHENE	B2	7 30E-01	235E+00	3 10E-01		5 40E-01	3 10E-01	0	9 44E-09	6 9E-09	3 03E-09	7 1E-09	5 72E-12	1 8E-12
MG/KG	CARBAZOLE	85	2 00E-02	2 86E-02			2 64E-01	7 00E-01	0	4 62E-09	9 2E-11	1 48E-09	4 2E-11	2 80E-12	
MG/KG	CHRYSENE	85	7 30E-03	2 35E-02	3 10E-03		5 82E-01	3 10E-01	0	1 02E-08	7 4E-11	3 27E-09	7.7E-11	6 16E-12	1 9E-14
MG/KG	DIBENZ(a,h)ANTHRACENE	B 2	7 30E+00	2 35E+01	3 10E+00		3 66E-01	3 10E-01	0	6 40E-09	4 7E-08	2 06E-09	4 8E-08	3 88E-12	1 2E-11
MG/KG	INDENO(1,2,3-c,d)PYRENE	B 2	7 30E-01	2 35E+00	3 10E-01		4 87E-01	310E-01	0	8 50E-09	6 2E-09	2 73E-09	6 4E-09	5 15E-12	1 6E-12
MG/KG	PENTACHLOROPHENOL	B 2	1 20E-01	1 20E-01			1 21E-01	1 00E+00	0 24	2 12E-09	2 5E-10	1 63E-09	2 0E-10	1 28E-12	
MG/KG	PETROLEUM HYDROCARBONS	0					1 30E+03	5 00E-01	0 0 1	2 27E-05		7 30E-07		1 38E-08	
MG/KG	1,1,2,2-TETRACHLOROETHANE	ပ	2 00E-01	2 86E-01	2 03E-01	1 58E+04	5 94E-03	7 00E-01	0 0 1	1 04E-10	2 08E-11	3 34E-12	9 54E-13	5 26E-09	1 07E-09
MG/KG	TCDD Equivalent	B2	1 50E+05	3 00E+05	1 50E+05		4 66E-04	5 00E-01	0 03	8 15E-12	1 2E-06	7 86E-13	2 4E-07	4 94E-15	7 4E-10
	Total Risk										2E-06		6E-07		3E-08
													Total HI≃	3E-06	

139

PJ147543/APPISFU4all xls/FU4SSMW NonCarcinogenic

TABLE 15-3c FU4 Surface Soil - Hypothetical Current/Future M
--

										Ingestion	stion	ā	Dermal		Inhalation	
Units	Chemical	WOE	HCO	RfDd	RfDi	VFind	EPC	ABSgi	ABS	<u>.</u>	얼	CDI	ğΗ	ΙŒ	오	
MG/KG	ALUMINUM		1 00E+00	1 00E-01	1 00E-03		1 27E+04	1 00E-01	0 001	6 23E-04	9000 0	2 00E-06	0 00002	3 77E-07	0 0004	
MG/KG	ANTIMONY	٥	4 00E-04	8 00E-06			4 33E+00	2 00E-02	0 001	2 12E-07	0 0005	6 81E-10	600000	1 28E-10		
MG/KG	ARSENIC	∢	3 00E-04	1 23E-04			1 69E+01	4 10E-01	0 03	8 26E-07	0 003	7 97E-08	9000 0	5 O1E-10		
MG/KG	CHROMIUM, TOTAL	4	3 00E-03	6 00E-05	2 86E-05		6 69E+01	2 00E-02	0 001	3 27E-06	0 001	1 05E-08	0 0002	1 98E-09	0 00007	
MG/KG	COPPER	٥	4 00E-02	1 20E-02			3 43E+01	3 00E-01	0 001	1 68E-06	0 00004	5 40E-09	0 0000004	1 02E-09		
MG/KG	MANGANESE	۵	1 40E-01	5 60E-03	1 43E-05		7 18E+02	4 00E-02	0 001	3 51E-05	0 0003	1 13E-07	0 00002	2 13E-08	0 001	
MG/KG	SELENIUM	۵	5 00E-03	2 20E-03			1 12E+00	4 40E-01	0 001	5 47E-08	0 00001	1 76E-10	0 00000000	331E-11		
MG/KG	THALLIUM	۵	7 00E-05	1 05E-05			9 84E-01	1 50E-01	0 001	4 81E-08	0 0007	1 55E-10	0 00001	2 92E-11		
MG/KG	ZINC	۵	3 00E-01	6 00E-02			2 22E+02	2 00E-01	0 001	1 09E-05	0 00004	3 49E-08	90000000	6 59E-09		
MG/KG	ALPHA-CHLORDANE	85	5 00E-04	2 50E-04	2 00E-04		7 37E-02	5 00E-01	0 0	3 61E-09	0 000007	4 64E-10	0 000002	2 19E-12	0 00000001	
MG/KG	DDE	B 2					1 50E-01	7 00E-01	0 1	7 35E-09		2 36E-09		4 46E-12		
MG/KG	TOO	B2	5 00E-04	3 50E-04			3 08E-01	7 00E-01	0	1 51E-08	0 00003	4 84E-09	0 00001	9 12E-12		
MG/KG	DIELDRIN	83	5 00E-05	2 50E-05			3 90E-01	5 00E-01	0	1 91E-08	0 0004	6 13E-09	0 0002	1 16E-11		
MG/KG	GAMMA-CHLORDANE	B2	5 00E-04	2 50E-04	2 00E-04		8 70E-02	5 00E-01	0 04	4 26E-09	600000 0	5 47E-10	0 000002	2 58E-12	0 00000001	
MG/KG	PCB-1260 (AROCLOR 1260)	B2					6 64E+00	9 00E-01	900	3 25E-07		6 26E-08		1 97E-10		
MG/KG	BENZO(a)ANTHRACENE	B2					5 44E-01	3 10E-01	0	2 66E-08		8 56E-09		1.61E-11		
MG/KG	BENZO(a) PYRENE	B2					5 38E-01	3 10E-01	0 13	2 63E-08		1 10E-08		1 60E-11		
MG/KG	BENZO(b)FLUORANTHENE	B 2					5 40E-01	3 10E-01	0	2 64E-08		8 49E-09		1 60E-11		
MG/KG	CARBAZOLE	B3					2 64E-01	7 00E-01	0	1 29E-08		4 16E-09		7 84E-12		
MG/KG	CHRYSENE	B2					5 82E-01	3 10E-01	-	2 85E-08		9 15E-09		1 72E-11		
MG/KG	DIBENZ(a,h)ANTHRACENE	B2					3 66E-01	3 10E-01	0	1 79E-08		5 76E-09		1 09E-11		
MG/KG	INDENO(1,2,3-c,d)PYRENE	BS					4 87E-01	3 10E-01	0.1	2 38E-08		7 65E-09		1 44E-11		
MG/KG	PENTACHLOROPHENOL	B2	3 00E-02	3 00E-02			1 21E-01	1 00E+00	0.24	5 93E-09	0 0000002	4 57E-09	0 0000002	3 59E-12		
MG/KG	PETROLEUM HYDROCARBONS		4 00E-02	2 00E-02	6 00E-02		1 30E+03	5 00E-01	001	6 36E-05	0 002	2 04E-06	0 0001	3 85E-08	90000000	
MG/KG	1,1,2,2-TETRACHLOROETHANE	ပ				1 58€+04	5 94E-03	7 00E-01	001	2 91E-10		9 35E-12		1 47E-08		
MG/KG	TCDD Equivalent	83					4 66E-04	5 00E-01	0 03	2 28E-11		2 20E-12		1.38E-14		
	Hazard Index										0 008		0 001		0.002	
													Total HI=	0 01		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	ic Daily Intai	ke, EPC =	Exposure Pc	int Concent	ration, HQ	- Hazard Ou	otient, HI =	Hazard	Index						

TABLE 15-4a
FU4 (SS14A) Surface Soil - Hypothetical Future On-site Residential (Adult) Scenario
Memphis Depot Main Installation RI

gestion:					Carcinogenic		Noncarcinogenic
		inic compounds		Age-si	ecific intake (for c	arcinodei	nic compounds only)
D1 =		* EF * ED * CF			*FI *EF * CF * II		,,
		BW * AT		.,	AT	•	
S =	Concentrati	on in soil (mg/kg)			EPC		EPC
=	Ingestion Ra	ate (mg/day)			N/A		100 a
adj =	Age-adjuste	d Ingestion Rate (n	ng - year)/(kg - day)		114 29		N/A
=		ested (unitless)	3 7		1	۵,0	1
F =		requency (day/year	١		350	2	350 a
D =	-	uration (year)	ı		N/A		30 a
F =		Factor (kg/mg)			1 00E-06		
_ N =	Body Weigh						1 00E-06
,, = L=					N/A		70 a
=	Averaging T	inie (days)			25550	а	10950 a
ermal		nin compounds		A			
	•	nic compounds	4 ED + 0E				nic compounds only)
l =	US SA A	F'ABS'ET'EF	ED CF	<u>.Cs</u>	*SAadı * AF * AE		EFTCF
	_	BW * AT			AT		
=		on in soil (mg/kg)			EP¢		EPC
=	Surface Are	-			N/A		5049 d,e
adj =	Age-adjuste	d Surface Area (cm	12 - year)/(kg)		2671	d,e,f	N/A
=	Soif-Skin Ad	herence Factor (m	g/cm2)		0 03	d,g	0 03 d,g
3S =	Absorption I	Factor (unitless)		(0	Chemical Specific)	h	(Chemical Specific) h
=	Exposure Ti	me (4 hours per 24	-hour day)	•	0 167		0 167 c
=		requency (day/year	• •		350		350 a
=	•	uration (year)			N/A		30 a
=		Factor (kg/mg)			1 00E-06		1 00E-06
_ V =	Body Weigh				N/A		70 a
· - · =	Averaging T				25550		10950 a
	, o. u.gg .	,o (ou) o)			20000	_	10300 a
halation:				_			
		nic compounds		Age-sr			nic compounds only)
)! =	Cs (1/PEI	<u> </u>	F • ED		CDI =	_Cs * (1/	/PEF) * IR_inhad <u>i * ET * E</u> F
		BW * AT					AT
s =	Concentration	on in soil (mg/kg)			EPC		EPC
:F =	Particulate I	Emission Factor (m	3/kg)		1 32E+09	1	1 32E+09 ı
_Inh =	Inhalation R	ate (m3/day)			N/A		20 a
Inhadi	= Age-adjuste	d Inhalation Rate (r	n3 - year)/(kg - day)		12 85714286	a.ı	N/A
 [=		me (4 hours per 24			0 167		0.167 c
==		requency (day/year	* *		350		350 a
D =		uration (year)	,		N/A		30 a
W =	Body Weigh				N/A		70 a
rv = Γ=	Averaging T				25550		10950 a
eference		mic (uays)			25550	а	10300 9
	-	Evaluation Manual	, Supplemental Guidar	ice "Standard	Default Exposure		
	Factors," Of	SWER Directive 92	35 6-03, March 25, 199	91	•		
- Age-ad			djusted for body weigh				400 - (00.0)
	lRadj =	IRc_x_EDc	+ IRa x (EDa - I	EDc) =	200 x 6	+	100 x (30-6)
		BWc	BWa		15		70
			(mg-year)/(kg-day)				
= Time sp	pent outdoors	in the contaminate	d areas based on the r	nature of the a	ctivity		
EPA Ex	posure Facto	rs Handbook, Augu	st 1997				
= Surface	e area of 1/2 i	nead, hands, forear	ms, lower legs & feet o	of an adult			
Age-adi	usted surface	area for adults, ad	justed for body weight	and time for c	arcinogenic expos	ure	
J,	SAadı =	SAc x EDc	+ SAa x (EDa-		2351 x 6	+	5049 x (30-6)
		BWc	BWa	,	15	-	70
			/cm2-year}/(kg)				
_ AE oole	sulated for co-						
			found in Appendix G				
	•	•	found in Appendix G	<u>.</u> .	.		
			ed from EPA, Soil Scre	-		-	Document, May 1996
- Ana.adı			djusted for body weigh		carcinogenic expo	sure	
- Age-auj	165 1 - 1 - 2	- IR-Inhic x FDc	+ IR-Inhax (EDa	- EDc) ≃	15 x 6	+	20 x (30-6)
- Age-auj	in-inn aoj =	H.L. III. I. V. A. E. D. C.	<u> </u>				
Age-au	in-inn aoj =	BWc	BWa		15		70

TABLE IS-4b
FU4 (SS14A) Surface Soil - Hypothetical Future On-site Residential (Adult) Carcinogenic Scenario Memphis Depot Main Installation R1

										Ingestion	tion	2	Dermal	Inhalation	ition
Units	Chemical	WOE	SFo	SFd	SFI	VFind	EPC	ABSgi	ABS	CDlad	ELCR	CDlad	ELCR	CDladj	ELCR
MG/KG	Benzo(a)anthracene	B2	7 30E-01	2 35E+00	3 10E-01	235E+00 310E-01 000E+00 290E+00 310E-01 01 454E-06 33E-06 531E-08	2 90E+00	3 10E-01	0.1	4 54E-06	33E-06	5 31E-08	1 2E-07	6 45E-11	2.0E-11
MG/KG	Benzo(a)pyrene	B2	7 30E+00	2 35E+01	3 10E+00	235E+01 310E+00 000E+00 250E+00 310E-01 013	2 50E+00	3 10E-01	0 13	3 91E-06 2 9E-05 5 95E-08	2 9E-05	5 95E-08	1.4E-06	5 56E-11	1 7E-10
MG/KG	Carbazole	B2	2 00E-02	2 86E-02		0 00E+00	0 00E+00 1 00E+00 7 00E-01 0 1 1 57E-06 3 1E-08 1 83E-08	7 00E-01	0	1 57E-06	3 1E-08	1 83E-08	5 2E-10	2 22E-11	
MG/KG	Chrysene	B2	7 30E-03	2 35E-02	3 10E-03	235E-02 310E-03 000E+00 310E+00	3 10E+00	3.10E-01 01 485E-06 35E-08 567E-08	0	4 85E-06	3 5E-08	5 67E-08	1 3E-09	6 89E-11	2.1E-13
MG/KG	Pentachlorophenol	B2	1 20E-01	1 20E-01		0 00E+00	0 00E+00 1 10E-01 1 00E+00 0 24 1 72E-07 2 1E-08 4 83E-09	1 00E+00	0 24	1 72E-07	2 1E-08	4 83E-09	5 8E-10	2 45E-12	
	Total Risk										3.2E-05		1.5E-06 Total Risk =	3E-05	1.9E-10
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake,	:DI = Chronic [Jarly Intake,	EPC = Exp	osure Point	EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	n, ELCR =	Excess Life	ime Ca	ncer Expos	ure				

TABLE 15-4c FU4 (SS14A) Surface Soil - Hypothetical Future On-site Residential (Adult) Noncarcinogenic Scenario Memphis Depot Main Installation RI

										Ingestion	tion	De	Dermal	Inhalation	ţigi
Units	Jnits Chemical	WOE	WOE RIDO	RfDd	<u>2</u>	VFind	EPC	ABSgi ABS	ABS	CD	멎	CDI	ç	9	엳
MG/KG	Benzo(a)anthracene	B2				0 00E+00	2 90E+00	3 00E+00 2 90E+00 3 10E-01 0 1	0.1	3 97E-06		1 00E-07		1 00E-10	
MG/KG	Benzo(a)pyrene	85				0 00E+00	2 50E+00	0 00E+00 2 50E+00 3 10E-01 0 13	0 13	3 42E-06		1 12E-07		8 65E-11	
MG/KG	Carbazole	85				0 00E+00	1 00E+00	00E+00 100E+00 700E-01 01		137E-06		3 46E-08		3 46E-11	
MG/KG	Chrysene	85				0 00E+00	0 00E+00 3 10E+00 3 10E-01		0	4 25E-06		1 07E-07		1 07E-10	
MG/KG	Pentachlorophenol	85	3 00E-02 3 00	3 00E-02		0 00E+00	1 10E-01	0 00E+00 1 10E-01 1 00E+00 0 24 1 51E-07 0 000005	0 24	1 51E-07	0 000005	9 13E-09	0 0000003	381E-12	
	Hazard Index										0.000005		0.0000003 Total HI=	0.000005	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	Chronic Da	ıly Intake, E	PC = Expos	ure Point (Concentration	, HO = Haz	ard Quotier	it, H! = F	lazard Inde	×				

TABLE 15-5a
FU4 (SS14A) Surface Soil - Hypothetical Future On-site Residential (Child) Scenario
Memphis Depot Main Installation RI

		Carcinogenic (optional)	Noncarcinogenic
Ingestio	n:		
CDI =	Cs * IR * FI * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	200 a	· 200 a
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	15 a	² 15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dermal:			
CDI =	Cs * SA * AF * ABS * ET * EF * ED * CF BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2351 c,d	2351 c,d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 15 c,e	0 15 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (4 hours per 24-hour day)	0 167 b	0 167 b
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1 00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Inhalati			
CDI =	<u>Cs * (1/PEF) * IR * ET * EF * ED</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1.32E+09 g	1.32E+09 g
IR =	Inhalation Rate (m3/day)	15 a	15 a
ET =	Exposure Time (4 hours per 24-hour day)	0 167 b	0 167 b
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	15 a	15 a
AT ≃	Averaging Time (days)	25550 a	2190 a_

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors," OSWER Directive 9285.6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas based on the nature of the activity.
- c= EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, hands, forearms, lower legs & feet of a child (age 1-6 years).
- e = AF calculated for soil adherence can be found in Appendix G.
- f = Chemical-specific absorption factors are found in Appendix G.
- g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance: Technical Background Document, May 1996.

TABLEIS-Sb
FU4 (SS14A) Surface Soil - Hypothetical Future On-site Residential (Child) Carcinogenic Scenano - Optional Use
Memphis Depot Main Installation RI

										Ingestion	tion	Dermal	lal	Inhal	Inhalation
Units	Chemical	WOE	SFo SFd	SFd	SFi	VFind	VFind EPC	ABSgi ABS CDI	ABS	<u>5</u>	ELCR	ā	ELCR	9	ELCR
MG/KG		B2	7 30E-01	2 35E+00	+00 3 10E-01		2 90E+00	3 10E-01	0 1	3 18E-06	2 32E-06	2 90E+00 3 10E-01 01 3 18E-06 2 32E-06 9 34E-08 2 20E-07 3 01E-11 9 33E-12	2 20E-07	3 01E-11	9 33E-12
MG/KG	Benzo(a)pyrene	85	7 30E+00 2 35E+	2 35E	+01 3 10E+00		2 50E+00	3 10E-01	0.13	2 74E-06	50E+00 3 10E-01 0 13 2 74E-06 2 00E-05	1 05E-07 2 46E-06 2 59E-11 8 04E-11	2 46E-06	2 59E-11	8 04E-11
MG/KG	Carbazole	85	2 00E-02	2 86E-02			1 00E+00 7 00E-01	7 00E-01	0.1	1 10E-06	01 110E-06 219E-08	3 22E-08 9 20E-10 1 04E-11	9 20E-10	1 04E-11	
MG/KG	Chrysene	B2		2 35E-02 3 10E-03	3 10E-03		3 10E+00 3 10E-01	3 10E-01	010	01 340E-06 248E-08	2 48E-08	9 98E-08	2 35E-09 3 22E-11 9 97E-14	3 22E-11	9 97E-14
MG/KG	Pentachlorophenol	B2 1	1 20E-01	1 20E-01 1 20E-01			1 10E-01	10E-01 100E+00 024 121E-07 145E-08	0.24	1 21E-07	1 45E-08	8 50E-09	1 02E-09 1 14E-12	1 14E-12	
	Total Risk										2.24E-05		2.69E-06		8.99E-11
											-	Total Risk =		3E-05	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC =	= Chronic	Daily Intake	, EPC = Exp	Sure Point	Concentral	Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	Excess Life	etime C	ancer Expo	sure				
														Į	

TABLE 15-5c FU4 (SS14A) Surface Soll - Hypothetical Future On-site Residential (Child) Noncarcinogenic Scenaric Memphis Depot Main Installation RI

											2	1	מבווומו		3
	Units Chemical	WOE	RfDo	RfDd	R(Di	VFind	EPC	ABSgi ABS	ABS	CO	얼	CDI	ᄗ	ᅙ	오
/G/KG	Benzofalanthracene	B2					2 90E+00	2 90E+00 3 10E-01 0 1 3.71E-05	0 1	3.71E-05		1.09E-06		351E-10	
JG/KG	Benzo(a)pvrene	85					2 50E+00 3 10E-01	3 10E-01	0 13	3.20E-05		1.22E-06		3 03E-10	
	Carbazole	82					1,00E+00	.00E+00 7 00E-01	0.1	1 28E-05		3 76E-07		121E-10	
	Chrysene	83					3 10E+00	3.10E-01	0.1	3 96E-05		1 16E-06		3 75E-10	
	Pentachlorophenol	85	3 00E-02	3 00E-02 3 00E-02			1 10E-01	1 00E+00 0 24 1 41E-06 (0 24	141E-06	0 00005	0 00005 9 92E-08	0.000003	1 33E-11	
	Hazard Index										0.00005		0.000003		
													Total HI=	0.00005	

TABLE I5-6a
Site #36 Surface Soil -Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestic			
CDI =	Cs * IR * Fi * EF * ED * CF		
_	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a	50 a
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)		1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	a	9125 a
Dermal:			
CDI =	Cs*SA*AF*ABS*ET*EF*ED*CF BW*AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2679 c,d	2679 c,d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03 c,e	0 03 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	ı 1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Particul	ate Inhalation:		
CDI =	<u>Cs*(1/PEF)*IR *ET*EF*ED</u>		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1 32E+09 g
IR =	Inhalation Rate (m3/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity.
- c = EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance Technical Background Document, May 1996.

P /147543/APPISFU4all xls/36SSIW-Carcinogenic

Units Chemical WOE SFO SFd SFI VFInd EPC ABSgI MGKG ANTIMONY D 9.72E+00 2.06E-02 2.06E-02 2.06E-02 2.06E-02 2.06E-02 2.06E-02 2.06E-01 4.10E-01 4.10E-01 4.10E-01 4.10E-01 4.10E-01 4.00E-01 4.00E-01			Ingestion		Dermal	Inhalation
ANTIMONY ARSENIC A 150E+00 366E+00 151E+01 SELENIUM D DIELDRIN B2 160E+01 320E+01 160E+01 PPATACHIOPOPHENDI R2 120E-01 120E-01	ABSG	ABS	CDI EL	CR CD	I ELCR	CDI ELCR
ARSENIC A 150E+00 366E+00 151E+01 SELEMUM DIELDRIN B2 160E+01 320E+01 BANTACHIOROPHEND B2 120E+01 150E+01	0 2 00E-02	0 001	1 70E-06	2 735	60-	5 15E-10
SELENIUM DIELDRIN B2 160E+01 320E+01 160E+01 DENJTACHIOROPHENDI R2 120E-01 120E-01	1 4 10E-01	0 03	3 80E-06 5 7E	-06 1836	-07 6 7E-07	
DIELDRIN B2 160E+01 320E+01 160E+01 B2 120E-01 120E-01	0 4 40E-01	0 001	2 37E-07	3 80	-10	7 17E-11
DENTACH OROPHENO! 82 120F-01 120F-01	11 5 00E-01	0	3.27E-08 1.0E	:-06 101E	-08 3 2E-07	
	1 1 00E+00	0 24	178E-08 21E	-09 687E	-09 8 2E-10	
1,12,2-TETRACHLOROETHANE C 2 00E-01 2 86E-01 2 03E-01 1 58E+04	13 7 00E-01	0 01	01 0 01 1 09E-09 2 2E-10 1 75E-11 5	:-10 175E	-11 5 0E-12	
Total Blsk			6.7E	3.7E-06	9.9E-07	2.3E-08

TABLE 15-6c Site #36 Surface Soil -Hypothetical Future Industral Worker Noncarcinogenic Scenario Memphis Depot Main Installation RI

1										Ingestion	tion	ğ	Dermal	Inhalation	
		WOE	WOE RfDo	RfDd	RfDi	VFind	EPC	ABSgl	ABS	CDI	오	CDI	9	CDI	호
		٥		8 00E-06			9 72E+00	2 00E-02	0 001	4 76E-06		7 64E-09	0 001	1 44E-09	l
AC ARSENIC		∢	3 00E-04	1 23E-04			2 18E+01	4 10E-01	03	1 06E-05	0 04	5 13E-07	0 004		
MG/KG SELENIUM		۵		2 20E-03			1 35E+00	4 40E-01	0 001	6 62E-07		1 06E-09	0 00000005	2 01E-10	
/KG DIELDRIN		B2	5 00E-05	2 50E-05			3 59E-01	5 00E-01	0	1 76E-07	0 004	2 82E-08	0 001	5 32E-11	
_	PENTACHLOROPHENOL	B 2	3 00E-02	3 00E-02			1 02E-01	1 00E+00	0.24	4 98E-08	0 000002	1 92E-08	0 0000000	151E-11	
_	1,1,2,2-TETRACHLOROETHANE	ပ				1 58E+04	6 23E-03	7 00E-01	0 01	3 05E-09		4 90E-11		7 72E-08	
Hazard Index	×e										0.05		0.006 Total HI≞	0.06	

TABLE 15-7a
Site #36 Soil Column -Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic	—
Ingestio	n:	<u> </u>		
CDI =	Cs * IR * FI * EF * ED * CF			
	BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC	EPC	
IR =	Ingestion Rate (mg/day)	50 a	50 a	
FI =	Fraction Ingested (unitless)	1	1	
EF =	Exposure Frequency (day/year)	250 a	250 a	
ED =	Exposure Duration (year)	25 a	25 a	
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06	
BW =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	
Dermal:				
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF			
	BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC	EPC	
SA =	Surface Area (cm2)	2679 c,d	2679 c,d	
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03 c,e	0 03 c,e	
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f	
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
EF =	Exposure Frequency (day/year)	250 a	250 a	
ED =	Exposure Duration (year)	25 a	25 a	
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06	
BW =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	
	ate Inhalation:			
CDI =	Cs * (1/PEF) * IR * ET * EF * ED			
	BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC	. EPC	
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1.32E+09 g	
IR =	Inhalation Rate (m3/day)	20 a	20 a	
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
EF =	Exposure Frequency (day/year)	250 a	250 a	
ED =	Exposure Duration (year)	25 a	25 a	
BW =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity
- c = EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance Technical Background Document, May 1996

TABLE 15-7b
Site #36 Soil Column Hypothetical Future Industrial Worker Carcinogenic Scenario
Memphis Depot Main Installation R1

										Ingestion	tion	ă	Dermal	Inhalation
Juits	Chemical	WOE	WOE SFo	SFd	SFi	VFind	EPC	ABSgi	ABS	CDI	ELCH	CDE	ELCR	CDI ELCR
MG/KG	ANTIMONY	۵					5 02E+00	2 00E-02	0 001	8 77E-07		1 41E-09		2 66E-10
MG/KG	ARSENIC	∢	1 50E+00	50E+00 3 66E+00	151E+01		2 10E+01	4 10E-01	0 03	3 67E-06	5 SE-06	1 77E-07	6 5E-07	1.11E-09 1 7E-08
MG/KG	CHROMIUM, TOTAL	∢			4 20E+01		2 70E+01		0 001	4 72E-06		7 59E-09		1 43E-09 6 0E-08
MG/KG	COPPER	۵					3 67 8+01	3 00E-01	000	6 41E-06		1 03E-08		1 94E-09
MG/KG	SELENIUM	۵					9 52E-01	4 40E-01	0 001	1 66E-07		2 67E-10		5 04E-11
MG/KG	DIELDRIN	82	•	1 60E+01 3 20E+01	1 60E+01		9 76E-03	5 00E-01	0	1 70E-09	2 7E-08	2 74E-10	8 8E-09	5 17E-13 8 3E-12
MG/KG	PENTACHLOROPHENOL	85	1 20E-01	1 20E-01			1 02E-01	1 00E+00	0 24	1 78E-08	2 1E-09	6 88E-09	8 3E-10	5 40E-12
MG/KG	TOTAL 1,2-DICHLOROETHENE					2 61E+03	8 98E-03	1 00E+00	0 01	1 57E-09		2 52E-11		2 41E-07
MG/KG	1,1,2,2-TETRACHLOROETHANE	O	2 00E-01 2 86E-01	2 86E-01	2 03E-01	1 58E+04	7.21E-03	7 00E-01	001	1 26E-09	26E-09 2 5E-10	2 02E-11	5 8E-12	3 19E-08 6 5E-09
MG/KG	TRICHLOROETHYLENE (TCE)	8	1 10E-02	7 33E-02	6 00E-03	3 65E+03	8 08E-03	1 50E-01	0 01	1 41E-09	1 6E-11	2 27E-11	1 7E-12	1 55E-07 9 3E-10
	Total Risk				•						5 5E-06		6 6E-07 Total Risk =	8.4E-08 6E-06

151

P J147543/APPISFU4all xls/36SBIW-NonCarcinogenic

enic Scenano
TABLE 15-7c Site #36 Soil Column -Hypothetical Future Industral Worker Noncarcinoge Memphis Depot Main Installation RI

										inge:	Ingestion	ŏ	Dermal	Inhalation	LOI LOI
Units	Chemical	WOE	WOE RfDo	RfDd	яЮ	VFind	EPC	ABSgi	ABS	CDI	HQ	CD	НО	CDI	Ρ
MG/KG	ANTIMONY	٥	4 00E-04	8 00E-06			5 02E+00	2 00E-02	0 001	2 45E-06	900 0	3 95E-09	0 0005	7 44E-10	
MG/KG	ARSENIC	∢	3 00E-04	1 23E-04			2 10E+01	4 10E-01	0 03	1 03E-05	0 03	4 95E-07	0 004	3 11E-09	
MG/KG	CHROMIUM, TOTAL	⋖	3 00E-03	9	2 86E-05		2 70E+01	2 00E-02	0 001	1 32E-05	0 004	2 12E-08	0 0004	4 00E-09	0 0001
MG/KG	COPPER	٥	4 00E-02	-			3 67E+01	3 00E-01	0 001	1 79E-05	0 0004	2 88E-08	0 000002	5 44E-09	
MG/KG	SELENIUM	٥	5 00E-03	2			9 52E-01	4 40E-01	0 001	4 66E-07	0 00009	7 49E-10	0 0000003	1 41E-10	
MG/KG	DIELDRIN	88		CV			9 76E-03	5 00E-01	0.1	4 77E-09	0 0001	7 67E-10	0 00003	1 45E-12	
MG/KG	PENTACHLOROPHENOL	82	3 00E-02	c			1 02E-01	1 00E+00	0 24	4 99E-08	0 000002	1 93E-08	90000000	151E-11	
MG/KG	TOTAL 1,2-DICHLOROETHENE		9 00E-03	9 00E-03		2 61E+03	8 98E-03	1 00E+00	0 0 1	4 39E-09	0 0000005	7 06E-11	0 000000008	6 74E-07	
MG/KG	1,1,2,2-TETRACHLOROETHANE	ပ				1 58E+04	7 21E-03	7 00E-01	0 0 1	3 53E-09		5 67E-11		8 92E-08	
MG/KG	TRICHLOROETHYLENE (TCE)	82	6 00E-03	9 00E-04		3 65E+03	8 08E-03	1 50E-01	0 01	3 95E-09	0 0000007	6 36E-11	0 00000000	4 33E-07	
	Hazard Index										0 05		0 002	;	0 0001
													Total HI=	0.05	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	nic Daily	ntake, EPC	= Exposure	Point Conce	intration, HC	> = Hazard C	Notient, HI:	= Hazarc	1 Index					

TABLE I5-8a
Site #36 Soil Column - Hypothetical Current/Future Utility Worker Scenano
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestio			
CDI =	Cs * IR * FI * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	100 c	100 c
Fi =	Fraction Ingested (unitless)	0.5	0 5
EF =	Exposure Frequency (day/year)	24 d	24 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2679 e,f	2679 e,f
AF =	Soil-Skin Adherence Factor (mg/cm2)	0.1 e,g	0 1 e,g
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	24 d	24 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Particul	ate Inhalation:		
CDI =	<u>Cs * (1/PEF) * IR * ET * EF * ED</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1.32E+09 ı	1 32E+09 I
tR =	Inhalation Rate (m3/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	24 d	24 d
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas based on the nature of the activity, assuming full workday
- c = Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- d = Utility activity assumed to be twice a month throughout the year
- e= EPA Exposure Factors Handbook, August 1997
- f = Surface area of 1/2 head, forearms and the hands of an adult worker
- g = AF calculated for soil adherence can be found in Appendix G
- h = Chemical-specific absorption factors are found in Appendix G
- ı = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance Technical Background Document, May 1996.

TABLE 15-8b Site #36 Soil Column Hypothetical Current/Future Utuhy Worker Carcinogenic Scenano Memphis Depot Main Installation RI

										Ingestion	İО	Decmal	mal	Inhalation
Juits	Chemical	WOE	SFo	SFd	SFi	VFind	EPC	ABSgi	ABS	Ö	ELCR	CDI	ELCR	CDI ELCR
MG/KG	ANTIMONY	۵					5 02E+00	2 00E-02	0 001	8 42E-08		4 51E-10		2 55E-11
MG/KG	ABSENIC	∢	1,50E+00	1,50E+00 3 66E+00	151E+01		2 10E+01		0 03	3 52E-07 5 3E-07		5 66E-08	2 1E-07	1 07E-10 1 6E-09
MG/KG	CHROMIUM, TOTAL	<			4 20E+01		2 70E+01		0 001	4 53E-07	. •	2 43E-09		137E-10 5.8E-09
MG/KG	COPPER	۵					3 67E+01		0 001	6 15E-07		3 30E-09		1 86E-10
MG/KG	SELENIUM	٥					9 52E-01		0 00	1 60E-08		8 56E-11		4 84E-12
MG/KG	DIELDRIN	82	1 60E+01	60E+01 3 20E+01	1 60E+01		9 76E-03	5 00E-01	0 1	164E-10 26E-09		8 77E-11	2 8E-09	4 96E-14 7 9E-13
MG/KG	PENTACHLOROPHENOL	B 2	1 20E-01	20E-01 1 20E-01			1 02E-01		0 24	171E-09 ;		2 20E-09	2 6E-10	5 19E-13
MG/KG	TOTAL 1.2-DICHLOROETHENE					2 61E+03	8 98E-03	1 00E+00	00	151E-10		8 07E-12		2 31E-08
MG/KG	1.1.2.2-TETRACHLOROETHANE	O	2 00E-01	2 00E-01 2 86E-01	2 03E-01	1 58E+04	7.21E-03	~	0 0 1	121E-10 24E-11	2 4E-11	6 48E-12	1 9E-12	3 06E-09 6 2E-10
MG/KG	TRICHLOROETHYLENE (TCE)	B2	1 10E-02			3 65E+03			0 01	136E-10 15E-12		7 26E-12		1 48E-08 8 9E-11
	Total Risk										5.3E-07	-	2.1E-07 Total Risk =	8.1E-09 7E-07

TABLE 15-8c
Site #36 Soil Column - Hypothetical CurrentFuture Utifity Worker Noncarcinogenic Scenario Memphis Depot Main Installation RI

										ğ	Ingestion	á	Permal	Inhalation	Jon
Juits	Chemical	WOE	WOE RfDo	RfDd	RfDi	VFInd	EPC	ABSgi	ABS	CDI	НО	<u>5</u>	모	G	웃
MG/KG	ANTIMONY	٥	4 00E-04	8 00E-06			5 02E+00	2 00E-02	0 001	2 36E-07	9000 0	1 26E-09	0 0002	7 14E-11	
G/KG	ARSENIC	<	3 00E-04	1 23E-04			2 10E+01	•	0 03			1.58E-07	0 001	2 99E-10	
MG/KG	CHROMIUM, TOTAL	∢	3 00 €-03	3 00E-03 6 00E-05	2 86E-05		2 70E+01	2 00E-02	0 001		0 0004	6 80E-09	0 0001	3 84E-10	0 00001
G/KG	COPPER	۵	4 00E-02	1 20E-02			3 67E+01	• •	0 00			9 23E-09	0 0000008	5 22E-10	
G/KG	SELENIUM	۵	5 00E-03	2 20E-03			9 52E-01	•	0 00	-		2 40E-10	0 0000001	1 36E-11	
G/KG	DIELDRIN	B2	5 00E-05	5 00E-05 2 50E-05			9 76E-03	•	0	-		2.45E-10	0 00001	1 39E-13	
G/KG	PENTACHLOROPHENOL	B2	3 00€-02	3 00E-02			1 02E-01	_	0 24	-	_	6 16E-09	0 0000002	1 45E-12	
G/KG	TOTAL 1,2-DICHLOROETHENE		9 00E-03			2 61E+03	8 98E-03	_	001	4 22E-10	0 00000000	2 26E-11	0 000000003	6 47E-08	
MG/KG	1,1,2,2-TETRACHLOROETHANE	O				1 58E+04	7 21E-03	7 00E-01	00	3 39E-10		181E-11		8 57E-09	
MG/KG	TRICHLOROETHYLENE (TCE)	B2	6 00E-03	9 00E-04	-	3 65E+03	8 08E-03	1 50E-01	001	3 80E-10	900000000	2 03E-11	0 00000002	4 16E-08	
	Hazard Index										0.004		0.002	900	0.00001
													120	5	022

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

Notes

TABLE 15-9a
FU4 Ditch Sediment -Hypothetical Current/Future Maintenance Worker Scenaric
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestic	on:		
CDI =	Csd * IR * FI * EF * ED * CF		
	BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
R=	Ingestion Rate (mg/day)	50 a, b	50 a, b
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	12 d	1 2 d
ED =	Exposure Duration (year)	25 e	25 e
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 e	70 e
AT =	Averaging Time (days)	25550 e	9125 e
Daal			
Dermai:			
CDI =	<u>Csd *SA * AF * ABS * ET * EF * ED * CF</u> BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
SA ≃	Surface Area (cm2) - wading	2679 f,g	2679 f,g
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 1 g,h	0 1 g,h
ABS =	Absorption Factor (unitless)	(Chemical Specific)	(Chemical Specific) 1
ET =	Exposure Time (4 hours per 8 hour workday)	0 Ś c	05c
EF =	Exposure Frequency (day/year)	12 d	12 d
ED =	Exposure Duration (year)	25 e	25 e
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 e	70 e
AT =	Averaging Time (days)	25550 e	9125 e

Inhalation: No values available for inhalation pathway

- a = Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995.
- b = A conservative ingestion rate based on industrial soil intake is assumed.
- c = Half a workday is assumed to be spent outdoors in the contaminated areas based on the nature of the activity.
- d = Once a month maintenance activity throughout the year is assumed.
- e = U.S EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure Factors," OSWER Directive 9285.6-03, March 25, 1991.
- f = Surface area of hands, 1/2 arms and face (1/2 head) of an adult worker
- g = EPA Exposure Factors Handbook, August 1997
- h = AF calculated for soil adherence can be found in Appendix G.
- ı = Chemical-specific absorption factors are found in Appendix G

. 1,

TABLE IS-9b
FU4 Ditch Sediment -Hypothetical Current/Future Maintenance Worker Carcinogenic Scenario Memphis Depot Main Installation RI

								egul	Ingestion	Derma	mal	
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ABS	CDI	ELCR	CDI	ELCR	
MG/KG	CHROMIUM, TOTAL	⋖			6 85E+01	2 00E-02	0 001	5 75E-07		1 54E-09		:
MG/KG	DIELDRIN	B 2	1 60E+01	3 20E+01	3.10E-01	5 00E-01	0 1	2 60E-09	4 16E-08	6 97E-10	2 23E-08	
MG/KG	BENZO(a)ANTHRACENE	B 5	7 30E-01	2 35E+00	2 00E+01	3 10E-01	0	1 68E-07	1 22E-07	4 49E-08	1.06E-07	
MG/KG	BENZO(a)PYRENE	B 2	7 30E+00	2 35E+01	1 90E+01	3 10E-01	0.13	1.59E-07	1.16E-06	5 55E-08	1 31E-06	
MG/KG	BENZO(b)FLUORANTHENE	85	7.30E-01	2 35E+00	2 60E+01	3 10E-01	0	2 18E-07	1 59E-07	5 84E-08	1.38E-07	
MG/KG	BENZO(k)FLUORANTHENE	B 2	7.30E-02	2,35E-01	2 50E+01	3 10E-01	0	2 10E-07	1 53E-08	5 62E-08	1 32E-08	
MG/KG	CARBAZOLE	85	2 00E-02	2.86E-02	2 40E+00	7 00E-01	0	2 01E-08	4 03E-10	5 39E-09	1,54E-10	
MG/KG	CHRYSENE	B 2	7 30E-03	2 35E-02	3 00E+01	3 10E-01	0.1	2 52E-07	1.84E-09	6.74E-08	1.59E-09	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	3 90E-01	3 10E-01	0	3 27E-09	2 39E-09	8 76E-10	2 06E-09	
MG/KG	2-METHYLNAPHTHALENE	۵			1 00E+01	8 00E-01	001	8.39E-08		2 25E-09		•
MG/KG	4-METHYLPHENOL (p-CRESOL)	ပ			1.70E-01	6.50E-01	0 01	1 43E-09		3 82E-11		
MG/KG	PENTACHLOROPHENOL	B 2	1 20E-01	1 20E-01	2 60E-01	1 00E+00	0 24	2.18E-09	2 62E-10	1.40E-09	1.68E-10	
MG/KG	TCDD Equivalent	B 5	1 50E+05	3 00E+05	4 94E-04	5 00E-01	0.03	4.15E-12	6 22E-07	3 33E-13	1 00E-07	
MG/KG	CARBON TETRACHLORIDE	B 2	1 30E-01	2 00E-01	7 80E-02	6.50E-01	0 01	6 54E-10	8 50E-11	1 75E-11	351E-12	
MG/KG	METHYLENE CHLORIDE	B 2	7 50E-03	7 89E-03	4 50E-02	9 50E-01	0.01	3.77E-10	2 83E-12	1 01E-11	7 98E-14	
	Total Risk								2E-06		2E-06	
									Total Risk=	4E-06		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily	aily Intai	(e, EPC =	xposure Pc	int Concent	ration, ELCF	l = Exce	ss Lifetime (Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	sure		

TABLE 15-9c FU4 Ditch Sediment -Hypothetical Current/Future Maintenance Worker Noncarcinogenic Scenario Memphis Depot Main Installation RI

								lnge	Ingestion	a	Dermal	
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	ABS	CDI	НО	CDI	Ϋ́	
MG/KG	CHROMIUM, TOTAL	∢	3 00E-03 6,00E-05	6,00E-05	6.85E+01	2 00E-02	0 001	1 61E-06	0 0005	4 31E-09	200000	
MG/KG	DIELDRIN	B 2	5 00E-05	2 50E-05	3 10E-01	5 00E-01	0	7 28E-09	0 0001	1 95E-09	0 00008	
MG/KG	BENZO(a)ANTHRACENE	B2			2 00E+01	3 10E-01	0	4 70E-07		1.26E-07		
MG/KG	BENZO(a)PYRENE	B 2			1 90E+01	3 10E-01	0 13	4 46E-07		1.55E-07		
MG/KG	BENZO(b)FLUORANTHENE	B 2			2 60E+01	3 10E-01	0.1	6 11E-07		1 64E-07		
MG/KG	BENZO(k)FLUORANTHENE	B2			2 50E+01	3 10E-01	0.1	5.87E-07		1 57E-07		
MG/KG	CARBAZOLE	B 2			2 40E+00	7 00E-01	0.1	5 64E-08		1.51E-08		
MG/KG	CHRYSENE	BS			3 00E+01	3 10E-01	0	7 05E-07		1 89E-07		
MG/KG	INDENO(1,2,3-c,d)PYRENE	BS			3 90E-01	3 10E-01	0 1	9 16E-09		2 45E-09		
MG/KG	2-METHYLNAPHTHALENE	۵	2 00E-02	00E-02 1 60E-02	1 00E+01	8 00E-01	0 01	2 35E-07	0 00001	6 29E-09	0 0000004	
MG/KG	4-METHYLPHENOL (p-CRESOL)	ပ	5 00E-03 3 25E-03	3 25E-03	1.70E-01	6 50E-01	0 01	3 99E-09	0 0000008	1 07E-10	0 00000003	
MG/KG	PENTACHLOROPHENOL	B 2	3 00E-02	3 00E-02	2.60E-01	1 00E+00	0 24	6 11E-09	0 0000002	3 93E-09	0 0000001	
MG/KG	TCDD Equivalent	B 2			4 94E-04	5 00E-01	0 03	1.16E-11		9 33E-13		
MG/KG	CARBON TETRACHLORIDE	B 2	7.00E-04 4 55E-04	4 55E-04	7 80E-02	6 50E-01	0 01	1 83E-09	0 000003	4 91E-11	0 0000001	
MG/KG	METHYLENE CHLORIDE	B 2	6.00E-02 5 70E-02	5 70E-02	4 50E-02	9 50E-01	0 01	1 06E-09	0 00000002	2.83E-11	0 0000000005	,
	Hazard Index								0.0007		0.0002	
									Total HI=	0.0008		
Notes.	WOE = Weight of Evidence, CDI = Chronic Daily Intake; EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	ic Daily Ir	ıtake; EPC	= Exposure	Point Cond	centration, h	10 = Ha	zard Quotier	it, Hi = Hazar	d Index		

TABLE I5-10a FU4 Ditch Sediment -Hypothetical Future Industrial Worker Scenario Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestic	n:		
CDI =	Csd * IR * FI * EF * ED * CF		
	BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a, b	50 a, b
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	50 c	50 c
ED =	Exposure Duration (year)	25 d	25 d
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	70 d	70 d
AT =	Averaging Time (days)	25550 d	9125 d
Dermal:			
CDI =	Csd *SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
SA =	Surface Area (cm2) - wading	2679 e,f	2679 e,f
AF =	Soil-Skin Adherence Factor (mg/cm2)	0.1 g,f	0 1 g,f
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (2 hours per 8 hour workday)	0.25 ı	0 25 1
EF =	Exposure Frequency (day/year)	50 c	50 c
ED =	Exposure Duration (year)	25 d	25 d
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 d	70 d
AT =	Averaging Time (days)	25550 d	9125 d

Inhalation: No values available for inhalation pathway

- a = Supplemental Guidance to RAGS. Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995.
- b = A conservative ingestion rate based on industrial soil intake is assumed.
- c = Exposure is assumed to be once a week (excluding vacation).
- d = U S EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991.
- e = Surface area of hands, 1/2 arms and face (1/2 head) of an adult worker.
- f =EPA Exposure Factors Handbook, August 1997
- g = AF calculated for soil adherence can be found in Appendix G.
- h = Chemical-specific absorption factors are found in Appendix G
- I = 2 hours of a workday is assumed to be spent outdoors in the contaminated areas based on the nature of the activity.

7

TABLE 15-10b
FU4 Ditch Sediment -Hypothetical Future Industnal Worker Carcinogenic Scenario Memphis Depot Main Installation RI

								lnge	Ingestion	Del	Dermai	
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ABS	CDI	ELCR	Ö	ELCR	
MG/KG	CHROMIUM, TOTAL	⋖			6 85E+01	2 00E-02	0 001	2 39E-06		3 21E-09		
MG/KG	DIELDRIN	B2	1 60E+01	3 20E+01	3 10E-01	5 00E-01	0.1	1 08E-08	1 73E-07	1 45E-09	4 64E-08	
MG/KG	BENZO(a)ANTHRACENE	85	7 30E-01	2 35E+00	2 00E+01	3 10E-01	0 1	6 99E-07	5 10E-07	9 36E-08	2.20E-07	
MG/KG	BENZO(a)PYRENE	B2	7 30E+00	2 35E+01	1 90E+01	3 10E-01	0.13	6 64E-07	4 85E-06	1 16E-07	2 72E-06	
MG/KG	BENZO(b)FLUORANTHENE	82	7 30E-01	2 35E+00	2 60E+01	3 10E-01	0 1	9 09E-07	6 63E-07	1 22E-07	2 87E-07	
MG/KG	BENZO(K)FLUORANTHENE	B2	7 30E-02	2 35E-01	2 50E+01	3 10E-01	0 1	8 74E-07	6 38E-08	1 17E-07	2.76E-08	
MG/KG	CARBAZOLE	B2	2 00E-02	2 86E-02	2 40E+00	7 00E-01	0.1	8 39E-08	1 68E-09	1,12E-08	3,21E-10	
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	3 00E+01	3.10E-01	0.1	1 05E-06	7,65E-09	1 40E-07	3.31E-09	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	3 90E-01	3 10E-01	0 1	1 36E-08	9.95E-09	1 83E-09	4 30E-09	
MG/KG	2-METHYLNAPHTHALENE	Ω			1 00E+01	8 00E-01	0 01	3 49E-07		4 68E-09		
MG/KG	4-METHYLPHENOL (p-CRESOL)	ပ			1 70E-01	6 50E-01	0 01	5 94E-09		7 96E-11		
MG/KG	PENTACHLOROPHENOL	B2	1 20E-01	1 20E-01	2 60E-01	1 00E+00	0 24	9 09E-09	1 09E-09	2 92E-09	3 51E-10	
MG/KG	TCDD Equivalent	B 2	1 50E+05	3 00E+05	4 94E-04	5 00E-01	0 03	1 73E-11	2 59E-06	6.94E-13	2 08E-07	
MG/KG	CARBON TETRACHLORIDE	B2	1 30E-01	2.00E-01	7 80E-02	6 50E-01	0 01	2 73E-09	3 54E-10	3.65E-11	7.30E-12	
MG/KG	METHYLENE CHLORIDE	B2	7 50E-03	7.89E-03	4 50E-02	9 50E-01	0 01	1 57E-09	1 18E-11	2.11E-11	1.66E-13	
	Total Risk								8.9E-06		3.5E-06	
									Total Risk≂	: 1E-05		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake,	ally Inta		Exposure P	oint Concer	tration, ELC	:R = Exc	ess Lifetime	EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	osure		

TABLE IS-10c
FU4 Ditch Sediment -Hypothetical Future Industrial Worker Noncarcinogenic Scenaric
Memphis Depot Main Installation RI

								əbul	Ingestion	οď	Dermal	
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	ABS	CDI	НО	S	НО	
MG/KG	CHROMIUM, TOTAL	V	3 00E-03	6 00E-05	6 85E+01	2.00E-02	0 001	6 70E-06	0 002	8 98E-09	0 0001	
MG/KG	DIELDRIN	B2	5 00E-05	2 50E-05	3 10E-01	5 00E-01	0 1	3 03E-08	9000'0	4 06E-09	0.0002	
MG/KG	BENZO(a)ANTHRACENE	B2			2 00E+01	3 10E-01	0.1	1.96E-06		2 62E-07		
MG/KG	BENZO(a)PYRENE	B2			1 90E+01	3 10E-01	0 13	1 86E-06		3 24E-07		
MG/KG	BENZO(b)FLUORANTHENE	B2			2 60E+01	3 10E-01	0	2.54E-06		3 41E-07		
MG/KG	BENZO(k)FLUORANTHENE	B2			2 50E+01	3 10E-01	0.1	2 45E-06		3 28E-07		
MG/KG	CARBAZOLE	B 2			2 40E+00	7 00E-01	0	2 35E-07		3 15E-08		
MG/KG	CHRYSENE	B2			3 00E+01	3 10E-01	0 1	2 94E-06		3 93E-07		
MG/KG	INDENO(1,2,3-c,d)PYRENE	B 2			3 90E-01	3 10E-01	0	3 82E-08		5 11E-09		
MG/KG	2-METHYLNAPHTHALENE	۵	2 00E-02	1 60E-02	1 00E+01	8.00E-01	0 01	9 78E-07	0 00005	131E-08	0 0000000	
MG/KG	4-METHYLPHENOL (p-CRESOL)	ပ	5 00E-03	3 25E-03	1.70E-01	6 50E-01	0 01	1 66E-08	0.000003	2 23E-10	0 00000007	
MG/KG	PENTACHLOROPHENOL	B2	3 00E-02	3 00E-02	2.60E-01	1 00E+00	0 24	2 54E-08	0.0000008	8 18E-09	0 0000003	
MG/KG	TCDD Equivalent	B5			4.94E-04	5 00E-01	0 03	4 84E-11		1 94E-12		
MG/KG	CARBON TETRACHLORIDE	B5	7.00E-04	7.00E-04 4 55E-04	7.80E-02	6 50E-01	0 01	7 63E-09	0.00001	1 02E-10	0 0000002	
MG/KG	METHYLENE CHLORIDE	B2	6 00E-02 5 70E-02	5 70E-02	4 50E-02	9.50E-01	0 01	4 40E-09	0 00000000	5 90E-11	0 000000001	
	Hazard Index								0.003		0.0003	
									Total HI =	0.003		
Notes:	WOE = Weight of Evidence, CDI = Chronic Daily Intake; EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	ake; EPC) = Exposu	re Point Co	ncentration	, HQ = Haz	ard Quo	lent, HI = Ha	zard Index			

Appendix I-6 A. FU5 Soils THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE 16-1a
FU5 Surface Soil—Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

-		Carcinogenic		Noncarcinogenic	
Ingestion	n:				•
CDI =	Cs*IR*FI* EF*ED*CF				
	BW * AT				
Cs =	Concentration in soil (mg/kg)	EPC		EPC	
IR =	Ingestion Rate (mg/day)	50 a	a	50	a
FI =	Fraction Ingested (unitless)	1		1	
EF =	Exposure Frequency (day/year)	250 8	а	250	a
ED =	Exposure Duration (year)	25 8	а	25	a
CF =	Conversion Factor (kg/mg)	1 00E-06		1 00E-06	
BW =	Body Weight (kg)	70 a	a	70	a
AT =	Averaging Time (days)	25550 a	а	9125	a
Dermal:					
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF				
	BW * AT				
Cs =	Concentration in soil (mg/kg)	EPC		EPC	
SA =	Surface Area (cm2)	2679		2679	•
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03 (•	0 03	•
ABS =	Absorption Factor (unitless)	(Chemical Specific) 1		(Chemical Specific)	
ET =	Exposure Time (8 hours per 8 hour workday)	1 1		1	
EF =	Exposure Frequency (day/year)	250 a		250	
ED =	Exposure Duration (year)	25 (а	25	a
CF =	Conversion Factor (kg/mg)	1 00E-06		1 00E-06	
BW =	Body Weight (kg)	70 :		70	
AT =	Averaging Time (days)	25550	а	9125	a
Inhalatio	nn.	for volatiles			
CDI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/P	PEF)) *	IR * ET * EF * ED	
4	BW * AT		BW * /		
Cs =	Concentration in soil (mg/kg)	EPC		EPC	
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09	g	1 32E+09	g
VFind =	Volatilization Factor (m3/kg)	(Chemical Specific)	ĥ	(Chemical Specific)	h
IR =	Inhalation Rate (m3/day)	20	а	20	a
ET =	Exposure Time (8 hours per 8 hour workday)	1 1	b	1	b
EF =	Exposure Frequency (day/year)	250	a	250	a
ED =	Exposure Duration (year)	25	a	25	a
BW =	Body Weight (kg)	70	а	70	а
AT =	Averaging Time (days)	25550		9125	
	- · · · ·				

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas using best professional judgment, based on the nature of the activity.
- c = EPA Exposure Factors Handbook, August 1997.
- d = Surface area of 1/2 head, forearms and the hands of an adult worker.
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance. Technical Background Document, May 1996.
- h = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F.A.C.,
 December 1998

TABLE I6-1b
FUS Surface Soil---Hypothetical Future Industrial Worker Carcinogenic Scenano
Memphis Depot Main Installation RI

Memphis De	Memphis Depot Main Installation RI	0											-			, }
										Ingestion	ion	Dermal	<u></u>	Inhalation	tion	ıļī
Units	Chemical	WOE	SFo	SFd	SF	VFind	EPC	ABSgi	ABS	G	ELCR	ō	ELCR	CD	ELCH	
MG/KG	ANTIMONY	۵					6 33E+00	2 00E-02	0 001	111E-06		1 78E-09		3 35E-10		
MG/KG	ARSENIC	∢	1 50E+00	3 66E+00	151E+01		1 46E+01	4 10E-01	0 03	2 55E-06	3 8E-06	1 23E-07	4 SE-07	7 73E-10	1 2E-08	
MG/KG	DIELDRIN	B2	1 60E+01	3 20E+01	1 60E+01		1 10E+00	5 00E-01	0 1	1 92E-07	3 1E-06	3 09E-08	9 9E-07	5 82E-11	9 3E-10	
MG/KG	BENZO(a)ANTHRACENE	B 2	7 30E-01	2 35E+00	3 10E-01		8 99E+00	3 10E-01	0	1 57E-06	1 1E-06	2 53E-07	5 9E-07	4 76E-10	1 5E-10	
MG/KG	BENZO(a)PYRENE	8	7 30E+00	2 35E+01	3 10E+00		8.41E+00	3 10E-01	0 13	1 47E-06	1 1E-05	3 07E-07	7 2E-06	4 45E-10	1 4E-09	
MG/KG	BENZO(b)FLUORANTHENE	85	7 30E-01	2 35E+00	3 10E-01		8 14E+00	3 10E-01	0	1 42E-06	1 0E-06	2 29E-07	5 4E-07	4 31E-10	1 3E-10	
MG/KG	BENZO(k) FLUORANTHENE	85	7 30E-02	2 35E-01	3 10E-02		7 78E+00	3 10E-01	0	1 36E-06	9 9E-08	2 18E-07	5 1E-08	4 12E-10	1 3E-11	
MG/KG	CARBAZOLE	8	2 00E-02	2 86E-02			1 12E+00	7 00E-01	0	1 95E-07	3 9E-09	3 13E-08	9.0E-10	5 91E-11		
MG/KG	CHRYSENE	85	7 30E-03	2 35E-02	3 10E-03		1 01E+01	3 10E-01	0	1 77E-06	1 3E-08	2 84E-07	6 7E-09	5 36E-10	1 7E-12	
MG/KG	DIBENZ(a,h)ANTHRACENE	B 2	7 30E+00	2 35E+01	3 10E+00		134E+00	3 10E-01	0	2 34E-07	1.7E-06	3 76E-08	8 8E-07	7 08E-11	2 2E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	3 10E-01		6 49E+00	3 10E-01	0	1 13E-06	8 3E-07	1 82E-07	4 3E-07	3 44E-10	1 1E-10	
MG/KG	4-METHYLPHENOL (p-CRESOL)	ပ					5 60E-02	6 50E-01	0 01	9 78E-09		1 57E-10		2 97E-12		
MG/KG	PENTACHLOROPHENOL	B2	1 20E-01	1 20E-01			3 20E-01	1 00E+00	0 24	5 59E-08	6 7E-09	2 16E-08	2 6E-09	1 69E-11		
	Total Risk										2E-05		1E-05		1E-08	
											•	Total Risk =		3E-05		

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

ķ

TABLE 16-1c
FU5 Surface Soil—Hypothetical Future Industrial Worker Non-carcinogenic Scenario Memphis Depot Man Installation RI

	<u> </u>								lngestion	NOI!	Derma			5
	52	WOE	RfDo	RfDd	RfDi VFınd	EPC	ABSgi	ABS	<u>0</u>	엳	CD	Ψ	CDI	유
	NONY	۵	4 00E-04	8 00E-06		6.33E+00	2.00E-02	0 001	3 10E-06	0 008	4 98E-09	9000 0	9 38E-10	
	NIC	∢	3 00E-04	1.23E-04		1 46E+01	4 10E-01	0 03	7 14E-06	0.02	3 45E-07	0 003	2 16E-09	
	RIN	B2	5 00E-05	2 50E-05		1 10E+00	5 00E-01	0.1	5 38E-07	0 0	8.65E-08	0.003	1 63E-10	
	BENZO(a)ANTHRACENE	B2				8 99E+00	3 10E-01	0	4.40E-06		7.07E-07		1 33E-09	
MG/KG BENZ(BENZO(a)PYRENE	82				8 41E+00	3 10E-01	0 13	4 12E-06		8 60E-07		1 25E-09	
MG/KG BENZ(BENZO(b)FLUORANTHENE	B2				8 14E+00	3 10E-01	0 1	3 98E-06		6 40E-07		1 21E-09	
MG/KG BENZ(BENZO(k)FLUORANTHENE	82				7 78E+00	3 10E-01	0 1	3 80E-06		6.12E-07		1 15E-09	
MG/KG CARB	CARBAZOLE	85				1 12E+00	7 00E-01	0 1	5 46E-07		8 77E-08		1 65E-10	
MG/KG CHRY	CHRYSENE	82				1 01E+01	3 10E-01	0 1	4.95E-06		7 96E-07		1 50E-09	
_	JIBENZ(a,h)ANTHRACENE	B2				134E+00	3 10E-01	0	6 54E-07		1.05E-07		1 98E-10	
_	NDENO(1,2,3-c,d)PYRENE	82				6 49E+00	3 10E-01	0.1	3 18E-06		5.11E-07		9 63E-10	
•	4-METHYLPHENOL (p-CRESOL)	ပ	5 00E-03	3 25E-03		5 60E-02	6 50E-01	0 0 1	274E-08	0 000005	4.40E-10	0 0000001	8 30E-12	
	PENTACHLOROPHENOL	85	3 00E-02	3 00E-02		3 20E-01	1 00E+00	0 24	1 57E-07	0 000002	6.04E-08	0 000005	4 74E-11	
Hazarı	Hazard Index									0.04		0.007 Total HI≕	0.05	•

TABLE 16-2a

FU5 Soil Column—Hypothetical Future Industrial Worker Scenario Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic	
Ingestio	n:	·	<u> </u>	
CDI =	Cs*IR*FI*EF*ED*CF BW*AT			
Cs =	Concentration in soil (mg/kg)	EPC	EPC	
IR =	Ingestion Rate (mg/day)	50 a	50 a	
FI =	Fraction Ingested (unitless)	1	1	
EF =	Exposure Frequency (day/year)	250 a	250 a	
ED =	Exposure Duration (year)	25 a	25 a	
CF =	Conversion Factor (kg/mg)	1.00E-06	1 00E-06	
BW =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	
Dermal:				
CDI =	<u>Cs *SA * AF * ABS * ET * EF * ED * CF</u> BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC	EPC	
SA =	Surface Area (cm2)	2679 c,d	2679 c,d	
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03 c _. e	0 03 c,e	
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f	
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
EF =	Exposure Frequency (day/year)	250 a	250 a	
ED =	Exposure Duration (year)	25 a	25 a	
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06	
BW =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	
Inhalatio	on:	for volatiles.		
CDI =	<u>Cs * (1/PEF) * IR * ET * EF * ED</u> BW * AT	Cs * ((1/VFind)+(1/PEF)) BW *		
Cs =	Concentration in soil (mg/kg)	EPC	EPC	
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1.32E+09 g	
VFind =	Volatilization Factor (m3/kg)	(Chemical Specific) h	(Chemical Specific) h	
R=	Inhalation Rate (m3/day)	20 a	20 a	
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
EF =	Exposure Frequency (day/year)	250 a	250 a	
ED =	Exposure Duration (year)	25 a	25 a	
BW =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas using best professional judgment, based on the nature of the activity
- c = U S EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance Technical Background Document, May 1996.
- h = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F A C , December 1998.

7,

TABLE 16-2b
FU5 Soil Column -Hypothetical Future Industrial Worker Carcinogenic Scenario Memphis Depot Main Installation RI

										Ingestion	tion	Derma	7	Inhalation	ation
Units	Chemical	WOE	SFo	SFd	SFI	VFind	EPC	ABSgi	ABS	ᆼ	ELCR	CD	ELCR	5	ELCR
MG/KG	ANTIMONY	٥					4 28E+00	2 00E-02	0 001	7 48E 07		1 20E-09		2 27E-10	
MG/KG	ARSENIC	∢	1 50E+00	3 66E+00	1 51E+01		141E+01	4 10E-01	0 03	2 46E-06	3.7E-06	1 19E-07	4 3E-07	7 47E-10	1 1E-08
MG/KG	CADMIUM	181			6 30E+00		2 61E+00	1 00 E -02	0 01	4 56E-07		7 32E-09		138E-10	8 7E-10
MG/KG	CHROMIUM, TOTAL	∢			4 20E+01		251E+01	2 00E-02	0 001	4 38E-06		7 04E-09		1 33E-09	5 6E-08
MG/KG	COPPER	۵					2 64E+01	3 00E-01	0 001	4 61E-06		7 41E-09		1,40E-09	
MG/KG	MANGANESE	٥					1 15E+03	4 00E-02	0 001	2 00E-04		3 22E-07		6 07E-08	
MG/KG	DIELDRIN	B2	1 60E+01	3 20E+01	1 60E+01		1 07E+00	5 00E-01	0.1	1 86E-07	3 0E-06	3 00E-08	9 6E-07	5 65E-11	9 0E-10
MG/KG	BENZO(a)ANTHRACENE	B 2	7 30E-01	2 35E+00	3 10E-01		2 08E+00	3 10E-01	0	3 64E-07	2 7E-07	5 85E-08	1 4E-07	1,10E-10	34E-11
MG/KG	BENZO(a)PYRENE	B2	7 30E+00	2 35E+01	3 10E+00		2 01E+00	3 10E-01	0 13	351E-07	2 6E-06	7 32E-08	1 7E-06	1 06E-10	
MG/KG	BENZO(b)FLUORANTHENE	B2	7 30E-01	2 35E+00	3 10E-01		2 03E+00	3 10E-01	0	3 54E-07	2 6E-07	5 69E-08	1 3E-07	1,07E-10	33E-11
MG/KG	BENZO(k) FLUORANTHENE	B2	7 30E-02	2 35E-01	3 10E-02		1 91E+00	3 10E-01	0	3 33E-07	2.4E-08	5 36E-08	1 3E-08	1 01E-10	3 1E-12
MG/KG	CARBAZÓLE	B2	2 00E-02	2 86E-02			4 60E-01	7 00E-01	0	8 03E-08	1 6E-09	1 29E-08	3 7E-10	2 43E-11	
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	3 10E-03		2 42E+00	3 10E-01	0	4 22E-07	3 1E-09	6 78E-08	1 6E-09	1 28E-10	4 0E-13
VG/KG	DIBENZ(a.h)ANTHRACENE	82	7 30E+00	2 35E+01	3 10E+00		6 14E-01	3 10E-01	0	1 07E-07	7 8E-07	1 72E-08	4.1E-07	3 25E-11	1 0E-10
MG/KG	INDENO(1, 2, 3, c, d) PYRENE	B2	7 30E-01	2 35E+00	3 10E-01		1 60E+00	3 10E-01	0.1	2 80E-07	2 0E-07	4 50E-08	1 1E-07	8 49E-11	2 6E-11
MG/KG	4-METHYLPHENOL (p-CRESOL)	ပ					5 60E-02	6 50E-01	0 01	9 78E-09		1 57E-10		2 97E-12	
MG/KG	PENTACHLOROPHENOL	B2	1 20E-01	1 20E-01			2 26E-01	1 00E+00	0 24	3 96E-08	47E-09	1 53E-08	1 8E-09	1 20E-11	
MG/KG	TOTAL 1,2-DICHLOROETHENE					2 61E+03	2 00E-03	1 00E+00	0 01	3 49E-10		5 62E-12		5 37E-09	
AG/KG	TRICHLOROETHYLENE (TCE)	B2	1 10E-02	7 33E-02	6 00E-03	3 65E+03	121E-02	1 50E-01	0 01	2 12E-09	23E-11	341E-11	2 5E-12	2 33E-07	1 4E-09
	Total Risk										1E-05		4E-06		7E-08
												Total Risk =		1E-05	

TABLE i6-2c FUS Soil Column-Hypothetical Future Industrial Worker Noncarcinogenic Scenano Memphs Depot Main Installation RI

									-							
										Ingestion	stion	å	Dermal	Inhalation	ion	
Units	Chemical	WOE	RfDo	RfDd	RfDi	VFind	EPC	ABSgl	ABS	CDI	HQ	CDI	HO	<u>0</u>	ဌ	
MG/KG	ANTIMONY	D	4 00E-04	8 00E-06			4 28E+00	2 00E-02	0 001	2 09E-06	0 005	3 37E-09	0 0004	6 35E-10	ļ	
MG/KG	ARSENIC	∢	3 00E-04	1 23E-04			1 41E+01	4 10E-01	0 03	90-306 9	0 02	3 33E-07	0 003	2 09E-09		
MG/KG	CADMIUM	<u>8</u>	1 00E-03	1 00E-05			2 61E+00	1 00E-02	0.01	1 28E-06	0 001	2 05E-08	0 002	3 87E-10		
MG/KG	CHROMIUM, TOTAL	∢	3 00E-03	_	2 86E-05		251E+01	2 00E-02	0 001	1 23E-05	0 004	1 97E-08	0 0003	3 72E-09	0 0001	
MG/KG	COPPER	٥	4 00E-02	1 20E-02			2 64E+01	3 00E-01	0 001	1 29E-05	0 0003	2 07E-08	0 000002	3 91E-09		
MG/KG	MANGANESE	٥	1 40E-01	5 60E-03	1 43E-05		1 15E+03	4 00E-02	0 001	561E-04	0 004	9 02E-07	0 0002	1.70E-07	0 01	
MG/KG	DIELDRIN	B2	5 00E-05				1 07E+00	5 00E-01	0	5 22E-07	001	8 39E-08	0 003	1 58E-10		
MG/KG	BENZO(a)ANTHRACENE	B2					2 08E+00	3 10E-01	0	1 02E-06		1 64E-07		3 09E-10		
MG/KG	BENZO(a)PYRENE	B2					2 01E+00	3 10E-01	0 13	981E-07		2 05E-07		2 97E-10		
MG/KG	BENZO(b)FLUORANTHENE	B2					2 03E+00	3 10E-01	0	991E-07		1 59E-07		3 00E-10		
MG/KG	BENZO(k)FLUORANTHENE	B2					1 91E+00	3 10E-01	0	9 34E-07		1 50E-07		2 83E-10		
MG/KG	CARBAZOLE	82	•	,	ŀ		4 60E-01	7 00E-01	0 1	2 25E-07.		3 62E-08		6 82E-11		,
MG/KG	CHRYSENE	82					2 42E+00	3 10E-01	0 1	1 18E-06		1 90年-07		3 58E-10		
MG/KG	DIBENZ(a,h)ANTHRACENE	82					6 14E-01	3 10E-01	0	3 005-07		4 83E-08		9 10E-11		
MG/KG	INDENO(1,2,3-c,d)PYRENE	85					1 60E+00	3 10E-01	0	7 84E-07		1 26E-07		2 38E-10		
MG/KG	4-METHYLPHENOL (p-CRESOL)	O	5 00E-03	3 25E-03			5 60E-02	6 50E-01	0 01	2 74E-08	0 000005	4 40E-10	0 0000001	8.30E-12		
MG/KG	PENTACHLOROPHENOL	92	3 00E-02	3 00E-02			2 26E-01	1 00E+00	0 24	1 11E-07	0 000004	4 27E-08	0 000001	3 36E-11		
MG/KG	TOTAL 1,2-DICHLOROETHENE	0	9 00E-03	9 00E-03	**	2 61E+03	2 00E-03	1 00E+00	0 01	9 78E-10	0 0000001	1 57E-11 (0 000000002	1 50E-07		
MG/KG	TRICHLOROETHYLENE (TCE)	85	6 00E-03	9 00E-04	`,	3 65E+03	121E-02	1 50E-01	001	5 94E-09	0 000001	9 55E-11	0 0000001	6 51E-07		
	Hazard Index										0.05		0 009 Total His	200	0.01	

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

TABLE 16-3a
FU5 Surface Soil -Hypothetical Current/Future Maintenance Worker Scenano
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestion			•
CDI =	Cs * IR * FI * EF * ED * CF		* •
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 c	50 c
FI =	Fraction Ingested (unitless)	0.5	0.5
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CD1 =	Cs *SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2679 e,f	2679 e,f
AF =	Soil-Skin Adherence Factor (mg/cm2)	0.03 e,g	0 03 e,g
AB\$ =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Inhalatio	n:	for volatiles	
CDI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/PEF)	<u>) * IR </u>
	BW * AT	BW	* AT
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1.32E+09 ı	1 32E+09 1
VFind =	Volatilization Factor (m3/kg)	(Chemical Specific) j	(Chemical Specific) j
!R =	Inhalation Rate (m3/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors" OSWER Directive 9285.6-03, March 25, 1991
- $b = Time \ spent \ outdoors \ in \ the \ contaminated \ areas \ based \ on \ the \ nature \ of \ the \ activity, \ assuming \ full \ workday$
- c = Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995.
- d = Maintenance activity assumed to be once a week throughout the year (excluding vacation)
- e= EPA Exposure Factors Handbook, August 1997.
- f = Surface area of 1/2 head, forearms and the hands of an adult worker.
- g = AF calculated for soil adherence can be found in Appendix G
- h = Chemical-specific absorption factors are found in Appendix G.
- ı = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance⁻ Technical Background Document, May 1996.
- j = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F A.C.,

 December 1998.

TABLE ic-3b
FU5 Surface Soil -Hypothetical Current/Future Maintenance Worker Carcinogenic Scenario Memphis Depot Main Installation

										Ingestion	ion	De	Dermal	Inhalation	tion
Units	Chemical	WOE	SFo	SFd	SFi	VFind	EPC	ABSgi	ABS	5	ELCR	CDI	ELCR	G	ELCA
MG/KG	ANTIMONY	٥				_	3 33E+00	2 00E-02	0 001	1 11E-07		3 55E-10		6 70E-11	
MG/KG	ARSENIC	∢	1 50E+00	3 66E+00	1 51E+01	_	1 46E+01	4 10E-01	0 03	2 55E-07	3 8E-07	2 46E-08	9 0E-08	1 55E-10	2 3E-09
MG/KG	DIELDRIN	8	1 60E+01	3 20E+01	1 60E+01	,	1 10E+00	5 00E-01	0	1 92E-08	3 1E-07	6 18E-09	2 0E-07	1 16E-11	1 9E-10
MG/KG	BENZO(a)ANTHRACENE	8	7 30E-01	2 35E+00	3 10E-01	~	3 99E+00	3 10E-01	0	1 57E-07	1 1E-07	5 05E-08	1 2E-07	9 52E-11	3 0E-11
MG/KG	BENZO(a)PYRENE	B2	7 30E+00	2 35E+01	3 10E+00	w	3 41E+00	3 10E-01	0 13	1 47E-07	1 1E-06	6 14E-08	1 4E-06	8.91E-11	2 8E-10
MG/KG	BENZO(b)FLUORANTHENE	B 2	7 30E-01	2 35E+00	3 10E-01	w	3 14E+00	3 10E-01	0.1	1 42E-07	1 0E-07	4 57E-08	1 1E-07	8.62E-11	2 7E-11
MG/KG	BENZO(k)FLUORANTHENE	B 5	7 30E-02	2 35E-01	3 10E-02	,-	7 78E+00	3 10E-01	0	1 36E-07	9 9E-09	4 37E-08	1 0E-08	8 23E-11	2 6E-12
MG/KG	CARBAZOLE	B 2	2 00E-02	2 86E-02		-	112E+00	7 00E-01	0	1 95E-08	3 9E-10	6 27E-09	1 8E-10	1,18E-11	
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	3 10E-03	-	1 01E+01	3 10E-01	0	1 77E-07	1 3E-09	5 69E-08	1 3E-09	1 07E-10	3 3E-13
MG/KG	DIBENZ(a,h)ANTHRACENE	B 2	7 30E+00	2 35E+01	3 10E+00	-	134E+00	3 10E-01	0	2 34E-08	17E-07	7 51E-09	1 8E-07	1.42E-11	4 4E-11
MG/KG	INDENO(1,2,3-c,d)PYRENE	B 5	7 30E-01	2 35E+00	_3 10E-01	¥	3 49E+00	3 10E-01	0 1	1 13E-07	8 3E-08	3 65E-08	8 6E-08	6 88E-11	2.1E-11
MG/KG	4-METHYLPHENOL (p-CRESOL)	ပ					5 60E-02	6 50E-01	0 01	9 78E-10		3 15E-11		5 93E-13	
MG/KG	PENTACHLOROPHENOL	B2	1 20E-01	1 20E-01		/	3 20E-01	1 00E+00	0 24	S 59E-09	6 7E-10	4 31E-09	5 2E-10	3 39E-12	
	Total Risk										2E-06		2E-06		3E-09
												,-	Total Risk =	4E-06	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC	ronic Dail	y Intake, EP	C = Exposu	C = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	centratio	m, ELCR =	Excess Lrfe	tıme Car	ncer Exposi	Jre				

ė

TABLE 16-3c
FU5 Surface Soil -Hypothetical Current/Future Maintenance Worker Noncarcinogenic Scenario
Memphis Depot Main Installation R1

Units Che MG/KG ANT MG/KG ARS									Ingestion	stion	٥	Dermai	Inhalation	5
	Chemicat	WOE	RfDo	RfDd	RfDi VFind	EPC	ABSgi	ABS	ig CD	엳	CD	НО	CD	오
	ANTIMONY	۵	4 00E-04	8 00E-06		6 33E+00 2 00E-02	2 00E-02	0 001	3 10E-07	8000 0	9 95E-10	0 0001	1 88E-10	
	ARSENIC	∢	3 00E-04	1 23E-04		1 46E+01	4 10E-01	0 03	7 14E-07	0 002	6 89⊑-08	9000 0	4 33E-10	
MG/KG DIEL	DIELDRIN	B2	5 00E-05	2 50E-05		1 10E+00	5 00E-01	0	5 38E-08	0 00	1,73E-08	0 0007	3 26E-11	
	BENZO(a)ANTHRACENE	B2				8 99E+00	3 10E-01	0	4 40E-07		1 41E-07		2 67E-10	
	BENZO(a) PYRENE	B2				8 41E+00	3 10E-01	0 13	4 12E-07		1 72E-07		2 49E-10	
	BENZO(b) FLUORANTHENE	B2				8 14E+00	3 10E-01	0	3 98E-07		1 28E-07		241E-10	
	BENZO(k)FLUORANTHENE	B2				7 78E+00	3 10E-01	0	3 80E-07		1 22E-07		231E-10	
MG/KG CAR	CARBAZOLE	B2				1 12E+00	7 00E-01	0	5 46E-08		1 75E-08		331E-11	
Ī	CHRYSENE	B2				1 01E+01	3 10E-01	0.1	4 95E-07		1 59E-07		3 00E-10	
MG/KG DIBE	DIBENZ(a,h)ANTHRACENE	B2				1 34E+00	3 10E-01	0	6 54E-08		2 10E-08		3 96E-11	
MG/KG INDE	NDENO(1,2,3-c,d)PYRENE	B2				6 49E+00	3 10E-01	0	3 18E-07		1 02E-07		1 93E-10	
4	-METHYLPHENOL (p-CRESOL)	O	5 00E-03	3 25E-03		5 60E-02	6 50E-01	0 01	2 74E-09	0 0000005	8 81E-11	0 00000003	1 66E-12	
MG/KG PEN	PENTACHLOROPHENOL	B2	3 00E-02	3 00E-02		3 20E-01	1 00E+00	0 24	1 57E-08	0 0000000	1 21E-08	0 0000004	9 49E-12	
Haz	Hazard Index									0.004		0 001 Total HI-	9000	

1 7 1 5

TABLE 16-4a

FU5 (SS77C) Surface Soil - Hypothetical Future On-Site Residential (Adult) Scenario Memphis Depot Main Installation RI

ngestion		Carcinogenic	Noncarcinogenic
	non-carcinogenic compounds	Age-specific intake (for carcino	genic compounds only)
:DI =	Cs * IR * FI * EF * ED * CF	CDladj = Cs * FI * EF * CF * IRadj	gama aampaanaa omy
	BW * AT	AT	
s =	Concentration in soil (mg/kg)	EPC	EPC
₹ =	Ingestion Rate (mg/day)	N/A	100 a
Rad) =	Age-adjusted Ingestion Rate (mg - year)/(kg - day)	114 29 a,b	N/A
l =	Fraction Ingested (unitless)	1	1
F=	Exposure Frequency (day/year)	350 a	350 a
D =	Exposure Duration (year)	N/A	30 a
- F =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
W =	Body Weight (kg)	N/A	70 a
– T ≃	Averaging Time (days)	25550 a	10950 a
ermal:	ann agus agus agus agus agus agus agus agus	Ann annual autologista	
	non-carcinogenic compounds	Age-specific intake (for carcino	
DI =	Cs * SA * AF * ABS * ET * EF * ED * CF	Cs.*SAadj * AF * ABS * E	I EF UF
	BW * AT	AT	
s =	Concentration in soil (mg/kg)	EPC	EPC
A =	Surface Area (cm2)	N/A	5049 d,e
Aadj =	Age-adjusted Surface Area (cm2 - year)/(kg)	2671 d,e,f	N/A
F =	Soil-Skin Adherence Factor (mg/cm2)	0 03 d,g	0 03 d,g
B\$ =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
Τ=	Exposure Time (4 hours per 24-hour day)	0 167 с	0 167 с
F =	Exposure Frequency (day/year)	350 a	350 a
D =	Exposure Duration (year)	N/A	30 a
F =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
W =	Body Weight (kg)	N/A	70 a
T =	Averaging Time (days)	25550 a	10950 a
- h - l - 4			
nhalation		Ann annoyer intole Hongaria	gania nominalizada e eli A
	non-carcinogenic compounds	Age-specific intake (for carcino	
D1 =	Cs * (1/PEF) * IR Inh * ET * EF * ED	CDI = <u>Cs *</u>	(1/PEF) * IR_Inhadi * ET * EF
	BW * AT		AT
s =	Concentration in soil (mg/kg)	EPC	EPC
EF =	Particulate Emission Factor (m3/kg)	1 32E+09 ı	1 32E+09 ı
}_inh =	Inhalation Rate (m3/day)	N/A	20 a
	= Age-adjusted Inhalation Rate (m3 - year)/(kg - day)	12 85714286 a,j	N/A
T =	Exposure Time (4 hours per 24-hour day) ,	0 167 c	0 167 c
F =	Exposure Frequency (day/year)	350 a	350 a
D =	Exposure Duration (year)	N/A	30 a
W =	Body Weight (kg)	N/A	70 a
T =	Averaging Time (days)	25550 a	10950 a
eference		nee #Steedard Default Con-	
= EFA, I	Human Health Evaluation Manual, Supplemental Guidal Factors," OSWER Directive 9285 6-03, March 25, 19		
= Ace-ar	djusted ingestion rate for adults, adjusted for body weigh		
go a	IRadi = IRc x EDc + IRa x (EDa -	• •	100 x (30-6)
	BWc BWa	15	70
	114.29 (mg-year)/(kg-day)		, •
= Time s	spent outdoors in the contaminated areas based on the	nature of the activity	
	xposure Factors Handbook, August 1997	,	
	e area of 1/2 head, hands, forearms, lower legs & feet	of an adult	
	is area of 172 head, harlos, forearms, lower legs a reer to liusted for body weight		
- vae-go	· · · · · · · · · · · · · · · · · · ·	- ·	EU/0 × (30.6)
	SAadj = SAc x EDc + SAa x (EDa -	•	5049 x (30-6)
	BWc BWa	15	70
- AE 001	2671 (cm2-year)/(kg) culated for soil adherence can be found in Appendix L		
	· ·		
	ical-specific absorption factors are found in Appendix L	nanina Guidanna Tachaini Badinini	d Decument May 1000
	late emission factor (PEF), adapted from EPA, Soil Scre		a Document, May 1996
= Age-ad	justed inhalation rate for adults, adjusted for body weigh		
	IR-Inh adj = IR-Inh c x EDc + IR-Inh a x (EDa		20 x (30-6)
	BWc BWa	15	70
	12.86 (m3-year)/(kg-day)		

TABLE 16-4b
FU5 (SS77C) Surface Soil - Hypothetical Future On-site Residential (Adult) Carcinogenic Scenaric Memphis Depot Main Installation RI

										Ingestion	ion	De	Dermal	Inhalation	UQ.
Units	Units Chemical	WOE	WOE SFo	SFd	SFi	SFi VFINd EPC	EPC	ABSgı	ABS	CDladj	ELCR	CDladj	ELCR	CDladj ELCR	ELCR
MG/KG	Benzo(a)anthracene	B2	ᄂ	2 35E+00 3 10E-01	3 10E-01		2 60E+01	2 60E+01 3 10E-01 0 1 4 07E-05 3 0E-05 4 76E-07	0.1	4 07E-05	3 0E-05	4 76E-07	1.1E-06	5 78E-10 1	8E-10
MG/KG		B2	_	2 35E+01 3.10E+00	3.10E+00		3.60E+01	2,60E+01 3.10E-01 0 13 4 07E-05 3 0E-04 6 18E-07	0 13	4 07E-05	3 0E-04	6 18E-07	1.5E-05	5.78E-10 1.8E-09	.8E-09
MG/KG		85 87	7.30E-01	2 35E+00 3 10E-01	3 10E-01	.,	2 60E+01	2 60E+01 3 10E-01 01 4 07E-05 3 0E-05 4.76E-07	0 1	4 07E-05	3 0E-05	4.76E-07	1.1E-06	5 78E-10 1.8E-10	.8E-10
MG/KG	Indeno(1,2,3-c,d)pyrene	B2	7 30E-01	2 35E+00 3.10E-01	3.10E-01	-	1 70E+01	170E+01 310E-01 01 2.66E-05 19E-05 3.11E-07	0	2.66E-05	1 9E-05	3.11E-07	7 3E-07	3 78E-10 1.2E-10	.2E-10
	Total Risk										3.8E-04		1.8E-05	C)	2.3E-09
												•	Total Risk =	4E-04	
Notes:	Notes: WOE = Weight of Evidence, CDI = Chronic Daily Intake,	= Chronic E)aily Intake,	EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	osure Point	Concenti	ration, ELC	R = Exces	s Lifetin	ne Cancer	xposure				1

1:

TABLE 16-4c FUS (SS77C) Surface Soil - Hypothetical Future On-Site Residential (Adult) Noncarcinogenic Scenario Memphis Depot Main Installation RI

							Ingestion		Dermal		Inhalation	٦,
Units	Chemical	WOE RfDo RfDd RfDi VFind	VFind	EPC	ABSgi ABS	ABS	CDI HQ		CDI	옃	CDI HC	¥
MG/KG	Benzo(a)anthracene	B2		2 60E+01	2 60E+01 3.10E-01 0.1 3.56E-05	0.1	3.56E-05	8 96	8 99E-07		8.99E-10	l
MG/KG	Benzo(a)pyrene	B2		2 60E+01	2 60E+01 3.10E-01 0 13 3 56E-05	0 13	3 56E-05	1.17	1.17E-06	ω	8.99E-10	
MG/KG	Benzo(b)fluoranthene	B2		2 60E+01	2 60E+01 3.10E-01 01 3 56E-05	0	3 56E-05	8.99	8.99E-07	w	8.99E-10	
MG/KG	Indeno(1,2,3-c,d)pyrene	B2		1 70E+01	1 70E+01 3.10E-01 0.1	0.1	2 33E-05	5.88	5.88E-07	u,	5.88E-10	
	Hazard Index											
			:	:					Tota	Total HI=		
Notes	WOF - Wardt of Evidence: CDI = Chronic Daily Intake FPC = Expositive Point Concentration HO = Hazard Ottobert: HI = Hazard Index	onic Daily Intake FPC = Fyn	osure Po	int Concent	ration HO	= Hazaı	d Oughent: F	H = Haz	ard Index			

TABLE I6-5a
FU5 (SS77C) Surface Soil—Hypothetical Future On-site Residential (Child) Scenario
Memphis Depot Main Installation RI

-		Carcinogenic (optional)	Noncarcinogenic
Ingestio			
CDI =	Cs * IR * FI * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	200 a	200 a
Fi =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dermal:			
CDI =	<u>Cs * SA * AF * ABS * ET * EF * ED * CF</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2351 c,d	2351 c,d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0.15 c,e	0 15 c,e
AB\$ =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (4 hours per 24-hour day)	0.167 b	0.167 b
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 а
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Inhalati			
CDI =	Cs * (1/PEF) * IR * ET * EF * ED		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1.32E+09 g
IR =	Inhalation Rate (m3/day)	15 a	15 a
ET =	Exposure Time (4 hours per 24-hour day)	0 167 b	0 167 b
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors," OSWER Directive 9285.6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas based on the nature of the activity.
- c= EPA Exposure Factors Handbook, August 1997.
- d = Surface area of 1/2 head, hands, forearms, lower legs & feet of a child (age 1-6 years).
- e = AF calculated for soil adherence can be found in Appendix G.
- f = Chemical-specific absorption factors are found in Appendix G.
- g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance Technical Background Document, May 1996

TABLE 16-5b
FU5 (SS77C) Surface Soil—Hypothetical Future On-Site Residential (Child) Carcinogenic Scenario - optional use Memphis Depot Main installation RI

									Ingestion	tion	Dermal	nal	Inhalation	tion	
Units	Chemical	WOE	WOE SFO	- 1	SFd SFi	VFind	VFind EPC	EPC ABSgi ABS CDI ELCR CDI ELCR	ABS	CDI	ELCR	CO	ELCR	<u>5</u>	ELCR
MG/KG	Benzo(a)anthracene	B 2	7 30E-01	S	3 10E-01		2 60E+01	3 10E-01	1,00E-01	2 85E-05	2 08E-05	8 37E-07	1 97E-06	2 70E-10	8 36E-11
MG/KG	Benzo(a)pyrene	B 2	7 30E+00	S	35E+01 3 10E+00	•	2 60E+01	! 60E+01 310E-01 130E-01 285E-05 208E-04 109E-06 2.56E-05 270E-10 836E-10	1 30E-01	2 85E-05	2 08E-04	1 09E-06	2.56E-05	2 70E-10	8 36E-10
MG/KG	Benzo(b)fluoranthene	B 5	7 30E-01	2 35E+00	35E+00 3 10E-01		2 60E+01	:60E+01 310E-01 100E-01 285E-05 208E-05 8.37E-07 197E-06 270E-10 836E-11	1 00E-01	2 85E-05	2 08E-05	8.37E-07	1 97E-06	2 70E-10	8 36E-11
MG/KG	Indeno(1,2,3-c,d)pyrene	B 2	7 30E-01	2 35E+00	35E+00 3 10E-01		1 70E+01	70E+01 310E-01 100E-01 186E-05 136E-05 547E-07 129E-06 1,76E-10 547E-11	1 00E-01	1 86E-05	1 36E-05	5 47E-07	1 29E-06	1.76E-10	5 47E-11
	Total Risk										2.63E-04		3.09E-05		1.06E-09
											-	Total Risk =		3E-04	
Notes:	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EP(гопіс Dai	ly Intake, El	PC = Exposi	C = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	ncentratio	n, ELCR =	Excess Life	etime Cance	ir Exposur					

TABLE 16-5c FUS (SS77C) Surface Soil—Hypothetical Future On-site Residential (Child) Noncarcinogenic Scenaric

Memphis Depot Main installation RI

						Ingestion		Dermal	Inhalation	1
Units	Chemical	WOE RIDO RIDO RIDI VFIND	EPC	ABSgi ABS	ABS	CDI HQ	o CDI	E HO	CDI HQ	ای
MG/KG	Benzo(a)anthracene	B2	2.60E+01	2.60E+01 3 10E-01 0 1 3 32E-04	0.1	3 32E-04	9.77E-06	90-⊒	3.15E-09	
MG/KG	Benzo(a)pyrene	B2	2 60E+01	2 60E+01 3.10E-01 0 13 3 32E-04	0 13	3 32E-04	1.27E-05	5-05	3 15E-09	

3.15E-09 2 06E-09	H=	
9 77E-06 6 39E-06	Total HI=	HI = Hazard Index
2.60E+01 3.10E-01 0.1 3.32E-04 1.70E+01 3.10E-01 0.1 2.17E-04		zard Quotient,
0.1		= Ha:
3 10E-01 3 10E-01		tration; HQ
2.60E+01 1 70E+01		nic Daily Intake; EPC = Exposure Point Concentration; HQ = Hazard Quotient, HI = Hazard Index
B2 B2		I = Chronic Daily Intake; EPC :
Benzo(b)fluoranthene Indeno(1,2,3-c,d)pyrene	Hazard Index	WOE = Weight of Evidence, CDI = Chronic
MG/KG MG/KG		Notes:

TABLE 16-6a
Screening Site 77 Surface Soil—Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

!t!-		Carcinogenic	Noncarcinogenic	
ngestic	r			
CDI =	Cs ' IR ' FI ' EF ' ED ' CF BW ' AT			
)s =	Concentration in soil (mg/kg)	EPC	EPC	
R =	Ingestion Rate (mg/day)	50 a	50 a	
=I =	Fraction Ingested (unitless)	1	1	
EF =	Exposure Frequency (day/year)	250 a	250 a	
ED =	Exposure Duration (year)	25 a	25 a	
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06	
3W =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	
Dermal:				
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC	EPC	
6A =	Surface Area (cm2)	2679 c,d	2679 c,d	
\F =	Soil-Skin Adherence Factor (mg/cm2)	0 03 c,e	0.03 c,e	
AB\$ =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f	
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
EF =	Exposure Frequency (day/year)	250 a	250 a	
ED =	Exposure Duration (year)	25 a	25 a	
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06	
3W =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	
	ate Inhalation:			
CDI =	<u>Cs * (1/PEF) * IR * ET * EF * ED</u> BW * AT			
Cs =	Concentration in soil (mg/kg)	EPĊ	EPC	
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1 32E+09 g	
R =	Inhalation Rate (m3/day)	20 a	20 a	
T =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
EF =	Exposure Frequency (day/year)	250 a	250 a	
ED =	Exposure Duration (year)	25 a	25 a	
BW =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity
- c = EPA Exposure Factors Handbook, August 1997.
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G.
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance Technical Background

 Document, May 1996

.179

P∄47543/APP16FU5soils xls/Table 16-6b

TABLE 16-6b
Screening Site 77 Surface Soil—Hypothetical Future Industrial Worker Carcinogenic Scenano
Memphis Depot Main Installation RI

									Ingestion	UOI,	Der	Dermal	Inhalation	ation	
Units	Chemical	WOE	SFo	SFd	SFI	EPC C	ABSgi	ABS		ELCR	CDI	ELCR	D C	ELCR	
MG/KG	ANTIMONY	٥				7 40E+00	2 00E-02	0 001	1 29E-06		2 08E-09		3 92E-10		
MG/KG	ARSENIC	∢	1 50E+00	3 66E+00	151E+01	1 87E+01	4 10E-01	0 03	3 27E-06	4 9E-06	1 58E-07	5 8E-07	9 90E-10	1 5E-08	
MG/KG	DIELDRIN	B2	1 60E+01	3 20E+01	1 60E+01	2 60E-01	5 00E-01	0	4 54E-08	7 3E-07	7 30E-09	2 3E-07	1 38E-11	2 2E-10	
MG/KG	BENZO(a) ANTHRACENE	B2	7 30E-01	2 35E+00	3 10E-01	2 60E+01	3 10E-01	0	4 54E-06	3 3E-06	7 30E-07	1.7E-06	1 38E-09	4 3E-10	
MG/KG	BENZO(a) PYRENE	B2	7 30E+00	2 35E+01	3 10E+00	2 60E+01	3 10E-01	0 13	4 54E-06	3 3E-05	9 49E-07	2 2E-05	1 38E-09	4 3E-09	
MG/KG	BENZO(b) FLUORANTHENE	82	7 30E-01	2 35E+00	3 10E-01	2 60E+01	3 10E-01	0 1	4 54E-06	3 3E-06	7 30E-07	1 7E-06	1 38E-09	4 3E-10	
MG/KG	BENZO(k)FLUORANTHENE	B2	7 30E-02	2 35E-01	3 10E-02	2 00E+01	3 10E-01	0.1	3 49E-06	2 6E-07	5 62E-07	1 3E-07	1 06E-09	3 3E-11	
MG/KG	CARBAZOLE	85	2 00E-02	2 86E-02		4 00E+00	7 00E-01	0 1	6 99E-07	1 4E-08	1 12E-07	3.2E-09	2 12E-10		
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	3 10E-03	3 00E+01	3 10E-01	0	5 24E-06	3 8E-08	8,43E-07	2 0E-08	1 59E-09		
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	3 10E-01	1 70E+01	3 10E-01	0	2 97E-06	2 2E-06	4 77E-07	1 1E-06	9 00E-10	2 8E-10	
MG/KG	PENTACHLOROPHENOL	B2	1 20E-01	1 20E-01		3 20E-01	1 00E+00	0 24	5 59E-08	6 7E-09	2 16E-08	2 6E-09	1 69E-11		
	Total Risk									4.8E-05	-	2.8E-05 Fotal Risk =	8E-05	2.1E-08	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	Daily Inte	ike, EPC =	Exposure P	oint Concen	tration, ELC	R = Excess	Lifetime	Cancer Ex	osure					

TABLE 16-6c
Screening Site 77 Surface Soil—Hypothetical Future Industrial Worker Noncarcinogenic Scenaric Memphis Depot Main Installation RI

									Ingestion	tion	Dermai	nai	Inhalation	uo		
Units	Chemical	WOE	WOE RfDo	RfDd	3	EPC	ABSgi	ABS	CO	至	<u>5</u>	ã	9	ç		
MG/KG	ANTIMONY	-	4 00E-04 8 00E-06	8 00E-06	7	40E+00	2 00E-02	0 001	3 62E-06	600 0	5 82E-09	0 0007	1 10E-09			
MG/KG	ARSENIC	⋖	3 00E-04	1.23E-04	-	87E+01	4 10E-01	0 03	9 15E-06	0 03	4 41E-07	0 004	2 77E-09			
MG/KG	DIELDRIN	82	5 00E-05	2 50E-05	2	2 60E-01	5 00E-01	0	1 27E-07	0 003	2 04E-08	0 0008	3 85E-11			
MG/KG	BENZO(a)ANTHRACENE	85			8	2 60E+01	3 10E-01	0	1 27E-05		2 04E-06		3 85E-09			
MG/KG	BENZO(a)PYRENE	85			8	2 60E+01	3 10E-01	0 13	1 27E-05		2 66E-06		3 85E-09			
MG/KG	BENZO(b)FLUORANTHENE	82			2	2 60E+01	3 10E-01	0	1 27E-05		2 04E-06		3 85E-09			
MG/KG	BENZO(k)FLUORANTHENE	B2			2	2 00E+01	3 10E-01	0	9 78E-06		1 57E-06		2 97E-09			
MG/KG	CARBAZOLE	85			4	.00E+00	7 00E-01	0	1 96E-06		3 15E-07		5 93E-10			
MG/KG	CHRYSENE	B 2			က	00E+01	3 10E-01	0	1 47E-05		2 36E-06		4 45E-09			
MG/KG	INDENO(1,2,3-c,d)PYRENE	B 2			-	70E+01	3 10E-01	0	8.32E-06		1 34E-06		2 52E-09			
MG/KG	* PENTACHLOROPHENOL	82	3 00E-02	3 00E-02	က	3 20E-01	1 00E+00	0 24	1 57E-07	0 000005	6.04E-08	0 000002	4 74E-11	ı	; ;	ı
	Hazard Index									0.04		0.005 Total HI≡	0 05			

Notes: WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

TABLE 16-7a
Screening Site 77 Soil Column—Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

	· · · · · · · · · · · · · · · · · · ·	Carcinogenic	Noncarcinogenic			
Ingestio	n:	**************************************	is a management of the second			
CDI =	Cs * IR * FI * EF * ED * CF		•			
	BW * AT					
Cs =	Concentration in soil (mg/kg)	EPC	EPC			
IR =	Ingestion Rate (mg/day)	50 a	50 a			
FI ≃	Fraction Ingested (unitless)	1	1			
EF =	Exposure Frequency (day/year)	250 a	250 a			
ED =	Exposure Duration (year)	25 a	25 a			
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06			
BW =	Body Weight (kg)	70 a	70 a			
AT =	Averaging Time (days)	25550 a	9125 a			
Dermal:						
CDI =	Cs *\$A * AF * ABS * ET * EF * ED * CF					
	BW * AT					
Cs =	Concentration in soil (mg/kg)	EPC	EPC			
SA =	Surface Area (cm2)	2679 c,d	2679 c,d			
AF =	Soil-Skin Adherence Factor (mg/cm2)	0.03 c,e	0.03 c,e			
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f			
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b			
EF =	Exposure Frequency (day/year)	250 a	250 a			
ED =	Exposure Duration (year)	25 a	25 a			
CF =	Conversion Factor (kg/mg)	1.00E-06	1 00E-06			
BW =	Body Weight (kg)	70 a	70 a			
AT =	Averaging Time (days)	25550 a	9125 a			
Particulate Inhalation:						
CDI =	Cs * (1/PEF) * IR * ET * EF * ED					
	BW * AT					
Cs =	Concentration in soil (mg/kg)	EPC	EPC			
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1.32E+09 g			
IR =	Inhalation Rate (m3/day)	20 a	20 a			
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b			
EF =	Exposure Frequency (day/year)	250 a	250 a			
ED =	Exposure Duration (year)	25 a	25 a			
BW =	Body Weight (kg)	70 a	70 a			
AT =	Averaging Time (days)	25550 a	9125 a			

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity
- c = EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance⁻ Technical Background Document, May 1996.

TABLE IG-7b
Screening Site 77 Soil Column—Hypothetical Future Industrial Worker Carcinogenic Scenario
Memphis Depot Main Installation RI

									Ingestion	tion	ă	Dermal	Inhalation	thon	
Units	Chemical	WOE	SFo	SFd	SFI	EPC	ABSgi	ABS	ΩO	ELCH	CD	ELCR	CD	ELCR	
MG/KG	ANTIMONY	۵				7 23E+00	2 00E-02	0 001	1 26E-06		2 03E-09		3 83E-10		
MG/KG	ARSENIC	∢	1 50E+00	3 66E+00	151E+01	1 35E+01	4 10E-01	0 03	237E-06	3 6E-06	1 14E-07	4 2E-07	7 17E-10	1 1E-08	
MG/KG	COPPER	۵				3 42E+01	3 00E-01	0 001	5 97E-06 0 0E+00	0 0E+00	9 59E-09		1 81E-09		
MG/KG	DIELDRIN	B2	1 60E+01	60E+01 320E+01	1 60E+01	2 60E-01	5 00E-01	0 1		7 3E-07	7 30E-09	2 3E-07	1 38E-11	2 2E-10	
MG/KG	BENZO(a)ANTHRACENE	B 2	7 30E-01	2 35E+00	3 10E-01	2 60E+01	3 10E-01	0		3 3E-06	7 30E-07	1 7E-06	1 38E-09	4 3E-10	
MG/KG	BENZO(a)PYRENE	82	7 30E+00	2 35E+01	3 10E+00	2 60E+01	3 10E-01	0 13	4 54E-06	3 3E-05	9 49E-07	2 2E-05	1 38E-09	4 3E-09	
MG/KG	BENZO(b)FLUORANTHENE	82	7 30E-01	2 35E+00	3 10E-01	2 60E+01	3 10E-01	0.1	4 54E-06 3	3 3E-06	7 30E-07	1 7E-06	1 38E-09	4.3E-10	
MG/KG	BENZO(k)FLUORANTHENE	B2	7 30E-02	2 35E-01	3 10E-02	2 00E+01	3 10E-01	0	3 49E-06	2 6E-07	5 62E-07	1 3E-07	1 06E-09		
MG/KG	CARBAZOLE	B2	2 00E-02	2 86E-02		2 34E+00		0	4 10E-07	8 2E-09	6 58E-08	1 9E-09	1 24E-10		
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	3 10E-03	3 00E+01		0	5 24E-06	3 BE-08	8 43E-07	2 0E-08	1 59E-09	4 9E-12	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	3 10E-01	1 70E+01		0	2 97E-06	2 2E-06	4 77E-07	1 1E-06	9 00E-10	2 8E-10	
MG/KG	PENTACHLOROPHENOL	B2	1 20E-01	1 20E-01		3 20E-01	1 00E+00	0 24	5 59E-08	6 7E-09	2 16E-08	2 6E-09	1 69E-11	1	
	Total Risk									4.7E-05		2.8E-05 Total Rick	75-05	1.6E-08	

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

TABLE 16-7c
Screening Site 77 Soil Column—Hypothetical Future Industrial Worker Noncarcinogenic Scenaric Memphis Depot Main Installation R1

Inhalation	срі на	1 07E-09	201E-09	5 06E-09	3 85E-11	3 85E-09	3 85E-09	3.85E-09	2.97E-09	3 48E-10	1.45E-09	2 52E-09	4 74E-11	
Dermal	P P	0 0007	0 003	0 000002 5	0 0008	e	n	ო	8	n	4	2	0 000002 4	0.004
Der	CDI	5 68E-09	3 20E-07	2 69E-08	2 04E-08	2 04E-06	2 66E-06	2 04E-06	1 57E-06	184E-07	2 36E-06	1 34E-06	6 04E-08	
Ingestion	ğΗ	600 0	0 05	0 0004	0 003								0 000005	0.03
Inge	CDI	3 54E-06	6 63E-06	1 67E-05	1 27E-07	1 27E-05	1.27E-05	1 27E-05	9 78E-06	1 15E-06	1 47E-05	8 32E-06	1,57E-07	
	ABS	0 001	0 03	0 001	0 1	0 1	0 13	0	0.1	0 1	0 1	0.1	0 24	
	ABSgi	2 00E-02	4 10E-01	3 00E-01	5 00E-01	3 10E-01	3 10E-01	3 10E-01	3 10E-01	7 00E-01	3.10E-01	3 10E-01	1 00E+00	
	EPC	7 23E+00	1 35E+01	3 42E+01	2 60E-01	2 60E+01	2 60E+01	2 60E+01	2 00E+01	2 34€+00	3 00E+01	1 70E+01	3 20E-01	
	R.	5	₹	CI	ις.								CI.	
	RfDd	8 00E-06	1 23E-04	1 20E-02	2 50E-05								E-02 3 00E-02	
	WOE RfDo	4 00E-04	3 00E-04	4 00E-02	5 00E-05								3 00E-02	
	WOE	٥	∢			82	82	82	B2	82	82	B2	B2	
	Chemical	ANTIMONY	ARSENIC	COPPER	DIELDRIN	BENZO(a)ANTHRACENE	BENZO(a)PYRENE	BENZO(b)FLUORANTHENE	BENZO(k)FLUORANTHENE	CARBAZOLE	CHRYSENE	INDENO(1,2,3-c,d)PYRENE	PENTACHLOROPHENOL	Hazard Index
	Units	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration; HQ = Hazard Quotient, HI = Hazard Index

TABLE 16-8a
Screening Site 77 Soil Column—Hypothetical Current/Future Utility Worker Scenario
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic	
Ingestio	n:			
CDI =	Cs*IR*FI*EF*ED*CF			
	BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC	EPC	
IR =	Ingestion Rate (mg/day)	100 c	100 c	
Fi =	Fraction Ingested (unitless)	05	0 5	
EF =	Exposure Frequency (day/year)	24 d	24 d	
ED =	Exposure Duration (year)	25 a	2 5 a	
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06	
BW =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	
Dermal:				
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC	EPC	
SA =	Surface Area (cm2)	2679 e,f	2679 e,f	
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 1 e,g	0 1 e,g	
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h	
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
EF =	Exposure Frequency (day/year)	24 d	24 d	
ED =	Exposure Duration (year)	25 a	25 a	
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06	
BW =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	
Particul	ate Inhalation:			
CDI =	Cs * (1/PEF) * IR * ET * EF * ED			
	BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC	EPC	
PEF =	Particulate Emission Factor (m3/kg),	1.32E+09 i	1 32E+09 ı	
IR =	Inhalation Rate (m3/day)	20 a	20 a	
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
EF =	Exposure Frequency (day/year)	24 d	24 d	
ED =	Exposure Duration (year)	25 a	25 a	
BW =	Body Weight (kg)	70 a	70 a	
AT =	Averaging Time (days)	25550 a	9125 a	

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285.6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas based on the nature of the activity, assuming full workday
- c = Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- d = Utility activity assumed to be twice a month throughout the year.
- e= EPA Exposure Factors Handbook, August 1997
- f = Surface area of 1/2 head, forearms and the hands of an adult worker
- g = AF calculated for soil adherence can be found in Appendix G
- h = Chemical-specific absorption factors are found in Appendix G
- ı = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance: Technical Backgrounc Document, May 1996

1-185

P./147543/APPI6FU5sols xls/Table 16-8b

TABLE 16-8b	
Screening Site 77 Soil Column—Hypothetical Current/Future Utility Worker Carcinogenic Scenario	
Memphis Depot Main Installation RI	

									Ingestion	Į.	Derma	lea	Inhalation	tion	
Units	Chemical	WOE	SFo	SFd	SFI	EPC	ABSqi	ABS	00	ELCR	8	ELCR	5	ELCR	
MG/KG	ANTIMONY	۵				7 23E+00	2 00E-02	0 001	1 21E-07		6 50E-10		3 67E-11		
MG/KG	ARSENIC	⋖	1 50E+00	3 66E+00	1 51E+01	1 35E+01	4 10E-01	0 03	2 27E-07	3 4E-07	3 65E-08	\$ 3E-07	6 89E-11	1 0E-09	
MG/KG	COPPER	٥				3 42E+01	3 00E-01	0 001	5 73E-07		3 07E-09		1 74E-10		
MG/KG	DIELDRIN	82	1 60E+01	3 20E+01	1 60E+01	2 60E-01	5 00E-01	0	4 36E-09	7 0E-08	2 34E-09	7 5E-08	1 32E-12	2 1E-11	
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	2 35E+00	3 10E-01	2 60E+01	3 10E-01	0	4 36E-07	3 2E-07	2 34E-07	5 SE-07	1 32E-10	4 1E-11	
MG/KG	BENZO(a)PYRENE	83	7 30E+00	2 35E+01	3 10E+00	2 60E+01	3 10E-01	0 13	4 36E-07	3 2E-06	3 04E-07	7 2E-06	1 32E-10	4 1E-10	
MG/KG	BENZO(b)FLUORANTHENE	82	7 30E-01	2 35E+00	3 10E-01	2 60E+01	3 10E-01	01	4 36E-07	3 2E-07	2 34E-07	5 5E-07	1 32E-10	4 1E-11	
MG/KG	BENZO(K)FLUORANTHENE	82	7 30E-02	2 35E-01	3 10E-02	2 00E+01	3 10E-01	0 1	3 35E-07	2 4E-08	1 80E-07	4 2E-08	1 02E-10	3 2E-12	
MG/KG	CARBAZOLE	B2	2 00E-02	2 86E-02		2 34E+00	7 00E-01	0 1	3 93E-08	7 9E-10	2 11E-08	6 0E-10	119E-11		
MG/KG	CHRYSENE	82	7 30E-03	2 35E-02	3 10E-03	3 00E+01	3 10E-01	01	5 03E-07	3 7E-09	2 70E-07	6 3E-09	1 52E-10	4 7E-13	
MG/KG	INDENO(1,2,3-c,d)PYRENE	82	7 30E-01	2 35E+00	3 10E-01	1 70E+01	3 10E-01	0 1	2 85E-07	2 1E-07	1 53E-07	3 6E-07	8 64E-11	2,7E-11	
MG/KG	PENTACHLOROPHENOL	B2	1 20E-01	1 20E-01		3 20E-01	1 00E+00	0 24	5 37E-09	6 4E-10	6 90E-09	8 3E-10	1 63E-12		
	Total Risk									4.5E-06		8.9E-06		1.6E-09	
											ř	Total Risk	1E-05		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC	Tronic Dar	ly Intake, EP	C = Exposur	e Point Con	centration, E	= Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	ss Lifet	me Cancer	Exposure					

TABLE I-68c
Screening Site 77 Soil Column—Hypothetical Current/Future Utility Worker Noncarcinogenic Scenario Memphis Depot Man installation RI

									Inge	Ingestion	190	Dermal	Inhalation		
Units	Chemical	WOE	WOE RIDO	RfDd	RfÖ	EPC	ABSgi	ABS	CD	알	CD	НО	CDI	НО	
MG/KG	ANTIMONY	٥	4 00E-04	8 00E-06		7 23E+00	2 00E-02	0 001	3 39E-07	0 0008	1 82E-09	0 0002	1 03E-10		
MG/KG	ARSENIC	∢	3 00E-04	1 23E-04		1 35E+01	4 10E-01	0 03	6 36E-07	0 002	1 02E-07	0 0008	1 93E-10		
MG/KG	COPPER	۵	4 00E-02	-		3 42E+01	3 00E-01	0 001	1 60E-06	0 00004	8 59E-09	0 0000007	4 86E-10		
MG/KG	DIELDRIN	B2	5 00E-05	2 50E-05		2 60E-01	5 00E-01	0.1	1 22E-08	0 0002	6 54E-09	0 0003	3 70E-12		
MG/KG	BENZO(a)ANTHRACENE	B2				2 60E+01	3 10E-01	0.1	1 22E-06		6 54E-07		3 70E-10		
MG/KG	BENZO(a)PYRENE	85				2 60E+01	3 10E-01	0 13	1 22E-06		8 51E-07		3 70E-10		
MG/KG	BENZO(b)FLUORANTHENE	B2				2 60E+01	3 10E-01	0.1	1 22E-06		6 54E-07		3 70E-10		
MG/KG	BENZO(k)FLUORANTHENE	B2				2 00E+01	3 10E-01	0.1	9 39E-07		5 03E-07		2 85E-10		
MG/KG	CARBAZOLE	B2				2 34E+00	7 00E-01	0.1	1 10E-07		5 90E-08		3 34E-11		
MG/KG	CHRYSENE	B2				3 00E+01	3 10E-01	0.1	141E-06		7 55E-07		4 27E-10		
MG/KG	INDENO(1,2,3-c,d)PYRENE	BS	ŧ	ŀ		1 70E+01	3 10E-01	0.1	7 98E-07	,	- 4 28E-07.		-2 42E-10	+	, ,
MG/KG	PENTACHLOROPHENOL	B2	3 00E-02	3 00E-02		3 20E-01	1 00E+00	0 24	1 50E-08	0 0000000	0 00000005 1 93E-08	90000000	4 55E-12		
	Hazard Index									0.003		0.001 Total HI=	0.005		

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HO = Hazard Quotient, HI = Hazard Index

Notes

Appendix I7 FU6 Soils FU6 Sediment THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE 17-1a
FU6 Surface Soil -Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic	
Ingestion	ո։			
CDI =	Cs * IR * FI * EF * ED * CF			
_	BW * AT			•
Cs =	Concentration in soil (mg/kg)	EPC	EPC	
IR =	Ingestion Rate (mg/day)	50 a	50 a	
Fi =	Fraction Ingested (unitless)	1	1	
EF =	Exposure Frequency (day/year)	250 a	250 a	
ED =	Exposure Duration (year)	25 a	25 a	
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06	
BW =	Body Weight (kg)	70 a	70 a	1
AT =	Averaging Time (days)	25550 a	9125 a	l
Dermal:				
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF			
	BW * AT			
Cs =	Concentration in soil (mg/kg)	EPC	EPC	
SA =	Surface Area (cm2)	2679 c,d		•
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03 c,e		,e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f	
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b	
EF =	Exposure Frequency (day/year)	250 a	250 a	
ED =	Exposure Duration (year)	25 a	25 a	l .
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06	
BW =	Body Weight (kg)	70 a	70 a	l
AT =	Averaging Time (days)	25550 a	9125 a	l
Inhalatio	en:	for volatiles:		
CDI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/PEI	F)) * IR	
	BW * AT	BV	W * AT	
Cs =	Concentration in soil (mg/kg)	EPC	EPC	
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1.32E+09 g	l
VFind =	Volatilization Factor (m3/kg)	(Chemical Specific) h	(Chemical Specific) h	ı
IR =	Inhalation Rate (m3/day)	20 a	20 a	l
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 t)
EF =	Exposure Frequency (day/year)	250 a	250 a	l
ED =	Exposure Duration (year)	25 a	25 a	
BW =	Body Weight (kg)	70 a	70 a	1
AT =	Averaging Time (days)	25550 a	9125 a	l

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas using best professional judgment, based on the nature of the activity
- c = EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker.
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance Technical Background Document, May 1996
- h = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F.A.C , December 1998

ì

TABLE 17-16
FU6 Surface Soil -Hypothetical Future Industnal Worker Caronogenic Scenario Memphis Depot Main Installation RI

										mgesnon		Netwa	a	Innalation	CONT	
Units	Chemical	WOE	SFo	SFd	SFI	VFind	EPC	ABSgi	ABS	9	ELCR	<u> </u>	ELCR	<u>5</u>	ELCA	
MG/KG	ARSENIC	⋖	1 50E+00	-00 3 66E+00	151E+01	28	85E+01 ²	4 10E-01	0 03	4 99E-06	7 5E-06	2 40E-07	8 8E-07	151E-09	2 3E-08	
MG/KG	DDE	85	3 40E-01	4 86E-01		12	20E+00 7	7 00E-01	0.	2 10E-07	7 1E-08	3 37E-08	1 6E-08	6 35E-11		
MG/KG	DDT	85	3 40E-01	4 86E-01	3 40E-01	1.8	80E+00 7	7 00E-01	0.1	3 15E-07	1 1E-07	5 06E-08	2 5E-08	9 53E-11	3 2E-11	
MG/KG	DIELDRIN	B2	1 60E+01	3 20E+01	1 60E+01	7	30E-01	5 00E-01	0.1	1 28E-07	2 0E-06	2 05E-08	6 6E-07	3 87E-11	6 2E-10	
MG/KG	PCB-1260 (AROCLOR 1260)	B2	2 00E+00	2 22E+00	2 00E+00	9	30E+00 8	9 00E-01	900	1 10E-06	2 2E-06	1 06E-07	2 4E-07	334E-10		
MG/KG	BENZO(a)ANTHRACENE	85	7 30E-01	2 35E+00	3 10E-01	4	54E+00	3 10E-01	0.1	7 93E-07	5 8E-07	1 27E-07	3 0E-07	2 40E-10	7 5E-11	
MG/KG	BENZO(a)PYRENE	85	7 30E+00	2 35E+01	3 10E+00	4	39E+00	3 10E-01	0.13	7 67E-07	5 6E-06	1 60E-07	3 8E-06	2 32E-10	7 2E-10	
MG/KG	BENZO(b)FLUORANTHENE	B2	7 30E-01	2 35E+00	3 10E-01	9	16E+00	3 10E-01	0.1	1 08E-06	7 9E-07	1 73E-07	4 1E-07	3 26E-10	1 0E-10	
MG/KG	CARBAZOLE	B2	2 00E-02	2 86E-02		-	03E+00 7	7 00E-01	0.1	1 79E-07	3 6E-09	2 88E-08	8 2E-10	5 44E-11		
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	3 10E-03	62	27E+00	3 10E-01	0,1	1 09E-06	8 0E-09	1 76E-07	4 1E-09	3 32E-10	1 0E-12	
MG/KG	INDENO(1,2,3-c,d)PYRENE	85	7 30E-01	2 35E+00	3 10E-01	53	32E+00	3 10E-01	5	9 30E-07	6 8E-07	1 49E-07	3 5E-07	2 82E-10	8 7E-11	,
	Total Risk										2E-05		7E-06		3E-08	
											-	Total Risk =		3E-05		

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

)

TABLE I7-1c
FU6 Surface Soil -Hypothetical Future Industrial Worker Noncarcinogenic Scenaric Memphis Depot Main Installation RI

									Ingestion	ion	Dermal	nai	Inhalation	
Units	Chemical	WOE	WOE RfDo	RfDd	RfDi VFind	EPC	ABSgi	ABS	3	Ÿ	CD	오	CDI	РΩ
MG/KG	ARSENIC	∢	3 00E-04 1 23E-04	1 23E-04		2 85E+01	2 85E+01 4 10E-01 0 03 1 40E-05	0 03	1 40E-05	0 05	6 73E-07	0 005	4.23E-09	
MG/KG		B2				1.20E+00	7 00E-01	0	5 87E-07		9 44E-08		1 78E-10	
MG/KG	DDT	B2	5 00E-04 3 50E-04	3 50E-04		1 80E+00	7 00E-01	0.1	8 81E-07 0 002	0 002	1.42E-07	0 0004	2 67E-10	
MG/KG		B2	5 00E-05	5 00E-05 2 50E-05		7.30E-01	5 00E-01	0	3 57E-07	0 007	5 74E-08	0 002	1.08E-10	
MG/KG	_	B2			-	6 30E+00	9 00E-01	900	3 08E-06		2 97E-07		9 34E-10	
MG/KG		B2			•	4 54E+00	3 10E-01	0.1	2 22E-06		3 57E-07		6 73E-10	
MG/KG		B2			•	4 39E+00	4 39E+00 3 10E-01	0 13	2 15E-06		4 48E-07		6 50E-10	
MG/KG	_	B2			_	6 16E+00	3 10E-01	0.1	3 01E-06		4.84E-07		9 13E-10	
MG/KG		B2				1 03E+00	7 00E-01	0 1	5 02E-07		8 07E-08		1 52E-10	
MG/KG	CHRYSENE	B2				6.27E+00	3,10E-01	0 1	3 07E-06		4 93E-07		9 29E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2				5.32E+00	3 10E-01	0	2 60E-06		4.19E-07		7 89E-10	
	Hazard Index									90.0		0.008	90	

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient; HI = Hazard Index

Notes.

TABLE I7-2a

FU6 Soil Column -Hypothetical Future Industrial Worker Scenario Memphis Depot Main Installation RI

***************************************		Carcinogenic	Noncarcinogenic
Ingestio	n:		
CDI =	Cs * IR * FI * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a	50 a
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2679 c,d	2679 c,d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03 c,e	0 03 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
inhalatio	on:	for volatiles	
CDI =	Cs * (1/PEF) * IR * ET * EF * ED	Cs * ((1/VFind)+(1/PEF))	*IR *ET *EF *ED
	BW * AT	BW *	AT
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1 32E+09 g
VFind =	Volatilization Factor (m3/kg)	(Chemical Specific) h	(Chemical Specific) h
IR =	Inhalation Rate (m3/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991
- b = Time spent outdoors in the contaminated areas using best professional judgment, based on the nature of the activity.
- c = EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance Technical Background Document, May 1996.
- h = Industrial volatilization factor (VFind) adapted from FDEP Brownfields Table 4, Chapter 62-777, F A.C ,
 December 1998

6 7E-10 1 6E-11 1 6E-10 1 9E-11

2 3E-08 6 6E-07 2 4E-07 6 6E-08 8 5E-07 7 7E-08 3 1E-10 7 8E-10

106-07 206-06 136-06 136-07 136-07 156-07 136-09 136-07 346-10

1 10E-06 1 74E-07 1 72E-07 2 03E-07 6 66E-08 2 05E-07

01 00 01 01 01

9 00E-01

3 10E-01 3 10E-01 3 10E-01

9 98E-01 9 85E-01 1 16E+00 3 81E-01

3 10E-01 3 10E+00 3 10E-01

2 35E+00 2 35E+01 2 35E+00 2 86E-02 2 35E-02 2 35E-02

7 30E-01 7 30E-01 7 30E-01 2 00E-02 7 30E-03 7 30E-03

> BENZO(b)FLUORANTHENE CARBAZOLE

MG/KG MG/KG MG/KG MG/KG MG/KG

INDENO(1,2,3-c,d)PYRENE

CHRYSENE INDENO(1,2 BENZENE METHYLENE CHLORIDE

Fotal Xylenes

MG/KG MG/KG

MG/KG

Total Risk

Notes

5 28E-11 5 21E-11 6 16E-11 2 02E-11 6 21E-11

6 2E-10

387E-11 334E-10

CDI 182E-07 7 77E-09 2 01E-08 4 70E-08 2 05E-08 1 06E-07 3 27E-08 3 27E-08 3 29E-08

Inhalation DI ELCR

<u>5</u>

Dermai

Ingestion

1 14E-09 1 46E-09 3 80E-11 8 87E-11

6 6E-07 9 8E-09

4 3E-08

1 25E-07

2 93E-07 1 28E-07

7 00E-01 7 00E-01 5 00E-01

7 17E-01 1 67E+00 7 30E-01 6 30E+00

> 3 40E-01 1 60E+01 2 00E+00

4 86E-01 4 86E-01 3 20E+01

> 3 40E-01 1 60E+01 2 00E+00

3 40E-01

2 22E+00

PCB-1260 (AROCLOR 1260)

MG/KG

DIELDRIN

MG/KG MG/KG MG/KG BENZO(a) ANTHRACENE

BENZO(a)PYRENE

3 77E-06 4 83E-06

EPC 2 16E+01 2 77E+01

1 51E+0

3 66E+00

50E+00

SFo

FU6 Soil Column - Hypothetical Future Industrial Worker Carcinogenic Scenario

Memphis Depot Main Installation Ri

Chemical ARSENIC

Units MG/KG MG/KG

COPPER DDE DDT

VFInd

3 00E-01

1 9E-13 1 7E-11 4 2E-08

5 58E-11

3 7E-10

1 55E-06 2 25E-07

7 0E-08 5 7E-12 2 0E-13

2 96E-08 1 90E-10

> 1 18E-08 1 57E-09

9 50E-01 9 20E-01

3 07E+03 2 80E+03 4 45E+03

3 10E-03 3 10E-01 2 73E-02 1 65E-03

> 2 99E-02 7 89E-03

> 2 90E-02 7 50E-03

8 18E-09

1 84E-07

3 10E-01 3 10E-01 9 70E-01

1 17E+00 1 05E+00 6 78E-02 9 00E-03 4 68E-02

7.00E-01

7 35E-07

2 53E-11 1 31E-10 6E-08

3E-06

1E-05

Fotal Risk

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

1E-05

193

. 24

TABLE I7-2c
FU6 Soil Column-Hypothetical Future Industrial Worker Noncarcinogenic Scenaric Memphis Depot Main Installation R

										Ser.	udesnou	5	Detrai	BUU	Inhalation
Units	Chemical	WOE	RfDo	RfDd	RÕ	VFind	EPC	ABSgi	ABS	ΞŌ	ᅙ	0	오	<u> </u>	HO
MG/KG	ARSENIC	∢	3 00E-04	3 00E-04 1 23E-04			2 16E+01	4 10E-01	0 03	1 05E-05	0 04	5 09E-07	0 004	3 20E-09	
MG/KG	COPPER	۵	4 00E-02	4 00E-02 1 20E-02			2 77E+01	3 00E-01	0 00	135E-05	0 0003	2 18E-08	0 000002	4 10E-09	
,KG	DDE	B2					7 17E-01	7 00E-01	0	351E-07		5 64E-08		1 06E-10	
,KG	DDT	B2	5 00E-04	3 50E-04			1 67E+00	7 00E-01	0	8 19E-07	0 002	1 32E-07	0 0004	2 48E-10	
/KG	DIELDRIN	B2	5 00E-05				7 30E-01	5 00E-01	0	3 57E-07	0 007	5 74E-08	0 002	1 08E-10	
/KG	PCB-1260 (AROCLOR 1260)	B 2					6 30E+00	9 00E-01	900	3 08E-06		2 97E-07		9 34E-10	
,/KG	BENZO(a)ANTHRACENE	82					9 98E-01	3 10E-01	0	4 88E-07		7 85E-08		1.48E-10	
3/KG	BENZO(a)PYRENE	B2					9 85E-01	3 10E-01	0 13	4 82E-07		1 01E-07		1.46E-10	
3/KG	BENZO(b)FLUORANTHENE	B2					116E+00	3 10E-01	0	5 69E-07		9 14E-08		1 72E-10	
3/KG	CARBAZOLE	B 2					3815-01	7 00E-01	0	1 86E-07		3 00E-08		5 65E-11	
3/KG	CHRYSENE	82					117E+00	3 10E-01	0	5 73E-07		9 22E-08		1 74E-10	
3/KG	INDENO(1,2,3-c,d)PYRENE	82					1 05E+00	3 10E-01	0	5 16E-07		8 29E-08		1 56E-10	
3/KG	BENZENE	∢				3 07E+03	6 78E-02	9 70E-01	0 01	3 32E-08		5 33E-10		4 33E-06	
MG/KG	METHYLENE CHLORIDE	B2	6 00E-02	6 00E-02 5 70E-02 8	8 57E-01	2 80E+03	9 00E-03	9 50E-01	0 01	4 40E-09	0 00000007	7 08E-11	0 000000001	6 29E-07	0 0000007
MG/KG	Total Xylenes	۵	2 00E+00	184E+00		4 45E+03	4 68E-02	9 20E-01	0 0 1	2 29E-08	0 00000001	3 68E-10	0 0000000002	2 06E-06	
	Hazard Index										0.04		0.007 Total HI≃	0.05	0.0000007

TABLE I7-3a
FU6 Surface Soil -Hypothetical Current/Future Maintenance Worker Scenaric
Memphis Depot Main Installation Ri

		Carcinogenic	Noncarcinogenic
Ingestio			
CDI =	Cs*IR*FI* EF*ED*CF		~ >
_	BW * AT	550	FD0 ,
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 c	50 c
FI =	Fraction Ingested (unitless)	0.5	0.5
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	Cs *SA * AF * ABS * ET * EF * ED * CF BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2679 e,f	2679 e,f
AF=	Soil-Skin Adherence Factor (mg/cm2)	0 03 e,g	0 03 e,g
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (8 hours per 8 hour workday)	(Chemical Specific) II	1 b
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	7.00E-00 70 a
AT =	Averaging Time (days)	25550 a	9125 a
AI =	Averaging Time (days)	25550 a	9125 d
Inhalatio		for volatiles:	
CDI =	<u>Cs * (1/PEF) * IR * ET * EF * ED</u> BW * AT	<u>Cs * ((1/VFind)+(1/PEF))</u> BW '	
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 i	1 32E+09 ı
VFind =	• • •	(Chemical Specific) j	(Chemical Specific) j
IR =	Inhalation Rate (m3/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	50 d	50 d
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
<u> </u>	Averaging Time (days)	2000 a	3123 0

- a = EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas based on the nature of the activity, assuming full workday
- c = Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995.
- d = Maintenance activity assumed to be once a week throughout the year (excluding vacation).
- e= EPA Exposure Factors Handbook, August 1997.
- f = Surface area of 1/2 head, forearms and the hands of an adult worker
- g = AF calculated for soil adherence can be found in Appendix G
- h = Chemical-specific absorption factors are found in Appendix G
- i = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance: Technical Background Document, May 1996.
- $\label{eq:j} \textbf{J} = \textbf{Industrial volatilization factor (VF)} \textbf{nd} \textbf{ adapted from FDEP Brownfields Table 4, Chapter 62-777, F.A.C.},$

December 1998

, }

TABLE I7-3b
FU6 Surface Soil -Hypothetical Current/Future Maintenance Worker Carcinogenic Scenario Memphis Depot Main Installation RI

										Ingestion	tion	Õ	Dermal	Inhalation	tion
Units	Chemical	WOE	SFo	SFd	SFI	VFind	EPC	ABSgi	ABS	Ö	ELCR	CO	ELCR	CDI	ELCR
MG/KG	ABSENIC	V	1 50E+00	36	12		2 85E+01	4 10E-01	0 03	4 99E-07	7 5E-07	4 81E-08	1 8E-07	3 02E-10	4 6E-09
MG/KG	DDE	B2	3 40E-01	4 86E-01			1 20E+00	7 00E-01		2 10E-08 7 1E-09	7 1E-09	6 74E-09	3 3E-09	1 27E-11	
MG/KG	TOO	B2	3 40E-01	4 86E-01	3 40E-01		1 80E+00	7 00E-01	0.1	315E-08 11E-08 1	1 1E-08	1 01E-08	4 9E-09	1 91E-11	6 5E-12
MG/KG	DIELDRIN	B2	_	3 20E+01	1 60E+01		7 30E-01	5 00E-01		1 28E-08	2 0E-07	4 10E-09	1 3E-07	7 73E-12	1 2E-10
MG/KG	PCB-1260 (AROCLOR 1260)	B2	w	2 22E+00		-	6 30E+00	9 00E-01	900	1 10E-07	2 2E-07	2 12E-08	4 7E-08	6 67E-11	1 3E-10
MG/KG	BENZO(a)ANTHRACENE	B2		2 35E+00			4 54E+00	3 10E-01	0 1	7 93E-08	5 8E-08	2 55E-08	6 0E-08	4 81E-11	1.5E-11
MG/KG	BENZO(a)PYRENE	85	_	2 35E+01			4 39E+00	3 10E-01	0.13	7 67E-08	5 6E-07	3 20E-08	7 5E-07	4 65E-11	1 4E-10
MG/KG	BENZO(b)FLUORANTHENE	85	,-	2 35E+00			6 16E+00	3 10E-01	0 1	1 08E-07	7 9E-08	3 46E-08	8 1E-08	6 52E-11	2 0E-11
MG/KG	CARBAZOLE	B2	•	2 86E-02			1 03E+00	7 00E-01	0.1	1 79E-08	3 6E-10	5 77E-09	1 6E·10	1 09E-11	
MG/KG	CHRYSENE	B2	7 30E-03		3 10E-03		6 27E+00	3 10E-01	0	1 09E-07	8 0E-10	3 52E-08	8 3E-10		2 1E-13
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01		3 10E-01		5 32E+00	3 10E-01	0 1	9 30E-08	6 8E-08	2 99E-08	7 0E-08	5 64E-11	1 7E-11
	Total Risk										2E-06		1E-06 Total Risk =	3E-06	5E-09

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure

TABLE I7-3c FU6 Surface Soil - Hypothetical Current/Future Maintenance Worker Noncarcinogenic Scenaric Memphis Depot Main Installation RI

									Ingestion	non	Derma	nal	Inhalation	QO
Units	Chemical	WOE	WOE RfDo	RfDd	RfDi VFind	EPC	ABSgi	ABS	5	오	G	엳	<u>5</u>	ΗQ
MG/KG	ARSENIC	¥	3 00E-04	1 23E-04		2 85E+01	4 10E-01	0 03	1 40E-06	0 005	1 35E-07	0 001	8 46E-10	
MG/KG	DDE	B2				1 20E+00	7 00E-01	0	5 87E-08		1 89E-08		3 56E-11	
MG/KG	DOT	B2	5 00E-04 3	3 50E-04		1 80E+00	7 00E-01	0	8 81E-08	0 0002	2 83E-08	0 00008	5.34E-11	
MG/KG	DIELDRIN	B2	5 00E-05	2 50E-05		7 30E-01	5 00E-01	0 1	3 57E-08	0 0007	1 15E-08	0 0005	2 16E-11	
MG/KG	PCB-1260 (AROCLOR 1260)	B2				6 30E+00	9.00E-01	900	3 08E-07		5 95E-08		1 87E-10	
MG/KG	BENZO(a)ANTHRACENE	B2				4 54E+00	3 10E-01	0 1	2 22E-07		7.14E-08		135E-10	
MG/KG	BENZO(a)PYRENE	B2				4 39E+00	3 10E-01	0 13	2 15E-07		8 97E-08		1 30E-10	
MG/KG	BENZO(b)FLUORANTHENE	B2				6.16E+00	3 10E-01	0 1	3 01E-07		9 69E-08		1 83E-10	
MG/KG	CARBAZOLE	B2				1 03E+00	7 00E-01	0 1	5 02E-08		1 61E-08		3 04E-11	
MG/KG	CHRYSENE	B2				6 27E+00	3 10E-01	0 1	3 07E-07		9 86E-08		1 86E-10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B 2				5 32E+00	3 10E-01	0 1	2 60E-07		8 37E-08		1.58E-10	
	Hazard Index									0.006		0.002 Total HI=	0.007	

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient; HI = Hazard Inde

Notes.

TABLE I7-4a

FU6 (SS66A) Surface Soil - Hypothetical Future On-Site Residential (Adult) Scenano Memphis Depot Main Installation RI

ngestiae-		Carcinogenic Noncarcinogenic	
ngestion: ntake for n	non-carcinogenic compounds	Age-specific intake (for carcinogenic compounds only)	
CDI =	Cs * IR * FI * EF * ED * CF	CDladj = Cs * Fi * EF * CF * IRadj	
	BW * AT	AT	
S =	Concentration in soil (mg/kg)	EPC EPC	
₹ =	Ingestion Rate (mg/day)	N/A 100 a	
Radj =	Age-adjusted Ingestion Rate (mg - year)/(kg - day)	114 29 a,b N/A	
l =	Fraction Ingested (unitless)	1 1	
F=	Exposure Frequency (day/year)	350 a 350 a	
D =	Exposure Duration (year)	N/A 30 a	
F=	Conversion Factor (kg/mg)	1 00E-06 1 00E-06	
3W =	Body Weight (kg)	N/A 70 a	
T=	Averaging Time (days)	25550 a 10950 a	
ermal:			
	non-carcinogenic compounds	Age-specific intake (for carcinogenic compounds only)	
DI =	Cs * SA * AF * ABS * ET * EF * ED * CF	Cs * SAadj * AF * ABS * ET * EF * CF	
	BW * AT	AT EDC EDC	
s = A =	Concentration in soil (mg/kg)	EPC EPC	
ң = Aadi =	Surface Area (cm2) Age-adjusted Surface Area (cm2 - year)/(kg)	N/A 5049 d,e 2671 d,e,f N/A	
Aadj= F=	Soil-Skin Adherence Factor (mg/cm2)	26/1 d,e,f N/A 0 03 d,g 0 03 d,g	
r = BS =	Absorption Factor (unitless)	(Chemical Specific) h Chemical Specific) h	
D3= Γ=	Exposure Time (4 hours per 24-hour day)	0 167 c 0 167 c	
1 = F =	Exposure Frequency (day/year)	350 a 350 a	
n = D =	Exposure Duration (year)	N/A 30 a	
5 =	Conversion Factor (kg/mg)	1 00E-06 1 00E-06	
W =	Body Weight (kg)	N/A 70 a	
T =	Averaging Time (days)	25550 a 10950 a	
shalation:	•		
	· non-carcinogenic compounds	Age-specific intake (for carcinogenic compounds only)	
DI =	Cs * (1/PEF) * IR_Inh * ET * EF * ED	CDI = Cs * (1/PEF) * IR Inhadi * ET *	EF
	BW * AT	AT	
s =	Concentration in soil (mg/kg)	EPC EPC	
EF =	Particulate Emission Factor (m3/kg)	1 32E+09 ı 1 32E+09 ı	
_inh =	Inhalation Rate (m3/day)	N/A 20 a	
	= Age-adjusted Inhalation Rate (m3 - year)/(kg - day	12 85714286 a,j N/A	
T =	Exposure Time (4 hours per 24-hour day)	0 167 c 0 167 c	
F =	Exposure Frequency (day/year)	350 a 350 a	
D =	Exposure Duration (year)	N/A 30 a	
W =	Body Weight (kg)	N/A 70 a	
T =	Averaging time (days)	25550 a 10950 a	
leference = EPA, H	es: Human Health Evaluation Manual, Supplemental Gui	ince "Standard Default Exposure	
·	Factors," OSWER Directive 9285 6-03, March 25,	991.	
= Age-ac	djusted ingestion rate for adults, adjusted for body w		
	$IRadj = IRc \times EDc + IRa \times (E)$		
	BWc B'	a 15 70	
_ Tuma a	114.29 (mg-year)/(kg-day) pent outdoors in the contaminated areas based on ti	nature of the activity	
	pent outdoors in the contaminated areas based on ti oposure Factors Handbook, August 1997	nature of the activity	
	e area of 1/2 head, hands, forearms, lower legs & fe	of an adult	
	lusted surface area for adults, adjusted for body were		
- vac-au	SAadj = <u>SAc x EDc</u> + <u>SAa x (I</u>		
	BWc B	•	
	2671 (cm2-year)/(kg)	. 10	
	culated for soil adherence can be found in Appendix		
- AF cale	cal-specific absorption factors are found in Appendix		
= Chemi			
= Chemi = Particul	late emission factor (PEF), adapted from EPA, Soil \$		
n = Cheme = Particul	late emission factor (PEF), adapted from EPA, Soil S justed inhalation rate for adults, adjusted for body we	tht and time for carcinogenic exposure	
n = Cheme = Particul	late emission factor (PEF), adapted from EPA, Soil \$	tht and time for carcinogenic exposure <u>FDa - EDc)</u> = 15 x 6 + 20 x (30-6)	

TABLE I7-4b FU6 (SS66A) Surface Soil - Hypothetical Future On-site Residential (Adult) Carcinogenic Scenano Memphis Depot Main Installation RI

										Ingestion	lon	De	Dermai	Inhalation	tion
Units	Chemical	WOE	SFo	SFd	SFI	VFind EPC	EPC	ABSgi	ABS	ABSgi ABS CDladj ELCR	ELCR	CDlad	ELCR	CDladj	ELCR
MG/KG	Benzo(a)anthracene	B2	7 30E-01	; ` `	35E+00 3 10E-01		5 40E+00	5 40E+00 3 10E-01 0.1	0.1	8 45E-06 6 2E-06 9 88E-08	6 2E-06	9 88E-08	2.3E-07	1.20E-10 3.7E-11	3 7E-11
MG/KG		82	7 30E+00	•	3 10E+00		630E+00 310E-01	3 10E-01	0 13	9 86E-06 7 2E-05 1	7 2E-05	1 50E-07	3 5E-06	1 40E-10	40E-10 4 3E-10
MG/KG		82	7 30E-01		3 10E-01		8 10E+00 3 10E-01	3 10E-01	01	1 27E-05 9 3E-06	9 3E-06	1.48E-07	3 5E-07	1 80E-10 5 6E-11	5 6E-11
WO/KG		83	2 00E-02	2 86E-02		•	1 50E+00	50E+00 7 00E-01	-0	2 35E-06 4 7E-08 2 74E-08	4 7E-08	2 74E-08	7.8E-10	3 34E-11	
WO/KG	Chrysene	82	7 30E-03	2.35E-02	35E-02 3 10E-03		9 20E+00 3 10E-01		0 1	1.44E-05 11E-07	1 1E-07	1 68E-07	4.0E-09	2 05E-10 6 3E-13	6 3E-13
MG/KG	Indeno(1,2,3-c,d)pyrene	B 2	7 30E-01	2 35E+00	3 10E-01	-	6.20E+00 3 10E-01		0	9.71E-06	7 1E-06	1.13E-07	2.7E-07	138E-10 43E-11	4 3E-11
	Total Risk										9.5E-05	•	4.4E-06 Total Risk =	1E-04	5.7E-10
Notes	WOE = Weight of Evidence; CDI = Chronic Daily Intake,	CDI = Chron	ic Daily Intal	ke, EPC = E	xposure Pc	Int Conce	ntration, El	EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	ss Lifet	me Cance	r Exposure				

• :

TABLE 17-4c
FU6 (SS66A) Surface Soil - Hypothetical Future On-site Residential (Adult) Noncarcinogenic Scenanc
Memphis Depot Main Installation RI

							Ingestion	E G	Derma	ē	Inhalation	Į,
Units	Chemical	WOE	RfDo RfDd RfDi VFind	EPC	ABSgi ABS	ABS	CDI	ğ	G	유	CD	Ğ
MG/KG	Benzo(a)anthracene	B2		5 40E+00	40E+00 3 10E-01 0.1 7 40E-06	0.1	7 40E-06		1.87E-07		1 87E-10	
MG/KG	Benzo(a)pyrene	8		6 30E+00	3.10E-01	0 13	8 63E-06		2.83E-07		2 18E-10	
MG/KG	Benzo(b)fluoranthene	8		8 10E+00 3 10E-01	3 10E-01	0	111E-05		2.80E-07		2 80E-10	
MG/KG	Carbazole	82		1 50E+00	50E+00 7 00E-01	0 1	2 05E-06		5 19E-08		5 19E-11	
MG/KG	Chrysene	82		9 20E+00	3 10E-01	0 1	1 26E-05		3.18E-07		3 18E-10	
MG/KG	Indeno(1,2,3-c,d)pyrene	85		6 20E+00	3.10E-01	0 1	8 49E-06		2.14E-07		2 14E-10	
	Hazard Index											
										Total HI=		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration; HQ = Hazard Quotient, HI = Hazard Index	aily Intake.	EPC = Exposure Point Con	centration;	HQ = Haza	rd Quot	ient, HI = H	azard Inc	lex			

TABLE I7-5a
FU6 (SS66A) Surface Soil - Hypothetical Future On-site Residential (Child) Scenario
Memphis Depot Main Installation RI

		Carcinogenic (optional)	Noncarcinogenic
Ingestio			•
CDI =	Cs * IR * FI * EF * ED * CF		
	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	200 a	200 a
Fi =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dermal:			
CDi =	Cs * SA * AF * ABS * ET * EF * ED * CF BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2351 c,d	2351 c,d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 15 c,e	0 15 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (4 hours per 24-hour day)	0 167 b	0.167 b
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Inhalati			
CDI =	<u>Cs * (1/PEF) * IR * ET * EF * ED</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1 32E+09 g
IR =	Inhalation Rate (m3/day)	15 a	15 a
ET =	Exposure Time (4 hours per 24-hour day)	0 167 b	0 167 b
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a

a = EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991.

b = Time spent outdoors in the contaminated areas based on the nature of the activity

c= EPA Exposure Factors Handbook, August 1997.

d = Surface area of 1/2 head, hands, forearms, lower legs & feet of a child (age 1-6 years).

e = AF calculated for soil adherence can be found in Appendix G

f = Chemical-specific absorption factors are found in Appendix G.

g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance. Technical Background Document, May 1996.

TABLE I7-5b FU6 (SS66A) Surface Soil - Hypothetical Future On-site Residential (Child) Carcinogenic Scenano - optional use Memphis Depot Main installation RI

										Ingestion	noti	Derma	mal	Inha	Inhalation	
Units	Chemical	WOE		SFd	SFI	VFind	EPC /	ABSgi	ABS	CDI	ELCR	වි	ELCR	<u> </u>	ELCR	
MG/KG	Benzo(a)anthracene	B2	7 30E-01	2 35E+00 3 10E-01	3 10E-01		5 40E+00	3 10E-01	0.1	5 92E-06	4 32E-06	5 40E+00 3 10E-01 01 5 92E-06 4 32E-06 1 74E-07 4 10E-07 5 60E-11 1 74E-11	4 10E-07	5 60E-11	1 74E-11	
MG/KG	Benzo(a)pyrene	B 2	7 30E+00	2 35E+01 3 10E+00	3 10E+00		6 30E+00	30E+00 3 10E-01 0 13	0.13	6 90E-06	6 90E-06 5 04E-05	2 64E-07	6 21E-06	621E-06 654E-11 203E-10	2 03E-10	
MG/KG	Benzo(b)fluoranthene	82	7 30E-01	2 35E+00 3 10E-01	3 10E-01		8 10E+00	310E-01 01	0	8 88E-06	8 88E-06 6 48E-06	2 61E-07	6 14E-07	6 14E-07 8 41E-11	2 61E-11	
MG/KG	Carbazole	B 2	2 00E-02	2 86E-02			1 50E+00	7 00E-01	0 1	1 64E-06	164E-06 329E-08	4 83E-08	1 38E-09	1 38E-09 1 56E-11		
MG/KG	Chrysene	85	7 30E-03	2 35E-02	3 10E-03		9 20E+00	3 10E-01	0.1		1 01E-05 7 36E-08	2 96E-07		6 98E-09 9 55E-11 2 96E-13	2 96E-13	
MG/KG	Indeno(1,2,3-c,d)pyrene	B2	7 30E-01	2 35E+00	3 10E-01		6 20E+00	3 10E-01 0 1	0 1	6 79E-06	6 79E-06 4 96E-06	2 00E-07		4 70E-07 6 43E-11 1 99E-11	1 99E-11	
	Total Risk										6.6E-05		7.7E-06		2 7E-10	
											-	Total Risk =		7E-05		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	Chronic Da	ıty Intake, E	PC = Exposi	rre Point Co	ncentratio	n, ELCR =	Excess Life	time Ca	ncer Expo	sure					

TABLE 17-5c FU6 (SS66A) Surface Soil - Hypothetical Future On-site Residential (Child) Noncarcinogenic Scenario Memphis Depot Main Installation RI

										Ingestion	l u	Derma		Inhalation	ion
atio!	Chemical	WOE	RfDo	Do RfDd	RfDi	RfDi VFind	EPC	ABSqi	ABS	<u>5</u>	오	CD	ğ	CD	Ρ
MQ/KG	Benzo(a)anthracene	B2					5 40E+00		0.1	6.90E-05		2.03E-06		6.54E-10	
MO/KG	Benzo(a)nvrene	83					8 30E+00	3 10E-01	0.13	8 05E-05		3.08E-06		7 63E-10	
MQ/KG	Benzo(h)flioranthene	22				~	3.10E+00	3,10E-01	0 1	1 04E-04		3.04E-06		9.81E-10	
MG/KG	Carbazole	B3					1.50E+00 7 00E-01	7 00E-01	0.1	1.92E-05		5 64E-07		1.82E-10	
MG/KG	Chryspha	B2				•	9 20E+00	3 10E-01	0 1	1 18E-04		3 46E-06		1.11E-09	
MG/KG	Indeno(1,2,3-c,d)pyrene	B2					6 20E+00 3 10E-01	3 10E-01	0 1	7.93E-05		2 33E-06		7 51E-10	
	Hazard Index											j <u>-</u>	Total Hi=		

WOE = Weight of Evidence, CDI = Chronic Daily Intake; EPC = Exposure Point Concentration; HQ = Hazard Quotient, HI = Hazard Index

Notes

488 597

TABLE 17-6a

Site #66 Surface Soil -Hypothetical Future Industrial Worker Scenario

Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestic			
CDI =	Cs * IR * FI * EF * ED * CF		
•	BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a	50 a
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	<u>Cs *SA * AF * ABS * ET * EF * ED * CF</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2679 c,d	2679 c,d
4F =	Soil-Skin Adherence Factor (mg/cm2)	0 03 c,e	0 03 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
€F =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
3W =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Particul	ate Inhalation:		
CDI =	Cs * (1/PEF) * IR * ET * EF * ED BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 g	1 32E+09 g
R =	Inhalation Rate (m3/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

References:

a = EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991

- b = Time spent outdoors in the contaminated areas using best professional judgment, based on the nature of the activity
- c = EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from EPA, Soil Screening Guidance: Technical Background Document, May 1996

TABLE 17-6b
Site #66 Surface Soil - Hypothetical Future Industrial Worker Carcinogenic Scenario Memphis Depot Man Installation RI

									Ingestion	tion	Pe D	Dermal	Inhalation	ion	
Juits	Chemical	WOE	WOE SFo	SFd	SFi	EPC	ABSgi	ABS	20	ELCR	CDI	ELCR	CDI ELCR	ELCA	
MG/KG	BENZO(a)ANTHRACENE	B2	B2 7 30E-01	2 35E+00	3 10E-01	5 40E+00	3 10E-01	-	9 44E-07	6 9E-07	235E+00 310E-01 540E+00 310E-01 01 944E-07 69E-07 152E-07	3 6E-07	2 86E-10 8 9E-11	8 9E-11	
MG/KG		B2	7 30E+00		3 10E+00	6 30E+00	3 10E-01	0 13	1 10E-06	8 0E-06	2 30E-07	5 4E-06	3 34E-10 1 0E-09	1 0E-09	
MG/KG		B2	7 30E-01		3 10E-01	8 10E+00	3 10E-01	0	1 42E-06	1 0E-06	235E+00 310E-01 810E+00 310E-01 01 142E-06 10E-06 227E-07	5.4E-07	4 29E-10 1 3E-10	1 3E-10	
MG/KG	CABBAZOIF	B2	2 00E-02	2 86E-02		1 50E+00 7 00E-01	7 00E-01	0	2 62E-07	5 2E-09	2 62E-07 5 2E-09 4 21E-08	1 2E-09	7 94E-11		
MG/KG	CHRYSENE	B2	7 30E-03	2 35E-02	3 10E-03	235E-02 310E-03 920E+00 310E-01	3 10E-01	0	1 61E-06	1 2E-08	161E-06 12E-08 258E-07	6 1E-09	4 87E-10 1 5E-12	1 5E-12	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7 30E-01	2 35E+00	3 10E-01	235E+00 310E-01 620E+00 310E-01 01	3 10E-01	0 1	1 08E-06 7 9E-07	7 9E-07	1 74E-07	4 1E-07	3 28E-10 1 0E-10	1 0E-10	
	Total Risk									1.1E-05		6.7E-06 Total Risk =	2E-05	1.4E-09	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC =	ronic Daily Int	ake, EPC =	= Exposure	oint Conce	Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	CR = Exces	s Lifetir	ne Cancer	Exposure					

÷.

TABLE 17-6c Site #66 Surface Soil -Hypothetical Future Industrial Worker Noncarcinogenic Scenanc Memphis Depot Main Installation RI

								Ingestion	_	Demail Demail	ਜ਼ੁ	Inhalation	
Units	Units Chemical	WOE RfDo	RfDd RfDi	RfDi	EPC	ABSgi ABS	ABS	ᇙ	皇	Ö	오	CDI HO	
MG/KG	BENZO(a)ANTHRACENE	82			5 40E+00 3 10E-01	3 10E-01	0.1	2 64E-06		4 25E-07		8 01 E-10	
MG/KG	BENZO(a)PYRENE	B2			6 30E+00 3 10E-01	3 10E-01	0.13	3 08E-06		6 44E-07		9 34E-10	
MG/KG	BENZO(b)FLUORANTHENE	B2			8 10E+00 3 10E-01	3 10E-01	0.1	3.96E-06		6 37E-07		1 20E-09	
MG/KG	CARBAZOLE	B2			1 50E+00	7 00E-01	0 1	7.34E-07		1 18E-07		2 22E-10	
MG/KG	CHRYSENE	82			9 20E+00	3 10E-01	0 1	4 50E-06		7 23E-07		1 36E-09	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2			6 20E+00 3 10E-01 0 1	3 10E-01		3 03E-06		4 88E-07		9 19E-10	
	Hazard Index									'			
											Total HI≤		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake,	onic Daily Intake,	EPC = E	cposure	Point Conce	intration, H	O = Ha:	zard Quotie	II, H	EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	×		
,		**************************************											

TABLE I7-7a Site #66 Soil Column -Hypothetical Future Industrial Worker Scenario Memphis Depot Main Installation RI

-		Carcinogenic	Noncarcinogenic
Ingestic			-
CDI =	Cs * IR * FI * EF * ED * CF		~
	BW * AT		•
Cs =	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a	50 a
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	<u>Cs *SA * AF * ABS * ET * EF * ED * CF</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
SA =	Surface Area (cm2)	2679 c,d	2679 c,d
AF =	Soil-Skin Adherence Factor (mg/cm2)	0 03 c,e	0 03 c,e
ABS =	Absorption Factor (unitless)	(Chemical Specific) f	(Chemical Specific) f
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
	late Inhalation:		
CDI =	<u>Cs * (1/PEF) * IR * ET * EF * ED</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1.32E+09 g	1 32E+09 g
IR =	Inhalation Rate (m3/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas using best professional judgement, based on the nature of the activity
- c = U S. EPA Exposure Factors Handbook, August 1997
- d = Surface area of 1/2 head, forearms and the hands of an adult worker
- e = AF calculated for soil adherence can be found in Appendix G
- f = Chemical-specific absorption factors are found in Appendix G
- g = Particulate emission factor (PEF), adapted from U S EPA, Soil Screening Guidance Technical Background Document, May 1996.

TABLE I7-7b
Site #66 Soil Column -Hypothetical Future Industrial Worker Carcinogenic Scenario
Memphis Depot Main Installation RI

									Ingestion	jon	Der	Dermal	Inhal	Inhalation	
Units	Chemical	WOE	SFo	SFd	SFI	EPC	ABSgl	ABS	ABSgi ABS CDI	ELCR	<u>0</u>	ELCR	Ξ	ELCR	
MG/KG	BENZO(a)ANTHRACENE	B2	7 30E-01	2 35E+00	35E+00 3 10E-01	9 43E-01	9 43E-01 3 10E-01 0 1 1 65E-07 1 2E-07 2 65E-08	0.1	1 65E-07	1 2E-07	2 65E-08	6 2E-08	4 99E-11	1 5E-11	
MG/KG	BENZO(a)PYRENE	B 2	7 30E+00	2 35E+01	3 10E+00	1 06E+00	1 06E+00 3 10E-01 0 13	013	185E-07 14E-06 387E-08	1 4E-06	3 87E-08	9 1E-07	5 61E-11	1,7E-10	
MG/KG	BENZO(b)FLUORANTHENE	B 2	7 30E-01	2 35E+00	3 10E-01		130E+00 310E-01 01 226E-07 17E-07 364E-08	0	2 26E-07	1 7E-07	3 64E-08	8 6E-08	6 86E-11	2 1E-11	
MG/KG	CARBAZOLE	B 2	2 00E-02	2 86E-02		4 25E-01	1 25E-01 7 00E-01 0 1	0	7 43E-08 1 5E-09 1 19E-08	1 SE-09	1 19E-08	3 4E-10	2 25E-11		
MG/KG	CHRYSENE	B 2	7 30E-03	2 35E-02	3 10E-03	35E-02 310E-03 144E+00	3 10E-01 0 1	0.1	2 52E-07 1 8E-09 4 05E-08	1 8E-09	4 05E-08	9 5E-10	7 63E-11	7 63E-11 2 4E-13	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B 2	7 30E-01	2 35E+00	3 10E-01	35E+00 310E-01 105E+00 310E-01 01 183E-07 13E-07 294E-08	3 10E-01	01	1 83E-07	1 3E-07	2 94E-08	6 9E-08	5 54E-11	1 7E-11	
	Total Risk									1.8E-06	•	1.1E-06	4	2.3E-10	
Notes	WOE = Weight of Ewdence, CDI = Chronic Daily Intake, EPC	: Chronic Da	ııly İntake, El	PC = Exposi	re Point Co	C = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	, ELCR = E	xcess L	ifetime Car	icer Expos		10(8) MISK = 2.3E-00	Z.3E-00		

TABLE 17-7c Site #66 Soil Column - Hypothetical Future Industrial Worker Noncarcinogenic Scenaric Memphis Depot Main Installation RI

							Innection		Dermal	Inhalation	
Inite	Chomical	WOR	WOF BIDD BIDD BIDE	EPC	ABSai ABS	ABS		c	CDI HO		
MG/KG	MG/KG BENZO(a)ANTHRACENE	82		9 43E-01	3 10E-01 0.1 4 61E-07	0.1	4 61E-07	7	80	-	
MG/KG	BENZO(a)PYRENE	B 2		1 06E+00	06E+00 3 10E-01	0 13 5	5 18E-07	10	08E-07	1 57E-10	
MG/KG	BENZO(b)FLUORANTHENE	85		1 30E+00	3 10E-01	0.1	6 34E-07	10	02E-07	1 92E-10	
MG/KG	CARBAZOLE	B 2		4 25E-01	7 00E-01	0	2 08E-07	33	3.34E-08	6 30E-11	
MG/KG	CHRYSENE	B 2		1 44E+00	3,10E-01	0	7 05E-07	11	13E-07	2 14 E -10	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2		1 05E+00	3 10E-01	0.1	5 12E-07	82	8 23E-08	1 55E-10	
	Hazard Index								1	_	
										11	

Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index

TABLE 17-8a
Site #66 Soil Column -Hypothetical Current/Future Utility Worker Scenaric
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestio			
CDI =	Cs * IR * FI * EF * ED * CF BW * AT		
Cs =		ED0	500
	Concentration in soil (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	100 c	100 c
FI =	Fraction Ingested (unitless)	0.5	0.5
EF =	Exposure Frequency (day/year)	24 d	24 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1.00E-06	1.00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
CDI =	<u>Cs *SA * AF * ABS * ET * EF * ED * CF</u> BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
6A =	Surface Area (cm2)	2679 e,f	2679 e,f
AF =	Soil-Skin Adherence Factor (mg/cm2)	0.1 e,g	0 1 e,g
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	ĺ b
EF =	Exposure Frequency (day/year)	24 d	24 d
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Particul	ate Inhalation:		
CDI =	Cs * (1/PEF) * IR * ET * EF * ED BW * AT		
Cs =	Concentration in soil (mg/kg)	EPC	EPC
PEF =	Particulate Emission Factor (m3/kg)	1 32E+09 ı	1 32E+09 I
R=	Inhalation Rate (m3/day)	20 a	20 a
ET =	Exposure Time (8 hours per 8 hour workday)	1 b	1 b
EF =	Exposure Frequency (day/year)	24 d	24 d
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.
- b = Time spent outdoors in the contaminated areas based on the nature of the activity, assuming full workday
- c = Supplemental Guidance to RAGS. Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995.
- d = Utility activity assumed to be twice a month throughout the year
- e= U S EPA Exposure Factors Handbook, August 1997
- f = Surface area of 1/2 head, forearms and the hands of an adult worker.
- g = AF calculated for soil adherence can be found in Appendix G.
- h = Chemical-specific absorption factors are found in Appendix G.
- ı = Particulate emission factor (PEF), adapted from U S.EPA, Soil Screening Guidance: Technical Background Document, May 1996

P /147543/APPI7FU6all xls/66SBUW-Carcinogenic

														l.	
									Ingest	É	Derr	nal	Inhalation	tion	
Unite	Chemical	WOE	SFo	SFd	SFi	EPC	ABSgi	ABS	00	ELCR	CDI	ELCR	CDI	ELCR	
	RENZO/a)ANTHRACENE	8	7.30E-01	[~	3 10E-01	9 43E-01	3 10E-01	10	1 58E-08	1 2E-08	8 48E-09	2 0E-08		1 5E-12	
MG/KG		8	7.30E+00	2.35E+01	3 10E+00	1 06E+00	3 10E-01	0 13	1 78E-08	1 3E-07	1 24E-08	2 9E-07		17E-11	
MG/KG	BENZO(b)ELLIOBANTHENE	B 18	7 30E-01	2 35E+00	3 10E-01	1 30E+00	3 10E-01	0.1	2 17E-08	1 6E-08	3 10E-01 1 30E+00 3 10E-01 01 2 17E-08 16E-08 1 16E-08 2 7E	2 7E-08		2 0E-12	
MG/KG	CARRAZOI E	8	2 00E-02	2 86E-02		4 25E-01	7 00E-01	0.1	7 13E-09	1 4E-10	3 82E-09	1 1E-10	2 16E-12		
MG/KG	CHRYSENE	83	7 30E-03	2 35E-02	2 35E-02 3 10E-03	1 44E+00	3 10E-01	0	2 42E-08	1 8E-10	18E-10 130E-08	3 1E-10	7 33E-12	2 3E-14	
MG/KG	INDENO(1,2,3-c,d)PYRENE	8	7 30E-01	2 35E+00	3 10E-01	235E+00 310E-01 105E+00	3 10E-01	0.1	1 76E-08	1 3E-08	9 41E-09	2 2E-08	5 32E-12	1 6E-12	
	Total Risk									1.7E-07		3 6E-07		2.2E-11	
											1	Fotal Risk =	5E-07		
Notes	Notes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC	Shronic Daily	Intake, EPC	= Exposure	Point Conce	= Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	CR = Exces	s Lifetir	ne Cancer E	xposure					

TABLE 17-8b
Site #66 Soil Column -Hypothetical Current/Future Utility Worker Carcinogenic Scenano Memphis Depot Main installation RI

Site #66 Soil Column -Hypothetical Current/Future Utility Worker Noncarcinogenic Scenario Memphis Depot Main installation RI TABLE 17-8c

						Ingestion		Dermal	Inhalation
Units	Chemical	WOE RIDO RIDO RIDI	EPC	ABSgi ABS	ABS	<u>-</u>	엳	CDI	CDI HO
MG/KG	BENZO(a)ANTHRACENE	B2	9 43E-01 3 10E-01 0 1 4 43E-08	3 10E-01	01	4 43E-08	2	2 37E-08	1 34E-11
MG/KG	BENZO(a)PYRENE	B2	1.06E+00 3 10E-01	3 10E-01	0 13	4 98E-08	က	3 47E-08	1,51E-11
MG/KG	BENZO(b)FLUORANTHENE	B2	130E+00 310E-01	3 10E-01	0 1	6 09E-08	ဗ	3 26E-08	1.84E-11
MG/KG	CARBAZOLE	B2	4 25E-01	7 00E-01	0 1	2 00E-08	-	1.07E-08	6 05E-12
MG/KG	CHRYSENE	B2	1 44E+00	3 10E-01	0 1	6 77E-08	6	3 63E-08	2 05E-11
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	1 05E+00	3.10E-01	0.1	4.92E-08	8	63E-08	1 49E-11
	Hazard Index								
								Total HI≖	н
Notes	Notes WOE = Weight of Evidence; CDI = Chronic Daily Intake,	ally Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	Point Conc	entration, F	위= 0	izard Quotien	t, H =	Hazard Index	

TABLE 17-9a
FU6 Sediment -Hypothetical Current/Future Maintenance Worker Scenaric
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestio	n:		
CDI =	Csd * IR * FI * EF * ED * CF		* 1,
	BW * AT		•
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a, b	50 a, b
FI =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	12 d	12 d
ED =	Exposure Duration (year)	25 e	25 e
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW =	Body Weight (kg)	70 e	70 e
AT =	Averaging Time (days)	25550 e	9125 e
Dermal:			
CDI =	Csd *SA * AF * ABS * ET * EF * ED * CF		
	BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
SA =	Surface Area (cm2) - wading	2679 f,g	2679 f,g
AF=	Soil-Skin Adherence Factor (mg/cm2)	0.1 g,h	0.1 g,h
ABS =	Absorption Factor (unitless)	(Chemical Specific) i	(Chemical Specific) i
ET =	Exposure Time (4 hours per 8 hour workday)	05 с	0.5 c
EF =	Exposure Frequency (day/year)	12 d	12 d
ED =	Exposure Duration (year)	25 e	25 e
CF =	Conversion Factor (kg/mg)	1 00E-06	1 00E-06
BW ≃	Body Weight (kg)	70 e	70 e
AT =	Averaging Time (days)	25550 e	9125 e

Inhalation: No values available for inhalation pathway References:

- a = Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- b = A conservative ingestion rate based on industrial soil intake is assumed.
- c = Half a workday is assumed to be spent outdoors in the contaminated areas based on the nature of the activity
- d = Once a month maintenance activity throughout the year is assumed
- e = U.S. EPA, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991
- f = Surface area of hands, 1/2 arms and face (1/2 head) of an adult worker
- g = U.S.EPA Exposure Factors Handbook, August 1997.
- h = AF calculated for soil adherence can be found in Appendix G
- i = Chemical-specific absorption factors are found in Appendix G

۱,۰۰۰

TABLE I7-9b
FU6 Sediment -Hypothetical Current/Future Maintenance Worker Carcinogenic Scenario Memphis Depot Main Installation RI

								lnge	Ingestion	Decma	nal	
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ABS	CDI	ELCR	CD	ELCR	
MG/KG	ANTIMONY	۵			1 21E+03	2 00E-02	0 001	1 01E-05		2 72E-08		
MG/KG	BARIUM	۵			3 65E+03	7 00E-02	0 001	3 06E-05		8 20E-08		
MG/KG	CADMIUM	6			3 25E+01	1 00E-02	0 01	2 73E-07		7 30E-09		
MG/KG	CHROMIUM, TOTAL	∢			2 57E+02	2 00E-02	0 001	2 16E-06		5 77E-09		
MG/KG	COPPER	۵			1 42E+04	3 00E-01	0 001	1 19E-04		3 19E-07		
MG/KG	NICKEL	٥			139E+02	2 70E-01	0 001	1 17E-06		3 12E-09		
MG/KG	SELENIUM	٥			1 82E+02	4 40E-01	0 001	1 53E-06		4 09E-09		
MG/KG	SILVER	٥			4 90E+01	1 80E-01	0 001	4 11E-07		1 10E-09		
MG/KG	THALLIUM	۵			2 10E+01	1 50E-01	0 00	1 76E-07		4 72E-10		
MG/KG	ZINC	٥			5 57E+03	2 00E-01	0 001	4 67E-05		1 25E-07		
MG/KG	BENZO(a)ANTHRACENE	B2 7	7 30E-01	2 35E+00	6 50E+00	3 10E-01	0	5 45E-08	3 98E-08	1 46E-08	3 44E-08	
MG/KG	BENZO(a)PYRENE	B2 7	30E+00	2 35E+01	5 40E+00	3 10E-01	0 13	4 53E-08	3 31E-07	1 58E-08	3 71E-07	
MG/KG	BENZO(b)FLUORANTHENE	B2 7	30E-01	2 35E+00	8 70E+00	3 10E-01	0	7 30E-08	5 33E-08	1 95E-08	4 60E-08	
MG/KG	CHRYSENE	B2 7	30E-03	2 35E-02	9 80E+00	3 10E-01	0 1	8 22E-08	6 00E-10	2 20E-08	5 19E-10	
MG/KG	DIBENZ(a,h)ANTHRACENE	B2 7	30E+00	2 35E+01	8 60E-01	3 10E-01	0	7.21E-09	5 27E-08	1 93E-09	4 55E-08	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2 7	30E-01	2 35E+00	2 20E+00	3 10E-01	0	1 85E-08	1 35E-08	4 94E-09	1 16E-08	
MG/KG	4-METHYLPHENOL (p-CRESOL)	ပ			5 10E+00	6 50E-01	0 01	4 28E-08		1 15E-09		
MG/KG	PETROLEUM HYDROCARBONS				1 46E+03	5 00E-01	0 01	1 22E-05		3 28E-07		
	Total Risk								SE-07		5E-07	
									Total Risk=	1E-06		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, E	PC = Ex	oosure Po	EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	ration, ELC	R = Excess	Lifetime	Cancer Exp	osure			

3 ...

FU6 Sediment -Hypothetical Current/Future Maintenance Worker Noncarcinogenic Scenanic Memphis Depot Main Installation RI TABLE 17-9c

								Ingestion	EQ.	Dermal		
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	ABS	<u>0</u> 0	ğ	CDI	НО	
MG/KG	ANTIMONY	۵	4 00E-04	8 00E-06	1.21E+03	2 00E-02	0 001	2 84E-05	20 0	7.61E-08	0.01	,
MG/KG	BARIUM	۵	7 00E-02	4 90E-03	3 65E+03	7 00E-02	0 001	8 57E-05	0 001	2 30E-07	0 00005	
MG/KG	CADMIUM	B	1 00E-03	1 00E-05	3.25E+01	1.00E-02	0 01	7 63E-07	0 0008	2 04E-08	0 002	
MG/KG	CHROMIUM, TOTAL	∢	3 00E-03	6 00E-05	2 57E+02	2 00E-02	0 001	6.04E-06	0 002	1 62E-08	0 0003	
MG/KG	COPPER	۵	4 00E-02	1 20E-02	1.42E+04	3 00E-01	0 001	3 33E-04	0 008	8.93E-07	0.00007	
MG/KG	NICKEL	۵	2 00E-02	5 40E-03	1 39E+02	2 70E-01	0 001	3 26E-06	0 0002	8 74E-09	0 000002	
MG/KG	SELENIOM	۵	5 00E-03	2 20E-03	1 82E+02	4 40E-01	0 001	4 27E-06	60000	1 14E-08	0 000005	
MG/KG	SILVER	۵	5 00E-03	9 00E-04	4.90E+01	1 80E-01	0 001	1 15E-06	0 0002	3 08E-09	0 000003	
MG/KG	THALLIUM	۵	7 00E-05	1 05E-05	2 10E+01	1 50E-01	0 001	4 93E-07	0 007	1 32E-09	0 0001	
MG/KG	ZINC	۵	3 00E-01	6 00E-02	5 57E+03	2 00E-01	0 001	131E-04	0 0004	3 50E-07	9000000	
MG/KG	BENZO(a)ANTHRACENE	B 2			6 50E+00	3 10E-01	0	1.53E-07		4 09E-08		
MG/KG	BENZO(a) PYRENE	8			5 40E+00	3 10E-01	0 13	1 27E-07		4 42E-08		
MG/KG	BENZO(b)FLUORANTHENE	B2			8 70E+00	3 10E-01	0.1	2 04E-07		5 47E-08		
MG/KG	CHRYSENE	B2			9 80E+00	3 10E-01	0 1	2.30E-07		6.17E-08		
MG/KG	DIBENZ(a,h)ANTHRACENE	B2			8 60E-01	3.10E-01	0 1	2 02E-08		5.41E-09		
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2			2 20E+00	3 10E-01	0 1	5 17E-08		1.38E-08		
MG/KG	4-METHYLPHENOL (p-CRESOL)	ပ	5 00E-03	3 25E-03	5,10E+00	6 50E-01	0 01	1 20E-07	0 00002	321E-09	0 000001	
MG/KG	PETROLEUM HYDRÖCARBONS	0	4 00E-02	2 00E-02	1,46E+03	5 00E-01	0 01	3 43E-05	60000	9.19E-07	0 00005	
	Hazard Index								60.0		0.01	
								_	Total HI=	0.1		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake; EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	EPC = E	xposure Po	oint Concer	ntration, HQ	= Hazard (Juotient	HI = Hazaro	1 Index			

TABLE I7-10a
FU6 Sump Sediment -Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestic			
CDI =	Csd * IR * FI * EF * ED * CF		
	BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
IR =	Ingestion Rate (mg/day)	50 a, b	50 a, b
Fl =	Fraction Ingested (unitless)	1	1
EF =	Exposure Frequency (day/year)	50 c	50 c
ED =	Exposure Duration (year)	25 d	25 d
CF =	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	70 d	70 d
AT =	Averaging Time (days)	25550 d	9125 d
Dermal:			
CDI =	Csd *SA * AF * ABS * ET * EF * ED * CF		
J	BW * AT		
Csd =	Concentration in sediment (mg/kg)	EPC	EPC
SA =	Surface Area (cm2) - wading	2679 e,f	2679 e,f
AF=	Soil-Skin Adherence Factor (mg/cm2)	0.1 g,f	0 1 g,f
ABS =	Absorption Factor (unitless)	(Chemical Specific) h	(Chemical Specific) h
ET =	Exposure Time (1 hour per 8 hour workday)	0.125 ı	0 125
EF =	Exposure Frequency (day/year)	50 c	50 c
ED =	Exposure Duration (year)	25 d	25 d
CF=	Conversion Factor (kg/mg)	1 00E-06	1.00E-06
BW =	Body Weight (kg)	70 d	70 d
AT =	Averaging Time (days)	25550 d	9125 d

Inhalation: No values available for inhalation pathway

- a = Supplemental Guidance to RAGS. Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995
- b = A conservative ingestion rate based on industrial soil intake is assumed
- c = Exposure is assumed to be once a week (excluding vacation)
- d = U.S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors," OSWER Directive 9285 6-03, March 25, 1991.
- e = Surface area of hands, 1/2 arms and face (1/2 head) of an adult worker
- f = U S EPA Exposure Factors Handbook, August 1997
- g = AF calculated for soil adherence can be found in Appendix G
- h = Chemical-specific absorption factors are found in Appendix G
- I = One hour of a workday is assumed to be spent outdoors in the contaminated areas based on the nature of the activity

TABLE 17-10b FU6 Sump Sediment -Hypothetical Future Industrial Worker Caronogenic Scenario Memphis Depot Main Installation RI

												l
								Ingestion	tion	Derma	lai	
Units	Chemical	WOE	SFo	SFd	EPC	ABSgi	ABS	CDI	ELCR	CDI	ELCR	
MG/KG	ANTIMONY	۵			1 21E+03	2 00E-02	0 001	4 23E-05		2 83E-08		
MG/KG	BARIUM	۵			3 65E+03	7 00E-02	0 001	1 28E-04		8 54E-08		
MG/KG	CADMIUM	B			3 25E+01	1 00E-02	0 01	1 14E-06		7.61E-09		
MG/KG	CHROMIUM, TOTAL	∢			2 57E+02	2 00E-02	0 001	8 98E-06		6 02E-09		
MG/KG	COPPER	۵			1 42E+04	3 00E-01	0 001	4 96E-04		3 32E-07		
MG/KG	NICKEL	٥			1 39E+02	2 70E-01	0 001	4 86E-06		3 25E-09		
MG/KG	SELENIUM	٥			1.82E+02	4 40E-01	0 001	6 36E-06		4 26E-09		
MG/KG	SILVER	٥			4 90E+01	1.80E-01	0 001	1 71E-06		1.15E-09		
MG/KG	THALLIUM	۵			2 10E+01	1.50E-01	0 001	7 34E-07		4 91E-10		
MG/KG	ZINC	٥			5 57E+03	2 00E-01	0 001	1 95E-04		1 30E-07		
MG/KG	BENZO(a)ANTHRACENE	B2	7.30E-01	2 35E+00	6 50E+00	3 10E-01	0 1	2 27E-07	1 66E-07	1 52E-08	3 58E-08	
MG/KG	BENZO(a)PYRENE	B 2	7 30E+00	2 35E+01	5 40E+00	3 10E-01	0.13	1 89E-07	1 38E-06	1 64E-08	3 87E-07	
MG/KG	BENZO(b)FLUORANTHENE	B2	7.30E-01	2 35E+00	8 70E+00	3 10E-01	0.1	3 04E-07	2 22E-07	2 04E-08	4 79E-08	
MG/KG	CHRYSENE	B2	7.30E-03	2.35E-02	9 80E+00	3 10E-01	0 1	3 42E-07	2 50E-09	2 29E-08	5 40E-10	
MG/KG	DIBENZ(a,h)ANTHRACENE	B2	7 30E+00	2.35E+01	8 60E-01	3 10E-01	0 1	3 01 E-08	2.19E-07	2 01E-09	4 74E-08	
MG/KG	INDENO(1,2,3-c,d)PYRENE	B2	7.30E-01	2.35E+00	2 20E+00	3 10E-01	0 1	7 69E-08	5 61E-08	5 15E-09	1.21E-08	
MG/KG	4-METHYLPHENOL (p-CRESOL)	ပ			5 10E+00	6 50E-01	0 01	1 78E-07		1 19E-09		
MG/KG	PETROLEUM HYDRÖCARBONS				1 46E+03	5 00E-01	0 01	5 10E-05		3.42E-07		
	Total Risk								2 0E-06		5.3E-07	
									Total Risk=	3E-06		
Notes:	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure	Intake, EP	C = Expos	are Point Co	ncentration,	ELCR = E>	cess Lif	etime Cancer	Exposure			
										:		

TABLE I7-10c
FU6 Sump Sediment -Hypothetical Future Industrial Worker Noncarcinogenic Scenario Memphis Depot Main Installation RI

								Ingestion	tion	Derma	mal	
Units	Chemical	WOE	RfDo	RfDd	EPC	ABSgi	ABS	CDI	오	CD	НО	
MG/KG	ANTIMONY	۵	4 00E-04	8 00E-06	1 21E+03	2 00E-02	0 001	1 18E-04	03	7 93E-08	0 01	
MG/KG	BARIUM	۵	7 00E-02	4 90E-03	3 65E+03	7 00E-02	0.001	3 57E-04	0 005	2.39E-07	0.00005	
MG/KG	CADMIUM	120	1.00E-03	1 00E-05	3 25E+01	1 00E-02	0 01	3 18E-06	0 003	2 13E-08	0 002	
MG/KG	CHROMIUM, TOTAL	٧	3 00E-03	6 00E-05	2.57E+02	2 00E-02	0 001	2 51E-05	0 008	1 68E-08	0 0003	
MG/KG	COPPER	۵	4 00E-02	1 20E-02	1 42E+04	3 00E-01	0 001	1 39E-03	0 03	9.31E-07	0.00008	
MG/KG	NICKEL	۵	2 00E-02	5 40E-03	1 39E+02	2.70E-01	0 001	1 36E-05	0 0007	9 11E-09	0 000002	
MG/KG	SELENIUM	۵	5 00E-03	2 20E-03	1 82E+02	4 40E-01	0 001	1 78E-05	0.004	1.19E-08	0.000005	
MG/KG	SILVER	۵	5 00E-03	9 00E-04	4 90E+01	1,80E-01	0 001	4 79E-06	0 001	3 21E-09	0.000004	
MG/KG	THALLIUM	۵	7 00E-05	1 05E-05	2 10E+01	1.50E-01	0 001	2.05E-06	0 03	1.38E-09	0 0001	
MG/KG	ZINC	۵	3 00E-01	6 00E-02	5 57E+03	2 00E-01	0 001	5 45E-04	0.002	3 65E-07	0.000006	
MG/KG	BENZO(a)ANTHRACENE	B 2			6 50E+00	3,10E-01	0	6 36E-07		4 26E-08		
MG/KG	BENZO(a)PYRENE	B 2			5 40E+00	3 10E-01	0 13	5 28E-07		4 60E-08		
MG/KG	BENZO(b)FLUORANTHENE	B2			8 70E+00	3.10E-01	0 1	8 51E-07		5 70E-08		
MG/KG	CHRYSENE	B 2			9.80E+00	3 10E-01	0 1	9 59E-07		6 42E-08		
MG/KG	DIBENZ(a,h)ANTHRACENE	B2			8 60E-01	3 10E-01	0 1	8 41E-08		5.64E-09		
MG/KG	INDENO(1,2,3-c,d)PYRENE	B 5			2 20E+00	3.10E-01	0 1	2 15E-07		1,44E-08		
MG/KG	4-METHYLPHENOL (p-CRESOL)	ပ	5 00E-03	3 25E-03	5 10E+00	6 50E-01	0 01	4 99E-07	0 0001	3 34E-09	0 000001	
MG/KG	PETROLEUM HYDROCARBONS		4 00E-02	2 00E-02	1 46E+03	5 00E-01	0 01	1 43E-04	0 004	9.57E-07	0.00005	
	Hazard Index								0.4		0.01	
									Total HI =	0.4		
Notes:	WOE = Weight of Evidence, CDI = Chronic Daily Intake; EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index	ke; EP	C = Expos	ure Point C	oncentration	ı, HQ = Haz	ard Quo	tient, HI = H	azard Inde	×		!

Appendix I-8
A. FU7 Groundwater

1 .. .

THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE I8-1a
FU7 Groundwater (Potable Use) - Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		Carcinogenic	<u>Noncarcinogenic</u>
Ingestio	n:	 	
_	r non-carcinogenic and carcinogenic compounds.		•
CDI =	Cm * IR * EF * ED		-
	BW * AT		ケ
C _{gw} = .	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
Intake fo	r non-carcinogenic and carcinogenic compounds:		
CDI =	Co. *SA * PC * ET * EF * ED * CF		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm²)	2679 b,c	2679 Ь,
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b,e	0 007 b,
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (L/cm³)	1 00E-03	1 00E-03
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
inhalati	on:		
CDI =	Ingestion CDI from above 9		
Referen			
a = U S	EPA, Human Health Evaluation Manual, Supplement	al Guidance. "Standard Default Ex	posure Factors*
L 5.	OSWER Directive 9285 6-03, March 25, 1991	hook August 1007	
	ault factors adapted from EPA Exposure Factors Hand		
	ace area represents 1/2 head, 1/2 arms, and the hand mal Permeability Constant for water (0 001) used for c		

- d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value, all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992
- e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event
- g = follows EPA Region IV guidance (i.e., inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

<u>.</u>.

TABLE 18-1b
FU7 Groundwater (Potable Use) - Hypothetical Future Industrial Worker Carcinogenic Scenaric Memphis Depot Main Installation R1

									Ingestion	tion	Dermal	nai	Inhalation*	
Units	Chemical	WOE	SFo	SFd	SFi	EPC	ABSgi	ပ္ရ	GD	ELCH	CD	ELCR	ELCR	
MG/L	ALUMINUM					9 53E+00	1 00E-01		1 60E-04 3 33E-02		9 99E-08			
MG/L	ARSENIC	∢	1 50E+00	E+00 3 66E+00 1 51E+01 2 34E-03	151E+01	2 34E-03	4 10E-01		8 16E-06	1 2E-05	2 45E-11	9 0E-11		
MG/L	BERYLLIUM	91			8 40E+00	8 40E+00 2 57E-04	1 00E-02	1 60E-04 8	8 96E-07		2 69E-12			
MG/L	CADMIUM	10			6 30E+00	8 13E-03	1 00E-02	1 00E-03	2 84E-05		5 33E-10			
MG/L	CHROMIUM, TOTAL	∢			4 20E+01	2 94E-02	2 00E-02	1 00E-03	1 03E-04		1 93E-09			
MG/L	MANGANESE	۵				9 97E-01	4 00E-02	1 60E-04	3 48E-03		1 04E-08			
MG/L	NICKEL	۵				2 23E-02	2 70E-01	1 00E-04	7 80E-05		1 46E-10			
MG/L	VANADIUM					1 92E-02	92E-02 1 00E-02	1 60E-04	1 60E-04 6 70E-05		2 01E-10			
	Total Risk									1 2E-05		9 0E-11		
										2	Total Risk =	1E-05		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intal	Chronic Daily	Intake, EF	C = Exposui	e Point Cor	icentration, t	ELCR = Exc	ess Lifetime	Cancer Ex	oosure, =	inhafation in	take invalid	ke, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, " = inhalation intake invalid for inorganics in water	

_

TABLE 18-1c
FU7 Groundwater (Potable Use) - Hypothetical Future Industrial Worker Noncarcinogenic Scenaric
Memphis Depot Mari Installation RI

								i	Ingestion	uo.	죕	Derma:	Inhalation.	
Units	Chemical	WOE	A Co	RfDd	ÄÖ	EPC	ABSgi	ည	CDI	ğ	g	멎	오	
MG/	ALIMINIM		1 00E+00	1 00E-01	1 00E+00	9 53E+00	1 00E-01	1 60E-04	9 32E-02	600	2 80E-07	0 000003		
MG/I	CINESTA	4	3 00E-04	1 23E-04		2 34E-03	4 10E-01	1 60E-04	2 29E-05	0 08	6 86E-11	90000000		
MG/L	BERYLLIUM	19	2 00E-03	2 00E-05	5 70E-06		1 00E-02	1 60E-04	2 51E-06	0 001	7 53E-12	0 0000004		
MG/L	CADMIUM	18	1 00E-03	1 00E-05		8 13E-03	1 005-02	1 00E-03	7 95E-05	0 08	1 49E-09	0 0001		
MG/S	CHROMIUM TOTAL	∢	3 00E-03	6 00E-05	2 86E-05	2 94E-02	2 00E-02	1 00E-03	2 87E-04	0	5 39E-09	600000		
NO.	MANGANESE	۵	1 40E-01	5 60E-03		9 97E-01	4 00E-02	1 60E-04	9 75E-03	0 07	2 93E-08	0 000005		
W _G /V	I DESCRIPTION OF THE PROPERTY	۵	2 00E-02	5 40E-03		2 23E-02	2 70E-01	1 00E-04	2 18E-04	0 01	4 09E-10	0 00000000		
MG/L	VANADIUM	ı	7 00E-03	7 00E-05		1 92E-02	1 00E-02	1 60E-04	1 88E-04	0 03	5 63E-10	0 000008		
	Hazard Index									0.5		0 0003		
									_	otal Haza	Fotal Hazard Index =	0.5		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, E	Chronic Daily		C = Exposur	e Point Con	centration, h	10 = Hazan	d Quotient, 1	II = Hazard	ndex, *=	inhalation inte	ake invalid fo	PC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake invalid for inorganics in water	

TABLE 18-2a

FU7 Groundwater (Potable Use) - Hypothetical Future Residential Adult Scenaric Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestion	:	Age-specific intake (for carcinogenic	compounds only):
Intake for	CoutIR * EF * ED	CDI _{adj} = C _{rrs} * EF * CF * IR _{adj}	on pour les or hy
= 1DO	BW * AT	AT	
	Concentration in groundwater (mg/L)	EPC	EPC
C _{gw} =	Ingestion Rate (L/day)	N/A	2 a
R =	Age-adjusted Ingestion Rate (L-year/kg-day)	1.1 b	N/A
$R_{adj} =$	Exposure Frequency (day/year)	350 a	350 a
EF =	Exposure Duration (year)	30 a	30 a
ED =	Body Weight (kg)	70 a	70 a
3W =	Averaging Time (days)	25550 a	10950 a
AT = Dermal:		Age-specific intake (for carcinogenic	compounds only)
ntake for	Cow *SA * PC * ET * EF * ED * CF	CDI _{edj} = Cmx *SA _{adj} * PC * ET * EF * CI	•
CDI =	BW * AT	AT	-
	Concentration in groundwater (mg/L)	EPC	EPC
_{gw} =	Surface Area (cm²)	N/A	20000 b,c
6A =	Age-adjusted Surface Area (cm ² -yr/kg)	9480 b,c	N/A
A _{adj} =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
C =	Exposure Time (hr/day)	0.007 b,e	0 007 b.e
T =	Exposure Frequency (day/year)	350 a	350 a
F =	Exposure Duration (year)	30 a	30 a
D =	Conversion Factor (L/cm³)	1 00E-03	1 00E-03
F ≃	Body Weight (kg)	70 a	70 a
SW = ST =	Averaging Time (days)	25550 a	10950 a
nhalation CDI =	Ingestion CDI from above ^f		
Reference L=USE	s: OSWER Directive 9285 6-03, March 25, 1991		
o = Age-ad	IRadj = <u>IRc x EDc</u> + <u>IRa x (EDa - E</u> BWc BWa 1.09 (L-year)/(kg-day)	$\frac{1 \times 6}{15} + \frac{1 \times 6}{15}$	<u>2 × (30-6)</u> 70
= Total B	A Exposure Factors Handbook, August 1997 ody Surface Area represents whole body (ave SAadj = SAc x EDc + SAa x (EDa - E BWc BWa		20000 x (30-6) 70
= Derma	9480 (cm²-year)/(kg) from EPA, Dermai Exposure Assessment Pni	nciples and Applications January 1992	
e = 10 min	ute event x 1 hour/60 minutes x 1 day/24 hours accounted for by doubling the ingestion volu	s = 0 007 day per event	RAGS Region 4
	Bulletins, Human Health Risk Assessment, In		,,,,ee nogion -

TABLE 18-2b
FU7 Groundwater (Potable Use) - Hypothetical Future Residential Adult Carcinogenic Scenario Memphis Depot Main Installation RI

								Ingestion	stion	Derma	mai	nnalation	
Chemical	WOE	SFo	SFd	SFI	EPC	ABSgi	ည	CD	ELCR	CDI	ELCH	ELCR	İ
ALUMINUM					9 53E+00 1 00E-01	1 00E-01	1 60E-04 1 42E-01	1 42E-01		1 39E-06			
ABSENIC	∢	1 50E+00	-00 3 66E+00 1 51E+01 2 34E-03 4 10E-01 1 60E-04 3 47E-05	151E+01	2 34E-03	4 10E-01	1 60E-04	3 47E-05	5 2E-05	3 40E-10	1 2E-09		
BERYLLIUM	8			8 40E+00 2 57E-04	2 57E-04	1 00E-02	1 60E-04	3 82E-06		373E-11			
CADMIUM	19			6 30E+00	8 13E-03	1 00E-02	1 00E-03	1 21E-04		7 39E-09			
CHROMIUM TOTAL	∢			4 20E+01	2 94E-02	2 00E-02	1 00E-03	4 37E-04		2 67E-08			
MANGANESE	۵				9 97E-01	4 00E-02	1 60E-04	1 48E-02		1 45E-07			
NICKEL	٥				2 23E-02		2 70E-01 1 00E-04 3 32E-04	3 32E-04		2 03E-09			
VANADIUM					1 92E-02	1 00E-02	92E-02 1 00E-02 1 60E-04	2 85E-04		2 79E-09			
Total Bisk									5 2E-05		1.2E-09		
									ř	Total Risk =	SE-05		

TABLE 18-2c FU7 Groundwater (Potable Use) - Hypothetical Future Residential Adult Noncarcinogenic Scenark Memphis Depot Main Installation RI

									Ingestion	tion	Dei	Dermal	Inhalation*
Units	Chemical	WOE	WOE RIDO	RfDd	ÄÖ	EPC	ABSgi	ပ္ရ	CDI	오	<u> </u>	ğ	오
MG/L	ALUMINUM		1 00E+00	1 00E-01	1 00E+00	9 53E+00	1 00E-01	1 60E-04	261E-01	03	2 92E-06	0 00003	
MG/L	ARSENIC	∢	3 00E-04	1 23E-04		2 34E-03	4 10E-01	1 60E-04	6 40E-05	02	7 17E-10	9000000	
G/L	BERYLLIUM	6	2 00E-03	2 00E-05	5 70E-06	2 57E-04	1 00E-02	1 60E-04	7 03E-06	0 00	7 87E-11	0 000004	
G/L	CADMIUM	6	1 00E-03	1 00E-05		8 13E-03	1 00E-02	1 00E-03	2 23E-04	0 2	1 56E-08	0 002	
MG/L	CHROMIUM, TOTAL	∢	3 00E-03	6 00E-05	2 86E-05	2 94E-02	2 00E-02	1 00E-03	8 05E-04	03	5 63E-08	60000	
MG/L	MANGANESE	٥	1 40E-01	5 60E-03	1 43E-05	9 97E-01	4 00E-02	1 60E-04	2 73E-02	0.5	3 06E-07	0 00005	
MG/L	NICKEL	٥	2 00E-02	5 40E-03		2 23E-02	2 70E-01	1 00E-04	6 11E-04	0 03	4 28E-09	0 0000008	
MG/L	VANADIUM		7 00E-03	7 00E-05		1 92E-02	1 00E-02	1 60E-04	5 25E-04	0 08	5 89E-09	0 00008	
	Hazard Index									-		0 003	
											Total HI ==	-	

TABLE 18-3a
FU7 Groundwater (Potable Use) - Hypothetical Future Residential Child Scenario
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestio	n:		
Intake fo	r non-carcinogenic and carcinogenic compounds		
CDI =	Com * IR * EF * ED		
	BW * AT	-	
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	1 a	· 1 a
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dermal:			
Intake fo	r non-carcinogenic and carcinogenic compounds.		
CDI =	Cow *SA * PC * ET * EF * ED * CF		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm²)	6557 b, c	6557 b, c
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b,e	0 007 b,e
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (L/cm ³)	1 00E-03	1 00E-03
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a

CDI = Ingestion CDI from above 1

References:

a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.

b = US EPA Exposure Factors Handbook, August 1997

Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance, May 1998

- c = Total Body Surface Area represents whole body (average of male & female children (1-6 years old))
- d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value, all values adapted from EPA, Dermal Exposure Assessment: Principles and Applications, January 1992
- e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event
- f = follows EPA Region IV guidance (i.e., inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS. Region 4. Bulletins, Human Health Risk Assessment, Interim, November 1995.

¿. ·

TABLE 18-3b
FU 7 Groundwater (Potable Use) - Future Residential Child Carcinogenic Scenano
Memphis Depot Main Installation RI

								:	Ingestion	tion	Dermal	lan	Inhalation*	
Units	Chemical	WOE	SFo	SFd	SFI	EPC	ABSgi	ည	GD	ELCR	GD	ELCR	ELCR	
MG/L	ALUMINUM					9 53E+00	9 53E+00 1 00E-01 1 60E-04 5 22E-02	1 60E-04	5 22E-02		3 83E-07			
MG/L	ARSENIC	∢	1 50E+00	+00 366E+00 151E+01 234E-03	151E+01	2 34E-03	4 10E-01	1 60E-04	1 28E-05	1 9E-05	9 40E-11	3 4E-10		
MG/L	BERYLLIUM	19			8 40E+00	2 57E-04	1 00E-02	1 60E-04	1 41E-06		1 03E-11			
MG/L	CADMIUM	18			6 30E+00	8 13E-03	1 00E-02	1 00E-03	4 45E-05		2 04E-09			
MG/L	CHROMIUM, TOTAL	∢			4 20E+01	2 94E-02	2 00E-02	1 00E-03	1 61E-04		7 39E-09			
MG/L	MANGANESE	۵				9 97E-01	4 00E-02	1 60E-04	5 46E-03		4 01E-08			
MGAL	NICKEL	۵				2 23E-02	2 70E-01	1 00E-04	1 22E-04		5 61E-10			
MG/L	VANADIUM					1 92E-02	92E-02 1 00E-02 1 60E-04	1 60E-04	1 05E-04		7 72E-10			
	Total Risk									1.9E-05		3.4E-10		
										ĭ	Total Risk =	2E-05		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intal	= Chronic D.	aily Intake, I	EPC = Expo	sure Point C	oncentration	n, ELCR = E	xcess Lifeti	ne Cancer E	xposure,	= inhalation	ıntake ınva	ke, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, * = inhalation intake invalid for inorganics in water	vater

C

* = inhalation intake invalid for inorganics in water

0 0001 3 0 004

Total H) =

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index,

HO 0 000004 0 0000009 0 0000 0 0001 0 0000 0 00000 0 00000

447E-06 1 10E-09 1 20E-10 2 39E-08 8 62E-08 4 68E-07 6 55E-09 9 00E-09

06 05 05 05 06 05 07

PC CDI 160E-04 6 09E-01 160E-04 1 49E-04 160E-03 1 52E-04 100E-04 6 37E-02 160E-04 1 43E-03 1 60E-04 1 23E-03

1 00E+00 9 53E+00 1 00E-01 1 2 34E-03 4 10E-01 1 5 70E-06 2 57E-04 1 00E-02 1 8 13E-03 1 00E-02 1 2 86E-05 2 94E-02 2 00E-02 1 1 43E-05 9 97E-01 4 00E-02 1 1 92E-02 2 70E-01 1

1 00E-01 1 23E-04 2 00E-05 1 00E-05 6 00E-05 5 60E-03 7 00E-03

1 00E+00 3 00E-04 2 00E-03 1 00E-03 3 00E-03 1 40E-01 2 00E-02 7 00E-03

ARSENIC BERYLLIUM CADMIUM CHROMIUM, TOTAL MANGANESE

Units MG/L MG/L MG/L MG/L MG/L MG/L Hazard Index

Notes

NICKEL VANADIUM

MG/

Ingestion

FU7 Groundwater (Potable Use) - Hypothetical Future Residential Child Non-Carcinogenic Scenaric Memphis Depot Man installation Rt

WOE

Chemical

ALUMINUM

1-229

P/147543/APPI8FU7gw xls/GWRC NonCarcinogenic

TABLE 18-4a
FU7 Plume A Groundwater (Potable Use) - Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation Ri

		<u>Carcinogenic</u>	Noncarcinogenic Noncarcinogenic
Ingestio			
	or non-carcinogenic and carcinogenic compounds.		
CDI =	Co. * IR * EF * ED		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermai:			
ntake fo	r non-carcinogenic and carcinogenic compounds:		
CDI =	Cow *SA * PC * ET * EF * ED * CF		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm ²)	2679 b,c	2679 b.d
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b,e	0 007 b,e
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (L/cm³)	1 00E-03	1 00E-03
3W =	Body Weight (kg)	70 a	70 a
		25550 a	9125 a

CDI = Ingestion CDI from above 9

References:

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991
- b = Default factors adapted from EPA Exposure Factors Handbook, August 1997
- c = Surface area represents 1/2 head, 1/2 arms, and the hands of an adult worker
- d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value, all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992
- e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event
- g = follows EPA Region IV guidance (i e , inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

PJ147543/APPIBFU7gw xls/AGWIW-Carcinogenic

TABLE IB-4b
FU7 Plume A Groundwater (Potable Use) - Hypothetical Future Industnal Worker Carcinogenic Scenano
Memphis Depot Main Installation RI

									Ingestion	tion	Dermai	nai	nhalation.	
Units	Chemical	WOE	WOE SFo	SFd	SFI	EPC	ABSgi	ပ္ရ	00	ELCA	CDI	ELCR ELCR	ELCR	
MG/L	CHLOROBENZENE	۵				4 00E-03	4 00E-03 3 10E-01 4 10E-02 1 40E-05	4 10E-02	1 40E-05		1 07E-08			
MG/L	TETRACHLOROETHYLENE (PCE) C-B2 5 20E-02	C-B2	5 20E-02	5 20E-02	2 00E-03	3 94E-02	1 00E+00	4 80E-02	1 38E-04	7 2E-06	5 20E-02 2 00E-03 3 94E-02 1 00E+00 4 80E-02 1 38E-04 7 2E-06 1 24E-07 6 4E-09	6 4E-09	2 8 E -07	
MGA	TRICHLOBOETHYLENE (TCE)	83	B2 1 10E-02	7 33E-02	6 00E-03	7 90E-03	1 50E-01	1 60E-02	2 76E-05	3 0E-07	7.33E-02 6.00E-03 7.90E-03 1.50E-01 1.60E-02 2.76E-05 3.0E-07 8.29E-09 6.1E-10 1.7E-07	6 1E-10	1 7E-07	
	Total Risk									7.5E-06		7.1E-09	4.4E-07	
Notes							:			Į.	Total Risk = 8E-06	8E-06		
Notes	WOF = Weight of Evidence, CDI = Chronic Daily Intake. El	hronic Da	ulv Intake.	EPC = Expo	ure Point C	oncentration	, ELCR = E	xcess Lifetin	ne Cancer E	xposure,	= inhalation	intake (CDI)	PC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, * = inhalation intake (CDI) = ingestion intake	ke

TABLE 18-4c
FUT Plume A Groundwater (Potable Use) - Hypothetical Future Industnal Worker Non-Carcinogenic Scenano
Memphis Depot Main installation RI

									Ingestion	tion	Dermal		Inhalation*
Units	Chemical	WOE	RfDo	RfDd	RfDi	EPC	ABSgi	<u>۵</u>	<u>5</u>	g	ō	9	오
MG/L	CHLOROBENZENE	٥	2 00E-02	6 20E-03	5 70E-03	4 00E-03	3 10E-01	10E-02	3 91E-05	١.,	3 01 E-08	0 000005	0 007
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	1 00E-02	1 00E-02	1 71E-01	3 94E-02	1 00E+00	4 80E-02	3 86E-04		3 47E-07	0 00003	0 002
MG/L	TRICHLOROETHYLENE (TCE)	88	6 00E-03	9 00E-04		7 90E-03	B2 6 00E-03 9 00E-04 7 90E-03 1 50E-01 1 60E-02 7 73E-05	1 60E-02	7 73E-05	0.01	2 32E-08 0 00003	0 00003	
	Hazard Index			!						ļ		0.00007	600 0
											Total HI =	90.0	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily In	ntake, E	PC = Expos	ure Point Co	oncentration	, HQ = Haz	ard Quotient	t, HI = Haza	rd Index, *=	Inhalation	itake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion intake	= ingestion	ntake

TABLE 18-5a
FU7 Plume A Max Groundwater (Potable Use) - Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		<u>Carcinogenic</u>	Noncarcinogenic Noncarcinogenic
Ingestio			
Intake fo	r non-carcinogenic and carcinogenic compounds:		
CDi =	C _{ow} * IR * EF * ED BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:			
	r non-carcinogenic and carcinogenic compounds		
CDI =	Cow *SA * PC * ET * EF * ED * CF		
	BW * AT		
$C_{gw} =$	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm ²)	2679 b,c	2679 b,
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b,e	0 007 b _i
EF =	Exposure Frequency (day/year)	250 a	250 a
ED ≖	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (L/cm³)	1.00E-03	1.00E-03
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Inhalatio	on:		
CDI =	Ingestion CDI from above ⁹		
	_		
Referen			
a = U S	EPA, Human Health Evaluation Manual, Supplementa	l Guidance "Standard Default Ex	posure Factors*
	OSWER Directive 9285 6-03, March 25, 1991		
b = Defa	ult factors adapted from EPA Exposure Factors Handb	oook, August 1997	

d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value, all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992

is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS: Region 4

g = follows EPA Region IV guidance (i.e., inhalation of groundwater volatiles while showering/bathing

e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event

Bulletins, Human Health Risk Assessment, Interim, November 1995

TABLE 18-5b
FUT Plume A Max Groundwater (Potable Use) - Hypothetical Future Industrial Worker Carcinogenic Scenano Memphis Depot Main Installation RI

									Ingestion	tron	Derma	ma	Inhalation*	
Units	Chemical	WOE	WOE SFo	SFd	SFı	EPC	ABSgi	PC	CDI	ELCR	CDI	ELCR	ELCR	
MG/L	CHLOROBENZENE	D				4 00E-03	3 10E-01	4 00E-03 3 10E-01 4 10E-02 1 40E-05	1 40E-05		1 07E-08			
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	C-B2 5 20E-02	5 20E-02	2 00E-03	1 20E-01	1 00E+00	4 80E-02	4 19E-04	2 2E-05	2 00E-03 1 20E-01 1 00E+00 4 80E-02 4 19E-04 2 2E-05 3 77E-07 2 0E-08	2 0E-08	8 4E-07	
MG/L	TRICHLOROETHYLENE (TCE)	B2	B2 1 10 E-02	7 33E-02	6 00E-03	3 10E-02	1 50E-01	1 60E-02	1 08E-04	1 2E-06	7 33E-02 6 00E-03 3 10E-02 1 50E-01 1 60E-02 1 08E-04 1 2E-06 3 25E-08 2 4E-09	2 4E-09	6 5E-07	
	Total Risk									2.3E-05		2.2E-08	2.2E-08 1.5E-06	
Notes										ĭ	Total Risk = 2E-05	2E-05		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake,	ronic De		EPC = Expo	sure Point C	oncentration	ELCR = E	xcess Lifetin	ne Cancer L	xposure,	= inhalation	intake (CD	EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, * = inhalation intake (CDI) = ingestion intake	

-,

TABLE 18-5c
FU7 Plume A Max Groundwater (Potable Use) - Hypothetical Future Industnal Worker Non-Carcinogenic Scenario Memphis Depot Main Installation RI

									Ingestion	tion	Den	Dermal	Inhalation*
Units	Chemical	WOE	RfDo			EPC	ABSgi	ည	CO	o	CDI	오	오
NO.	CHIOBORENZENE	٥	2 00E-02	6 20E-03	5 70E-03	4 00E-03	3 10E-01	4 10E-02	3 91E-05	0 002	301E-08 0	000005	0 007
Į (W	TETRACHI DBOETHYI ENE (PCE)	C-82	1 00E-02			1 20E-01	1 00E+00	4 80E-02			1 06E-06	0 0001	0 007
NOW.	TOTOM OBSERVED (TOTAL)	2	6 DOF-03			3 10E-02	1 50E-01	1 60E-02		0 05	9 10E-08	0 0001	
100	Description of the control of the co											0.0002	0.01
	חמלמות וווספא										Total HI =	0.2	

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion intake

Notes

TABLE 18-6a

FU7 Plume A Groundwater (Potable Use) - Hypothetical Future Residential Adult Scenano Memphis Depot Main Installation RI

_	n:	<u>Carcinogenic</u>	<u>Noncarcinogenic</u>
intake for	r non-carcinogenic compounds	Age-specific intake (for carcinogenic of	compounde only):
CDI =	Cov * IR * EF * ED	CDI _{adj} = C _{ow} * EF * CF * IR _{adj}	ompounds only).
	BW * AT	AT	
C _{aw} =	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	N/A	2 a
IR _{adi} =	Age-adjusted Ingestion Rate (L-year/kg-day)	1.1 b	N/A
saj – EF =	Exposure Frequency (day/year)	350 a	
_:	Exposure Duration (year)	30 a	350 a 30 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	10950 a
Dermai:			
	r non-carcinogenic compounds:	Age-specific intake (for carcinogenic of	compounds only)
CDI =	Co. *SA * PC * ET * EF * ED * CF	CDI _{adj} = C _{Dw} *SA _{adj} * PC * ET * EF * CF	ompounds omy).
	BW * AT	AT	
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
o _{gw} – SA =	Surface Area (cm²)		
	Age-adjusted Surface Area (cm ² -yr/kg)	N/A	20000 b,c
SA _{adj} =		9480 b,c	N/A
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b,e	0 007 b,e
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	30 a	30 a
CF =	Conversion Factor (L/cm³)	1 00E-03	1 00E-03
BW = AT =	Body Weight (kg)	70 a	70 a
	Averaging Time (days)	25550 a	10950 a
Inhalatio	n:		
CDI =	Ingestion CDI from above ¹		
- - -			
	ces:		
Referenc	EPA, Human Health Evaluation Manual, Supplet		ure Factors*
Reference a = U S	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991	·	
Reference a = U S	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for bo	ody weight and time for carcinogenic expos	ure
Reference a = U S	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for bo IRadj = <u>IRc x EDc</u> + <u>IRa x (EDa - E</u>	ody weight and time for carcinogenic exposible $\frac{1 \times 6}{1 \times 6}$	ure <u>2 x (30-6)</u>
Reference a = U S	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for bo IRadj = <u>IRc x EDc</u> + <u>IRa x (EDa - E</u> BWc BWa	ody weight and time for carcinogenic expos	ure
Reference a = U S b = Age-a	EPA, Human Health Evaluation Manual, Suppler OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for both IRadj = IRc x EDc + IRa x (EDa - EBWc BWa 1.09 (L-year)/(kg-day)	ody weight and time for carcinogenic exposible $\frac{1 \times 6}{1 \times 6}$	ure <u>2 x (30-6)</u>
Reference a = U S b = Age-a b = USEF	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for both IRadj = IRc x EDc + IRa x (EDa - E BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997	ody weight and time for carcinogenic exposing $\frac{1 \times 6}{15}$	ure <u>2 x (30-6)</u>
Reference a = U S b = Age-a b = USEF c = Total	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for bounded in the last of the	body weight and time for carcinogenic exposition $\frac{1 \times 6}{15}$ + $\frac{1 \times 6}{15}$ rage of male & female adults)	ure <u>2 x (30-6)</u> 70
Reference a = U S b = Age-a b = USEF c = Total	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for bounded in the supplemental of	body weight and time for carcinogenic expossion $\frac{1 \times 6}{15}$ + $\frac{1 \times 6}{15}$ + rage of male & female adults) by weight and time for carcinogenic exposure.	ure 2 x (30-6) 70
Reference a = U S b = Age-a b = USEF c = Total	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for bound in the second	body weight and time for carcinogenic exposition $\frac{1 \times 6}{15}$ + $\frac{1 \times 6}{15}$ rage of male & female adults) y weight and time for carcinogenic exposure $\frac{150}{15}$ = $\frac{6557 \times 6}{15}$ +	ure 2 x (30-6) 70 re 20000 x (30-6)
Reference a = U S b = Age-a b = USEF c = Total	EPA, Human Health Evaluation Manual, Supplet OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for both IRadj = IRc x EDc + IRa x (EDa - EBWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 Body Surface Area represents whole body (aveildjusted surface area for adults, adjusted for bodh SAadj = SAc x EDc + SAa x (EDa - EBWc BWa	body weight and time for carcinogenic expossion $\frac{1 \times 6}{15}$ + $\frac{1 \times 6}{15}$ + rage of male & female adults) by weight and time for carcinogenic exposure.	ure 2 x (30-6) 70
Reference a = U S b = Age-a b = USEF c = Total f = Age-a	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for bound in the second	body weight and time for carcinogenic expossion $\frac{1 \times 6}{15}$ + $\frac{1 \times 6}{15}$ + $\frac{1}{15}$ rage of male & female adults) by weight and time for carcinogenic exposure $\frac{6557 \times 6}{15}$ + $\frac{6557 \times 6}{15}$	ure 2 x (30-6) 70 re 20000 x (30-6) 70
Reference a = U S b = Age-a b = USEF c = Total f = Age-a	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for bound in the second	rage of male & female adults) y weight and time for carcinogenic exposure rage of male & female adults) y weight and time for carcinogenic exposure EDc) = 6557 x 6 + 15 for constituents without a PC value, all value.	ure 2 x (30-6) 70 re 20000 x (30-6) 70
Reference a = U S b = Age-a b = USEF c = Total f = Age-a d = Derm	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for both IRadj = IRc x EDc + IRa x (EDa - E) BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 Body Surface Area represents whole body (aveildjusted surface area for adults, adjusted for bodh SAadj = SAc x EDc + SAa x (EDa - E) BWc BWa 9480 (cm²-year)/(kg) at Permeability Constant for water (0 001) used from EPA, Dermal Exposure Assessment Prince adjusted 1991	rage of male & female adults) y weight and time for carcinogenic exposure rage of male & female adults) y weight and time for carcinogenic exposure EDc) = 6557 x 6 + 15 for constituents without a PC value, all value or proper and Applications, January 1992.	ure 2 x (30-6) 70 re 20000 x (30-6) 70
Reference a = U S b = Age-a b = USEF c = Total f = Age-a d = Derm e = 10 ms	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for both IRadj = IRc x EDc + IRa x (EDa - E) BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 Body Surface Area represents whole body (aveildjusted surface area for adults, adjusted for both SAadj = SAc x EDc + SAa x (EDa - E) BWc BWa 9480 (cm²-year)/(kg) and Permeability Constant for water (0 001) used from EPA, Dermal Exposure Assessment Principle 1 (1 0 0 0 1) bursed event x 1 hour/60 minutes x 1 day/24 hours	ody weight and time for carcinogenic exposition in the formula of	ure 2 x (30-6) 70 re 20000 x (30-6) 70 ues adapted
Reference a = U S b = Age-a b = USEF c = Total f = Age-a d = Derm e = 10 ms	EPA, Human Health Evaluation Manual, Supplei OSWER Directive 9285 6-03, March 25, 1991 adjusted ingestion rate for adults, adjusted for both IRadj = IRc x EDc + IRa x (EDa - E) BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 Body Surface Area represents whole body (aveildjusted surface area for adults, adjusted for bodh SAadj = SAc x EDc + SAa x (EDa - E) BWc BWa 9480 (cm²-year)/(kg) at Permeability Constant for water (0 001) used from EPA, Dermal Exposure Assessment Prince adjusted 1991	ody weight and time for carcinogenic exposition in the following state of the following sta	ure 2 x (30-6) 70 re 20000 x (30-6) 70 ues adapted

1237

Total Risk = 3E-05
WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, * = inhalation intake (CDI) = ingestion intake

Inhalation* ELCR

1 2E-06 7 1E-07 1.9E-06

OS 149E-07 84E-09 32E-05 13E-05 84E-09

5 95E-05 5 86E-04 1 18E-04

ABSgi PC 1 310E-01 410E-02 5 1 100E+00 480E-02 5 1 150E-01 160E-02 1

4 00E-03 3 94E-02 7 90E-03

2 00E-03 6 00E-03

5 20E-02 7 33E-02

5 20E-02 1 10E-02

D C-82 82 WOE

CHLOROBENZENE
TETRACHLOROETHYLENE (PCE)
TRICHLOROETHYLENE (TCE)
Total Risk

Units MG/L MG/L MG/L

Notes Notes

SF

SFd

SFo

Chemical

FU7 Plume A Groundwater (Potable Use) - Hypothetical Future Residential Adult Carcinogenic Scenario

Memphis Depot Main Installation RI

Ingestion CDI ELCR

P /147543/APPI8FU7gw xls/AGWRA-Carcinogenic

1

TABLE 18-6c
FU7 Plume A Groundwater (Potable Use) - Hypothetical Future Residential Adult Non-Carcinogenic Scenario Memphis Depot Main Installation RI

											1		
									ngestion	딘	Derma		Inhalation.
Units	Chemical	WOE	RfDo	RfDd	RfD	EPC	ABSgı	PC	CDI	НО	CDI		오
MG/L	CHLOROBENZENE	۵	2 00E-02	6 20E-03	5 70E-03	4 00E-03	3 10E-01	2 00E-02 6 20E-03 5 70E-03 4 00E-03 3 10E-01 4 10E-02 1 10E-04	1 10E-04	0 005	3 15E-07	0 00005	0 02
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	1 00E-02	C-B2 1 00E-02 1 00E-02 1 71E-01	1 71E-01	3 94E-02	1 00E+00	4 80E-02	1.08E-03	0	3 63E-06	0 0004	900 0
MG/L	TRICHLOROETHYLENE (TCE)	B2	B2 6 00E-03 9 00E-04	9 00E-04		7 90E-03	1 50E-01	7 90E-03 1 50E-01 1 60E-02 2 17E-04	2 17E-04	0 04	2 43E-07	0 0003	i
	Hazard Index									0.1		0.0007	0.03
									:		Total HI ==	02	
Alaba	wice - Woods of Euglands of Eugland Date triake FDC - Evaceure Point Concentration intake	CDC - FV	DOSIIVE POR	of Concentra	A OH WORK	Hazard Oilo	tion! H = H	azard Index	nhalatio	in intake (C	DI) = ingesti	on intake	

TABLE 18-7a
FU7 Plume A Max Groundwater (Potable Use) - Hypothetical Future Residential Adult Scenaric
Memphis Depot Main Installation RI

_		<u>Carcinogenic</u>	<u>Noncarcinogenic</u>
ngestio			
	r non-carcinogenic compounds:	Age-specific intake (for carcinogenic of	ompounds only).
CDI =	C _{gu} * IR * EF * ED	CDI _{adj} = <u>C_{ow} * EF * CF * IR_{adj}</u>	
	BW * AT	AT	
C _{9w} =	Concentration in groundwater (mg/L)	EPC	EPC
IR = '	Ingestion Rate (L/day)	N/A	2 a
IR _{adi} =	Age-adjusted Ingestion Rate (L-year/kg-day)	1.1 b	N/A
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	30 a	30 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	10950 a
Dermal:			
Intake fo	r non-carcinogenic compounds	Age-specific intake (for carcinogenic c	ompounds only):
CDI =	Cox *SA * PC * ET * EF * ED * CF	$CDI_{adj} = C_{cov} *SA_{adj} * PC * ET * EF * CF$	
	BW * AT	AT	
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm ²)	N/A	20000 b.d
SA _{adj} =	Age-adjusted Surface Area (cm2-yr/kg)	9480 b,c	N/A
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b,e	0 007 b,e
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	30 a	30 a
CF =	Conversion Factor (L/cm³)	1 00E-03	1 00E-03
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	10950 a
inhalatio CDI =	on: Ingestion CDI from above ^f		
	EPA, Human Health Evaluation Manual, Supple OSWER Directive 9285 6-03, March 25, 199	1	
b = Age-	adjusted ingestion rate for adults, adjusted for b		
	IRadj = IRc x EDc + IRa x (EDa - I		2 x (30-6)
	BWc BWa	15	70
6 - HCF	1.09 (L-year)/(kg-day)		
	PA Exposure Factors Handbook, August 1997	arage of male & female adults)	
	Body Surface Area represents whole body (ave	-	·^
ı = Age-a	adjusted surface area for adults, adjusted for both	· · · · · · · · · · · · · · · · · · ·	
	SAadj = <u>SAc x EDc</u> + <u>SAa x (EDa -</u> BWc BWa	<u>EDc)</u> = <u>6557 x 6</u> + 15	20000 x (30-6) 70
	9480 (cm²-year)/(kg)		
	nal Permeability Constant for water (0 001) used	d for constituents without a PC value, all valu	ues adapted
d = Dem		reciples and Applications January 1000	
d = Dem	from EPA, Dermal Exposure Assessment Pr	inciples and Applications, January 1992	
	from EPA, Dermal Exposure Assessment Pr ninute event x 1 hour/60 minutes x 1 day/24 hou	* * * * * * * * * * * * * * * * * * * *	
e = 10 m	•	rs = 0.007 day per event	3
e = 10 m	inute event x 1 hour/60 minutes x 1 day/24 hou	rs = 0.007 day per event roundwater volatiles while showering/bathing	•

TABLE 18-7b
FU7 Plume A Max Groundwater (Potable Use) - Hypothetical Future Residential Adult Carcinogenic Scenano
Memphs Depot Man Installation RI

									Ingestion	ition	Dermal	nal	Inhalation,	
Units	Chemical	WOE	WOE SFo	SFd	SFi	EPC	ABSgi	PC	CDI	ELCR	CDI	ELCR	ELCR	
MG/L	CHLOROBENZENE	۵				4 00E-03 3 10E-01 4 10E-02 5 95E-05	3 10E-01	4 10E-02	5 95E-05		1 49E-07			
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	C-B2 5 20E-02	5 20E-02 2 00E-03 1 20E-01 1 00E+00 4 80E-02 1 78E-03 9 3E-05 5 24E-06	2 00E-03	1 20E-01	1 00E+00	4 80E-02	1 78E-03	9 3E-05	5 24E-06	3 27E-07	3 6E-06	
MG/L	TRICHLOROETHYLENE (TCE)		B2 1 10E-02	7 33E-02	6 00E-03	3 10E-02	1 50E-01	1 60E-02	4 61E-04	5 1E-06	733E-02 600E-03 310E-02 150E-01 160E-02 461E-04 51E-06 451E-07 33E-08	3 3E-08	2 8E-06	
	Total Risk									9 8E-05		3.1E-07	6.3E-06	
Notes						!				ř	Total Risk = 1E-04	1E-04		
Notoe	WOR - Worth of Evidence CDI - Chronic Daily Intake	ronic Da		FPC = Expos	ure Point C	phoentration	ELCR = E	xcess Lifetin	ne Cancer E	-xposure.	= inhalation	intake (CDI	FPC = Fxnosure Point Concentration ELCB = Excess Lifetime Cancer Exposure * = inhalation intake (CDI) = indestion intake	

TABLE 18-7c
FU7 Plume A Max Groundwater (Potable Use) - Hypothetical Future Residential Adult Non-Carcinogenic Scenario
Memphis Depot Main Installation RI

									Ingestion	stion	Derma	mai	inhalation.
Units	Chemical	WOE	RfDo	RfDd	RfDi	EPC	ABSgi	ပ္ရ	CDI	오	CD	НО	면
MG/L	CHLOROBENZENE	1	2 00E-02	6 20E-03	5 70E-03	4 00E-03	2 00E-02 6 20E-03 5 70E-03 4 00E-03 3 10E-01 4 10E-02	4 10E-02	32 1 10E-04 (0 005	3 15E-07	0 00005	0 02
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	1 00E-02	1 00E-02	171E-01	1 20E-01	100E-02 100E-02 171E-01 120E-01 100E+00 480E-02	4 80E-02	3 29E-03	03	1 10E-05	0 001	0 02
MG/L	TRICHLOROETHYLENE (TCE)	82	6 00E-03 9 00E-04	9 00E-04		3 10E-02	3 10E-02 1 50E-01 1 60E-02	1 60E-02	8 49E-04	0	9 51E-07	0 001	
	Hazard Index									0.5		0 002	0.04
											Total HI 🕾	0.5	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake	, EPC = 1	Exposure P	oint Concer	ıtration, HQ	= Hazard Q	uotient, HI =	Hazard Inc	Jex, * = ınhal.	ation intak	ike, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion intake	stion intake	

TABLE 18-8a

FU7 Plume A Groundwater (Potable Use) - Hypothetical Future Residential Child Scenano Memphis Depot Main Installation RI

		<u>Carcinogenic</u>	Noncarcinogenic
ingestic	on:		
Intake fo	or non-carcinogenic and carcinogenic compounds.		
CDI =	Con IR EF ED		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dermal:	:		
Intake fo	or non-carcinogenic and carcinogenic compounds		
CDI =	Cow *SA * PC * ET * EF * ED * CF		
	BW * AT		
C _{gw} =		EPC	EPC
-	BW * AT Concentration in groundwater (mg/L)	• •	
SA =	BW * AT Concentration in groundwater (mg/L) Surface Area (cm²)	6557 b, c	6557 b, c
SA = PC =	BW * AT Concentration in groundwater (mg/L)	• •	
SA = PC = ET =	BW * AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr)	6557 b, c (Chemical Specific) d	6557 b, c (Chemical Specific) d
SA = PC = ET = EF =	BW * AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day)	6557 b, c (Chemical Specific) d 0 007 b,e	6557 b, c (Chemical Specific) d 0 007 b,e
SA = PC = ET = EF = ED =	BW * AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day) Exposure Frequency (day/year)	6557 b, c (Chemical Specific) d 0 007 b,e 350 a	6557 b, c (Chemical Specific) d 0 007 b,e 350 a
C _{gw} = SA = PC = ET = EF = ED = CF = BW =	BW * AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day) Exposure Frequency (day/year) Exposure Duration (year)	6557 b, c (Chemical Specific) d 0 007 b,e 350 a 6 a	6557 b, c (Chemical Specific) d 0 007 b,e 350 a 6 a

Inhalation:

CDI = Ingestion CDI from above f

References:

a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.

b = US EPA Exposure Factors Handbook, August 1997

Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance, May 1998.

- c = Total Body Surface Area represents whole body (average of male & female children (1-6 years old))
- d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value, all values adapted from EPA, Dermal Exposure Assessment: Principles and Applications, January 1992
- e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event
- f = follows EPA Region IV guidance (i.e., inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

mempris Depot main installation Hi

									Ingestion	tion	Dermal	nal	Inhalation*	
Units	Chemical	WOE	WOE SFo	SFd	SFI	EPC	ABSgi	ပ္ရ	Ω	ELCR		CDI ELCR ELCR	ELCR	
MG/L	CHLOROBENZENE	۵				4 00E-03	3 10E-01	4 00E-03 3 10E-01 4 10E-02 2 19E-05	2 19E-05		4 12E-08			
MG/L	TETRACHLOROETHYLENE (PCE) C-82 5 20E-02	C-82		5 20E-02	2 00E-03	3 94E-02	1 00E+00	4 80E-02	2 16E-04	1 1E-05	5 20E-02 2 00E-03 3 94E-02 1 00E+00 4 80E-02 2 16E-04 1 1E-05 4 76E-07 2 5E-08 4 3E-07	2 5E-08	4 3E-07	
MG/L	TRICHLOROETHYLENE (TCE)	B2		7 33E-02	6 00E-03	7 90E-03	1 50E-01	1 60E-02	4 33E-05	4 8E-07	7 33E-02 6 00E-03 7 90E-03 1 50E-01 1 60E-02 4 33E-05 4 8E-07 3 18E-08 2 3E-09	2 3E-09	2 6E-07	
										1.2E-05		2.7E-08	2.7E-08 6 9E-07	
Notes										ř	Total Risk = 1E-05	1E-05		
Notes	WOF = Weight of Evidence CD! = Chronic Daily Intake. F	Pronc Da	Ily Intake	PC = Expos	ure Point C	oncentration	FLCR = E	xcess Lifetin	ne Cancer E	-xposure,	= inhalation	intake (CDI	FPC = Exposure Point Concentration. ELCR = Excess Lifetime Cancer Exposure. * = inhalation intake (CDI) = ingestion intake	9

٠ ; ط

TABLE 18-8c
FU7 Plume A Groundwater (Potable Use) - Hypothetical Future Residential Child Non-Carcinogenic Scenano
Memphis Depot Main Installation R1

									Ingestion	tion	Derma	la L	Inhalation*
Units	Chemical	WOE	RfDo	RfDd	RfDi	EPC	ABSgl	S S	ō	모	5	웃	Ë
MG/L	CHLOROBENZENE	۵	2 00E-02	6 20E-03	5 70E-03	4 00E-03	3 10E-01	2 00E-02 6 20E-03 5 70E-03 4 00E-03 3 10E-01 4 10E-02 2 56E-04	2 56E-04	0 01	4	0 00008	0 04
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	1 00E-02	1 00E-02	1 71E-01	3 94E-02	1 00E+00	C-B2 1 00E-02 1 00E-02 1 71E-01 3 94E-02 1 00E+00 4 80E-02 2 52E-03	2 52E-03	03	5 55E-06	90000	0 01
MG/L	TRICHLOROETHYLENE (TCE)	B2	B2 6 00E-03 9 00E-04	9 00E-04		7 90E-03	1 50E-01	7 90E-03 1 50E-01 1 60E-02 5 05E-04	5 05E-04	0 08	3 71E-07	0 0004	
	Hazard Index									0.3		0.001	90.0
											Total HI =	0.4	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily In	Intake, E.	PC = Expo	sure Point C	oncentration	n, HQ = Haz	rard Quotier	nt, HI = Haza	ard Index, *=	inhalation	take, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion intake	= ingestion	ıntake

TABLE 18-9a
FU7 Plume A Max Groundwater (Potable Use) - Hypothetical Future Residential Child Scenario
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
ngestic	on:	 	
ntake fo	or non-carcinogenic and carcinogenic compounds		
CDI =	Cm * IR * EF * ED		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
Ř=	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
3W =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dermal:			
	or non-carcinogenic and carcinogenic compounds:		
Intake fo	or non-carcinogenic and carcinogenic compounds: Com *SA * PC * ET * EF * ED * CF		
	or non-carcinogenic and carcinogenic compounds: Com *SA * PC * ET * EF * ED * CF BW * AT		
ntake fo	Cow *SA * PC * ET * EF * ED * CF	EPC	EPC
ntake fo CDI = C _{gw} =	C _{ow} *SA * PC * ET * EF * ED * CF BW * AT Concentration in groundwater (mg/L)	EPC 6557 b, c	EPC 6557 b. c
ntake fo CDI = C _{gw} = SA =	C _{ow} *SA * PC * ET * EF * ED * CF BW * AT	- . -	
ntake fo CDI = C _{gw} = SA = PC =	Com *SA * PC * ET * EF * ED * CF BW * AT Concentration in groundwater (mg/L) Surface Area (cm²)	6557 b, c	6557 b, c
ntake for CDI = Cgw = SA = PC = ET =	Cow *SA * PC * ET * EF * ED * CF BW * AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr)	6557 b, c (Chemical Specific) d	6557 b, (Chemical Specific) d
ntake for CDI = Cgw = SA = CC = ST = ST = ST = ST = ST = ST = ST	Cow *SA * PC * ET * EF * ED * CF BW * AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day)	6557 b, c (Chemical Specific) d 0 007 b,e	6557 b, 6 (Chemical Specific) d 0 007 b,e
ntake fo CDI = Cgw = SA = PC = ET = EF = ED =	Cow *SA * PC * ET * EF * ED * CF BW * AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day) Exposure Frequency (day/year)	6557 b, c (Chemical Specific) d 0 007 b,e 350 a	6557 b, 6 (Chemical Specific) d 0 007 b,e 350 a
ntake fo	Cow *SA * PC * ET * EF * ED * CF BW * AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day) Exposure Frequency (day/year) Exposure Duration (year)	6557 b, c (Chemical Specific) d 0 007 b,e 350 a 6 a	6557 b, 6 (Chemical Specific) d 0 007 b,e 350 a 6 a

CDI = Ingestion CDI from above f

References:

a = U.S. EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991

b = US EPA Exposure Factors Handbook, August 1997

Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance, May 1998

- c = Total Body Surface Area represents whole body (average of male & female children (1-6 years old))
- d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value; all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992
- e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0.007 day per event
- f = follows EPA Region IV guidance (i.e., inhalation of groundwater volatiles while showering/bathing

is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS. Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

TABLE 16-9b
FU7 Plume A Max Groundwater (Potable Use) - Future Residential Child Carcinogenic Scenario Memphis Depot Main Installation RI

									Ingestion	tion	Dermal	<u>181</u>	Inhalation*	
Units	Chemical	WOE	WOE SFO	SFd	SFi	EPC	ABSgi PC		CD	ELCR	CDI	ELCR	ELCR	
MG/L	CHLOROBENZENE	۵				4 00E-03	4 00E-03 3 10E-01 4 10E-02 2 19E-05	4 10E-02	2 19E-05		4 12E-08	•		1
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	C-B2 5 20E-02	5 20E-02	2 00E-03	1 20E-01	1 00E+00	4 80E-02	5 20E-02 2 00E-03 1 20E-01 1 00E+00 4 80E-02 6 58E-04 3 4E-05 1 45E-06 7 5E-08	3 4E-05	1 45E-06	7 5E-08	1 3E-06	
MG/L	TRICHLOROETHYLENE (TCE)		B2 110E-02	733E-02 600E-03 310E-02 150E-01 160E-02 170E-04 19E-06 125E-07 91E-09	6 00E-03	3 10E-02	1 50E-01	1 60E-02	1 70E-04	1 9E-06	1 25E-07	9 1E-09	1 0E-06	
	Total Risk									3.6E-05		8 4E-08		
Notes	•									To	Total Risk = 4E-05	4E-05		j
Notes	WOF = Weight of Evidence, CDI = Chronic Daily Intake.	ronc Da	ily Intake. E	FPC = Expos	sure Point C	oncentration	n. ELCR = E	xcess Litetii	me Cancer E	xposure.	= inhalation i	ntake (CD)	EPC = Exposure Point Concentration. ELCR = Excess Lifetime Cancer Exposure. * = inhalation intake (CDI) = ingestion intake	

Dermal

0.09

0 00008 0 002 0 002 0 003

CDI 4 81E-07 1 69E-05 1 46E-06

Lingestion
CDI HQ
J2 2 56E-04 0 01
A-02 7 67E-03 C

 WOE
 RIDs
 RIDs
 RIDs
 RIDs
 RIDs
 RIDs
 PC
 ABSgi
 PC

 D
 2 00E-02
 6 20E-03
 5 70E-03
 4 00E-03
 3 10E-01
 4 10E-02

 C-B2
 1 00E-02
 1 71E-01
 1 20E-01
 1 00E+00
 4 80E-02

 B2
 6 00E-03
 9 00E-04
 3 10E-02
 1 50E-01
 1 60E-02

CHLOROBENZENE
TETRACHLOROETHYLENE (PCE)
TRICHLOROETHYLENE (TCE)
Hazard Index

Units MG/L MG/L MG/L Notes

Chemical

FU7 Plume A Max Groundwater (Potable Use) - Hypothetical Future Residential Child Non-Carcinogenic Scenario

Memphis Depot Main Installation RI

TABLE 18-90

Total HI = 1
WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion intake

247

P /147543/APPIBFU7gw xls/MAXAGWRC-NonCarcinogenic

TABLE 18-10a
FU7 Plume B Groundwater (Potable Use) - Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestic			
ntake fo	or non-carcinogenic and carcinogenic compounds:		
CDI =	Cout IR t EF t ED		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal	:		
Intake fo	or non-carcinogenic and carcinogenic compounds:		
CDI =	C * * SA * PC * ET * EF * ED * CF		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm ²)	2679 b,c	2679 b,d
	· · · · · · · · · · · · · · · · · · ·	(Chemical Specific) d	(Observation) Outside Andrew
PÇ =	Dermai Permeability Constant (cm/nr)	(Chemical Specific) d	(Chemical Specific) d
	Dermal Permeability Constant (cm/hr) Exposure Time (hr/day)	0 007 b,e	(Chemical Specific) 6 0.007 b,6
ET =	Exposure Time (hr/day) Exposure Frequency (day/year)	• • •	
ET = EF =	Exposure Time (hr/day)	0 007 b,e	0.007 b,
ET = EF = ED =	Exposure Time (hr/day) Exposure Frequency (day/year)	0 007 b,e 250 a	0.007 b,6 250 a
PC = ET = EF = ED = CF = BW =	Exposure Time (hr/day) Exposure Frequency (day/year) Exposure Duration (year)	0 007 b,e 250 a 25 a	0.007 b,6 250 a 25 a

CDI = Ingestion CDI from above 9

References:

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors"

 OSWER Directive 9285 6-03, March 25, 1991
- b = Default factors adapted from EPA Exposure Factors Handbook, August 1997
- c = Surface area represents 1/2 head, 1/2 arms, and the hands of an adult worker
- d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value; all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992
- e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event
- g = follows EPA Region IV guidance (i.e., inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

P/147543/APPI8FU7gw xts/BGWIW Carcinogenic

TABLE IG-10b
FU7 Plume B Groundwater (Potable Use) - Hypothetical Future Industrial Worker Carcinogenic Scenano
Memphis Depot Main installation Ri

									lnges	ngestron	Dermai		Inhalation*
Chemical	>	õ		SFd	SFI	EPC	ABSgı	PC	CDI	ELCR	CDI	ELCR	ELCR
1,1,2,2-TETRACHLOROETHANE		ပ	2 00E-01	2 86E-01	2 03E-01	4 00E-03	7 00E-01	9 00E-03	1 40E-05	2 8E-06	286E-01 203E-01 400E-03 700E-01 900E-03 140E-05 28E-06 236E-09 67E-10	6 7E-10	2 8E-06
CHLOROBENZENE	_	_				1 00E-03	3 10E-01	4 10E-02	3 49E-06		2 69E-09		
CHLOROMETHANE	O		1 30E-02	1 63E-02	63E-02 6 00E-03 1 00E-03	1 00E-03	8 00E-01	8 00E-01 4 20E-03	3 49E-06	4 5E-08	2 75E-10 4 5E-12	4 5E-12	2 1E-08
IYLENE (PCE)	Ç	O	C-B2 5 20E-02	5 20E-02	2 00E-03	5 20E-02 2 00E-03 9 41E-03 1 00E+00 4 80E-02 3 29E-05	1 00E+00	4 80E-02	3 29E-05	1 7E-06	1 7E-06 2 96E-08	1 SE-09	6 6E-08
TRICHLOROETHYLENE (TCE) B2	B2		1 10E-02	7 33E-02	6 00€-03	7 33E-02 6 00E-03 9 30E-03 1 50E-01 1 60E-02 3 25E-05	1 50E-01	1 60E-02	3 25E-05	3 6E-07	3 6E-07 9 75E-09		1 9E-07
Total Risk										4.9E-06		2.9E-09	3.1E-06
										ř	Total Risk ==	8E-06	
WOE = Weight of Evidence. CDI = Chronic Daily Intake.	Tron	Õ		PC = Expos	sure Point C	oncentration	1, ELCR = E	xcess Lifetir	ne Cancer	exposure,	= inhalation	ıntake (CD	EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, * = inhalation intake (CDI) = ingestion intake

•

TABLE 16-10c
FUT Plume B Groundwater (Potable Use) - Hypothetical Future Industrial Worker Non-Carcinogenic Scenario
Memphis Depot Main Installation RI

									Indes	Ingestion	å	Dermal	Inhalation*
Units	Chemical	WOE	OE RfDo	RfDd	RfDi	EPC	ABSgi	PC	CO	오	CDI	ğ	오
MG/L	1,1,2,2-TETRACHLOROETHANE	ပ				4 00E-03	7 00E-01	4 00E-03 7 00E-01 9 00E-03 3 91E-05	3 91E-05		6 61E-09		
MG/L	CHLOROBENZENE	۵	2 00E-02		6 20E-03 5 70E-03	1 00E-03	3 10E-01	3 10E-01 4 10E-02 9.78E-06	9.78E-06	0 0005	7 52E-09	0 000001	0 002
MG/L	CHLOROMETHANE	O				1 00E-03		8 00E-01 4 20E-03	9 78E-06		7 71E-10		
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	1 00E-02	1 00E-02	C-B2 100E-02 100E-02 171E-01	9 41E-03	1 00E+00	4 80E-02	9 41E-03 1 00E+00 4 80E-02 9 20E-05	6000	8 29E-08	0 000008	0 0005
√Q/r	TRICHLOROETHYLENE (TCE)	82	6 00E-03	32 6 00E-03 9 00E-04		9 30E-03	1 50E-01	9 30E-03 1 50E-01 1 60E-02 9 10E-05	9 10E-05	0 05	2 73E-08	0 00003	
	Hazard Index									0 02		0.00004	0 002
											Total HI =	0.03	
Votes	WOE = Weight of Evidence, CDI = Chronic Daily Intake,		= Exposur	e Point Con	centration, I	10 = Hazarı	d Quotient,	HI = Hazard	Index, * = In	ihalation in	EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion intake	ingestion int	take

TABLE 18-11a
FU7 Plume B Max Groundwater (Potable Use) - Hypothetical Future Industrial Worker Scenario
Memphis Depot Main Installation RI

		Carcinogenic	<u>Noncarcinogenic</u>
Ingestio	n:		*
Intake fo	or non-carcinogenic and carcinogenic compounds:		1/
CDI =	Com * IR * EF * ED		
	BW * AT		~
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:	•		
Intake fo	or non-carcinogenic and carcinogenic compounds.		
CDI =	C*SA * PC * ET * EF * ED * CF		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm²)	2679 b,c	2679 b,c
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b,e	0 007 b,e
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (L/cm³)	1 00E-03	1 00E-03
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

CDI = Ingestion CDI from above 9

References:

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991
- b = Default factors adapted from EPA Exposure Factors Handbook, August 1997
- c = Surface area represents 1/2 head, 1/2 arms, and the hands of an adult worker
- d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value, all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992.
- e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event.
- g = follows EPA Region IV guidance (i e , inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

TABLE IB-11b
FU7 Plume B Max Groundwater (Potable Use) - Hypothetical Future Industrial Worker Carcinogenic Scenario Memphins Depot Main Installation RI

									luges	Ingestion	Oermal	mai	Inhalation*		
Units	Chemical	WOE	WOE SFo	SFd	SFi	EPC	ABSgi	PC	CDI	ELCR	CDI	ELCR	ELCR		
MG/L	1,1,2,2-TETRACHLOROETHANE	ပ	2 00E-01	2 86E-01	2 03E-01	4 00E-03	7 00E-01	9 00E-03	1 40E-05	2 8E-06	2 00E-01 2 86E-01 2 03E-01 4 00E-03 7 00E-01 9 00E-03 1 40E-05 2 8E-06 2 36E-09 6 7E-10	6 7E-10			
MG/L	CHLOROBENZENE	۵				1 00E-03	3 10E-01	4 10E-02 3 49E-06	3 49E-06		2 69E-09				
MG/L	CHLOROMETHANE	ပ	1 30E-02	1 63E-02	163E-02 600E-03 100E-03	1 00E-03	8 00E-01	4 20E-03	4 20E-03 3 49E-06 4 5E-08	4 5E-08	2 75E-10 4 5E-12	4 5E-12	2 1E-08		
MG/L	TETRACHLOROETHYLENE (PCE)	C-82 5 20E-	5 20E-02	5 20E-02	2 00E-03	1 60E-02	1 00E+00	520E-02 200E-03 160E-02 100E+00 480E-02 559E-05 29E-06	5 59E-05	2 9E-06	5 03E-08	2 6E-09	1 1E-07		
MG/L	TRICHLOROETHYLENE (TCE)	B 2	1 10E-02	7 33E-02	6 00E-03	5 80E-02	1 50E-01	1 60E-02	2 03E-04	2 2E-06	B2 110E-02 733E-02 600E-03 580E-02 150E-01 160E-02 203E-04 22E-06 608E-08 45E-09 12E-06	4 5E-09	1 2E-06		
	Total Risk									8.0E-06		7.8E-09	4.2E-06		
Notes		!								Tc	Total Risk = 1E-05	1E-05			
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, * = inhalation intake (CDI) = ingestion intake	ronic Da	uly Intake, E	PC = Expo	sure Point C	oncentration	n, ELCR = E	xcess Lifetii	ne Cancer E	Exposure,	= inhalation	intake (CDI	I) = ingestion in	ke	

TABLE I8-11c
FU7 Plume B Max Groundwater (Potable Use) - Hypothetical Future Industrial Worker Non-Carcinogenic Scenario Memphis Depot Main Installation RI

1,12,2-TETRACHLOROETHANE										1	200	2	Dormal	Inhalation*
												ž		IIIII daga
	Units	Chemical	WOE	RfDo	RfDd	RfDi		ABSgi	S S	<u>g</u>	오	CDI	НО	Ε
	MG/L	1.1.2.2-TETRACHLOROETHANE	o				4 00E-03	7 00E-01	9 00E-03	3 91E-05		6 61E-09		
	MG/L	CHLOROBENZENE	Δ	2 00E-02	6 20E-03	5 70E-03	1 00E-03	3 10E-01	4 10E-02	9 78E-06	0 0005	7 52E-09	0 000001	0 002
	MG/L	CHLOROMETHANE	ပ				1 00E-03	8 00E-01	4 20E-03	9 78E-06		7.71E-10		
	MG/L	TETRACHLOROETHYLENE (PCE)	C-82	1 00E-02	1 00E-02	1 71E-01	1 60E-02	1 00E+00	4 80E-02	1 57E-04	0 05	1 41 6-07	0 00001	60000
	MG/L	TRICHLOROETHYLENE (TCE)	B2	6 00E-03	9 00€-04		5 80E-02	1 50E-01	1 60E-02	5 68E-04	0 00	1 70E-07	0 0002	
		Hazard Index									2.0		0.0002	0.003
												Total HI =	0.1	
	Notes	WOE = Weight of Evidence, CDI = Chronic Daily	y Intake, EP	C = Exposi	ure Point Co	ncentration,	HO = Haza	d Quotient,	HI = Hazar	J Index, * = 1	nhalation if	take (CDI) =	ingestion in	take

TABLE 18-12a

FU7 Plume B Groundwater (Potable Use) - Hypothetical Future Residential Adult Scenaric Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic Noncarcinogeni
Ingestio			
	r non-carcinogenic compounds:	Age-specific intake (for carcinog	deuic combonuds oulh).
CDI =	Cou * IR * EF * ED	$CDI_{adj} = C_{ow} * EF * CF * IR_{adj}$	
	BW * AT	AT	
$C_{gw} = .$	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	N/A	2 a
IR _{adj} =	Age-adjusted Ingestion Rate (L-year/kg-day)	11b	N/A
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	30 a	30 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	10950 a
Dermal:			
Intake for	r non-carcinogenic compounds	Age-specific intake (for carcinoc	genic compounds only).
CDI =	Com *SA * PC * ET * EF * ED * CF	CDIadj = Cow *SAadj * PC * ET * EF	**CF
	BW * AT	AT	
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm²)	N/A	20000 b.c
SA _{adi} =	Age-adjusted Surface Area (cm ² -yr/kg)	9480 b.	·
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b.	
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	30 a	30 a
CF =	Conversion Factor (L/cm³)	1 00E-03	1 00E-03
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	10950 a
,	(20000 4	.5000 u
Inhalatio	on:		
ODI	Investige CDI from about		

CDI = Ingestion CDI from above f

References:

a = U.S. EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991

b = Age-adjusted ingestion rate for adults, adjusted for body weight and time for carcinogenic exposure

$$|Radj| = \frac{|Rc \times EDc}{BWc} + \frac{|Ra \times (EDa - EDc)}{BWa} = \frac{1 \times 6}{15} + \frac{2 \times (30-6)}{70}$$

1.09 (L-year)/(kg-day)

b = USEPA Exposure Factors Handbook, August 1997

c = Total Body Surface Area represents whole body (average of male & female adults).

f = Age-adjusted surface area for adults, adjusted for body weight and time for carcinogenic exposure

$$SAadj = SAc \times EDc + SAa \times (EDa - EDc) = 6557 \times 6 + 20000 \times (30-6)$$
 $BWc BWa 15 70$

9480 (cm²-year)/(kg)

d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value, all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992

e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0.007 day per event

f = follows EPA Region IV guidance (i.e., inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

FU7 Plume B Groundwater (Potable Use) - Hypothetical Future Residential Adult Carcinogenic Scenano
Memphis Depot Main Installation RI

									Indes	Indestion	5	Decinian	III BIBLION	
Jnits	Chemical	WOE	WOE SFo	SFd	SFI	EPC	ABSgi	ည	īgo	ELCR	CDI	ELCR	ELCR	
MG/L	1,1,2,2-TETRACHLOROETHANE	ပ	2 00E-01	2 86E-01	2 03E-01	4 00E-03	7 00E-01	286E-01 203E-01 4 00E-03 7 00E-01 9 00E-03 5 95E-05 1 2E-05 3 27E-08 9 4E-09	5 95E-05	1 2E-05	3 27E-08	9 4E-09	1 2E-05	
MG/L	CHLOROBENZENE	۵				1 00E-03	3 10E-01	4 10E-02	1 49E-05		3 73E-08			
MG/L	CHLOROMETHANE	ပ	1 30E-02	1 63E-02	6 00E-03	1 00E-03	8 00E-01	4 20E-03	1 49E-05	1 9E-07	3 82E-09	9 6 2E-11	8 9E-08	
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2 5 20E-(Ŋ	5 20E-02	2 00E-03	9 41E-03	1 00E+00	9 41E-03 100E+00 4 80E-02 1 40E-04 7 3E-06 4 10E-07	1 40E-04	7 3E-06	4 10E-07	2 1E-08	2 8E-07	
MG/L	TRICHLOROETHYLENE (TCE)		B2 110E-02	7 33E-02	6 00E-03	9 30E-03	1 50E-01	32 733E-02 600E-03 930E-03 150E-01 160E-02 138E-04 15E-06 135E-07	1 38E-04	1 5E-06	1 35E-07	9 9E-09	8 3E-07	
	Total Risk			l						2.1E-05		4.1E-08	1.3E-05	
Votes										Ť	Total Risk ==	3E-05		
Votes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, *= inhalation intake (CDI) = ingestion intake	попис Da	ily Intake, E	PC = Expos	ure Point C	oncentration	1, ELCR = E	xcess Lifeting	ne Cancer E	xposure, *	= mhalation	intake (CDI) = ingestion intake	

TABLE 18-12c FU7 Plume B Groundwater (Potable Use) - Hypothetical Future Residential Adult Non-Carcinogenic Scenario Memphis Depot Main Installation RI

Units Chemical WOE RfDo RfDi RfDi EPC ABSgi PC CDI HQ CDI HQ CDI HQ CDI HQ HQ HQ HQ HQ HQ HQ HQ HQ CDI LQ LQ LQ LQ LQ </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Inge</th> <th>ngestion</th> <th>Der</th> <th>Dermal</th> <th>Inhalation*</th>										Inge	ngestion	Der	Dermal	Inhalation*
A/G/L 1,1,2,2-TETRACHLOROETHANE C 4 00E-03 7 00E-01 9 00E-03 1 10E-04 6 90E-08 A/G/L CHLOROBENZENE D 2 00E-02 6 20E-03 5 70E-03 1 00E-03 3 10E-01 4 10E-02 2 74E-05 0 001 7 86E-08 A/G/L CHLOROMETHANE C-10 CHOROMETHANE R 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 2 00E-03 1 00E-03 1 00E-03 1 00E-03 1 00E-03 2 00E-03 1 00E-03 1 00E-03 2 00E-03 1 00E-03 1 00E-03 2 00E-03 1 00E-03 1 00E-03 2 00E-03 1 00E-03 1 00E-03 2 00E-03 1 00E-03 1 00E-03 2 00E-03 1 00E-03 1 00E-03 2 00E-03 1 00E-03 1 00E-03 2 00E-03 1 00E-03 <	Juits	Chemical	WOE	RfDo	PfOd	RfDi	EPC	ABSgi	ပ ပ	<u></u>	오	CDI	QH.	오
A/GAL CHLOROBENZENE D 2 00E-02 6 20E-03 5 70E-03 1 00E-03 3 10E-01 4 10E-02 2 74E-05 0 001 7 86E-08 A/GAL CHLOROMETHANE C C C C 1 00E-02 1 71E-01 9 41E-03 8 00E-01 4 20E-03 2 74E-05 8 05E-09 A/GAL TEICHLOROETHYLENE (TCE) B2 6 00E-02 1 00E-02 1 71E-01 9 41E-03 1 60E-02 2 58E-04 0 03 8 66E-07 A/GAL Hazard Index Hazard Index Page-03 1 50E-01 1 60E-02 2 55E-04 0 04 2 85E-07 A/OSE WOE WOE WOE Hazard Chothen, Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, *= inhalation intake (CDI) = ingental in	JG/L	1,1,2,2-TETRACHLOROETHANE	ပ				4 00E-03		9 00E-03	1 10E-04		6 90E-08		
MGAL CHLOROMETHANE C	AG/L	CHLOROBENZENE	۵	2 00E-02	6 20E-03	5 70E-03	1 00E-03	3 10E-01	4 10E-02	2 74E-05	0 001	7 86E-08	0 00001	0 005
MGAL TETRACHLOROETHYLENE (PCE) C-82 1 00E-02 1 00E-02 1 71E-01 9 41E-03 1 00E+00 4 80E-02 2 58E-04 0 03 8 66E-07 MGAL TRICHLOROETHYLENE (TCE) B2 6 00E-03 9 00E-04 9 30E-03 1 50E-01 1 60E-02 2 55E-04 0 04 2 85E-07 Hazard Index Total HI = North of Evidence, CDI = Chronic Daily Intaka, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = Inge	AGA.	CHLOROMETHANE	ပ				_		4 20E-03			8 05E-09		
AGAL TRICHLOROETHYLENE (TCE) B2 6 00E-03 9 00E-04 9 30E-03 1 50E-01 1 60E-02 2 55E-04 0 04 2 85E-07 Hazard Index Total HI = Nonic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = Inge	JG/L	TETRACHLOROETHYLENE (PCE)	C-82	1 00E-02	1 00E-02	1 71E-01	9 41E-03	1 00E+00	4 80E-02	2 58E-04	0 03	8 66E-07	600000	0 002
0.07 Hazard Index Total HI = Votes WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = Inge	AG/L	TRICHLOROETHYLENE (TCE)	B2	6 00E-03			9 30E-03	1 50E-01	1 60E-02	2 55E-04	0 0 4	2 85E-07	0 0003	
Total HI = Total HI = Alone CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = Inge		Hazard Index									0.07		0.0004	0.006
wOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Cuotent, HI = Hazard Index, * = inhalation Intake (CDI) = Inge												Total HI =	0.08	
	lotes	WOE = Weight of Evidence, CDI = Chronic D	aily Intake, EPC =	Exposure	Point Conc	entration, H	2 = Hazard	Quotient, HI	= Hazard Ir	idex, * = inh;	alation inta	ke (CDI) = in	gestion inta	ke

TABLE 18-13a

FU7 Plume B Max Groundwater (Potable Use) - Hypothetical Future Residential Adult Scenaric Memphis Depot Main Installation RI

Ingestic	n.	Carcinogenic	<u>Noncarcinogenic</u>
Ingestion	r non-carcinogenic compounds:	Age-specific intake (for carcinogenic c	omnorings oppy:
CDI =		- · · · · · · · · · · · · · · · · · · ·	ompounds only). >
0DI -	Cov * IR * EF * ED BW * AT	CDI _{adj} = <u>C_{ow} * EF * CF * IR_{adj}</u> AT	
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
ogw.− IR=	Ingestion Rate (L/day)	N/A	2 a
iR _{adi} =	Age-adjusted Ingestion Rate (L-year/kg-day)	11 b	N/A
madj – EF ≃	Exposure Frequency (day/year)	350 a	350 a
ED≃	Exposure Prequency (day/year) Exposure Duration (year)	30 a	30 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	10950 a
	, noing and (days)	20000 4	10000 4
Dermal:			
Intake fo	r non-carcinogenic compounds.	Age-specific intake (for carcinogenic o	compounds only)
CDI =	Cow *SA * PC * ET * EF * ED * CF	CDI _{adj} = C _{Dw} *SA _{adj} * PC * ET * EF * CF	
	BW - AT	AT	
C _{aw} =	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm²)	N/A	20000 b.d
SA _{adj} =	Age-adjusted Surface Area (cm ² -yr/kg)	9480 b,c	N/A
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b.e	0 007 b,e
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	30 a	30 a
CF =	Conversion Factor (L/cm³)	1 00E-03	1 00E-03
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	10950 a
Inhalatic CDI =	on: Ingestion CDI from above ^f		
Referen			
a = U.S	EPA, Human Health Evaluation Manual, Supple OSWER Directive 9285 6-03, March 25, 1991		ure Factors"
h – Δσο.	adjusted ingestion rate for adults, adjusted for b		ura
0 – 746-			
~	IRadi - IRc v EDc + IRa v (EDa - F	=Dc) - 1 v 6 +	
•	IRadj = <u>IRc x EDc</u> + <u>IRa x (EDa - I</u>		<u>2 x (30-6)</u> 70
Ū-	BWc BWa	<u>EDc)</u> = <u>1 x 6</u> + 15	2 <u>x (30-6)</u> 70
	BWc BWa 1.09 (L-year)/(kg-day)		
b = USE	BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997	15	
b = USE c = Total	BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 I Body Surface Area represents whole body (ave	15 arage of male & female adults)	70
b = USE c = Total	BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 I Body Surface Area represents whole body (aveadjusted surface area for adults, adjusted for books	15 erage of male & female adults) dy weight and time for carcinogenic exposui	70 re
b = USE c = Total	BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 I Body Surface Area represents whole body (ave	15 erage of male & female adults) dy weight and time for carcinogenic exposui	70
b = USE c = Total	BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 Body Surface Area represents whole body (aveadjusted surface area for adults, adjusted for body SAadj = SAc x EDc + SAa x (EDa-BWc BWa	15 erage of male & female adults) dy weight and time for carcinogenic exposui EDc) = 6557 x 6 +	70 re <u>20000 x (30-6)</u>
b = USE c = Total f = Age-a	BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 Body Surface Area represents whole body (aveadjusted surface area for adults, adjusted for both SAadj = SAc x EDc + SAa x (EDa-	15 erage of male & female adults) dy weight and time for carcinogenic exposul EDc) = 6557 x 6 + 15	70 re <u>20000 x (30-6)</u> 70
b = USE c = Total f = Age-a	BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 Body Surface Area represents whole body (aveadjusted surface area for adults, adjusted for book SAadj = SAc x EDc + SAa x (EDa-BWc BWa 9480 (cm²-year)/(kg)	15 Frage of male & female adults) dy weight and time for carcinogenic exposul EDc) = 6557 x 6 + 15 I for constituents without a PC value, all value	70 re <u>20000 x (30-6)</u> 70
b = USE c = Total f = Age-a d = Dem	BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 Body Surface Area represents whole body (aveadjusted surface area for adults, adjusted for body SAadj = SAc x EDc + SAa x (EDa-BWc BWa 9480 (cm²-year)/(kg) mal Permeability Constant for water (0 001) used from EPA, Dermal Exposure Assessment Prince PA	rage of male & female adults) dy weight and time for carcinogenic exposul EDc) = 6557 x 6 + 15 I for constituents without a PC value, all value inciples and Applications, January 1992	70 re <u>20000 x (30-6)</u> 70
b = USE c = Total f = Age-a d = Derm e = 10 m	BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 I Body Surface Area represents whole body (averadjusted surface area for adults, adjusted for box SAadj = SAc x EDc + SAa x (EDa - BWc BWa 9480 (cm²-year)/(kg) mal Permeability Constant for water (0 001) used	trage of male & female adults) dy weight and time for carcinogenic exposul EDc) = 6557 x 6 + 15 I for constituents without a PC value, all value inciples and Applications, January 1992 rs = 0 007 day per event	70 re <u>20000 x (30-6)</u> 70 ues adapted
b = USE c = Total f = Age-a d = Derm e = 10 m	BWc BWa 1.09 (L-year)/(kg-day) PA Exposure Factors Handbook, August 1997 Body Surface Area represents whole body (aveadjusted surface area for adults, adjusted for body SAadj = SAc x EDc + SAa x (EDa-BWc BWa 9480 (cm²-year)/(kg) mal Permeability Constant for water (0 001) used from EPA, Dermal Exposure Assessment Prinnute event x 1 hour/60 minutes x 1 day/24 hour	trage of male & female adults) dy weight and time for carcinogenic exposuit EDc) = 6557 x 6 + 15 I for constituents without a PC value, all value inciples and Applications, January 1992 as = 0 007 day per event oundwater volatiles while showering/bathing	70 re 20000 x (30-6) 70 ues adapted

TABLE 19-13b FU7 Plume B Max Groundwater (Potable Use) - Hypothetical Future Residential Adutt Carcinogenic Scenario Memphis Depot Man Installation RI

									Ingestion	tion	Dermal	nai	Inhalation*	
Units	Chemical	WOE	WOE SFo	SFd	SFi	EPC	ABSgi	PC	CDI	ELCR	CDI	CDI ELCR	ELCR	
MG/L	1,1,2,2-TETRACHLOROETHANE	ပ	2 00E-01	2 86E-01	2 03E-01	4 00E-03	7 00E-01	9 00E-03	5 95E-05	1 2E-05	286E-01 203E-01 400E-03 700E-01 900E-03 595E-05 12E-05 327E-08 94E-09	9 4E-09	1.2E-05	
MG/L	CHLOROBENZENE	۵				1 00E-03	00E-03 310E-01 410E-02	4 10E-02	1 49E-05		3 73E-08			
MG/L	CHLOROMETHANE	Ç	1 30E-02	1 63E-02	63E-02 6 00E-03	1 00E-03	8 00E-01 4 20E-03	4 20E-03	1 49E-05	1 9E-07	3 82E-09	6 2E-11	8 9E-08	
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	C-B2 5 20E-02	5 20E-02	2 00E-03	1 60E-02	1 00E+00	4 80E-02	1 60E-02 1 00E+00 4 80E-02 2 38E-04 1 2E-05	1 2E-05	6 98E-07	3 6E-08	4 8E-07	
MG/L	TRICHLOROETHYLENE (TCE)	B2	1 10E-02	7 33E-02	6 00E-03	5 80E-02	1 50E-01	1 60E-02	8 63E-04	9 5E-06	733E-02 600E-03 580E-02 150E-01 160E-02 863E-04 95E-06 844E-07 62E-08	6 2E-08	5 2E-06	
	Total Risk									3.4E-05		1.1E-07	1.8E-05	
Notes					ļ					2	Total Rısk ≔	5E-05		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake,	hronic Da		FPC = Expo	sure Point C	oncentration	n, ELCR ≠ E	xcess Lifetii	ne Cancer E	xposure,	= inhalation	intake (CD	EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, * = inhalation intake (CDI) = ingestron intake	ake

TABLE 18-13c
FU7 Plume B Max Groundwater (Potable Use) - Hypothetical Future Residential Adult Non-Carcinogenic Scenario
Memphis Depot Main Installation RI

									ude	ngestion	Der	Dermal	Inhalation.
Units	Chemical	WOE	RfDo	RfDd	RfDi	EPC	ABSgi	ည	CDI	皇	CDI	오	НФ
MG/L	1,1,2,2-TETRACHLOROETHANE	O				4 00E-03	4 00E-03 7 00E-01 9 00E-03	9 00E-03	1 10E-04		6.90E-08		
MG/L	CHLOROBENZENE	۵	2 00E-02	6 20E-03	6 20E-03 5 70E-03		1 00E-03 3 10E-01 4 10E-02	4 10E-02	2 74E-05	0 001	7 86E-08	0 00001	0 005
MG/L	CHLOROMETHANE	O				1 00E-03	00E-03 8 00E-01 4 20E-03	4 20E-03	2 74E-05		8 05E-09		
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	1 00E-02	1 00E-02	1 00E-02 1 00E-02 1 71E-01	1 60E-02 1 00	1 00E+00	00E+00 4 80E-02	4 38E-04	0 04	1 47E-06	0 0001	0 003
MG/L	TRICHLOROETHYLENE (TCE)	B2		9 00E-04		~,	1 50E-01	1 60E-02	5 80E-02 1 50E-01 1 60E-02 1 59E-03	03	1 78E-06	0 002	
	Hazard Index									0.3		0,002	0.007
											Total HI =	0.3	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily I		PC = Expc	sure Point (Concentration	n, HQ = Haz	ard Quotier	nt, HI = Haz	ard Index, *	= inhalatio	ntake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion intake	= ingestio	ı ıntake

4 -

TABLE 18-14a

FU7 Plume B Groundwater (Potable Use) - Hypothetical Future Residential Child Scenario Memphis Depot Main Installation RI

		Carcinogenic	Noncarcinogenic
Ingestic	on:		
Intake fo	or non-carcinogenic and carcinogenic compounds		
CDI =	C _{gw} *IR* EF*ED		
	BW * AT		
C ^{gw} = ·	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dermal:	:		
Intake fo	or non-carcinogenic and carcinogenic compounds		
CDI =	Cow *SA * PC * ET * EF * ED * CF		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm²)	6557 b, c	6557 b. c
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b,e	0 007 b,e
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (L/cm³)	1.00E-03	1 00E-03
BW =	Body Weight (kg)	15 a	15 a

Inhalation:

CDI = Ingestion CDI from above f

References:

a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance. "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991

b = US EPA Exposure Factors Handbook, August 1997

Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance, May 1998

c = Total Body Surface Area represents whole body (average of male & female children (1-6 years old))

d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value; all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992

e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event

f = follows EPA Region IV guidance (i.e., inhalation of groundwater volatiles while showering/bathing

is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS Region 4

Bulletins, Human Health Risk Assessment, Interim, November 1995

.

Total Risk = 1E-05
WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, *= inhalation intake (CDI) = ingestion intake

Inhalation*

Dermal

Ingestion

ELCR 4 4E-06

> 2 6E-09 1 7E-11

9 05E-09 1 03E-08

4 4E-06

CDI 2 19E-05 5 48E-06 5 15E-05 5 10E-05

6 00E-03 2 00E-03

1 63E-02 5 20E-02

1 30E-02 5 20E-02 1 10E-02

င်-82 (C-82 (B2

Chemical
1,1,2,2-TETRACHLOROETHANE
CHLOROBENZENE

WG/L MG/L MG/L MG/L

CHLOROMETHANE

6 00E-03

7 33E-02

TETRACHLOROETHYLENE (PCE)
TRICHLOROETHYLENE (TCE)
Total Risk

MG/L

2 00E-01 2 86E-01 2 03E-01

SF

SFo

FU7 Plume B Groundwater (Potable Use) - Future Residential Child Carcinogenic Scenario

Memphis Depot Main Installation Rt

TABLE 18-14b

33E-08 10E-07 31E-07 4.9E-06

> 5 9E-09 2 7E-09 1.1E-08

7 1E-08 1 06E-09 2 7E-06 1 14E-07 5 6E-07 3 74E-08 7.7E-06

1-261

PJ147543/APPIBFU7gw xls/BGWRC-Carcinogenic

TABLE 18-14c
FU7 Plume B Groundwater (Potable Use) - Hypothetical Future Residential Child Non-Carcinogenic Scenano
Memphis Depot Main installation Ri

									Ingestion	tlon	Derma	폩	Inhalation*
Units	Chemical	WOE	RfDo	RfDd	RfDi	EPC	ABSgi	PC	CD	오	CD	Œ	호
MG/L	1,1,2,2-TETRACHLOROETHANE	O				4 00E-03	4 00E-03 7 00E-01	9 00E-03 2 56E-04	2 56E-04		1 06E-07		
MG/L	CHLOROBENZENE	۵	2 00E-02	2 00E-02 6 20E-03 5 70E-03	5 70E-03	1 00E-03		4 10E-02 6 39E-05	6 39E-05	0 003	1 20E-07	0 00002	0 01
MG/L	CHLOROMETHANE	O				1 00E-03	8 00E-01	4 20E-03 6 39E-05	6 39E-05		1 23E-08		
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	1 00E-02	C-B2 100E-02 100E-02	1 71E-01	9 41E-03	1 00E+00	4 80E-02	6 01E-04	900	1 32E-06	0 0001	0 004
MG/L	TRICHLOROETHYLENE (TCE)	B2	6 00E-03 9 00E-04	9 00E-04		9 30E-03	9 30E-03 1 50E-01	1 60E-02 5 94E-04	5 94E-04	0.1	4 37E-07	0 0005	
	Hazard Index									0.2		9000.0	0.01
											Total HI =	0 2	

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index; * = inhalation intake (CDI) = ingestion intake

Notes

ŀ

TABLE 18-15a
FU7 Plume B Max Groundwater (Potable Use) - Hypothetical Future Residential Child Scenario
Memphis Depot Main Installation Ri

- 7
•

		Carcinogenic	Noncarcinogenic
Ingestio	n:		
Intake fo	r non-carcinogenic and carcinogenic compounds:		
CDI =	Cow * IR * EF * ED		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
1R =	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Intake fo	or non-carcinogenic and carcinogenic compounds		
Dermal: Intake fo CDI =	or non-carcinogenic and carcinogenic compounds Com *SA * PC * ET * EF * ED * CF		
Intake fo	or non-carcinogenic and carcinogenic compounds Com *SA * PC * ET * EF * ED * CF BW * AT		
Intake fo CDI = C _{gw} =	or non-carcinogenic and carcinogenic compounds Cgw*SA*PC*ET*EF*ED*CF BW*AT Concentration in groundwater (mg/L)	EPC	EPC
Intake fo CDI = C _{gw} = SA =	or non-carcinogenic and carcinogenic compounds Cgw*SA*PC*ET*EF*ED*CF BW*AT Concentration in groundwater (mg/L) Surface Area (cm²)	6557 b, c	6557 b, c
Intake for CDI = C _{gw} = SA = PC =	or non-carcinogenic and carcinogenic compounds Cgw*SA*PC*ET*EF*ED*CF BW*AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr)	6557 b, c (Chemical Specific) d	6557 b, o (Chemical Specific) d
Intake for CDI = Cgw = SA = PC = ET =	or non-carcinogenic and carcinogenic compounds Cgw*SA*PC*ET*EF*ED*CF BW*AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day)	6557 b, c (Chemical Specific) d 0 007 b,e	6557 b, c (Chemical Specific) d 0.007 b,e
Intake for CDI = C _{gw} = SA = PC = ET = EF =	or non-carcinogenic and carcinogenic compounds Cgw*SA*PC*ET*EF*ED*CF BW*AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day) Exposure Frequency (day/year)	6557 b, c (Chemical Specific) d 0 007 b,e 350 a	6557 b, c (Chemical Specific) d 0.007 b,e 350 a
Intake fo CDI = C _{gw} = SA = PC = ET = EF =	or non-carcinogenic and carcinogenic compounds Cgw*SA*PC*ET*EF*ED*CF BW*AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day)	6557 b, c (Chemical Specific) d 0 007 b,e	6557 b, c (Chemical Specific) d 0.007 b,e
Intake for CDI = Cgw = SA = PC = ET = EF = ED =	or non-carcinogenic and carcinogenic compounds Cgw*SA*PC*ET*EF*ED*CF BW*AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day) Exposure Frequency (day/year)	6557 b, c (Chemical Specific) d 0 007 b,e 350 a	6557 b, c (Chemical Specific) d 0.007 b,e 350 a
Intake for CDI = C _{gw} = SA = PC = ET = EF =	or non-carcinogenic and carcinogenic compounds Cgw*SA*PC*ET*EF*ED*CF BW*AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day) Exposure Frequency (day/year) Exposure Duration (year)	6557 b, c (Chemical Specific) d 0 007 b,e 350 a 6 a	6557 b, c (Chemical Specific) d 0.007 b,e 350 a 6 a

Inhalation:

CDI = Ingestion CDI from above f

References:

a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.

b = US EPA Exposure Factors Handbook, August 1997

Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance, May 1998.

- c = Total Body Surface Area represents whole body (average of male & female children (1-6 years old))
- d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value, all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992.
- e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event
- f = follows EPA Region IV guidance (i e , inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

...

TABLE 18-15b
FUT Plume B Max Groundwater (Potable Use) - Future Residential Child Carcinogenic Scenario
Memphis Depot Main Installation RI

			:						Ingestion	tion	Deri	Dermal	Inhalation*	
Units	Chemical	WOE	WOE SFo	SFd	SFI	EPC	ABSgi	PC	CDI	ELCR	CDI	ELCR		
MGA	1,1,2,2-TETRACHLOROETHANE	U	2 00E-01	2 86E-01 2 03E-01		4 00E-03	7 00E-01	9 00E-03	2 19E-05	4 4E-06		2 6E-09	4.4E-06	
MG/L	CHLOROBENZENE	۵				1 00E-03	3 10E-01	4 10E-02	5 48E-06		1 03E-08			
MG/L	CHLOROMETHANE	ပ	1 30E-02	1 63E-02	6 00E-03	1 00E-03		4 20E-03	5 48E-06 7 1E-08	7 1E-08	1 06E-09	17E-11	3 3E-08	
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	C-B2 5 20E-02	5 20E-02	2 00E-03	1 60E-02	1 00E+00	1 00E+00 4 80E-02	8 77E-05	4 6E-06	1 93E-07	1 0E-08	1 8E-07	
MG/L	TRICHLOROETHYLENE (TCE)	B2	B2 1 10E-02	7 33E-02	6 00E-03	5 80E-02	1 50E-01	7 33E-02 6 00E-03 5 80E-02 1 50E-01 1 60E-02	3 18E-04	3 SE-06	35E-06 233E-07	1 7E-08	1 9E-06	
	Total Risk									1 3E-05		3.0E-08	Γ	
Notes										Tc	Total Risk =	2E-05		
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake	hronic D.	aily Intake, t	PC = Expo	sure Point C	oncentration	n, ELCR = E	xcess Lifeti	me Cancer L	-xposure,	= inhalation	ıntake (CD)	e. EPC = Exposure Pomt Concentration, ELCR = Excess Lifetime Cancer Exposure, * = inhalation intake (CDI) = ingestion intake	ke

1 265

P./147543/APPI8FU7gw xIs/MAXBGWRC-NonCarcinogenic

TABLE IB-15c
FU7 Plume B Max Groundwater (Potable Use) - Hypothetical Future Residential Child Non-Carcinogenic Scenano
Memphis Depot Main Installation RI

									nde	ngestion	Dei	Dermal	Inhalation*
Units	Chemical	WOE	WOE RfDo	RfDd	RfDi	EPC	ABSgi	PC	CD	오	CDI	HO	НО
MG/L	1,1,2,2-TETRACHLOROETHANE	O				4 00E-03	7 00E-01	9 00E-03 2 56E-04	2 56E-04		1 06E-07		
MG/L	CHLOROBENZENE	٥	2 00E-02	6 20E-03	5 70E-03	1 00E-03	3 10E-01	4 10E-02	6 39E-05	0 003	1 20E-07	0 00002	0 0 1
MG/L	CHLOROMETHANE	ပ				1 00E-03	8 00E-01	4 20E-03	6 39E-05		1 23E-08		
MG/L	TETRACHLOROETHYLENE (PCE)	C-82	1 00E-02	1 00E-02	1 71E-01	1 60E-02	1 00E+00	4 80E-02	1 02E-03	0	2 25E-06	0 0002	9000
MG/L	TRICHLOROETHYLENE (TCE)	B2	6 00E-03			5 80E-02		1 60E-02	1 60E-02 3 71E-03	90	2 72E-06		
	Hazard Index									0.7		0.003	0 02
											Total HI =	0.7	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intak	/ Intake, EPC =	Exposure	Point Conce	ntration, HC	= Hazard (Quotient, HI	= Hazard In	dex, * = inha	lation intal	ke, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion intake	estion intal	(0

TABLE 18-16a

FU7 Plume C Groundwater (Potable Use) - Hypothetical Future Industrial Worker Scenario Memphis Depot Main Installation Ri

		Carcinogenic	<u>Noncarcinogenic</u>
Ingestic	on:		
Intake fo	or non-carcinogenic and carcinogenic compounds		
CDI =	Com * IR * EF * ED		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:	:		
Intake fo	or non-carcinogenic and carcinogenic compounds		
CDI =	Cm. *SA * PC * ET * EF * ED * CF		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm ²)	2679 b.c	2679 b.d
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b,e	0 007 b,e
	Exposure Frequency (day/year)	250 a	250 a
EF =	Exposure Frequency (day/year)		
EF = ED =	Exposure Duration (year)	25 a	25 a
ED =	Exposure Duration (year)	25 a 1 00E-03	
			25 a

Inhalation:

CDI = Ingestion CDI from above 9

References:

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991
- b = Default factors adapted from EPA Exposure Factors Handbook, August 1997
- c = Surface area represents 1/2 head, 1/2 arms, and the hands of an adult worker
- d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value; all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992
- e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event
- g = follows EPA Region IV guidance (i e , inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

٠٠, ١

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, * = inhalation intake (CDI) = ingestion intake

Inhalation* ELCR

Dermal

Ingestion

4 2E-08 3 9E-08

CDI ELCR 118E-09 34E-10 8 524E-10 19E-12 8 550E-10 89E-12 7 383E-10 54E-11 6 175E-09 52E-10 1.8E-09

ELCR 1 4E-06 1 0E-08 9 1E-08 4 4E-07 1 0E-06 2 6E-07 3 2E-06

CDI 6 99E-06 3 49E-06 6 99E-06 5 24E-06 1 94E-05

ABSgI PC 7 00E-01 9 00E-03 6 8 00E-01 8 00E-03 8 8 00E-01 4 20E-03 6 6 00E-01 3 90E-03 1 1 00E-00 4 80E-02

2 00E-03 1 50E-03 5 55E-03 6 83E-03

> 2 00E-03 6 00E-03

5 20E-02 7 33E-02

1 10E-02

B2

DIBROMOCHLOROMETHANE
TETRACHLOROETHYLENE (PCE)
TRICHLOROETHYLENE (TCE)
Total Risk

MG/L MG/L

EPC 2 00E-03 1 00E-03

SFd SFi 2 86E-01 2 03E-01 3 63E-03 1 63E-02 6 00E-03 1 40E-01

2 00E-01 2 90E-03 1 30E-02 8 40E-02 5 20E-02

WOE

ပ

Chemical 1,1,2,2-TETRACHLOROETHANE CHLOROETHANE

CHLOROMETHANE

WG/L MG/L MG/L MG/L

ပ္ ပ

FU? Plume C Groundwater (Potable Use) - Hypothetical Future Industrial Worker Carcinogenic Scenario

Memphis Depot Main Installation RI

TABLE 18-16b

1.4E-07

5E-06

Total Risk =

2 39E-05

1 60E-02

1 50E-01

1 267

P /147543/APPI8FU7gw xls/CGWIW-Carcinogenic

1 , 7

TABLE 16-16c
FU7 Plume C Groundwater (Potable Use) - Hypothetical Future Industrial Worker Non-Carcinogenic Scenano Memphis Depot Main Installation RI

	Chemical 1,1,2,2-TETRACHLOROETHANE CHLOROETHANE	WOE	Z,C	PCJA	ě								
	,2-TETRACHLOROETHANE OROETHANE	,			5	EPC	ABSgi	PC	CDI	오	CDI	ğ	ĞH
	OROETHANE	ر				2 00E-03	2 00E-03 7 00E-01	9 00E-03	1 96E-05		3 30E-09		
			4 00E-01	4 00E-01 3 20E-01 2 90E+00	2 90E+00	1 00E-03	8 00E-01	8 00E-03	9 78E-06	0 00002	1 47E-09	0 000000000	0 000003
MG/L CHLO	CHLOROMETHANE	O				2 00E-03	8 00E-01	4 20E-03	1 96E-05		1 54E-09		
	MBROMOCHLOROMETHANE	O	2 00E-02	1 20E-02		1 50E-03	6 00E-01	3 90E-03	1 47E-05	0 0007	1 07E-09	600000000	
•	TETRACHLOROETHYLENE (PCE)	C-B2	1 00E-02	1 00E-02	1 71E-01	5 55E-03	1 00E+00	4 80E-02	5 43E-05	0 005	4 89E-08	0 000005	0 0003
•	FRICHLOROETHYLENE (TCE)	B2	B2 6 00E-03 9 00E-04	9 00E-04		6 83E-03	1 50E-01	6 83E-03 1 50E-01 1 60E-02 6 68E-05	6 68E-05	0 01	2 00E-08	0 00002	
Hazar	Hazard Index									0.02		0.00003	0.0003
											Total Hi =	0 02	
Notes WOE	WOE = Weight of Evidence, CDI = Chronic Daily Intake,		= Exposure	Point Conce	entration HC) = Hazard (Quotient, HI	= Hazard Ir	idex, * = inh	alation intal	(CDI) = Inc	EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion intake	

TABLE 18-17aFU7 Plume C Max Groundwater (Potable Use) - Hypothetical Future Industrial Worker Scenario *Memphis Depot Main Installation RI*

		Carcinogenic	Noncarcinogenic
Ingestic			
Intake fo	or non-carcinogenic and carcinogenic compounds:		
CDI =	Com * IR * EF * ED		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
R=	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	250 a	250 a
ED =	Exposure Duration (year)	25 a	25 a
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a
Dermal:	:		
ntake fo	or non-carcinogenic and carcinogenic compounds:		
CDI =	C * SA * PC * ET * EF * ED * CF		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm ²)	2679 b.c	2679 b,c
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b,e	0 007 b,e
EF =	Exposure Frequency (day/year)	250 a	250 a
ED ≂	Exposure Duration (year)	25 a	25 a
CF =	Conversion Factor (L/cm ³)	1 00E-03	1 00E-03
BW =	Body Weight (kg)	70 a	70 a
AT =	Averaging Time (days)	25550 a	9125 a

Inhalation:

CDI = Ingestion CDI from above 9

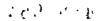
References:

- a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991
- b = Default factors adapted from EPA Exposure Factors Handbook, August 1997.
- c = Surface area represents 1/2 head, 1/2 arms, and the hands of an adult worker
- d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value, all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992
- e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event
- g = follows EPA Region IV guidance (i.e., inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS. Region 4. Bulletins, Human Health Risk Assessment, Interim, November 1995.

ι,

TABLE 18-17b

FUT Plume C Max Groundwater (Potable Use) - Hypothetical Future Industrial Worker Carcinogenic Scenario Memphis Depot Main Installation RI


									Indestron	[]	Derma	핃	Inhalation*	
Units	Chemical	WOE	WOE SFo	SFd	SFI	EPC	ABSgi	PC	COI	ELCR	CO	ELCR		
MG/L	1,1,2,2-TETRACHLOROETHANE	ပ	2 00E-01	2 86E-01	2 03E-01	2 00E-03	7 00E-01	9 00E-03	90-366 9	1 4E-06	2 86E-01 2 03E-01 2 00E-03 7 00E-01 9 00E-03 6 99E-06 1 4E-06 1 18E-09 3 4E-10	3 4E-10	1 4E-06	
MG/L	CHLOROETHANE		2 90E-03	3 63E-03		1 00E-03	8 00E-01	8 00E-03	3 49E-06	1 0E-08	5 24E-10	1 9E-12		
MG/L	CHLOROMETHANE	ပ	1 30E-02	1 63E-02	6 00E-03	2 00E-03	8 00E-01	4 20E-03	6 99E-06	9 1E-08	5 50E-10	8 9E-12	4 2E-08	
MG/L	DIBROMOCHLOROMETHANE	ပ	8 40E-02	1 40E-01		2 00E-03	6 00E-01	3 90E-03	90 -3 66 9	5 9E-07	5 11E-10	7 2E-11		
MG/L	TETRACHLOROETHYLENE (PCE)	C-82	C-B2 5 20E-02	5 20E-02	2 00E-03	9 00E-03	1 00E+00	4 80E-02	3 15E-05	1 6E-06	2 83E-08	8 15E-09	6 3E-08	
MG/L	TRICHLOROETHYLENE (TCE)	B2	B2 1 10E-02	7 33E-02	6 00E-03	3 70E-02	1 50E-01	1 60E-02	1 29E-04	1 4E-06	7 33E-02 6 00E-03 3 70E-02 1 50E-01 1 60E-02 1 29E-04 1 4E-06 3 88E-08 2 8E-09 7 8E-07	2 8E-09	7 8E-07	
	Total Risk									5.1E-06		4.7E-09	2.3E-06	
Notes										Ţ	Total Risk = 7E-06	7E-06		
Motor	WOF - Wordt of Europage CDI - Chronic Daily Intake	In Dinor		FPC = Expo	Trib Point	oncentration	FICE	med I seax	ne Cancer F	xposure	= inhalation	ntake (CD	FPC = Exposure Point Concentration FLOB = Excess Lifetime Cancer Exposure * = inhalation intake (CDI) = innestion intake	•

1271

P /147543/APPI8F U7gw xls/MAXCGWIW-NonCaranogenc

TABLE 18-17c
FU7 Plume C Max Groundwater (Potable Use) - Hypothetical Future Industrial Worker Non-Carcinogenic Scenaric
Memphis Depot Main Installation RI

Units Chemical WOE RfDa														
Chemical WOE RfDo RfDd RfDi FPC ABSgl PC CDI HQ CDI HQ 1,1,2,2-TETRACHLOROETHANE C 4 00E-01 3 20E-01 2 00E-03 7 00E-01 9 00E-03 1 96E-05 3 30E-09 3 30E-09 CHLOROETHANE C 4 00E-01 3 20E-01 2 00E-03 8 00E-01 8 00E-03 1 96E-05 1 54E-09 0 000000005 CHLOROMETHANE C 2 00E-02 1 20E-03 8 00E-01 4 20E-03 1 96E-05 1 54E-09 0 00000000000000000000000000000000000										Inge	stron		erma	Inhalation*
1,1,2,2-TETRACHLOROETHANE CHLOROETHANE CHLOROETHANE CHLOROETHANE CHLOROETHANE CHLOROETHANE CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE C 2 00E-01 2 90E-00 1 00E-01 3 00E-01 3 90E-05 1 50E-05 ts	Chemical	WOE	RfDo	RfDd	RfÖ	EPC	ABSgl	2	GD	오	<u> </u>	Ğ	HQ	
CHLOROETHANE CHLOROMETHANE C CHLOROMETHANE C CHLOROMETHANE C CHLOROMETHANE C C 2 00E-02 1 20E-02 2 00E-03 8 00E-01 4 20E-03 1 96E-05 1 54E-09 DIBROMOCHLOROMETHANE C 2 00E-02 1 20E-02 2 00E-03 8 00E-01 3 90E-05 1 54E-09 DIBROMOCHLOROETHYLENE (PCE) C-82 1 00E-02 1 20E-02 1 00E-02 1 50E-03 1 00E-03 1 96E-05 0 001 1 43E-09 0 00000001 TETRACHLOROETHYLENE (TCE) B 2 6 00E-03 9 00E-04 3 70E-02 1 50E-04 1 60E-02 3 62E-04 0 06 1 09E-07 0 0001 Hazard Index WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhaliation intake (CDI) = ingestion in take (CDI) = ing	MG/L	1,1,2,2-TETRACHLOROETHANE	ပ				2 00E-03	7 00E-01	9 00E-03	1 96E-05		3 30E-09		
CHLOROMETHANE C 2 00E-03 8 00E-01 4 20E-03 1 96E-05 1 54E-09 DIBROMOCHLOROMETHANE C 2 00E-02 1 20E-02 2 00E-03 6 00E-01 3 90E-03 1 96E-05 0 001 1 42E-09 0 0000001 TETRACHLOROETHYLENE (PCE) C-82 1 00E-02 1 00E-02 1 50E-02 MG/I.	CHLOROETHANE		4 00E-01	3 20E-01	2 90E+00	1 00E-03	8 00E-01	8 00E-03	9 78E-06	0 00002	1 47E-09	0 000000000	0 000003	
DIBROMOCHLOROMETHANE C 2 00E-02 1 20E-02 2 00E-03 6 00E-03 1 96E-05 0 001 143E-09 0 0000001 TETRACHLOROETHYLENE (PCE) C-B2 1 00E-02 1 00E-02 1 00E-03 1 00E-03 1 00E-03 1 00E-02 8 81E-05 0 009 7 93E-09 0 000008 TRICHLOROETHYLENE (TCE) B2 6 00E-03 9 00E-04 3 70E-02 1 50E-02 3 62E-04 0 06 1 09E-07 0 0001 Hazard Index	MG/L	CHLOROMETHANE	ပ				2 00E-03		4 20E-03			1 54E-09		
TETRACHLOROETHYLENE (PCE) C-82 1 00E-02 1 71E-01 9 00E-03 1 00E+02 8 81E-05 0 009 7 93E-08 0 000008 TRICHLOROETHYLENE (TCE) B2 6 00E-03 9 00E-04 3 70E-02 1 50E-01 1 60E-02 3 62E-04 0 06 1 09E-07 0 0001 Hazard Index WOE = Weight of Ewdence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Ouotient, HI = Hazard Index, *= inhalation intake (CDI) = ingestion intake (CDI)	MG/L	DIBROMOCHLOROMETHANE	ပ	2 00E-02	1 20E-02		2 00E-03	6 00E-01	3 90E-03	1 96E-05	0 001	1 43E-09	0	
TRICHLOROETHYLENE (TCE) B2 6 00E-03 9 00E-04 3 70E-02 1 50E-01 1 60E-02 3 62E-04 0 06 1 09E-07 0 0001 Hazard Index Total HI = 007 0 0001 Total HI = 007 Total HI = 007 WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion in	MG/L	TETRACHLOROETHYLENE (PCE)	C-85	1 00E-02	1 00E-02	171E-01	9 00E-03	1 00E+00	4 80E-02	8 81E-05	600 0	7 93E-08	0 000008	0 0005
0 07 0 0001 Hazard Index Total HI = 0 07 Total HI = 0 07 Total HI = 0 07 WOE ≈ Weight of Evidence, CDI = Chronc Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion in	MG/L	TRICHLOROETHYLENE (TCE)	85	6 00E-03	9 00E-04	;	3 70E-02	1 50E-01	1 60E-02	3 62E-04	90 0	1 09E-07	0 0001	
WOE = Weight of Evidence, CDI = Chronic Daily Intak		Hazard Index									0 07		0 0001	0 0005
WOE = Weight of Evidence, CDI = Chronic Daily Intaki												Total HI =		
	Notes	WOE = Weight of Evidence, CDI = Chronic I	Jaily Intake	3, EPC = Ex	posure Poi	nt Concentra	tion, HQ = I	Hazard Quo	tent, HI = H	azard Index	ς, = inhala	tion intake (CDI) = ingestion	ı ıntake

TABLE 18-18a

FU7 Plume C Groundwater (Potable Use) - Hypothetical Future Residential Adult Scenaric Memphis Depot Main Installation RI

ogenic compounds *IR * EF * ED BW * AT ation in groundwater (mg/L)	Age-specific intake (for carcinogenic CDI _{adj} = C _{ow} * EF * CF * IR _{adj} AT	c compounds only):
*IR * EF * ED BW * AT	CDI _{adj} = Cox * EF * CF * IR _{adj}	c compounds only):
BW * AT		
	AT	
ation in groundwater (mg/L)		
,	EPC	EPC
Rate (L/day)	N/A	2 a
sted Ingestion Rate (L-year/kg-day)	1 1 b	N/A
Frequency (day/year)	350 a	350 a
Duration (year)	30 a	30 a
ght (kg)	70 a	70 a
g Time (days)	25550 a	10950 a
ogenic compounds.	Age-specific intake (for carcinogenic	c compounds only)
	CDI _{adi} = Cmy *SA _{adi} * PC * ET * EF * C	<u>F</u>
BW * AT	AT	
ation in groundwater (mg/L)	EPC	EPC
rea (cm²)	N/A	20000 b,d
sted Surface Area (cm ² -yr/kg)	9480 b,c	N/A
ermeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
Time (hr/day)	0 007 b,e	0 007 b,e
Frequency (day/year)	350 a	350 a
Duration (year)	30 a	30 a
on Factor (L/cm³)	1 00E-03	1 00E-03
ight (kg)	70 a	70 a
Time (days)	25550 a	10950 a
D on igh	uration (year) Factor (L/cm³) nt (kg)	ruration (year) 30 a Factor (L/cm³) 1 00E-03 nt (kg) 70 a

References:

a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991.

b = Age-adjusted ingestion rate for adults, adjusted for body weight and time for carcinogenic exposure.

$$IRadj = \underbrace{IRc \times EDc}_{BWc} + \underbrace{IRa \times (EDa - EDc)}_{BWa} = \underbrace{1 \times 6}_{15} + \underbrace{2 \times (30 - 6)}_{70}$$

1.09 (L-year)/(kg-day)

b = USEPA Exposure Factors Handbook, August 1997

c = Total Body Surface Area represents whole body (average of male & female adults).

f = Age-adjusted surface area for adults, adjusted for body weight and time for carcinogenic exposure

$$SAadj = SAc \times EDc + SAa \times (EDa - EDc) = 6557 \times 6 + 20000 \times (30-6)$$
 $BWc BWa 15 70$

9480 (cm2-year)/(kg)

d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value, all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992.

e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event

f = follows EPA Region IV guidance (i.e., inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS Region 4

Bulletins, Human Health Risk Assessment, Interim, November 1995

٠,,

1273

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, * = inhalation intake (CDI) = ingestion intake

nhalation

Dermal

5

ELCR

5

ပ္

FU7 Plume C Groundwater (Potable Use) - Hypothetical Future Residential Adult Carcinogenic Scenano

Memphis Depot Main Installation RI

TABLE I8-18b

Ingestion

ELCR 6 0E-06 1 8E-07

4 7E-09 2 6E-11 1 2E-10 7 4E-10 1 3E-08 7 3E-09

1 64E-08 7 27E-09 7 64E-09 5 32E-09 2 42E-07 9 93E-08

5 9E-06 4 3E-08 3 9E-07 1 9E-06 4 3E-06 1 1E-06

1 02E-04

2 97E-05 1 49E-05 2 97E-05 2 23E-05 8 25E-05

33 700E-01 900E-03 : 3 800E-01 800E-03 2 3 6 00E-01 390E-03 2 3 100E+00 480E-02 8 1 150E-01 160E-02 16

5 55E-03 6 83E-03

2 00E-03 6 00E-03

1 10E-02

82

DIBROMOCHLOROMETHANE
TETRACHLOROETHYLENE (PCE)
TRICHLOROETHYLENE (TCE)
Total Risk

MG/L

ABSg1 7 00E-01 8 00E-01 8 00E-01

2 03E-01 2 00E-03 1 00E-03 6 00E-03 2 00E-03 1 50E-03

2 86E-01 3 63E-03 1 63E-02 1 40E-01 5 20E-02 7 33E-02

2 00E-01 2 90E-03 1 30E-02 8 40E-02 5 20E-02

WOE

Ö

Chemical 1,1,2,2-TETRACHLOROETHANE CHLOROETHANE

CHLOROMETHANE

MG/L MG/L MG/L MG/L

ပ ပ ^Cမှ

6 1E-07 7.0E-06 1 7E-07

2E-05

Total Risk =

P./147543/APPI8FU7gw xls/CGWRA Carcinogenic

TABLE 18-18c
FU7 Plume C Groundwater (Potable Use) - Hypothetical Future Residential Adutt Non-Carcinogenic Scenano Memphis Depot Main Installation RI

									Inge	ngestion	ă	Dermal	Inhalation*
Units	Chemical	WOE	RfDo	RfDd	RſĎ	EPC	ABSgi	PC	CD	9	CDI	HO	Н
MG/L	1,1,2,2-TETRACHLOROETHANE	O				2 00E-03	7 00E-01	9 00E-03	5 48E-05		3 45E-08		
MG/L	CHLOROETHANE		4 00E-01	3 20E-01	3 20E-01 2 90E+00	1 00E-03	8 00E-01	30 100E-03 8 00E-01 8 00E-03 2	2 74E-05	0 00007	1 53E-08	0 00000005	0 00000
MG/L	CHLOROMETHANE	O				2 00E-03	8 00E-01	4 20E-03	5 48E-05		1 61E-08		
MG/L	DIBROMOCHLOROMETHANE	O	2 00E-02	1 20E-02		1 50E-03	6 00E-01	3 90E-03	4 11E-05		1 12E-08	60000000	
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	1 00E-02	1 00E-02 1 00E-02	171E-(5 55E-03	1 00E+00	4 80E-02	1 52E-04		5 11E-07	0 00005	6000 0
MG/L	TRICHLOROETHYLENE (TCE)	B2	6 00E-03	9 00E-04		83E-03	1 50E-01	1 50E-01 1 60E-02 1 87E-04	1 87E-04	0 03	2 09E-07	0 0002	
	Hazard Index									0.05		0.0003	6000'0
											Total III	200	

WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion intake

Notes

TABLE 18-19a

FU7 Plume C Max Groundwater (Potable Use) - Hypothetical Future Residential Adult Scenarc Memphis Depot Main Installation RI

ngestio	n·	<u>Carcinogenic</u>	<u>Noncarcinogenic</u>
	r non-carcinogenic compounds	Ann annaile intaka (far annaina	
		Age-specific intake (for carcinos	jenic compounds only)
:DI =	Cov * IR * EF * ED BW * AT	$CDl_{adj} = \underline{C_{cov} + EF + CF + IR_{adj}}$	
		AT	
gw =	Concentration in groundwater (mg/L)	EPC	EPC
₹ =	Ingestion Rate (L/day)	N/A	2 a
₹ _{adj} =	Age-adjusted Ingestion Rate (L-year/kg-day)	1.1 b	N/A
F ==	Exposure Frequency (day/year)	350 a	350 a
D =	Exposure Duration (year)	30 a	30 a
:W =	Body Weight (kg)	70 a	70 a
T =	Averaging Time (days)	25550 a	10950 a
ermal:			
itake fo	r non-carcinogenic compounds	Age-specific intake (for carcino	
DI =	C _{ow} *SA * PC * ET * EF * ED * CF	CDI _{adj} = C _{ow} *SA _{adt} * PC * ET * EF	* CF
	BW * AT	ÀT	
gw =	Concentration in groundwater (mg/L)	EPC	EPC
A =	Surface Area (cm²)	N/A	20000 b,c
A _{adj} =	Age-adjusted Surface Area (cm ² -yr/kg)	9480 b,	
Madj = C =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
C = T =	Exposure Time (hr/day)		• • • •
- F =	Exposure Frequency (day/year)	0 007 b, 350 a	•
D=		30 a	350 a
	Exposure Duration (year)		30 a
F =	Conversion Factor (L/cm³)	1.00E-03	1 00E-03
SW = ST =	Body Weight (kg) Averaging Time (days)	70 a 25550 a	70 a 10950 a
	(,-,-		
nhalatic			
DI =	Ingestion CDI from above f		
Reference	ces:		
= U S	EPA, Human Health Evaluation Manual, Supple		Exposure Factors*
	OSWER Directive 9285 6-03, March 25, 1991		
= Age-	adjusted ingestion rate for adults, adjusted for be		•
	IRadj = IRc x EDc + IRa x (EDa - E		+ 2 x (30-6)
	BWc BWa	15	70
_ 1105	1.09 (L-year)/(kg-day)		
	PA Exposure Factors Handbook, August 1997	seen of male 9 formate adults)	
	Body Surface Area represents whole body (ave	•	
- Age-a	adjusted surface area for adults, adjusted for boo	-	
	$SAadj = \underbrace{SAc \times EDc}_{DMc} + \underbrace{SAa \times (EDa - I)}_{DMc}$		+ <u>20000 x (30-6)</u>
	BWc BWa	15	70
_	9480 (cm²-year)/(kg)		
= Dem	nal Permeability Constant for water (0 001) used		-
	from EPA, Dermal Exposure Assessment Pri		92
	·		
	inute event x 1 hour/60 minutes x 1 day/24 hour		
	s EPA Region IV guidance (i e , inhalation of gro	oundwater volatiles while showering/l	
	=	oundwater volatiles while showering/l ume), USEPA Supplemental Guidano	

.2

ſ

TABLE 18-19b
FU7 Plume C Max Groundwater (Potable Use) - Hypothetical Future Residential Adult Carcinogenic Scenario
Memphis Depot Main Installation RI

									Ingestion			Cerma	Inhalation -	
Units	Chemical	WOE	SFo	SFd	SFI	EPC	ABSgı	PC	CDI	ELCR	CDI	ELCR	ELCR	
MG/L	1,1,2,2-TETRACHLOROETHANE	ပ	2 00E-01	2 86E-01	2 03E-01	2 00E-03	7 00E-01	9 00E-03	2 86E-01 2 03E-01 2 00E-03 7 00E-01 9 00E-03 2 97E-05 5 9E-06 1 64E-08 4 7E-09	5 9E-06	1 64E-08	4 7E-09	90E-06	
MG/L	CHLOROETHANE		2 90E-03	3 63E-03		1 00E-03	8 00E-01	8 00E-03	1 49E-05	4.3E-08	3 4.3E-08 7 27E-09	2 6E-11		
MG/L	CHLOROMETHANE	ပ	1 30E-02	1 63E-02 6 00E-03 2 00E-03	6 00E-03	2 00E-03	8 00E-01	4 20E-03	2 97E-05	3 9E-07	7 64E-09	1 2E-10	1 8E-07	
MG/L	DIBROMOCHLOROMETHANE	ပ	8 40E-02	1 40E-01		2 00E-03	6 00E-01	3 90E-03	2 97E-05	2 5E-06 7 09E-09	7 09E-09	9 9E-10		
MG/L	TETRACHLOROETHYLENE (PCE)	_	C-B2 5 20E-02	5 20E-02	5 20E-02 2 00E-03	9 00E-03	9 00E-03 1 00E+00 4 80E-02	4 80E-02	134E-04 70E-06 393E-07	7 0E-06	3 93E-07	2 0E-08	2 7E-07	
MG/L	TRICHLOROETHYLENE (TCE)		1 10E-02	7 33E-02	6 00E-03	3 70E-02	1 50E-01	1 60E-02	B2 110E-02 733E-02 600E-03 370E-02 150E-01 160E-02 550E-04 61E-06 538E-07	6 1E-06	5 38E-07	3 9E-08	3 3 E -06	
	Total Risk	ı								2 2E-05		6.6E-08	9.8E-06	
Notes										Ļ	Total Risk =	3E-05		
Notor	WINE - Words of Endown Oil - Chronic Daly Intake EDC - Expensive BIOS - Expess I failure Caper Expessive at Endestron intake (CDI) - indestron intake	O Orono	adetal who	DO - Every	Doing Doint C	operation	1 CO 15 c	veget Lifatin	no Cannor F	VDOCT ITE	= inhalation	intake (CD)) - indestion intake	

1277

P./147543/APPI8FU7gw xls/MAXCGWRA-NonCarcinogenic

TABLE 18-19c
FU7 Plume C Max Groundwater (Potable Use) - Hypothetical Future Residential Adult Non-Carcinogenic Scenano
Memphis Depot Main Installation RI

									Ingestion	tion	희	Derma	inhalation.
Units	Chemical	WOE	RfDo	RfDd	RfDi	EPC	ABSgi PC	ည	CDI	면	CDI	Đ	오
MG/L	1,1,2,2-TETRACHLOROETHANE	ပ				2 00E-03	7 00E-01	7 00E-01 9 00E-03 5 48E-05	5 48E-05		3 45E-08		
MG/L	CHLOROETHANE		4 00E-01	3 205-01	00E-01 3 20E-01 2 90E+00	1 00E-03	8 00E-01	8 00E-03	2 74E-05	0 00007	1 53E-08	0 00000005	6000000
MG/L	CHLOROMETHANE	O				2 00E-03	8 00E-01	4 20E-03	5 48E-05		1 61E-08		
MG/L	DIBROMOCHLOROMETHANE	O	2 00E-02 1	1 20E-02		2 00E-03	6 00E-01	3 90E-03	5 48E-05	0 003	1 50E-08	0 000001	
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	1 00E-02	1 00E-02	1 71E-01	9 00E-03 1	1 00E+00	4 80E-02	2 47E-04	0 02	8 28E-07	0 00008	0 001
MG/L	TRICHLOROETHYLENE (TCE)	B 2	6 00E-03 9 00E-04	9 00E-04		3 70E-02	170E-02 1 50E-01		1 60E-02 1 01E-03	02	1 14E-06	0 001	
	Hazard Index									0.2		0.001	0.001
											Total HI =	0.2	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intal	Daily Intak	e, EPC = E	xposure Por	nt Concentr	ation, HQ =	Hazard Quo	tient, HI = F	ike, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation is	, * = inhalat	ion intake (C	ntake (CDI) = Ingestion intake	ıntake

TABLE 18-20a

FU7 Plume C Groundwater (Potable Use) - Hypothetical Future Residential Child Scenario Memphis Depot Main Installation RI

		<u>Carcinogenic</u>	<u>Noncarcinogenic</u>
Ingestic	on:		
Intake fo	or non-carcinogenic and carcinogenic compounds		
CDI =	Cow * IR * EF * ED		
	BW * AT		
C _{gw} =	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	1 5 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dermal:			
Intake fo	or non-carcinogenic and carcinogenic compounds:		
	or non-carcinogenic and carcinogenic compounds: Com *SA * PC * ET * EF * ED * CF		
Intake fo	or non-carcinogenic and carcinogenic compounds:		
Intake fo	or non-carcinogenic and carcinogenic compounds: Com *SA * PC * ET * EF * ED * CF	EPC	EPC
Intake fo	or non-carcinogenic and carcinogenic compounds: Com *SA * PC * ET * EF * ED * CF BW * AT	EPC 6557 b, c	EPC 6557 b, c
Intake fo CDI = C _{gw} = SA =	or non-carcinogenic and carcinogenic compounds: Com *SA * PC * ET * EF * ED * CF BW * AT Concentration in groundwater (mg/L)		.
Intake for CDI = C _{gw} = SA = PC =	or non-carcinogenic and carcinogenic compounds: Com *SA * PC * ET * EF * ED * CF BW * AT Concentration in groundwater (mg/L) Surface Area (cm²)	6557 b, c	6557 b, c
Intake for CDI = C _{gw} = SA = PC = ET =	or non-carcinogenic and carcinogenic compounds: Com *SA * PC * ET * EF * ED * CF BW * AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr)	6557 b, c (Chemical Specific) d	6557 b, c (Chemical Specific) d
Intake for CDI = C _{gw} = SA = PC = ET = EF =	or non-carcinogenic and carcinogenic compounds: Com *SA * PC * ET * EF * ED * CF BW * AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day)	6557 b, c (Chemical Specific) d 0 007 b,e	6557 b, c (Chemical Specific) d 0 007 b,e
Intake for CDI = Cgw = SA = PC = ET = EF = ED =	or non-carcinogenic and carcinogenic compounds: Com *SA * PC * ET * EF * ED * CF BW * AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day) Exposure Frequency (day/year)	6557 b, c (Chemical Specific) d 0 007 b,e 350 a	6557 b, c (Chemical Specific) d 0 007 b,e 350 a
Intake for CDI = C _{gw} = SA =	or non-carcinogenic and carcinogenic compounds: Com *SA * PC * ET * EF * ED * CF BW * AT Concentration in groundwater (mg/L) Surface Area (cm²) Dermal Permeability Constant (cm/hr) Exposure Time (hr/day) Exposure Frequency (day/year) Exposure Duration (year)	6557 b, c (Chemical Specific) d 0 007 b,e 350 a 6 a	6557 b, c (Chemical Specific) d 0 007 b,e 350 a 6 a

Inhalation:

CDI = Ingestion CDI from above '

References:

a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991

b = US EPA Exposure Factors Handbook, August 1997

Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance, May 1998.

- c = Total Body Surface Area represents whole body (average of male & female children (1-6 years old))
- d = Dermal Permeability Constant for water (0.001) used for constituents without a PC value, all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992
- e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0.007 day per event
- f = follows EPA Region IV guidance (i e , inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

PJ147543/APPI8FU7gw xls/CGWRC-Carcinogenic

TABLE IB-20b
FU7 Plume C Groundwater (Potable Use) - Future Residential Child Carcinogenic Scenario Memphis Depot Main Installation RI

									Indestion	5	3		Illatation	
Units	Chemical	WOE	WOE SFo	SFd	泛	EPC	ABSgi	S	ā	ELCR	CDI	ELCR	ELCA	
MG/L	1,1,2,2-TETRACHLOROETHANE	o	2 00E-01	286E-01 203E-01 200E-03 700E-01 900E-03 110E-05 22E-06 453E-09	2 03E-01	2 00E-03	7 00E-01	9 00E-03	1 10E-05	2 2E-06	4 53E-09	1 3E-09	2 2E-06	
MG/L	CHLOROETHANE		2 90E-03	3 63E-03		1 00E-03	8 00E-01	8 00E-03 5 48E-06	5 48E-06	1 6E-08	2 01E-09	7 3E-12		
MG/L	CHLOROMETHANE	ပ	1 30E-02	1 63E-02	6 00E-03	2 00E-03	8 00E-01	4 20E-03	1 10E-05 1 4E-07	1 4E-07	2 11E-09	3 4E-11	6 6E-08	
MG/L	DIBROMOCHLOROMETHANE	ပ	8 40E-02	1 40E-01		1 50E-03	6 00E-01	3 90E-03 8 22E-06	8 22E-06	6 9E-07	1 47E-09	2 1E-10		
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	5 20E-02	5 20E-02	2 00E-03	5 55E-03	5 55E-03 1 00E+00 4 80E-02	4 80E-02	3 04E-05	1 6E-06	6 70E-08	3 SE-09	6 1E-08	
MG/L	TRICHLOROETHYLENE (TCE)	BS	B2 1 10E-02	7 33E-02	6 00E-03	6 83E-03	1 50E-01	1 60E-02	3 74E-05	4 1E-07	733E-02 600E-03 683E-03 150E-01 160E-02 374E-05 41E-07 275E-08 20E-09	2 0E-09	2 2E-07	
	Total Risk									5.0E-06		7.0E-09		
Notes										Ţ	Total Risk =	8E-06		
Motor	Motor Motor - Months of European Col Motor Market	C oldon		100 - Evans	O food one	Citetine	3-0013	mote Locary	no Cancor E	VOOCIIIO *	- inhalation	intako (CD)	EDC - Evanceure Double Concentration ELCB - Evance Lifetime Cancer Evanceure * - inhabiting intake (CDI) - innection intake	

TABLE 18-20c
FU7 Plume C Groundwater (Potable Use) - Hypothetical Future Residential Child Non-Carcinogenic Scenano
Memphis Depot Main Installation RI

									Ingestion	iton	ā	Jermal	Inhalation*
Units	Chemical	WOE	RfDo	RfDd	RfDi	EPC	ABSgi	PC	CDI	ဌ	CDI	HQ	Ρ
MG/L	1,1,2,2-TETRACHLOROETHANE	O				2 00E-03		7 00E-01 9 00E-03	1 28E-04		5 28E-08		
MG/L	CHLOROETHANE		4 00E-01	3 20E-01	4 00E-01 3 20E-01 2 90E+00	1 00E-03	8 00E-01	8 00E-03	6 39E-05	0 0002	2 35E-08	0 00000000	0 00002
MG/L	CHLOROMETHANE	ပ				2 00E-03	8 00E-01	4 20E-03	1 28E-04		2 46E-08		
MG/L	DIBROMOCHLOROMETHANE	ပ	2 00E-02	1 20E-02		1 50E-03	6 00E-01	3 90E-03	9 59E-05	0 005	1 72E-08	0 000001	
MG/L	TETRACHLOROETHYLENE (PCE)	C-82	1 00E-02	1 00E-02	1 71E-01	5 55E-03	1 00E+00	4 80E-02	3 55E-04	004	7 81E-07	0 00008	0 002
MG/L	TRICHLOROETHYLENE (TCE)	B2	6 00E-03	9 00E-04		6 83E-03	1 50E-01	1 60E-02	4 36E-04	0 0 2	3 20E-07	0 0004	
	Hazard Index									0.1		0.0004	0.002
											Total HI =	0.1	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intake,	baily Intake, E	PC = Expo	sure Point C	oncentration	n, HO = Ha	ard Quotier	it, HI = Haza	ard Index, * =	= inhalatior	ıntake (CDI)	EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion intake	ake

TABLE 18-21a
FU7 Plume C Max Groundwater (Potable Use) - Hypothetical Future Residential Child Scenario
Memphis Depot Main Installation RI

		Carcinogenic	<u>Noncarcinogenic</u>
Ingestio			
	or non-carcinogenic and carcinogenic compounds:		
CDI =	Couting EFTED		
	BW * AT		
$C_{gw} =$	Concentration in groundwater (mg/L)	EPC	EPC
IR =	Ingestion Rate (L/day)	1 a	1 a
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a
Dermal:			
Intake fo	or non-carcinogenic and carcinogenic compounds:		
CDI =	Cow *SA * PC * ET * EF * ED * CF		
	BW * AT		
$C_{gw} =$	Concentration in groundwater (mg/L)	EPC	EPC
SA =	Surface Area (cm ²)	6557 b, c	6557 b. c
PC =	Dermal Permeability Constant (cm/hr)	(Chemical Specific) d	(Chemical Specific) d
ET =	Exposure Time (hr/day)	0 007 b,e	0 007 b,e
EF =	Exposure Frequency (day/year)	350 a	350 a
ED =	Exposure Duration (year)	6 a	6 a
CF =	Conversion Factor (L/cm ³)	1 00E-03	1 00E-03
BW =	Body Weight (kg)	15 a	15 a
AT =	Averaging Time (days)	25550 a	2190 a

Inhalation:

CDI = Ingestion CDI from above f

References:

a = U S EPA, Human Health Evaluation Manual, Supplemental Guidance "Standard Default Exposure Factors" OSWER Directive 9285 6-03, March 25, 1991

b = US EPA Exposure Factors Handbook, August 1997

Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance, May 1998.

- c = Total Body Surface Area represents whole body (average of male & female children (1-6 years old)).
- d = Dermal Permeability Constant for water (0 001) used for constituents without a PC value, all values adapted from EPA, Dermal Exposure Assessment Principles and Applications, January 1992
- e = 10 minute event x 1 hour/60 minutes x 1 day/24 hours = 0 007 day per event
- f = follows EPA Region IV guidance (i.e., inhalation of groundwater volatiles while showering/bathing is accounted for by doubling the ingestion volume), USEPA Supplemental Guidance to RAGS Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995

TABLE 18-21b
FU7 Plume C Max Groundwater (Potable Use) - Future Residential Child Carcinogenic Scenario Memphis Depot Main Installation RI

									Inge	ngestion	Der	Dermai	Inhalation.	
Units	Chemical	WOE		SFd	SFI	EPC	ABSgi	S.	CDI	ELCR	CDI	CDI ELCR	ELCR	
IG/L	1,1,2,2-TETRACHLOROETHANE	ပ	C 2 00E-01	2 86E-01	2 03E-01	2 00E-03	7 00E-01	9 00E-C	3 1 10E-05 2 2E-06 4 53E-09 1 3E-09	2 2E-06	4 53E-09	1 3E-09	2 2E-06	
MG/L	CHLOROETHANE			3 63E-03		1 00E-03	8 00E-01	8 00E-03	5 48E-06	1 6E-08	2 01E-09	7 3E-12		
MG/L	CHLOROMETHANE	ပ	1 30E-02	1 63E-02	6 00E-03	2 00E-03	8 00E-01	4 20E-03	1 10E-05	1 4E-07	2 11E-09	3 4E-11	6 6E-08	
IG/L	DIBROMOCHLOROMETHANE	ပ	8 40E-02	1 40E-01		2 00E-03	6 00E-01	3 90E-03	1 10E-05	9 2E-07	1 96E-09	2 7E-10		
MG/L	TETRACHLOROETHYLENE (PCE)	C-B2	C-B2 5 20E-02	5 20E-02	5 20E-02 2 00E-03	9 00E-03	9 00E-03 1.00E+00	4 80E-02	4 93E-05	2 6E-06	2 6E-06 1 09E-07	5 6E-09	9 9E-08	
MG/L	TRICHLOROETHYLENE (TCE)	B 2	1 10E-02	7 33E-02	6 00E-03	3 70E-02	1 50E-01	B2 110E-02 733E-02 600E-03 370E-02 150E-01 160E-02	2 03E-04		2 2E-06 1 49E-07	1 1E-08	1 2E-06	
	Total Risk									8.1E-06		1.8E-08	3.6E-06	
Notes										Ţ	Total Risk =	1E-05		
otes	WOE = Weight of Evidence, CDI = Chronic Daily Intake, EPC = Exposure Point Concentration, ELCR = Excess Lifetime Cancer Exposure, * = inhalation intake (CDI) = ingestion intake	Tronic Da	ally Intake, E	FPC = Expo	sure Point C	oncentration	n, ELCR = E	Excess Lifetin	me Cancer I	Exposure,	= inhafation	ıntake (CD)	i) = ingestion int	ıke

TABLE 18-21c
FU7 Plume C Max Groundwater (Potable Use) - Hypothetical Future Residential Child Non-Carcinogenic Scenario
Memphis Depot Man Installation RI

									Ingestion	tion	الم	Derma	Inhalation*
Units	Chemical	WOE	RfDo	RfDd	R. Ö	EPC	ABSgi	ည	CDI	ᄗ	CDI	ᄗ	ဌ
MG/L	1,1,2,2-TETRACHLOROETHANE	O				2 00E-03	7 00E-01	9 00E-03	1 28E-04		5 28E-08		
MG/L	CHLOROETHANE		4 00E-01	4 00E-01 3 20E-01 2 90E+00	2 90E+00	1 00E-03	8 00E-01	8 00E-03	6 39E-05	0 0002	2 35E-08	0 00000000	0 00002
MG/L	CHLOROMETHANE	O				2 00E-03	8 00E-01	4 20E-03	1 28E-04		2 46E-08		
MG/L	DIBROMOCHLOROMETHANE	ပ	2 00E-02	1 20E-02		2 00E-03	6 00E-01	3 90E-03	1 28E-04	900 0	2 29E-08	0 000002	
MG/L	TETRACHLOROETHYLENE (PCE)	C-82	1 00E-02	1 00E-02	1 71E-01	9 00E-03	1 00E+00	4 80E-02	5 75E-04	900	1 27E-06	0 0001	0 003
MG/L	TRICHLOROETHYLENE (TCE)	B2	6 00E-03 9 00E-04	9 00E-04		3 70E-02	1 50E-01	1 50E-01 1 60E-02	2 37E-03	0 4	1 74E-06	0 002	
	Hazard Index									0.5		0.002	0.003
											Total HI =	0.5	
Notes	WOE = Weight of Evidence, CDI = Chronic Daily Intak	Darly Intake	e, EPC ± E)	posure Por	nt Concentra	ition, HQ = I	Hazard Quo	tient, HI = H	azard Index,	* = ınhalai	ion intake (C	ke, EPC = Exposure Point Concentration, HQ = Hazard Quotient, HI = Hazard Index, * = inhalation intake (CDI) = ingestion intake	ıntake

THIS PAGE INTENTIONALLY LEFT BLANK.

TAB

Appendix J

TAB

Appendix J

Supplementary Toxicity Material

APPENDIX J

Supplementary Toxicity Material

This appendix contains information from the Superfund Technical Support Center, Environmental Criteria and Assessment Office.

THIS PAGE INTENTIONALLY LEFT BLANK.

Superfund Technical Support Center

Environmental Criteria and Assessment Office
U.S. Environmental Protection Agency
26 West Martin Luther King Dr., MS-117
Cincinnati, Ohio 45268

Joan Dollarhide, Director (513) 569-7539, TSC Hotline (513) 569-7300, FAX (513) 569-7159

January 5, 1995

Carol Sweeney
USEPA Region 10
1200 Sixth Ave., (ES-098)
Seattle, WA 98101

ASSISSTANCE REQUESTED.

Provisional RfD for Aluminum (CASRN 7429-90-5) (East

Michaud Flats Contamination/Pocatello, Idaho)

ENCLOSED INFORMATION:

Risk Assessment Issue Paper for: Derivation of Provisional

RfD for Aluminum (CASRN 7429-90-5)

BE ADVISED:

It is to be noted that the values provided in the Risk Assessment Issue Papers are provisional only, and have not been through the U.S. EPA formal review process. Therefore, they do not represent a U.S. EPA-verified assessment. If you have any questions regarding this information, please contact Joan Dollarhide at (513) 569-

7539.

Attachments

cc: K. Steinman (Ecology and Environment)

THIS PAGE INTENTIONALLY LEFT BLANK.

Attachment

[THIS ISSUE PAPER WAS REVIEWED BY DR. SUSAN VELAZQUEZ/ECAO-CIN. THE ASSESSMENT UNDERWENT RED/REC WORK GROUP REVIEW ON AUGUST 3, 1994. THE ASSESSMENT IS STILL UNDER REVIEW.]

(94-001b/6-20-94)

Risk Assessment Issue Paper for: Derivation of a Provisional Oral RID for Aluminum (CASRN 7429-90-5)

INTRODUCTION

The following literature searches were performed for toxicity data on aluminum and its compounds: TDXLINE (1988-1993, oral strategy, 1981-1993, inhalation strategy), CANCERLINE (1991-1993, oral strategy, 1981-1993, inhalation strategy), MEDLINE (1986-1991, pharmacolinetic (1991-1993, oral strategy, 1981-1993, inhalation strategy), MEDLINE (1986-1991, pharmacolinetic strategy), TSCATS, RTECS and HSDB. Reviews of aluminum include a Health Effects Assessment strategy), TSCATS, RTECS and HSDB. Reviews of aluminum include a Health Effects Assessment (U.S. EPA, 1987a) and an ATSDR Toxicological Profile (1992). These reviews were used to supplement the literature searches as well as secondary sources for some data. The ATSDR profile was primarily used as a literature search supplement because a number of inaccuracies were found in the document. Other sources of information that were consulted include the Drinking Water Regulations and Health Advisories list (U.S. EPA, 1994a) and NTP Status Report (NTP, 1994).

There currently are no bealth risk values for aluminum in IRIS (U.S. EPA, 1994b), the HEAST and Supplements (U.S. EPA, 1994e), or under discussion by the RED/RSC or CRAVE Work Groups (U.S. EPA, 1994c). The HEAST indicates that data are inadequate for quantizative risk assessment of aluminum.

Major sources of human exposure in aluminum (Al34) include food (due to its use in food additives, ford and beverage packaging and cooking mensils), drinking water and aluminum-containing medications (particularly antacid, buffored aspirin, antiuleer and antidiarrheal formulations) (Marquis, 1989; Lione, 1985). Iyengar et al. (1987) estimated that a typical American consumes 14.3 mg Al/day (0.2 mg Al/kg day). This value is consistent with a range of 1-20 mg/day (0.014-0.3 mg/kg-day) for normal oral daily aluminum imake from food and water reported by other invastigators (Panrot, 1986; Wilhelm et al., 1990). Users of aluminum-containing medications can invastigators (Panrot, 1986; Wilhelm et al., 1990). Users of aluminum-containing medications can ingest much larger amounts of aluminum, possibly as high at 840-5000 mg/day (12-71 mg/kg-day) from antacids, 126-728 mg/day (1.8-10 4 mg/kg-day) from buffered aspirins and 828 mg/day (11.8 mg/kg-day) from antiulceratives when taken at recommended dosages (Lione, 1985). Long-term use of many aluminum-containing medications (e.g., antacids for minor gastric distress, buffered aspirin for rheumsteid arthritis), however, appears to increase with age and is most common in elderly populations who simultaneously experience reduced renal function associated with advancing age (Lione, 1985).

There are sufficient animal and human data demonstrating that uluminum is absorbed from the gastrointestinal tract, but the mechanism(s) of absorption and chemical forms able to pass through the intestinal wall are not known (Wilhelm et al., 1990; Lione et al., 1985). The amount of aluminum that is absorbed is influenced by many factors, including chemical form and concentration gastrointestinal pH and interaction with dietary constituents. There are large variations and discrepancies in quantitative estimates of aluminum oral absorption due to these factors, as well as differences in methods of extinuating absorption (Wilhelm et al., 1990). The influence of some of these factors on aluminum absorption is illustrated by the findings of two animal studies (Yokel and McNamara, 1988; Gupta et al., 1986) which used a preferred method for estimating extent of absorption (comparison of areas under plasma concentration-time curves after oral and intravienous dosing). Using a single oral dose of aluminum chloride, aluminum absorption was estimated to be 0.57% in rabbits treated with 333 mg Al/kg (Yokel and McNamara, 1988) and 27% in rats treated with 8.1 mg Al/kg (Gupta et al., 1986). Following a single maximum safe oral dose of the water soluble compounds aluminum chloride (333 mg Al/kg), aluminum nitrate (934 mg Al/kg), aluminum citrate (1081 mg Al/kg) and aluminum lactate (2942 mg Al/kg) in rabbits, aluminum absorption was 0.57%, 1.16%, 2.18% and 0.63%, respectively (Yokel and McNamara, 1988). Aluminum absorption in rabbits similarly treated with the water insoluble compounds aluminum hydroxide (780 mg Al/kg), aluminum borate (2736 mg Al/kg, using a molecular weight of 273.6), aliaminum glycinate (1351 mg Al/kg) and aluminum sucrose sulfate (20,867 mg Al/kg) was 0.45%, 0.27%, 0.39% and 0.60%, respectively (Yokel and McNamara, 1988). In general, the animal data subject that dose and species may have a larger influence on aluminum absorption than differences in chemical form or conditions within the gastruintestinal tract (Wilhelm et al., 1990). Fractional uptake of aluminum in humans under normal conditions (i.e., with no intake of large quantities of aluminum from medicine) was estimated to be 0.1-0.3% assuming an intake of 20 mg Allday (0.3 thg Allkg-day) and uninary exerction of 20-50 µg Allday (0.3-0.7 mg Allkg-day) (Ganrot, 1986).

Absorption of aluminum is influenced by gastrointestinal conditions and coment because aluminum can form various complexes with different solubilities and oxidation states depending on pH and interactions with dietary constituents. At low pH (3-5) in aqueous solutions, the soluble (ionle) forms of the aluminum prevail (Al²); at high pH (>8), aluminum in the form of soluble AlO₃² is present, and at pH 5-8, the aluminum is predominantly in the form of Al(OII)₄, which is insoluble (var der Voet and de Wolff, 1986; Wilhelm et al., 1990). Ingested constituents that can influence absorption by forming complexes with aluminum include phosphate, fluoride, calcium, citrate and lactate. For example, aluminum is used to bind dietary phosphorus and decrease its absorption at a control for hyperphosphatemia, and citrate and lactate are complexing agents that can significantly increase aluminum absorption (Slanina et al., 1984, 1985, 1986; Partridge et al., 1989; Domingo et al. 1991; Ittel et al., 1991; Lione et al., 1985; Wihelm et al., 1990).

Ahminum has not been shown to have a definite biological function and was long regarded as nontoxic, largely because gastrointestinal absorption is normally minimal. In the past two decades, health effects research in humans and animals has shown that elevated levels of aluminum in the body may be toxic, particularly to the central nervous, skeletal and hematological systems. Much of the evidence for these effects, however, has been obtained under atypical exposure

conditions in which the gastrointestinal barrier is bypassed. A number of animal studies, for example, administered aluminum by parenteral or intracratial injection. In humans, the preponderance of data are from studies of patients with reduced renal function who accumulated preponderance of data are from studies of patients with reduced renal function who accumulated aluminum as a result of long-term intravenous bemodialysis therapy with aluminum-comtaning and, in many cases, concurrent administration of high oral doses of aluminum hydroxide or other aluminum saits to regulate phosphate levels. These human data may be of limited relevance to the general population due to excessive blood uptake and lack of renal excretion. Health effects associated with exposure to aluminum via hemodialysis (e.g., dialysis excephalopathy) have largely disappeared with improved dialysis water purification (Ganrot, 1986). While providing evidence that aluminum is an important etiologic factor in dialysis-related disorders, it should be noted that purification also removed other potentially toxic metals from the dialysis water. For ingested aluminum in people that are healthy (i.e., have normal renal function), the number of aluminum of aluminum in bone (e.g., osteomalacia) resulting from high-dose long-term use of aluminum-containing medications.

One of the greatest health concerns regarding aluminum is its neurological citizens. In humans, dialysis encephalopathy syndrome is the only neurologic condition commonly accepted as caused by aluminum (Ganrot, 1986). Dialysis encephalopathy is degenerative and characterized by the progressive loss of speech, motor and cognitive functions, with death typically occurring within the progressive loss of speech, motor and cognitive functions, with death typically occurring within 1-6 months. Autopates of these patients revealed increased concentrations of aluminum in the gray matter and cerebral spinal fluid (CSF) but no conclusive swidence of neurolibrillary degeneration or other neuropathological changes despite the elevated aluminum levels.

Aluminum is proposed as having an association with three forms of chronic encephalopathy in humans: tenile dementia of the Alcheimer type (SDAT, Alzheimer's Disease), endemic Amyotrophic Lateral Scherosis (ALS) and endemic Parkinsonism-demends (PD, a mixture of Parkinsonism and scrile dementia), but there is no evidence that it plays a causal role in the development of these diseases (Ganrot, 1985; Lione, 1985). SDAT is clinically characterized by progressive deterioration of memory and intellect, but these symptoms are uncharacteristic and difficult to distinguish from other types of brain failure or from symptoms of normal aging. SDAT is defined chiefly by hallmark neuropathological signs, including neuronal depletion and general cell atrophy in the brain, and neurolibrillary degeneration, presence of social plaques (amyloid fibrils surrounded by glial cells and degenerated axonal nerve endings) and granulovacuolar degeneration of the cotice QNS. ALS and PD have been observed endemically in Guam and parts of western New Guinea and Japan. Both conditions are progressive and have some clinical and neuropathologic similarities to SDAT, including brain atrophy and particular neuronal changes (Gaurot, 1986). The proposed associations between aluminum and SDAT, ALS and PD are largely based on increased concentrations of aluminum in the brain, spinal cord and/or CNS lesions of some affected people. There is equivocal evidence for some general similarity of neuropathologic lesions (c.g. neurofibrillary degeneration) in SDAT patients and octain animal species treated with high doses of aluminum (e.g., rabbits treated by intracranial injection), although these lectons have not been observed in scople with dialysis encephalopathy (Ganrot, 1986). Endemic ALS and PD appear to be largely associated with natural environmental factors, in particular excess aluminum in conjunction with deficient magnesium and calcium in drinking water and soil, but a causal relationship has not been proven.

The neurotocicity of aluminum is well documented in certain animal species. Aluminum induces a spectrum of behavioral abnormalities and brain neurofibrillary degenerative changes in rabbits and cath when injected intracranially or parenterally in high doses, but hamsters and monkeys are much less sensitive (Ganrot, 1986; Lione, 1985). It should be noted that the neurofibrillary changes in affected animals differ in morphological detail from those associated with SDAT. As discussed subsequently in the Oral Toxicity section, oral doses of aluminum can induce neurobehavioral effects in adult mice and rats and particularly in their developing offspring.

Osteomalacia was frequently observed among long-term dialysis patients with neurological signs and is commonly attributed to aluminum overload (Ganrot, 1986; Lione, 1985). This bone condition is characterized by widened osteoid (unmineralized bone matrix) with no fibrosis, reduced mineralization rate, skeletal pain and a strong tendency for fractures, lack of response to vitamin D therapy, and increased aluminum concentration in bone. Effects on bone histology and clevated bone aluminum levels have also been observed in patients with normal renal function who received total parenteral matrition with aluminum-contaminated casein as a protein source, and in parenteral aluminum loading induced osteomalacia in rats and dogs (Lione, 1985). As discussed subsequently in the Oral Toricity section, skeletal effects have been observed in the offspring of aluminum-riested rats and mice. Many of the observed effects on bone are related to direct deposition of aluminum, but aluminum may also induce osteomalacia by forming insoluble complexes with phosphates in the gastrointestinal mact. These complexes are not easily absorbed and long term exposure to aluminum may result in hypophosphatenna which in turn leads to hypercalciums and bone resorption. Ingested aluminum case also inhibit gastrointestinal absorption of fluoride which may contribute to skeletal demineralization (Lione, 1985).

Aluminum-associated anemia has been observed in dialysis patients who later developed neurological and skeletal effects (Gaurot, 1986; Llone, 1985). This is a microcytic hypnothronic anemia that a distinct from the anemias commonly found in dialysis patients without aluminum overload, is not due to iron deficiency and may be related to decreased hemoglobin synthesis. Aluminum has also induced a microcytic anemia when injected intraperitoneally in rats (Lione, 1985).

ORAL TOXICITY

Numerous subchronic snimal studies were located but only those that pertain to defining the threshold region of the dose response curve are summarized. Groups of 10 female Sprague-Dawley rats were administered aluminum nitrate nonahydrate in drinking water at doses of 360, 720 and 3600 mg/kg-day (26, 52 and 259 mg Al/kg-day, respectively) for 100 days (Domingo et al., 1987). A control group received distilled water only. The level of aluminum in the diet was not reported. A significant decrease (p<0.05) in body weight gain was observed in the 259 mg Al/kg-day group. The investigators found that the decreased body weight gain (=50% less than controls) was the result of decreased food intake. Overall, no consistent variations in hematological (hemoglobin,

hemanocrit) or clinical chemistry (SGOT, SGPT, alkaline phosphatase, urea, creatinine, total protein, cholesterol, glupose) parameters were observed. No histopathological alterations in the heart, liver, kidney, spleen brain and cerebellum were observed. The rais were concurrently exposed to high doses of minute as high as approximately 475 times the RID for nitrate (1.6 mg nitrate-nitrogen/kg-day) which is based on methemoglobinemia in humans (U.S. EPA, 1994a, 1994b). Due to the nitrate co-exposure, the effect on fond consumption/body weight cannot be conclusively attributed to aluminum at one

In a limited subchronic/three-generation study lasting 180-390 days, Ondreicka et al. (1965) exposed groups of 7 female and 3 male Dobra Voda mice to 0 or 19.3 mg Al/kg-day as aluminum chloride in drinking water. The diet contained 160 to 180 ppm aluminum. Using a food factor of 0.15 kg diet/kg body weight/day based on recommended values for food consumption and body weight-for chronic exposure (U.S. FPA, 1987b), the dietary aluminum intake is estimated to be 24-weight-for chronic exposure (U.S. FPA, 1987b), the dietary aluminum intake is estimated to be 24-weight-for chronic exposure (U.S. FPA, 1987b), the dietary aluminum intake is estimated to be 24-weight-flay. Thus, the total aluminum intakes were 24 mg/kg-day (controls) and 43.3 mg/kg-day (using the 24 mg/kg-day diet estimate). The P_0 group produced 3 linters and the F_{10} group produced (using the 24 mg/kg-day diet estimate). The P_0 group produced 3 linters and the F_{10} group produced 2 linters. The vermings were exposed to aluminum in the drinking water starting at 4 weeks of age. Body weight gain was unaffected in the treated P_0 group but markedly decreased (p<0.001) in the treated F_{10} . F_{10} . F_{10} and F_{20} groups. No effects on erythrocyte count, hemoglobin levels, or histopathology of the liver, spleen, and kidneys were observed in the P_0 F_1 or F_2 generations at the exposed and control groups. This study identifies a LOAEL of 43.3 mg Al/kg-day.

Groups of 6 male Beagle dogs were fed a diet providing 0, 118, 317 or 1034 mg/kg-day sodium aluminum phosphate (0, 3.4, 9.0 or 29.4 mg Al/kg-day, respectively) for 6 momhs (Katz et al., 1984). Groups of 6 females were similarly fed 0, 112, 361 or 1027 mg/kg-day sodium aluminum phosphate (0, 3.2, 10.3 or 30.9 mg Al/kg-day, respectively). Information regarding level of aluminum in the diet was not reported. No compound related effects un body weight gain, hematological and clinical chemistry parameters (parameters not specified), or histopathological endpoints (major organs and tissues examined) were observed. A highest NOEL of 30.9 mg Al/kg-day was identified in this study, but this does not include contribution of aluminum from the basal diet.

The aforementioned studies have a common limitation in that neurotoxicity was not assessed. Neurotoxicity was evaluated in other subchronic as well as developmental studies as discussed below. In one of these studies, groups of 15 female Swisz-Webster mice (9-13 weeks old) were fed diets commining aluminum as aluminum lactate at 25 (controls), 500 or 1000 mg Al/kg diet (3.3, 65 or 130 mg Al/kg bu/day) for 6 weeks (Golub et al., 1989). No mice were exposed to lactate alone. No statistically significant differences in food intake or body weight gain were observed, but mice field the highest aluminum concentration gained less weight than the controls or low-doss group. A significant decrease (20%) in total, vertical, and horizontal movement was observed in the 130 mg Al/kg-day group. Activity in the 65 mg Al/kg-day group was not significantly different than the controls. Thus, the highest NOEL is 65 mg Al/kg-day and the LOAEL is 130 mg Al/kg-day.

Neurobehavioral effects of aluminum luctate were also evaluated in groups of 12 female

N:NIH Swizz Webster trice (4.5-5.5 weeks old) that were fed 25 (controls) or 1000 µg Al/g diet for 90 days (Golub et al., 1992a). Using a food factor of 0.19 kg dict/kg body weight/day calculated using an algorithm relating fixed consumption to body weight (U.S. EPA, 1987b) and reported body weight data (the time-weighted average weight is 25.4 g), the dosage in the treated mice is estimated to be 190 mg Al/kg-day. This estimate is similar to dosages corresponding to the same dietary concentration of aluminum lactate used in developmental studies by the same group of investigature discussed below (Donald et al., 1989, Golub et al., 1992b). No mice were exposed to lactate alone. The neurobehavioral test battery used by Donald et al. (1989) was administered at the beginning of the experiment (day 0) and at 45 and 90 (±3) days, and motor activity was evaluated at 45 and 90 days. Aluminum levels were measured in brain, femur and liver at the end of the exposure period. Body weight was significantly (p-0.03) increased in the treated mice but no exposure-related changes in foot intake or overt signs of neurotoxicity were observed. Results of the neurobehavioral tests showed eignificantly decreased hindlimb grip strength (p=0.012) at 90 days, decreased air pull startle response (p=0.044) at 90 days and decreased auditory startle response (p=0.011) at 45 days in the treated mice. Spontaneous motor activity was reduced at 90 days as indicated by decreased total activity counts (p=0.015), horizontal activity counts (p=0.036) and percentage of intervals with high activity counts (p=0.036). Aluminum concentrations in the brain and liver were increased approximately threefold (p < 0.001) in the treated mice, but brain and liver lipid peroxidation indices were not altered. Concurrent exposure to a low level of dietary manganese (3 µg Mn/g diet) showed no interactive effects between aluminum excess and manganese deficiency on any of the preceding endpoints. The results of this study are generally consistent with findings of decreased motor activity in adult mice exposed to the same concentration of aluminum lactate for 6 weeks in the earlier study of Golub et al. (1989)

Groups of 6 male albino rats were administered 0 or 25 mg Al/kg-day as aluminum nitrate in normal saline by gavage, 10% ethanol in drinking water, or 25 mg Al/kg-day by gavage combined with 10% ethanol in drinking water, 6 days/week for 6 weeks (Flora et al., 1991). The level of aluminum in the diet was not reported. Urinary a-aminolevuline acid (AT.A), blood ALAdehydratase (ALAD), blood zinc protoporphyrin (7.PP), glutamic oxaloacetic transaminase (GOT) and gluramic pyrovic transaminasse (GPT) in serum and liver, and brain biogenic amines and their metabolines [dopamine (DA), norepinephrine (NE), 5-hydroxytryptamine (5-HT), homovanilise acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA)] were evaluated at the end of the treatment period. Treatment with aluminum alone caused significantly increased blood ALAD (p<0.01), decreased liver GPT (p<0.05), decreased brain DA (p<0.01), increased brain NE (p<0.05) and decreased brain 5-HI (p<0.04). Compared to treatment with aluminum alone, concurrent exposure to ethinol and aluminum produced significantly decreased ALAD, increased ALA, increased ZPP, increased liver GPT, increased serum GOT and increased brain HVA. Significant changes found only in the combined shirninum and ethanol group included increased serum GPT, increased brain NB and decreased brain 5-HT. Treatment with ethanol alone only inhibited blood ALAD. The rats were co-expanded to relatively high levels of nitrate [comparable to those in the Domingo et al. (1987) subchronic study), but it seems likely that some of the changes (i.e., effects on brain chemicals) are related to aluminum which is known to be neurotoxic. Because the toxicological significance of the changes is unclear due to lack of evaluation of neurobehavioral performance and other endpoints, the 25 mg Al/kg-day dose is a NOAEL. This value does not include contribution of aluminum from the basal dict.

Chronic drinking water studies which evaluated the carcinogenicity of potassium aluminum sulface in rate and mice (Schroeder and Mitchener, 1975a,b) provide little information on numeratingenic endpoints and are reviewed in a separate Risk Assessment Issue Paper (Evaluation of Carcinogenity of Aluminum).

Developmental toxicity, particularly effects on postuatal neurobehavioral development, have been investigated in a number of studies with aluminum exampounds. Bernuzzi et al. (1989) exposed groups of 6-1/2 pregnant Wister rate to aluminum chloride or aluminum factate in the diet on gestational days 1 through 21. The rats received nominal daily doses of 0, 100, 300, 400 mg Al/kg as aluminum chloride or 0, 100, 200, 400 mg Al/kg as aluminum lactate. No rats were exposed to lectare alone, and information regarding level of aluminum in the basal diet was not reported. On the average, there was a less than 10% decrease in maternal body weight gain and no effect on food or water intake. No significant difference in litter size was observed. However, posmatal mortality increased 55% and 26% (p<0.05) in offspring of the rats exposed to 300 or 400 mg Al/kg-day, respectively. The offspring of dams fed > 300 mg Al/kg-day weighed significantly less (p<0.05) than controls on postnatal day 1. Decreased body weight was also observed on postnatal days 4 and 14 in the offspring of rats fed 400 mg Al/kg-day as aluminum lactate. The following tests were used to assess neuromotor development (maturation): righting reflex, grasping reflex, negative geotaxis, suspension test, and locomotor coordination. The tests were performed on postnatal day 4, 6, 9, 12 and 20, respectively. Impairment of neuromotor development (righting and grasping reflexes) was observed in the pups exposed to 2 200 mg Al/kg-day. Impaired grasping reflex was also observed in the 100 mg/kg-day aluminum lactate group. Offspring of rais led 400 mg/kg-day also exhibited shered performance on the locomotor coordination test. It is inappropriate to use these findings in risk assessment because they are not corroborated by a follow-up study (Muller et al., 1990) which suggests that they could be due to factors other than aluminum.

Unlied Bernazzi et al. (1989), Muller et al. (1990) found that ingestion of 400 mg Al/kg-day as aluminum sectate had no effect on postnatal mortality, body weight and righting and grasping reflex tests. According to Muller et al. (1990), the contradictions between the studies could be related to environmental modifications. In particular, the mothers and pups were much more protected in the Muller et al. (1990) study than in the previous one because they were housed in plantic cages material of wire mesh cages and received cotton to build nests. Body temperature of the pups therefore may have been more adequately maintained in the Muller et al. (1990) study. As discussed in this study, toxicity in pups can be confounded by insufficient body temperature, and delayed pup weight gain could explain the differences in neuromotor performance. Additional information on the Muller et al. (1990) study is summarized below.

Multer et al. (1990) administered diets supplemented with 0 or 400 mg Al/kg-day as aluminum lacture to groups of 6-9 pregnam. Wistar rate on days 1-7, 1-14, or 1-21 of gestation. No rate were exposed to lacture alone, and information regarding level of aluminum in the basel diet was not reported. Neurometer development was assessed on postnatal days 4, 6, 9, 12, and 20 using tests of righting reflex, grasping reflex, negative geotaxis, suspension, and locomotor coordination,

respectively. Learning shiftly was also tested on postnatal day 65 using operant conditioning. No effects on maternal body weight or food intake was observed in dams exposed on gestational days 1-7 or 1-14. In the dams exposed on gestational days 1-21, a significant decrease in maternal body weight (26 and 35%, respectively) was observed on days 16 and 19 of gestation. Decreased food intake was also observed on day 19 of gestation. No effects on litter size, postnatal mortality, or postnatal body weight were observed. Impairment of neuromotor development (p<0.05) was observed in 2 of the 5 tests (negative geotaxis and locomotor coordination); no differences between the three treated groups were observed. For the operant conditioning test, there were significant differences (p<0.05) between the treated and control young rate. No differences between the 3 treated groups were observed. The LOAEL for developmental toxicity is 400 mg Al/kg-day, but this does not include contribution of aluminum from the basal diet.

Groups of 10 pregnant Sprague Dawley rata were administered 180, 360, or 720 mg/kg-day aluminum mitrate nonahydrate by gavage (13, 26, 52 mg Al/kg-day) on days 6-14 of gestation (Paternain et al., 1988). A vehicle (water) only control group was used. The level of aluminum in the diet was not reported. Aluminum exposed dams gained significantly less weight (p<0.05) than the controls. No significant effect on the numbers of litters, corpora lutes, total implants, live fetuses, resorptions, or runt fetuses were observed. Significant decreases (p<0.001) in fetal body weight and tail length were observed at all three aluminum doses; decreased (p<0.001) fetal body length was also observed at the 52 mg Al/kg-day dose level. No consistent external or viscoral malformations were observed in the offspring. A significant (p<0.05) increase in the incidence of skeletal malformations (delayed ossification, hypoplastic deformed ribs) was observed at all three treatment levels. The incidence of hematomas was significantly increased (p<0.05) at the high dose. Because the rats were co-exposed to relatively high levels of nitrate (comparable to those in the Domingo et al. (1987) subchronic study], the effects cannot be conclusively attributed to aluminum alone.

Domingo et al. (1989) administered by gavage 0, 66.5, 133, or 266 mg/kg-day aluminum hydroxide (0, 23.9, 47.8, 95.5 mg Al/kg-day) to groups of 20 pregnant Swiss mice on days 6-15 of gestation. The level of aluminum in the diet was not reported. The dams were killed on gestational day 18. No compound-related effects were observed on maternal mortality, clinical signs, body weight, food intake, or absolute or relative heart, lung, spleen, fiver, kidney and brain weights. In addition, no compound-related effects were observed on numbers of implantations, resorptions, live and dead fetures, sex ratio, and the incidences of external malformations, internal soft-tissue defects or skeletal abnormalities. This study identifies a NOEL of 95.5 mg Al/kg-day for developmental toxicity in taice, however, neuromotor development was not assessed and contribution of aluminum from the basel diet is not known

In a study designed to evaluate the influence of citrate on the potential developmental toxicity of aluminum, groups of 15-19 Sprague-Dawley rats were administered distilled water (controls) or 133 mg Al/kg-day as aluminum hydroxide (384 mg/kg-day), aluminum citrate (1064 mg/kg-day) or aluminum hydroxide (384 mg/kg-day) concurrent with citric acid (62 mg/kg-day) by gavage on gestation days 6-15 (Gomez et al., 1991). The level of aluminum in the diet was not reported and no rats were exposed to citric acid alone. Terminations were performed on gestation

day 20. Maternal and fetal evaluations showed exposure-related effects in the group exposed only to concurrent aluminum hydroxide and citric acid. Significant (p<0.05) changes in the concurrent aluminum hydroxide and citric acid group included reduced maternal weight gain on gestation days 6-20 (but not for days 0-20 or at sacrifice on day 20), reduced fetal body weight and some skeletal variations (increased delayed occipital and stemebrae ossification and increased absence of xiphoides). No effects were seen on maternal food consumption or clinical signs, maternal absolute or relative liver, kidney or brain weights, gravid uterine weight, corpora lutes/dam, implantations/litter, pre- or postimplantation loss/litter, viable or nonviable implants/litter, fetal sex ratio or fetal malformations (external, visceral or skeletal). This study identifies a NOEL of 123 mg Al/kg-day for nonneurobehavioral developmental toxicity of aluminum hydroxide and aluminum citrato in rate. Confidence in this NOEL is low because aluminum hydroxide administered concurrently with citric acid induced developmental effects, and because the dose does not include contribution of aluminum from the basal diet. The NOEL is consistent with the developmental NOEL of 95.5 mg Al/kg-day for aluminum hydroxide in mice (Domingo et al., 1989).

Groupk of 16 pregnant Swiss-Webster mice were fed 25 (control group), 500 or 1000 mg Al/log diet as alluminum lactate throughout gestation and lactation (Donald et al., 1989). The control dict was fed to pups that were selected for postweaming neurobehavioral assessment. Reported maternal doses were 5, 100 and 200 mg Al/kg-day at the beginning of pregnancy and 10.5, 210 and 420 mg Alkg hay near the end of lactation. No mice were exposed to lactate alone. There were no treatment-related changes in maternal survival, body weight (measured on gestation days 0 and 16 and postnatal pays 0, 5, 10, 15 and 20), food intake, toxic signs or neurobehavior (evaluated after pups were weined at postnatal day 21 using the same test battery used for the pups and described below), or on litter size or postnatal growth and development in pups as assessed by body weight, toxic signs on days 0-55, and crown-nump length on days 0 and 20. Neurobehavioral maturation was tested in 2 pups per litter on days 8-18 with a 12 item test battery (fore- and hindlimb grasp, fore and hindraw placement on sticks of 2 widths, vibrissa placing, visual placing, auditory and air putt startle, eye opening, and screen grasp, cling and climb). A neurobehavioral text battery was administered to 6 paps per limer at age 25 days (4 days postwearing) or 39 days (fore- and hindlimb grip strengths, temperature tensitivity of tail, negative geotaxis, startle reflex to air puff and auditory atimuli) or age 21 and 35 days (foot splay). The pre-weaning neurobehavioral testing showed that a significant (p-0.007) number of pups in the high dose group had impaired vertical screen climb performance. The postweaming neurobehavioral assessment showed significantly (p<0.05) altered performance on several tests. These included decreased forelimb grip strength at age 39 days in the low dose group, increased hindlimb grip strength at age 25 days in both low and high dose groups, increased foot splay distance at age 21 days in both low and high dose groups and at age 35 days in the low dose group, and increased forelimb grip strength at age 25 days and decreased thermal sensitivity at age 25 and 39 days in the high dose group. There were no treatment-related changes in concentrations of aluminum in pup liver or home (brain tissue was not analyzed). Recause the Muller et al. (1990) study indicates that exposure during the first 14 days of gestation can produce neurobehavioral effects in offspring in the absence of maternal toxicity, the maternal desage reported for the low dose group at the beginning of gestation is used to define a developmental LOAKL of 100 mg Al/kg-day.

In a more recent study of similar design by the same group of investigators, groups of 14 and 9 female Swiss Webster mice (6-8 weeks old) were fed 25 (control) or 1000 µg Al/g diet as uluminum lactitie, respectively, during gestation and lactation (Golub et al., 1992b). The 1000 µg/g concentration was selected based on the findings of Donald et al. (1989) showing neurobehaviors! effects in weanings at this level. No mice were exposed to factate alone. Using dam food intake and body weight values estimated from reported data, maternal doses are estimated to be approximately 4.3 and 174 mg Al/kg-day at the beginning of greatation and 4.8 and 607 at the end of the lactation period. At birth, litters were fustered either within or between groups to provide 4 groups of offspring that were exposed to excess aluminum via maternal diet during gestation. lactation, both or actifier (i.e., 25 ppm during gestation and lactation, 1000 ppm during gestation and 25 ppm during lactation, 25 ppm during gestation and 1000 ppm during lactation, and 1000 ppm during ecstation and lactation). Maternal effects included tignificantly (pc0.015) reduced (10-12%) body weight gain and food intake in the treated group during late pregnancy and lactation, and signs of neurocoxicity (hindlinh splaying and dragging) in one treated dam at postnatal day 21 (wearing); this dam had seizures and died 4 days later. No treatment-related effects on litter size, birth weight, crown-rump length, righting ability at birth, sex ratio or postnatal survival were observed. Both gestation-unly and lactation-only exposure caused significantly (p<0.05) decreased body weight gain in the treated pups beginning on postnatal day 10; combined gestation and lactation exposure produced the greatest decrease (approximately 24% at wearing). Neurobehavioral testing using the same battery as Donald et al. (1989) was performed at weaning on the dams and on a total of 12, 16, 12 and 6 pupk (1 male and 1 female pup per liner) from the control, gestation-only, lactation-only and combined gestation and lactation groups, respectively. Results of this testing showed effects only in pups, including significantly decreased forelimb grip strength (p=0.0027) after gestationonly exposure, increased hindlimb grip strength (ps0,004) after both gestation and factation exposure, depressed temperature sensitivity (p.s0.004) after lactation-only exposure, and longer negative geofests latency (pr-0,008) after lactation-only exposure. In general, the findings of this study are confistent with those of Dorald et al. (1989) in showing neurodevelopmental effects at the 1000 µg/g distary concentration, aithough intake dosages are dissimilar at the end of lactation. Using the do sage at the beginning of gestation, this study defines a LOAEL of 174 mg/kg-day for developmental effects.

The Donald et al. (1989) study differs from that of Golub et al. (1992b) in that offspring were not fostered, were tested at a later age (25 vs. 21 days), were allowed 4 days of recovery from the treated diet prior to testing, participated in other behavioral tests currently, and experienced no growth retardation. The effects found only in the cross-fostered groups in the Golub et al. (1992b) study (lower forelimb strength after gestation exposure and altered negative gentaxis latencies after lactation only exposure) were not observed by Donald et al. (1989). Increased footsplay was observed by Donald et al. (1989) but not by Golub et al. (1992b), perhaps due to an opposing effect of smaller pup body size in this study. Neither gestation or lactation exposure affected pup brain or liver aluminum concentrations, but lactation exposure caused significantly lower manganese and iron concentrations in liver and manganese concentrations in brain.

In a study designed to evaluate the influence of lactate on the potential developmental toxicity of alaminum, groups of 11-13 Swiss albino (CD-1) mice were administered 57.5 mg Al/kg

as aluminum hydroxide (166 mg/kg-day), aluminum lactate (627 mg/kg-day) or aluminum hydroxide (166 mg/kg-day) concurrent with factic acid (570 mg/kg-day) by gavage on gestation days 6-15 (Colomina et al., 1992). Other groups were treated with only lactic acid (570 mg/kg-day, equivalent to the amount in 627 mg/kg of aluminum lactate) or distilled water (controls). The level of aluminum in the diet was not reported. Fetal evaluations were performed on gestation day 18, including examinations for skeletal and visceral abnormalities in approximately two-thirds and onethird of the pups, responsively. The investigators noted that the dose of aluminum (57 5 mg/kg-day) is equivalent to ingostion of 3.5 g Al/day by a 60 kg person, which is higher than the usual quantities of aluminum ingested therapeutically for peptic disorders. Maternal body weight gain was significantly lower than control values in the aluminum lactate-treated mice when evaluated over gestation days 6-9 (92%, p<0.001), 6-12 (55.6%, p<0.01) and 0-18 (38.5%, p<0.001), and in the mice treated with combined aluminum hydroxide and factio acid evaluated over gestation days 6-12 (37.8%, p<0.05), 6-15 (42.7%, p<0.01) and 0-18 (15.7%, p<0.05). The decreased maternal weight gain in the aliminum lactate group was accompanied by significantly reduced food consumption during gestation days 6-18. Other significant effects in the aliminum lactate group included 16% reduced fetal body weight (p<0.01) and increased incidences of class palate (13.2%, p<0.05), dorsal hyperkyphosis (i.e., excessive flexion of spine) (13.5%, p<0.05) and delayed parietal assistantion (15.4%, p<0,d1). These developmental effects were not observed in any of the control or aluminum hydroxide exposed pups, and the only other significant changes in the other groups were decreased maternal relative liver weight and delayed fotal parietal ossification in the lactic acid only exposure group. Other types of internal or skoletal malformations or variations were not found in any of the fetuses. Additionally, no effects were seen on maternal absolute or relative kidney weight, gravid uterine weight, numbers of implantation sites/litter, live or dead fetuses, resorptions, postimplantation loss/litter, litters with dead fetuses or fetal sex ratio in any of the groups. As for the Domingo et al. (1989) and Gomez et al. (1991) studies, the lack of developmental effects of aluminum hydroxide at the tested dose could be related to low solubility and absorption.

DERIVATION OF ORAL RED

Oral risk assessment of aluminum must consider variations in absorption and toxicity due to factors such as chemical form and interactions with dictary constituents, as well as normal levels of intake and intake from medicinal use. As discussed in the Introduction, there are large variations and discrepancies in quantitative estimates of gastrointestinal absorption of aluminum. It is ressonably well established, however, that water soluble aluminum compounds are better absorbed than water insoluble aluminum compounds, and that absorption of aluminum is increased by concurrent ingestion of complexing agents such as citrate and lactate. Data on soluble aluminum compounds, particularly the most highly absorbable forms such as aluminum citrate and aluminum lactate, therefore provide a more conservative basis for risk assessment. Due to an insufficiency of oral data on sensitive effects of aluminum in healthy humans (e.g., people with normal kidney function), the risk assessment will be based on animal data.

Developmental effects (particularly neurobehavioral deficits and decreased body weight gain, and possibly skeletal abnormalities) are the most sensitive endpoints of aluminum toxicity observed in orally exposed animals. There has been much interest in the neurobehavioral effects

of eluminum in adult and developing animals, and a LOAEL of 100 mg Al/kg-day is identified for minimal neurotoxicity in the offspring of mice exposed to dietary aluminum lactate (soluble aluminum) during gestation and lactation (Donald et al., 1989). The neurotoxicity associated with the critical LOAEL is consistent with LOAELs from other developmental and subchronic neurobehavioral studies in mice and rate which used higher dietary dosages of aluminum lactate or aluminum chloride (Golub et al., 1989, 1992a, 1992b; Bermzzzi et al., 1989; Mulier et al., 1990). None of the animal neurobehavioral development studies, however, investigated morphological abnormalities (i.e., external, visceral and skeletal).

Nonneurotoxic fetal effects were reported in two studies (Colomina et al., 1992; Paternain et al., 1988) at aluminum dosages lower than the 100 mg Al/kg-day LOAFL for developmental neurotoxicity (Donald et al., 1989), but these data are unsultable for risk assessment for various reasons as discussed below. In particular, insufficient information on dictary aluminum (aluminum content and/or feed type) was reported which is problematic because it is known that diet can significantly add to total aluminum exposure. For example, Golub et al. (1992a) reported that commercial grain-based mouse foeds contain high levels of aluminum (200-1200 ppm), as well as excess and variable amounts of essential and nonessential trace minerals and metal binding ligands, whereas trace metal levels are precisely determined in diets that are semipurified. Additionally, these studies used bolus (gavage) treatment, which is a less relevant method of exposure than diet which was used in the critical study (Donald et al., 1989). Also maternal effects were observed at the featutoxic doses in the Colomina et al. (1992) and Paternian et al. (1988) studies.

Colomina et al. (1992) reported reduced fetal body weight and increased incidences of cleft palate and skeletul changes (dorsal hyperkyphosis and delayed parietal ossification) in fetuses of mice exposed by gavage to 57.5 mg Al/kg as aluminum lactate on gestation days 6-15. In addition to insufficient information on dietary aluminum (commercial rather than semipurified feed was used), the usefulness of this study for risk assessment is limited by the insufficient information on basal dietary aluminum (commercial rather than semipurified feed was used) and the possibility that the effects of the 57.5 mg Al/kg-day treatment with aluminum lactate were related to the method of treatment. As there were no effects on maternal body weight gain at a dietary dosage of 100 mg Al/kg-day with aluminum lactate in the Donald et al. (1989) study, and effects on maternal body weight in other studies at higher dictary dosages were less severe and not consistently observed, the effects observed by Colomina et al. (1992) could be related to the bolus treatment.

Faternain et al. (1988) found decreased maternal body weight and an increased incidence of akeletal changes (delayed ossilication, hypoplastic deformed rihs), but no consistent effects on external or visceral malformations, in rate treated with 13-52 mg Al/kg-day as aluminum nitrate by gavage on gestation days 6-14. Due to the lack of information on dictary aluminum as well as the co-exposure to nitrate, this study has limited usefulness for risk assessment.

There are some corroborating data for the skeletal variations observed by Colombia et al. (1992) and Patemain et al. (1988), but cleft palate has not been reported by investigators other than Colombia et al. (1992). The reason for this is unclear, but it could be related to differences in species and/or effective duses due to variations in aluminum dietary content and factors affective

absorption such as chemical form (e.g., use of less absorbable aluminum hydroxide). For example, offspring of rars that were treated with 133 mg Al/kg as aluminum hydroxide combined with citric acid, by gavage on gerration days 6-15, had skeletal variations (increased delayed occipital and stemebrae ossification and increased absence of xiphoides) and reduced letal weight (Gomez.et al., 1991). There were no external, visceral or skeletal abnormalities, however, in offspring of rars similarly treated with aluminum hydroxide alone or aluminum citrate (Gomez et al., 1991), or in nice treated with 23.9-95.5 mg Al/kg-day as aluminum hydroxide by gavage on gestation days 6-15 (Domingo et al., 1989). Studies in which aluminum lactate or aluminum chlorida was injected in rars, mice or rabbits during gestation found effects on skeletal ossification but no evidence of cleft pulate or other teratogenicity (Colomina et al., 1992; ATSDR, 1992). Additionally, the oral neurobehavioral development studies reported nothing that raises suspicion for induction of cleft pulate even though they used dictary desages of aluminum lactate higher than the gavage dosage that induced cleft palate.

Other developmental studies with aluminum hydroxide and/or citrate in mice and rats identified NOELs which are equivalent to (95.5 mg Al/kg-day) or greater than (133 mg Al/kg-day) the 100 mg Al/kg-day critical LOAFI. (Domingo et al., 1989; Gomez et al., 1991), but these NOELs do not reflect developmental neurotoxicity because this sensitive endpoint was not evaluated. This overlap between the critical LOAEL and these NOELs could also be related to differences in overlap between the critical LOAEL and these NOELs could also be related to differences in effective doses due to variations in unreported aluminum dictary content and factors affecting absorption such as chemical form (e.g., the use of less absorbable aluminum hydroxide).

Systemic toxicity data for dosages below levels inducing developmental effects include a LOAEL of 43.3 mg Al/kg-day for decreased body weight gain in mice exposed to aluminum chloride for 180-390 days (Ordreicka et al., 1966), but this study is inappropriate for risk assessment due to small sample size, and poor reporting of study details. Aluminum mitrate caused alterations in levels of brain biogenic amines and hepatic and honatological indices in rats exposed to 21.4 mg in levels of brain biogenic amines and hepatic and honatological indices in rats exposed to 21.4 mg Al/kg-day for 6 weeks (Flora et al., 1991). This dose is a NOAEL because insufficient information is available to determine if the effects are adverse, however, confidence in the value is low due to a lack of information on level of dietary aluminum.

Based on the preceding considerations related to the Colomina et al. (1992) and Paternain et al. (1988) studies, particularly concern associated with the lack of information on actual dosage, occurrence of maternal toxicity and uncertain relevance of bolus treatment to haman exposure, it is most appropriate to use the LOAEL of 100 mg Al/kg-day for minimal neurotoxicity in the offisping of mica (Dosald et al., 1989) as the basis for the RfD. The LOAEL is considered minimal because the results of the postwearing neurobehavioral test battery indicate that performance deficits may be marginal. In particular, of the three observed effects (decreased forelimb and increased hindisors grip strengths, increased hindisors foot splay distance), one effect (increased grip strength) has unclear traincological significance and two effects (increased grip strength and foot splay distance) did not persist after two weeks of nonexposure. Application of an uncertainty factor of 100 (3 for use of a minimal LOAEL, 10 for interspecies extrapolation, and 3 for intrahuman variability) results in a provisional RfD of 1E-0 mg Al/kg-day. A factor of 3 is used for intrahuman variability because the critical effect is in a sensitive subgroup (i.e., developing Infants exposed

during pregnancy and lactation). The provisional RfD of IE-0 mg Al/kg-day is approximately 3-fold higher than estimated normal daily aluminum lotake of approximately 0,2-0.3 mg/kg-day (Ivengar et al., 1987; Ganrot, 1986; Wilhelm et al., 1990). Chronic users of medications such as antacide, buffered aspiring and antiplecratives can ingest much larger amounts of aluminum, possibly as high as 10-70 mg/kg-day, but do not represent the most sensitive population (developing infants) as indicated by the animal data.

Medium confidence is placed in the critical study as it only identifies a LOAEL for a sensitive effect and evaluated small numbers of animals. Confidence in the data base is low because the most reliable supporting data for neurotoxicity of aluminum in humans is of limited general relevance (e.g., dialysis encephalopathy is manifested in patients with impaired renal function and excessive aluminum uptake from intravenous exposure), neurotoxicity has not been assessed in animals chronically exposed to aluminum, developmental morphology has not been adequately investigated in two animal species, and a well-designed two generation reproduction study is investigated in two animal species, and a well-designed two generation reproduction study is investigated in two animal species, and a well-designed two generation reproduction study is investigated in two animal species, and a well-designed two generation reproduction study is investigated in two animal species, and a well-designed two generation reproduction study is investigated in two animal species, and a well-designed two generation reproduction study is investigated in two animal species, and a well-designed two generation reproduction study is investigated in two animal species, and a well-designed two generation reproduction study is investigated in two animal species, and a well-designed two generation reproduction study is investigated in two animal species, and a well-designed two generation reproduction study is investigated in two animal species, and a well-designed two generation reproduction and the RfD; lacking the RfD lease in the RfD. The aluminum form should be considered when using the base, there is low confidence in the RfD. The aluminum form should be considered when using the base, there is low confidence in the RfD. The aluminum form should be considered when using the base, there is low confidence in the RfD. The aluminum form should be considered when using the base, there is low confidence in the RfD. The aluminum form should be consider

REFERENCES:

ATSDR (Agency for Toxic Substances and Disease Registry). 1992. Toxicological Profile for Aluminum and Compounds. U.S. Public Health Service, Atlanta, GA. NIIS No. PB93-110633.

Bermuzzi, V., D. Desor, and P.R. Lehr. 1989. Developmental alterations in offspring of female rats orally intoxicated by aluminum chloride or lactate during gestation. Teratol. 40: 21-27.

Colomina, M.T., M. Gomez, J.L. Domingo, J.M. Llobet and J. Corbella. 1992. Concurrent ingestion of lactate and aluminum can result in developmental tenticity in mice. Res. Commun. Chem. Pathol. Pharmacol. 77(1): 95-106.

Domingo, JL., JM. Llobet, M. Gomez, JM. Tomas and J. Corbella. 1987. Nutritional and toxicological effects of short-term ingestion of aluminum by the rat. Res. Commun. Chem. Pathol. Pharmacol. 56; 409-419.

Domingo, I.L., M. Gomez, M.A. Bosque, and I. Corbella. 1989. Lack of teratogenicity of aluminum hydroxide in mice. Life Sci. 45: 243-247.

Domingo, I.L., M. Gomez, I.M. Llobet, and J. Corbella. 1991. Influence of some dietary constituents on aluminum absorption and retention in rats. Kidney Int. 39: 598-601.

- Donald, J.M., M.S. Golub, M.E. Gerahwin, and C.L. Keen. 1989. Neurobehavioral effects in offspring of mice given excess aluminum in diet during gestation and lactation. Neurotoxicol. Teratol. 11: 345-351.
- Flora, S.J.S., M. Dhawan and S.K. Tandon. 1991. Effects of combined exposure to aluminum and ethanol on aluminum body burden and some neuronal, hepatic and hematopoietic biochemical variables in the rat. Hum. Exp. Toxicol. 10(1) 45-48.
- Gancot, P.O. 1986. Metabolism and possible health effects of aluminum. Environ. Health Perspect. 65: 363-441.
- Golub, M.S., I.M. Donald, M.E. Gershwin, and C.L. Keen. 1989. Effects of aluminum ingestion on spontaneous motor activity of mice. Neurotoxicol. Teratol. 11: 231-235.
- Golub, M.S., C.L. Keen and M.E. Gershwin. 1992s. Neurodevelopmental effect of aluminum in mice: Fostering studies. Neurotoxicol Teratol. 14(3): 177-182.
- Golub, M.S., B. Han, C.L. Keen and M.E. Gershwin. 1992b. Effects of dietary aluminum excess and manganese deficiency on neurobehavioral endpoints in adult mice. Toxical. Appl. Pharmacol. 112(1): 154-160.
- Gomez, M., J.L. Domingo and J.M. Llober. 1991. Developmental toxicity evaluation of oral aluminum in rats; Influence of citrate. Neurotoxicol. Teratol. 13(3): 323-328.
- Gupta, S.K., D.H. Waters, and P.R. Gwitt. 1986. Absorption and disposition of aluminum in the rat. J. Pharm. Sci. 1986. 75 (6). 586-589.
- Ittel, T.H., A. Griesner, and H.G. Siberth. 1991. Effect of lacrate on the absorption and retention of aluminum in the remnant kidney rat model. Nephron. 57: 332-339.
- Iyengar, G.V., J.T. Tonner, W.R. Wolf, and R. Zeisler. 1987. Proparation of a mixed human diet material for the determination of antient elements, selected toxic elements and organic nunious; a proliminary report. Sci. Total Environ. 61: 235-252.
- Katz, A.C., D.W. Frank, M.W. Sauerhoff, G.M. Zwicker, and R.I. Freudenthal. 1984. A 6-month dietary toxicity study of acidio sodium aluminum phosphate in beagle dogs. Food Chem. Toxic.
- Lione, A. 1985. Aluminum toxicology and the aluminum-containing medications. Pharmacol. Therap. 29: 255-285.
- Marquis, J.K. Neurotuxicity of aluminum. 1989. Environmental Chemistry and Toxicology of Aluminum. T.E. Lowis, Editor, Chelses, Michigan, Lewis Publishers, Inc., pp. 289-298.

Muller, G., V. Bernuzzi, D. Desor, M.F. Hutin, D. Burnel, and P.R. Lehr. 1990. Developmental alterations in offspring of female rats orally intoxicated by aluminum lactate at different gestation periods. Teratol. 38: 253-261.

NIP (National Toxicology Program). 1994. Chemical Status Report (01/11/94).

Ondreicka, R., E. Ginter, and J. Kortus. 1966. Chronic toxicity of aluminum in rats and mice and its effects on phosphorus metabolism. Brit. J. Industr. Med. 23: 305-312.

Partridge, N.A., F.E. Regnicz, J.L. White, and S.L. Hem. 1989. Influence of dictary constituents on intestinal absorption of aluminism. Kidney Int. 35: 1413-1417.

Paternain, J.L., J.L., Domingo, J.M. Llobet and I. Corbella. 1988. Embryotoxic and tetatogenic effects of aluminum mitrate in rats upon oral administration. Teratol. 38: 253-257.

Schroeder, H.A. and M. Mitchener. 1975a. Life-term studies in rats: Effects of aluminum, barium, beryllium, and tungsten. J. Nutr. 105: 421-427.

Schweder, H.A. and M. Mitchener. 1975b. Life-term effects of mercury, methyl mercury, and nine other trace metals on mice. J. Nutr. 105; 452-458.

Stanina, P., Y. Falkeborn, W. Frech, and A. Cedergren. 1984. Aluminum concentrations in the brain and bone of rats fed citric acid, aluminum citrate or aluminum hydroxide. Food Chem. Toxicol. 22: 391-397.

Signing, P., W. Frech, A. Bernhardson, A. Cedergren, and P. Mattsson. 1985. Influence of dietary factors on aluminum absorption and retention in the brain and bone of rats. Acra Pharmacol. Textcol. 56: 331-336.

Slanina, P., W. Frech, L.G. Ekstrom, L. Loof, Slorach S., and A. Cedergren. 1986. Dictary citric acid enhances absorption of aluminum in antacids. Clin. Chem. 32: 539-541.

U.S. IPA. 1987a. Health Effects Assessment for Aluminum. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, D.C.

U.S. HPA. 1987b. Recommendations for and Documentation of Biological Values for Use in Risk Assessment. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. EPA 600/6-87-008. NTIS PB88-179874/AS.

U.S. EPA. 1994a. Drinking Water Regulations and Health Advisories. Office of Water, Washington, DC. May 1994.

U.S. EPA 1994b. Integrated Risk Information System. Online. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH.

U.S. EPA. 1994c. Monthly Status Report of RiD/RIC Work Group (As of 12/01/94). Office of Research and Development, Environmental Criteria and Assessment Office, Cincinnati, OH.

U.S. EPA. 1994d. Monthly Status Report of CRAVE Work Group (As of 12/01/94). Office of Research and Development, Environmental Criteria and Assessment Office, Cincinnati, OH.

U.S. EPA. 1994c. Health Effects Assessment Summary Tables. Annual Update FY94. Office of Research and Development, Office of Emergency and Remedial Response, Washington, DC. NIIS PB94-921199.

van der Voet, C.B. and F.A. de Wolff. 1986. Intestinal absorption of aluminum in rate: effect of intrahuminal pH and aluminum concentration. J. Appl. Toxicol. 6: 37-41.

Wilhelm, M., D.E. Jager and F.K. Ohnesorge. 1990. Aluminum toxicokinetics. Pharmacol. Toxicol, 60: 4-9.

Yokel, R.A. and P.J. McNamara. 1988. Influence of renal impairment, chemical form, and serum protein binding on intravenous and oral aluminum kinetics in the rabbit. Toxicol. Appl. Pharmacol. 95: 32-43.

,

THIS PAGE INTENTIONALLY LEFT BLANK.

J-22

Superfund Technical Support Center

National Center for Environmental F U.S. Environmental F 26 West Martin Luther Ki Cincinnati, Ohio 45268

Harlal Choudhury/Director, Pat Daunt/Administrator Hotline 513-569-7300, FAX 513-569-7159

March 19, 1999

Ted Simon US EPA Region 4 100 Alabama St Atlanta, GA 30303

ASSISTANCE REQUESTED:

Chronic Oral Toxicity Information for Cobalt and

Trichloroethylene (Defense Depot Memphis / Memphis,

MI)

ENCLOSED INFORMATION:

Attachment 1: Risk Assessment Issue Paper for:

Provisional RfD for Cobalt (7440-48-4)

STSC has no current Chronic Oral RfD for Trichloroethylene, Harlal Choudhury has to authorize the release of this retired issue paper. Unfortunately, he will be out of the office until next week. In the meantime, it may be helpful to call the chemical contact, Jim Cogliano at 202-564-3269. If you have any questions please feel free to call.

BE ADVISED:

It is to be noted that the attached Risk Assessment Issue Papers have not been through the U.S. EPA's formal review process. Therefore, they do not represent a U.S. EPA verified assessment. If you have any questions regarding this information, please contact the STSC at

(513) 569-7300.

Attachments

Attachment 1

(96-027/12-01-97)

Risk Assessment Issue Paper for: Provisional RfD for Cobalt (7440-48-4)

Cobalt has been found to stimulate the production of red blood cells in humans and, therefore, has been used as a treatment for anemia. In 12 anemic, anephric patients undergoing dialysis, treatment with 0.18 mg cobalt/kg/day as cobalt chloride for 12 weeks resulted in a significant rise in hemoglobin (Duckham and Lee, 1976). Taylor et al. (1977) reported similar effects in 8 anephric patients treated with 0.16-0.32 mg cobalt/kg/day as cobalt chloride for 12-32 weeks. In both studies, hemoglobin levels returned to pre-treatment levels following the cessation of treatment. Similar effects were reported in nonanemic humans and animals (Davis and Fields, 1958; Krasovskii and Fridlyand, 1971). Reversible polycythemia was reported in 6 normal male subjects following treatment with 1 mg cobalt/kg/day as cobalt chloride for 25 days (Davis and Fields, 1958). In normal rats, treatment with 0.5 mg cobalt/kg/day, but not 0.05 mg/kg/day, as cobalt chloride resulted in polycythemia and an increase in hemoglobin (Krasovskii and Fridlyand, 1971). An increase in hematocrit and hemoglobin levels was not observed, however, in pregnant women treated with 0.5-0.6 mg cobalt/kg/day for 90 days in an attempt to alleviate the anemia often found during pregnancy (Holly, 1955).

Much of the oral data in humans deals with the cardiomyopathy seen in people who drank large quantities of beer containing cobalt chloride (used to stabilize the foam) (Alexander, 1969, 1972; Morin et al., 1971). The people ingested 0.04-0.14 mg cobalt/kg/day (approximately 8-30 pints of beer daily) over a period of years (Alexander, 1969, 1972; Morin et al., 1971). The cardiomyopathy in the beer-drinkers, termed "beer-cobalt cardiomyopathy," was fatal to 43% of the subjects within several years, with approximately 18% of these deaths occurring within the first several days. The beer-cobalt cardiomyopathy appeared to be similar to alcoholic cardiomyopathy and beribert, but the onset of the beer-cobalt cardiomyopathy was much more abrupt. The practice of adding cobalt to beer to stabilize the foam has been discontinued. It should be noted, however, that the cardiomyopathy may have also been due to the fact that the beer-drinkers had protein-poor diets and may have had prior cardiac and hepatic damage from alcohol abuse. Treatment of both pregnant and nonpregnant anemic patients with comparable or much higher doses of cobalt (0.09-1 mg cobalt/kg/day) did not result in effects on the heart (Duckham and Lee, 1976; Davis and Fields, 1958; Holly, 1955; Taylor et al., 1977).

Cobalt has been found to be a sensitizer in humans. Individuals are sensitized following dermal or inhalation exposure, but flares of dermatitis may be triggered following cobalt ingestion. One study was located that orally challenged cobalt-exposed workers in order to assess sensitization (Veien et al., 1987). In this study, several patients with eczema of the hands were challenged orally with 1 mg cobalt (0.014 mg cobalt/kg/day as cobalt sulfate) in tablet form once per week for 3 weeks and 28/47 patients had a flare of dermatitis following the oral

challenge (Veien et al., 1987). Forty-seven patients had positive patch tests to cobalt (13 to cobalt alone and 34 to nickel and cobalt) and 7 of the 13 patients that patch tested positive to cobalt reacted to the oral challenge. Using both the oral challenge and dermal patch tests, it was determined that the cobalt allergy was systemically induced. The exposure levels associated with sensitization to cobalt following inhalation or dermal exposure were not established.

Interrelationships have been found to exist between cobalt and nickel sensitization (Bencko et al., 1983; Rystedt and Fisher, 1983; Veien et al., 1987). In guinea pigs, nickel and cobalt sensitization appear to be interrelated and mutually enhancing (Lammintausta et al., 1985). Therefore, it is possible that in people sensitized by nickel, exposure to cobalt may result in an allergic reaction. The elicitation of an allergic response in cobalt-sensitized workers was considered for the derivation of an oral RfD. An oral RfD was not derived because a NOAEL for the elicitation of the allergic response in humans was not defined and, because interrelationships exist between cobalt and nickel sensitization, people sensitized by nickel may have an allergic reaction following cobalt exposure. Consequently, it is impossible to certify that an RfD based on this effect would provide sufficient protection for sensitive individuals.

Three studies were located examining the developmental effects of orally administered cobalt (given as cobalt chloride) in rodents (Domingo et al., 1985; Paternain et al., 1988; Seidenberg et al., 1986). Domingo et al. (1985) treated pregnant female rats to 5.4 to 21.8 mg cobalt/kg/day from gestation day 14 through lactation day 21. Fetal effects included stunted growth of the pups at 5.4 mg cobalt/kg/day and decreased survival at 21.8 mg cobalt/kg/day. These effects occurred at levels that were maternally toxic (authors did not specify the effects), therefore, the effects may be a result of maternal toxicity and not cobalt treatment. No teratogenic effects were reported.

No significant effects on fetal growth or survival were found in rats exposed to 6.2 to 24.8 mg cobalt/kg/day during gestation days 6-15 (Paternain et al., 1988), although a nonsignificant increase in the incidence of stunted fetuses was found in the animals treated with 12.4 or 24.8 mg cobalt/kg/day. Maternal effects, however, including reduced body weight and food consumption and altered hematological parameters, were reported. No fetal effects were reported in mice exposed to 81.7 mg cobalt/kg/day during gestation days 8-12 (Seidenberg et al., 1986), but a significant decrease in maternal weight was found.

Several studies reported testicular degeneration and atrophy in rats exposed to 5.7 to 30.2 mg cobalt/kg/day as cobalt chloride for 2-3 months in the diet or in the drinking water (Corrier et al., 1985; Domingo et al., 1984; Mollenhauer et al., 1985; Nation et al., 1983; Pedigo et al., 1988).

Given the database, the most sensitive indicators of cobalt toxicity following oral exposure are the increase in hemoglobin in both humans and animals, and the elicitation of dermatitis in sensitized individuals.

An alternative approach was likewise evaluated based on the hematological effects of cobalt treatment (increase in hemoglobin) in anemic dialysis patients (Duckham and Lee, 1976). The results of this study are supported by a similar study in anephric patients (Taylor et al., 1977). Hematological effects of cobalt were also found in studies in normal humans (Davis and Fields, 1958) and rats (Krasovskii and Fridlyand, 1971) indicating that the effect is not limited to anephric individuals. The data of Davis and Fields (1958) reported hemoglobin increase of 6-11 % over "normal" in "normal" volunteers given 0.96 mg cobalt/kg/day as cobaltous chloride. However, the data of Duckham and Lee (1976) describes a case of refractory anemia in patients with chronic renal failure that upon treatment with 0.18 mg cobalt/kg/day for 12 weeks responded favorably. The patients hemoglobin levels were increased to levels at or near low "normal" clinical levels from levels clinically described as anemic. The anemia recurred following cessation of treatment. Thus, this effect of cobalt administration in the Duckham and Lee (1976) study (and likewise that of Taylor et al., 1977) cannot be termed adverse, but are actually clinically beneficial to patients with renal disease. Consequently, these data cannot be used to derive an oral RfD.

Summary of Additional Oral Studies on Cobalt to be Included in Master List Uptate

Male Sprague-Dawley rats (12 per group) were exposed to one of three diets: control diet, a diet containing 12% protein ("protein-restricted" control) or the protein-restricted diet containing cobalt sulfate at a concentration to achieve 8.4 mg Co/kg-day (40 mg CoSO₄ · 7H₂O/kg-day) (Pehrsson et al., 1991). After eight weeks rats, were euthanized and hearts were isolated and perfused in a Langendorff perfusion circuit for assessment of left ventricular function. Body weights of rats exposed to 8.4 mg Co/kg-day were significantly lower (37%, p<0.05) than rats maintained on the protein-restricted control diet. No significant differences in left ventricular function were observed between the three diet groups. Myocardial Co concentrations were 1.5-4 mg Co/kg wet weight after eight weeks of exposure to 8.4 mg Co/kg-day compared to 0.05-0.18 after eight weeks on either of the two control diets. In a subsequent follow-up study (see below), cardiac function was assessed in rats after a 16 or 24 week exposure Co; the longer exposure duration resulted in higher myocardial Co concentrations and impairment of left ventricular function (Haga et al., 1996).

In the follow-up study, male Sprague-Dawley rats (12-16 per group) were exposed to a conventional control diet or a diet containing cobalt sulfate to achieve a daily intake of 8.4 mg Co/kg-day (40 mg $CoSO_4 \cdot 7H_2O/kg$ -day) (Haga et al., 1996). The Co intake in the control group was not reported. After 16 or 24 weeks on the diets, rats were euthanized and hearts were isolated and perfused in a Langendorff perfusion circuit for assessment of left ventricular function. Body weights of rats exposed to 8 4 mg Co/kg-day were significantly lower than control rats after 16 weeks (26%, p<0.0001) and 24 weeks of exposure (31%, p<0.001). The ratio of left ventricular weight to body weight was significantly higher in rats exposed to 8.4 mg Co/kg-day for 24 weeks (30%, p<0.001). After 16 weeks of exposure, coronary flow index was significantly higher compared with controls (p<0.01) suggesting lower flow resistance in the

coronary vascular bed. After 24 weeks of exposure, impairment of left ventricular function was more pronounced and characterized by decreased myocardial distensibility (reduced left ventricular pressure decay during diastole and pressure rise during systole, compared with control) in addition to reduced coronary flow resistance. Thus, the LOAEL was 40 mg/kg-day for left ventricular hypertrophy and impaired systolic and diastolic left ventricular function. Myocardial Co concentrations were 10-11 mg Co/kg wet weight after 16 and 24 weeks of exposure, compared with 0.12-0.13 mg Co/kg in the controls. The higher Co concentrations are 2-3 times greater than the Co concentrations achieved in the previous study of Pehrsson et al. (1991), and may explain why impaired ventricular function was evident after the longer exposure duration used in the Haga et al. (1996) study. [Hearts from human victims of "beer drinkers' myocardiopathy" were found to have a mean cobalt concentration of 0.48 mg Co/kg comapred to 0.04 mg Co/kg in controls (Sullivan et al., 1968).]

Male guinea pigs (20 per group) were exposed to one of six isocaloric diets for 5 weeks: standard Purina Guinea Chow (SGPC), SPGC plus 20 mg/kg-day Co as cobalt sulfate, SPGC (liquefied) plus 2 g/day ethanol with or without 20 mg/kg-day Co, SPGC (liquefied) plus sucrose with or without 20 mg/kg-day Co (Mohiuddin et al., 1970). Mortality at 5 weeks in the cobalt groups was 4-5 of 20; compared with 0-1/20 in the groups that did not receive the Co supplemented diets. Guinea pigs in the Co-supplemented groups had tachypnea, weakness and hindlimb paralysis (incidence not reported). Absolute and relative heart weights in all Cosupplemented groups were significantly greater than in the groups not supplemented with Co (28%, p<0.01). Gross examination of the heart after five weeks of exposure revealed pericardial effusion in 45-50% of all of the Co-supplemented guinea pigs and in none of the guinea pigs that did not receive Co. Microscopic examination revealed in all of the Co-supplemented groups, but not the other groups: pericardial thickening; myocardial degeneration without inflammation (e.g., absence of cellular infiltration) characterized by loss of myofribrillar material, vacuolization and increased intracellular lipid and glycogen content; endocardial edema and thickening; and thrombi in all heart chambers. Electron microscopic examination revealed in the Cosupplemented groups: loss of intracellular myofibrillar elements, changes in mitochondria shape, size and cristae morphology, dilated sarcoplasmic reticulum, intracellular lipid droplets. A greater incidence of abnormal electrocardiograms (ECG) including bradycardia, loss of QRS voltage and repolarization abnormalities were recorded in the Co-supplemented groups beginning in the 3rd and 4th weeks of exposure (65% abnormal ECG in SPGC group plus Co compared with 5% in the SPGC group). Specific ECG abnormalities consisted of a greater incidence in the Co-supplemented group (e.g., incidence in SPGC plus Co/incidence in SPGC) of bradycardıa (80%/5%), decreased QRS voltage (75%/10%), A-V conduction delay (25%/5%) and S-T changes (65%/5%). The 20 mg Co/kg-day exposure used in this study defines a FEL for mortality and functional and histopathologic heart lesions in guinea pigs exposed to Co in food for five weeks.

In a subchronic reproductive study, adult male B6C3F1 mice were exposed to drinking water containing 400 mg Co/L as cobaltous chloride or given drinking water without Co

supplementation (control); mice were fed Purina Rodent Chow (Pedigo and Vernon, 1993). The estimated dosage assuming an adult body weight of 0.04 kg and default drinking water intakes for male B6C3F1 mice (U.S. EPA, 1987) was 93 mg Co/kg-day. A dominant lethal assay was conducted after 10 weeks of exposure: Co-exposed and control males (10 per group) were mated with control females over a period of two weeks; pregnant females were euthanized on day 19 of pregnancy and fetuses were evaluated for gross abnormalities, response to tactile stimuli, and size (data not reported); resorptions and preimplantation losses were quantified. Males from both groups were euthanized after the dominant lethal assay was completed and epididymal sperm concentration and sperm motion characteristics. In a concurrent fertility study, males from the Co-exposed and control groups were mated overnight with control females (superovulated by injection of pregnant mare serum gonadotropin) after 7 and 10 weeks of exposure to Co and 2, 6 and 8 weeks after cessation of exposure to Co. Pregnant females were euthanized on day 2 of pregnancy and the number of ova/embryos and percentage of embryos that were 2-cell or greater (fertilized) were determined. The dominant lethal assay showed a significantly (p≤0.001) lower percentage of pregnant females (58% vs 91%) and average number of implantations per female (6.5 vs 8.3) in the cobalt-exposed groups compared controls and a significantly higher average number of preimplantation losses in the cobalt-exposed group (2.4 vs 0.43); post-implantation losses were not different in the two groups. Sperm concentration was significantly lower after 10 weeks of exposure to Co compared with control and remained significantly lower eight weeks after exposure to Co ceased. Sperm motion (motility, path velocity, progressive velocity, linearity, progressive motility and track speed) was significantly depressed after 10 weeks of exposure to Co compared with controls but recovered eight weeks after exposure to Co ceased. After 12 weeks of exposure, male fertility rate in the Co-exposed groups was significantly reduced compared with males in the control group (1.8% ova fertilized vs 82.4% fertilized) and recovered to control levels eight weeks after exposure to Co ceased. This study defines a LOAEL of 93 mg Co/kg-day for impairment of reproduction in mice.

The only known nutritional, but vital function of cobalt is as a cofactor of vitamin B_{12} . In humans, vitamin B_{12} is derived from bacterial synthesis and therefore, cobalt is essential for animal species, such as ruminants, that depend totally on their bacterial flora for vitamin B_{12} . There is no evidence that the intake of cobalt is ever limiting in the human diet, and therefore no RDA is deemed necessary for cobalt (NRC, 1989). It should be noted that the average daily intake of cobalt in humans ranges from approximately 0.002-0.008 mg cobalt/kg/day in adults (0.16-0.58 mg cobalt/day \div 70 kg; Tipton et al., 1966; Schroeder et al., 1967) and 0.01-0.06 mg cobalt/kg/day in children (0.3-1.77 mg cobalt/day \div 28 kg; NRC, 1989; Murthy et al., 1971). Murthy et al. (1971) indicated that the children in this study ranged in age from 9-12 years. Using the average weight of 28 kg for children aged 7-10 years (NRC, 1989), the average daily intake for the children in this study ranged from 0.01-0.06 mg/kg/day. If the default adult weight of 70 kg is used with the Murthy data, then the range of intake would be from 0.004-0.025 mg/kg/day.

The effects of chronic occupational exposure to cobalt on the respiratory system are well

documented. Cobalt has been found to be the etiologic agent in hard metal disease. The observed effects include respiratory irritation, wheezing, asthma, pneumonia and fibrosis and have been found to occur at exposure levels ranging from 0.003 to 0.893 mg cobalt/m³ over a period of 2-17 years (Davison et al., 1983; Demedts et al., 1984; Kusaka et al., 1986a;b; Raffn et al., 1988; Shirakawa et al., 1988; Sprince et al., 1988).

Studies have implicated cobalt as a sensitizer in humans. Although the minimum exposure level associated with cobalt sensitization has not been determined, work-related asthma was found in hard metal workers who were occupationally exposed (for greater than 3 years) to levels of cobalt ranging from 0.007 to 0.893 mg cobalt/m³ (Shirakawa et al., 1988). Given the database, the most sensitive indicators of cobalt toxicity by inhalation exposure are the effects on the respiratory system in both humans and animals and allergic responses in cobalt-sensitized individuals.

The data described above does not identify a single study, animal or human, that could be used to properly derive an oral RfD. In unusual circumstances, i.e., excessive beer drinking or through occupational sensitization, cobalt has been shown to manifest toxicological symptomatology. However, these reports provide inadequate data on which to derive an RfD. Furthermore, use of inhalation data to derive an oral RfD is precluded due to portal of entry effects. It is apparent that the upper range of average intake for children (0.06 mg/kg/day) is below the levels of cobalt needed to induce polycythemia in both renally comprised patients (0.18 mg/kg/day) and normal patients (0.96 mg/kg/day).

Therefore, in lieu of an oral RfD for cobalt and given the ubiquitous nature of cobalt and the relatively well characterized intake of cobalt in food, it is recommended that the intake levels described above be used as guidance for oral exposure to cobalt.

References:

Alexander, C.S. 1969. Cobalt and the heart. Ann. Int. Med. 70: 411-413.

Alexander, C.S. 1972. Cobalt-beer cardiomyopathy: A clinical and pathologic study of twenty-eight cases. Am. J. Med. 53: 395-417.

Bencko, V., V. Wagner, M. Wagnerova, et al. 1983. Immuno-biochemical findings in groups of individuals occupationally and non-occupationally exposed to emissions [sic] containing nickel and cobalt. J. Hyg. Epidemiol. Microbiol. Immunol. 27: 387-394.

Corrier, D.E., H.H. Mollenhauer, D.E. Clark, et al. 1985. Testicular degeneration and necrosis induced by dietary cobalt. Vet. Pathol. 22: 610-616.

Davis, J.E and J.P. Fields. 1958. Experimental production of polycythemia in humans by administration of cobalt chloride. Proc. Soc. Exp. Biol. Med. 37: 96-99.

Davison, A.G, P.L. Haslam, B. Corrin, et al. 1983. Interstitial lung disease and asthma in hard-metal workers: Bronchoalveolar lavage, ultrastructural and analytical findings and results of bronchial provocation tests. Thorax. 38: 119-128.

Demedts, M., B. Gheysens, J. Nagels, et al. 1984. Cobalt lung in diamond polishers. Am. Rev. Respir. Dis. 130: 130-135.

Domingo, J.L, J.M. Llobet and R. Bernat. 1984. A study of the effects of cobalt administered orally to rats. Arch. Farmacol. Toxicol. 10: 13-20.

Domingo, J.L, J.L. Paternain, J.M. Llobet, et al. 1985. Effects of cobalt on postnatal development and late gestation in rats upon oral administration. Rev. Esp. Fisiol. 41: 293-298.

Duckham, J.M. and H.A. Lee. 1976. The treatment of refractory anemia of chronic renal failure with cobalt chloride. Q. J. Med. 178: 277-294.

Haga, Y. N. Cline, N. Hatori, C. Hoffman-Bang, S.K. Pehersson and L. Ryden. 1996. Impaired myocardial function following chronic cobalt exposure in an isolated rat heart model. Trace Elem. Elect. 13: 69-74.

Holly, R.G. 1955. Studies on iron and cobalt metabolism. J. Am. Med. Assoc. 158: 1349-1352.

Krasovskii, G.N. and S.A. Fridlyand. 1971. Experimental data for the validation of the maximum permissible concentration of cobalt in water bodies. Hyg. Sanit. 36: 277-279.

Kusaka, Y., K. Yokoyama, Y. Sera, et al. 1986a. Respiratory disease in hard metal workers: An occupational hygiene study in a factory. Br. J. Ind. Med. 43: 474-485.

Kusaka, Y., Y. Ishikawa, T. Shirakawa, et al. 1986b. Effect of hard metal dust on ventilatory function. Br. J. Ind. Med. 43: 486-489.

Lammintausta, K., O.P. Pitkanen, K. Kalimo, et al. 1985. Interrelationship of nickel and cobalt contact sensitization. Cont. Dermat. 13: 148-152.

Mohiuddin, S.M., P.K. Taskar, M. Rheault, P.E. Roy, J. Chenard and Y. Morin. 1970. Experimental cobalt cardiomyopathy. Am. Heart. J. 80: 532-543.

Mollenhauer, H.H., D.E. Corrier, D.E. Clark, et al. 1985. Effects of dietary cobalt on testicular structure. Virchows Arch. B. Cell Pathol. Incl. Mol. Pathol. 49: 241-248.

Morin, Y., A. Tetu and G. Mercier. 1971. Cobalt cardiomyopathy: Clinical aspects. Br. Heart J. 33: 175-178.

Murthy, G.K., U. Rhea and J.T. Peeler. 1971. Levels of antimony, cadmium, chromium, cobalt, manganese, and zinc in institutional total diets. Environ. Sci. Technol. 5: 436-442.

Nation, J.R, A.E. Bourgeois, D.E. Clark, et al. 1983. The effects of chronic cobalt exposure on behavior and metallothionein levels in the adult rat. Neurobehav. Toxicol. Teratol. 5: 9-15.

NRC (National Research Council). 1989. Recommended Daily Allowances. Tenth edition. Subcommittee on the Tenth Edition of the RDAs. Food and Nutrition Board.

Paternain, J.L., J.L. Domingo and J. Corbella. 1988. Developmental toxicity of cobalt in the rat. J. Toxicol. Environ. Health. 24: 193-200.

Pedigo, N.G, W.J. George and M.B. Anderson. 1988. Effects of acute and chronic exposure to cobalt on male reproduction in mice. Repro. Toxicol. 2: 45-53.

Pedigo, N.G. and M.W. Vernon. 1993. Embryonic losses after 10-week administration of cobalt to male mice. Reprod. Toxicol. 7: 111-116.

Pehrsson, S.K., N. Hatori, N. Clyne, J. Koch, L.E. Lins and L. Ryden. 1991. The effect of chronic cobalt exposure on cardic function in rats. Trace Elem. Med. 8:195-198.

Raffn, E., S. Mikkelsen, D.G. Altman, et al. 1988. Health effects due to occupational exposure to cobalt blue dye among plate painters in a porcelain factory in Denmark. Scand. J. Work Environ. Health 14:378-384.

Rystedt, I. and T. Fischer. 1983. Relationship between nickel and cobalt sensitization in hard metal workers. Cont. Dermat. 9: 195-200.

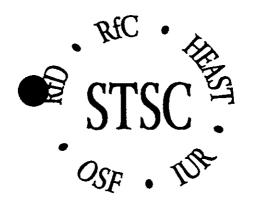
Schroeder, H.A, A.P. Nason and I.H. Tipton. 1967. Essential trace elements in man: cobalt. J. Chronic. Dis. 20: 869-890.

Seidenberg, J.M, D.G. Anderson and R.A. Becker. 1986. Validation of an <u>in vivo</u> developmental toxicity screen in the mouse. Teratogen. Carcinogen. Mutat. 6: 361-374.

Shirakawa, T., Y. Kusaka, N. Fujimura, et al. 1988. The existence of specific antibodies to cobalt in hard metal asthma. Clin. Allergy. 18: 451-460.

488 711

Sprince, N.L., L.C. Oliver, E.A. Eisen, et al. 1988. Cobalt exposure and lung disease in tungsten carbide production: A cross-sectional study of current workers. Am. Rev. Respir. Dis. 138: 1220-1226.


Sullivan, J., M. Parker and S.B. Carson. 1968. Tissue cobalt content in "beer drinkers' cardiomyopathy". J. Lab. Clin. Med. 71:893-896.

Taylor, A., V. Marks, A.A. Shabaan, et al. 1977. Cobalt induced lipaemia and erythropoiesis. Dev. Toxicol. Environ. 1: 105-108.

Tipton, I.H., P.L. Stewart, P.G. Martin. 1966. Trace elements in diets and excreta. Health Phys. 12: 1683-1689.

U.S. EPA. 1987. Recommendation for and Documentation of Biological Values for Use in Risk Assessment. Prepared by Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington DC.

Veien, N.K., T. Hattel, O. Justesen, et al. 1987. Oral challenge with nickel and cobalt in patients with positive patch tests to nickel and/or cobalt. Acta. Derm. Venereol. 67: 321-325.

Superfund Technical Support Center

National Center for Environmental F U.S. Environmental F 26 West Martin Luther Ki Cincinnati, Ohio 45268

Harlal Choudhury/Director, Pat Daunt/Administrator Hotline 513-569-7300, FAX 513-569-7159

February 23, 1999

Ted Simon US EPA Region 4 100 Alabama St Atlanta, GA 30303

ASSISTANCE REQUESTED:

Chemical Toxicity for Several Chemicals (DDMT site)

ENCLOSED INFORMATION:

Attachment 1: Risk Assessment Issue Paper for: Derivation of Oral Slope Factor for Chloroethane (CASRN 75-00-3)

Attachment 2: Risk Assessment Issue Paper for: Derivation of Provisional RfD for Chloroethane (Ethyl Chloride) (CASRN 75-00-3)

Attachment 3: Draft Risk Assessment Paper for: The Development of a Provisional Oral Subchronic RfD for Carbon Tetrachloride (CASRN 56-23-5)

Attachment 4: Risk Assessment Issue Paper for: Provisional RfD for Cobalt (7440-48-4)

Attachment 5: Risk Assessment Issue Paper for: Feasibility of RfD Derivation for 2-Methylnaphthalene (CASRN 91-57-6)

Attachment 6: Risk Assessment Issue Paper for:

Deriving Toxicity Values for Acute Exposure to PCBs (CASRN 1336-36-3): The Development of Provisional RfDs and RfCs for Oral, Inhalation and Dermal Exposure

Attachment 7: Risk Assessment Issue Paper for: Carcinogenicity Information for Tetrachloroethylene (perchloroethylene, PERC) (CASRN 127-18-4)

Attachment 8: Risk Assessment Issue Paper for: Derivation of Provisional RfC for Tetrachloroethylene (CASRN 127-18-4)

Attachment 9: Risk Assessment Issue Paper for: Carcinogenicity Information for Trichloroethylene (TCE) (CASRN 79-01-6)

Please note that the attached risk assessment issue papers for chloroethane are more than two years old, and therefore no longer considered current by STSC. Harlal Choudhury, NCEA-Cin, has authorized these issue papers to be sent in conjunction with this request.

BE ADVISED:

It is to be noted that the attached Risk Assessment Issue Papers have not been through the U.S. EPA's formal review process. Therefore, they do not represent a U.S. EPA verified assessment. If you have any questions regarding this information, please contact the STSC at (513) 569-7300.

Attachments

(93-20/04-05-93)

Risk Assessment Issue Paper for: Derivation of Oral Slope Factor for Chloroethane (CASRN 75-00-3)

The carcinogenic assessment for chloroethane has recently been reevaluated. A final decision was not made regarding a weight-of-evidence classification for chloroethane (Group C or Group B2), however the issues involved in making such a decision are outlined below.

ECAO-Cincinnati has been working on a quantitative carcinogenicity assessment for chloroethane and other chlorinated ethanes that may incorporate pharmacokinetic modeling. However, this effort is not yet completed and is not available at this time.

The following sources were checked for pertinent review documents and information: IRIS (U.S. EPA, 1996a), HEAST (U.S. EPA, 1995), RfD/RfC and CRAVE Work Group Status Reports (U.S. EPA 1996b,c), OHEA/CARA list (U.S. EPA, 1994b), Drinking Water Regulations and Health Advisories list (U.S. EPA, 1994a), and NTP Status Reports (NTP, 1993a,b). These documents include: the ATSDR Toxicological Profile for Chloroethane (ATSDR, 1989), an RQ document (U.S. EPA, 1983), a Drinking Water Health Advisory (U.S. EPA, 1986a), and a TIER I document (U.S. EPA, 1988). The following computer searches, performed in May 1991 and updated in March 1993, were screened to identify additional pertinent studies not discussed in review documents: TOXLINE (inhalation toxicity and cancer stratagey from 1965-1993, oral toxicity and cancer strategies from 1981-1993), CANCERLINE (1981-1993), MEDLINE 1989-1991, RTECS and HSDB.

WEIGHT-OF-EVIDENCE CLASSIFICATION

Classification -- Group B2, probable human carcinogen classification may be appropriate. Basis -- There appear to be no human data available, and the available animal data are restricted to a 2-year inhalation NTP bioassay in rats and mice. NTP concluded that clear evidence of carcinogenicity was presented for female mice displaying uncommon carcinomas of the uterus and liver tumors. Data for male mice were considered by the investigators to be inadequate to assess carcinogenic activity due to decreased survival not related to carcinogenic effects, although increased incidence of alveolar/bronchiolar tumors were observed in exposed male mice. NTP reported that equivocal evidence was found for male and female rats displaying skin neoplasms and uncommon malignant astrocytomas of the brain, respectively.

<u>HUMAN CARCINOGENICITY DATA</u> - Data regarding the carcinogenicity of chloroethane in humans were not located in the available literature.

ANIMAL CARCINOGENICITY DATA — Data regarding the carcinogenicity of chloroethane in animals are restricted to a report on two-year inhalation studies in B6C3F1 mice and F344/N rats (NTP, 1989). For each species, groups of 50 animals of each sex were exposed to chloroethane concentrations of 0 (inhalation chamber controls) or 15,000 ppm 6 hours per day, 5 days per week for 102 weeks (rats) or 100 weeks (mice). In a preliminary study of the same two species, groups of 10 animals of each sex were exposed to chloroethane concentrations of 0, 2,500, 5,000, 10,000 or 19,000 ppm 6 hours/day, 5 days/week for 13 weeks. No histopathological effects or increased mortality associated with exposure were noted in either species in the 13-week studies, but the final mean body weights of all exposed groups were lower than those of the controls. The largest reduction in body weight was observed in male mice exposed to the highest concentration; mean body weights were 8% lower than that of control males. Even though the preliminary study did not clearly define a MTD for chloroethane, the authors apparently chose the 15,000 ppm level for the 2-year study because of concerns about the potential flammability and explosion hazard of higher concentrations.

No significant differences in survival were noted between exposed and control groups of rats of either sex, but survival of exposed and control male rats was unusually low at the end of the study. The authors reported that unusually high incidences of mononuclear cell leukemia in both control and exposed groups of male rats may have contributed to the high mortality. The authors also reported that survival for all groups was sufficient through weeks 90 and 95 to evaluate carcinogenicity. At the end of the study (102 weeks), survival for male rats was 16/50 (controls) and 8/50 (exposed) and for female rats was 31/50 (controls) and 22/50 (exposed); however, at 90 weeks, survival was 37/50 (control) and 31/50 (exposed) for respective male groups and 43/50 (control) and 33/50 (exposed) for females. Mean body weights of exposed male rats were 4%-8% lower than those of controls after week 33 and in exposed female rats body weights ranged from 5-13% lower than controls after week 11.

Three exposed female rats displayed uncommon astrocytomas (malignant glial cell tumors of the brain). The authors reported that although the overall incidence of malignant glial cell tumors (3/50) was not statistically significantly different from the concurrent controls (0/50), it was statistically significantly increased (P<0.05) relative to incidences for previous chamber control groups at the study laboratory (1/297) or for untreated control female F344/N rats from previous NTP studies (23/1,969 = 1%). Primary tumors of glial cell origin were also observed in male rats. One control male had a malignant oligodendroglioma. A benign oligodendroglioma and a malignant astrocytoma were observed in two exposed males.

Five exposed male rats had epithelial tumors of several types with similar characteristics

۲,

(trichoepithelioma, sebaceous gland adenoma, and basal cell carcinoma). The combined overall incidence (5/50) was not significantly different from the concurrent control incidence (0/50), but statistical significance (P<0.05) could be demonstrated when comparisons were made to historical incidences in chamber controls at the study laboratory (2/300) or in untreated controls in NTP studies (30/1,936 = 1.5%).

The authors concluded that the study provided equivocal evidence of carcinogenic activity in both male and female F344/N rats, because although comparisons with concurrent controls indicated no carcinogenic effect, comparisons with historical controls indicated a carcinogenic effect.

Survival of exposed mice was significantly lower than that of control mice; statistical significance for reduced survival was demonstrated for exposed male mice after day 330 and for exposed female mice after day 574. All surviving mice were sacrificed at 100 weeks. Mean body weights of exposed male mice were up to 13% higher than control male mice. Mean body weights for exposed and female mice were generally similar throughout the study.

Decreased survivability in exposed male mice was not related to tumor occurrences. The authors noted that greater than normal incidences of nonneoplastic urogenital lesions were observed in both control and exposed male mice and that this occurrence may have contributed to the reduced survival. The overall incidences of alveolar/bronchiolar adenomas (8/48) and of alveolar/bronchiolar adenomas and carcinomas (combined) (10/48) were statistically significantly greater (P<0.05) than respective incidences for control male mice (3/50 and 5/50). The authors, however, considered the study of male B6C3F1 mice inadequate to evaluate carcinogenic activity because of the reduced survival.

Most of the early mortalities in exposed female mice were associated with carcinomas of the uterus. The overall incidence of uterine carcinomas (all of endometrial gland origin) in exposed female mice (43/50) was greater than that of the concurrent controls (0/49). Uterine carcinomas were first noted on day 469 of the study. The tumors were highly malignant, and, in 34 animals, metastasized to other organs. Exposed female mice also displayed statistically significantly higher (P<0.05) overall incidences of hepatocellular carcinomas (7/48) and hepatocellular carcinomas and adenomas (combined) (8/48) compared to respective incidences in control female mice (3/49 and 3/49). The authors concluded that there was clear evidence of carcinogenic activity in female B6C3F1 mice.

SUPPORTING DATA FOR CARCINOGENICITY -- Two reports provided evidence for the mutagenicity of chloroethane in the closed-desiccator Salmonella typhimurium test for reverse mutations. Riccio et al. (1983) observed mutations in strains TA98, TA100, TA1535 and TA1537 in both the presence and absence of metabolic activation. NTP (1989) observed mutagenic activity in strain TA1535 with or without activation and in strain TA100 only with

activation, but no mutagenic activity was observed in strain TA98 with or without activation.

ATSDR (1989) reported that genotoxic activity was not observed in micronucleus tests on bone marrow samples from mice exposed to chloroethane and in cell transformation assays on mouse BALB/c-3T3 cells.

Chloroethane is structurally related to 1,1-dichloroethane, a possible human carcinogen, and to 1,2-dichloroethane and dichloromethane, both of which are probable human carcinogens (The EPA carcinogen assessments for these related compounds are on IRIS [U.S. EPA, 1994]).

QUANTITATIVE ESTIMATE OF CARCINOGENIC RISK FROM ORAL EXPOSURE

A q1* for chloroethane is derived below from the NTP (1989) inhalation bioassay data. It should be emphasized that there are uncertainties associated with this value due to the inclusion of only a single high exposure level in the study and the necessity of making the assumption that the carcinogenic effects of chloroethane are not specific for the inhalation route.

The occurrence of uterine carcinomas in female mice was the most dramatic carcinogenic response in the NTP bioassay and therefore appears to provide the most appropriate basis for the derivation of an oral q1*. Statistical adjustments for decreased survival in exposed female mice could be made in a comprehensive quantitative analysis, but, due to time constraints, these adjustments will not be made in the derivation herein. The incidences for the control (0/49) and exposed (43/50) groups were fit to a linearized, multistage model (Global 86). Calculations were based on extra risk. The daily dose for the exposed group of female mice (adjusted for the intermittent experimental exposure protocol) was estimated as follows:

Dose = $(39,582.8 \text{ mg/m}^3)$ $(6\text{h}/24\text{h} \times 5\text{d}/7\text{d})$ $(0.052 \text{ m}^3/\text{d})$ $(0.031 \text{ kg})^{-1}$

Dose = 11,856.6 mg/kg/day

where:

 $39,582.8 \text{ mg/m}^3 = \text{Exposure conc.} = 15,000 \text{ ppm x } 64.52/24.45, \text{ assuming } 25 \text{ C and } 760 \text{ mm Hg;}$

0.031 kg = time-weighted average body weight for female mice estimated from data in the NTP (1989) report;

 $0.052 \text{ m}^3/\text{day} = \text{inhalation rate (IR) for mice which was estimated using the following equation as described in U.S. EPA (1987):$

$IR = 1.99 [body weight]^{1.0496}$.

The Global 86 model estimated the q1* for mice to be 2.21E-4 per (mg/kg)/day. A human q1* was derived by multiplying the mouse q1* by the cube root of the ratio of the reference human body weight (70 kg) to the animal body weight (0.031 kg), and then by the cube of the lifespan of the animal (100 weeks) to the duration of the experiment as described in the following equation:

Human q1* = 2.21E-4 per (mg/kg)/day x [70 kg/0.031 kg]^{1/3} x

 $[100/100]^3$

Human q1* = 2.21E-4 per (mg/kg)/day) x [13.12] x [1]

Human q1* = 2.9E-3 per (mg/kg)/day).

In summary, an oral cancer toxicity value of 2.9E-3 per (mg/kg)/day has been derived for chloroethane based upon incidence data for uterine carcinomas in female B6C3F1 mice exposed to inhaled chloroethane.

References:

ATSDR. 1989. Toxicological Profile for Chloroethane. Agency for Toxic Substances and Disease Registry. U.S. Public Health Service. Atlanta, GA.

NTP (National Toxicology Program). 1989. Toxicology and carcinogenesis studies of chloroethane in F344/N rats and B6C3F1 mice. Inhalation studies. NTP Technical Report No. 346. National Toxicology Program. Research Triangle Park, NC.

NTP (National Toxicology Program). 1993a. Chemical Status Report (01/19/93).

NTP (National Toxicology Program). 1993b. NTP Results Report (01/19/93).

Riccio, E. A. Griffen, K. Mortelmans, H.A. Milman. 1983. A comparative mutagenicity study of volatile halogenated hydrocarbons using different metabolic activation systems. Environ. Mutagen. 5:472. Cited in ATSDR, 1989.

U.S. EPA. 1983. Reportable Quantity Document for Chloroethane. External Review Draft. Prepared by Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC.

U.S. EPA. 1986a. Drinking Water Health Advisory for Chloroethane. Rough External Review

- Draft. Prepared by the Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Cincinnati, OH for the Office of Drinking Water, Washington, DC.
- U.S. EPA. 1988. Summary Review of Health Effects Associated with Monochloroethane. Health Issue Assessment. Office of Health and Environmental Assessment, Washington, DC.
- U.S. EPA. 1987. Recommendations for and Documentation of Biological Values for Use in Risk Assessment. Prepared by Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC.
- U.S. EPA. 1994a. Drinking Water Regulations and Health Advisories. Office of Drinking Water, Washington, DC. May 1994.
- U.S. EPA. 1994b. Chemical Assessments and Related Activities. Office of Health and Environmental Assessment, Washington, D.C. December 1994. OHEA-I-127.
- U.S. EPA. 1995. Health Effects Assessment Summary Tables. Annual FY 1995. Prepared by the Office of Health and Environmental Assessment, National Center for Environmental Assessment for the Office of Emergency and Remedial Response, Washington, D.C. NTIS No. PB95-921199.
- U.S. EPA. 1996a. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, National Center for Environmental Assessment, Cincinnati, OH.
- U.S. EPA. 1996b. Quarterly Status Report of the RfD/RfC Work Group (as of 01/01/96). Office of Research and Development. National Center for Environmental Assessment, Cincinnati, OH...
- U.S. EPA. 1996c. Quarterly Status Report of the CRAVE Work Group (as of 01/01/96). Office of Research and Development. National Center for Environmental Assessment, Cincinnati, OH.

(96-032 / 08-30-96)

Risk Assessment Issue Paper for: Derivation of Provisional RfD for Chloroethane (Ethyl Chloride) (CASRN 75-00-3)

INTRODUCTION

Chloroethane is a colorless gas at room temperature and atmospheric pressure that is produced for use as an alkylating agent (ACGIH, 1991; Budavari, 1989). It was used predominantly for the manufacture of tetraethyl lead. Currently, the major use is as a blowing agent in foamed plastics (Bucher et al., 1995). Chloroethane is also used as a topical anesthetic, as a refrigerant, and in the manufacture of pharmaceuticals, dyes and other chemicals (ATSDR, 1989).

The following sources were checked for pertinent review documents and information: IRIS (U.S. EPA, 1996), HEAST (U.S. EPA, 1995a,b), RfD/RfC and CRAVE Work Group Status Reports (U.S. EPA, 1995c), CARA lists (U.S. EPA, 1991, 1994), the Drinking Water Regulations and Health Advisories list (U.S. EPA, 1995d), the ATSDR Toxicological Profile database (ATSDR, 1996) and NTP Management Status and Results Reports (NTP, 1996a,b). An inhalation RfC for chloroethane, based on developmental toxicity in mice, is available on IRIS (U.S. EPA, 1996). The health effects associated with exposure to chloroethane have been reviewed by the U.S. EPA (1988a) and the ATSDR (1989). These reviews cited no toxicological or pharmacokinetic data for oral exposures to chloroethane.

Literature searches of TOXLINE (oral toxicity and cancer strategies from 1981-1993, inhalation toxicity and cancer strategy from 1965-1993), CANCERLINE (1981-1993), RTECS and HSDB for chloroethane were conducted in March 1993. Update literature searches of TOXLINE (December 1992 - July 1996), MEDLINE (health effects, toxicity and pharmacokinetic strategies from 1993-1996), DART and TSCATS (health effects) were conducted in July 1996 and screened in August 1996 to identify additional relevant data on chloroethane.

INHALATION RfC

An inhalation RfC for chloroethane (ethyl chloride) was verified in 1990 and is available on IRIS (U.S. EPA, 1996). The principal study for the RfC was a developmental inhalation study conducted with pregnant CF-1 mice (Scortichini et al., 1986). The study identified a NOAEL

(1504 ppm [4.0 g/cu. m] for 6 hours per day on days 6 through 15 of gestation) and a LOAEL (4946 ppm [13 g/cu.m] with the same protocol) for delayed fetal ossification. In deriving the RfC from the NOAEL, duration adjustments were not made because the noted effects were developmental. To derive a NOAEL(HEC) from the mouse NOAEL, the attainment of periodicity was assumed. A default value of 1 was used for the ratio of the mouse to human blood:gas partition coefficients, because, although the coefficient for humans is known, that for mice is unknown. The NOAEL(HEC) (4.0 g/cu.m) was divided by an uncertainty factor of 300 (3 for interspecies extrapolation due to dosimetric adjustment of inhaled concentration, 10 for intraspecies variability, 10 for data base deficiencies because of the lack of a multigeneration reproductive study and definitive developmental toxicity studies) to obtain an inhalation RfC of 1E+1 mg/cu.m. Confidence in the principal study was medium because it did not establish a firm concentration-response relationship with an adverse effect and did not include an exposure level that produced maternal toxicity. Confidence in the data base was medium because of the lack of a multigeneration reproductive study, and lack of a developmental study in a second species. Medium confidence in the RfC followed.

Additional studies considered in the RfC derivation included NTP (1989) subchronic and chronic mouse and rat bioassays that found no exposure-related nonneoplastic histological changes or body weight changes (subchronic NOAEL: 19,000 ppm [50.1 g/cu.m] 6 hours per day, 5 days per week for 13 weeks; chronic NOAEL: 15,000 ppm [39.6 g/cu. m] 6 hours per day, 5 days per week for 102 weeks [rats] or 100 weeks [mice]). However, uterine tumors were found in mice, but not in rats.

PHARMACOKINETIC AND METABOLISM STUDIES

Several investigators (Dow Chemical Co., 1992; Fedtke et al., 1994a,b; Gargas et al., 1990; Pottenger et al., 1992) have studied the metabolism of chloroethane in an effort to discern the mechanism for induction of rare uterine tumors in female mice (NTP, 1989). A high-dose dependent disposition and GSH-dependent metabolism in mice has been suggested to account for the development of tumors in mice and not in rats (Pottenger et al., 1992). Fedtke et al. (1994a,b) examined cytochrome P450-dependent and GSH-dependent metabolism in a series of in vitro and in vivo experiments in groups of male and female rats and mice exposed to 15,000 ppm chloroethane or air for 6 hours/day for 5 days. The authors concluded that chloroethane may be oxidatively dechlorinated by cytochrome P450 to form acetaldehyde, which enters the 2-carbon pool and is further metabolized to ethanol and acetic acid, and that species differences in oxidative metabolism were not significant. In addition, rate constants estimated for rats from these experiments were consistent with those estimated earlier by Gargas et al. (1990) in a PB-PK model for chloroalkanes in the rat. It also was found that chloroethane may be conjugated with glutathione, converted to the mercapturic acid and excreted in the urine as the acetylated (both species) or non-acetylated (mice only) mercapturic acid. The rate of hepatic glutathione conjugation of chloroethane (measured by GSH-transferase specific activity) was found to be

higher in both sexes of mice compared with rats. When GSH concentrations were measured in the lungs, liver, kidneys and uterus, GSH was decreased in the lung and uterus of mice after exposure to 15,000 ppm, 6 hours/day for 5 days, compared with GSH concentrations in these tissues after exposure to air. Decreases in GSH levels were also found in rats, but to a lesser degree in the lungs than those found in mice. Further research is needed to understand these apparent differences in organ and species GSH content. It is not clear whether the parent compound or a metabolite are responsible for the induction of cancer and/or the noncancer toxicity of chloroethane.

DERIVATION OF PROVISIONAL RfD

The IRIS Supportive Documentation (U.S. EPA, 1988b) explains that adverse effects from one route of exposure may be assumed to be relevant to another route, unless convincing evidence exists to the contrary. Factors that would argue against a route-to-route extrapolation include lack of data for a least one route of exposure, portal of entry effects (such as first pass effects or toxicity or reactivity at the site of contact), and significant differences in relative absorption efficiencies between the routes. Animal studies with chloroethane indicate that the target organ following inhalation is not the respiratory system (portal of entry), but a remote site (i.e., for the RfC, delayed fetal ossification is the critical effect). This finding, together with the limited pharmacokinetic data available for chloroethane, suggests derivation of a provisional oral RfD based upon inhalation data is feasible.

While Gargas et al. (1990) have proposed a PB-PK model for chloroethane, their experiments were conducted in rats and the most sensitive species for the RfC was mice. Chloroethane appears to be metabolized primarily by the liver, and to a lesser extend by other organs, following high-dose, short-term inhalation exposure in both rats and mice (Fedtke et al., 1994a, b). There appear to be species differences in the metabolism of chloroethane, particularly in Phase II conjugation with glutathione (Fedtke et al., 1994a, b; Pottenger et al., 1992). Decreases in glutathione noted in the lungs of mice exposed to short-term, high-doses of chloroethane do not necessarily affect the feasibility of a route-to-route extrapolation, since the target organ in mice is a "distant site", i.e., the developing fetus.

Since quantitative absorption data for the oral route are not available, relative absorption efficiencies between the two routes cannot be ascertained. Chloroethane is a gas at room temperature and atmospheric pressure, making oral exposures unlikely. However, it can be assumed that once chloroethane is absorbed by the gastrointestinal tract, the pathway(s) of metabolism would at least be qualitatively similar to those following inhalation exposure in the same species. The kinetic behavior of chloroethane is assumed to be independent of exposure route once chloroethane is absorbed. Given that the liver has a high metabolic capacity for

chloroethane, quantitative differences in the metabolism between oral and inhalation exposure may exist, but it is difficult to predict what consequences these quantitative differences would have on toxicity given the current data. Therefore, in the absence of definitive data to preclude a route-to-route extrapolation for chloroethane an approach is proposed herein. This approach appears to be consistent with principles put forth by Pepelko (1987) and EPA in their 1990 Route-to-Route Extrapolation for Risk Assessment Workshop (Gerrity and Henry, 1990).

A reasonable method for determining an oral RfD from an animal inhalation NOAEL is to derive the NOAEL(HEC) from the duration-adjusted animal NOAEL, followed by derivation of an estimated oral human equivalent NOAEL [NOAEL(OHE)] using the following equation:

 $NOAEL(OHE) = NOAEL(HEC) X RAF X IR(human) X (BWH)^{-1}$

where:

RAF = ratio of absorption efficiencies to account for difference between

respiratory and gastrointestinal systems,

IR(human) = human inhalation rate (20 cu.m/day), and

BWH = human body weight (70 kg).

It is uncertain if application of an absorption factor is warranted in this method, because of the application of the ratio of the blood:gas coefficients in the derivation of the NOAEL(HEC). There are no available data on the absorption of chloroethane following oral administration. For the purposes of this exercise, an absorption ratio of 1 has been applied; oral and inhalation absorption have been assumed to be equal.

For the case of chloroethane and the NOAEL from the Scortichini et al. (1986) study, the NOAEL(HEC) of 4 g/cu.m would be multiplied as noted above to obtain a NOAEL(OHE) of 1.143 g/kg-day. Division by an uncertainty factor of 3,000 (300 as discussed for the inhalation RfC and 10 for the route-to-route extrapolation) obtains a provisional oral RfD of 4E-1 mg/kg-day. An additional UF of 10 is applied for the route-to-route extrapolation because there are no oral toxicity data and a paucity of toxicokinetic data. Low confidence would be associated with this RfD because, although confidence in the principal study is medium, confidence in the data base is low due to lack of toxicological data for oral exposure and lack of a multigeneration

SUMMARY

In summary, this issue paper discusses the derivation of a provisional oral RfD for chloroethane from animal inhalation data. A route-to-route extrapolation appears to be feasible based on available inhalation data although there are no oral toxicological data and limited toxicokinetic information. The approach described is consistent with EPA principles for route-to-route extrapolation as discussed by Pepelko (1987) and Gerrity and Henry (1990). A provisional value of 4E-1 mg/kg-day is proposed that employs an additional uncertainty factor of 10 for route-to-route extrapolation.

REFERENCES

ACGIH (American Conference of Governmental Industrial Hygienists). 1991. Ethyl Chloride. In: Documentation of the Threshold Limit Values and Biological Exposure Indices. Sixth Edition. pp. 594-597

ATSDR (Agency for Toxic Substances and Disease Registry). 1989. Toxicological Profile for Chloroethane. Agency for Toxic Substances and Disease Registry. U.S. Public Health Service. Atlanta, GA. NTIS PB90-181264.

ATSDR (Agency for Toxic Substances and Disease Registry). 1996. Internet HazDat Database: Toxicological Profile Query (http://atsdr1.atsdr.cdc.gov:8080/gsql/toxprof.script).

Bucher, J.R., D.L. Morgan, B. Adkins Jr., G.S. Travlos, B.J. Davis, R. Morris, and M.R. Elwell. 1995. Early changes in Sex Hormones are not evident in mice exposed to the uterine carcinogens chloroethane or bromoethane. Toxicol. Appl. Pharmacol. 130: 169-173.

Budavari, S. 1989. The Merck Index. Eleventh Edition. Merck & Co., Inc. Rahway, N.J. p.597.

Dow Chemical Company. 1992. Ethyl chloride: Disposition and metabolism in female Fischer 344 rats and B6C3F1 mice following inhalation exposure. EPA Document No. 86-930000120.

Fedtke, N., H. Certa, R. Ebert, and H.-J. Wiegand. 1994a. Species differences in the biotransformation of ethyl chloride. I. Cytochrome P450-dependent metabolism. Arch. Toxicol. 68: 158-166.

Fedtke, N., H. Certa, R. Ebert, and H.-J. Wiegand. 1994b. Species differences in the biotransformation of ethyl chloride. II. GSH-dependent metabolism. Arch. Toxicol. 68: 217-223.

Gargas, M.L., H. J. Clewell, M.E. Andersen. 1990. Gas uptake inhalation techniques and the rates of metabolism of chloromethanes, chloroethanes, and chloroethylenes in the rat. Inhalation Toxicol. 2: 295-318.

Gerrity, T.R. and C.J. Henry (eds.) 1990. Principles of Route-to-Route Extrapolation for Risk Assessment. Elsevier Science Publishing Co., Inc. 325 pp.

NTP (National Toxicology Program). 1989. Toxicology and carcinogenesis studies of chloroethane in F344/N rats and B6C3F1 mice. Inhalation studies. NTP Technical Report No. 346. National Toxicology Program. Research Triangle Park, NC.

NTP (National Toxicology Program). 1996a. Management Status Report (05/08/96). Division of Toxicology Research and Testing, Central Data Management, Research Triangle Park, NC.

NTP (National Toxicology Program). 1996b. Results Report (05/08/96). Division of Toxicology Research and Testing, Central Data Management, Research Triangle Park, NC.

Pepelko, W. 1987. Feasibility of route extrapolation in risk assessment. Br. J. Indus. Med. 44: 649-651.

Pottenger, L.H., J.L. Nieusma and J.S. Bus. 1992. Species-dependent disposition and toxicity of ethyl chloride in female mice and rats. (Abstract). Toxicologist. 12: 424.

Scortichini B.H., K.A. Johnson, J.J. Momany-Pfruender, and T.R. Hanley, Jr. 1986. Ethyl chloride: inhalation teratology study in CF-1 mice. Dow Chemical Co. EPA Document No. 86-870002248.

U.S. EPA. 1988a. Summary Review of Health Effects Associated with Monochloroethane. Health Issue Assessment. Office of Health and Environmental Assessment, Washington, DC.

U.S. EPA. 1988b. Integrated Risk Information System. Supportive Documentation. Volume I. Appendix A. Reference Dose (RfD): Description and Use in Health Risk Assessments. Office of Health and Environmental Assessment. Office of Research and Development. Washington, DC.

U.S. EPA. 1991. Chemical Assessments and Related Activities. Office of Health and Environmental Assessment, Washington, DC. April 1991. OHEA-I-127.

U.S. EPA. 1994. Chemical Assessments and Related Activities. Office of Health and Environmental Assessment, Washington, DC. December 1994. OHEA-I-127.

U.S. EPA. 1995a. Health Effects Assessment Summary Tables. FY-1995 Annual. Office of Research and Development, Office of Emergency and Remedial Response, Washington, DC. May 1995, NTIS PB95-921199..

U.S. EPA. 1995b. Health Effects Assessment Summary Tables. FY-1995 Supplement. Office of Solid Waste and Emergency Response, Washington, DC. November 1995, NTIS PB95-921101.

U.S. EPA. 1995c. Monthly Status Report of RfD/RfC and CRAVE Work Groups (As of 09/01/95). Office of Research and Development, National Center for Environmental Assessment, Cincinnati, OH.

U.S. EPA. 1995d. Drinking Water Regulations and Health Advisories. Office of Water, Washington, D.C. May 1995.

U.S. EPA. 1996. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, National Center for Environmental Assessment, Cincinnati, OH.

(98-026/12-18-98)

Draft Risk Assessment Paper for: The Development of a Provisional Oral Subchronic RfD for Carbon Tetrachloride (CASRN 56-23-5)

INTRODUCTION

A verified chronic oral RfD of 7E-4 mg/kg-day is specified for carbon tetrachloride (CTC) on IRIS (U.S. EPA, 1998). The database also ascribes a carcinogenic weight-of-evidence classification of B2 to the compound, and specifies a carcinogenic slope factor of 1.3E-1 (mg/kgday)⁻¹, a drinking water unit risk of 3.7E-6 (μg/L)⁻¹, and an inhalation unit risk of 1.5E-5 (μg/m³)⁻¹ ¹ (U.S. EPA, 1998). HEAST contains an inhalation slope factor of 5.3E-2 (mg/kg-day)⁻¹ for the compound (U.S. EPA, 1997). Occupational standards and guidelines have been assigned to CTC, such as a TWA-TLV and ceiling STEL of 5 ppm (31 mg/m³) and 10 ppm (62 mg/m³), respectively, with accompanying skin and carcinogen notations (ACGIH, 1998). Other occupational standards include, from NIOSH, a ceiling REL of 2 ppm (12.6 mg/m³) and an IDLH of 200 ppm (1260 mg/m³), and, from OSHA, TWA and ceiling PELs of 10 and 25 ppm respectively, plus a limiting concentration of 200 ppm to which no-one should be exposed for more than 5 minutes every 4 hours (NIOSH, 1994). An ATSDR Toxicological Profile for the compound contains an acute inhalation MRL of 0.2 ppm, an intermediate inhalation MRL of 0.05 ppm, an acute oral MRL of 0.02 mg/kg-day, and an intermediate oral MRL of 0.007 mg/kgday (ATSDR, 1994). The U.S. EPA's CARA list contains a number of documents on CTC (U.S. EPA, 1994), including WQCDs (U.S. EPA, 1980; 1989a), HADs (U.S. EPA, 1982; 1984a), HEAs (U.S. EPA, 1984b; 1989b), an RQ document for the compound's carcinogenicity (U.S. EPA, 1989c), and an MA (U.S. EPA, 1985).

Research papers pertinent to the potential subchronic toxicological effects of CTC were sought through computer searches of the HSDB, RTECS, MEDLINE and TOXLINE (and its subfiles) databases, covering 1994-1998. The literature searches were conducted in October 1998.

REVIEW OF THE PERTINENT LITERATURE

As noted in ATSDR (1994), CTC was used as a precursor or intermediate in the manufacture of a number of industrially important chemicals, such as components of refrigerants, cleaning fluids, propellants for aerosols, etc. Since the use of some of these products is being phased out, occupational exposure to CTC might be expected to decline. However, environmental exposure to the compound remains possible because of past and present releases. Thus, the compound has been detected in at least 25% of the U.S. EPA's National Priority List (NPL) sites (ATSDR, 1994).

Case reports of human exposure, poisoning incidents, and occupational surveys point overwhelmingly to the liver as the primary target organ for the compound's toxic effects. (Tomenson et al., 1995). Experimental studies in animals have supported this conclusion by the demonstration of changes in liver function, and altered morphology and/or histopathology, resulting from acute or longer term CTC administration. For example, the verified chronic oral RfD on IRIS (U.S. EPA, 1998) is based on a subchronic oral gavage study of CTC in male Sprague-Dawley rats, in which evidence of impaired liver function and the appearance of histopathological lesions was noted at the mid- and high-dose levels (10 and 33 mg/kg-day, respectively). These data suggested the low-dose level of 1 mg/kg-day as a NOAEL for liver toxicity (Bruckner et al., 1986). Second, the IRIS compileres chose a number of experimental studies in which tumors had been formed in the liver as a result of CTC administration to develop carcinogenic slope factor and drinking water unit risk values for the compound (U.S. EPA, 1998). Third, the biomedical/toxicological literature contains many reports of studies that featured the administration of CTC as a means of inducing liver injury experimentally. Such systems have found use as a "test-bed" for studying the potentiating or mediating effects of other compounds or agents on liver toxicity (the cirrhosis model), or as a vehicle for identifying the biochemical and/or physiological changes that may have mechanistic importance as the organ becomes diseased.

In the paragraphs that follow, recent (1994-1998) articles on the longer-term toxicological effects of CTC in experimental animals and human beings have been sought and evaluated, and their utility for the development of quantitative toxicity values compared to those that formed the basis for the toxicity values that are available on IRIS or HEAST (U.S. EPA, 1998; 1997). In general, few if any of the more recent research articles on CTC have employed dose ranges at or near the threshold for the onset of the compound's toxic effects. Rather, dose levels have been chosen explicitly to ensure the formation of histopathological lesions of the liver, thereby providing a cirrhosis/fibrosis model on which other parameters could be tested or evaluated.

The principal study reported in the IRIS to derive the verified chronic RfD for CTC was that of Bruckner et al. (1986), who exposed male Sprague-Dawley rats to CTC by gavage in corn oil, using acute, subacute, and subchronic dosing regimens. For subchronic exposure, 15-16 animals/group were administered 0, 1, 10 or 33 mg/kg CTC, 5 days/week, for 12 weeks. Body weights were recorded twice weekly, and blood samples were obtained from all subjects prior to dosing on weeks 2, 4, 6, 8, 10, and 12. A key feature of the protocol was the use of a 2-week post-treatment period, in which surviving rats were allowed to recover prior to termination. Blood samples were also taken at the end of this period. A small number of clinical chemistry parameters, including the activities of sorbitol dehydrogenase (SDH), glutamate pyruvate transaminase (GPT), ornithine carbamyl transferase (OCT), and the concentration of BUN, were measured in serum as indicators of possible impairment of liver or kidney function. Excised pieces of liver and kidney were examined histopathologically.

The high-dose animals displayed marked evidence of hepatic toxicity, and the activities of OCT, GPT and SDH in serum were all elevated. Similarly, the most severe histopathological effects in the liver were evident in this group of animals. By contrast, the animals displayed few if any signs of nephrotoxicity. Fewer histopathological lesions were evident in the livers of those animals allowed a 2-week recovery period prior to sacrifice, suggesting the ability of the rat liver to recover from at least some of the toxicological impacts of CTC. However, the comparatively mild hepatocellular vacuolization that was evident at term in the mid-dose animals appeared to persist throughout the recovery period, as indicated by the existence of this feature in the majority of the survivors in this sub-group (4/7). By analogy to the histopathological manifestations of CTC toxicity, changes in the clinical chemistry parameters were also comparatively mild in the mid-dose group, with no changes in the activity of OCT or GPT, but a 3-fold increase in the activity of SDH after 12 weeks. From these data, the authors suggested a NOAEL for the hepatotoxic effects of CTC of 1 mg/kg-day, a value converting to a TWA-NOAEL of 0.71 mg/kg-day, based on the frequency of exposure (5/7 days in a week).

Data from a number of other subchronic toxicological studies that were cited on IRIS (U.S. EPA, 1998) lend support to the results of Bruckner et al. (1986). For example, Hayes et al. (1986) carried out a similar experiment in CD-mice in which, in the subchronic section of the study, 0, 12, 120, 540 and 1200 mg/kg-day CTC was administered to 20/sex/group by gavage in corn oil, every day for 90 days. Two groups of controls were included in the experimental design, consisting of 20 untreated mice and 20 receiving corn oil. A wide range of hematological, clinical chemistry and urinalysis parameters were measured at term, followed at necropsy, morphological examination of selected organs, and by histopathological examination of the liver and kidney.

CTC at the target dose levels appeared unrelated to changes in body weight, hematological or urinalysis parameters. However, a number of serum enzyme activities normally indicative of maintenance of liver homeostasis were dose-dependently increased, while blood glucose concentrations were reduced. On histopathological examination, though no treatment-related lesions were evident in the kidney of treated animals, evidence of hepatotoxicity was noted at every dose level. Consequently, the lowest dose of 12 mg/kg-day could be assigned as a LOAEL, based on the altered histopathology of the liver.

Condie et al. (1986) reported one of a number of studies that have evaluated the possible effects of vehicle on the toxicity of CTC in experimental animals. Twelve CD-1 mice/sex/group were gavaged 5 days/week for approximately 12 weeks at concentration of 0, 1.2, 12, or 120 mg/kg in either corn oil or Tween-60. During the in-life portion of the experiment, clinical signs were observed daily, while body weights, food and water consumption were recorded twice weekly. At termination, all animals were necropsied, and whole livers were excised to permit the determination of absolute and relative organ weight. Blood samples were obtained to analysis for alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate

dehydrogenase (LDH) activities in serum, and pieces of the excised livers were processed for histopathological examination.

CTC in corn oil had a much more marked effect on the change in serum enzyme activities than did equivalent amounts of the compound in Tween-60 (Condie et al., 1986). Similarly, judged subjectively, the more severe histopathological effects of CTC on the liver appeared to be associated with the corn oil vehicle. The authors considered 12 mg/kg-day to be a NOAEL for the histopathological effects of CTC in Tween-60, whereas 1.2 mg/kg-day was a more appropriate choice for the compound in corn oil.

Taken together, the points-of-departure for the subchronic hepatic toxicity in Sprague-Dawley rats and CD-1 mice in the subject studies show good consistency, with the unadjusted NOAELs falling in the region of 1 to 1.2 mg/kg-day, and a LOAEL of 12 mg/kg-day where no NOAEL was available. With a dose of 1 mg/kg-day serving as a basis for the TWA-NOAEL of 0.71 mg/kg-day as derived by the IRIS compilers, the consistency of these data lends support to the chronic and subchronic RfDs of 7E-4 mg/kg-day and 7E-3, respectively, as set forth in IRIS or HEAST (U.S. EPA, 1997; 1998).

Among more recent studies that have addressed the toxicity of CTC, the ability of the liver to recover from some of the compound's toxic effects was explored by Allis et al. (1990), who gavaged 48 male F344 rats/group with 0, 20 or 40 mg CTC/kg in corn oil, 5 days/week, for 12 weeks. Twenty-four animals/dose level provided blood samples that were used to assess clinical chemistry parameters. Homogenized pieces of liver were used as enzyme source in the measurement of cytochrome P450 activity. Other pieces of tissue were used for histopathological processing. Six animals from each dose levels were terminated on days, 1, 3, 8 and 15, post-exposure. The other set of 24 rats/group was used to measure radiolabeled sulfur colloid and 2-deoxyglucose uptake, again with 6 animals/group being examined on days, 1, 8, 15 and 22, post-exposure.

After 12 weeks, clinical chemistry measurements and morphological and histopathological examinations in the first set of rats suggested an increasing morphological and physiological impact on the liver, as the dose of CTC was increased. This was exemplified at both administered doses by increases in the serum activity of certain liver enzymes such as ALT, AST, alkaline phosphatase (AP) and LDH, and, in liver homogenates, by a reduction in the activity of cytochrome P450. Histopathologically, CTC effects were marked by the onset of cellular necrosis, and by vacuolar degeneration and cirrhosis, the most clear-cut lesions being apparent at the higher dose. However, these lesions and the clinical chemistry changes associated with them, became progressively less apparent in the post-exposure groups, suggesting that, at the termination of CTC treatment, rat livers may have the ability to recover from the well-known toxicological effects of the compound, in agreement with the results of Bruckner et al. (1986).

A more recent report by Bruckner's group re-examined the importance of vehicle in the oral toxicity of CTC, using male Sprague-Dawley rats as the animal model (Koporec et al., 1995). Eleven animals/group were gavaged at 0, 25 or 100 mg/kg in either corn oil or 1% Emulphor, 5 times/week, for 13 weeks. Three control groups were employed, one receiving no treatment, one receiving corn oil and the third receiving Emulphor. Body weights were recorded weekly, and blood samples were taken after 4, 8, and 13 weeks for the measurement of serum enzyme activities. At termination, excised pieces of liver were examined histopathologically, measured for triglyceride content, and used to prepare microsomes for cytochrome P450 and glucose 6 phosphatase assays.

Survival was poor among the high-dose groups, with approximately 70% of the subjects that received 100 mg/kg CTC in Emulphor dying prior to termination. In general, the number of deaths in rats receiving Emulphor were higher than in those receiving corn oil at the same CTC concentrations. By contrast, animals in all the control groups survived. Exposed animals displayed a reduced body weight gain in response to CTC, an effect that was more marked in those animals receiving corn oil versus Emulphor. However, the various treatments did not have much effect on liver weight. Serum enzyme activities and tissue indices such as triglyceride concentration showed profound changes in relation to the dose of CTC, as shown in Table 1. However, overall, there were no significant differences in serum enzyme activities as a result of dosing vehicle. There was a dose-related effect of CTC on the histopathology of the liver, though again, with comparatively few effects due to vehicle. For example, hepatic lesions evident at 25 mg/kg were characterized by centrilobular degeneration irrespective of vehicle, while lesions were uniformly present at the higher dose level. The deposition of collagen was typical of that seen in hepatitis or cirrhosis, and there were some signs of accompanying bile duct proliferation. Overall, however, these effects appeared not to be exacerbated by the choice of dosing vehicle, in contrast to the results reported by Condie et al. (1986) in CD-1 mice.

Table 1. Effects of CTC and Dosing Vehicles on Serum Enzyme Activities and Liver Parameters

CTC Treatment	Sorbitol Dehydrogenase (mU/mL)			Alanine aminotransferase (mµ/mL)		
Groups/Vehicle	4 weeks	8 weeks	13 weeks	4 weeks 8 weeks		13 weeks
Untreated	30±0.9(11)		19.3 ± 3.2 (11)			
EM control	3 4 ± 1.0 (10)		19.3 ± 2.3 (10)			
CO control	$3.6 \pm 1.0 (10)$		18.3 ± 3.3 (11)			
25 mg/kg in EM	15 ± 8 (4)	26 ± 17 (5)	44 ± 18 (8)	24.3 ± 2.8 (4)	37.1 ± 11 (5)	$38.8 \pm 7.2 (8)$
25 mg/kg in CO	23 ± 13 (5)	36 ± 8 (5)	41 ± 34 (10)	$30.8 \pm 5.7 (5)$	$39.9 \pm 4.8 (5)$	46.5 ± 23 (10)
100 mg/kg in EM	283 ± 165 (4)	344 ± 81 (5)	144 ± 58 (4)	457 ± 204 (4)	471 ± 56 (5)	182 ± 60 (4)

100 mg/kg in CO	211 ± 120 (4) 443 ± 94 (5)	100 ± 48 (6) 392 ± 279 (4)	655 ± 183 (5) 168 ± 58 (6)	
Tissue Indices at termination	Cyt. P450 (nmol/mg protein)	G-6-Pase (μmol Pi/h/mg protein)	Triglyceride (μmol/g liver)	
Untreated	0.83 ± 0.06	17.7 ± 1.0	18.1 ± 0.9	
EM control	0.74 ± 0.03	20.6 ± 1.6	16.6 ± 1.6	
CO control	0.82 ± 0.07	18.7 ± 1.5	23.4 ±2.9	
25 mg/kg in EM	0.71 ± 0.05	16.0 ± 2.3	36.4 ± 3.1	
25 mg/kg in CO	0.84 ± 0.14	15.4 ± 2.9	26.4 ± 4.9	
100 mg/kg in EM	0.46 ± 0.06	10.0 ± 1.8	28.6 ± 0.9	
100 mg/kg in CO	0.45 ± 0.05	9.0 ± 1 1	27.9 ± 4.3	

data taken from Koporec et al. (1995). EM = Emulphor, CO = corn oil.

Another study that addressed the issue of the effect of vehicle on the hepatotoxicity of CTC was that of Szende et al. (1994) who administered 0.2 mL/kg via gavage, 3 times/week for 8 weeks, to varying numbers of male F344 rats. A number of natural oils were used to disperse the compound, including sunflower oil, olive oil, corn oil and fish oil. Based on a compound density of 1.594 g/cc, the chosen dose level approximated to 320 mg/kg, with a full range of CTC-free oil-only control groups included in the study design. Though body weights and those of potential target organs such as the liver, spleen and testis were recorded, the primary endpoint was the histopathology of the liver and, as an index of fibrosis, the semi-quantitative estimates of the percentage of collagen content in picrosirius-stained liver sections.

Liver sections of animals exposed to CTC in corn oil, sunflower oil and fish oil displayed significantly more collagen than their respective controls, while the degree of apparent fibrosis in animals receiving the compound in olive oil was intermediate, as shown in Table 2.

Table 2. CTC-Induced Liver Fibrosis: Effects of Various Edible Oils as Gavage Vehicle

Treatment Group	Collagen Fiber (%)	n
Sunflower oil + CTC (320 mg/kg)	6.39 ± 3.60*	30
Corn oil + CTC (320 mg/kg)	7.51 ± 2.80*	20
Olive oil + CTC (320 mg/kg)	2.11 ± 0.54	15
Fish oil + CTC (320 mg/kg)	6.09 ± 1.80*	15
Sunflower oil controls	0 44 ± 0.20	5

Corn oil controls	0.88 ± 0.30	5
Olive oil controls	0.55 ± 0.10	5
Untreated controls	0.57 ± 0.30	5

data taken from Szende et al. (1994). * versus olive oil + CTC group

Examples of recent studies that examined the ability of experimental administration of CTC to serve as a "cirrhosis/fibrosis model" may be found in the reports of Delrat et al. (1994) and Frezza et al. (1994). Thus, Delrat et al. (1994) created a "hepatic insufficiency model" by the intragastric and/or intraperitoneal administration of the compound to groups of 4 New Zealand white rabbits at 0.035 and 0.1 mL/kg (equivalent to doses of 56 and 159 mg/kg, respectively), twice a week for 8 weeks. Intragastric and intraperitoneal controls received 0.1 mL/kg corn oil alone, using the same dosing regimen. Once a week, immediately prior to CTC administration, blood samples were taken for the measurement of ALT, AST and gamma glutamyl transferase (y-GT) activities, plus the concentrations of creatinine, bilirubin and total protein. At termination, excised liver pieces were examined histopathologically, and other portions were used to measure microsomal cytochrome P450, UDPglucuronyltransferase (UDPGT) and cytosolic glutathione Stransferase activities. However, the primary endpoints of the study were the extent to which the experimentally induced liver displayed impaired metabolism of the xenobiotics, antipyrine and indocyanine green (ICG). These compounds were administered to CTC-treated and control rabbits by a single intravenous bolus injection at 30 mg/kg and 1 mg/kg respectively, after the 8 weeks of CTC treatment. Serial blood samples were then taken for xenobiotic analysis from zero time to 4 hours, thereby permitting an assessment of their respective pharmacokinetic parameters.

There were no treatment-related changes in the concentrations of protein, creatinine or bilirubin in the blood of New Zealand white rabbits. However, serum enzymes such as ALT, AST and γ-GT displayed a spike of activity after the first treatment, with a subsequent reduction to near normal levels. Histopathological examination of liver biopsy specimens displayed the onset of "pericentrilobular post-necrotic fibrosis", though with no evidence of any accompanying cirrhosis. Microsomal cytochrome P450 and cytosolic glutathione S-transferase activities were dose-dependently reduced irrespective of the route of CTC administration, though that of UDPGT was unchanged. In conjunction with these CTC-induced changes, the pharmacokinetic parameters of antipyrine displayed a dose-related reduction in clearance rate (CL_T), increased area under the time/concentration curve (AUC), but a broadly similar "volume of distribution at steady state (Vd_{ss})." By contrast, the pharmacokinetic parameters of ICG, a compound that is widely used to assess hepatic blood flow because of its high extraction ratio, displayed markedly lower VD_{ss} values, indicating that the hepatic injury induced by CTC appeared to be associated with altered hepatic blood flow.

Frezza et al. (1994) provided another example of an experimental study featuring the use of CTC to induce liver damage pursuant to the assessment of related biochemical and/or

nutritional parameters. Female Sprague-Dawley rats received amounts of CTC by gavage (vehicle unstated) that increased periodically (from 0.08 mL to 1.6 mL) across the 30 week dosing period. At sacrifice, blood sample were taken for the measurement of trace elements, sex hormones and liver function enzymes, while all livers were examined histopathologically.

All 20 animals were reported to have developed liver cirrhosis, while six rats displayed hepatocellular carcinomas. Marked fluctuation was evident in the plasma concentrations of zinc, copper and estradiol, in relation to the histopathological state of the liver (hepatocellular carcinoma bearing versus cirrhosis only). However, the etiological significance of these findings remains unclear.

Included among recent studies that have explored the toxicokinetics of CTC in relation to the compound's hepatotoxicity are two reports by Sanzgiri et al. (1995; 1997) who examined the toxicological effects of route and pattern of exposure on the deposition of CTC in the circulation and on its delivery to certain target organs. Using a 2-way mask, the authors exposed male Sprague-Dawley rats to CTC for 2 hours via inhalation at 100 and 1000 ppm, concentrations that the authors calculated to be equivalent to dose levels of 17.5 and 179 mg/kg, respectively. These doses were subsequently administered to other rats either as a bolus gavage injection or as a gastric infusion over the same period of time as the inhalation dosing regimen (2 hours). Serial samples of blood for CTC analysis were taken from 2-60 minutes, and at intervals up to 12 hours after exposure. After 24 hours, the animals were sacrificed and further samples of blood were taken to measure the activities of SDH and AP. Excised pieces of liver were used to make microsomal preparations that were used as enzyme source in the measurement of the activities of cytochrome P450 and glucose 6 phosphatase (G6Pase).

From the hepatotoxicological standpoint, animals exposed to 17.5 mg/kg CTC showed comparatively few changes in the serum activities of SDH or AP, though the liver activities of cytochrome P450 and G6Pase were decreased compared to control. However, at the higher dose, serum activities of SDH and AP were elevated compared to controls. In general, there appeared to be more profound changes in those animals receiving CTC as a bolus, compared to those receiving the compound via inhalation or as a gastric infusion. Similarly, pharmacokinetic parameters such as the AUC and the maximum blood concentration (C_{max}) were markedly elevated in those animals receiving CTC as a bolus (Sanzgiri et al., 1995). When specific concentrations of CTC were measured in the major tissues, the liver concentrations were shown to become temporarily elevated, though the highest specific concentrations were subsequently found in adipose tissue (Sanzgiri et al., 1997). The authors noted that, as levels of the parent compound diminished rapidly in the liver, a poor correlation between CTC levels in liver and alterations of hepatotoxicity endpoints would be anticipated at the later time points. They therefore considered that measuring the quantity of reactive CTC metabolites in the liver during the initial minutes after dosing might better relate the toxic consequences of CTC exposure to its dosimetry.

An example of a recent study that investigated toxicological endpoints of CTC other than liver toxicity is that of Narotsky et al. (1997) who administered CTC at 0, 25, 50 or 75 mg/kg-day to pregnant F344 rats in either corn oil or 10% Emulphor on gestation days (GD) 6-15. Litters were examined post-natally, and those dams not delivering were examined at autopsy for full litter resorptions (FLR) using 10% ammonium sulfide as a stain. FLRs were evident at the two highest doses of CTC, with the incidences of FLR much higher in subjects receiving the compound in corn oil versus the aqueous vehicle. By contrast, surviving litters displayed no effects on gestation length, post-natal survival or pup morphology, and, while some fluctuations in pup weights were evident, these were probably unrelated to dose. Using the GD 6-15 dosing regimen, the authors considered a dose of 25 mg/kg to be a NOAEL for CTC's developmental effects (FLRs). This range of doses is far in excess of the 1 mg/kg-day value that was identified as a NOAEL for the compound's hepatotoxic effects (Bruckner et al., 1986).

DERIVATION OF A PROVISIONAL SUBCHRONIC ORAL RfD

The report by Bruckner et al. (1986) is the critical study on the oral toxicity of CTC, since the range of doses employed allowed a sub-threshold dose of 1 mg/kg-day for the compound's hepatotoxic effects to be unequivocally identified. Accordingly, this dose level serves herein as the NOAEL for developing a provisional subchronic RfD.

To calculate the provisional subchronic RfD the NOAEL is first adjusted for daily exposure, thus:

NOAEL (mg/kg-day) = 1 mg/kg x 5 days/7 days
=
$$0.71$$
 mg/kg-day
The subchronic RfD = NOAEL / UF x MF
= 0.71 mg/kg-day / 100 x 1
= $7E-3$ mg/kg-day

where: the uncertainty factor (UF) of 100 is calculated from factors of 10 for extrapolation from rats to humans and 10 to protect sensitive subpopulations.

Confidence in the Derived Provisional Subchronic RfD

Confidence in the above derivation can be evaluated in light of (1) the apparent scientific rigor with which the principal study was carried out, (2) the thoroughness with which the study's

findings were documented, (3) the extent of any emerging consensus bounding the choice of principal effect, (4) the level of agreement with other studies on the likely quantitative point-of-departure for the compound's toxic effects, and (5) the completeness of the toxicokinetic database.

According to the first four criteria, the derived provisional subchronic RfD of 7E-3 mg/kg-day appears to warrant high confidence since the overwhelming body of experimental studies point to the liver as CTC's primary target organ. In addition, a number of other studies have indicated that 1 mg/kg-day is a suitable unadjusted NOAEL for the subchronic toxicity of the compound when administered orally by gavage in corn oil (Hayes et al., 1986; Condie et al., 1986). The Bruckner et al (1986) study appears to have been rigorously carried out and documented, although one possible caveat surrounds the restriction of the histopathological evaluations to the liver and kidney only. Judging the derived provisional subchronic oral RfD against the final criterion (completeness of the toxicological database for the compound) tempers the overall confidence in the derivation, since, as pointed out by the IRIS compilers (U.S. EPA, 1998), there is a comparatively small body of information on the compound's reproductive/developmental toxicity, with no 2-generation study. This data gap justifies the choice of medium for the overall level of confidence ascribed to the derived provisional subchronic RfD.

Remaining uncertainties include the justification for including or excluding a further UF component (3 or 10) to cover the incompleteness of the toxicological database referred to above. In this assessment, while recognizing that certain data elements pertaining to the possible reproductive/developmental toxicity of CTC are missing, choosing to exclude this UF component from the final derivation centers on the likelihood that, based on existing evidence, the reproductive/developmental NOAEL may be at least an order of magnitude greater than that observed for the compound's hepatotoxic effects.

RISK CHARACTERIZATION FOR CARBON TETRACHLORIDE

Carcinogenic Risk Assessment (U.S. EPA, 1986), IRIS ascribes a weight-of-evidence classification for CTC of "B2" -a probable human carcinogen based on inadequate evidence in human beings and sufficient evidence in animals (U.S. EPA, 1998). In terms of the descriptors provided in the agency's Proposed Guidelines for Carcinogenic Risk Assessment (U.S. EPA, 1996) CTC is likely to be carcinogenic to humans via the oral route of exposure. This weight-of-evidence is based on a number of experimental studies describing the onset of CTC-induced hepatocellular adenomas and carcinomas that IRIS used in combination to derive a carcinogenic oral slope factor and inhalation unit risk for the compound (U.S. EPA, 1998). The existence of a number of experimental studies in which liver tumors were formed in a range of animal models justifies ascribing the weight-of-evidence classification to the higher end of the confidence range.

SUPPORTING INFORMATION

Human Data No data were identified that address the potential toxicity/carcinogenicity of the compound in human beings.

Animal Data Included in the positive carcinogenicity data discussed in IRIS, were the formation of hepatocellular adenomas and carcinomas in Osborne-Mendel rats, B6C3F1, C3H, A, Y, C and L mice, and Syrian Golden Hamsters (U.S. EPA, 1998). As discussed earlier, the article by Frezza et al. (1994) reported hepatocellular carcinoma formation in Sprague-Dawley rats after 30 weeks of oral administration. Taken together, these data affirm the capacity of CTC to induce liver tumors in a range of species and strains of laboratory animal.

Mutagenicity In a range of experimental systems and studies discussed and tabulated by ATSDR (1994), CTC appeared to lack the capacity to induce mutagenic or genotoxic effects.

MODE OF ACTION

Since CTC has been found to be largely negative for the induction of genotoxic/mutagenic effects, it can be reasonably assumed that the carcinogenic effects of the compound may resemble those of its structural analogue, chloroform, a compound whose carcinogenicity has been shown to critically depend on tissue damage followed by hepatocellular regeneration and repair rather than perturbation of the genome (Butterworth et al., 1995). Among the mechanisms that have been invoked as being etiologically important in the toxicity of CTC is the compound's metabolism by the cytochrome P450 mixed-function oxidase system (ATSDR, 1994). Therefore, this step may represent the initial process in the induction of tumor formation by CTC.

DISCUSSION

The studies that were evaluated for their demonstration of the ability of CTC to induce liver tumors were deficient in some form (U.S. EPA, 1998). Therefore the geometric mean tumor incidence data from each individual study were used to calculate a carcinogenic slope factor of 1E-1 (mg/kg-day)⁻¹.

BRIEFING SUMMARY

Routes	<u>Designation</u>			
	<u>Class</u>	or Rationale	Dose Response	
oral	lıkely	high	linear (default)	

Basis for classification/dose response

- 1. Human data: None
- 2. Animal data: A number of studies have demonstrated the formation of tumors in the liver of experimental animals.
- 3. **Structural analog data:** A number of chlorinated alkanes have been shown to induce tumors in laboratory animals, including CTC's closest structural analogue, chloroform.
- 4. **Other key data:** The compound's active metabolites are considered etiologically important in its carcinogenicity.
- 5. **Mode of action:** The carcinogenicity of CTC is thought to be unrelated to any direct effects of the compound or its metabolites on the genome. An emerging consensus appears to favor the tissue necrosis/regeneration model as a mechanism by which CTC brings about tumor formation.
- 6. Hazard classification/uncertainties: Because of the multiplicity of the data, confidence in the chosen weight-of-evidence descriptor for the compound is high. However, deriving a consensus carcinogenic slope factor represents an attempt to reduce uncertainty in the quantitative findings of studies that, in themselves, may lack critical information or statistical power.
- 7. **Dose response:** Linearity has been assumed by default.

REFERENCES

ACGIH (American Conference of Governmental Industrial Hygienists). 1998. 1998 Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. ACGIH, Cincinnati, OH.

Allis, J.W., T.R. Ward, J.C. Seely and J.E. Simmons. 1990. Assessment of hepatic indicators of subchronic carbon tetrachloride injury and recovery in rats. Fund. Appl. Toxicol. 15: 558-570.

ATSDR (Agency for Toxic Substances and Disease Registry). 1994. Toxicological Profile for Carbon Tetrachloride. U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry, Atlanta, GA.

Butterworth, B.E., M.V. Templin, S.J. Borghoff, R.B. Conolly, G.L. Kedderis and D.C. Wolf. 1995. The role of regenerative cell proliferation in chloroform-induced cancer. Toxicol. Lett. 82: 23-26.

Bruckner, J.V., W.F. MacKenzie, S. Muralidhara, R. Luthra, G.M. Kyle and D. Acosta. 1986. Oral toxicity of carbon tetrachloride: acute, subacute and subchronic studies in rats. Fund. Appl. Toxicol. 6: 16-34.

Condie, L.W., R.D. Laurie, T. Mills, M. Robinson and J.P. Bercz. 1986. Effect of gavage vehicle on hepatotoxicity of carbon tetrachloride in CD-1 mice: corn oil versus Tween-60 aqueous emulsion. Fund. Appl. Toxicol. 7: 199-206.

Delrat, P, S. Dupin, P. Galtier, M. Alviniere, J.J. Voigt, A.E. Tufenkji, S. Saivin and G. Houin. 1994. Assessment of hepatic insufficiency model in the rabbit using carbon tetrachloride. J. Pharm. Sci. 83: 1637-1742.

Frezza, E.E., G.E. Gerunda, F. Farinati, N. DeMaria, A. Galligioni, F. Plebani, A. Giacomin and D.H. Van Thiel. 1994. CCl4-induced liver cirrhosis and hepatocellular carcinoma in rats: Relationship to plasma zinc, copper and estadiol levels. Hepato-Gastroenterol. 41: 367-369.

Hayes, J.R., L.W. Condie, Jr. and J.F. Borzelleca. 1986. Acute, 14-day repeated dosing, and 90-day subchronic toxicity studies of carbon tetrachloride in CD-1 mice. Fund. Appl. Toxicol. 7(3): 454-463.

Koporec, K.P., H.J. Kim, W.F. MacKenzie and J.V. Bruckner. 1995. Effect of oral dosing vehicles on the subchronic hepatoxicity of carbon tetrachloride in the rat. J. Toxicol. Environ.. Health 44: 13-27.

Narotsky, M.G., R.A. Pegram and R.J. Kavlock. 1997. Effect of dosing vehicle on the developmental toxicity of bromodichloromethane and carbon tetrachloride. Fund. Appl. Toxicol. 40: 30-36.

NIOSH (National Institute for Occupational Safety and Health). 1994. Pocket Guide to Chemical Hazards. U.S. Department of Health and Human Services, Washington, DC.

Sanzgiri, U.Y., H.J. Kim, S. Muralidhara, C.H. Dallas and J.V. Bruckner. 1995. Effect of route and pattern of exposure on the pharmaceutics and acute hepatotoxicity of carbon tetrachloride. 1995. Toxicol. Appl. Pharmacol. 134: 148-154.

Sanzgiri, U.Y., V. Srivastan, S. Muralidhara, C.E. Dallas and J.V. Bruckner. 1997. Uptake, distribution and elimination of carbon tetrachloride in rat tissues following inhalation and ingestion exposures. Toxicol. Appl. Pharmacol. 143: 120-129.

Szende, B., F. Timar and B. Hargitai. 1994. Olive oil decreases liver damage in rats caused by carbon tetrachloride (CCl₄). Exp. Toxic. Pathol. 46: 355-359.

- Tomenson, J.A., C.E. Baron, J.J. O'Sullivan, J.C. Edwards, M.D. Stonard, R.J. Walker and D.M. Fearnley. 1995. Occup. Environ. Med. 52: 508-514.
- U.S. EPA. 1880. Ambient Water Quality Criteria for Carbon Tetrachloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards Division, Washington, D.C. EPA 440/5-80-026.
- U.S. EPA. 1982. Health Assessment Document for Carbon Tetrachloride. Prepared by the Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Cincinnati, OH. Prepared for the Office of Air Quality Planning and Standards, research Triangle Park, NC. EPA 600/8/82-001.
- U.S. EPA. 1984a. Health Assessment Document for Carbon Tetrachloride. Prepared by the Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Cincinnati, OH. Prepared for the Office of Air Quality Planning and Standards, research Triangle Park, NC. EPA 600/8/82-001F.
- U.S. EPA. 1984b. Health Effects Assessment for Carbon Tetrachloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Sold Waste and Emergency Response, Washington, D.C. EPA/540/1-86-039.
- U.S. EPA, 1985. Mutagenicity Assessment for Carbon Tetrachloride. Prepared by the Reproductive Effects Assessment Group for the Office of Pesticide Programs, Washington, DC. EPA/600/6-85/001
- U.S. EPA. 1986. Guidelines for Carcinogenic Risk Assessment; Notice. Federal Register 51: 33992-34003.
- U.S. EPA. 1889a. Ambient Water Quality Criteria for Carbon Tetrachloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards Division, Washington, D.C. ECAO-C-624. PB91-161554/REB.
- U.S. EPA. 1989b. Health Effects Assessment for Carbon Tetrachloride. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Sold Waste and Emergency Response, Washington, D.C. EPA/600/8-89-088.

- U.S. EPA. 1989c. Reportable Quantity Document for Carbon Tetrachloride. Prepared by the Carcinogen Assessment Group for the Office of Sold Waste and Emergency Response, Washington, D.C. EPA/600/8-91/086.
- U.S. EPA. 1994. Chemical Assessments and Related Activities (CARA). Office of Health and Environmental Assessment, Washington, DC.
- U.S. EPA. 1996. Proposed Guidelines for Carcinogenic Risk Assessment. Federal Register 61: 17960-18011.
- U.S. EPA. 1997. Health Effects Assessment Summary Tables. Annual FY- 1997. Office of Solid Waste and Emergency Response, Office of Emergency and Remedial Response, Washington, DC.
- U.S. EPA. 1998. Integrated Risk Information System. Online. Office of Health and Environmental Assessment, National Center for Environmental Assessment, Cincinnati, OH.

Attachment 4

(96-027/12-01-97)

Risk Assessment Issue Paper for: Provisional RfD for Cobalt (7440-48-4)

Cobalt has been found to stimulate the production of red blood cells in humans and, therefore, has been used as a treatment for anemia. In 12 anemic, anephric patients undergoing dialysis, treatment with 0.18 mg cobalt/kg/day as cobalt chloride for 12 weeks resulted in a significant rise in hemoglobin (Duckham and Lee, 1976). Taylor et al. (1977) reported similar effects in 8 anephric patients treated with 0.16-0.32 mg cobalt/kg/day as cobalt chloride for 12-32 weeks. In both studies, hemoglobin levels returned to pre-treatment levels following the cessation of treatment. Similar effects were reported in nonanemic humans and animals (Davis and Fields, 1958; Krasovskii and Fridlyand, 1971). Reversible polycythemia was reported in 6 normal male subjects following treatment with 1 mg cobalt/kg/day as cobalt chloride for 25 days (Davis and Fields, 1958). In normal rats, treatment with 0.5 mg cobalt/kg/day, but not 0.05 mg/kg/day, as cobalt chloride resulted in polycythemia and an increase in hemoglobin (Krasovskii and Fridlyand, 1971). An increase in hematocrit and hemoglobin levels was not observed, however, in pregnant women treated with 0.5-0.6 mg cobalt/kg/day for 90 days in an attempt to alleviate the anemia often found during pregnancy (Holly, 1955).

Much of the oral data in humans deals with the cardiomyopathy seen in people who drank large quantities of beer containing cobalt chloride (used to stabilize the foam) (Alexander, 1969, 1972; Morin et al., 1971). The people ingested 0.04-0.14 mg cobalt/kg/day (approximately 8-30 pints of beer daily) over a period of years (Alexander, 1969, 1972; Morin et al., 1971). The cardiomyopathy in the beer-drinkers, termed "beer-cobalt cardiomyopathy," was fatal to 43% of the subjects within several years, with approximately 18% of these deaths occurring within the first several days. The beer-cobalt cardiomyopathy appeared to be similar to alcoholic cardiomyopathy and beriberi, but the onset of the beer-cobalt cardiomyopathy was much more abrupt. The practice of adding cobalt to beer to stabilize the foam has been discontinued. It should be noted, however, that the cardiomyopathy may have also been due to the fact that the beer-drinkers had protein-poor diets and may have had prior cardiac and hepatic damage from alcohol abuse. Treatment of both pregnant and nonpregnant anemic patients with comparable or much higher doses of cobalt (0.09-1 mg cobalt/kg/day) did not result in effects on the heart (Duckham and Lee, 1976; Davis and Fields, 1958; Holly, 1955; Taylor et al., 1977).

Cobalt has been found to be a sensitizer in humans. Individuals are sensitized following dermal or inhalation exposure, but flares of dermatitis may be triggered following cobalt ingestion. One study was located that orally challenged cobalt-exposed workers in order to assess sensitization (Veien et al., 1987). In this study, several patients with eczema of the hands were challenged orally with 1 mg cobalt (0.014 mg cobalt/kg/day as cobalt sulfate) in tablet form once per week for 3 weeks and 28/47 patients had a flare of dermatitis following the oral

challenge (Veien et al., 1987). Forty-seven patients had positive patch tests to cobalt (13 to cobalt alone and 34 to nickel and cobalt) and 7 of the 13 patients that patch tested positive to cobalt reacted to the oral challenge. Using both the oral challenge and dermal patch tests, it was determined that the cobalt allergy was systemically induced. The exposure levels associated with sensitization to cobalt following inhalation or dermal exposure were not established.

Interrelationships have been found to exist between cobalt and nickel sensitization (Bencko et al., 1983; Rystedt and Fisher, 1983; Veien et al., 1987). In guinea pigs, nickel and cobalt sensitization appear to be interrelated and mutually enhancing (Lammintausta et al., 1985). Therefore, it is possible that in people sensitized by nickel, exposure to cobalt may result in an allergic reaction. The elicitation of an allergic response in cobalt-sensitized workers was considered for the derivation of an oral RfD. An oral-RfD was not derived because a NOAEL for the elicitation of the allergic response in humans was not defined and, because interrelationships exist between cobalt and nickel sensitization, people sensitized by nickel may have an allergic reaction following cobalt exposure. Consequently, it is impossible to certify that an RfD based on this effect would provide sufficient protection for sensitive individuals.

Three studies were located examining the developmental effects of orally administered cobalt (given as cobalt chloride) in rodents (Domingo et al., 1985; Paternain et al., 1988; Seidenberg et al., 1986). Domingo et al. (1985) treated pregnant female rats to 5.4 to 21.8 mg cobalt/kg/day from gestation day 14 through lactation day 21. Fetal effects included stunted growth of the pups at 5.4 mg cobalt/kg/day and decreased survival at 21.8 mg cobalt/kg/day. These effects occurred at levels that were maternally toxic (authors did not specify the effects), therefore, the effects may be a result of maternal toxicity and not cobalt treatment. No teratogenic effects were reported.

No significant effects on fetal growth or survival were found in rats exposed to 6.2 to 24.8 mg cobalt/kg/day during gestation days 6-15 (Paternain et al., 1988), although a nonsignificant increase in the incidence of stunted fetuses was found in the animals treated with 12.4 or 24.8 mg cobalt/kg/day. Maternal effects, however, including reduced body weight and food consumption and altered hematological parameters, were reported. No fetal effects were reported in mice exposed to 81.7 mg cobalt/kg/day during gestation days 8-12 (Seidenberg et al., 1986), but a significant decrease in maternal weight was found.

Several studies reported testicular degeneration and atrophy in rats exposed to 5.7 to 30.2 mg cobalt/kg/day as cobalt chloride for 2-3 months in the diet or in the drinking water (Corrier et al., 1985; Domingo et al., 1984; Mollenhauer et al., 1985; Nation et al., 1983; Pedigo et al., 1988).

Given the database, the most sensitive indicators of cobalt toxicity following oral exposure are the increase in hemoglobin in both humans and animals, and the elicitation of dermatitis in sensitized individuals.

An alternative approach was likewise evaluated based on the hematological effects of cobalt treatment (increase in hemoglobin) in anemic dialysis patients (Duckham and Lee, 1976). The results of this study are supported by a similar study in anephric patients (Taylor et al., 1977). Hematological effects of cobalt were also found in studies in normal humans (Davis and Fields, 1958) and rats (Krasovskii and Fridlyand, 1971) indicating that the effect is not limited to anephric individuals. The data of Davis and Fields (1958) reported hemoglobin increase of 6-11 % over "normal" in "normal" volunteers given 0.96 mg cobalt/kg/day as cobaltous chloride. However, the data of Duckham and Lee (1976) describes a case of refractory anemia in patients with chronic renal failure that upon treatment with 0.18 mg cobalt/kg/day for 12 weeks responded favorably. The patients hemoglobin levels were increased to levels at or near low "normal" clinical levels from levels clinically described as anemic. The anemia recurred following cessation of treatment. Thus, this effect of cobalt administration in the Duckham and Lee (1976) study (and likewise that of Taylor et al., 1977) cannot be termed adverse, but are actually clinically beneficial to patients with renal disease. Consequently, these data cannot be used to derive an oral RfD.

Summary of Additional Oral Studies on Cobalt to be Included in Master List Uptate

Male Sprague-Dawley rats (12 per group) were exposed to one of three diets: control diet, a diet containing 12% protein ("protein-restricted" control) or the protein-restricted diet containing cobalt sulfate at a concentration to achieve 8.4 mg Co/kg-day (40 mg CoSO₄·7H₂O/kg-day) (Pehrsson et al., 1991). After eight weeks rats, were euthanized and hearts were isolated and perfused in a Langendorff perfusion circuit for assessment of left ventricular function. Body weights of rats exposed to 8.4 mg Co/kg-day were significantly lower (37%, p<0.05) than rats maintained on the protein-restricted control diet. No significant differences in left ventricular function were observed between the three diet groups. Myocardial Co concentrations were 1.5-4 mg Co/kg wet weight after eight weeks of exposure to 8.4 mg Co/kg-day compared to 0.05-0.18 after eight weeks on either of the two control diets. In a subsequent follow-up study (see below), cardiac function was assessed in rats after a 16 or 24 week exposure Co; the longer exposure duration resulted in higher myocardial Co concentrations and impairment of left ventricular function (Haga et al., 1996).

In the follow-up study, male Sprague-Dawley rats (12-16 per group) were exposed to a conventional control diet or a diet containing cobalt sulfate to achieve a daily intake of 8.4 mg Co/kg-day (40 mg CoSO₄ · 7H₂O/kg-day) (Haga et al., 1996). The Co intake in the control group was not reported. After 16 or 24 weeks on the diets, rats were euthanized and hearts were isolated and perfused in a Langendorff perfusion circuit for assessment of left ventricular function. Body weights of rats exposed to 8.4 mg Co/kg-day were significantly lower than control rats after 16 weeks (26%, p<0.0001) and 24 weeks of exposure (31%, p<0.001). The ratio of left ventricular weight to body weight was significantly higher in rats exposed to 8.4 mg Co/kg-day for 24 weeks (30%, p<0.001). After 16 weeks of exposure, coronary flow index was significantly higher compared with controls (p<0.01) suggesting lower flow resistance in the

. . .

coronary vascular bed. After 24 weeks of exposure, impairment of left ventricular function was more pronounced and characterized by decreased myocardial distensibility (reduced left ventricular pressure decay during diastole and pressure rise during systole, compared with control) in addition to reduced coronary flow resistance. Thus, the LOAEL was 40 mg/kg-day for left ventricular hypertrophy and impaired systolic and diastolic left ventricular function. Myocardial Co concentrations were 10-11 mg Co/kg wet weight after 16 and 24 weeks of exposure, compared with 0.12-0.13 mg Co/kg in the controls. The higher Co concentrations are 2-3 times greater than the Co concentrations achieved in the previous study of Pehrsson et al. (1991), and may explain why impaired ventricular function was evident after the longer exposure duration used in the Haga et al. (1996) study. [Hearts from human victims of "beer drinkers' myocardiopathy" were found to have a mean cobalt concentration of 0.48 mg Co/kg comapred to 0.04 mg Co/kg in controls (Sullivan et al., 1968).]

Male guinea pigs (20 per group) were exposed to one of six isocaloric diets for 5 weeks: standard Purina Guinea Chow (SGPC), SPGC plus 20 mg/kg-day Co as cobalt sulfate, SPGC (liquefied) plus 2 g/day ethanol with or without 20 mg/kg-day Co, SPGC (liquefied) plus sucrose with or without 20 mg/kg-day Co (Mohiuddin et al., 1970). Mortality at 5 weeks in the cobalt groups was 4-5 of 20; compared with 0-1/20 in the groups that did not receive the Co supplemented diets. Guinea pigs in the Co-supplemented groups had tachypnea, weakness and hindlimb paralysis (incidence not reported). Absolute and relative heart weights in all Cosupplemented groups were significantly greater than in the groups not supplemented with Co (28%, p<0.01). Gross examination of the heart after five weeks of exposure revealed pericardial effusion in 45-50% of all of the Co-supplemented guinea pigs and in none of the guinea pigs that did not receive Co. Microscopic examination revealed in all of the Co-supplemented groups, but not the other groups: pericardial thickening; myocardial degeneration without inflammation (e.g., absence of cellular infiltration) characterized by loss of myofribrillar material, vacuolization and increased intracellular lipid and glycogen content; endocardial edema and thickening; and thrombi in all heart chambers. Electron microscopic examination revealed in the Cosupplemented groups: loss of intracellular myofibrillar elements, changes in mitochondria shape, size and cristae morphology, dilated sarcoplasmic reticulum, intracellular lipid droplets. A greater incidence of abnormal electrocardiograms (ECG) including bradycardia, loss of QRS voltage and repolarization abnormalities were recorded in the Co-supplemented groups beginning in the 3rd and 4th weeks of exposure (65% abnormal ECG in SPGC group plus Co compared with 5% in the SPGC group). Specific ECG abnormalities consisted of a greater incidence in the Co-supplemented group (e.g., incidence in SPGC plus Co/incidence in SPGC) of bradycardia (80%/5%), decreased QRS voltage (75%/10%), A-V conduction delay (25%/5%) and S-T changes (65%/5%). The 20 mg Co/kg-day exposure used in this study defines a FEL for mortality and functional and histopathologic heart lesions in guinea pigs exposed to Co in food for five weeks.

In a subchronic reproductive study, adult male B6C3F1 mice were exposed to drinking water containing 400 mg Co/L as cobaltous chloride or given drinking water without Co

supplementation (control); mice were fed Purina Rodent Chow (Pedigo and Vernon, 1993). The estimated dosage assuming an adult body weight of 0.04 kg and default drinking water intakes for male B6C3F1 mice (U.S. EPA, 1987) was 93 mg Co/kg-day. A dominant lethal assay was conducted after 10 weeks of exposure: Co-exposed and control males (10 per group) were mated with control females over a period of two weeks; pregnant females were euthanized on day 19 of pregnancy and fetuses were evaluated for gross abnormalities, response to tactile stimuli, and size (data not reported); resorptions and preimplantation losses were quantified. Males from both groups were euthanized after the dominant lethal assay was completed and epididymal sperm concentration and sperm motion characteristics. In a concurrent fertility study, males from the Co-exposed and control groups were mated overnight with control females (superovulated by injection of pregnant mare serum gonadotropin) after 7 and 10 weeks of exposure to Co and 2, 6 and 8 weeks after cessation of exposure to Co. Pregnant females were euthanized on day 2 of pregnancy and the number of ova/embryos and percentage of embryos that were 2-cell or greater (fertilized) were determined. The dominant lethal assay showed a significantly (p≤ 0.001) lower percentage of pregnant females (58% vs 91%) and average number of implantations per female (6.5 vs 8.3) in the cobalt-exposed groups compared controls and a significantly higher average number of preimplantation losses in the cobalt-exposed group (2.4 vs 0.43); post-implantation losses were not different in the two groups. Sperm concentration was significantly lower after 10 weeks of exposure to Co compared with control and remained significantly lower eight weeks after exposure to Co ceased. Sperm motion (motility, path velocity, progressive velocity, linearity, progressive motility and track speed) was significantly depressed after 10 weeks of exposure to Co compared with controls but recovered eight weeks after exposure to Co ceased. After 12 weeks of exposure, male fertility rate in the Co-exposed groups was significantly reduced compared with males in the control group (1.8% ova fertilized vs 82.4% fertilized) and recovered to control levels eight weeks after exposure to Co ceased. This study defines a LOAEL of 93 mg Co/kg-day for impairment of reproduction in mice.

The only known nutritional, but vital function of cobalt is as a cofactor of vitamin B_{12} . In humans, vitamin B_{12} is derived from bacterial synthesis and therefore, cobalt is essential for animal species, such as ruminants, that depend totally on their bacterial flora for vitamin B_{12} . There is no evidence that the intake of cobalt is ever limiting in the human diet, and therefore no RDA is deemed necessary for cobalt (NRC, 1989). It should be noted that the average daily intake of cobalt in humans ranges from approximately 0.002-0.008 mg cobalt/kg/day in adults (0.16-0.58 mg cobalt/day \div 70 kg; Tipton et al., 1966; Schroeder et al., 1967) and 0.01-0.06 mg cobalt/kg/day in children (0.3-1.77 mg cobalt/day \div 28 kg; NRC, 1989; Murthy et al., 1971). Murthy et al. (1971) indicated that the children in this study ranged in age from 9-12 years. Using the average weight of 28 kg for children aged 7-10 years (NRC, 1989), the average daily intake for the children in this study ranged from 0.01-0.06 mg/kg/day. If the default adult weight of 70 kg is used with the Murthy data, then the range of intake would be from 0.004-0.025 mg/kg/day.

The effects of chronic occupational exposure to cobalt on the respiratory system are well documented. Cobalt has been found to be the etiologic agent in hard metal disease. The observed effects include respiratory irritation, wheezing, asthma, pneumonia and fibrosis and have been found to occur at exposure levels ranging from 0.003 to 0.893 mg cobalt/m³ over a period of 2-17 years (Davison et al., 1983; Demedts et al., 1984; Kusaka et al., 1986a,b; Raffn et al., 1988; Shirakawa et al., 1988; Sprince et al., 1988).

Studies have implicated cobalt as a sensitizer in humans. Although the minimum exposure level associated with cobalt sensitization has not been determined, work-related asthma was found in hard metal workers who were occupationally exposed (for greater than 3 years) to levels of cobalt ranging from 0.007 to 0.893 mg cobalt/m³ (Shirakawa et al., 1988). Given the database, the most sensitive indicators of cobalt toxicity by inhalation exposure are the effects on the respiratory system in both humans and animals and allergic responses in cobalt-sensitized individuals.

The data described above does not identify a single study, animal or human, that could be used to properly derive an oral RfD. In unusual circumstances, i.e., excessive beer drinking or through occupational sensitization, cobalt has been shown to manifest toxicological symptomatology. However, these reports provide inadequate data on which to derive an RfD. Furthermore, use of inhalation data to derive an oral RfD is precluded due to portal of entry effects. It is apparent that the upper range of average intake for children (0.06 mg/kg/day) is below the levels of cobalt needed to induce polycythemia in both renally comprised patients (0.18 mg/kg/day) and normal patients (0.96 mg/kg/day).

Therefore, in lieu of an oral RfD for cobalt and given the ubiquitous nature of cobalt and the relatively well characterized intake of cobalt in food, it is recommended that the intake levels described above be used as guidance for oral exposure to cobalt.

References:

Alexander, C.S. 1969. Cobalt and the heart. Ann. Int. Med. 70: 411-413.

Alexander, C.S. 1972. Cobalt-beer cardiomyopathy: A clinical and pathologic study of twenty-eight cases. Am. J. Med. 53: 395-417.

Bencko, V., V. Wagner, M. Wagnerova, et al. 1983. Immuno-biochemical findings in groups of individuals occupationally and non-occupationally exposed to emissions [sic] containing nickel and cobalt. J. Hyg. Epidemiol. Microbiol. Immunol. 27: 387-394.

Corrier, D.E., H.H. Mollenhauer, D.E. Clark, et al. 1985. Testicular degeneration and necrosis induced by dietary cobalt. Vet. Pathol. 22: 610-616.

Davis, J.E and J.P. Fields. 1958. Experimental production of polycythemia in humans by administration of cobalt chloride. Proc. Soc. Exp. Biol. Med. 37: 96-99.

Davison, A.G, P.L. Haslam, B. Corrin, et al. 1983. Interstitial lung disease and asthma in hard-metal workers: Bronchoalveolar lavage, ultrastructural and analytical findings and results of bronchial provocation tests. Thorax. 38: 119-128.

Demedts, M., B. Gheysens, J. Nagels, et al. 1984. Cobalt lung in diamond polishers. Am. Rev. Respir. Dis. 130: 130-135.

Domingo, J.L, J.M. Llobet and R. Bernat. 1984. A study of the effects of cobalt administered orally to rats. Arch. Farmacol. Toxicol. 10: 13-20.

Domingo, J.L, J.L. Paternain, J.M. Llobet, et al. 1985. Effects of cobalt on postnatal development and late gestation in rats upon oral administration. Rev. Esp. Fisiol. 41: 293-298.

Duckham, J.M. and H.A. Lee. 1976. The treatment of refractory anemia of chronic renal failure with cobalt chloride. Q. J. Med. 178: 277-294.

Haga, Y. N. Cline, N. Hatori, C. Hoffman-Bang, S.K. Pehersson and L. Ryden. 1996. Impaired myocardial function following chronic cobalt exposure in an isolated rat heart model. Trace Elem. Elect. 13: 69-74.

Holly, R.G. 1955. Studies on iron and cobalt metabolism. J. Am. Med. Assoc. 158: 1349-1352.

Krasovskii, G.N. and S.A. Fridlyand. 1971. Experimental data for the validation of the maximum permissible concentration of cobalt in water bodies. Hyg. Sanit. 36: 277-279.

Kusaka, Y., K. Yokoyama, Y. Sera, et al. 1986a. Respiratory disease in hard metal workers: An occupational hygiene study in a factory. Br. J. Ind. Med. 43: 474-485.

Kusaka, Y., Y. Ishikawa, T. Shirakawa, et al. 1986b. Effect of hard metal dust on ventilatory function. Br. J. Ind. Med. 43: 486-489.

Lammintausta, K., O.P. Pitkanen, K. Kalimo, et al. 1985. Interrelationship of nickel and cobalt contact sensitization. Cont. Dermat. 13: 148-152.

Mohiuddin, S.M., P.K. Taskar, M. Rheault, P.E. Roy, J. Chenard and Y. Morin. 1970. Experimental cobalt cardiomyopathy. Am. Heart. J. 80: 532-543.

Mollenhauer, H.H., D.E. Corrier, D.E. Clark, et al. 1985. Effects of dietary cobalt on testicular structure. Virchows Arch. B. Cell Pathol. Incl. Mol. Pathol. 49: 241-248.

Morin, Y., A. Tetu and G. Mercier. 1971. Cobalt cardiomyopathy: Clinical aspects. Br. Heart J. 33: 175-178.

Murthy, G.K., U. Rhea and J.T. Peeler. 1971. Levels of antimony, cadmium, chromium, cobalt, manganese, and zinc in institutional total diets. Environ. Sci. Technol. 5: 436-442.

Nation, J.R, A.E. Bourgeois, D.E. Clark, et al. 1983. The effects of chronic cobalt exposure on behavior and metallothionein levels in the adult rat. Neurobehav. Toxicol. Teratol. 5: 9-15.

NRC (National Research Council). 1989. Recommended Daily Allowances. Tenth edition. Subcommittee on the Tenth Edition of the RDAs. Food and Nutrition Board.

Paternain, J.L., J.L. Domingo and J. Corbella. 1988. Developmental toxicity of cobalt in the rat. J. Toxicol. Environ. Health. 24: 193-200.

Pedigo, N.G, W.J. George and M.B. Anderson. 1988. Effects of acute and chronic exposure to cobalt on male reproduction in mice. Repro. Toxicol. 2: 45-53.

Pedigo, N.G. and M.W. Vernon. 1993. Embryonic losses after 10-week administration of cobalt to male mice. Reprod. Toxicol. 7: 111-116.

Pehrsson, S.K., N. Hatori, N. Clyne, J. Koch, L.E. Lins and L. Ryden. 1991. The effect of chronic cobalt exposure on cardic function in rats. Trace Elem. Med. 8:195-198.

Raffn, E., S. Mikkelsen, D.G. Altman, et al. 1988. Health effects due to occupational exposure to cobalt blue dye among plate painters in a porcelain factory in Denmark. Scand. J. Work Environ. Health 14:378-384.

Rystedt, I. and T. Fischer. 1983. Relationship between nickel and cobalt sensitization in hard metal workers. Cont. Dermat. 9: 195-200.

Schroeder, H.A, A.P. Nason and I.H. Tipton. 1967. Essential trace elements in man: cobalt. J. Chronic. Dis. 20: 869-890.

Seidenberg, J.M, D.G. Anderson and R.A. Becker. 1986. Validation of an <u>in vivo</u> developmental toxicity screen in the mouse. Teratogen. Carcinogen. Mutat. 6: 361-374.

Shirakawa, T., Y. Kusaka, N. Fujimura, et al. 1988. The existence of specific antibodies to cobalt in hard metal asthma. Clin. Allergy. 18: 451-460.

488 751

Sprince, N.L., L.C. Oliver, E.A. Eisen, et al. 1988. Cobalt exposure and lung disease in tungsten carbide production: A cross-sectional study of current workers. Am. Rev. Respir. Dis. 138: 1220-1226.

Sullivan, J., M. Parker and S.B. Carson. 1968. Tissue cobalt content in "beer drinkers' cardiomyopathy". J. Lab. Clin. Med. 71:893-896.

Taylor, A., V. Marks, A.A. Shabaan, et al. 1977. Cobalt induced lipaemia and erythropoiesis. Dev. Toxicol. Environ. 1: 105-108.

Tipton, I.H., P.L. Stewart, P.G. Martin. 1966. Trace elements in diets and excreta. Health Phys. 12: 1683-1689.

U.S. EPA. 1987. Recommendation for and Documentation of Biological Values for Use in Risk Assessment. Prepared by Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington DC.

Veien, N.K., T. Hattel, O. Justesen, et al. 1987. Oral challenge with nickel and cobalt in patients with positive patch tests to nickel and/or cobalt. Acta. Derm. Venereol. 67: 321-325.

(10-21-98)

Risk Assessment Issue Paper for: Feasibility of RfD Derivation for 2-Methylnaphthalene (CASRN 91-57-6)

INTRODUCTION

The TOXLINE (1981-1998) and TSCATS data bases were examined in October 1998 to identify literature regarding health effects associated with exposure to 2-methylnaphthalene and 1-methylnaphthalene (as a possible surrogate). Update searches of TOXLINE (1991-1993, CAS number and chemical names strategy, all cites), CANCERLINE (1963-1993, CAS number and chemical names strategy, all cites), TSCATS, RTECS, and HSDB were performed and screened in April 1993.

In addition to the literature searches, IRIS (U.S. EPA, 1998), the RfD/RfC Monthly Status Report (U.S. EPA, 1995), the Drinking Water Regulations and Health Advisories list (U.S. EPA, 1994a), the HEAST (U.S. EPA, 1997), the NTP Chemical Status Reports (NTP, 1993a;b) and the OHEA CARA lists (U.S. EPA, 1991, 1994b), were used to identify sources of additional information. The ATSDR (1990) Toxicological Profile for Naphthalene and 2-Methylnaphthalene and a report by Buckpitt and Franklin (1989) were also reviewed for pertinent literature.

The U.S. EPA (1998) has not derived an RfD for 2-methylnaphthalene, nor is this chemical under consideration by the RfD/RfC Work Group (U.S. EPA, 1995) or listed on the HEAST (U.S. EPA, 1997). ATSDR (1990) has not derived MRL values.

REVIEW OF PERTINENT LITERATURE

Data were not located regarding effects in humans or animals following inhalation or oral exposure to 2-methylnaphthalene (or 1-methylnaphthalene). Information regarding the health effects of 2-methylnaphthalene is restricted to examinations of cell damage in the bronchiolar epithelium of mice (Griffin et al., 1981; Rasmussen et al., 1986; Buckpitt and Franklin, 1989; Honda et al., 1990) and rats (Dinsdale and Verschoyle, 1987) given intraperitoneal injections of 2-methylnaphthalene, and to studies of mononucleated giant cell formation and proteinosis in pulmonary alveoli of mice dermally exposed over a period of 30 weeks to a mixture of 1- and 2-methylnaphthalene (Murata et al., 1992).

Because no data on 2-methylnaphthalene that are suitable for derivation of the requested provisional oral RfD were located, use of the toxicity data for naphthalene as a surrogate for 2-methylnaphthalene have been considered. Intraperitoneal injections of either naphthalene, 1-

methylnaphthalene or 2-methylnaphthalene caused cell damage in the bronchiolar epithelium of mice (Rasmussen et al., 1986). Naphthalene and 2-methylnaphthalene were about equally toxic, but changes associated with 1-methylnaphthalene exposure were less severe. Other reports of similar results in similar mouse experiments comparing only naphthalene and 2-methylnaphthalene are available (Griffin et al., 1981; Buckpitt and Franklin, 1989; Honda et al., 1990). Although these comparisons suggest that naphthalene and its methylated derivatives may cause similar health effects in acutely exposed animals, it is uncertain if similarities in health effects would be observed in humans repeatedly exposed to any one of these compounds in the environment. It is possible that the observed effect in mice is a special case that may not apply to other species, since no bronchiolar cell damage was detected in rats following intraperitoneal doses of naphthalene, 1-methylnaphthalene or 2-methylnaphthalene (Dinsdale and Verschoyle, 1987). Furthermore, hemolytic anemia has been identified in case reports to be the primary effect in humans associated with acute exposure to naphthalene (ATSDR, 1990). Because no hemolytic effects were observed in mice orally exposed for 14 days to naphthalene doses as high as 267 mg/kg/day (Shopp et al., 1984), the use of rodents as an experimental model to assess health hazards for humans exposed to naphthalene or its methylated derivatives has been questioned (ATSDR, 1990).

Limited data are available concerning the relative acute lethality of naphthalene and 2-methylnaphthalene. Intraperitoneal doses of 2-methylnaphthalene as high as 800 mg/kg have been administered to mice without mortality (Griffin et al., 1981), but the intraperitoneal LD₅₀ value for naphthalene is 380 mg/kg in mice (Warren et al., 1982), and intraperitoneal doses of naphthalene as low as 150 mg/kg have been reported to produce lethality in this species (Sandmeyer, 1981). Analysis by NCEA-Cin using the recently developed Quantitative-Structure-Activity model (rat, oral, chronic), predicts LOAEL values for 2-methylnaphthalene, naphthalene and 1-methylnaphthalene of 67.2, 42.0 and 34.5 mg/kg/day, respectively in order of increasing toxicity. The LD50s for the same compounds are 1.4, 1.8 and 0.872 g/kg, respectively. However, these predicted toxicities are based upon electrotopological (E-state) parameters and does not imply that the health endpoints are the same. Based on the metabolism, the health endpoints may be the same or different, depending on whether side chain or ring oxidation predominates with respect to health endpoint.

Comparison of the metabolism of 2-methylnaphthalene and naphthalene indicate that the addition of a methyl group can make a significant difference in metabolic fate (Buckpitt and Franklin, 1989). 2-Methylnaphthalene metabolism proceeds via two divergent pathways, methyl group oxidation and epoxidation of the aromatic ring. Naphthalene metabolism occurs via the aromatic ring epoxidation pathway only. The methyl group oxidation pathway is the major metabolic fate of 2-methylnaphthalene in guinea pigs (Teshima et al., 1983) and rats (Melancon et al., 1982). Further differences between the metabolism of naphthalene and that of its methylated derivatives can be inferred from reports that treatment of mice with inhibitors of cytochrome P-450 monooxygenase activity (i.e., SKF 525-A and piperonyl butoxide) did not inhibit the development of 2-methylnaphthalene-induced bronchiolar cellular damage, but

markedly protected against naphthalene-induced damage (see Buckpitt and Franklin, 1989). The target organ for naphthalene, especially in animals and humans, appears to be different than for 2-methyl naphthalene. However, this conclusion is based on one dog experiment. Consequently, until additional studies are available, additivity for naphthalene and 2-methyl naphthalene can be assumed based on the fact that 1-methyl naphthalene appears to effect the same target organ as naphthalene; namely, the erythrocytes.

DERIVATION OF A CHRONIC ORAL RfD

Oral and inhalation toxicity data for 2-methylnaphthalene are lacking, precluding

derivation of a provisional oral RfD for 2-methylnaphthalene. In general the methylation of aromatic rings modifies the metabolic pathway and reduces the toxicity of the chemical. This is observed with benzene and naphthalene when they are converted to methyl benzene (toluene) and 2methyl naphthalene with respect to effects on the hematopoietic system. However, until additional studies are available to address unequivocally the health effects of 2methyl naphthalene, it seems reasonable to use the RfD for naphthalene (2E-2

mg/kg/day; US EPA, 1998) as a surrogate for its methylated derivative; namely, 2methyl naphthalene. The basis for this conservatism is that the ring oxidation reactions of 2-methyl naphthalene are similar (3,4-, 5,6- and 7,8-dihydrodiols), to those of naphthalene in that the same three dihydrodiols are produced by metabolism of both compounds via epoxide intermediates.

REFERENCES

ATSDR (Agency for Toxic Substances and Disease Registry). 1990. Toxicological Profile for Naphthalene and 2-Methylnaphthalene. U.S. Public Health Service. Atlanta, GA.

Buckpitt, A.R. and R.B. Franklin. 1989. Relationship of naphthalene and 2-methylnaphthalene metabolism to pulmonary bronchiolar epithelial cell necrosis. Pharmac. Ther. 41: 393-410.

Dinsdale, D. and R.D. Verschoyle. 1987. Pulmonary toxicity of naphthalene derivatives in the rat. Mechanisms and Models in Toxicology. Arch. Toxicol., Suppl. 11: 288-291.

Griffin, K.A., C.B. Johnson, R.K. Breger and R.B. Franklin. 1981. Pulmonary toxicity, hepatic and extrahepatic metabolism of 2-methyl naphthalene in mice. Toxicol. Appl. Pharmacol. 61: 185-196.

Honda, T., M. Kiyazumi and S. Kojima. 1990. Alkylnaphthalene. IX. Pulmonary toxicity of naphthalene, 2-methylnaphthalene, and isopropylnaphthalenes in mice. Chem. Pharmacol. Bull. 38: 3130-3135.

Melancon, M.J., D.E. Rickert and J.J. Lech. 1982. Metabolism of 2-methylnaphthalene in the rat in vivo. Identification of 2-naphthoylglycine. Drug Metab. Dispos. 10: 128-133.

Murata, Y., Y. Emi, A. Denda and Y. Konishi. 1992. Ultrastructural analysis of pulmonary, alveolar proteinosis induced by methylnaphthalene in mice. Exp. Toxicol. Pathol. 44: 47-54.

NTP (National Toxicology Program). 1992. Toxicology and Carcinogenesis Studies of Naphthalene (CAS No. 91-20-3) in B6C3F1 Mice. Inhalation Studies. U.S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD. NTP TR 410. NIH Publication No. 91-3141. NTIS PB92-224260/AS.

NTP (National Toxicology Program). 1993a. Chemical Status Report (04/05/93).

NTP (National Toxicology Program). 1993b. NTP Results Report (04/07/93).

Rasmussen, R.E., D.H. Do, T.S. Kim and L.C. Dearden. 1986. Comparative cytotoxicity of naphthalene and its monomethyl- and mononitro-derivatives in the mouse lung. J. Appl. Toxicol. 6: 13-20.

Sandmeyer, E.E. 1981. Aromatic Hydrocarbons. <u>In</u>: Patty's Industrial Hygiene and Toxicology. Third Revised Edition. Volume 2B. Toxicology. G.D. Clayton and F.E. Clayton, Ed. John Wiley and Sons, New York. pp. 3253-3431.

Shopp, G.M., K.L. White, Jr., M.P. Holsapple et al. 1984. Naphthalene toxicity in CD-1 mice: General toxicity and immunotoxicology. Fundam. Appl. Toxicol. 4: 406-419.

Teshima, R., K. Nagamatsu, H. Ikebuchi, Y. Kido and T. Terao. 1983. <u>In vivo</u> and <u>in vitro</u> metabolism of 2-methylnaphthalene in the guinea pig. Drug Metab. Dispos. 11: 152-157.

U.S. EPA. 1991. Office of Health and Environmental Chemical Assessments and Related Activities. Office of Health and Environmental Assessment, Washington, DC. April 1991. OHEA-I-127

U.S. EPA. 1994a. Drinking Water Regulations and Health Advisories. Office of Water, Washington, DC. May 1994.

U.S. EPA. 1994b. Office of Health and Environmental Chemical Assessments and Related Activities. Office of Health and Environmental Assessment, Washington, DC. December, 1994. OHEA-I-127.

U.S. EPA. 1995. Monthly Status Report of RfD\RfC Work Group (as of 10/01/95). Office of Research and Development. National Center for Environmental Assessment, Cincinnati, OH.

U.S. EPA. 1997. Health Effects Assessment Summary Tables. Annual Update. FY-1995. Office of Research and Development, Office of Health and Environmental Assessment, National Center for Environmental Assessment, Cincinnati, OH. PB95-921199.

U.S. EPA. 1998. Integrated Risk Information System (IRIS). Online. Office of Health and Environmental Assessment, National Center for Environmental Assessment, Washington, DC.

Warren, D.L., D.L. Brown, Jr. and A.R. Buckpitt. 1982. Evidence for cytochrome P-450 mediated metabolism in the bronchiolar damage by naphthalene. Chem. Biol. Interact. 40: 287-303. (Cited in U.S. EPA, 1987.)

(98-018/07-07-98)

Risk Assessment Issue Paper for: Deriving Toxicity Values for Acute Exposure to PCBs (CASRN 1336-36-3): The Development of Provisional RfDs and RfCs for Oral, Inhalation and Dermal Exposure

A number of records on IRIS (U.S. EPA, 1998) provide quantitative benchmarks for the carcinogenicity or systemic toxicity of the polychlorinated biphenyls (PCBs). Thus, in the agency's reevaluation of the carcinogenicity of PCBs (CASRN 1336-36-3) as a class, separate upper, middle and lower tier pairs of slope factors (upper-bound and central tendency) are derived for different combinations of media, exposure scenarios, and mixtures of congeners (U.S. EPA, 1998). By contrast, for the compounds' non-carcinogenic effects, IRIS and HEAST (U.S. EPA, 1997) break out the quantitative evaluations into separate records for component Aroclors. with a verified chronic oral RfD of 7E-5 mg/kg-day for Aroclor 1016 (CASRN 12674-11-2), and a value of 2E-5 mg/kg-day for Aroclor 1254 (CASRN 11097-69-1). A chronic oral RfD for Aroclor 1248 (CASRN 12672-29-6) was considered "not verifiable." ATSDR has published Toxicological Profiles for the PCBs as a class, in which an overall MRL of 2E-5 mg/kg-day is proposed for chronic oral exposure (ATSDR, 1993; 1997). Occupational exposure limits and standards have been specified for some members of the class, including TWA-TLVs of 1mg/m³ for the 42% chlorinated component (equivalent to Aroclor 1242) and 0.5 mg/m³ for Aroclor 1254 (ACGIH, 1996). Each compound carries a "skin" notation, with Aroclor 1254 noted as an animal carcinogen. NIOSH (1994) records RELs for Aroclors 1242 and 1254 of 0.001 mg/m³, OSHA PELs of 1.0 and 0.5 mg/m³, respectively, and IDLHs of 5 mg/m³ for either compound. With a "skin" designation, the compounds are also marked as carcinogens, eye irritants, and as inducers of liver damage and reproductive effects (NIOSH, 1994). The CARA list (U.S. EPA, 1994) specifies a number of documents on the PCBs, including a WOCD (U.S. EPA, 1980), DWCDs (U.S. EPA, 1984a; 1988), a HEA (U.S. EPA, 1984b), an RQ document for cancer effects (U.S. EPA, 1989), plus issue papers focusing on action levels (U.S. EPA, 1986) and toxicity equivalency factors (U.S. EPA, 1991).

Research papers pertinent to the absorption and toxicity of the PCBs via the dermal route were sought through computer searches of the HSDB, RTECS, MEDLINE, and TOXLINE (and its subfiles) databases, covering the time period of 1990-1998. The literature search was conducted in June 1998.

DERIVING ACUTE TOXICITY VALUES FOR THE PCBs

The Chronic Health Hazard Assessments for Non-Carcinogenic Effects (U.S. EPA, 1998) states that the governing concept for the oral RfD is the assumption that dose thresholds exist for certain toxic effects that do not lead to cancer. Thus, the chronic quantitative toxicity value for a compound represents an estimate of the dose level that is unlikely to lead to harmful effects in

human beings, including sensitive sub-populations such as children and the elderly, as a result of continuous (and possibly lifetime) exposure. Deriving such values depends on the evaluation of data obtained from long-term toxicological studies in which dosing is carried out for at least half the normal life-span of the animal model being employed. Such an approach seeks to mimic in an experimental setting the hypothetical exposure to the chemical to which human beings would be subjected through daily exposure in the environment. Shorter term exposure studies (e.g., subchronic, 10 - 50% of the animal's normal life expectancy) can also be used in such derivations. This provides implicit endorsement of the concept of time-weighting and the existence of an inverse correlation between the duration of exposure and the dose in this paper of a compound that would be necessary to induce similar toxic effects. This relationship is used as the basis for estimating acute toxicity values for PCBs from chronic toxicity data and available benchmarks.

Key to the development of toxicity values for acute exposure to environmental contaminants may be the delineation of exposure scenarios that set the context in which the adjustment of chronic and subchronic to acute dosimetry may be targeted. For example, scenarios that are likely to be operative in the acute exposure to PCBs might include, (1) consumption of PCBs in food, (2) inhalation of PCBs in proximity to harmful emission, such as toxic waste incinerator emissions, electrical fires, and (3) dermal exposure during occupational exposure, for example, electricity company employees examining transformers, hazardous waste remediation, etc.

In the evaluations and extrapolations presented here, the verified toxicity values available on IRIS, HEAST, and/or from the agencies and organizations with statutory or professional oversight of occupational exposure standards, such as ACGIH, NIOSH, OSHA, and ATSDR, have been used as points-of-departure for developing provisional acute toxicity values for oral, inhalation and dermal exposure, with the choice of uncertainty factors employed to achieve such extrapolations rationalized by a survey of existing toxicity data. For dermal exposure, an acute toxicity value has been developed using the derived provisional acute oral RfD as a starting point, as impacted by the use of oral and dermal absorption factors, and by empirical considerations of the impact of "first-pass" metabolism on orally absorbed PCBs.

Oral Exposure

A considerable library of experimental studies attest to the widespread non-cancerous toxicological effects of the PCBs. Many of these studies have been summarized in the IRIS records for Aroclors 1016, 1248 and 1254 (U.S. EPA, 1998) and in the Toxicological Profiles for the PCBs as a class (ATSDR, 1993; 1997). For example, to derive the verified chronic oral RfD for Aroclor 1016, the IRIS compilers chose reduced birth weights in a reproductive bioassay in rhesus monkeys as the critical effect. By contrast, the appearance of clinical signs and immunological changes were considered to be the primary effects of Aroclor 1254 in the same animal model. Similarly, ATSDR used these same immunological responses to Aroclor 1254 as

a basis for their chronic duration oral MRL for PCBs as a class (ATSDR, 1993). ATSDR (1993; 1997) has also provided a tabulated list of the entire spectrum of non-cancerous toxicological responses induced by PCBs in experimental studies. Depending on exposure duration and dosing levels, these effects include lethality, respiratory, cardiovascular and gastrointestinal lesions; liver necrosis and fatty changes, dermal and ocular effects, dose-dependent changes to serum clinical chemistry parameters and hormone levels, changes to hematological and neurological parameters, and reproductive/developmental perturbations.

However, despite the wide range of toxicological effects that have been induced by PCBs in experimental studies, the verified quantitative toxicological benchmarks that have been derived for the non-cancerous effects of the compound show a striking similarity, as summarized in Table 1.

Table 1. Quantitative Toxicological Benchmarks for Non-Cancer Effects of PCBs

Compound	Principal Effect	RfD (mg/kg-day)	MRL (mg/kg-day)	Reference
Aroclor 1016	Reduced birth weight in neonates	7E-5		U.S. EPA, 1998.
Aroclor 1254	Clinical signs; reduced immunological response to sheep red blood cells (SRBCs)	2E-5		U.S. EPA, 1998.
PCBs as a class	Reduced immunological response to SRBCs.		2E-5	ATSDR, 1993.

and/or MRL can be adjusted to estimate an acute oral RfD that would be realistic while remaining suitably conservative. A summary intermediate and chronic exposure regimen, have here been used as a basis for deriving uncertainty factors by which the chronic RfD PCBs may be explored through the use of ATSDR's tabulated list of toxicological effects of PCBs in experimental studies (ATSDR, The potential for using time-weighting adjustments to chronic exposure rates to estimate acute dosimetry parameters for the 1993). Data on the NOAELs and LOAELs for broad categories of toxicological consequences of PCB challenge, via acute, of these data are provided in Table 2.

duration to acute exposures to be expressed, for both LOAELs and NOAELs. Of the 10 such factors that were derived in this analysis, values between 5.6-208.6 were obtained across all categories of response, though with an overall geometric mean of 20.28. Six of the Pooling the data for the toxic effects of PCB across animal models but within broadly-defined categories of toxicological response and exposure duration, has allowed the factors that link chronic to intermediate-duration exposures, and intermediate 10 factors were between 5-15.

Range and Geometric Means of NOAELs and LOAELs According to Toxicological Response Category Establishing Time-Weighting Factors for Similar Toxicological Responses Table 2.

Response Category	NOAEL (mg/kg-day)		Factor	LOAEL (mg/kg-day)		Factor
	Range	Geometric Mean		Range	Geometric Mean	
Lethality Acute	N/D	,		130-4250	1160	٠
Intermediate	N/D	1	•	1.9-840	17.2	67.5
Сһтопіс	N/D	•	•	2.5*	•	•
Systemic Acute	0.5-6000	116.8	•	1-4000	27.2	
Intermediate	0.05-100	4.7	24.85	0.09-100	3.6	7.6
Chronic	0.08-5	0 84	5.6	01-10	0.38	9.5
Neurological Acute	Q/N	ı		200-6000	1957	•
	-					

DRAFT - Do not cite or quote. For internal use only.

Intermediate	N/D	,		08*	1	•
Chronic	N/D		•	N/D		
Developmental Acute	2-100	126	,	4-244	34.8	
Intermediate	0.13-12.5	1.46	8.63	0.1-35.4	3.34	10.4
Chronic	0.007-0.008	0 007	208.6	0.03-0.1	0.053	63.0
Reproductive Acute	**	•	,	8-32	91	1
Intermediate	0.1-1.25	0.29	•	0.1-30	1.09	14.7
Chronic	N/D	•		0.1*	ı	•
Immunological Acute	N/D			N/D		
Intermediate	0.1-1	0.27		0.4-22	2.9	
Chronic	Q/N	•		0.005*#	,	•
7 700: # "[ac ox ox o vas #	TOTAL TOTAL TOTAL	A THE CASE	4 F - (4 3 C 1 / C)	TOWNS CONTROL TO THE TOTAL TOTAL TO THE CONTROL TO THE CONTROL TO THE TOWN TOWN TO THE TOWN TO THE TOWN TO THE TOWN TO THE TOWN TO THE TOWN TOWN TO THE TOWN TO THE TOWN TOWN TO THE TOWN TOWN TO THE TOWN TOWN TO THE TOWN TOWN TO THE TOWN TOWN TO THE TOWN TOWN TO THE TOWN TOWN TO THE TOWN TOWN TOWN TO THE TOWN TOWN TOWN TOWN TO THE TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN	ATCTO 1000	

* single value only, # used by the IRIS and ATSDR compilers as the LOAEL for RfD (1254) and MRL (PCB) derivation Data taken from ATSDR, 1993.

DRAFT - Do not cite or quote. For internal use only.

As stated earlier, when quantitative toxicity benchmarks for chronic non-cancer toxicological endpoints such as the RfD and RfC are derived from studies of less than half of the animals normal lifespan (i.e., sub-chronic studies) a factor is usually applied to the NOAEL or LOAEL to take into account the less than lifetime exposure duration. Unless overwhelming evidence is available for its inapplicability, the value of 10 is normally chosen for this transposition by default. In the above analysis of the relationship between threshold and sub-threshold dose levels for toxic response categories elicited by PCBs for different exposure durations, a factor of 10 has emerged as an applicable and reasonably conservative chemical-specific estimate for the chronic to intermediate (sub-chronic) and intermediate to acute transitions.

Accordingly, if the value for the chronic oral RfD of 2E-5 mg/kg-day, specific for Aroclor 1254, is considered applicable to the class of PCBs as a whole, correcting this value by two uncertainty factors of 10 each, to address the chronic to sub-chronic and sub-chronic to acute dosing regimen transitions, will result in the increase in the chronic oral RfD by two orders of magnitude.

Therefore, the provisional acute oral RfD may be calculated, thus:

Provisional Acute RfD = RfD x UF = 2E-5 mg/kg-day x 100 = 2E-3 mg/kg-day.

Therefore, this value would constitute a guideline for any "one-hit" exposure scenario involving PCBs (e.g., through the consumption of contaminated food).

Inhalation Exposure

Neither the IRIS records for PCBs as a class, nor those for the individual Aroclors 1016, 1248 or 1254, contain verified chronic inhalation RfCs (U.S. EPA, 1998). Therefore, in contrast to the provisional acute oral RfD, deriving an acute inhalation RfC for the PCBs cannot use such verified quantitative toxicity benchmarks as the point-of-departure. However, a range of recommended and/or permitted air concentration values has been established for the PCBs by agencies and professional organizations that establish guidelines and permitted levels of the compounds in the workplace (ACGIH, 1996; NIOSH, 1994). Since these are time-weighted average values, deriving an acute inhalation RfC might be dependent on proportioning the starting limit or guideline by factors expressing the differences between the assumed and chosen exposure scenario.

As listed in Table 3, a number of guidelines and standards are available for the concentration of PCBs in air.

Table 3. Existing Guidelines and Limits for Levels of PCB in Air in the Workplace

	C	Va
ACGIH (TWA-TLV)	A	
ACGIH (TWA-TLV)	Aı	
NIOSH (REL)	A	-
NIOSH (REL)	A	
NIOSH (IDLH)	A	
NIOSH (IDLH)	A	
OSHA (PEL)	A	
OSHA (PEL)	A	

data taken from NIOSH. (1994) and ACGIH (1996).

As noted in NIOSH (1994), RELs are time-weighted average concentrations appropriate to a 10-hour work day during a 40-hour work week. By contrast, IDLHs have been established based on the effects that might occur as a result of a 30-minute exposure. These concentrations (i.e., IDLHs) are considered to represent the level of exposure that is likely to cause death or immediate or delayed permanent adverse health effects.

This analysis uses the NIOSH REL of 0.001 mg/m³ as a conservative estimate of the concentration of PCBs in air that might be expected to be without significant health consequences during exposure throughout the work-week. Since the RELs are time-weighted average values, this concentration can be adjusted by factors that address the likely scenarios that would constitute "real-world" instances of acute exposure. For example, if it is assumed that a receptor is in the vicinity of a point-source emitter of PCBs, such as a low temperature thermal desorption unit treating contaminated soil, an acute toxicity value could be calculated from the REL by simple proportionality based on the different times of exposure. Thus, if the duration of exposure were assumed to be two hours, an acute toxicity value could be derived by time-weighting the NIOSH REL to model the appropriate time interval.

Therefore, using the NIOSH REL as a starting point:

A recommended air concentration limit for PCBs per hour is

 $0.001 \times 40 = 0.04 \text{ mg/m}^3$

For a two hour exposure, the TWA exposure limit for provisional acute toxicity would be $0.04/2 = 0.02 \text{ mg/m}^3$.

Dermal Exposure

Estimating an acute dermal RfD uses the acute oral RfD derived in this issue paper, and transposes the *administered* dose to an *internalized* dose by the application of an oral absorption factor. This will constitute the sub-threshold *internalized* dose for toxic effects irrespective of the route of administration. Thereafter, if the dermal absorption factor arising from acute exposure is known or can be calculated, an acute dermal *administered* dose may be derived by simple proportionality. A potentially toxic amount (action level) of PCBs can be calculated using default or known values for the body weight of the receptor, if based on a discrete exposure scenario (e.g., exposure to electricity company workers inspecting leaking transformers).

ATSDR (1993; 1997) discusses a number of reports in which the toxicokinetics of PCBs have been investigated, and notes a number of values that have been calculated for the absorption of PCBs via the oral route. Depending on the experimental animal model and level of chlorination of the congeners that were employed in the studies, values from 75-95% have been derived for the percentage of the load that was internalized. In addition, Wester et al. (1990; 1993) have described a number of experiments in Rhesus monkeys in which the dermal absorption of a xenobiotic could be determined in experiments that compared the relative proportions of radiolabeled PCBs that could be collected from the urine compared with the amount resulting from intravenous injection. Depending on the vehicle employed to apply the compound to the skin (such as trichlorobenzene, mineral oil, or acetone), percentages of between 10-21% of the load were absorbed.

Therefore, in this provisional derivation, oral and dermal absorption factors of 0.95 and 0.15, respectively, have been assumed for PCBs.

Therefore, using the calculated acute oral RfD as the point-of-departure, the *internalized* acute oral RfD would approximate to:

 $2E-3 \times 0.95 = 1.9E-3 \text{ mg/kg-day}.$

This is assumed to be the *internalized* provisional acute oral RfD irrespective of the route of administration.

Assuming a dermal exposure factor for PCBs of 0.15 and back-calculating from the *internalized* RfD, the *applied* provisional acute dermal RfD would therefore be

1.9E-3/0.15 = 1.3E-2 mg/kg-day.

[It may be noted that, assuming an exposure scenario involving acute dermal exposure to an electric company employee (default body weight = 70 kg) in which the duration of exposure were sufficient for maximal skin penetration to be realized, a provisional acute **action level** of 1.3E-2 x 70 kg = 0.88 mg would result.]

Uncertainty

The degree of uncertainty associated with estimating acute toxicity values for the PCBs from quantitative toxicity benchmarks for chronic toxicity is focused on the applicability of the uncertainty factors used in the time-weighting adjustments. In this derivation, the challenge has been to establish a balance between the range of potential uncertainty factors that might be available for the time-weighting transpositions and the need to remain reasonably conservative to "protect" potential receptors to the PCBs. Expressing the central tendency as a geometric mean has removed the expected dominance that would have been imposed by the extreme values in the range, and has generated an overall estimate of 20.28. Since 6 of the 10 values contributing to this estimate were between 5 and 15, these values, taken together, were considered to be sufficiently close to the default time-weighting uncertainty factor of 10 typically used in RfD/RfC derivations, thereby justifying its application to the derivations described in this issue paper. However, since the verified chronic oral RfD was calculated from one of the very few immunological studies in the data set, uncertainty remains as to whether the factor of 10-fold adjustment for that particular response would be the most applicable to the chronic-intermediate-acute toxicity extrapolation.

The primary contributor to the uncertainty bounding the acute inhalation RfC would be the arbitrary choice of the NIOSH REL as the guideline employed for the starting point in the calculation. This is because the REL is only one of the range of limits and guidelines that are available as potentially protective to human health, as listed in Table 3. Choosing the NIOSH REL of 0.001 mg/m³ represents a deliberately conservative choice that has the potential to force an acute inhalation RfC that would be unrealistically low.

The limited suite of dermal and oral toxicokinetic data that attest to the absorption of the PCBs provide estimates of the factor of an administered load that can be absorbed. For oral exposure, these estimates range from 75 to 95%, suggesting that first pass metabolism of the compounds at the liver is minimal. This conflicts with data that is summarized in ATSDR

(1993; 1997) that point to the liver as one of the key target organs for the compounds. In seeking to provide an empirical assessment of the quantitative dermal toxicity of the PCBs, this anomaly has not been considered further. Similarly, data suggesting that the rates of dermal penetration of the different congeners may differ markedly have not been further considered in this analysis (Garner and Matthews, 1998). Perhaps the largest sources of uncertainty bounding the dermal toxicity estimate are (1) the uncertainty surrounding the question of whether the skin of a Rhesus monkey resembles human skin, and (2) the necessity of assuming an unlikely exposure scenario in which a receptor would allow the contaminant to remain on the skin surface for sufficient time for maximal penetration to occur. In the real-world, any such contact would probably be removed within a short space of time.

It may be noted that, as set forth in the preceding paragraphs, each of the acute toxicity estimates is beset with considerable uncertainty, constituting an amalgam of semi-realistic exposure assumptions and the all-pervasive requirement to remain conservative in assessments where human health may be impacted. Accordingly, for all three provisional acute toxicity estimates, low confidence is assigned.

RISK CHARACTERIZATION

Cancer Hazard Summary PCBs are *likely* to be human carcinogen (U.S. EPA, 1996) based on sufficient evidence of tumor formation in a number of authoritative studies in laboratory animals, that have been summarized on IRIS (U.S. EPA, 1998). Though a number of cohort studies involving potentially occupationally exposed persons have failed to provide conclusive evidence of human carcinogenicity, the observation of dose and time-dependent tumor formation in a number of target organs and sites in various strains of rats, provide sufficient justification for the conclusion of carcinogenicity, even in the absence of appropriate data in human beings.

Supporting Evidence

Human Data. The IRIS record for the PCBs documents a number of cohort studies in which employees of companies making capacitors and other electrical equipment were followed-up, in an effort to forge the link between exposure to PCBs and cancer mortality. In general, there was an absence of exposure-related trends, though, in many cases, small sample sizes and brief follow-up periods reduced confidence in any overall conclusions that could be derived (U.S. EPA, 1998).

Animal Data. A number of experimental studies point strongly to the carcinogenicity of the PCBs. As summarized on IRIS, though the studies have been confined to a number of strains of rat, a range of tumor sites were observed, with associated dose and time-dependent relationships being apparent (U.S. EPA, 1998).

488 768

Mutagenicity. As tabulated in ATSDR (1993; 1997), the overwhelming majority of studies of the mutagenicity and genotoxicity of the PCBs have provided negative data. For example, all available reports point to the compounds' inability to induce gene reversion in the Ames test.

Mode of Action

The mechanism of cancer induction by PCBs is not well-understood, although the subject has been extensively studied (ATSDR, 1993; 1997). Among the biochemical triggers that have been invoked to explain the tumorigenic responses are, (1) PCB binding to the Ah receptor, and (2) induction of cytochrome P-450-dependent monooxygenases. However, the etiological significance of these activities remains obscure.

Discussion

The marked incidence of positive carcinogenic effects of the PCBs in experimental animals allows the compound to be ascribed to the *likely* carcinogenic weight-of-evidence category with reasonably high confidence. This is because the authoritative nature of the available studies transcends the insufficient human exposure data that, to this point, have failed to bring adequate statistical power to their analyses. Occupational exposure studies are also confounded by the difficulty of unequivocally defining the source term. Few mechanistic data exist on the mechanism whereby PCBs bring about their toxic effects. The compound does not appear to be mutagenic (ATSDR, 1993).

BRIEFING SUMMARY

		<u>Designation</u>	
Route	<u>Class</u>	<u>or Rationale</u>	Dose Response
Oral	Likely	High end	Linear extrapolation
	•	•	below LED ₁₀ s (U.S.
			EPA, 1996)

Basis for Classification/Dose Response

- Human Data: Most of the cohort/occupational exposure data on human exposure to PCBs are inconclusive.
- Animal Data: The PCBs have been shown to induce tumors in rats at a range of target organs and sites.
- Structural Analog Data: Structural analogies have been drawn between the PCBs and dioxins, which themselves are well-known carcinogens in experimental animals. As

noted by ATSDR, polybrominated biphenyls (PBBs) have been shown to be carcinogenic in animal studies (ATSDR, 1993; 1997).

Other Key Information: None.

Mode of Action: No data.

- Hazard Classification/Uncertainties: High confidence is ascribed to the carcinogenic weight-of-evidence classification, despite the absence of evidence of cancer induction in human beings or in a second experimental animal model. Similarly, the lack of information on the tumorigenic mechanism of the PCBs constitutes a residual source of uncertainty.
- **Dose Response:** Linearity has been assumed below the LED₁₀ (U.S. EPA, 1998).

REFERENCES

ACGIH (American Conference of Government Industrial Hygienists). 1996. 1996 Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. ACGIH, Cincinnati, OH.

ATSDR (Agency for Toxic Substances and Disease Registry). 1993. Toxicological Profile for Selected PCBs (Aroclor -1260, 1254, -1248, -1242, -1232, -1221, and -1016). U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry, Atlanta, GA.

ATSDR (Agency for Toxic Substances and Disease Registry). 1997. Toxicological Profile for Polychlorinated Biphenyls (Update). U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry, Atlanta, GA.

Garner, C.E. and H.B. Matthews. 1998. The effect of chlorine substitution on the dermal absorption of polychlorinated biphenyls. Toxicol. Appl. Pharmacol. 149: 150-158.

NIOSH (National Institute for Occupational Safety and Health). 1994. Pocket Guide to Chemical Hazards. U.S. Department of Health and Human Services, Washington, DC.

U.S. EPA. 1880. Ambient Water Quality Criteria for Polychlorinated Biphenyls (PCBs). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and

- Assessment Office, Cincinnati, OH for the Office of Water Regulations and Standards Division, Washington, DC. EPA 440/5-80-069. PB81-117798/AS.
- U.S. EPA. 1984a. Drinking Water Criteria Document for Polychlorinated Biphenyls (PCBs). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. EPA 600/X-84/198. PB86-118312/AS.
- U.S. EPA. 1984b. Health Effects Assessment for Polychlorinated Biphenyls (PCBs). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Sold Waste and Emergency Response, Washington, DC. EPA/540/1-86-004. PB86-134152/AS.
- U.S. EPA. 1986. Polychlorinated Biphenyls: Development of Advisory Levels for Environmental Cleanup. Prepared by the Exposure Assessment Group for the Office of Sold Waste and Emergency Response, Washington, DC. EPA 600/6-86/002. PB86-232774/AS.
- U.S. EPA. 1988. Drinking Water Criteria Document for the Polychlorinated biphenyls (PCB). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Drinking Water, Washington, DC. EPA 600/X-86/306-2. PB89-192256/AS.
- U.S. EPA. 1989. Reportable Quantity Document for Polychlorinated biphenyls (PCB). Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC. 600/8-91/174. PB93-196574.
- U.S. EPA. 1991. Polychlorinated Biphenyls (PCB): Workshop Report on Toxicity Equivalency Factors for PCB Congeners. Prepared by the Risk Assessment Forum for the Office of the Assistant Administrator for Research and Development, Washington, DC. EPA 625/3-91/020. PB92-114529/AS.
- U.S. EPA. 1994. Chemical Assessments and Related Activities (CARA). Office of Health and Environmental Assessment, Washington, DC.
- U.S. EPA. 1996. Proposed Guidelines for Carcinogenic Risk Assessment. Federal Register. 61: 17960-18011.
- U.S. EPA. 1997. Health Effects Assessment Summary Tables. Annual FY- 1997. Office of Solid Waste and Emergency Response, Office of Emergency and Remedial Response, Washington, DC.

U.S. EPA. 1998. Integrated Risk Information System. Online. Office of Health and Environmental Assessment, National Center for Environmental Assessment, Washington, DC.

Wester, R.C., H.I. Maibach, D.A.W. Bucks, et al. 1990. Percutaneous absorption and skin decontamination of PCBs: In vitro studies with human skin and in vivo studies in the Rhesus monkey. J. Toxicol. Environ. Health. 31: 235-246.

Wester, R.C., H.I. Maibach, L. Sedik, J. Melendres and M. Wade. 1993. Percutaneous absorption of PCBs from soil: In vivo Rhesus monkey, in vitro human skin, and binding to powdered human stratum corneum. J. Toxicol. Environ. Health. 39: 375-382.

1

Risk Assessment Issue Paper for: Carcinogenicity Information for Tetrachloroethylene (perchloroethylene, PERC) (CASRN 127-18-4)

The carcinogenicity characterization has a long history. A July 1985 Health Assessment Document for Tetrachloroethylene (Perchloroethylene), EPA # 600/8-82/005F, classified the agent in Weight-of-Evidence Group "C - Possible Human Carcinogen" mentioning that this would be reevaluated because of new information. The 1985 document also provided upper bound inhalation and oral risk estimates. An April 1987 Addendum to the Health Assessment Document, EPA# 600/8-82/005FA, proposed that the Weight-of-Evidence be upgraded to "B2 - Probable Human Carcinogen" and provided a revised inhalation risk estimate. A February 1991 document titled Response to Issues and Data Submissions on the Carcinogenicity of Tetrachloroethylene, EPA# 600/6-91/002A discussed newer data relative to weight-of-evidence classification. The Agency's Science Advisory Board has reviewed these documents finding them to be technically adequate while offering an opinion that the weight-of-evidence is on C-B2 continuum (C=Possible Human Carcinogen, B2=Probable Human Carcinogen). At present time, the Agency has not adopted a final position on the weight-of-evidence classification.

The upper bound risk estimates from the 1985 Health Assessment Document as amended by updated inhalation values from the 1987 Addendum have not as yet been verified by the IRIS-CRAVE Workgroup. The estimates are viewed as useful information in the context of the information available in the 1985-1987 period.

ORAL: 1985 HAD; Unit risk = 1.5E-6 per ug/L

Slope Factor = 5.2E-2 per mg/kg/day

INHALATION: 1987 Addendum; Unit risk = range form 2.9E-7 to 9.5E-7 with a geometric

mean of 5.8E-7 per ug/cu.m

Slope factor = 2.0E-3 per mg/kg/day

Those needing to make a choice about carcinogenicity have found the 1985, 1987 and 1991 EPA documents and the 1988 and 1991 Science Advisory Board letters of advice useful background information. When the Agency makes a decision about weight-of-evidence, the CRAVE-IRIS verification will be completed and the information put on IRIS.

Attachment 8

(97-013b / 06-20-97)

Risk Assessment Issue Paper for: Derivation of Provisional RfC for Tetrachloroethylene (CASRN 127-18-4)

INTRODUCTION

An RfC for tetrachloroethylene is not available on IRIS (U.S. EPA, 1997) or HEAST (U.S. EPA, 1995a), and has not been discussed by the RfD/RfC Work Group (U.S. EPA, 1995b). An RfD of 1E-2 mg/kg-day for tetrachloroethylene is listed on IRIS (U.S. EPA, 1997). This RfD is based on NOAEL for hepatotoxicity in mice and weight gain in rats. ACGIH (1996) has established a TWA-TLV of 25 ppm and a STEL/Ceiling limit of 100 ppm for tetrachloroethylene; this chemical was classified as an animal carcinogen by ACGIH. OSHA (1989) determined that tetrachloroethylene is a potential human carcinogen and established a PEL of 25 ppm.

Documents listed in the CARA database (U.S. EPA, 1991, 1994a) include a HEA (U.S. EPA, 1988a) and HADs (U.S. EPA, 1982, 1983, 1985b, 1986). In addition, ATSDR has prepared a toxicological profile on tetrachloroethylene (ATSDR, 1995). In this document, ATSDR derived an acute inhalation MRL of 0.2 ppm and a chronic inhalation MRL of 0.04 ppm. The acute MRL was based on a NOAEL and LOAEL of 10 and 50 ppm, respectively, for increased latency of visual-evoked potentials in humans exposed to tetrachloroethylene 4 hours/day for 4 days (Altmann et al., 1990). The chronic MRL was based on a LOAEL of 15 ppm for increased reaction time in workers (Ferroni et al., 1992).

To identify research reports pertinent to the derivation of a provisional RfC for tetrachloroethylene, U.S. EPA and ATSDR documents (as cited above) were reviewed. In addition, a literature search was conducted in 1993 and updated in June 1997 and included TOXLINE (1985-June 1997), MEDLINE (1985-1993), DART (1985- June, 1997), RTECS, HSDB, ETIC (1985-1993), and TSCATS.

REVIEW OF PERTINENT LITERATURE

Human Studies

Tetrachloroethylene is widely used for dry cleaning fabrics and for metal-degreasing operations (ATSDR, 1995). Various symptoms have been reported by individuals exposed acutely to tetrachloroethylene vapors, including irritation of mucosa (eyes, upper respiratory

tract), gastrointestinal distress, alteration of liver and kidney function parameters, and central nervous system (CNS) effects (fatigue, dizziness, weakness, headache, memory loss, behavioral changes, EEG disturbances) (Carpenter, 1937; Freed and Kandel, 1988; Hake and Stewart, 1977; Rowe et al., 1952; Coler and Rossmiller, 1953; Stewart et al., 1970). Acute exposures to high concentrations of tetrachloroethylene also resulted in anesthesia (ATSDR, 1995).

Following prolonged exposures, the brain, liver, and kidney have been reported as the major target organs in humans. This is based on the results of a number of occupational studies on workers in the dry cleaning industry. A common limitation of these studies is inadequate monitoring data; in particular, only current levels were measured. Decreases in occupational standards, as well as technological improvements in local exhaust ventilation and equipment have resulted in decreases in exposure concentrations.

Brodkin et al. (1995) investigated the hepatotoxicity of tetrachloroethylene in a group of 29 dry cleaning workers (17 males and 12 females). A group of 29 laundry workers (14 males and 15 females) served as controls; none of the laundry workers reported exposure to tetrachloroethylene or other solvents. Mean age (dry cleaning workers were 46 years of age versus 38 years of age for the laundry workers), and duration of employment (20 years versus 5 years) were the only two demographic characteristics that were significantly different between the two groups. Current tetrachloroethylene levels were assessed with personal monitoring devices worn by 19 dry cleaning workers during one full work shift within 8 weeks of the clinical chemistry and ultrasound determinations. The mean 8-hour TWA concentration of tetrachloroethylene was 15.8 ppm (107 mg/m³; range of 0.4 to 83 ppm). Subjects with active hepatitis were excluded from some analyses of hepatotoxicity; the incidence of active hepatitis was similar for both groups. Although the prevalence of workers with abnormal serum alanine aminotransferase, aspartate aminotransferase, and γ -glutamyltransferase was higher in the dry cleaning workers, the difference was not statistically significant. Additionally, there were no differences in the mean levels of these serum enzymes, or total and direct bilirubin, alkaline phosphatase, or glucose levels. The prevalence of mild or moderate-to-severe hepatic alterations, as detected by ultrasonography, was significantly higher in the dry cleaning workers (18/27, 67%) than in the laundry workers (10/26, 38%). The largest difference between the two groups was in the number of workers with mild hepatic parenchymal changes (13/27 dry cleaning workers versus 4/26 laundry workers); the prevalence of moderate-to-severe changes was similar between the two groups (5/27 versus 6/26). The investigators suggested that the observed sonographic changes may be indicative of steatosis. Significant exposure-response trends were observed when the workers were dichotomized relative to measures of either subacute (low exposure: workers using dry-to-dry equipment installed in the last 3 years, high exposure: workers using wet transfer equipment or dry-to-dry equipment that was installed >3 years ago), current [low exposure: workers with current 8-hour TWA concentration of < 15 ppm (12) workers), high exposure: >15 ppm (5 workers)], or cumulative [estimated by multiplying duration of employment by the number of years spent in wet transfer (higher potential exposure to tetrachloroethylene, weighting factor of 1.0) or in dry operations (weighting factor of 0.5); low

exposure: workers with <10 years employment, high exposure: ≥10 years] exposure. Overall exposure to tetrachloroethylene was associated with an increased risk of hepatic parenchymal changes (odds ratio of 3.2, 95% confidence interval of 1.04-9.8). Statistically significant odds ratios were also found in high exposure workers when subacute exposure (4.2, 95% confidence interval of 1.1-15.3), or cumulative exposure (4.0, 1.0-16.3) parameters were used to dichotomize the dry cleaning workers. When the odds ratios were adjusted for age, alcohol consumption, body mass index, sex, and serological evidence of active or previous hepatitis, they were no longer statistically significant. The results of this study suggest that exposure to relatively low concentrations of tetrachloroethylene is associated with mild parenchymal changes in the liver, without changes in serum biomarkers of liver function.

Lauwerys et al. (1983) studied workers (2 male, 24 females; average age of 32.9 years) employed in 6 dry cleaning shops in Belgium. The TWA exposure to tetrachloroethylene was 20.8 ppm (141 mg/m³; range of 8.9-37.5 ppm) with a mean exposure duration of 6.4 years (0.1-25 years). Tetrachloroethylene levels were measured in exhaled breath and blood before work and 30 minutes after work; the levels were 1.9 ppm (0.1-5.5 ppm) and 5.1 ppm (0.2-10 ppm) in exhaled breath, respectively, and 0.4 mg/L (0.1-0.8 mg/L) and 1.2 mg/L (0.4-3.1 mg/L) for blood. A group of 33 individuals (2 males, 31 females) working in a chocolate factory or occupational health service without a history of occupational exposure to organic solvents represented the control group and was matched with the exposed group for gender, age, and educational level. Although no significant differences were found in subjective symptoms of nervous system disease, the exposed group had a higher prevalence of most symptoms, in particular memory loss (7/26 vs. 3/33 in controls) and difficulty in falling asleep (11/26 vs. 6/33 in controls). Psychomotor performance tests were conducted before work and after work. For the critical flicker fusion and simple reaction time tests, the performance of the exposed group was better (p<0.05) than that of the control group. No significant alterations in the 9-choice visual reaction time or sustained attention tests were observed. The levels of urine albumin, β₂-microglobulin, and retinol binding protein and serum β_2 -microglobulin, aspartate aminotransferase, γ glutamyltransferase, and creatine kinase were not statistically different. Thus, this study found no significant alterations in serum and urine biomarkers of liver and kidney disease, but did find alterations in some tests of neurobehavioral performance in dry cleaning workers with current exposure levels of approximately 21 ppm.

Mutti et al. (1992) assessed renal function in 9 men and 41 women (average age of 41 years) exposed to tetrachloroethylene in dry cleaning shops for an average of 10 years. The median concentration of tetrachloroethylene measured in 4-hour air samples was 14.8 ppm (100 mg/m³; ranging from trace amounts to 85 ppm); the air samples were randomly collected via personal passive samplers over a working week. Blood tetrachloroethylene levels (blood samples were collected during the working day) ranged from 9-900 μg/L (median of 143 μg/L). The controls consisted of 50 blood donors matched by age, gender, tobacco, alcohol, and drug consumption with the exposed workers. A number of serum and urine biomarkers of renal toxicity were measured in both groups. Urinary albumin, transferrin, brush-border antigens

BBA, BB50, and HF5, tissue non-specific alkaline phosphatase, and fibronectin, as well as serum anti-glomerular basement membrane antibodies and laminin fragments, were significantly increased in the exposed group compared to controls. Furthermore, the frequencies of abnormal values for urinary albumin, retinol binding protein, β₂-microglobulin, transferrin, IgG, Tamm-Horsfall glycoprotein, glycosaminoglycans, and antigens BBA and HF5 and serum laminin fragments were significantly greater in the exposed group compared to controls. The investigators noted that these changes in renal biomarkers were suggestive of diffuse structural and functional changes resulting from generalized membrane disturbances within the kidney. In addition, 13/50 dry cleaning workers had 3 or more biomarker abnormalities compared to 3/50 controls. For the most part, tetrachloroethylene exposure duration or blood tetrachloroethylene levels did not correlate with biomarker concentrations. The significance of the changes in renal toxicity biomarkers cannot be readily assessed. Although the results indicate that there is a higher incidence of positive biomarkers for kidney disease in dry cleaning workers, the adversity of the changes and the relationship between the magnitude of changes and exposure to tetrachloroethylene is not known.

Vyskocil et al. (1990) examined the effect of tetrachloroethylene exposure on kidney function in 16 female workers (average age of 42 years) employed at one of five dry cleaning shops for an average of 9 years (1-18 years). Air tetrachloroethylene levels were measured 1 day/week (on third or fourth day of week) for 1 year using personal monitoring devices; the mean concentration was 157 mg/m³ (23 ppm, range of 9–799 mg/m³). In three of the dry cleaning shops, 20-80% of the individual values were greater than 250 mg/m³ (37 ppm). A control group of 13 women with administrative jobs and no known exposure to organic solvent was used; the groups were matched for age, employment duration, smoking habit, and alcohol and analgesic consumption. Urinary biomarkers of kidney function were measured in urine samples collected at the end of the working day. Lysozyme levels in the urine were significantly increased (p<0.05) in the exposed workers compared to controls, but urinary excretion of albumin, β_2 -microglobulin, lactate dehydrogenase, or total protein was not affected. The prevalences of abnormal values for the urinary parameters were not statistically different between the groups, and no significant correlations between tetrachloroethylene exposure concentration and the biomarker concentration were found. The investigators concluded that it was difficult to interpret the effect (lysozymuria) as a result of tetrachloroethylene-induced tubular damage because the other sensitive markers of tubular dysfunction were normal.

In a cross-sectional study by Franchini et al. (1983), 57 workers (mostly females; average age of 43 years) employed in dry cleaning shops for an average of 13.9 years were examined for possible kidney damage. Air sampling data were not available; however, the investigators estimated that the workers were exposed to a TWA concentration of 10 ppm tetrachloroethylene (68 mg/m³) based on the mean concentration of trichloroacetic acid excreted in urine (7.8 mg/g creatinine). There were two control groups (80 and 81 unexposed individuals) that were not matched (by age or gender) to the exposed group. Significantly altered renal function parameters (increased β -glucuronidase and lysozymuria) were reported. The investigators noted that these

alterations were suggestive of mild renal tubule damage. No alterations in the other kidney disease biomarkers (total protein or albumin excretion) were observed.

Cai et al. (1991) evaluated subjective symptoms, hematology, and serum biomarkers of liver and kidney effects in 56 tetrachloroethylene-exposed workers (29 men, 27 women; average age of 35 years) from 3 dry cleaning shops who were employed for an average of 36.3 months (1–120 months). The geometric mean exposure concentration was 19.9 ppm tetrachloroethylene (134 mg/m³; range of 3.8–94.4 ppm). The control group consisted of 69 workers (32 men, 37 women) with no solvent exposures. The subjects were interviewed regarding symptoms that occurred during work and symptoms that occurred in the past 3-month period. The exposed workers reported significant increases in the prevalence of subjective symptoms at work, including nasal irritation (28.6 vs. 7.2%), dizziness (44.6 vs. 11.6%), floating sensation (23.2 vs. 5.8%), drunken feeling (17.9 vs. 0%), and heavy feeling in head (19.6 vs. 1.4%). Significant increases in a number of subjective symptoms occurring during the last 3 months were also observed; these included heavy feeling in head, drunken feeling, forgetfulness, fainting after rapidly standing up, rough skin, joint pain, and frequent cough. The subjects were also examined for alterations in hematology (hemoglobin, white cell count) and liver and kidney function indicators (alanine aminotransferase, aspartate aminotransferase, γ-glutamyltransferase, alkaline phosphatase, LAP, total bilirubin, BUN, and creatinine), but no differences were found between the control and exposed groups.

Ferroni et al. (1992) performed neurobehavioral tests on 60 female dry cleaning shop workers (average age of 39.7 years) exposed to tetrachloroethylene for 10.1 years. The median exposure concentration was 15 ppm (102 mg/m³; range of 1–67 ppm); air samples were collected during various 4-hour periods over a working week, and tetrachloroethylene blood levels (blood samples evenly collected during the day) ranged from 12-86 mg/L (median of 145 mg/L). The control group of 30 women, recruited in an industrial cleaning plant where solvents were never used, was matched to the exposed group for age, gender, and vocabulary test score. The study demonstrated that the reaction times (assessed using simple reaction time, shape comparison, and finger tapping tests) were prolonged in the exposed group compared to the controls. Also, the exposed workers exhibited significantly higher basal levels of serum prolactin compared to their matched controls during the proliferative phase of the menstrual cycle, suggesting that tetrachloroethylene may cause neuroendocrine effects. The investigators reported that there was a lack of correlation between the neurobehavioral performance test scores and the exposure concentrations or the duration of exposure, and no correlation was seen between the increased prolactin levels and the exposure variables.

Echeverria et al. (1995) examined the effect of tetrachloroethylene on neurobehavioral performance in 65 workers employed at 23 dry cleaning shops. Based on job titles, the workers were divided into 3 groups: low, moderate, and high exposure. In 19 of the shops, tetrachloroethylene exposure concentrations were measured in single 15-minute air samples collected in the breathing zone of a clerk, pressor, and operator. Tetrachloroethylene was also

measured in breath samples from each worker. In the shops which used a wet-transfer method, the mean tetrachloroethylene levels measured in the air samples were 0.61, 12.1, and 41.8 ppm (4.1, 82.1, 283.5 mg/m³) for the low, moderate, and high exposure groups. Based on the low levels of tetrachloroethylene measured in the air samples of shops using a dry-to-dry transfer method, all of the workers at these shops were placed in the low-exposure group (actual mean concentrations were 0.0, 4.3, and 11.4 ppm). Cumulative exposure was estimated by multiplying the exposure concentration associated with each job title by the duration of employment. Breath sample collection, administration of neurobehavioral performance tests, and completion of a medical, symptom, work history, and hobby questionnaire were performed in the afternoon after work. Regression analysis of performance scores in the visual reproduction, pattern memory, and pattern recognition tests revealed significant concentration-response relationships. After adjustment for potential confounding influence of age, education, vocabulary, and alcohol consumption, statistically significant associations between cumulative exposure and performance on the visual reproduction, pattern memory, and pattern recognition tests were found. The differences between the test scores in the low-exposure group and those in the high-exposure group were 14.4, 6.7-10.0, and 3.9% for the visual reproductions, pattern memory, and pattern recognition tests, respectively. Performance on the trailmaking, symbol-digit matching, and digit span tests was not affected by tetrachloroethylene exposure. No association between current exposure levels and neurobehavioral performance was found. Dizziness from rapidly standing up and "solvent-related dizziness" were the only subjective symptoms that increased with tetrachloroethylene exposure. Although the incidence of dizziness increased with increasing exposure levels, the magnitude of the increase was small. The results of these studies suggest that chronic exposure to low levels of tetrachloroethylene can result in subclinical impairment in short-term memory for visually-mediated functions.

Seeber (1989) conducted a battery of psychological tests and questionnaires on 101 dry cleaning workers exposed to a TWA tetrachloroethylene concentration of 83.4 mg/m³ (12.3 ppm; 7 males, 50 females; average exposure duration of 141.2 months) or 363.8 mg/m³ (53.6 ppm; 5 males, 39 females; average exposure duration of 127.1 months). The control group consisted of 84 (20 males, 64 females) department store sales personnel and hotel receptionists presumably with no exposure to tetrachloroethylene. Differences in age, gender, intellectual level, and daily alcohol consumption between the groups were controlled during the statistical analyses. Significant alterations in tests of perceptual function, attention, and intellectual function were found in the two exposure groups as compared to controls. However, no significant differences were seen in the psychological tests between the two exposure groups, indicating a lack of a concentration-response trend. The study did not attempt to correlate the measured parameters with individual exposure concentrations.

Several investigators have attempted to evaluate the effects of tetrachloroethylene exposure on reproductive outcomes in humans. The results of these studies suggest potential reproductive effects; however, they were limited due to insufficient exposure data.

Eskenazi et al. (1991a) determined the effects of tetrachloroethylene exposure on semen quality. In a comparison of 34 dry cleaning workers with 48 laundry workers, the overall percentage of abnormal sperm was similar for the two groups and was, by standard clinical measurements, within normal limits. However, the sperm of dry cleaning workers was significantly more likely to be round and less likely to be narrow than the sperm of laundry workers; these effects correlated with expired air levels in the workers. Although the percentage of motile sperm did not differ between the groups, the sperm of dry cleaning workers tended to swim with greater amplitude of lateral head displacement (p<0.09); the level of tetrachloroethylene in expired air was a significant predictor of this effect.

In another study, Eskenazi et al. (1991b) examined reproductive outcomes of 17 wives of dry cleaning workers and 32 wives of laundry workers. A number of the wives (21.4% for dry cleaning group and 34.6% of the laundry group) also worked in the dry cleaning or laundry industry; the authors did not report whether these women were also exposed to tetrachloroethylene. The number of pregnancies and live births and the rates of spontaneous abortion were similar for the wives of dry cleaning workers as compared to the laundry workers' wives during a 2-year period. However, the wives of the dry cleaning workers were more than twice as likely to have a history of attempting to become pregnant for more than 12 months or to having sought care for an infertility problem (41.2% in the dry cleaning workers' wives versus 21.9% in laundry worker's wives); although the differences were not statistically significant (estimated rate ratio of 0.54, 95% confidence interval of 0.23-1.27). Hispanic ethnicity and smoking were the only variables that were significant predictors of increased length of time to conception. The dry cleaners had a lower percentage of Hispanic wives (64.3% versus 92.3%) and smokers (0% versus 23.1%) than in the laundry worker group. The authors noted that higher fertility rates are observed in Hispanic women, as compared to Black or Caucasian women, and that smoking may reduce fertility. Based on the study results, the lack of data for tetrachloroethylene exposure in the wives and the poor matching of the groups in terms of ethnicity and smoking preclude making definitive conclusions.

In a case control study, Kyyrönen et al. (1989) determined the effects of tetrachloroethylene exposure on the risk of spontaneous abortions and congenital malformations in female dry cleaning and laundry workers in Finland. Potential cases of women working in the dry cleaning and laundry industry during the first trimester of pregnancy were identified by linking several employment and medical registries. The 108 dry cleaning workers (39 cases of spontaneous abortion and 69 controls) were dichotomized based on exposure to tetrachloroethylene. High exposure was defined as work tasks which included dry cleaning for at least 1 hour/day on average, or handling tetrachloroethylene at least once per week (9 cases and 6 controls). Low exposure was defined as work tasks which included pressing, spot removing, or handling tetrachloroethylene less than once a week at a dry cleaning shop (8 cases and 23 controls). Apparently, the rest of the dry cleaning workers were not exposed to tetrachloroethylene or the exposure was not known. An increased odds ratio for spontaneous abortions was observed in workers with high exposure to tetrachloroethylene (odds ratio of 3.6,

95% confidence interval of 1.3-11.2, p<0.05). Use of multivariate analysis to adjust for frequency of alcohol consumption, heavy lifting and frequent use of solvents other than tetrachloroethylene, resulted in an adjusted odds ratio of 3.4 (95% confidence interval of 1.0-11.2, p<0.05) in the workers with high tetrachloroethylene exposure. Low exposure to tetrachloroethylene was not a significant risk factor for spontaneous abortion (odds ratio of 0.7). The occurrence of congenital malformations was examined in 26 women working in the dry cleaning industry (4 cases and 22 controls). No significant association between either high (0 cases and 1 control) or low (2 cases and 8 controls) exposure to tetrachloroethylene and increased risk of congenital malformations was found (odds ratio of 0.8, 95% confidence interval of 0.2-3.5). The authors did not discuss the comparison group used to calculate the odds ratios for spontaneous abortion or congenital malformations. Although there was a large number of cases and controls for the spontaneous abortion study, the number of cases and controls working in the dry cleaning industry with either high or low exposure to tetrachloroethylene was relatively small. Additionally, the number of cases and controls with tetrachloroethylene exposure for the congenital malformations study was inadequate. The small number of cases and controls limits the interpretation of these studies.

Sallmén et al. (1995) examined the relationship between time-to-pregnancy and exposure to tetrachloroethylene and other organic solvents. Time-to-pregnancy was assessed by asking the subject, via questionnaires, the number of menstrual cycles required to become pregnant. The workers were divided into two groups based on low (tetrachloroethylene handled less than once a week or 1-4 times per week with air concentration measurements to indicate low exposure) or high (handled tetrachloroethylene daily or 1-4 times per week with measurements to indicate high exposure) exposure to tetrachloroethylene. The incidence density ratio (0.44, 95% confidence interval of 0.22-0.86; adjusted for recent use of IUD/spermicides and age of menarche) was statistically lower in 11 female dry cleaning workers with low or high exposure to tetrachloroethylene as compared to non-exposed referents (sample size not reported). When the time-to-pregnancy in workers with high exposure (6 workers) was compared to the non-exposed referents, the adjusted incidence density ratio was not statistically significant (0.57, 0.24-1.34).

In a cohort study by Olsen et al. (1990), reproductive outcomes were evaluated in women employed in the dry cleaning industry in Sweden, Denmark, and Finland during the first trimester of pregnancy. Among Finnish workers with high exposure to tetrachloroethylene (women involved in dry cleaning or spot removal at least 1 hour/day), a significant increase in the risk of spontaneous abortions was found (relative risk of 4.53, 95% confidence interval of 1.11-18.5); the risk in women with low exposure to tetrachloroethylene was not significantly different from women with no exposure to tetrachloroethylene (relative risk of 1.18, 95% confidence interval of 0.71-1.97). The risk of spontaneous abortion was not increased in Swedish or Danish workers. The risk of congenital malformations was not significantly elevated in the workers exposed to tetrachloroethylene. Additionally, when all types of reproductive effects (i.e., spontaneous abortions, malformations, stillbirths, and low birth weights) were assessed, no significant increases in relative risk were observed in the Swedish, Danish, or Finnish cohorts.

Animal Studies

In a chronic study conducted by NTP (1986), groups of 50 male and 50 female Fischer 344 rats were exposed to 0, 200, or 400 ppm (0, 1357, and 2713 mg/m³) tetrachloroethylene 6 hours/day, 5 days/week for 103 weeks. Daily observations, survival, body weight measurements, necropsy and histopathological examination of major tissues and organs (including the nasal cavity, trachea, bronchi, and lungs) were used to assess toxicity. No unusual behaviors or alterations in body weight gain were observed in the tetrachloroethylene-exposed rats. A significant decrease in survival was observed in the males exposed to 400 ppm (38 deaths versus 27 in the controls and 30 in the 200 ppm group); survival was not affected in the females. The authors concluded that the increased mortality observed in the male rats during the latter portion of the study was due to the increased incidence of mononuclear cell leukemia. Statistically significant increases (P<0.05) in the incidence of several types of neoplasms, including mononuclear cell leukemia, renal tubular adenoma or adenocarcinoma (incidence was not statistically higher than controls, but this type of tumor is rarely observed and was considered toxicologically significant), interstitial cell tumors in the testes, and adenomas and carcinomas of the preputial gland were observed in the tetrachloroethylene-exposed rats. Non-neoplastic alterations were observed in the nasal cavity, kidney, adrenal gland, and forestomach; the incidences of these lesions are presented in Table 1. A significant increase in thrombosis in the nasal cavity was observed in male rats exposed to 400 ppm and female rats exposed to 200 or 400 ppm (9/50, 11/50, 19/50 in the 0, 200, and 400 ppm males and 3/50, 10.50, and 7/50, respectively, for the females). However, the investigators noted that the increased incidence of thrombosis was probably secondary to the mononuclear cell leukemia. Thus, this study identifies a LOAEL of 200 ppm (6 hours/day, 5 days/week) for squamous metaplasia in the nasal cavity, renal tubule cell karyomegaly, and adrenal medullary hyperplasia in rats exposed to tetrachloroethylene for 2 years; a NOAEL was not identified in this study.

Table 1. Incidence of non tetrachloroethylene 6 hour					00 ppm		
		Male rats			Female rats		
Effect	control	200 ppm	400 ppm	controls	200 ppm	400 ppm	
squamous metaplasia in nasal cavity	0/50	5/50*	5/50*	2/50	4/50	2/50	
renal tubule cell karyomegaly	1/49	37/49*	47/50*	0/50	8/49*	20/50*	
renal tubular cell hyperplasia	0/49	3/49	5/50*	0/50	0/49	1/50	

drenal medullary yperplasia	9/50	11/50*	19/50*	7/50	3/49	4/47
adrenal cortical hyperplasia	11/49	5/49	7/49	4/50	6/49	11/47*
forestomach ulcers	0/48	1/49	5/49*	3/49	4/49	0/48

NTP (1986) also exposed groups of B6C3F1 mice (50/sex/group) to 0, 100, or 200 ppm (0, 678, and 1357 mg/m³) tetrachloroethylene 6 hours/day, 5 days/week for 103 weeks. Statistically significant decreases in survival were observed in the male mice exposed to 100 (25/50) or 200 (32/50) ppm, as compared to controls (46/50), and in the female mice exposed to 200 ppm (36/50, 31/50, 17/50 in the 0, 100, and 200 ppm groups, respectively). The authors attributed the increased mortality to the high incidence of hepatocellular neoplasms. Body weights were comparable among the groups. Statistically significant increases in the incidence of hepatocellular adenomas in males and hepatocellular carcinomas in males and females were observed. Tetrachloroethylene exposure resulted in significant increases in the incidence of renal tubular karyomegaly, renal casts, hepatic degeneration (characterized by cytoplasmic vacuolation, hepatocellular necrosis, inflammatory cell infiltrates, increased pigmentation in cells, oval cell hyperplasia, and regenerative foci), hepatic necrosis, hepatic nuclear inclusion, and acute passive congestion in the lungs; the incidence data are presented in Table 2. This study identifies a LOAEL of 100 ppm (6 hours/day, 5 days/week) based on renal (karyomegaly and nephrosis), hepatic (degeneration, necrosis, and nuclear inclusions), and lung (congestion) effects in chronically exposed mice; a NOAEL was not identified.

Table 2. Incidence of no tetrachloroethylene 6 ho			_		200 ppm	
		Male mic	e	Female mice		
Effect	control	100 ppm	200 ppm	control	100 ppm	200 ppm
renal tubule cell karyomegaly	4/49	17/49*	46/50*	0/48	16/49*	38/50*
nephrosis	22/49	24/49	28/49	5/48	14/49*	25/50*
hepatic degeneration	2/49	8/49*	14/50*	1/49	2/50	13/50*
hepatic necrosis	1/49	6/49*	15/50*	3/48	5/50	9/50*

hepatic nuclear inclusions	2/49	5/49*	9/50*	inciden	ce not repor	rted
acute passive congestion in lungs	1/49	8/49*	10/50*	1/48	5/50	6/50
*incidence significantly di	fferent fro	om controls	(p<0.05)			•

In a subchronic study by NTP (1986), Fischer 344 rats (10/sex/group) inhaled 0, 100, 200, 400, 800, and 1600 ppm (0, 678, 1356, 2713, 5426, and 10851 mg/m³) tetrachloroethylene 6 hours/day, 5 days/week for 13 weeks. Death occurred in 40% of the males and 70% of the females in the 1600 ppm group (no deaths were observed in the other groups). Final mean body weights were 20% lower in the 1600 ppm males than in controls and 11% lower for females. A concentration-related increase in the incidence of hepatic congestion was exhibited in the rats. This effect was observed in the control rats (males: 1/10, 2/10, 3/10, 5/10, 7/10; females: 0/9, 1/10, 5/10, 5/10, 8/9). It was also evident in the 200, 400, 800, and 1600 ppm tetrachloroethylene exposed male and female populations. The 100 ppm exposed male and female groups were not examined for this effect. The degree of severity was also reported to be concentrated-related. Lung congestion developed in 14 of the 20 male and female rats exposed to 1600 ppm, but was not observed in any of the rats in the 800 ppm exposed group or in the controls. A NOAEL of 200 ppm and a LOAEL of 400 ppm based on the hepatic effect was determined in rats exposed to tetrachloroethylene 6 hours/day, 5 days/week for 13 weeks.

NTP (1986) also exposed B6C3F1 mice (10/sex/group) to the same concentrations and subchronic duration as the rats. Two males and 4 females in the 1600 ppm group died during the study; deaths were not observed in the other groups. Clinical signs in the exposed mice included a hunched appearance and lack of movement at 400 ppm, panting and irritation at 800 ppm, and incoordination and unconsciousness at 1600 ppm. Liver lesions (leukocytic infiltration, centrilobular necrosis, and bile stasis) developed in mice exposed to ≥400 ppm (males: 0/10, 0/10, 8/10, 10/10, 10/10 in the 0, 200, 400, 800, and 1600 ppm exposed groups; females: 0/10, 3/10, 5/10, 5/10, 1/10, in similarly exposed groups; livers were not examined in animals exposed to 100 ppm). The severity of the lesions increased with exposure concentration reaching mild severity at 1600 ppm. Mitotic alterations were also observed in the liver of male mice, although the incidence did not appear to be concentration-related. Karyomegaly of renal tubular epithelial cells was seen in mice exposed to 200 ppm or higher (males: 0/10, 0/10, 6/10, 10/10, 10/10, 7/7 in the 0, 100, 200, 400, 800, and 1600 ppm exposed groups respectively; females: 0/10, 0/10, 8/10, 10/10, and 6/7, exposed in similar groups respectively). The NOAEL is 100 ppm and the LOAEL is 200 ppm based on increased incidences of renal tubular cell karyomegaly in mice exposed to tetrachloroethylene 6 hours/day, 5 days/week for 13 weeks.

Kylin et al. (1965) reported on female mice (strain not identified) (20/group) inhaling 200 ppm (1356 mg/m³) tetrachloroethylene vapor 4 hours/day, 6 days/week for 1, 2, 4 or 8 weeks.

Only the liver and kidneys were examined. Compared to the controls, an increased incidence of fatty degeneration in the liver was observed in exposed animals, with greater severity at the longer exposure periods. A two-fold increase in liver fat was also reported in the exposed group. Kidney histopathology revealed no differences between the control and exposed groups. The LOAEL for the study was 200 ppm (4 hours/day, 6 days/week) based on hepatic effects in female mice exposed to 1-8 weeks.

Odum et al. (1988) exposed groups of Fischer 344 rats and B6C3F1 mice (5/sex/species/group) to 0, 200, or 400 ppm (1356 and 2713 mg/m³) tetrachloroethylene 6 hours/day for 14, 21, or 28 consecutive days. Small, but statistically significant increases in relative liver weights were observed in the male and female mice exposed to 400 ppm; no effects on liver weights were observed in the mice exposed to 200 ppm or in exposed rats. Hepatic cyanide-insensitive palmitoyl CoA oxidase activity (marker for peroxisomal β-oxidation) was significantly increased in male and female rats and mice exposed to 200 ppm for 28 days and in male and female rats and mice exposed to 400 ppm for 14, 21, or 28 days (increase not significant in male rats exposed for 28 days). The magnitude of the increased activity was greater in the mice as compared to the rats. Palmitoyl CoA oxidase activity was also significantly increased in the kidneys of rats exposed to 200 ppm for 28 days and in female rats exposed to 400 ppm for 14-28 days. Hepatic peroxisomal catalase levels were significantly increased in male mice exposed to 400 ppm for 21 or 28 days although the increases was slight; no alterations were observed in the female mice or in the male or female rats. In the rats, centrilobular hepatocellular hypertrophy (consisting of proliferation of smooth endoplasmic reticulum) with a concomitant loss of glycogen was observed in the males of both exposed groups and the females of the 400 ppm group. In the mice, lipid accumulation in centrilobular hepatocytes was observed in the 200 and 400 ppm groups, as well as centrilobular eosinophilia and centrilobular fatty vacuolation in the 400 ppm group; the effects were similar in males and females. A significant increase in the volume of cytoplasm with peroxisomes was seen in the hepatocytes of both exposed groups of mice. The 200 ppm concentration is a LOAEL for rats and mice exposed to tetrachloroethylene 6 hours/day, 5 days/week for 14-28 days for hepatic effects.

In an older study by Carpenter (1937), male and female rats (24/group) (strain not specified) were exposed to 70, 230, or 470 ppm (475, 1560, or 3188 mg/m³) tetrachloroethylene 8 hours/day, 5 days/week for 7 months. The control group consisted of 18 unexposed rats. Weight gain did not appear to be affected by tetrachloroethylene exposure, and no alterations in total or differential leukocyte levels, blood levels of glucose, calcium, bilirubin, or icteric index, or levels of total nitrogen, sulfate, bilirubin, or albumin in the urine were observed. Histopathological examinations of the liver, kidney, spleen, adrenal, heart, retina, and optic and sciatic nerves were performed immediately after exposure to 70 ppm, 20 days after termination of exposure to 230 ppm, and 46 days after termination of exposure to 470 ppm; it is unclear whether some animals in the 230 and 470 ppm groups were also examined immediately after exposure termination. Incidence data were not presented. Decreased glycogen storage was observed in the

rats exposed to 230 ppm; at 470 ppm congestion and cloudy swelling of the liver were observed. The authors reported congested kidneys with granular swelling at 230 ppm. At 470 ppm, an increase in secretion, cloudy swelling, and desquamation in the kidneys were reported in rats. Splenic congestion and increased hemosiderin deposits were also exhibited in the rats exposed to 230 or 470 ppm. A NOAEL of 70 ppm and LOAEL of 230 ppm were determined for the study based on hepatic, renal, and splenic effects observed in rats exposed for 8 hours/day, 5 days/week for 7 months.

Several inhalation studies have found biochemical alterations in the brains of rodents. These alterations suggest that tetrachloroethylene exposure results in damage to the cerebral cortex, hippocampus, and cerebellum. In Mongolian gerbils continuously exposed to 320 ppm tetrachloroethylene for 3 months followed by a 4-month recovery period, significant increases in S-100 protein, indicative of astroglial hypertrophy and/or proliferation, were found in occipital cerebral cortex, hippocampus, anterior cerebellar hemispheres, and posterior cerebellar vermis (Rosengren et al., 1986). In contrast, significant decreases in S-100 protein levels, DNA concentration, and tissue weight were observed in the frontal cerebral cortex, suggesting atrophy and a loss of glial cells. A decrease in DNA content in the frontal cerebral cortex was also observed in gerbils similarly exposed to 60 ppm tetrachloroethylene (Rosengren et al., 1986; Karlsson et al., 1987). Wang et al. (1993) also found significant decreases in S-100 protein, glial fibrillary acid protein in the frontal cerebral cortex of Sprague-Dawley rats continuously exposed to 600 ppm for 4-12 weeks. These investigators also found decreased S-100 and glial fibrillary acid protein levels in the brain stem and hippocampus. Statistically significant alterations fatty acid composition of total ethanolamine phosphoglyceride were observed in the cerebral cortex and hippocampus of Mongolian gerbils continuously exposed to 120 ppm for 12 months (Kyrklund et al., 1984) or 320 ppm for 3 months (Kyrklund et al., 1987) and in Sprague Dawley rats continuously exposed to 320 ppm for 30 or 90 days (Kyrklund et al., 1988, 1990). Brain amino acid levels are also altered following inhalation exposure to tetrachloroethylene. Significant decreases in the levels of taurine in the hippocampus and the posterior part of the cerebellar vermis and increases in glutamine levels in the hippocampus were observed in Mongolian gerbils continuously exposed to 120 ppm for 12 months (Briving et al., 1986).

In a two-generation reproductive toxicity study (Tinston et al., 1995), groups of 24 male and 24 female Alpk:ApfSD rats were exposed to 0, 100, 300, or 1000 ppm tetrachloroethylene $(0, 678, 2035, \text{ or } 6780 \text{ mg/m}^3)$ 6 hours/day, 5 days/week during a pre-mating period (≥ 11 weeks duration) and 6 hours/day, 7 days/week during mating, gestation, and on post-partum days 6-29 (The F_{2B} and F_{2C} were killed on post-partum day 5). The parental generation (F_0) was mated once to produce the F_{1A} generation and these rats were mated to produce the F_{2A} generation. The 0, 300, and 1000 ppm F_{1A} groups were mated to produce the F_{2B} litters, and F_{1A} males in the 0 or 1000 ppm groups were mated with unexposed females to produce the F_{2C} litters. CNS depression was observed in all generations during the first 2 weeks of exposure to 1000 ppm. Salivation, breathing irregularities, piloerection, and tip-toe gait were also observed in the 1000 ppm groups. In the 300 ppm group, there was an increased incidence of piloerection and

increased breathing rates. In the F₀ group exposed to 1000 ppm, resumption of exposure on postpartum day 6 resulted in sedation and consequent neglect of litters (hypothermia, poor survival, and decreased growth were observed in the pups); thus, the 1000 ppm F_{2A} group was not exposed during lactation. Significant decreases in parental body weights were observed at 300 and 1000 ppm; in general, body weights were within 10% of controls. No adverse effects on gestation length or male or female fertility were observed. In the 1000 ppm F_{1A}, F_{2A}, and F_{2B} litters, there were significant decreases in the number of live pups and/or litters with live pups, decreases in pup survival at days 1-5 (not observed in F_{1A} litters) or days 5-22 (F_{2B} litters killed at day 5), decreases in litter size (F_{2A} and F_{2B} litters only), decreases in pup body weight, and decreases in litter weights. At 300 ppm, there was a significant decrease in pup body weight in the F_{1A} litters and sporadic decreases in litter weight in the F_{2A} and F_{2B} litters. The lack of effects in the F_{2C} pups suggests that the observed effects were maternally mediated. Significant decreases in absolute and relative liver and kidney weights were observed in the F₀ males exposed to 1000 ppm and decreases in relative liver and kidney weight were observed in F_{1A} males exposed to 1000 ppm. Absolute testes weights and testes weight adjusted for body weights were significantly decreased in F₁ males exposed to 300 or 1000 ppm. Histopathological alterations were limited to significant increases in the incidence of minimal chronic progressive glomerulonephropathy in F_0 males exposed to 1000 ppm (8/23, 8/24, 5/23, and 14/24 in the 0, 100, 300, and 1000 ppm exposed groups, respectively) and increased incidences of pleomorphism in proximal tubular nuclei in F₀ males and females exposed to 1000 ppm (not observed in males and females exposed to 0, 100, or 300 ppm and 24/24 males and 12/22 females exposed to 1000 ppm). This study identified a NOAEL of 100 ppm and LOAEL 300 ppm for reproductive/developmental effects in rats.

Schwetz et al. (1975) exposed groups of 18 pregnant Sprague-Dawley rats and 17 pregnant Swiss Webster mice to 300 ppm (2035 mg/m³) tetrachloroethylene 7 hours/day on gestational days 6–15. Control groups of 30 rats and 30 mice were used. A slight, but significant, increase in the incidence of resorptions was seen in the rat. There were no increased incidences of gross or skeletal anomalies in the exposed rat fetuses compared to controls. In mice, fetal body weights were significantly decreased. Increases in soft tissue alteration (subcutaneous edema) and skeletal anomalies (delayed ossification of skull bones, unfused centers of ossification) were seen in litters of exposed mice. A LOAEL of 300 ppm was determined for development effects in mice (decreased fetal weight; delayed ossification) and rats (increased fetal resorptions).

In a behavioral developmental study by Nelson et al. (1980), pregnant Sprague-Dawley rats (19 or 21/group) were exposed to 100 ppm (678 mg/m³) tetrachloroethylene on gestational days 14–20 or 900 ppm tetrachloroethylene (6104 mg/m³) on gestational days 7–13 or 14–20. Three control groups were also included. Seven behavioral tests were performed on litters at ages 4–46 days to measure various CNS functions at different stages of development. No neurobehavioral effects were exhibited by the offspring exposed to 100 ppm *in utero*. A significant decrease in brain acetylcholine levels was found in 21-day-old offspring exposed to

900 ppm for either gestational period, as well as a decrease in dopamine levels in offspring exposed during gestational days 7–13. In this latter group, there was decreased performance on tests of neuromuscular ability (ascent on a wire mesh screen and rotorod balancing) on certain days. Offspring (before weaning) from dams exposed to 900 ppm on days 14–20 performed poorly on the ascent test on test day 14 only, but later in development, their performance in the rotorod balancing test was superior to controls, and they were more active in an open-field test. This study identifies a LOAEL for decreases in neurochemical levels and possibly alterations in neurobehavioral performance in the offspring of rats exposed to 900 ppm tetrachloroethylene on gestational days 7-13 or 14-20.

Carpenter (1937) reported that effects on fertility were apparent in rats exposed to 230 and 470 ppm (1560 and 3188 mg/m³) tetrachloroethylene 8 hours/day, 5 days/week for 7 months (see the previous section for more information on this subchronic study). Therefore, a NOAEL of 470 ppm for reproductive effects was determined in rats subchronically exposed to tetrachloroethylene.

Hardin et al. (1981) found no evidence of maternal or fetal toxicity in rats or rabbits exposed to 500 ppm (3391 mg/m³) tetrachloroethylene on gestational days 1–19 and 1–24, respectively. The authors provided very little information on the experimental design, it appears that groups of 30 Sprague-Dawley or Wistar rats and 15-20 New Zealand rabbits were exposed to two concentrations of tetrachloroethylene for 6 or 7 hours/day. The authors noted that for some studies (the paper describes developmental effects for a number of chemicals), the rats were exposed for 3 weeks prior to mating and during gestation.

DERIVATION OF PROVISIONAL CHRONIC RfC

The toxicity of tetrachloroethylene has been investigated in a number of studies of workers in the dry cleaning industry. In most of these studies, the current concentrations of tetrachloroethylene in the breathing zone were relatively low (TWA concentrations <25 ppm); these concentrations tended to range from very low levels to almost 100 ppm. The large variation in exposure levels may reflect differences in exposure levels associated with different jobs (pressers, machine operators) or differences in the type of equipment used (wet transfer or dry-to-dry transfer). The occupational exposure studies only measured current tetrachloroethylene concentrations; this may have resulted in an underestimation of actual exposure because exposure to tetrachloroethylene in the dry cleaning industry has generally declined with improved technology and reductions in occupational exposure regulations. The occupational exposure studies primarily focused on subclinical liver and kidney effects, neurological effects, and fertility. No alterations in liver function biomarkers (serum alanine aminotransferase, aspartate aminotransferase, γ -glutamyltransferase, and bilirubin) have been observed in several studies (Brodkin et al., 1995; Cai et al., 1991; Lauwerys et al., 1983). However, ultrasonographic alterations suggestive of steatosis were observed in dry cleaning workers in the Brodkin et al. (1995) study. Mutti et al. (1992) found significant alterations in some serum and urine biomarkers of kidney function which the investigators suggested may be the result of generalized membrane disturbances in the kidneys. Other studies found alterations in urine lysozyme levels (Vyskocil et al., 1990; Franchini et al., 1983), but levels of other biomarkers such as albumin and β₂-microglobulin were not altered. Positive evidence of subtle neurotoxicity (as evidenced by altered performance on neurobehavioral tests and increases in subjective symptoms of CNS toxicity) has been observed in a number of occupational studies (Lauwerys et al., 1983; Cai et al., 1991; Ferroni et al., 1992; Echeverria et al., 1995; Seeber, 1989). The results of several occupational exposure studies are suggestive of an association between tetrachloroethylene exposure and impaired fertility, in particular, increases in the risk of spontaneous abortions (Kyyrönen et al., 1989; Olsen et al., 1990) and increased time-topregnancy (Eskenazi et al., 1991b; Sallmén et al., 1995). In conclusion, the results of a number of occupational exposure studies suggest that exposure to current TWA concentrations of 15-25 ppm (102-170 mg/m³) tetrachloroethylene can result in increases in the incidence of subclinical alterations in the liver and kidneys, small changes in neurobehavioral performance, increases in the incidence of some subjective CNS symptoms and possibly decreases in reproductive performance.

The identification of the liver, kidney, and brain as the primary targets of toxicity is supported by the results of a number of chronic and subchronic animal studies. In a chronic study conducted by NTP (1986) in rats and mice, exposure to the lowest tested concentration (200 and 100 ppm, respectively) resulted in increases in the incidence of nasal, kidney, and adrenal gland effects in the rats and liver, kidney, and lung effects in the mice. Subchronic studies in rats and gerbils have found several biochemical alterations which are suggestive of

damage to the frontal cerebral cortex, hippocampus, and cerebellum; these effects generally occur at similar or higher concentrations as the chronic LOAELs. The available animal studies do not suggest that reproductive/developmental toxicity is a primary target of tetrachloroethylene toxicity.

The small number of subjects used in some studies, the uncertainty associated with the adversity of some of the observed effects, and the lack of adequate exposure information preclude deriving a provisional RfC from the available occupational exposure studies. Thus, the NTP (1986) animal study was selected as the basis of the provisional RfC. The chronic rat study identified a LOAEL of 200 ppm (1357 mg/m³, 6 hours/day, 5 days/week) for squamous metaplasia in the nasal cavity, renal tubule cell karyomegaly, and adrenal medullary hyperplasia. The LOAEL identified in the chronic mouse study was 100 ppm (678 mg/m³; 6 hours/day, 5 days/week) for renal tubule cell karyomegaly, nephrosis, hepatic degeneration and necrosis, and acute passive congestion in the lungs.

A provisional RfC for tetrachloroethylene can be derived by dividing the critical dose by an uncertainty factor. Using the traditional approach for calculating an RfC, the critical dose would be equal to the LOAEL_{HEC} for the critical effect. Using the 1990 RfC methodology (U.S. EPA, 1990), LOAEL_{HEC} values for extrarespiratory effects are calculated using the following equation:

$$LOAEL_{HEC} = LOAEL_{ADJ} \times P_{b/g_A} / P_{b/g_H}$$

Where: LOAELADJ is the duration-adjusted study LOAEL

P_{b/g} is the blood/gas partition coefficient for animals and humans. Blood/gas partition coefficients of 10.3, 18.85, and 16.9 were identified for humans, rats, and mice, respectively (Reitz et al., 1996). Because the ratios of animal to human blood/gas partition coefficients were greater than 1, a default ratio of 1 was used.

The following equations (U.S. EPA, 1990) was used to calculate LOAEL_{HEC} values for respiratory effects:

$$LOAEL_{HEC} = LOAEL_{ADJ} \times RGDR$$

$$RGDR = \frac{(Inhalation\ rate\ /\ Surface\ Area\)_{A}}{(Inhalation\ rate\ /\ Surface\ Area\)_{H}}$$

Where: LOAEL_{ADJ} is the duration-adjusted study LOAEL.

RGDR is the regional gas dose ratio. The following default values were used to calculate the RGDRs: 20, 0.24, and 0.060 m³/day inhalation rates for humans, Fischer 344 rats, and B6C3F1 mice, respectively (U.S. EPA, 1988b); 200 and 15.0 cm² surface areas for the extrathoracic region in humans and rats (U.S. EPA, 1994b); and 54.0 and 0.05 m² surface areas for the pulmonary region in humans and mice (U.S. EPA, 1994b).

The LOAEL_{HEC} values for kidney, adrenal, and nasal lesions in rats exposed to 200 ppm (6 hours/day, 5 days/week) and liver, kidney, and lung effects in mice exposed to 100 ppm (6 hours/day, 5 days/week) are presented in Table 3.

	nan equivalent concentrations for the LOAEI (NTP, 1986).	s identified in the	e rat and mouse
Species	Effect	LOAEL _{ADJ} (mg/m ³)	LOAEL _{HEC} ^a (mg/m ³)
rat	renal tubular cell karyomegaly adrenal hyperplasia	242	242
rat	squamous metaplasia in nasal cavity	242	39
mouse	renal tubular karyomegaly, nephrosis hepatic degeneration and necrosis	121	121
mouse	acute passive lung congestion	121	392
^a Calculated u	ising the equations presented in the text		

Statistical models can also be used to estimate a benchmark concentration (BMC). With this approach, the critical dose would be the human equivalent concentration of the BMC. For each effect with a statistically significant increase in incidence in mice exposed to 100 ppm and the incidence of nasal lesions in rats, the concentrations associated with 1, 5, and 10% relative increases in the probability of response were estimated using a 1 degree polynomial model with "extra risk" (Global86 computer program, Clement Associates, 1986). To calculate RfCs, U.S. EPA (1997) has used the 95% lower limit on the concentration at extra risk level of 0.1 as the BMC. This approach is supported by the Faustman et al. (1994) and Allen et al. (1994) studies which found that, for quantal developmental effects, the 95% lower limit on dose at extra risk level of 0.1 correlated with the observed NOAELs. The BMC and BMC_{HEC} values for nasal lesions in male rats, hepatic degeneration in male mice, nephrosis in female mice, renal tubular cell karyomegaly in male and female mice (combined incidence), and lung congestion in male

mice are presented in Table 4; additional details of the statistical models are presented in the Appendix.

Species	Effect	BMC ^a	BMC _{HEC} ^b (mg/m ³)
rat	squamous metaplasia in nasal cavity	186 ppm (1262 mg/m ³⁾	30
mouse	hepatic degeneration	49 ppm (332 mg/m ³)	60
mouse	nephrosis	28 ppm (190 mg/m ³)	34
mouse	renal tubular cell karyomegaly	14 ppm (95 mg/m ³)	17
mouse	acute passive lung congestion	59 ppm (400 mg/m³)	230

Details of the statistical models are presented in the Appendix

A provisional RfC for tetrachloroethylene can be derived using either method NOAEL/LOAEL approach or benchmark approach. Using the NOAEL/LOAEL approach, the LOAELHEC of 121 mg/m³ for renal and hepatic effects observed in the chronic mouse study (NTP, 1986) is selected as the critical concentration. Although, the LOAEL_{HEC} for squamous metaplasia in the nasal cavity in male rats is lower (39 mg/m³), it was not selected as the critical concentration because the incidence was very low (5/50 versus 0/50 in controls) and was not concentration-related. Dividing the LOAEL_{HEC} of 121 mg/m³ for liver and kidney effects in mice by an uncertainty factor of 300 (10 for use of a LOAEL, 10 for human variability, and 3 for interspecies extrapolation using dosimetric adjustments) would result in a provisional RfC of 4E- 1 mg/m^3 .

Alternatively, the BMC_{HEC} of 17 mg/m³ for renal tubular cell karyomegaly in chronically exposed male and female mice (NTP, 1986) could be used to derive a provisional RfC for tetrachloroethylene. This BMC_{HEC} was selected as the basis of the RfC because it was the lowest critical concentration for a relevant endpoint and it had the highest chi-square goodness of fit (see Appendix for details). A provisional chronic RfC of 6E-1 mg/m³ tetrachloroethylene was

^bCalculated using the equations presented in the text

determined based on this BMC_{HEC} of 17 mg/m³ and an uncertainty factor of 30 (10 for human variability and 3 for interspecies extrapolation using dosimetric adjustments).

Confidence in the principal study (NTP, 1986) is medium-high. The NTP study was well-conducted using a sufficient number of animals and examining a number of relevant endpoints, although a NOAEL was not established for the study. Furthermore, the critical effects identified in the study were supported by several other inhalation studies (including occupational studies). Confidence in the database is medium. There is a large amount of data on inhalation exposure to tetrachloroethylene in humans and animals. Chronic human data come from studies conducted on exposed workers in dry cleaning shops (Brodkin et al., 1995; Cai et al., 1991; Ferroni et al., 1992; Franchini et al., 1983; Lauwerys et al., 1983; Mutti et al., 1992; Seeber, 1989; Vyskocil et al., 1990; Echeverria et al., 1995). However, these occupational studies have several limitations, in particular inadequate monitoring data. Therefore, there is a need for wellconducted chronic occupational studies to establish the thresholds for CNS, renal, liver, and reproductive effects in humans. There are numerous animal studies for chronic and subchronic durations which describe the effects of tetrachloroethylene exposure in rats, mice, and gerbils. The primary target organs found in these studies were the liver, kidney, and CNS. Hepatic and renal effects were assessed in rats and mice (Carpenter, 1937; NTP, 1986; Odum et al., 1988) and neurological changes were evaluated in rats and gerbils (Briving et al., 1986; Karlsson et al., 1987; Kyrklund et al., 1984, 1987, 1988, 1990; Rosengren et al., 1986; Wang et al., 1993). Also, several investigators (Eskenazi et al., 1991a, 1991b; Kyyrönen et al., 1989; Sallmén et al., 1995; Olsen et al., 1990) have assessed the effect of tetrachloroethylene on the reproductive outcomes of exposed dry cleaning workers and/or their wives; however, these studies lack adequate exposure information. The database contains information on the developmental and reproductive toxicity of tetrachloroethylene in animals (Carpenter, 1937; Hardin et al., 1981; Nelson et al., 1980; Schwetz et al., 1975; Tinston et al., 1995); some of these provide evidence that exposure to tetrachloroethylene can result in reproductive/developmental effects. The overall confidence in the RfC is medium based on the medium confidence for the database.

REFERENCES

ACGIH (American Conference of Governmental Industrial Hygienists). 1996. 1996 Threshold Limit Values (TLVs) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs). ACGIH, Cincinnati OH.

Allen, B.R., R.J. Kavlock, C.A. Kimmel and E.M. Faustman. 1994. Dose-response assessment for developmental toxicity. II. Comparison of generic benchmark dose estimates with no observed adverse effect levels. Fund. Appl. Toxicol. 23: 487-495. (Cited in U.S. EPA, 1997).

Altmann, L. A. Bottger and H. Wiegand. 1990. Neurophysiological and psychophysical measurements reveal effects of acute low-level organic solvent exposure in humans. Int. Arch. Occup. Environ. Health. 62: 493-499. (Cited in ATSDR, 1995).

ATSDR (Agency for Toxic Substances and Disease Registry). 1995. Toxicological Profile for Tetrachloroethylene. Public Comment Draft. U.S. Department of Health & Human Services, Public Health Service, Atlanta GA.

Briving, C., I. Jacobson, A. Hamberger, P. Kjellstrand, K.G. Haglid and L.E. Rosengren. 1986. Chronic effects of perchloroethylene and trichloroethylene on the gerbil brain amino acids and glutathione. Neurotoxicology. 7(1): 101-108.

Brodkin, C.A., W. Daniell, H. Checkoway, et al. 1995. Hepatic ultrasonic changes in workers exposed to perchloroethylene. Occup. Environ. Med. 52: 679-685.

Cai, S.X., M.Y. Huang, Z. Chen, et al. 1991. Subjective symptom increase among dry-cleaning workers exposed to tetrachloroethylene vapor. Ind. Health. 29(3): 111-121.

Carpenter, C.P. 1937. The chronic toxicity of tetrachloroethylene. J. Ind. Hyg. Toxicol. 19: 323-336.

Coler, H.R. and H.R. Rossmiller. 1953. Tetrachloroethylene exposure in a small industry. AMA Arch. Ind. Hyg. Occup. Med. 8: 227-233.

Echeverria, D., R.F. White and C. Sampaio. 1995. A behavioral evaluation of PCE exposure in patients and dry cleaners: A possible relationship between clinical and preclinical effects. J. Occup. Environ. Med. 37: 667-680.

Eskenazi, B., A.J. Wyrobek, L. Fenster, et al. 1991a. A study of the effects of perchlororethylene exposure on semen quality in dry-cleaning workers. Am. J. Ind. Med. 20(5): 575-591.

Eskenazi, B., L. Fenster, M. Hudes, et al. 1991b. A study of the effects of perchlororethylene exposure on the reproductive outcomes of wives of dry cleaning workers. Am. J. Ind. Med. 20(5): 593-600.

Faustman, E.M., B.C. Allen, R.J. Kavlock and C.A. Kimmel. 1994. Dose-response assessment for developmental toxicity. I. Characterization of database and determination of no observed effect levels. Fund. Appl. Toxicol. 23: 478-486. (Cited in U.S. EPA, 1997).

Ferroni, C., L. Selis, A. Mutti, D. Folli, E. Bergamaschi and I. Franchini. 1992.

Neurobehavioral and neuroendocrine effects of occupational exposure to perchloroethylene.

Neurotoxicology. 14(1): 243-248.

Franchini, I., A. Cavotorta, M. Falzoi, S. Lucertini and A. Mutti. 1983. Early indicators of renal damage in workers exposed to organic solvents. Int. Arch. Occup. Environ. Health. 52: 1-9.

Freed, D.M. and E. Kandel. 1988. Long-term occupational exposure and diagnosis of dementia. Neurotoxicol. 9(3): 391-400.

Hake, C.L. and R.D. Stewart. 1977. Human exposure to tetrachloroethylene: Inhalation and skin contact. Environ. Health Perspect. 21: 231-238.

Hardin, B.D., G.P. Bond, M.R. Sikov, F.D. Andrew, R.P. Beliles and R.W. Niemeier. 1981. Testing of selected workplace chemicals for teratogenic potential. Scand. J. Work Environ. Health. [Suppl 4] 7: 66-75.

Karlsson, JE., L.E. Rosengren, P. Kjellstrand and K.G. Haglid. 1987. Effects of low-dose inhalation of three chlorinated aliphatic organic solvents on deoxyribonucleic acid in gerbil brain. Scand. J. Work. Environ. Health. 13: 453-458.

Kylin, B., I. Sumegi and S. Yllner. 1965. Hepatotoxicity of inhaled trichloroethylene and tetrachloroethylene--long-term exposure. Acta. Pharmacol. Toxicol. 22: 379-385.

Kyrklund, T., C. Alling, P. Kjellstrand and K.G. Haglid. 1984. Chronic effects of perchloroethylene on the composition of lipid and acyl groups in cerebral cortex and hippocampus of the gerbil. Toxicol. Lett. 22: 343-349.

Kyrklund, T., P. Kjellstrand and K.G. Haglid. 1987. Lipid composition and fatty acid pattern of the gerbil brain after exposure to perchloroethylene. Arch. Toxicol. 60: 397-400.

Kyrklund, T., P. Kjellstrand and K.G. Haglid. 1988. Effects of exposure to Freon 11, 1,1,1-trichloroethane or perchloroethylene on the lipid and fatty-acid composition of rat cerebral cortex. Scand. J. Work Environ. Health. 14: 91-94.

Kyrklund, T., P. Kjellstrand and K.G. Haglid. 1990. Long-term exposure of rats to perchloroethylene, with and without a post-exposure solvent-free recovery period: effects on brain lipids. Toxicol. Lett. 52(3): 279-285.

Kyyrönen, P., H. Taskinen, M-L. Lindbohm, K. Hemminki and O.P. Heinonen. 1989. Spontaneous abortions and congenital malformations among women exposed to tetrachloroethylene in dry cleaning. J. Epid. Commun. Health. 43: 346-351.

Lauwerys, R., J. Herbrand, J.P. Buchet, A. Bernard and J. Gaussin. 1983. Health surveillance of workers exposed to tetrachloroethylene in dry-cleaning shops. Int. Arch. Occup. Environ. Health. 52: 69-77.

Mutti, A., R. Alinovi, E. Bergamaschi, et al. 1992. Nephropathies and exposure to perchloroethylene in dry-cleaners. Lancet. 340(8813): 189-193.

Nelson, B.K., B.J. Taylor, J.V. Setzer and R.W. Hornung. 1980. Behavioral teratology of perchloroethylene in rats. J. Environ. Pathol. Toxicol. 3: 233-250.

NTP. 1986. National Toxicology Program--Technical Report Series No. 311. Toxicology and Carcinogenesis Studies of Tetrachloroethylene (Perchloroethylene) (CAS No. 127-18-4) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, NIH publication no. 86-2567.

Odum, J., T. Green, J.R. Foster and P.M. Hext. 1988. The role of trichloroacetic acid and peroxisome proliferation in the differences in carcinogenicity of perchloroethylene in the mouse and rat. Toxicol. Appl. Pharmacol. 92: 103-112.

Olsen, J., K. Hemminki, G. Ahlborg, et al. 1990. Low birthweight, congenital malformations, and spontaneous abortions among dry-cleaning workers in Scandinavia. Scand. J. Work Environ. Health. 16(3): 163-168.

OSHA (Occupational Safety and Health Administration). 1989. Air Contaminants. Final Rule. 29 CFR Part 1910. U.S. Department of Labor. Fed. Reg. 54: 2686-2689. OSHA 1989

Reitz, R.H., M.L. Gargas, A.L. Mendrala and A.M. Schuman. 1996. *In vivo* and *in vitro* studies of perchloroethylene metabolism for physiologically based pharmacokinetic modeling in rats, mice, and humans. Toxicol. Appl. Pharmacol. 136: 289-306.

Rosengren, L.E., P. Kjellstrand and K.G. Haglid. 1986. Tetrachloroethylene: Levels of DNA and S-100 in the gerbil CNS after chronic exposure. Neurobehav. Toxicol. Teratol. 8: 201-206.

Rowe, V.K., D.D. McCollister, H.C. Spencer, E.M. Adams and D.D. Irish. 1952. Vapor toxicity of tetrachloroethylene for laboratory animals and human subjects. AMA Arch. Ind. Hyg. Occup. Med. 5: 566-579.

Sallmén, M., M-L. Lindbohm, P. Kyyrönen, et al. 1995. Reduced fertility among women exposed to organic solvents. Am. J. Industr. Med. 27: 699-713.

- Schwetz, B.A., B.K.J. Leong and P.J. Gehring. 1975. The effect of maternally inhaled trichloroethylene, perchloroethylene, methyl chloroform, and methylene chloride on embryonal and fetal development in mice and rats. Toxicol. Appl. Pharmacol. 32: 84-96.
- Seeber, A. 1989. Neurobehavioral toxicity of long-term exposure to tetrachloroethylene. Neurotoxicol. Teratol. 11: 579-583.
- Stewart, R.D., E.D. Baretta, H.C. Dodd and T.R. Torkelson. 1970. Experimental human exposure to tetrachloroethylene. Arch. Environ. Health. 20: 224-229.
- Tinston, D.J., K.O. Rogers, M. Abdy, et al. 1995. Perchloroethylene: multigeneration inhalation study in the rat. Performed by Zeneca Central Toxicology Laboratory, Alderley Park Macclesfied, Cheshire UK for Halogenated Solvents Industry Alliance. OTS0557702.
- U.S. EPA. 1982. Health Assessment Document for Tetrachloroethylene. Prepared by Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA 600/8-82/005.
- U.S. EPA. 1983. Health Assessment Document for Tetrachloroethylene. Prepared by Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA 600/8-82/005B.
- U.S. EPA. 1985a. Drinking Water Criteria Document for Tetrachloroethylene. Prepared by Office of Drinking Water, Washington, DC. NTIS PB86-118114.
- U.S. EPA. 1985b. Health Assessment Document for Tetrachloroethylene (Perchloroethylene) Final Report. Washington, DC. EPA/600/8-82/006F.
- U.S. EPA. 1986. Addendum to the Health Assessment Document for Tetrachloroethylene (Perchloroethylene): Updated Carcinogenicity Assessment. Washington, DC. EPA/600/8-82/005FA.
- U.S. EPA. 1988a. Health Effects Assessment for Tetrachloroethylene. Prepared by Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of Research and Development, Cincinnati, OH.
- U.S. EPA. 1988b. Recommendations for and Documentation of Biological Values for Use in Risk Assessment. Prepared by Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Cincinnati OH for Office of Solid Waste and Emergency Response.
- U.S. EPA. 1990. Interim Methods for Development of Inhalation Reference Concentrations. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA/600/8-90/066A.

U.S. EPA. 1991. Office of Health and Environmental Assessment Chemical Assessments and Related Activities. Office of Health and Environmental Assessment, Washington, DC. April 1991. OHEA-I-127.

U.S. EPA. 1994a. Office of Health and Environmental Assessment Chemical Assessments and Related Activities. Availability NTIS. Office of Health and Environmental Criteria Assessment, Washington, DC. December, 1994. OHEA-I-127.

U.S. EPA. 1994b. Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry. Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Research Triangle Park, NC. EPA/600/8-90/066F.

U.S. EPA. 1995a. Health Effects Assessment Summary Tables. Annual Update with Supplements. FY-1995. Office of Research and Development, Office of Emergency and Remedial Response, Washington, DC. NTIS No. PB95-921199.

U.S. EPA. 1995b. Monthly Status Report of the RfD/RfC Work Group (As of 09/01/95). Office of Research and Development, National Center for Environmental Assessment, Cincinnati, OH.

U.S. EPA. 1997. Integrated Risk Information System. Online. Office of Research and Development, National Center for Environmental Assessment, Cincinnati, OH.

Vyskocil, A., S. Emminger, J. Tejral, Z. Fiata, E. Ettlerova and A. Cermanova. 1990. Study on kidney function in female workers exposed to perchloroethylene. Hum. Exp. Toxicol. 9(6): 377-380.

Wang, S., J.E. Karlsson, T. Kyrklund and K. Haglid. 1993. Perchloroethlylene-induced reduction in glial and neuronal cell marker proteins in rat brain. Pharmacol. Toxicol. 72(4-5): 273-278.

APPENDIX

Polynomial model--Incidence of squamous metaplasia in male rats exposed to tetrachloroethylene for 6 hours/day, 5 days/week for 2 years (NTP, 1986)

Chi-square goodness of fit: 1.2418

MLE estimates of dose coefficients: q0= 0.0, q1= 0.00035

Model form: $P(D) = 1 - \exp(-q0 - q1 \cdot D)$

Maximum value of log-likelihood function: -33.096

Extra Risk	MLE Concentration (ppm)	95% Lower Limit on Concentration (ppm)
0.1	299.97	185.80
0.05	146.04	90.453
0.01	28.614	17.723

Polynomial model--Incidence of nephrosis in female mice exposed to tetrachloroethylene for 6 hours/day, 5 days/week for 2 years (NTP, 1986)

Chi-square goodness of fit: 0.29543

MLE estimates of dose coefficients: q0= 0.1048, q1= 0.002731

Model form: $P(D) = 1-\exp(-q0-q1*D)$

Maximum value of log-likelihood function: -80.161

Extra Risk	MLE Concentration (ppm)	95% Lower Limit on Concentration (ppm)
0.1	38.586	27.571
0.05	18.785	13.422

0.01	3.681	2.630	

Polynomial model--Incidence of renal tubule cell karyomegaly in male and female mice (combined incidence) exposed to tetrachloroethylene for 6 hours/day, 5 days/week for 2 years (NTP, 1986)

Chi-square goodness of fit: 0.8739

MLE estimates of dose coefficients: q0=0.03629, q1=0.006345

Model form: $P(D) = 1-\exp(-q0-q1*D)$

Maximum value of log-likelihood function: -131.388

Extra Risk	MLE Concentration (ppm)	95% Lower Limit on Concentration (ppm)
0.1	16.604	14.083
0.05	8.084	6.856
0.01	1.584	1.343

Polynomial model--Incidence of hepatic degeneration in male mice exposed to tetrachloroethylene for 6 hours/day, 5 days/week for 2 years (NTP, 1986)

Chi-square goodness of fit: 0.00753

MLE estimates of dose coefficients: q0= 0.04120, q1= 0.001415

Model form: P(D) = 1-exp(-q0-q1*D)

Maximum value of log-likelihood function: -59.8146

Extra Risk	MLE Concentration (ppm)	95% Lower Limit on Concentration (ppm)
0.1	74.439	49.426

0.05	36.239	24.062
0.01	7.101	4.715

Polynomial model--Incidence of acute passive lung congestion in male mice exposed to tetrachloroethylene for 6 hours/day, 5 days/week for 2 years (NTP, 1986)

Chi-square goodness of fit: 0.6704

MLE estimates of dose coefficients: q0= 0.02352, q1= 0.001171

Model form: P(D) = 1-exp(-q0-q1*D)

Maximum value of log-likelihood function: -52.0340

	Extra Risk	MLE Concentration (ppm)	95% Lower Limit on Concentration (ppm)
	0.1	89.964	58.568
i	0.05	43.798	28.513
	0.01	8.582	5.587
ļ			

Tetrachloroethylene RfC

Effect Level:		200 ppm (1357 mg/m³)	100 ppm (678 mg/m³)	120 ppm (814 mg/m³)	120 ppm (814 mg/m³)		400 ppm (2713 mg/m³)) 400 ppm (2713 mg/m³)	200 ppm (1357 mg/m³)	200 ppm (1357 mg/m³)	
NOAEL							200 ppm (1357 mg/m³)	200 ppm (1357 mg/m³)			
Oritical Effect(s)		Kidney (karyomegaly) Adrenal gland (hyperplasia) Nasal cavity (squamous metaplasia)	Kidney (karyomegaly, nephrosis) Liver (degeneration and necrosis) Lung (congestion)	CNS (decreased taurine in hippocampus and posterior part of cerebellar vermis; increased glutamine in hippocampus)	CNS (altered fatty acid composition of phosphatidylethanolamine in cerebral cortex and hippocampus)		Liver (congestion)	Kidney (karyomegaly)	Liver (fatty degeneration)	Liver (centrilobular hypertrophy; increased palmitoyl CoA oxidase activity)	
Species	'UDIES	Fischer 344 rats	B6C3F1 mice	Mongolian gerbils	Mongolian gerbils (males)	AL STUDIES	Fischer 344 rats	B6C3F1 mice	female mice (strain not specified)	Fischer 344 rats	
Study (*)	CHRONIC ANIMAL STUDIES	NTP 1986 103-week study		Briving et al. 1986 12-month study	Kyrklund et al. 1984 12-month study	SUBCHRONIC ANIMAL STUDIES	NTP 1986 13-week study		Kylin et al. 1965 1–8-week study	Odum et al. 1988 14-28-day study	

DRAFT - Do not cite or quote. For internal use only.

	1 × 4 3 × 4 × 4 × 4 × 5	「一個などは、「「「「「」」」をは、「」」というできます。 「「「」」というできます。 「「」」というできます。 「「」」というできます。 「「」」、「」」、「」」、「」」、「」」、「」」、「」、「」、「」、「」、「」、		
Study	Species	Critical Effect(s)	Effect	Level and the second second
		A CONTRACTOR OF THE PROPERTY O	NOAEL	LOAEL
	B6C3F1 mice	Liver (lipid accumulation; peroxisomal proliferation; increased relative organ weight)		200 ppm (1357 mg/m³)
	B6C3F1 mice	Kidney (no effects)	NOAEL = 400 ppm = 2713 mg/m ³	NOAEL = 678 mg/m ³
Carpenter 1937 7-month study	rats (strain not specified)	Liver (decreased glycogen) Kidney (secretion; cloudy swelling; desquamation) Spleen (congestion; increased hemosiderin deposits)	70 ppm (475 mg/m³)	230 ppm (1560 mg/m³)
Karlsson et al. 1987 3-month study	Mongolian gerbils	CNS (decreased DNA in frontal cerebral cortex)		60 ppm (407 mg/m³)
Rosengren et al. 1986 3-month study	Mongolian gerbils	CNS (decreased DNA in frontal cerebral cortex)		60 ppm (407 mg/m³)
Kyrklund et al. 1987 3-month study	Mongolian gerbils (sex not reported)	CNS (altered fatty acid pattern in cerebral cortex and hippocampus)		320 ppm (2171 mg/m³)
Kyrklund et al. 1990 90-day study	Sprague-Dawley rats (males)	CNS (altered fatty acid pattern in cerebral cortex)		320 ppm (2171 mg/m³)
Kyrklund et al. 1988 30-day study	Sprague-Dawley rats (males)	CNS (altered fatty acid pattern in cerebral cortex)		320 ppm (2171 mg/m³)
Wang et al. 1993 12-week study	Sprague-Dawley rats (males)	CNS (decreased brain weight, decreased DNA and protein in cerebral cortex and brain stem; decreased glial fibrillary acid protein and S-100 protein)		600 ppm (4070 mg/m³)
REPRODUCTIVE/DEN	REPRODUCTIVE/DEVELOPMENTAL STUDIES	S		

DRAFT - Do not cite or quote. For internal use only.

Supplier of the supplier of th	Species	Critical Effect(s)	A STATE OF THE STA	Level
	The state of the s	NOAEL TOTAL STATES OF THE STAT	NOAEL	LOAEL ROYAL WENT
Tinston et al. 1995	Alpk:ApfSD rats	Decreased pup body weight	100 ppm (678 mg/m³)	300 ppm (2035 mg/m³)
Schwetz et al. 1985	Sprague-Dawley rats	Sprague-Dawley rats Increased fetal resorption		300 ppm (2035 mg/m³)
	Swiss Webster mice	Decreased fetal body weight; delayed ossification		300 ppm (2035 mg/m³)
Nelson et al. 1980	Sprague-Dawley rats	Behavioral and neurochemical changes	100 ppm (678 mg/m³)	900 ppm (6105 mg/m³)

DRAFT - Do not cite or quote. For internal use only.

Attachment 9

Risk Assessment Issue Paper for: Carcinogenicity Information for Trichloroethylene (TCE) (CASRN 79-01-6)

The current phase of the carcinogenicity characterization for trichloroethylene started with a July 1985 Health Assessment Document for Trichloroethylene, EPA# 600/8-82/006F which classified trichloroethylene in Weight-of-Evidence Group "B2 - Probable Human Carcinogen". Inhalation and oral upper bound risk estimates were provided. This information was verified on IRIS from 3/87 through 7/89. A June 1987 Addendum to the Health Assessment Document for Trichloroethylene, EPA# 600/8-82/006FA proposed that the Weight-of-Evidence finding of "B2" was further supported by newly available animal bioassay data and offered a minor revision to the inhalation upper bound risk estimate. In 1988 the Agency's Science Advisory Board offered an opinion that the weight-of-evidence was on C-B2 continuum (C=Possible Human Carcinogen, B2=Probable Human Carcinogen). The Agency withdrew the IRIS carcinogenicity file in 7/89 and has not adopted a current position on the weight-of-evidence classification.

The quantitative risk estimates provided in the 1985 Health Assessment Document and 1987 Addendum have been reviewed by the IRIS-Crave Workgroup but are not verified as such pending resolution of the weight-of-evidence classification. The upper bound risk values in these documents are as follows:

ORAL: 1985 HAD; Unit Risk = 3.2E-7 per ug/L

Slope Factor = 1.1E-2 per mg/kg/day

INHALATION: 1987 Addendum; Unit Risk = 1.7E-6 per ug/cu.m.

Slope Factor = 6.0E-3 per mg/kg/day

When the Agency adopts a current position on weight-of-evidence classification, the trichloroethylene file will be reentered on IRIS.

THIS PAGE INTENTIONALLY LEFT BLANK.

TAB

Appendix K

TAB

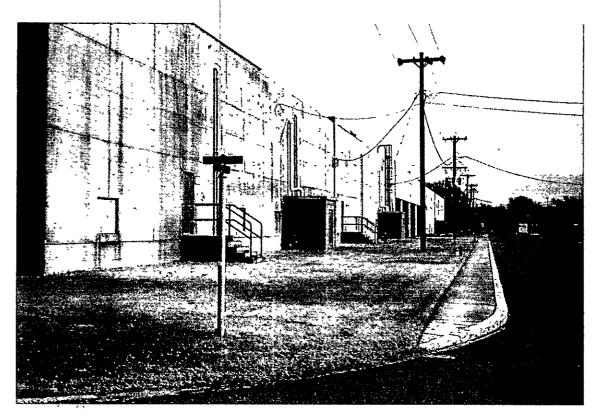
Site Photographs


APPENDIX K

Site Photographs

Photographs of the various FUs are included in this appendix.

APPENDIX K-SITE PHOTOGRAPHS

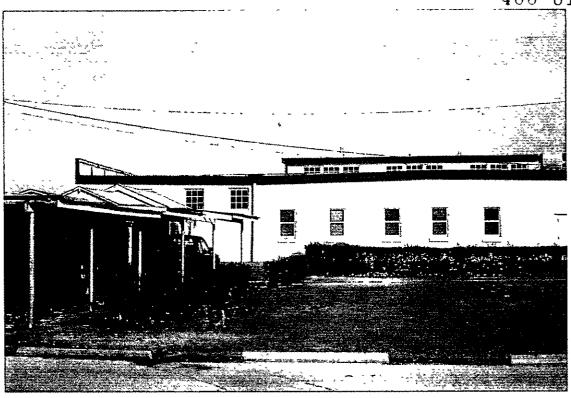

THIS PAGE INTENTIONALLY LEFT BLANK.

RI 57 Building 629. View of southwestern corner of Building 629 and the adjacent railroad tracks Samples were collected in the gravel area

SS 65 XXCC-3, Building 249. View of southeastern corner of Building 249 and the end of the adjacent railroad tracks. Samples were collected in the gravel area.

SS 66 Areas North of Building 253. View of southeastern corner of Building 250 and the grassy area north of "G" Street. Building 253 is located on the south side of "G" Street and is not shown here. Samples collected as part of FU1 were from grassy areas south of Building 250 shown here

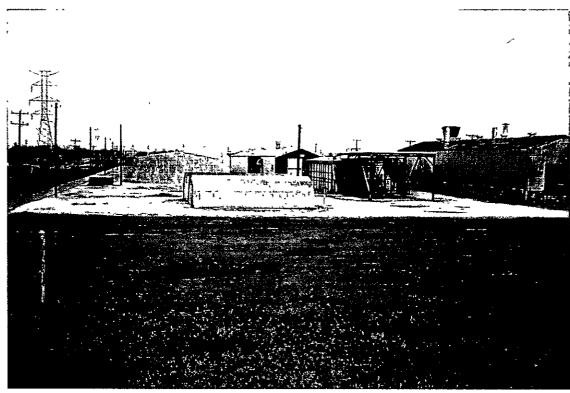
RI 25 Golf Course Pond (Subparcel 3.8). View of Golf Course Pond Samples were collected from within the pond


RI 26 Lake Danielson (Subparcel 3.6). View of southeastern side of Lake Danielson Samples were collected from within the lake

SS 51 Lake Danielson Outlet Drainage Ditch. View of north portion of concrete-lined drainage ditch, which discharges from Lake Danielson Samples were collected within ditch.

SS 52 Golf Course Pond Outlet Drainage Ditch. View of south portion of concrete-lined drainage ditch, which discharges from the Golf Course Pond Samples were collected within ditch.

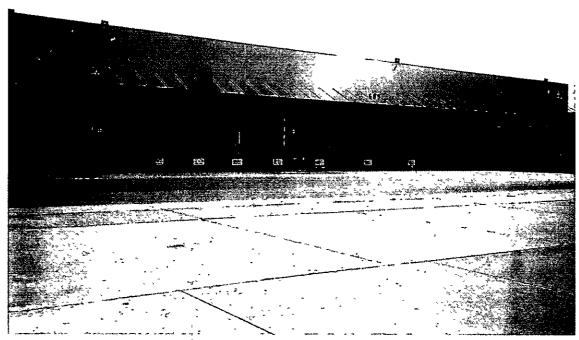
RI 59 Building T-273. View of southeastern side of Building T-273 Samples were collected in the grassy area to the right of the building



SS 69 Flamethrower Liquid Fuel Application. View of northern portion of golf course, south of Building T-273. Samples were collected in the grassy area

TEC 92 View of park and road located on the western side of the golf course Samples were collected in the grassy area

RI 27 Former Recoupment Area (Building S-873) View of southeastern side of Building 873 (to the right) Samples were collected in the gravel yard along the east side of the building, to the north of the building



SS 31 Former Paint Spray Booth (Building 1087), RI 32 Sandblasting Waste Accumulation Area, SS 33 Sandblasting Waste Drum Storage Area (Metal Shed South of Building 1088). View of southern side of Buildings 1087, 1088, 1090, and 1091 Samples were collected in gravel yard surrounding all buildings

488 817-

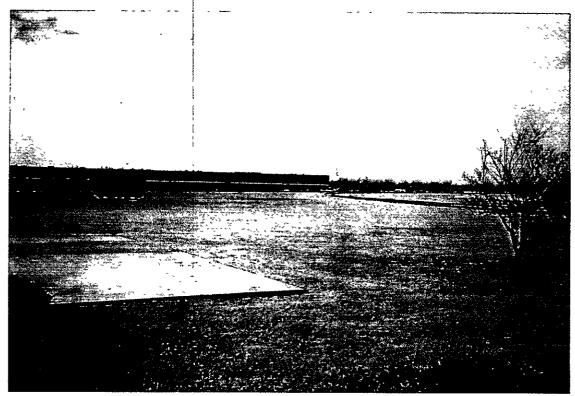
RI 34 Underground Oil Storage Tanks (Building 770). View of western side of Building 770 Samples were collected in gravel yard in center of photograph

SS 78 Building 689 (Alcohol, Acetone, Toluene, Naphthalene and Hydrofluoric Acid Area). View of western side of Building 689 Samples were collected below concrete slab where markings indicate and where soil boring can be seen in lower left corner of photograph

SS 82 Buildings 783 and 793 (Flammables) View of northeastern side of Building 783 (Building 793 not shown) located within berm in distance. Samples were collected in grassy area located in front of Building 783.

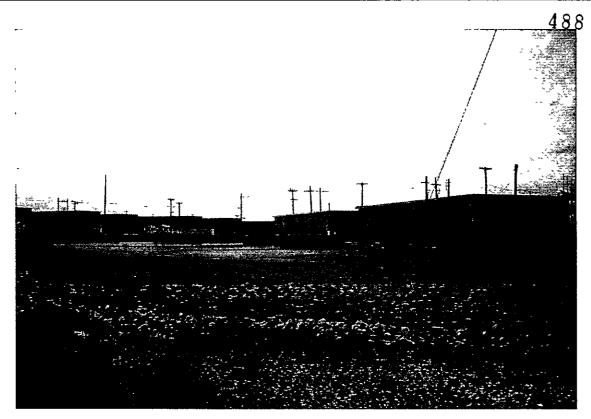
SS 84 Building 972 (Flammables, Solvents, Waste Oil, etc.) Northeastern view of north side of Building 972 (Building 972 is to the right of the area shown in the photo) Samples were collected in gravel area located in front and lower right of photograph

ER 87 Banned Pesticides (Building 1084) View of southern side of Building 1084, the open shed, in distance. Samples were collected in gravel yard surrounding Building 1084



SS 89 Building 1089 (Acids). View of western side of Building 1089 (left side of photograph), Perimeter Road, and southwestern boundary of site Samples were collected along west and south sides of Building 1089 and Perimeter Road

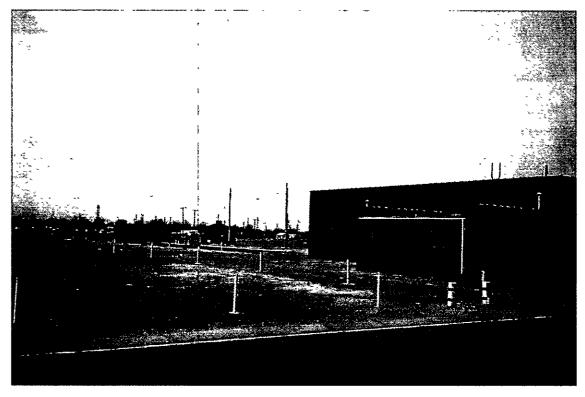
SS 35 Defense Reutilization Marketing Office (DRMO) Building T-308: Hazardous Waste Storage. View of the northeastern side of Building 308, the gravel yard and the historic docking area, where samples were collected


SS 36 DRMO Drum Storage. View of southwestern side of Building 309 Drainage culvert located to the right of the photo Samples were collected in grassy areas as well as near culvert

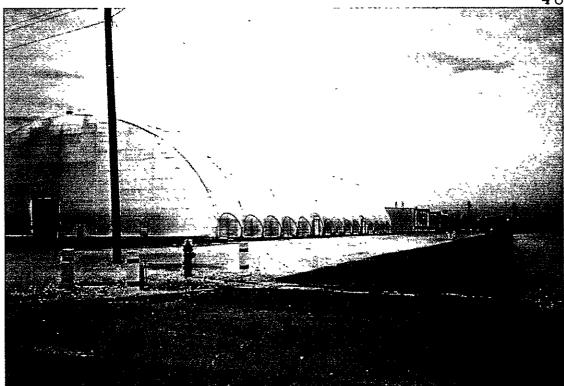
SS 42 Former PCP Dip Vat Area. View of grassy areas and railroad tracks located west of Building 650 (not shown) Building 835 is in distance Samples were collected in the grass

SS 43 Former Underground PCP Tank Area and SS 70 All Railroad Tracks. View of gravel areas and railroad tracks around SS 43, located west of Building 737 (not shown). Building 835 is in distance SS 70 represents the convergence of railroad tracks in the center of FU4, indicated by railroad tracks seen here. Samples were collected in the gravel.

SS 54 DRMO East Storm Water Runoff Canal. View of the concrete-lined drainage ditch, located east of Buildings 308 and 309 Samples were collected within ditch



SS 55 DRMO North Storm Water Runoff Area and SS 72 Waste Oil (PDO Yard) Surface Application for Dust Control. SS 55 is a drainage ditch that is located along the northern fence line in this area. View of gravel yard and end of railroad tracks located at SS 72, north of "B" Street (not shown), and south of Dunn Avenue, at the Depot's northern propoerty edge (shown in distance). Samples were collected within ditch and the gravel.


Figure K4c. Photos of Storm Water Runoff Areas (East Canal and North Area) and Waste Oil (PDO Yard) Surface Application for Dust Control

SS 79 Fuels, Miscellaneous Liquids, Wood, and Paper. View of the railroad tracks and the southern edge of the concrete pad where Building 702 once stood Samples were collected in the grassy area

SS 80 Fuel and Cleaner Dispensing, Building 720. View of the southeastern side of Building 720, and the railroad tracks and gravel yard behind it Samples were collected in the gravel area

SS 83 Dried Paint Disposal Area. View of the southeastern side of the covered Building 949, concrete pads south of it, and adjacent railroad tracks. Samples were collected in the gravel areas surrounding building, as well as from railroad tracks.

THIS PAGE INTENTIONALLY LEFT BLANK

E071999009GNV

K-18

488

SS 75 Unknown Wastes near Building 689. View of grassy area located on northeastern side of Building 689. Samples were collected in the grassy area

SS 76 Unknown Wastes near Building 690. (No photo is available for this site)

SS 77 Unknown Wastes near Building 689 and 690. View of gravel and grassy areas located north of Building 690, south of Building 689, and east of Building 685 Samples were collected in the grass and gravel in this area.

SS 78 Alcohol, Acetone, Toluene, and Hydrofluoric Acid Area, Building 689. Note - this photo has also been included in FU3 layout. (Figure K3b).

TEC 91A. View of northeastern side of Building 670 and the adjacent railroad tracks. Samples were collected in the gravel and along the railroad tracks.

THIS PAGE INTENTIONALLY LEFT BLANK

E071999009GNV

Administration Building (Parcel 1). View of grassy area located south of Building 144 and west of the southern parking lot near Gate No 1 Samples were collected in the grassy area

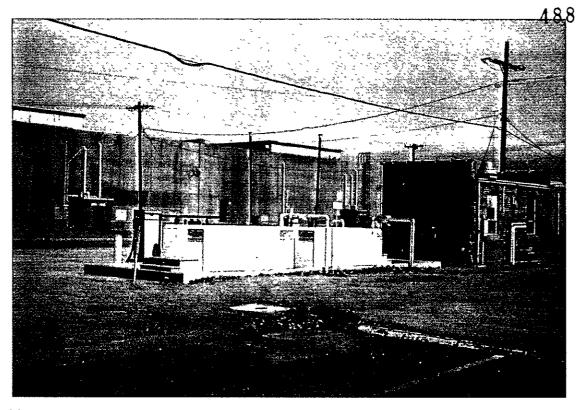
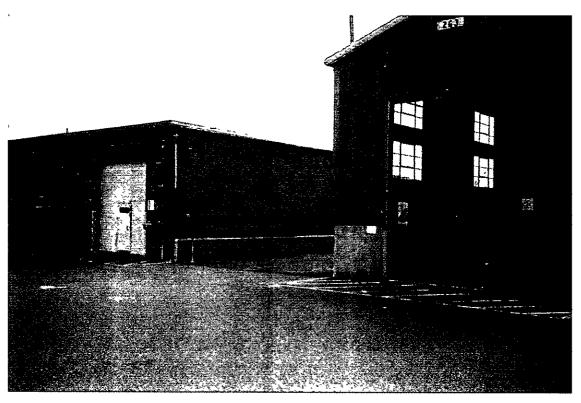

Housing Units (Parcel 2). View of Buildings 176, 179, 181, and 184 Samples were not collected due to excavation of entire area

Figure K6a. Photos of Administration Building (Parcel 1) and Housing Units (Parcel 2).



SS 48 & SS 58 at Cafeteria, Building 274. View of grassy area and northern side of Building 274. Samples were collected in the grassy areas surrounding the building

SS 66 Petroleum, Oil, and Lubricants (POL) Building 253. Building 253 is located on the south side of "G" Street, east of 2nd Street. (No photo is available for this site)

SS 67 Installation Gas Station, Building 257. View of grassy area surrounding gas station, located south of "G" Street Samples were collected in the grassy areas surrounding the station

SS 68 Petroleum, Oil, and Lubricants (POL) Building 263. View of paved area surrounding Building 263. Samples were collected from below the concrete located at the markers in the center of the photo

Figure K6c. Photos of Buildings 257 and 263

THIS PAGE INTENTIONALLY LEFT BLANK

E071999009GNV

TAB

Appendix L

TAB

Appendix L Detected Parameters in FU1

APPENDIX L

Detected Parameters in FU1

The following are included in this appendix:

- Table L-1-Detected Parameter Summary in Surface Soil
- Table L-2-Detected Parameter Summary in Subsurface Soil

THIS PAGE INTENTIONALLY LEFT BLANK.

Ę

Ecological Criterion Exceedance Fiag Ecological Criterion Value GWP Exceedance Flag 12000 GWP Value Direct Exposure Exceedance Flag Background Exceedance Flag Background Value Site Qualifier Concentration
 State
 Papth
 Pattenne
 Patamenter

 BFAC
 SS14A
 0 0 to 1 0
 2.HEXANONE

 BFAC
 SS14A
 0 to to 1 0
 2.METHYLNAPITHALENE

 BFAC
 SS15A
 0 to to 1 0
 2.METHYLNAPITHALENE

 BFAC
 SS8A
 0 to to 1 0
 2.METHYLNAPITHALENE

 65
 SS8A
 0 to to 1 0
 2.METHYLNAPITHALENE

 65
 SS8A
 0 to to 1 0
 ACEMAPHTHENE

 65
 SS8A
 0 to to 1 0
 ACEMAPHTHENE

 66
 SS8A
 0 to to 1 0
 ACEMAPHTHENE

 67
 SSAB
 0 to to 1 0
 ACEMAPHTHENE

 68AC
 SSAB
 0 to to 1 0
 ACEMAPHTHENE

 67
 SSAB
 0 to to 1 0
 ACEMAPHTHENE

 68AC
 SSAB
 0 to to 1 0
 ACEMAPHTHENE

 69AC
 SSABA
 0 to to 1 0
 ALLAMINIA

 69AC
 SSABA
 0 to to 1 0
 ALLAMINIA

 69AC
 SSBA
 0 to to 1 0
 ALLAMINIA

 60AC
 SSABA
 0 to to 1 0
 Parameter

TABLE L-1 Summary of Detected Parameters in Surface Soil at FU1 Compared to Background and Screening Level Values Memptus Depot Main Installation R1

TABLE L-1
Summary of Detected Parameters in Surface Soil at FU1 Compared to Background and Screening Level Values
Memphis Depot Main Installation R1

P \147543FU1_NE Screening Tables xis\Surface Soil

	_													
Ş						Rackeround	Background	Direct	Direct Exposure Funedance	3	GWP	Ecological	Ecological Criterion	T de de de de de de de de de de de de de
Range	- 1	Parameter	Concentration	Qualifier	Unite	Value	Flag	Value	Flag	Value	Fing	Value	Flag	Criteria Flag
00to 10	ANTIMONY		2.5	_	MC/KG	2		31		2	۱	3 2		z
00000	- 1		0.73	_ _	MG/KG	7	,	31	,	50		35	,	2
	1		7.4	, -	MG/KG		\	2 6		n u	< >	0 0	< >	>
٥	ARSENIC		17 05		MG/KG	50		0.43	×	29		50	< ×	z
0 0 to 1 0			101	_	MG/KG	20		0 43	×	29		2	×	z
00000			116=		MG/KG	20		0 43	×	29		10	×	z
001020			13.7		MG/KG	20		0 43	×	29		ō.	×	z
00to 20			25≈		MG/KG	20		0 43	×	59		=		z
10 2			106		MG/KG	20		0.43	×	29		10	×	z
00100			8.7		MG/KG	20		0 43	×	59		01		z
00 to 10			4		MG/KG	20		0 43	×	59		10		z
00 to 10	ARSENIC		5.2	=	DMC/KG	20		0 43	×	59		10		2
00 to 10			- 6	=-	MG/KG	. 20		0 43	×	. 29		10		2
0 to 10	L		14.1	=======================================	9X/9M	20		0.43	×	59		01	×	z
0 0 to 1 0	.		29.2	li	MG/KG	20	×	0.43	×	58		01	×	>
0 0 to 1 0	Ł		8		MC/KG	20		0.43	×	29	×	9	×	>
0 to 10	ARSENIC		28.2		MG/KG	20	×	0 43	×	29		P	×	>
0.0000	ı		34 8		MG/KG	20		0.43	×	å	X	01	*	,
0 0 to 1 0	ı		4 30		MOVE	06		670	,	2 8		9	<,	
2	ARSENIC		38.6		MC/KG	202	×	0.43	×	2	×	Ç	×	\ \ \
0 0 00 1 0	1		0.75		MG/KG	20	ŀ	0.43	×	20	l	Ę	×	,
0 to 10			25.52		MG/KG	20	ŀ	0.43	×	a de		0	×	- >
00000	ARSENIC		16.3		MG/KG	20		0 43	×	2		100	×	Z
00000	ı		29.5	,	MG/KG	02	×	0 43	×	29	×	9	×	>
00000	1		461	,	MG/KG	202		0.43	×	200		ç	×	,
0 to 10	T		-		MG/KG	20		0.43	×	29	l	01		z
0 0 to 1 0	Г		618		MG/KG	23.4		550		1600		185		z
			43.5.1		MC/KG	22.5		550		160		185		2
0 0 0	MABILIM		51	ľ	MO/KO	A1.0		250		9		200		-
			10		MONO	234		OCC.		003,		000		z
0.000	DADILIA		121		MG/NG	*C2		066		0091		59		z
<u>.</u> [و	-		2/8		MC/AG	3 8		255		000		2 5		2
0 0 0	BAHIOM		82.7		MC/RG	300		OCC.		000		2		2
0 0 10 0	- 1		135		MG/KG	234		220		0091		165		z
0 0 0 0	DADILIM		200		MG/AG	534		200		1600		2 3		z
	-		118		MG/AG	234		000		200		2		2
0 0 0 0 0	-		121		MC/KC	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2		000		0091		2 5		2
0 0 0 0	- 1		10/		MG/KG	#C.7		020		1600		165		z ;
0 0 0 0	DENZENE		0.00		MG/KG			27 2		000		800		z
			0.00		MUNIC			2 2		600				z
	ı		O.O.		MG/KG			2 2		500		8 8		2
0000			- 2000		MOVAG		÷	27		3 8		200		z
0 0 to 1 0	Т		0000		MGAGG			200		600		200		z
0 1 0 1 0	1	ACENE	105	ľ	MG/KG	0.71	×	0 87	×			0	×	
0 0 0 0 0		ACENE	64	ľ	MC/KG	071	×	78.0	×	-	×	5	×	>
0 0 to 1 0	Г	ACENE	25.5		MG/KG	17.0	×	0.87	×	2	×	0	×	>
0 0 to 1 0	ı	ACENE	30		MG/KG	0.71	×	0.87	×	N	×	0.1	×	>
001020	ı	ACENE	66		MG/KG	17.0	×	28.0	×	R	×	0	×	>
001010	Г	ACENE	52		MG/KG	0.71	×	0.87	×	2	×	1.0	×	>
0 0 to 1 0	1	ACENE	7 05		MG/KG	0.71	×	0.87	×	N	×	5	×	>
0 0 to 1 0	ı	ACENE	15		MG/KG	0.71	×	0.87	×	8	×	10	×	>
0000	ı	ACENE	010		MG/KG	17.0		0.87		8		5	×	z
0 0 to 1 0	1	ACENE	0 16		MG/KG	17.0		0.87		2		-0	×	2
00 to 10		ACENE	37		MG/KG	0 71	×	0.87	×	N	×	0 1	×	٨
00 to 10		ACENE	0.085		MG/KG	0 71		0.87		2		0.1		z
0 0 to 1 0	BENZO(a)ANTHRACENE	ACENE	016J		MG/KG	17.0		0.87		2		0.1	×	z
0 0 to 1 25	10	ACENE	16		2000	2.0	>	Fac	>		,		,	
	ı				NO.	,,,	·	/B 0	`	7	Ý	5	\	-

P \147543\FU1_NE Screening Tables xts\Surface Soil

									RBC					
							Background	Direct	Oirect Exposure		GWP	Ecological	Criterion	Evendad
<u>s</u>	Station	Pepth Bange	Parameter	Concentration Qu	Qualifier Units	Value	Exceedance Flag	Value	Fing	Value	Flag	Value	Flag	Criteria Flag
88	SS65H		BENZO(a)ANTHRACENE	33=	MG/KG	170		0.87	×	~	×	0	×	>
65	SS65H	0	BENZO(a)ANTHRACENE	37 ≈	MG/KG	17.0		0.87	×	2	×,		Ŷ	\
65	SS65K		BENZO(a)ANTHRACENE	60 1	MG/KG	0 7	× ,	0.87	< >	7 6	< >	5	< ×	\
99	SSEE	001010	BENZO(a)ANTHRACENE	= 17.7	MOVE	0 71		0 87	< ×	2		0.1	×	>
99	3300E		DENZO(a)ANTHRACENE	2 67	MG/KG	17.0		0 87	×	2		0.1	×	٨
S C	E(10.2)	ı	BENZOIANTHRACENE	= 89 0	MG/KG	17.0		0.87		2		1 0	×	z
BRAC	SSIIA		BENZO(a)ANTHRACENE	58≈	MG/KG	0.71	×	0.87	×	~	×	0	×	<u> </u>
BRAC	SS6A	٥	BENZO(a)ANTHRACENE	0.45=	MG/KG	0.71		0.87		N	\ \ \		^	2 >
BRAC	SSBA		BENZO(a)ANTHRACENE	12=	MG/KG	0 71	×	0.87	×	7	Ŷ	0	, >	- >
BRAC	SSBA		BENZO(a)ANYHRACENE	12=	MG/KG	071		0.87	×	7	\ \	0	×	z
BRAC	SS9A	0000	BENZO(a)ANTHRACENE	0 150	MGKG	960	×	7800	×			0	×	
22	FS57A		BENZO(a)PYHENE	100	MOKO	960		0.087	×	-		0	×	>
200	55576	0.000	DENZO(3/F I NENE RENZO(3/PVRENE	26.5	MG/KG	960	×	0 087	×	8	×	0.1	×	>
i î	E8570		BENZO(a)PYRENE	29 5=	MG/KG	96 0		0 087	×	8	×	10	×	>
25	SBS7E	٥١٥	BENZO(a)PYRENE	=68	MG/KG	960	×	0 087	×	80	×	0	×	\
8	FS65A		BENZO(a)PYRENE	23=	MG/KG	96 0		0 087	×	Φ.	×	0.0	××	> ,
99	FS658	u	BENZO(a)PYRENE	7.75=	MGKG	960	×	280 O	×	æ	,	0	κ,	
65	SB65A	001010	BENZO(a)PYRENE	17=	MG/KG	960	×	0 087	×	200	×		Ŷ	- 2
65	SB65B		BENZO(a)PYRENE	U610	MG/KG	96 0		0 087	×,	***			,	2
89	SB65C	004010	BENZO(a)PYRENE	0 15 /	MG/KG	960	,	0.087	× ,	* (,		<>	2 >
65	SS65A	1 1	BENZO(a)PYRENE	= 29	MG/KG	96 0	×	0 087	×	***	Y	0	,	- z
65	SSe5B		BENZO(a)PYRENE	C 180 0	MG/KG	98.0		1800	,			-	*	z
65	SS65C		BENZO(a)PYRENE	0 163	MG/KG	50	,	1000	,		*		×	>
32	SSe5D		BENZO(a)PYRENE	16=	MONG	980	××	780.0	×		×	0	×	>
ξ,	SSeSE	0 0 to 1 0	BENZO(a)PYHENE	# I	MONO	980		0.087	×		×	0 1	×	>
92	SSESH	00100	BENZO(4)PYRENE	30=	MGKG	980	×	0.087			×	0	×	>
9	SSESH	- 1	BENZO(a)PYHENE		MGKG	50		0.087		ľ		0.1	×	>
3 3	10000		DENZ C(S)* 1 DEIVE	9	MG/KG	96.0		0 087	×	8		1.0	×	>
9	20000	0000	BENZO(a)P ThenC	17,	MG/KG	960		0 087		8		0 1	×	>
OVER	53005		DENZO(a)PYRENE	189	MG/KG	960		780 0		B		0 1	×	>
P P P	E(10.2)		BENZOIAIPYRENE	= 10	MG/KG	960		0 087	×	8		0.1	×	z
BRAC	SSIIA	1	BENZO(a)PYRENE	4 8=	MG/KG	0.96	×	0 087	İ	æ		0	×	>
BRAC	SS6A		BENZO(a)PYRENE	0 36 J	MG/KG	960		0 087		*	,	0	×,	z)
BHAC	SSBA		BENZO(a)PYRENE	12=	MGKG	960	×	180 0		* [À		×	,
HAC	SS8A	0 0 to 1 0	BENZO(a)PYRENE	= -	MGKG	0.60		0.087	À	0			×	2
BRAC		0 0 to 1 0	BENZO(a)PYRENE	0 150	MGAG	0.80		0.087	l	-		0	×	z
27	FS57A	- 6	BENZO(B)FLUCHANI MENE	3 -	MOKG	200	×	78.0		S		0	×	>
200	227.0	0000	BENZONET LIORANTHENE	152	MG/KG	60	×	0.87	×	5	×	0.1	×	>
5 2	200	1	BENZOWIFLUORANTHENE	27.5=	MG/KG	30		0.87		5	×	0 1	×	>
7.	SB57E		BENZO®JFLUORANTHENE	101	MG/KG	50	×	0.87		ŝ	×	0	×	>
65	FS65A		BENZO(b)FLUORANTHENE	25.5=	MG/KG	50		0.87	×	S	×	0 1	×	<u>-</u>
8	FSese	1	BENZO(b)FLUORANTHENE	86=	MG/KG	0		0.87		2	×	0.0	,	- ,
65	S865A		BENZO(b)FLUORANTHENE	21=	MG/KG	0		0.87	×	2	×	0	< ×	- 2
83	SB65B		BENZO(b)FLUORANTHENE	0217	MG/KG	٥		/80		1		, [<×	z
65	S865C		BENZO(b)FLUORANTHENE	0 16/3	MG/KG	3 3	,	200	,		×	6	×	: >
92	SS65A	- 1	BENZO(b)FLUORANTHENE	= 29	MGKG	0 0	\	0.87			<	010		z
8	SSess	- 1	BENZU(B)*LOURANIDENE	1 110	MOKO			0.87		\$		0 1	×	z
92	SS65C	001010	BENZO(B)*-LUOKANIHENE	2 1 2	MOMO		×	0.87		1	×	0	×	>
ر ا	2002	0000	DENZO(D)FLUCKARIA GENE DENZOAKEL LIODANTHENE		MCKG	50	×	0.87		2		0.1	×	Y
ر ا	1 E	0000	BENZO(D) FLUORANTHENE	32=	MG/KG	60		0 87	×	2	×	0 1	×	>
8 8	SSESH	0000	BENZO(b)FLUORANTHENE		MG/KG	60	×	0.87	×	2		0 1	×	>
99	SS65K	001010	BENZO(b)FLUORANTHENE		MG/KG	30		0.87	×		××	5	×>	, ,
99	SSee	001010	BENZO(b)FLUORANTHENE	= 9	MG/KG	0.0		0.87	×	25	×	0	\\	-}
99	SS66E	001010	BENZO(b)FLUORANTHENE	17.	MG/KG	ő	×	000	<	•			,	

TABLE L-1
Summary of Detected Parameters in Surface Soil at FU1 Compared to Background and Screening Level Values
Memphis Depot Main Installation R1

TABLE L-1
Summary of Detected Parameters in Surface Soil at FU1 Compared to Background and Screening Level Values
Memphis Depot Main Installation Ri

ጟ

P \147543\f'U1_NE Screening Tables xis\Surface Soil

_			100	_		-	ī	Т	1	1	1-	Т			_	<u>i</u>		٠,	- T	٠,	- 1		1		-	_	,		7	_	_	1	_		_	,	_	_	_,		_	,		_		_	_,		_	,	_	_	_	_	_,	- -	
		Exceeded	Criteria Fia	<u> </u>	2	<u>- </u>	<u>-</u> >	,	z	z	<u> </u>	>	>	٨	>	- J	٨	z	z	>	z	z	>	>	>	<u> </u>	-	- >	- -	z >	- 2	· }	ļ.	z	>	٨	>	>	>	, ,	,	- -	z	-	z	z	,	>	>	> ,	}	 	\ \ \	z	> :	z }	-
	Ecological	Criterion Exceedance	Flag	×	×	×,	<×	×	×	×	×	×	×	×	×	. ×	×	×	,	×		×	×	×	×	×	×,	< ×	\	×	*	×	×	×	×	×	×	×	×	×	\	\ \ \	<×	×		×	×	×	×	×>	,	\ <u>\</u>	×	×	×	×	××
		Ecological	Value	0	0 0	5 3	5	6	0	01	6	-0	0 1	0.1	0.1	0 1	0.1	0	-	0	0	-	0	0	0	5	5	5		5 6	ċ	¢	0	-	0 1	0 1	0 1	0	0	0	5		0	0	0	0.1	0 1	0 1	0	0	5 0	5	0	0 1	10	-	ç
		GWP	Flag				×	×																							ľ			l						-	1	1		×				×			Ì					1	+
		GWP	Value	S		n -	1	S.	ιά	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000	35000	32000	35000	32000	35000	32000	50025	35000	20000	2000	2000	32000	32000	32000	49	49	49	6	49	<u></u>	2 5	2 6	2 64	9	9	49	49	49	67	64	20	2 0	40	49	0.0	5	2 04
	Direct	Exposure Exceedance	Flag	×	>		×	×														1	1			1			†								×	×	×	×	†	†		×			×	×	×	××	+					+	× >
		•		0.87	0.87	0.00	0.87	0.87	0.87	230	230	230	230	230	230	230	230	530	230	230	230	230	230	230	230	530	052	030	000	230	0.6	230	230	530	B 7	8.7	87	782	8 7	87	20 0	40	7 8	48	48	8.7	8.7	8.7	8 7	8 7	2 0	0 6	8 7	8.7	K- 1	4 6	V 80
<u>. I</u>		Background	Flag	×	>	,	×	×			×	×	×	×	×	×	×		,	×			×	×	×	× ;	,	< ×		×		×	×		×	×	×	× ;	×	× ,	,	.		×			×	×	×	×	< ×	\ \}	×		×		× ×
		Background		60	500	500	60	60	60	28 0	0 82	0 82	0 82	0 82	0 82	0 82	0.82	0.82	0.82	0 82	0.82	0 82	0.82	0 82	0 82	0 82	0.00	0 0	200	28.0	0.80	0.82	0 82	0 82	0 78	0 78	0 78	0.78	0 78	0 78	0 /0	0 70	0 78	0 78	0.78	0.78	0.78	0.78	0 78	0 78	970	0 70	0.78	0.78	0.78	0 78	87.0
			_	MGKG	AGKG	ACKC.	MG/KG	AG/KG	AG/KG	AG/KG	AG/KG	AG/KG	AG/KG	AG/KG	MG/KG	AG/KG	AG/KG	AG/KG	MG/KG	AG/KG	/G/KG	MGKG	AG/KG	KG/KG	AGVKG	SANG SANG	MONG:	GARG	10 MO	MGAGG	10 MG	AG/KG	MG/KG	1G/KG	MG/KG	MG/KG	10/KG	#G/KG	KGVKG	MG/KG	Sex C	DOWN D	MG/KG	GWG	IG/KG	MG/KG	la/KG	MG/KG	G/KG	G/KG	SONG SONG	CAKE	MG/KG	G/KG	MG/KG	GAKG	MG/KG
			Zuallfler.							Ī			1			1																		-	_									_		~											
			Concentration	cul:	= 1 G	0 0	: 2	12=	0 15 J	C90	2	15.	4 15=	= 2	1505=	- 45a	16=	0 12	C 860 0	42=	0 062 J	011	12=	#8# = #	= 50=	# S		1 6 6	-070	1 C C	1.020	7.4=	71=	0111	115	-23	28 2=	32=	10	282	# 1 : 01 :		0 14.0	71=	0 073	0 16 J	16=	11	36=	42=	100	- 0	16=	0.64 =	44=	989	* 01 * 04 * 04
			Parameter																																																						
			4	BENZO(B)FLUORANTHENE	BENZO(b)FLOORAN I HENE BENZO(b)FLIOBANTHENE	BENZO(B) LOGANTHENE	BENZO(b)FLUORANTHENE	BENZO(b)FLUORANTHENE	BENZO(b)FLUORANTHENE	BENZO(g h I)PERYLENE	BENZO(g h) PERYLENE	BENZO(g h,)PERYLENE	BENZO(g h,ı)PERYLENE	BENZO(g h,t)PERYLENE	BENZO(g h.)PERYLENE	BENZO(g h i)PERYLENE	BENZO(g h,) PERYLENE	BENZO(g h.)PERYLENE	BENZO(g h)PERYLENE	BENZO(g h i) PEHYLENE	BENZO(g h.) PEHYLENE	BENZO(g h)PERYLENE	BENZO(g h I)PEHYLENE	BENZOIGNIPERTLENE	BENZO(g h, I)PEHYLENE	BENZOIG MINEHYLENE	BENZOIG BIJPERTENE	RENZO(G h.) PERVIENE	RENZO(a t operaviene	RENZOLO IL IPERVI ENE	RENZO(o h) PERY; ENF	BENZO(d h)PERYLENE	BENZO(q h)PERYLENE	BENZO(g,h,i)PERYLENE	BENZO(k)FLUORANTHENE	BENZO(k)FLUORANTHENE	BENZO(k)FLUORANTHENE	BENZO(k)FLUORANTHENE	BENZO(K)PLUOPANI HENE	BENZO(K)FLUORANTHENE	BENZO(K)FLOORANI HENE	SCNZO(A) LOCANIMENE	BENZO(K)FLUORANTHENE	BENZO(k)FLUORANTHENE	BENZO(k)FLUORANTHENE	BENZO(k)FLUORANTHENE	BENZO(k)FLUORANTHENE	BENZO(k)FLUORANTHENE	BENZO(k)FLUORANTHENE	BENZO(k)FLUORANTHENE	BENZO(K)FLOORANTHENE	BENZOWE LOCKANTHENE	BENZO(k)FLUORANTHENE	BENZO(k)FLUORANTHENE	BENZO(k)FLUORANTHENE	BENZO(K)PLUOMANI MENE	BENZO(K)FLUORANTHENE
		Depth	Т	٠,	0.000	Т	Т	Г	П	П				00000		ı	- 1	Т	- 1			01010	Ωļ,	- 1	- 1	Т	0000	Т	•			0 0 10 10			0		T	T	Т	Т	0.000	1	Т	0	٥		٠,	╗	۰	0010	1	Т		. ,	ᆈ	- [0000
		,	٤	T	55114	T	Γ		SS9A		FS57B	П		П	П	ì	T	1	1	T	T	T	T	T	T	10000	Т	F(10.2)	T	T		SSBA	SS8A	SS9A	FS57A		٦	T		FS65A	T	T		SS65A	П			╗	SSESH	T	3S66F	Τ	Т	П		SSSA	Ī
			-	_	BRAC			BRAC	BRAC	22	25	57		١		Ī			T	20		3 5	2	2	1	8 1		BRAC	0840			BRAC	BRAC	3RAC			22			Ī	8 4	T	Τ	Г		П	7	٦	92	65	Τ		Ϋ́	3PAC I	BRAC	200	BRAC

P \147543\FU1_NE Screening Tables xis\Surface Soit

	Property Property	·			_						_		
Parenty Pare	Parentine Date Da	ī			_	Rectoro		Direct		GWP	Ecological	Ecological Criterion	
RESTRICTION RESTRICT RESTRI		٦						Exceedance	GWP	Exceedance	Criterion	Exceedance	Exceeded Criteria Flag
REPUTLIAN REPUT	Comparison		FARMING OF LICE AND LICENSE	100	Ž	0 78			67			×	z
		Т	EBYLLIM	P 52E 0	MG/KG	=	16		63		-		z
REPUTLUM C		Т	EDV: 1 IM	2.15.3	MG/KG	×	16		63		-	×	>
REPUTLINA 0.931 WANG 111 19 19 11 11 11 11 11		П	MILLIA	1,120	MG/KG	-1	16		63		11		z
SECULIDAD CORP. MACCO LI LI LI LI LI LI LI L	SECTION SECT	1		0.34.1	MG/KG	+-	16		3		-		z
SECTION SECT	SECTION SECT			+ 02.0	MC ACC	-	14		2		-		z
Charles Char	Control Cont	- 1		- F-V C	OWOM.		18		59		Ξ		z
Committed Comm	Colonial	-1	EKYLLIUM	0 4 0	MONG				3 (5		•		2
SECTION SECT	RESTITUAN Cold Marco		ERYLLIUM	0.47.5	MC/KG	1.1	91		3				
SECTION Cold	SECULIAN CORP. C		ERYLLIUM	0.49(J	MG/KG	1 1	16		<u> </u>		-		ż
SERVILLAM C C C C C C C C C			ERYLLIUM	U150	MG/KG	-	16		63		11		z
BESTILLIAN C C C C C C C C C	SECTION CONTINUE	1		1880	MGMG	1.7	16		63		1.1		z
	SECTION COLD	- 1	בטורדוסש		0,000		4		53		-		z
SECTION C C C C C C C C C	Committee Comm	- 1	EHYLLIUM	0.00	MONG								2
BERNILLIM	Committee Comm	- 1	EAYLLIUM	0.47J	MC/KG	1.	16		2		-		2
			ERYLLIUM	rso .	MG/KG	=======================================	- 16		63		1.1		z
	BESTILLIAN Cold.	ŀ	FBVIIRIM	0.523	MG/KG	1.1	16		E9		-		z
		П		67.0	ONON		16		2		-		z
BECHNOLOGY PRIMALATE	BEACH BEAC	- 1	EHYLLIUM	0 400	MONG						1		
Decoration Dec			ERYLLIUM	0.433	MC/KG	1.1	91		2				•
DIACETRIVERSIXI) PHYMALITE 0.006/J. MCKKG 46 3800 0.1 DIACETRIVERSIXI) PHYMALITE 0.01/J. MCKKG 46 3800 0.1 DIACETRIVERSIXI) PHYMALITE 0.01/J. MCKKG 46 3800 0.1 DIACETRIVERSIXI) PHYMALITE 0.01/J. MCKKG 1.1 0.2 0.1 DIACETRIVERSIXI) PHYMALITE 0.01/J. MCKKG 1.4 0.2 0.1 DIACETRIVERSIXI PHYMALITE 0.01/J. MCKKG 1.4 0.2 0.1 DIACETRIVERSIXI PHYMALITE 0.01/J. MCKKG 1.4 0.2 0.1 DIACETRIVERSIXI PHYMALITE 0.01/J. MCKKG 1.4 0.2 0.1 DIACETRIANE 0.01/J. MCKKG 1.4 0.2 0.1 0.1 DIACHARIAN 0.02/J. MCKKG 1.4 0.7 0.6 1.1 DIACHARIAN 0.02/J. MCKKG 1.4 0.7 0.6 1.1 DIACHARIAN 0.02/J. MCKKG 1.4 <t< td=""><td> </td><td>Г</td><td>B(2-ETHYLHEXYL) PHTHALATE</td><td>0.064.3</td><td>MG/KG</td><td></td><td>46</td><td></td><td>3600</td><td></td><td>0 1</td><td></td><td>z</td></t<>		Г	B(2-ETHYLHEXYL) PHTHALATE	0.064.3	MG/KG		46		3600		0 1		z
WIGE PRIVILEXYD, PRIRALALY E 0 3 1	March Marc	Т	A CTUS LCYVI) DUTUALATE	1 100 0	MGMG		46		3600		10		z
Section Sect	CADEMINAL CADE		SIZ EIMICHEATL) PHIRMLAIE	C OCCO O	DUA SU				2000			^	,
Description Description	Particular Par		IS(2-ETHYLHEXYL) PHIMALALE	0.313	MUNIC		9		congo				- :
RECHONDELINAME 0.91.3 MCKG 14 30.0 0.91 RECHONDELINAME 0.007.3 MCKG 1.4 7.8 0.00 1.6 CADMUIN 1.007.3 MCKG 1.4 7.8 0.00 1.6 CADMUIN 0.007.3 MCKG 1.4 7.8 0.00 1.6 CADMUIN 0.007.3 MCKG 1.	Description Description		IS(2-ETHYLHEXYL) PHTHALATE	011	MG/KG		46		3900		5		2
Decomposition Decompositio	BRONDAGE FHANE 0 0002-J MARYG 11 0 2 BRONDAGE FHANE 0 0002-J MARYG 14 7 8 8 1 6 BRONDAGE FHANE 0 0002-J MARYG 14 7 8 8 1 6 BRONDAGE FHANE 0 0002-J MARYG 14 7 8 8 1 6 CADMAUM 1 1863- MARYG 14 7 8 8 1 6 CADMAUM 1 2863- MARYG 14 7 8 8 1 6 CADMAUM 1 2863- MARYG 14 7 8 8 1 6 CADMAUM 0 281- MARYG 14 7 8 8 1 6 CADMAUM 0 281- MARYG 14 7 8 8 1 6 CADMAUM 0 281- MARYG 14 7 8 8 1 6 CADMAUM 0 281- MARYG 14 7 8 8 1 6 CADMAUM 0 281- MARYG 14 7 8 8		A 10 STHVI HEXVI I PHIHAI ATF	0.31.3	MC/KG		46		3600		-0	×	>
SECONOME FRANCE CODE MONCO CODE MONCO CODE MONCO CODE MONCO CODE MONCO CODE MONCO CODE MONCO CODE CODE MONCO CODE CODE MONCO CODE CODE CODE MONCO CODE	PACKOMENTANE				0.20				5				z
READMONETTAME	Second-Circuit Seco		ROMOMETHANE	0.000	MUNIC				3				:
SCHONICHI SCHOOL MACHO SCHOOL	Declaration Declaration		ROMOMETHANE	0 002	MG/KG		11		0.2				2
CADMINA 0 305 J MANCE 14 7 8 9 1 6 CADMINA 1 285 J MANCE 14 7 8 8 1 6 CADMINA 1 285 J MANCE 14 7 8 8 1 6 CADMINA 1 285 J MANCE 1 4 7 8 8 1 6 CADMINA 1 285 J MANCE 1 4 7 8 8 1 6 CADMINA 1 285 J MANCE 1 4 7 8 8 1 6 CADMINA 1 285 J MANCE 1 4 7 8 8 1 6 CADMINA 1 285 J MANCE 1 4 7 8 8 1 6 CADMINA 1 285 J MANCE 1 4 7 8 8 1 6 CADMINA 1 285 J MANCE 1 4 7 8 8 1 6 CADMINA 1 285 J MANCE 1 4 7 8 8 1 6 CADMINA 1 285 J MANCE 1 4 7 8 <	COORDINA COORDINA	ı	ROMOMETHANE	r 200 0	MG/KG	_			020				Z
CADOMINA CADOMIN	CADMINION 1 286 14 7 8 8 16 CADMINION 0 251 MONCO 14 7 8 8 16 CADMINION 0 251 MONCO 14 7 8 8 16 CADMINION 0 251 MONCO 14 7 8 8 16 CADMINION 0 252 MONCO 14 7 8 8 16 CADMINION 0 252 MONCO 14 7 8 8 16 CADMINION 0 252 MONCO 14 7 8 8 16 CADMINION 0 252 MONCO 14 7 8 8 16 CADMINION 0 252 MONCO 14 7 8 8 16 CADMINION 0 252 MONCO 14 7 8 8 16 CADMINION 0 252 MONCO 14 7 8 8 16 CADMINION 0 252 MONCO 14 7 8 8 16	1	ADEMIN	0 305 1	MGMG	7.	7.8		~		16		z
CADMIMM COSMILM CADMIMM COSMILM COSMILM <t< td=""><td> COMMINA COMM</td><td>-</td><td></td><td>100</td><td>2/2/2/4</td><td></td><td>7.0</td><td></td><td>•</td><td></td><td>16</td><td></td><td>z</td></t<>	COMMINA COMM	-		100	2/2/2/4		7.0		•		16		z
CADMILIM CADMILIM T 2 MARKG 1 4 T 8 T 6 CADMILIM CADMILIM T 2 MARKG 1 4 T 8 T 6 CADMILIM CADMILIM T 3 MARKG 1 4 T 8 T 6 CADMILIM CADMILIM T 3 MARKG 1 4 T 8 T 6 CADMILIM CADMILIM T 3 MARKG 1 4 T 8 T 6 CADMILIM CADMILIM T 3 MARKG 1 4 T 8 T 6 CADMILIM T 3 MARKG 1 4 T 8 T 6 T 6 CADMILIM T 3 MARKG 1 4 T 8 T 6 T 6 CADMILIM T 3 MARKG 1 4 T 8 T 6 T 6 CADMILIM T 3 MARKG 1 4 T 8 T 6 T 6 CADMILIM T 3 MARKG T 4 T 8 T 6 T 6	CACHMIM CACHMIM 1 28-1 MAKAG 1 4 7 8 8 1 8 CACHMIM 1 28-1 MAKAG 1 4 X 7 8 8 1 6 X CACHMIM 0 28-1 MAKAG 1 4 X 7 8 8 1 6 X CACHMIM 0 28-1 MAKAG 1 4 X 7 8 8 1 6 X CACHMIM 0 28-1 MAKAG 1 4 X 7 8 8 1 6 X CACHMIM 0 28-1 MAKAG 1 4 X 8 1 6 X 1 6 CACHMIM 0 28-1 MAKAG 1 4 X 8 1 6 X 1 6 CACHMIM 0 28-1 MAKAG 1 4 X 8 1 6 1 6 X CACHMIM 0 28-1 MAKAG 1 4 X 8 8 1 6 1 6 CACHMIM 0 28-1 MAKAG 1 4 X 8 1 6 1 6 1 6 CACHMIM 0 28-1 MAKAG 1 4 </td <td>- 1</td> <td>ADMICIM</td> <td>± C97 1</td> <td>MG/NG</td> <td>-</td> <td></td> <td></td> <td>•</td> <td></td> <td>1</td> <td></td> <td></td>	- 1	ADMICIM	± C97 1	MG/NG	-			•		1		
CADDALIAM 1/2 = MACKG 1/4 7 B B 1 G CADDALIAM 0 2/3 MACKG 1/4 7 B B 1 G CADDALIAM 0 2/3 MACKG 1/4 7 B B 1 G CADDALIAM 0 2/3 MACKG 1/4 7 B B 1 G CADDALIAM 0 2/3 MACKG 1/4 7 B B 1 G CADDALIAM 0 2/3 MACKG 1/4 7 B B 1 G CADDALIAM 0 2/3 MACKG 1/4 7 B B 1 G CADDALIAM 0 2/3 MACKG 1/4 7 B B 1 G CADDALIAM 0 2/3 MACKG 1/4 7 B B 1 G CADALIAM 0 2/3 MACKG 1/4 7 B B 1 G CADALIAM 0 2/3 MACKG 1/4 7 B B 1 G CADALIAM 0 2/3 MACKG 1/4 7 B B 1 G CADALIAM 0 2/3 MACKG 1/4 7 B B 1	COLONIALM 0 27 9 MCMC 14 X 7 8 16 COLONIALIA 0 27 9 MCMC 14 X 7 8 16 X COLONIALIA 0 28 9 MCMC 14 X 7 8 16 X COLONIALIA 0 28 9 MCMC 14 X 7 8 16 X COLONIALIA 0 28 9 MCMC 14 X 7 8 8 16 X COLONIALIA 0 28 9 MCMC 14 X 9 8 16 X COLONIALIA 0 28 9 MCMC 14 X 9 8 16 X CADRIANA 0 28 9 MCMC 14 X 9 8 16 16 CADRIANA 0 28 9 MCMC 14 X 9 8 16 16 CADRIANA 0 28 9 MCMC 14 X 9 8 16 16 CADRIANA 0 28 9 MCMC 14 X		ADMIUM	0.293	MG/KG		7.8		80	-	16		z
CADMINIM CADMINIM CADMINIM 7.9 89 1.6 CADMINIM CADMINIM 0.93=1 MGKG 1.4 7.8 8 1.6 CADMINIM CADMINIM 0.93=1 MGKG 1.4 7.8 8 1.6 CADMINIM 0.93=1 MGKG 1.4	CODINUIAN CODINIAN 0 0 2 J. MCMC 14 X 7 8 16 X CADDIALIA CADDIALIA 0 0 2 J. MCMC 1 4 X 7 8 8 1 6 X CADDIALIA CADDIALIA 0 0 2 J. MCMC 1 4 X 7 8 8 1 6 X CADDIALIA 0 0 2 J. MCMC 1 4 X 7 8 8 1 6 X CADDIALIA 0 0 2 J. MCMC 1 4 X 8 8 1 6 X CACDIALIA 0 0 2 J. MCMC 1 4 X 8 8 1 6 X CACDIALIA 0 0 2 J. MCMC 1 4 X 8 8 1 6 X 1 6 CACDIALIA 0 0 2 J. MCMC 1 4 X 8 1 6 1 6 X 1 6 X 1 6 X 1 6 X 1 6 X 1 6 X 1 6 X 1 6 X 1 6 X 1 6 X <t< td=""><td>1</td><td>ANMILIM</td><td>12=</td><td>MG/KG</td><td>14</td><td>7.8</td><td></td><td>80</td><td></td><td>+ 6</td><td></td><td>z</td></t<>	1	ANMILIM	12=	MG/KG	14	7.8		80		+ 6		z
CACIONALIAN CALCIUM	CAUGINALIA CAUGINA	ŀ	A CAPACITA	1,000	02000		7.8		*		1 6		z
CADMINA CADM	CADMIUM CADMIUM 0 881 = 10 MORG 1 4 7 8 8 1 6 CADMIUM CADMIUM 0 120	1	AUMION	0170	0,000)			ľ		3 +	>	>
CADMIUM CADMIUM 0.95 MAKKG 1.4 7.8 8 CADMIUM 0.93 MAKKG 1.4 7.8 6 CADMIUM 0.93 MAKKG 1.4 7.8 8 CALCIUM 0.93 M	CACIDILIAN CACIDILIAN 0 85 1 4 7 8 8 1 6 CACIDILIAN 0 92 MARKG 1 4 7 8 8 1 6 CACIDILIAN 0 0 92 MARKG 1 4 7 8 8 1 6 CACINILIAN 0 0 91 MARKG 1 4 7 8 8 1 6 CADRILLIA CACINILIAN 0 0 91 MARKG 1 4 7 8 8 1 6 CADRILLIA CACINILIAN 0 0 91 MARKG 1 4 7 8 8 1 6 CADRILLIA 0 0 91 MARKG 1 4 7 8 8 1 6 CADRILLIA 0 0 92 MARKG 1 4 7 8 8 1 6 CADRILLIA 0 0 92 MARKG 1 4 7 8 8 1 6 CADRILLIA 0 0 92 MARKG 1 4 7 8 8 1 6 CALCIUM 0 0 92 MARKG 1 4 7 8 8 1 6 CALCIUM 1 8	1	ADMIUM	4.1=	MG/KG	14 X	8 /		ø			,	-
CADMIUM 0 83= MCKG 14 78 8 CADMIUM 0 12J MCKG 14 78 8 CADMIUM 0 22J MGKG 14 78 8 CADMIUM 0 22J MGKG 14 78 8 CADMIUM 0 32J MGKG 5840 X	CADDANIAH CADDANIAH CADBANIAH COSS 14 78 8 16 CADDANIAH COSSI MACKG 14 78 8 16 CADDANIAH CADDANIAH COSSI 14 78 8 16 CADDANIAH CADDANIAH COSSI 14 78 8 16 CADDANIAH CADRIANA COSSI 14 78 8 16 CADMIANA CADRIANA COSSI 14 78 8 16 CADMIANA CADRIANA COSSI MACKG 14 78 8 16 CADMIANA CADRIANA COSSI MACKG 14 78 8 16 CADMIANA CADRIANA CADRIANA MACKG SBAD X 16 16 CADMIANA CADRIANA CADRIANA MACKG SBAD X 16 16 CADRIANA CADRIANA MACKG SBAD X 16 16 16<		ADMIUM	= 26 0	MG/KG	7	7.8		8 0		16		z
CACAMIUM CACAMIUM 0 12 J. MCMG. 1 4 7 8 8 CACAMIUM CACAMIUM 0 31 J. MGAG. 1 4 7 8 8 1 CACAMIUM 0 31 J. MGAG. 1 4 7 8 8 1 CACAMIUM 0 31 J. MGAG. 1 4 7 8 8 1 CACAMIUM 0 23 J. MGAG. 1 4 7 8 8 1 CACAMIUM 0 23 J. MGAG. 1 4 7 8 8 1 CACAMIUM 0 23 J. MGAG. 1 4 7 8 8 1 CACAMIUM 0 23 J. MGAG. 1 4 7 8 8 1 CACAMIUM 0 23 J. MGAG. 1 4 7 8 8 1 CACAMIUM 0 23 J. MGAG. 1 4 7 8 8 1 CACAMIUM 0 23 J. MGAG. 1 4 7 8 8 1 CACAMIUM 0 23 J. MGAG. 5840	CADMILIA CADMILIA 7 B B 1 G CADMILIA CADMILIA 7 B B 1 G CADMILIA CADMILIA 7 B B 1 G CADMILIA CADMILIA 7 B B 1 G CADMILIA CADMILIA 7 B B 1 G CADMILIA CADMILIA 7 B B 1 G CADMILIA CADMILIA 7 B B B 1 G CADMILIA CADMILIA 7 B B B 1 G CADMILIA CADMILIA 7 B B B 1 G CADMILIA CADMILIA 7 B B B 1 G CADMILIA CADMILIA CADMILIA T B B 1 G CADMILIA CADMILIA T B T B B T G CADMILIA T B T B B T G B T G CADMILIA T B T B T B B T B B T	ı	BOLAH BA	= 66 0	MOKG	41	7.8		8		16		z
CACAMIUM CACAMIUM 0.23 J MGKG 1.4 7.8 8 1 CACAMIUM 0.23 J MGKG 1.4 7.8 8 1 CACAMIUM 0.24 J MGKG 1.4 7.8 8 1 CACAMIUM 0.24 J MGKG 1.4 7.8 8 1 CACAMIUM 0.24 J MGKG 1.4 7.8 8 1 CACAMIUM 0.23 J MGKG 1.4 7.8 8 1 CACAMIUM 0.23 J MGKG 1.4 7.8 8 1 CACAMIUM 0.23 J MGKG 1.4 7.8 8 1 CACAMIUM 0.23 J MGKG 1.4 7.8 8 1 CACAMIUM 0.02 J MGKG 1.4 7.8 8 1 CACAMIUM 0.02 J MGKG 5840 7.8 8 1 CACAMIUM 0.02 J MGKG 5840 X 2<	CADMINIM CADMINIM 0 12 JI MANCG 1 4 7 8 8 1 6 CADMINIM CADMINIM 0 13 JI MANCG 1 4 7 8 8 1 6 CADMINIM 0 13 JI MANCG 1 4 7 8 8 1 6 CADMINIM 0 13 JI MANCG 1 4 7 8 8 1 6 CADMINIM 0 13 JI MANCG 1 4 7 8 8 1 6 CADMINIM 0 13 JI MANCG 1 4 7 8 8 1 6 CADMINIM 0 10 JI MANCG 1 4 7 8 8 1 6 CADMINIM 0 10 JI MANCG 1 4 7 8 8 1 6 CADMINIM 0 10 JI MANCG 1 4 7 8 8 1 6 CADMINIM 0 10 JI MANCG 1 4 7 8 8 1 6 CALCINA 1 4 7 8 8 1 6 1 6 CALCINA 1 4 7 8 8	Т	MOIMOU		0,20		-		•				Z
CACAMIUM 0.32J MGKG 14 7 8 8 CACAMIUM 0.32J MGKG 1.4 7 8 8 1 CACAMIUM 0.32J MGKG 1.4 7 8 8 1 CACAMIUM 0.32J MGKG 1.4 7 8 8 1 CACAMIUM 0.22J MGKG 1.4 7 8 8 1 CACUMUM 0.02J MGKG 1.4 7 8 8 1 CACUMUM 0.02J MGKG 5840 X 7 8 8 1 CACUMUM 0.02J MGKG 5840 X 7 8 8 1 CACUMUM 0.02J MGKG 5840 X	CADMILIM CADMILIM 0 28J MIGNG 1 4 7 8 8 1 6 CADMILIA 0 31J MIGNG 1 4 7 8 8 1 6 CADMILIA 0 32J MIGNG 1 4 7 8 8 1 6 CADMILIA 0 32J MIGNG 1 4 7 8 8 1 6 CADMILIA 0 23J MIGNG 1 4 7 8 8 1 6 CADMILIA 0 23J MIGNG 1 4 7 8 8 1 6 CADMILIA 0 23J MIGNG 1 4 7 8 8 1 6 CADMILIA 0 05J MIGNG 1 4 7 8 8 1 6 CADMILIA 0 05J MIGNG 1 4 7 8 8 1 6 CADMILIA 0 05J MIGNG 1 4 7 8 8 1 6 CADMILIA 0 05J MIGNG 1 4 7 8 8 1 6 CADMILIA 0 05J MIGNG 840 7		ADMIUM	0.127	MG/AL	4	9		٥				2
CADMUM 0 31 J MGKG 14 7 8 8 1 CADMIUM 0 4 J MGKG 1 4 7 8 8 1 CADMIUM 0 4 J MGKG 1 4 7 8 8 1 CADMIUM 0 22 J MGKG 1 4 7 8 8 1 CADMIUM 0 22 J MGKG 1 4 7 8 8 1 CADMIUM 0 22 J MGKG 1 4 7 8 8 1 CADMIUM 0 0 2 J MGKG 1 4 7 8 8 1 CADMIUM 0 0 2 J MGKG 1 4 7 8 8 1 CADMIUM 0 0 2 J MGKG 1 4 7 8 8 1 CADMIUM 0 0 2 J MGKG 5840 X 8 1 CALCIUM 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CADMIUM COMMUNA 0.83 J. MCMC 1.4 7.8 8 1.6 CADMIUM 0.83 J. MCKG 840 X 8 1.6 CADMIUM 1.4400 L. MCKG 840 X 8 1.6 CADMIUM 1.4400 L. MCKG 840 X 8 1.6 CADMIUM 1.4400 L. MCKG 840 X<		ADMIUM	0.28	MG/KG	1.4	7.8		æ		1 6		z
CACMIUM CACMIUM 0 35 MCMC 1 4 7 8 8 1 CACMIUM CACMIUM 0 35 MAGKG 1 4 7 8 8 1 CACMIUM CACMIUM 0 22 MAGKG 1 4 7 8 8 1 CACMIUM 0 22 MAGKG 1 4 7 8 8 1 CACMIUM 0 22 MAGKG 1 4 7 8 8 1 CACMIUM 0 22 MAGKG 1 4 7 8 8 1 CACMIUM 0 35 MAGKG 1 4 7 8 8 1 CACMIUM 0 35 MAGKG 1 4 7 8 8 1 CACMIUM 1 4000 MAGKG 5840 X 8 1 CALCIUM 1 4000 MAGKG 5840 X 8 1 CALCIUM 1 4000 MAGKG 5840 X 8 1 CALCIUM 1 4000 MAGKG 5840	CACMIUM CACMIUM <t< td=""><td>ı</td><td>ADMIRM</td><td>031J</td><td>MG/KG</td><td>1.4</td><td></td><td></td><td>B</td><td></td><td>16</td><td></td><td>z</td></t<>	ı	ADMIRM	031J	MG/KG	1.4			B		16		z
CACAMIUM CACAMIUM 7 B 6 B 1 CACAMIUM 0.43 J MGAKG 1.4 7 B 8 1 CACAMIUM 0.22 J MGKG 1.4 7 B 8 1 CACAMIUM 0.22 J MGKG 1.4 7 B 8 1 CACAMIUM 0.22 J MGKG 1.4 7 B 8 1 CACAMIUM 0.23 J MGKG 1.4 7 B 8 1 CACAMIUM 0.05 J MGKG 1.4 7 B 8 1 CACAMIUM 0.05 J MGKG 1.4 7 B 8 1 CACAMIUM 0.05 J MGKG 1.4 7 B 8 1 CACAMIUM 0.05 J MGKG 1.4 7 B 8 1 CACAMIUM 0.05 J MGKG 5840 X 7 8 1 1 CALCIUM 1.2000 = MGKG 5840 X 2 2	CACAMIUM 0 43 MGAKG 1 4 7 8 8 1 6 CACAMIUM 0 43 MGAKG 1 4 7 8 8 1 6 CACAMIUM 0 223 MCKG 1 4 7 8 8 1 6 CACAMIUM 0 223 MCKG 1 4 7 8 8 1 6 CACAMIUM 0 023 MCKG 1 4 7 8 8 1 6 CACAMIUM 0 024 MCKG 1 4 7 8 8 1 6 CACAMIUM 0 025 MCKG 1 4 7 8 8 1 6 CACAMIUM 0 024 MCKG 1 4 7 8 8 1 6 CACAMIUM 1 4 7 8 8 1 6 1 6 CACAMIUM 1 4 7 8 8 1 6 1 6 CACAMIUM 1 4 7 8 8 1 6 1 6 CACACIUM 1 4 7 8 8 1 6 1 6 CALCIUM 1 550 MCKG <td>П</td> <td>A DEAD MA</td> <td>0.35</td> <td>MCKG</td> <td>1.4</td> <td></td> <td></td> <td>•</td> <td></td> <td>1.6</td> <td></td> <td>z</td>	П	A DEAD MA	0.35	MCKG	1.4			•		1.6		z
CADMILIAN CADMILIAN 0 423 MGAKG 1 4 7 8 8 1 1 1 1 1 1 1 1	CACIONAL CANADINA CACIONAL CANADINA CACIONAL CANADINA CACIONAL CANADINA CACIONAL CANADINA CACIONAL CALCINA CACIO	1		-	0,000		1 4 0		۵		7		z
CADMIUM CADMIUM 0.43.3 MGKG 1.4 7 B 8 1 CADMIUM 0.23.4 MGKG 1.4 7 B 8 1 CADMIUM 0.23.4 MGKG 1.4 7 B 8 1 CADMIUM 0.23.4 MGKG 1.4 7 B 8 1 CADMIUM 0.03.5 MGKG 1.4 7 B 8 1 CADMIUM 0.03.5 MGKG 1.4 7 B 8 1 CADMIUM 0.03.5 MGKG 1.4 7 B 8 1 CALCIUM 0.07.5 MGKG 5840 X 7 8 1 CALCIUM 1.24000 = MGKG 5840 X 1 1 1 CALCIUM 1.2500 = MGKG 5840 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CADMIUM CADMIUM 0 28 J MGKG 1 4 7 8 8 1 9 CADMIUM 0 28 J MGKG 1 4 7 8 8 1 6 CADMIUM 0 28 J MGKG 1 4 7 8 8 1 6 CADMIUM 0 38 J MGKG 1 4 7 8 8 1 6 CADMIUM 0 08 J MGKG 1 4 7 8 8 1 6 CADMIUM 0 08 J MGKG 1 4 7 8 8 1 6 CADMIUM 0 08 J MGKG 1 4 7 8 8 1 6 CADMIUM 0 08 J MGKG 840 X 8 1 6 CALCIUM 1 08 J MGKG 840 X 8 1 6 CALCIUM 1 08 J MGKG 840 X 1 6 1 6 CALCIUM 1 1 0 0 0 J MGKG 840 X 0 6 X CALCIUM 1 1 0 0 0 J MGKG 840 X	١,	AUMIUM	7	NO.								2
CADMILIAM 0.223 J. MACKG 1.4 7.8 8 1 CADMILIAM 0.233 J. MACKG 1.4 7.8 8 1 CADMILIAM 0.053 J. MACKG 1.4 7.8 8 1 CADMILIAM 0.054 J. MACKG 1.4 7.8 8 1 CADMILIAM 0.073 J. MACKG 1.4 7.8 8 1 CALCIUM 1.34000 = MACKG 5840 X 8 1 CALCIUM 1.24000 = MACKG 5840 X 8 1 CALCIUM 1.2500 = MACKG 5840 X 8 1 CALCIUM 1.2500 = MACKG 5840 X 8 1 CALCIUM 1.2500 = MACKG 5840 X 8 1 CALCIUM 1.2500 = MACKG 5840 X 8 1 CALCIUM 1.550 = MACKG 5840 X	CADMILIM 0 22 J MCKG 14 7 8 8 16 CADMILIM 0 22 J MCKG 1 4 7 8 8 16 CADMILIM 0 36 J MGKG 1 4 7 8 8 1 6 CADMILIM 0 05 J MGKG 1 4 7 8 8 1 6 CADMILIM 0 05 J MGKG 1 4 7 8 8 1 6 CADMILIM 0 07 J MGKG 1 4 7 8 8 1 6 CADMILIM 0 07 J MGKG 5840 X 8 1 6 CALCIUM 141000 = MGKG 5840 X 8 1 6 CALCIUM 12100 = MGKG 5840 X 8 1 6 CALCIUM 2300 = MGKG 5840 X 8 1 6 CALCIUM 2300 = MGKG 5840 X 8 1 6 CALCIUM 230 = MGKG 5840 X 8 <th< td=""><td></td><td>ADMIUM</td><td>0.43(3)</td><td>MG/KG</td><td>1.4</td><td>7.8</td><td></td><td>2</td><td></td><td>~</td><td></td><td>Z</td></th<>		ADMIUM	0.43(3)	MG/KG	1.4	7.8		2		~		Z
CADMIUM 0 23 J MGNG 1 4 7 8 8 1 CADMIUM 0 36 J MGNG 1 4 7 8 8 1 CADMIUM 0 03 J MGNG 1 4 7 8 8 1 CADMIUM 0 03 J MGNG 1 4 7 8 8 1 CADMIUM 0 03 J MGNG 1 4 7 8 8 1 CADMIUM 0 03 J MGNG 1 4 7 8 8 1 1 CADMIUM 0 03 J MGNG 1 4 7 8 8 1 1 CALCIUM 1 4 4 7 8 8 1 <td>CADMIUM 0.23 J MGKG 1.4 7.6 6 1.6 1.6 CADMIUM 0.03 J MGKG 1.4 7.8 8 1.6 1.6 CADMIUM 0.05 J MGKG 1.4 7.8 8 1.6 1.6 CADMIUM 0.07 J MGKG 1.4 7.8 8 1.6 1.6 CADMIUM 0.07 J MGKG 1.4 7.8 8 1.6 1.6 CADMIUM 0.07 J MGKG 1.4 7.8 8 1.6 1.6 CADMIUM 0.07 J MGKG 5840 X 7 8 1.6 1.6 CALCIUM 1.44000 = MGKG 5840 X 1.6</td> <td></td> <td>ADMIUM</td> <td>0 22 J</td> <td>MG/KG</td> <td>4</td> <td>7.8</td> <td></td> <td>æ</td> <td></td> <td>16</td> <td></td> <td>z</td>	CADMIUM 0.23 J MGKG 1.4 7.6 6 1.6 1.6 CADMIUM 0.03 J MGKG 1.4 7.8 8 1.6 1.6 CADMIUM 0.05 J MGKG 1.4 7.8 8 1.6 1.6 CADMIUM 0.07 J MGKG 1.4 7.8 8 1.6 1.6 CADMIUM 0.07 J MGKG 1.4 7.8 8 1.6 1.6 CADMIUM 0.07 J MGKG 1.4 7.8 8 1.6 1.6 CADMIUM 0.07 J MGKG 5840 X 7 8 1.6 1.6 CALCIUM 1.44000 = MGKG 5840 X 1.6		ADMIUM	0 22 J	MG/KG	4	7.8		æ		16		z
CADMIUM CADMIUM 0.05/J MGNG 1.4 7 B B 1 GADMIUM CADMIUM 0.05/J MGNG 1.4 7 B B 1 GADMIUM 0.05/J MGNG 1.4 7 B B 1 1 GADMIUM 0.07/J MGNG 1.4 7 B B 1 1 GALCIUM 1.34000 MGNG 5840 X B 1 1 CALCIUM 1.24000 MGNG 5840 X B 1 1 CALCIUM 1.2500 MGNG 5840 X B 1 1 CALCIUM 1.2500 MGNG 5840 X B 1 1 CALCIUM 1.5501 MGNG 5840 X B 1 1 CALCIUM 1.5501 MGNG 5840 X B 1 1 CALCIUM 1.5501 MGNG 5840 B 1	CADMILMA 0 36 J MGKG 1 4 7 8 8 1 6 CADMILLIA 0 05 J MGKG 1 4 7 8 8 1 6 CADMILLIA 0 05 J MGKG 1 4 7 8 8 1 6 CADMILLIA 0 07 J MGKG 1 4 7 8 8 1 6 CADMILLIA 0 07 J MGKG 5840 X 8 1 6 CALCIUM 14400 I MGKG 5840 X 8 1 6 CALCIUM 15200 I MGKG 5840 X 1 6 1 6 CALCIUM 1520 I MGKG 5840 X 1 6 1 6 CALCIUM 1550 I MGKG 5840 X 1 6 1 6 CALCIUM 1550 I MGKG 5840 X 1 6 1 6 CALCIUM 1550 I MGKG 5840 X 1 6 X CALCIUM 1550 I MGKG 5840 X I 6 <td>T</td> <td>SONAIRMA</td> <td>1,50</td> <td>MCKC</td> <td>7 1</td> <td>7.8</td> <td></td> <td>8</td> <td></td> <td>16</td> <td></td> <td>z</td>	T	SONAIRMA	1,50	MCKC	7 1	7.8		8		16		z
CADMILIMA CADMILIMA 0.0045 MGAKG 1.4 7.8 8 1 CADMILIMA 0.0073 MGAKG 1.4 7.8 8 1 CALCIUM 1.44000 = MGAKG 5840 X 7 8 CALCIUM 1.21000 = MGAKG 5840 X 8 1 CALCIUM 1.500 = MGAKG 5840 X 8 1 CALCIUM 1.500 = MGAKG 5840 X A A CALCIUM 1.500 = MGAKG 5840 A A A CALCIUM 1.500 = MGAKG 5840 A A A CALCIUM 1.500 = MGAKG 5840 A	CACIONINA CACIONINA CACIONINA F B F B F B CACIONILIA 0 05 J MGKG 14 7 B B 16 CACIONILIA 0 05 J MGKG 14 7 B B 1 B CACIONIA 0 05 J MGKG 14 7 B B 1 B CACIONIA 134000 = MGKG 840 X B 1 B CACIONIA 144000 = MGKG 8840 X B 1 B CALCIUM 1820 = MGKG 8840 X B B CALCIUM 1820 = MGKG 8840 X B B CALCIUM 2250 = MGKG 8840 B B B CALCIUM 2250 = MGKG 8840 B B B CALCIUM 1550 = MGKG 8840 B B B CALCIUM 1550 = MGKG 8840 B B B	ı		1 36 0	07/014	:	7.0		٩		-		z
CADMIUM CADMIUM 0 DBJ-1 MGNG 1 4 7 8 8 1 CADMIUM 0 DBJ-1 MGNG 1 4 7 8 8 1 CADMIUM 0 DBJ-1 MGNG 1 4 7 8 8 1 CACINIM 0 DBJ-1 MGNG 1 4 7 8 8 1 CALCIUM 134000 MGNG 5840 X 8 1 CALCIUM 121000 MGNG 5840 X 8 1 CALCIUM 1950 MGNG 5840 X 8 1 CALCIUM 1950 MGNG 5840 X 8 1 CALCIUM 1550 MGNG 5840 X 8 1 CALCIUM 1550 MGNG 5840 X 8 1 CALCIUM 1550 MGNG 5840 X 0 X CALCIUM 1550 MGNG 5840 X 0 X <	CADMILIM CADMILIM 0 DSJ MGKGG 1 4 7 8 8 1 6 CADMILIM 0 DSJ MGKG 1 4 7 8 8 1 6 CADMILIM 0 DSJ MGKG 1 4 7 8 8 1 6 CALCIUM 134000 MGKG 5840 X 1 6 1 6 CALCIUM 141000 MGKG 5840 X 1 6 1 6 CALCIUM 17100 MGKG 5840 X 1 6 1 6 CALCIUM 17200 MGKG 5840 X 1 6 1 6 CALCIUM 1750 MGKG 5840 X 1 8 1 8 CALCIUM 2310 MGKG 5840 X 1 8 1 8 CALCIUM 1550 MGKG 5840 X 1 8 1 8 CALCIUM 1550 MGKG 5840 X 1 8 1 8 CALCIUM 1550 MGKG 5840 X	ا۔	AUMIUM	2020	MCMC.				1		•		2
CADMILIM CADMILIM 0 06J J MAKG 14 7 8 8 1 CADMILIM 0 07J MAKG 14 7 8 8 1 CADMILIM 1 0 07J MAKG 14 7 8 8 1 CALCIUM 1 3 000 = MGKG 5840 X 6 1 CALCIUM 1 2000 = MGKG 5840 X 6 6 1 CALCIUM 2360 = MGKG 5840 X 6 6 6 1 CALCIUM 1950 = MGKG 5840 CALCIUM 6 <	CACIOMILIA 0 05J MIGKG 14 7 8 8 1 B <th< td=""><td>۰</td><td>ADMICIA</td><td>6.50.0</td><td>MC/NG</td><td>4</td><td>, ,</td><td></td><td>•</td><td></td><td>1</td><td></td><td></td></th<>	۰	ADMICIA	6.50.0	MC/NG	4	, ,		•		1		
GAOMBLIAM 0 ord J MASKG 14 7 B 8 1 GAOMBLIAM 0 od J MGKGG 1 4 7 B 8 1 CALCIUM 134000 = MGKG 5840 X 6 1 CALCIUM 144000 = MGKG 5840 X 6 6 CALCIUM 144000 = MGKG 5840 X 6 6 CALCIUM 2860 = MGKG 5840 6 6 6 6 CALCIUM 1950 = MGKG 5840 6 6 6 6 CALCIUM 1950 = MGKG 5840 6 6 6 6 CALCIUM 1550 = MGKG 5840 6 6 6 6 6 CALCIUM 1550 = MGKG 5840 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CACIMILIM 0 07 J MGKG 1 4 7 8 8 1 6 CACIMILIM 0 04 J MGKG 14 0 7 8 8 1 6 CALCIUM 134000 I MGKG 5840 X 1 6 1 6 CALCIUM 12100 I MGKG 5840 X 1 6 1 6 CALCIUM 1220 I MGKG 5840 X 1 6 1 6 CALCIUM 1820 I MGKG 5840 X 1 6 1 6 CALCIUM 2310 I MGKG 5840 X 1 6 1 6 CALCIUM 2310 I MGKG 5840 X 1 6 X CALCIUM 1550 I MGKG 5840 X 1 8 1 8 CALCIUM 1550 I MGKG 5840 X 1 8 1 8 CALCIUM 1550 I MGKG 5840 X 1 8 1 8 CALCIUM 1550 I MGKG 5840 X 1 8<		ADMIUM	0.05	MG/KG	14	7.8		₽.		-		2
CADMIUM CAGMIUM 1 d 7 B 8 CALCIUM 130000 = MGMG 5840 X B CALCIUM 121000 = MGMG 5840 X B CALCIUM 121000 = MGMG 5840 X B CALCIUM 12200 = MGMG 5840 B B CALCIUM 2300 = MGMG 5840 B B CALCIUM 1950 = MGMG 5840 B B CALCIUM 1850 = MGMG 5840 B B CALCIUM 1850 = MGMG 5840 B B CALCIUM 1850 = MGMG 5840 B B CALCIUM 1850 = MGMG 5840 B B CALCIUM 1850 = MGMG 5840 B B B CALCIUM 1850 = MGMG 5840 B B B CALCIUM 1850 = <td< td=""><td>CADANIUM 0 ol J MGKG 14 7 B 8 16 CALCIUM 134000 = MGKG 5840 X P P P CALCIUM 144000 = MGKG 5840 X P P P CALCIUM 121000 = MGKG 5840 X P P P CALCIUM 2260 = MGKG 5840 P P P P CALCIUM 2260 = MGKG 5840 P P P P CALCIUM 2260 = MGKG 5840 P P P P CALCIUM 2260 = MGKG 5840 P P P P CALCIUM 1550 = MGKG 5840 P P P P CALCIUM 1550 = MGKG 5840 P P P P CALCIUM 1550 = MGKG 5840 P P P P<td>Γ</td><td>ADMILIM</td><td>r 200</td><td>MOKG</td><td>4</td><td>7.8</td><td></td><td>•</td><td></td><td>-</td><td></td><td>z</td></td></td<>	CADANIUM 0 ol J MGKG 14 7 B 8 16 CALCIUM 134000 = MGKG 5840 X P P P CALCIUM 144000 = MGKG 5840 X P P P CALCIUM 121000 = MGKG 5840 X P P P CALCIUM 2260 = MGKG 5840 P P P P CALCIUM 2260 = MGKG 5840 P P P P CALCIUM 2260 = MGKG 5840 P P P P CALCIUM 2260 = MGKG 5840 P P P P CALCIUM 1550 = MGKG 5840 P P P P CALCIUM 1550 = MGKG 5840 P P P P CALCIUM 1550 = MGKG 5840 P P P P <td>Γ</td> <td>ADMILIM</td> <td>r 200</td> <td>MOKG</td> <td>4</td> <td>7.8</td> <td></td> <td>•</td> <td></td> <td>-</td> <td></td> <td>z</td>	Γ	ADMILIM	r 200	MOKG	4	7.8		•		-		z
CALCIUM 134000 = MGAKG 5840 X X CALCIUM 144000 = MGAKG 5840 X X CALCIUM 12100 = MGAKG 5840 X X CALCIUM 12100 = MGAKG 5840 X CALCIUM 12200 = MGAKG 5840 X CALCIUM 1950 = MGAKG 5840 X CALCIUM 1550 = MGAKG 5840 X CALCIUM 1650 = MGAKG 5840 X CALCIUM 1650 = MGAKG 5840 X	CALCIUM 134000 = MGKG 5840	Т	400000	- 80 0	O AC VI	-	7 8		~		16		z
CALCIUM If40000 = MGKG 5840 X CALCIUM 121000 = MGKG 5840 X CALCIUM 121000 = MGKG 5840 X CALCIUM 1820 = MGKG 5840 X CALCIUM 1950 = MGKG 5840 X CALCIUM 1950 = MGKG 5840 X CALCIUM 1550 = MGKG 5840 X CALCIUM 1550 = MGKG 5840 X CALCIUM 1550 = MGKG 5840 X CALCIUM 1550 = MGKG 5840 X CALCIUM 1550 = MGKG 5840 X CALCIUM 1650 = MGKG 5840 X CALCIUM 1650 = MGKG 5840 X	CALCIUM 14000 MGKG 5840 X CALCIUM 12100 MGKG 5840 X CALCIUM 12100 MGKG 5840 X CALCIUM 12200 MGKG 5840 X CALCIUM 12200 MGKG 5840 X CALCIUM 1820 MGKG 5840 X CALCIUM 1850 MGKG 5840 X CALCIUM 1550 MGKG 5840 X CALCIUM 1650 X X X	- 1	AUMIUM	7 20 0	District.	2	1				Ī		ΨN
CALCIUM 144000 = MGKG S840 X CALCIUM 121000 = MGKG 5840 X CALCIUM 12100 = MGKG 5840 X CALCIUM 2360 = MGKG 5840 X CALCIUM 1950 = MGKG 5840 X CALCIUM 1520 = MGKG 5840 X CALCIUM 1650 = MGKG 5840 X CALCIUM 1650 = MGKG 5840 X CALCIUM 1650 = MGKG 5840 X CALCIUM 1650 = MGKG 5840 X CALCIUM 1650 = MGKG 5840 X	CALCIUM MAKG 5840 X CALCIUM FISTOR MGKG S840 X CALCIUM FISTOR MGKG S840 X CALCIUM FISTOR MGKG X X CALCIUM FISTOR X X <t< td=""><td>- 4</td><td>ALCIUM</td><td>134000 =</td><td>MC//KG</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>S a</td></t<>	- 4	ALCIUM	134000 =	MC//KG								S a
CALCIUM 121000 = MGAG 5840 X CALCIUM 1820 = MGAG 5840 CALCIUM CALCIUM 1820 = MGAG 5840 CALCIUM CALCIUM 1850 = MGAG 5840 CALCIUM CALCIUM 1850 = MGAG 5840 CALCIUM CALCIUM 1550 = MGAG 5840 CALCIUM CALCIUM 1550 = MGAG 5840 CALCIUM CALCIUM 1650 = MGAG 5840 CALCIUM	CALCIUM 121000 MGKG 5840 X A CALCIUM 16201 MGKG 5840 A B CALCIUM 22601 MGKG 5840 B B CALCIUM 22601 MGKG 5840 B B CALCIUM 22101 MGKG 5840 B B CALCIUM 22101 MGKG 5840 B B CALCIUM 15501 MGKG 13		ALCIUM	144000 ==	MG/KG								¥
CALCIUM RIGAR 5840 CALCIUM 1820 = MGMG 5840 CALCIUM 2360 = MGMG 5840 CALCIUM 1950 = MGMG 5840 CALCIUM 1550 = MGMG 5840 CALCIUM 1650 = MGMG 5840 CALCIUM 1650 = MGMG 5840 CALCIUM 1650 = MGMG 5840 CALCIUM 1650 = MGMG 5840 CALCIUM 1650 = MGMG 5840 CALCIUM 1650 = MGMG 5840	CALCIUM 1620 = MGKG 5840 6 CALCIUM 2860 = MGKG 5840 6 CALCIUM 2860 = MGKG 5840 6 CALCIUM 1850 = MGKG 5840 6 CALCIUM 1850 = MGKG 5840 6 CALCIUM 1850 = MGKG 5840 6 CALCIUM 1850 = MGKG 5840 6 CALCIUM 1850 = MGKG 5840 7 CALCIUM 1850 = MGKG 13 7	1	18 H 7 19	121000=	MG/KG								¥
CALCIUM 2960 = MCMG 5840 CALCIUM 2960 = MCMG 5840 CALCIUM 1850 = MGMG 5840 CALCIUM 1850 = MGMG 5840 CALCIUM 1650 = MGMG 5840 CALCIUM 1650 = MGMG 5840 CALCIUM 1650 = MGMG 5840 CALCIUM 1650 = MGMG 5840	CALCIUM 2960 MG/MG 5840	П	11.0000	1620	0,000								z
CALCIUM 23800 = MGAKG 5840 CALCIUM 1950 = MGAKG 5840 CALCIUM 1950 = MGAKG 5840 CALCIUM 1550 = MGAKG 5840 CALCIUM 1650 = MGAKG 5840 CALCIUM 1650 = MGAKG 5840 CALCIUM 1650 = MGAKG 5840 CALCIUM 1650 = MGAKG 5840	CALCIUM 2960 = MGKG 5840 PROPER CALCIUM 2310 = MGKG 5840 PROPER CALCIUM 1950 = MGKG 5840 PROPER CALCIUM 1950 = MGKG 5840 PROPER CALCIUM 1650 = MGKG 5840 PROPER CALCIUM 1650 = MGKG 5840 PROPER CALCIUM 1650 = MGKG 5840 PROPER CALCIUM 1650 = MGKG 5840 PROPER CALCIUM 1650 = MGKG 5840 PROPER CALCIUM 1650 = MGKG 5840 PROPER CALCIUM 1650 = MGKG 5840 PROPER CALCIUM 1650 = MGKG 5840 PROPER CALCIUM 1650 = MGKG 5840 PROPER CALCIUM 1650 = MGKG 13 PROPER	- 1	ALCIUM	1040	MCVAG	2000							2
CALCIUM 7350 = MGMG MGMG 5840 CALCIUM CALCIUM 1950 = MGMG 8840 CALCIUM CALCIUM 8840 CALCIUM CALCIUM 8840 CALCIUM CALCIUM 8840 CALCIUM CALCIUM 640 = MGMG 5840 CALCIUM CALCIUM MGMG 5840 CALCIUM	CALCUM 2360 = MGKG 5840 PROPER		ALCIUM	2960 =	MG/KG	5840							2
CALCIUM CALCIUM CALCIUM CALCIUM CALCIUM CALCIUM (CALCIUM	CALCIUM 1950 = MGKG MGKG 5840 P CALCIUM 2310 = MGKG 5840 P P CALCIUM 1550 = MGKG 5840 P P CALCIUM 1650 = MGKG 5840 P P CALCIUM 1650 = MGKG 5840 P P CALCIUM 1650 = MGKG 5840 P P CALCIUM 1650 = MGKG 5840 P P CALCIUM 1650 = MGKG 5840 P P CALCIUM 1650 = MGKG 5840 P P CALCIUM 1650 = MGKG 5840 P P	ı	ALCHM	2360=	MG/KG	5840							z
CALCIUM 1950 = MGKG 5840 CALCIUM CALCIUM 1550 = MGKG 5840 CALCIUM CALCIUM 1640 = MGKG 5840 CALCIUM CALCIUM 1640 = MGKG 5840 CALCIUM	CALCULM 1950 = MGKG 5840 6 X CALCULM 1550 = MGKG 5840 6 X CALCULM 1550 = MGKG 5840 CALCULM CALCULM 1550 = MGKG 5840 X CALCULM 1850 = MGKG 5840 X CALCULM 1850 = MGKG 5840 X CALCULM 1850 = MGKG 5840 X CALCULM 1850 = MGKG 5840 X CALCULM 1850 = MGKG 5840 X	1	ACCIONAL TOTAL CONTRACTOR OF THE PARTY OF TH	1000+	272.013	Con	 -						z
CALCIUM 15310 = MGKG 5840 CALCIUM 1580 = MGKG 5840 CALCIUM 1640 = MGKG 5840 CALCIUM 1640 = MGKG 5840 CALCIUM 1640 = MGKG 5840 CALCIUM 1640 = MGKG 5840 CALCIUM 1640 = MGKG 5840 CALCIUM 1640 = MGKG 5840 CALCIUM 1640 = MGKG 5840 CALCIUM 1640 = MGKG 5840	CALCUM 2210 = MGKG 5840 6 CALCUM 1550 = MGKG 5840 6 CALCUM 1640 = MGKG 5840 6 CALCUM 1650 = MGKG 5840 6 CALCUM 1850 = MGKG 5840 6 CALCUM 131 MGKG 5840 7 CALCUM 132 0.6 X CALCUM 131 MGKG 0.067 X	- 1	ALCIUM	# DCA	MC/NC	2090	1]				,
CALCIUM 1550 = MGMG 5840 CALCIUM CALCIUM 1640 = MGMG 5840 6 CALCIUM 1850 = MGMG 5840 6 CALCIUM 1640 = MGMG 5840 6	CALCUM 1550	٥	ALCIUM	2310 =	MC/KG	5840			_		†		2
CALCIUM CALCIUM CALCIUM 1860= MGAKG 5840 CALCIUM 1860= MGKG 5840 X 32 CALCIUM 1870= MGKG 5840 X 640 CALCIUM	CALCIUM	ļ,	ALCHIM	1550=	MG/KG	5840				<u> </u>			z
CALCIUM (1850)= MGAG 5840 K 32 0.6	CALCIUM	١,	ALCOM	- 0640	0,000	CBAD							z
CALCUM 1850 = MGAG 5840 X 0.65	CALCUM 1850 = MGKG 5840 2 0 0 X CARBAZOLE 2 13 MGKG 0 0 0 X	- 1	ALCIUM	= 10401	MUNIC	2040					Ī		
TO TO TO THE TANK THE	CARBAZOLE 32 06 X 32 06 X 32 05 X		ALCIUM	1850=	MC/KG	5840]				z :
	CADIATORIE 70 06 X	1	ARRAPON F	13()	MG/KG		32		90	×		}	>
TO A FOLK THEY		1	TO THE PROPERTY OF THE PROPERT	, -	V/1/V1		-		0	,			>

TABLE L-1
Summary of Detected Parameters in Surface Soil at FU1 Compared to Background and Screening Level Values
Memphis Depot Main Installation RI

TABLE t.-1 Summary of Detected Parameters in Surface Soil at FU1 Compared to Background and Screening Level Values Memphis Depot Main Installation RI

Part Part														
Controlled Con								· ·	Direct		4,514		Ecological	
Company		Depth				Background	Exceedance	Exposure	Exposure	GWP	Exceedance	Criterion	Exceedance	Exceeded
Controlled Con	_[7		-47	4	Value	Flag	Value		Value		Value	Flag	Criteria Flag
Controlled Con	3 6	1	CARBAZOLE	1 8 1	MAKE	0.067		S. C.L.		٥				z >
Controlled Con	18	1	CARBAZOLE	0 048	MG/KG	0 067		32		90				2
Comparison Com	0 0		CARBAZOLE	293	MG/KG	0 067	$\ \ $	32		90				>
Company Comp	입	Ιł	CARBAZOLE	12=	MG/KG	0 067		32		0				>
Controlled Con	의		CARBAZOLE	49=	MG/KG	0.067		32		90				> ;
CHINGNOTO CHIN		- 1	CARBAZOLE	1 E 6	MG/KG	0.067		35		0				> 2
CONTRACTOR CONTRAC	3	- 1	CARDAZOLE	- 36	O VOOR	2000		3 5		٦				
Controlled Con			CARRAZOLE	0213	MG/KG	0 067		32		90				2
Chicago Control Cont		1	CARBAZOLE	52=	MG/KG	0 067		32		90				>
CAMERACINE COURT	0		CARBAZOLE	51=	MG/KG	0 067	Ì	32		90				>
Chicaman Chicago Chi	00		CAHBA2OLE	0.045 J	MG/KG	190 0		32		90				z
CHIRDINIANI CIOLAL CHIRDINIANI CIOLAL CHIRDINIANI CIOLAL NAME NAME CHIRDINIANI CIOLAL NAME NAME <th< td=""><td>18</td><td>П</td><td>CARBON DISULFIDE</td><td>£ 1000</td><td>MG/KG</td><td> 0 005</td><td></td><td> 780</td><td></td><td>32</td><td></td><td></td><td></td><td>Z</td></th<>	18	П	CARBON DISULFIDE	£ 1000	MG/KG	0 005		780		32				Z
CHERCHOLINE CORRELL TANK	8	П	CARBON DISULFIDE	f 200 0	MG/KG	0 005		780		32				z
Chicholath (1074)	00		CARBON DISULFIDE	0 005 J	MG/KG	0 005		780		32				z
CHICALOMAN (OLAR INTERNAL DIA PARTICIO NATIONAL DIA PARTICIO	3		CARBON DISULFIDE	0 005 J	MG/KG	0 005		780		35		1	,	z .
CHICALONIAN TO TALL CHICALONIAN TO TALL			CHROMIUM, TOTAL	12 15 3	MG/KG	24.8	,			5		0 4	\	2 >
CHICALIANIA (OLAYA CHICALI	0		CHROMIUM, TOTAL	34 65 J	MG/KG	248	×			5		0	Y	- 2
CHICOMANIA (COAA) 1 1 2 1 1 1 2 2 2 2		-1	CHROMIUM TOTAL	112=	MG/KG	24.6				5 6		0	< >-	2
CHRODINIAN TOTAL 11 a. UKRKG 24 a. X B C X CHRODINIAN TOTAL 29 a. UKRKG 24 a. X B C X CHRODINIAN TOTAL 19 a. WCKG 24 a. X B C X CHRODINIAN TOTAL 19 a. WCKG 24 a. X B C X CHRODINIAN TOTAL 19 a. WCKG 24 a. X B C X CHROMIAN TOTAL 19 a. WCKG 24 a. X B C X CHROMIAN TOTAL 11 b. WCKG 24 a. X B C X CHROMIAN TOTAL 11 b. WCKG 24 a. X B C X CHROMIAN TOTAL 11 b. WCKG 24 a. X B C X CHROMIAN TOTAL 11 b. WCKG 24 a. X B C X CHROMIAN TOTAL 11 b. WCKG </td <td>3 3</td> <td></td> <td>CHOOMING TOTAL</td> <td>100</td> <td>MONGO</td> <td>24.0</td> <td></td> <td></td> <td></td> <td>3 8</td> <td></td> <td>70</td> <td>×</td> <td>z</td>	3 3		CHOOMING TOTAL	100	MONGO	24.0				3 8		70	×	z
CHORDAILMA TOTAL 119 (a) MOXAG 24 (a) X A CHORDAILMA TOTAL 19 (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)	1		CHROMIUM TOTAL	1 1 1	MG/KG	24.8				8		0.4	×	z
CHORDAILAN TOTAL 98 a MACKG 24 B X A X CHORDAILAN TOTAL 12 a MACKG 24 B X A X CHORDAILAN TOTAL 12 a MACKG 24 B A X A CHORDAILAN TOTAL 12 a MACKG 24 B A X A CHORMAILA TOTAL 12 a MACKG 24 B B A X CHORMAILA TOTAL 12 a MACKG 24 B B A X CHORMAILA TOTAL 12 a MACKG 24 B B A X CHORMAILA TOTAL 12 a MACKG 24 B A X A CHORMAILA TOTAL 12 a MACKG 24 B A X A CHORMAILA TOTAL 13 a MACKG 24 B A X A CHORMAILA TOTAL 13 a MACKG 24 B A X A CHORMAILA TOTAL 13 a MACKG 24 B<		L	CHROMIUM TOTAL	# 6	MG/KG	248				38		0.4	×	z
CHECOMINAL TOTAL 19 8 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00	Т	CHROMIUM, TOTAL	L 6 95	MG/KG	248				88		0.4	×	<u>,</u>
CHENDALIA, 107AL 19 9 MCKKG 2.8 9 X CHENDALIA, 107AL 13 8 MCKKG 2.8 9 X X CHENDALIA, 107AL 13 8 MCKKG 2.8 9 X X CHENDALIA, 107AL 15 8 MCKKG 2.8 9 X X CHENDALIA, 107AL 15 8 MCKKG 2.8 38 0.4 X CHENDALIA, 107AL 15 8 MCKKG 2.8 38 0.4 X CHENDALIA, 107AL 15 8 MCKKG 2.8 38 0.4 X CHENDALIA, 107AL 15 1 MCKG 2.8 38 0.4 X CHENDALIA, 107AL 15 1 MCKG 2.8 38 0.4 X CHENDALIA, 107AL 15 1 MCKG 2.8 38 0.4 X CHENDALIA, 107AL 15 1 MCKG 2.8 38 0.4 X CHENDALIA, 107AL 15 1 MCKG	e	Т	CHROMIUM, TOTAL	=86	MG/KG	248				38		0.4	×	z
CHEROMILAL TOTAL 17 8 8 MCMCG 22 8 0.4 X CHEROMILAL TOTAL 17 9 8 MCMCG 22 8 0.4 X CHEROMILAL TOTAL 17 9 8 MCMCG 22 8 0.4 X CHEROMILAL TOTAL 15 3 8 MCMCG 22 8 0.4 X CHEROMILAL TOTAL 15 3 8 MCMCG 22 8 0.4 X CHEROMILAL TOTAL 15 3 9 MCMCG 22 8 0.4 X CHEROMILAL TOTAL 15 3 9 MCMCG 22 8 0.4 X CHEROMILAL TOTAL 13 3 1 MCMCG 22 8 0.4 X CHEROMILAL TOTAL 13 3 1 MCMCG 22 8 0.4 X CHEROMILAL TOTAL 13 3 1 MCMCG 22 8 0.4 X CHEROMILAL TOTAL 13 3 1 MCMCG 22 8 0.4 X CHEROMILAL TOTAL 13 3 1 MCMCG 22 8 0.4 X CHEROMILAL TOTAL 11 6 1 MCMCG <t< td=""><td>8</td><td>ŧ.</td><td>CHROMIUM, TOTAL</td><td>131=</td><td>MG/KG</td><td>248</td><td></td><td></td><td></td><td>38</td><td></td><td>0.4</td><td>×</td><td>z</td></t<>	8	ŧ.	CHROMIUM, TOTAL	131=	MG/KG	248				38		0.4	×	z
Chickmuluk Corkit 11 91 = Marki 228 938 904 X 1	0		CHROMIUM, TOTAL	12.6=	MG/KG	248				38		0.4	×	z
CHROMULUL (TOTAL 119 a MCMCG 24 B 38 0.4 X CHROMULUL (TOTAL 15 3 a MCMCG 24 B 38 0.4 X CHROMULUL (TOTAL 15 3 a MCMCG 24 B 38 0.4 X CHROMULUL (TOTAL 11 5 1 a MCMCG 24 B 38 0.4 X CHROMULUL (TOTAL 11 5 1 a MCMCG 24 B 38 0.4 X CHROMULUL (TOTAL 11 5 1 a MCMCG 24 B 38 0.4 X CHROMULUM (TOTAL 11 3 0 a MCMCG 24 B 38 0.4 X CHROMULUM (TOTAL 11 3 0 a MCMCG 24 B 38 0.4 X CHROMULUM (TOTAL 11 1 a MCMCG 24 B 38 0.4 X CHROMULUM (TOTAL 11 1 a MCMCG 24 B X 0.4 X CHROMULUM (TOTAL 11 1 a MCMCG 24 B X 0.4 X CHROMULUM (TOT	ŝ		CHROMIUM, TOTAL	131=	MG/KG	248				*		10	×	z
CHECAMIUM, TOTAL 15 die MOKIG 24 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die 8 die 6 die X MOKIG 24 die	00		CHROMIUM, TOTAL	=611	MG/KG	248				8		0.4	×	z
CHROMALIAL TOTAL 15 a MANGA 2.8 a 6.4 a X CHROMALIAL 15 a MANGA 2.8 a 6.4 a X CHROMALIAL 11 a MANGA 2.8 a 6.4 a X CHROMALIAL 11 a MANGA 2.8 a 6.4 a X CHROMALIAL 11 a MANGA 2.8 a 6.4 a X CHROMALIAL 11 a MANGA 2.8 a 6.4 a X CHROMALIAL 11 a MANGA 2.8 a 6.4 a X CHROMALIAL 11 a MANGA 2.8 a 6.4 a X CHROMALIAL 11 a MANGA 2.8 a 6.4 a X CHROMALIAL 11 a MANGA 0.9 a X 9.7 a 0.4 a X CHROMALIAL 11 a MANGA 0.9 a X 8.7 a 1.0 a X 1.0 a X CHRYSENE 2.8 a 2.8 a 2.8 a 2.8 a 2.8 a 2.8 a<	00		CHROMIUM, TOTAL	126=	MG/KG	248				8		0.4	×	z
CHROMUM, TOTAL 151 = MCMG 248 38 0.44 X CHROMUM, TOTAL 119 = MCMG 248 38 0.44 X CHROMUM, TOTAL 119 = MCMG 248 38 0.44 X CHROMUM, TOTAL 119 = MCMG 248 38 0.44 X CHROMUM, TOTAL 119 J MCMG 248 38 0.44 X CHROMUM, TOTAL 119 J MCMG 248 38 0.44 X CHROMUM, TOTAL 119 J MCMG 248 X 38 0.44 X CHROMUM, TOTAL 116 J MCMG 248 X 87 0.44 X CHROMUM, TOTAL 116 J MCMG 248 X 87 0.44 X CHROMIC SEME 116 J MCMG 0.94 X 87 160 0.1 X CHRYSENE 228 J MCMG 0.94 X 87 160	ខ	ı	CHROMIUM, TOTAL	15.3=	MG/KG	248				8		0.4	×	z
CHROMIUM, TOTAL 119 = MGRG 28 B 0.44 X X CHROMIUM, TOTAL 119 = MGRG 28 B 0.44 X X CHROMIUM, TOTAL 13 J. MGRG 2.8 B 0.4 X X CHROMIUM, TOTAL 13 J. MGRG 2.8 B 0.4 X X CHROMIUM, TOTAL 13 J. MGRG 2.8 B 0.4 X X CHROMIUM, TOTAL 13 J. MGRG 2.8 B 0.4 X X CHROMIUM, TOTAL 13 J. MGRG 2.8 B 0.4 X X CHROMIUM, TOTAL 11 L. MGRG 2.8 B 0.4 X X CHROMIUM, TOTAL 11 L. MGRG 0.9 B X BT 0.6 X X CHROMIUM, TOTAL 11 L. MGRG 0.9 B X BT 0.6 X X CHROMIUM, TOTAL 11 L. MGRG 0.9 B X BT 0.6 X X CHROMIUM, TOTAL 11 L. MGRG 0.9 B X BT <t< td=""><td>의</td><td>- 1</td><td>CHROMIUM TOTAL</td><td>151=</td><td>MG/KG</td><td>248</td><td></td><td></td><td></td><td>8</td><td></td><td>0</td><td>×</td><td>z :</td></t<>	의	- 1	CHROMIUM TOTAL	151=	MG/KG	248				8		0	×	z :
CHROMIUM, TOTAL 11 all all all all all all all all all a	의	- 1	CHROMIUM, TOTAL	12.7 =	MG/KG	248				8		0.4	×	z
CHROMIUM, 101AL, CHROMIUM, 101AL,			CHROMIUM, TOTAL	II 051 C	MG/KG	248				8 8		*0	 	z
CHROMIUM 101AL 101AL MARKG 24 8 38 0 4 X CHROMIUM 101AL 101AL MARKG 24 8 38 0 4 X CHROMIUM 101AL 101AL MARKG 24 8 38 0 4 X CHROMIUM 101AL 11 6 J MARKG 0 94 X 87 160 0 1 X CHROMIUM 101AL 101AL MARKG 0 94 X 87 160 0 1 X CHRYSENE 31 6 S MARKG 0 94 X 87 160 0 1 X CHRYSENE 32 8 S MARKG 0 94 X 87 160 0 1 X CHRYSENE 33 8 MARKG 0 94 X 87 160 0 1 X CHRYSENE B MGKG 0 94 X 87 160 0 1 X CHRYSENE B MGKG 0 94 X 87 160 0 1 X CHRYSENE D 11J		Т	ICHROMIUM, FOLAL	14.3	MG/NG	24 8				\$ 8		* 0	,	-
CHROMIUM TOTAL 13 d MCMCG 24 d MCMCG 24 d MCMCG 24 d MCMCG 24 d MCMCG 24 d MCMCG 24 d MCMCG 14 d		Т	CHROWIUM, FOLAL	13.13	MG/KG	24.0				3		700	×	2 2
CHROWINGM TOTAL 11 6 James Michael 24 8 James Michael 24 9 James Michael 24 9 James Michael 24 9 James Michael 24 James Michael		Т	CHROMIUM FOLAL	702	MONOR	200						7	, ×	z
CHRYSENE 1 I I I I I I I I I I I I I I I I I I I		Т	CHROMIUM TOTAL	000	MG/KG	0 10				5 8			×	z
CHRYSENE CHRYSENE	3	J	CHOOSENE	7 -	MONG	700	\ \	40		3,5		-	×	: >
CHAYSENE 31 S = MGAKG 0 94 X 87 160 0 1 X CHAYSENE 31 S = MGAKG 0 94 X 87 160 0 1 X CHAYSENE 11<	3[3	١,	Choyagaic	2000	MOKO	700	, -	, P		160		0	×	
CHRYSENE 35 s = 10 mGMG 0 94 mGMG X 60 mGMG 0 94 mGMG X 60 mGMG 0 1 mgMG X 60 mGMG 0 1 mgMG X 60 mGMG 0 1 mgMG	3 2	T	CHRYSENE	31.5	MG/KG	76.0		H7		160		0.1	×	>
CHRYSENE (1) = MCMC 0 94 X 160 0 1 X CHRYSENE 33 = MAGKG 0 94 X 87 160 0 1 X CHRYSENE 873 = MGKG 0 94 X 87 160 0 1 X CHRYSENE 0 24 J MGKG 0 94 X 87 160 0 1 X CHRYSENE 0 24 J MGKG 0 94 X 87 160 0 1 X CHRYSENE 0 11 J MGKG 0 94 X 87 160 0 1 X CHRYSENE 0 11 J MGKG 0 94 X 87 160 0 1 X CHRYSENE 0 11 J MGKG 0 94 X 87 160 0 1 X CHRYSENE 0 11 J MGKG 0 94 X 87 160 0 1 X CHRYSENE 0 12 J MGKG 0 94 X 87			CHBYSENE	35.55	MG/KG	0 94	İ	187		160		0 1	×	٨
CHRYSENE CHRYSENE 0 94 X 160 0 1 X CHRYSENE 25 = 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10		CHRYSENE	11=	MG/KG	96 O		87		160		0.1	×	>
CHRYSENE CHRYSENE 8 28 = MGXKG 0 94 X 67 160 0 1 X CHRYSENE 0 24 MGXKG 0 94 X 67 160 0 1 X CHRYSENE 0 19 MGXKG 0 94 X 67 160 0 1 X CHRYSENE 0 11 MGXKG 0 94 X 87 160 0 1 X CHRYSENE 0 11 MGXKG 0 94 X 87 160 0 1 X CHRYSENE 0 11 MGXKG 0 94 X 87 160 0 1 X CHRYSENE 0 11 MGXKG 0 94 X 87 160 0 1 X CHRYSENE 0 12 MGXKG 0 94 X 87 160 0 1 X CHRYSENE 0 21 MGXKG 0 94 X 87 160 0 1 X CHRYSENE 0 22 MGXKG 0 94 X 87 160 0 1 X CHRYSENE 0	밁	1 1	CHRYSENE	33 ≃	MG/KG	0 94		187		160		0.1	×	>
CHRYSENE CHRYSENE BAT 160 01 X CHRYSENE 0 194 X 87 160 01 X CHRYSENE 0 194 X 87 160 01 X CHRYSENE 0 194 X 87 160 01 X CHRYSENE 0 11 MGKG 0 94 X 87 160 01 X CHRYSENE 0 11 MGKG 0 94 X 87 160 01 X CHRYSENE 0 11 MGKG 0 94 X 87 160 01 X CHRYSENE 0 11 MGKG 0 94 X 87 160 0 1 X CHRYSENE 0 12 MGKG 0 94 X 87 160 0 1 X CHRYSENE MGKG 0 94 X 87 160 0 1 X CHRYSENE MGKG 0 94 X 87 160 <th< td=""><td>0</td><td></td><td>CHRYSENE</td><td>8 25 =</td><td>MG/KG</td><td>0 94</td><td>1</td><td>87</td><td></td><td>160</td><td></td><td>0 1</td><td>×</td><td>,</td></th<>	0		CHRYSENE	8 25 =	MG/KG	0 94	1	87		160		0 1	×	,
CHRYSENE CHRYSENE 0.24 J MGKG 0.94 8 J 150 0.1 X CHRYSENE 0.13 J MGKG 0.94 X 87 160 0.1 X CHRYSENE 0.11 J MGKG 0.94 X 87 160 0.1 X CHRYSENE 0.11 J MGKG 0.94 X 87 160 0.1 X CHRYSENE 0.12 J MGKG 0.94 X 87 160 0.1 X CHRYSENE 0.12 S MGKG 0.94 X 87 160 0.1 X CHRYSENE 0.12 S MGKG 0.94 X 87 160 0.1 X CHRYSENE 0.12 S MGKG 0.94 X 87 160 0.1 X CHRYSENE 0.12 S MGKG 0.94 X 87 160 0.1 X CHRYSENE 0.12 S 0.14 X 0.14 X 0.14 X 0.14 X	읪	- 1	CHRYSENE	22=	MG/KG	0 94		87		160		0 1	×	- -
CHRYSENE CHRYSENE O 13 bit of 1 cm MGKG 0 94 bit of 1 cm N 67 bit of		- 1	CHRYSENE	0.24	MG/KG	0 94		18		391			\	z
CHRYSENE 0.21 MGMG 0.94 X A 67 MGMG 0.94 X A 67 MGMG 0.91 X A		- 1	CHRYSENE	5510	MCKG	95.0		200		201		Š	()	>
CHRYSENE 021 J MGMG 0.94 X 160 0.1 X CHRYSENE 021 J MGMG 0.94 X 67 160 0.1 X CHRYSENE 68 ± MGMG 0.94 X 67 160 0.1 X CHRYSENE 68 ± MGMG 0.94 X 87 160 0.1 X CHRYSENE 48 ± MGMG 0.94 X 87 160 0.1 X CHRYSENE 48 ± 48 ± 46 ± 0.1 X 0.1 X		- 1	CHOYOENE		MONO	200		70		180		Č	×	z
CHRYSENE CHRYSENE 094 X 87 160 0 1 CHRYSENE CHRYSENE 68 x MGMG 0 94 X 87 160 0 1 CHRYSENE 42 x MGMG 0 94 X 87 160 0 1 CHRYSENE 48 x MGMG 0 94 X 87 160 0 1 CHRYSENE 10 x MGMG 0 94 X 87 160 0 1		Т	CHBYSENE	0213	MG/KG	0.94		87		160		0.1	×	z
CHRYSENE CHRYSENE 69 x 87 x 150 0 1 CHRYSENE 42 x MAKG 0 94 x 87 x 160 0 1 CHRYSENE 48 x MAKG 0 94 x 87 x 160 0 1 CHRYSENE 10 x MAKG 0 94 x 87 x 160 0 1	100	1	CHRYSENE	21=	MG/KG	0.94		87		160		0.1	×	,
CHRYSENE 42** MG/KG 0.94 X 87 160 0.1 CHRYSENE 48** MG/KG 0.94 X 87 160 0.1 CHRYSENE 10** 10** X 87 160 0.1	c	1	CHRYSENE	≈ 89	MG/KG	96.0		87		160		0.1	×	٠
CHRYSENE 48 = MGKG 0.94 X 87 160 0.1 CHRYSENE 10 = MGKG 0.94 X 87 160 0.1	00	1	CHRYSENE	42 =	MG/KG	0 94		87		160		0.1	×	>
CHRYSENE 10= MCMG 0.94 X 87 160 0.1		ı	CHRYSFNE	= 84	MG/KG	0.94		187		160		0.1	×	>
			CHRYSENE	10=	MG/KG	760	ĺ	18		160		0.1	×	>

Exceeded Criteria Flag Ecological Criterion Exceedance Flag 400 0025 0 0025 0 0 0025 0 002 Ecological Criterion Value GWP Exceedance Flag GWP Value Direct Exposure Exceedance RBC Direct Exposure Value Background Exceedance Flag Value MENGO Qualifier 1777 1872 2058 1111 111 0004J 023J 012J 0 097= 0 094J Concentration Parameter | 0 0 to 1 0 | CHRYSEINE |
0 0 to 1 0	CHRYSEINE																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	CHRYSEINE																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	CHRYSEINE																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	CHRYSEINE																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	CHRYSEINE																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	CHRYSEINE																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	CHRYSEINE																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	COBALT																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	COBALT																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	COBALT																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	COBALT																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	COBALT																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	COBALT																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	COBALT																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	COBALT																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	COBALT																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	COBALT																																																																																																																																																																																																																																																																																																	
0 0 to 1 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 2 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 3 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 4 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 4 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 4 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 4 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 4 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 5 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 5 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0 to 6 0	COBPER																																																																																																																																																																																																																																																																																																	
0	Sile	Station	Sile	Station	Sile	Station	Sisser	Sisser	Sisser	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile	Sile

TABLE L.1
Summary of Detected Parameters in Surface Soil at FU1 Compared to Background and Screening Level Values
Memphis Depot Main Installation R1

6

TABLE L-1
Summary of Detected Parameters in Surface Soil at FU1 Compared to Background and Screening Level Values
Memphs Depot Main Installation RI

=

Ecological Criterion Value GWP Exceedance Flag GWP Direct Exposure Exceedance Flag Direct Exposure Value Background Exceedance Flag Background Value Ę Concentration TABLE L-1
Summary of Detected Parameters in Surface Soit at FU1 Compared to Background and Screening Level Values
Memphis Depot Main Installation Ft Parameter

TABLE L-1
Summary of Detected Parameters in Surface Soil at FU1 Compared to Background and Screening Level Values
Memphis Depot Main Installation RI

Part Part	_							HBC					
Controlled Con						-	1	Direct				Ecological	
	Oep				Background	Exceedance	Exposure	Exceedance	GWP	Exceedance	Criterion	Criterion Exceedance	Exceeded
Victoriaministic Victoriamin	100	FULLORANTHENE	- 6	2	Value	E X		FIBG	Value	Flag		Flag	Criteria Fing
VICTORATIVE SECTION VICTORATIVE SECTION	0 0 0	FLUCRANTHEN	= 65 0	MOVE			2		300			Ŷ	- -
Compariment Compariment	0 0 10 1	1	f 8E 0	MG/KG	16		310		4300		0.1	×	2 2
Compariment Compariment	0000	1	44=	MG/KG	16	×	310		4300		0	×	2 >
Comparison Com	00101		0.26 J	MG/KG	16		310		4300		0	×	z
Compariment Compariment	0.0101		0.44	MG/KG	91		310		4300		0 1	×	z
VACOMANIENE VACOMANIENE	0.0101		42 =	MG/KG	16		310		4300		0 1	×	>
NUMBRING NUMBRING	000		130 =	MG/KG	16		310		4300		10	×	>
NOOMMERSEE NOOMMERSEE	0000		. SJ	MG/KG	16		310		4300		0.1	×	>
NUMBER N	0.00		20 ≃	MG/KG	16		310		4300		0.1	×	>
	000		78=	MG/KG	16		310		O0E\$		0.1	×	>
Committee Comm	000		18	MG/KG	1.6		310		4300		10	×	>
Communication Communicatio	0 0 10 1		F60	MG/KG	16		310		4300		1.0	×	z
Comparison	0 0 10 1	FLUORANTHENE		MG/KG	16		310		4300		-01	x	A
ACCOMENTATION Color	0 0 to 1	,	4.5 =	MG/KG	16		310		4300		0.1	×	٨
ACCOMENTED 1 2 2 2 2 2 2 2 2 2	00 00 1		= <u>-</u> 2	MG/KG	16		310		4300		0.1	×	٠
	0000		15*	MG/KG	16		310		1300		0 1	×	z
LOCATION LOCATION	0 0 to 1		13=	MG/KG	16		310		4300		0.1	×	٨
CLUCKENER CLUC	0 0 10 1	Т	12#	MG/KG	16		310		4300		0 1	×	z
CLOCKERING CLOCKER C	000	Т	28=	MG/KG	16	×	310		4300		ō	×	_
Comparison		FLUCHAN I HEN	902	MG/KG	9	×	310		4300		0 1	×	>
Chicagness	0000	Т	03/17	MG/KG	91		310		4300		0 1	×	z
CONTRINENT CONTRIC	2000	T		MG/KG			015		290		0 1	×	>
CLONGENER CLON	0 0	٦,		MG/RG			200		8 8		0	X	,
CLONGENIE CALONICATION STATE CALONICATION STATE CALONICATION CLONGENIE 0.023 J. MOXIG 3.10 560 0.0 X CLONGENIE 0.024 MANG MOXIG 3.10 560 0.0 X CLONGENIE 0.024 MANG MOXIG 3.10 560 0.0 X CLONGENIE 0.024 MANG MOXIG 3.10 560 0.0 X CLONGENIE 0.025 MANG 0.026 MANG 3.10 560 0.0 X CLONGENIE 0.026 MANG 0.026 MANG 0.026 MANG 0.026 MANG 0.026 MANG 0.0 X CLAMA CHIAME 0.027 MANG 0.026 MANG 0.026 MANG 0.026 MANG 0.0 X 0.0 X CLAMA CHIAME 0.027 MANG 0.026 MANG 0.026 MANG 0.0 X <	2 5		- C 3	0000			5 6		200			,	- ,
CLONGRINE CONSTRUCTION CONSTRU	9 6	T	57 C	ON COL			310		000		5	۲,	- ,
Comparison Com	1	Т	1200	MONG			2		3		2	\	
FLLOPRENE COMP MONG COMP MONG COMP MONG COMP COMP MONG COMP COMP MONG COMP COMP COMP COMP MONG COMP CO	0.000	T	1,390 0	MG/KG			310		95		0		- 2
FLUDRENE 0.064 MARCG 0.065 MARCG 0.067 0	0 0 to 1	Т	8	MG/KG			310		260		10	×	>
CAMAMA BHICK LIMPANE)	0 0 to 1	T	F800	MG/KG			310		260		0 1		z
CAMMAN EINCLINDANE COORDINATE COORDIN	0.0 to 1	П	C16	MG/KG			310		260		0.1	×	\
CAMAMA DELIGIONARE) 0.0228 = MCKG MCKG 0.026 X 0.009 X CAMAMA CHUCHONEE 0.15	0 0 to 1	П	F) 6	MG/KG			310		260		0	×	,
CAMMAR CHUCHONNE 0 002 MUSKG 0 002 X 1 GAMMAR CHUCHONNE 0 18J MGKG 0 002 X 1 GAMMAR CHUCHONNE 0 18J MGKG 0 002 X 1 GAMMAR CHUCHONNE 0 18J MGKG 0 002 X 1 GAMMAR CHUCHONNE 0 18J MGKG 0 002 X 1 INDENOLI 23-c0PYRENE 1 1 J MGKG 0 7 X 14 X 0 1 X INDENOLI 23-c0PYRENE 20 9 MGKG 0 7 X 14 X 0 1 X INDENOLI 23-c0PYRENE 4 5 MGKG 0 7 X 0 87 X 14 X 0 1 X INDENOLI 23-c0PYRENE 4 5 MGKG 0 7 X 0 87 X 14 X 0 1 X INDENOLI 23-c0PYRENE 4 5 MGKG 0 7 X 14 X 0 1 X 1 X 1 X	00 to 2		= 0.0029	MG/KG			0.49		0 000		0 00005	, x	Y
CAMAMA CHILCRIANE CONTINUE	0 ot 0 0		= 200	MG/KG	0 026		+ 8				0.1		z
Additional Case of Parkere Case of Case Case of Case Case of Case Case of Case Case of Case Case of Case Case of Case of Case of Case Case of Case o	0000		015	MG/KG	0 026	×	1.8				0 1	×	>
INDENO(1.2-3-di)PYRENE 1-1-1	0000	П	[] 0 12[J	MG/KG	0 026		1 8		T		0.1	×	٨
INDENO(1, 23-c, d)PYRENE 19 MGXG	0000	Ī	= 900	MG/KG	0.7		ZB 0		14		0 1	×	z
INDENO(12.3-c.d)PYRENE	0000	7	117	MG/KG	0.7		0.87	×	14		0 1	×	۶
INDENO[1,23-c,g)PYRENE	0 0 to 1	Т	L@1	MG/KG	0.7	١	280	×	=	×	0.1	×	<u>-</u>
MOENO(1,23-c,0)PYRENE	0 0 to 1	Т	50.9=	MG/KG	0.7		280	×	2	×	0	×	>
MUDENQI 23-c.g)PYRENE	0 0 to 2	T	= 9 0	MG/KG	0 7		0 87	×	4	,	0 1	×	> ?
INDENOIT 23-cg)PYRENE	00.0	٦,	1923	MG/KG	0 7		0.87	×	9	×	0	X	,
MOENQI 23-c)PYRENE	2 2	ء ا	II 00 4	MENT	700		/80	< >	+	,		À	,
INDENO(1,23-c,0)PYRENE	100	T	= 01	MARKE	200		o c	~	-	•	5	\	z
MODENOI 1 23-c,0PYRENE 0.954	0.000	Т	0.087.1	MGAGG	000		280		4		0		z
INDENO(1 2.3-c.g)PYRENE	0000	Г	39	MC/KG	0	×	₩ 0	×	7	×	0 1	×	>
INDENCI(12.3c.g)PYRENE	00101	Г	0.0563	MG/KG	0.7		280		4		0.1		Z
INDENCY12.3c.ejPYRENE	0000		L 960 0	MG/KG	6.0		280		14		0.1		z
INDENO(1,23-c,g)PYRENE	0 0 10 1		= }1	MG/KG	0.7	٠	280	×	Ā		0.1	×	>
INDENO(1,2,3-c,d)PYRENE 27 = MG/KG	00 to 1	-+	44=	MG/KG	0.7		0.87	×	₹	×	0.1	×	> ;
INDENO(12.3-c.g)PYRENE	0 0 to 1	T	27=	MG/KG	0 7	×	0.87	×	=	×	0.1	×	>
MDENOT(12.35-cg)PYRENE	0 0 to 1	T	28=	MG/KG	0 7	×	0.87	×	=	×	0 1	×	٠,
MOENQI (2.3-c.g)PTRENE	0 0 to 1	7	9	MG/KG	0 7	×	0.87	×	= :			×	>
INDENCIT 2.3 c. UP FIGHT 14 V X V V V V V V V V	0000	+	ा। च १	MG/KG	S	×	180	\$	*			\	-}
INDEROLIZACIONYRENE 3.9.± MICAGO 0.7 X 0.8.7 X 14 0.1	000	1	1870	MG/KG	> 0	,	1000 1000		7 2		0	×	z
	0.010	T	1 0 0	MGAG	, C	×	787	×	14		0.1	×	٨

Ξ

					1	Background	Direct	Direct Exposure	<u>a</u>	GWP	Ecological	Ecological Criterion Exceedance	Exceeded
Station	Depth Range	Parameter	Concentration Qualifier		Value	Flag	Value	Flag	Value	Fing	Value	$\neg +$	Criteria Flag
BRAC SS6A		INDENO(1,2,3-c,d)PYRENE	U25J	MG/KG	07	,	0 87	,	₹ :		0	×	z >
- 1	0 0 to 1 0	INDENO(1,2 3-c,d)PYRENE	7.7=	MG/KG	200	×,	0 87	× ,	7		0	< >	-}
SSSA		INDENO(1 2 3-c/d)PY HENE	11 7 0	MGMG	100	,	0.87		7		ė	×	Z
CSerie	9	INCOLUÇIA SALUKTUR INCOLU	80808	MGAG	37040		2300	×			300	×	z
Т		NOBI	4410=	MCKG	37040		2300	×			200	×	z
	0000	IBON	± 0009	MG/KG	37040		2300	×			200	×	z
SSesi	0 0 to 1 0	BON	= 00661	MG/KG	37040		2300	×			200	×	Z
BRAC Erion	0000	NOBI	15200 =	MGMG	37040		2300	×			2002	×	Z
1	0000	NOC	±0397	MGXG	37040		2300	×			500	×	z
CC114	9	NOG	100001	MOMG	0F026		2300	×			200	×	z
CCGA		NOG	= 0000	MGMG	37040		2300	×			200	×	z
V000	0 0 0 0	NOU	- 00406	Mowe	37040		2300	×			200	×	z
1	0000	100	00000	OWOM.	27040		002.6	,			200	×	z
2230	0.000	NOU	- 00000	NOW O	07040		2006	,			200	×	z
999V	0 0 0 0	NO.	10000	ON ON	25.5	Ī	9				2		Z
155/A	0000	LEAU	C 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	MGAG	इ	,	900				3 5	,	
1	0 to 1 0	LEAD	2971	MCARG	OF.	×	a l				3		-
	00 to 20	LEAD	13.71≃	MG/KG	30		400				20		z
1	00000	LEAD	±91	MC/KG	30		400		_		50		Z
Π	00 to 20	LEAD	33.2=	MG/KG	30	×	400				20		Z
SR57F	00100	I EAD	117=	MOKG	30		900				20		z
i	0 0 to 2 0	I FAD	14.2=	MG/KG	30		400				90		z
ı	100	0.00	- L 10	ONC/KD	ç	×	O.P				90	×	,
I	0 0 0	COVE	- 1.00	02000	25 %		\$				ç		z
ı	91000	LEAU	0/04	MCAN	00	,	3 2				1	,	
SS65H	0010	LEAU	536)	MCK	8	Ý	400				R)	\	
-	00 to 10	LEAD	1541	MG/KG	30		8				20		z
	0 1 01 0	LEAD	384J	MG/KG	30	×	400				90		z
	0000	LEAD	416	MG/KG	30	×	400				20		z
l	0 0 0 0 0	EAD	34.3.	MC/KG	30	×	8				909		z
SSERE	0 1 0 0	FAD	49.0	MGMG	ę	×	400				50		2
ŀ	0 0 0	EAD	2 9 2	MGKG	O.E	×	400				50	×	٨
I	0.00	000	2100	0/10/11	8	•	2				3		Z
-	001010	LEAD	0.676	MC/KG	08	,	3				S S		
- {	0 0 to 1 0	LEAD	31.11	MG/KG	es.	×	400				2		2
SS11A	00 to 10	LEAD	29.2	MG/KG	30		400				20		z
	010100	TEAD	22.9⇒	MG/KG	30		400				\$		z
SSBA	00000	LEAD	65.4=	MG/KG	30	×	400				50	×	>
SSRA	0 0 10 10	LEAD	76 8	MC/KG	30	×	400				20	×	
SSOA	0 0 to 1 0	LEAD.	13.4=	MC/KG	30		400				20		z
2222	0 0 0 0	MACANECHINA	- 06500	MGKG	4600	×							WA
22025		MAGINESION	20000	03000	900	,							₽N.
HC955		MAGNESIUM	= 00/6	MCAN	4004	,	Ī						NA.
SS65H	00100	MAGNESIUM	= 0808	Ment	2000	(1						٤
-		MAGNESIUM	= 2180	MONG	4600								2
E(102)	0 0 to 1 0	MAGNESIUM	1910=	MG/KG	4600						1		2 :
F(10 2)	00 to 10	MAGNESIUM	= 1670 =	MG/KG	4600								2
BRAC SS11A		MAGNESIUM	2420 =	MG/KG	4600								z
SS6A	0 1 01 0 0	MAGNESIUM	1740=	MG/KG	4600								Z
SSRA	1	MAGNESIUM	5390	MG/KG	4600		-		_				Z
	ı	MAGNESIUM	2110=	MG/KG	4600								z
ı		MACCHESTINA	1820 ≈	MG/KG	4600								z
2000	0 0 0	MANORAN	1691	MOKO	1304		5				100	×	z
1			7000	07000							00+		2
١		MANGANESE	B (1)	MCNG	1304		3				3	,	
SS65H	- 1	MANGANESE	112=	MG/KG	1304		3				3	,	<u>.</u>
		MANGANESE	541 =	MG/KG	1304		18				2	×	z
E(10.2)		MANGANESE	415=	MG/KG	1304		1100		1		100	×	z
ı	0.000	MANGANESE	379≡	MG/KG	1304		1100				100	×	z
SCHA		MANGANESE	= 129	MG/KG	1304		1100				100	×	z
Ţ		MANAGER	335 -	MCKG	1304		5				1001	×	z
SS6A	1	WANTE OF THE PERSON OF THE PER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MOWE	100		5				190	×	z
SSSA	١	MAIN CAMP COL	= 100		5								
			4.5	0/00/00	*00*		2				001	>	2

TABLE L-1
Summary of Detected Parameters in Surface Sof at FU1 Compared to Background and Screening Level Values
Memphis Depot Main Installation R1

TABLE L+1 Summary of Detected Parameters in Surface Soil at FU1 Compared to Background and Screening Level Values Memphis Deport Main Installation RI

Qualitier Units
ž
MG/KG
"
,
CACA
2
MG/KG
MG/KG
MC/KG
,
l
1
İ
ļ
13.3]≂
2
l
i

X X X X X X X Ecological Criterion Exceedance Fiag Ecological Criterion Value GWP Exceedance Flag GWP Value Direct Exposure Exceedance Flag Direct Exposure Value Background Exceedance Flag Background Value Ę MGKG MGKG MGKG MGKG MGKG MGKG 20 = 18 E S Concentration Parameter
 Site
 Sterilon
 Range

 57
 FSS70
 0 0 to 1 0
 PHENANTHRENE

 57
 FSS70
 0 0 to 1 0
 PHENANTHRENE

 57
 SB57E
 0 to to 1 0
 PHENANTHRENE

 65
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 65
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 65
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 65
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 65
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 65
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 65
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 65
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 65
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 66
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 66
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 66
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 66
 FSS6A
 0 to to 1 0
 PHENANTHRENE

 <td

TABLE L-1
Summary of Detected Parameters in Surface Soil at FU1 Compared to Background and Screening Level Values
Memphis Depot Main Installation RI

TABLE L-1 Summary of Defected Parameters in Surface Soil at FU1 Compared to Background and Screening Level Values Memphis Depot Main Installation RI

P \147543\FU1_NE Screening Tables xis\Surface Soil

									RBC					
									Direct				Ecological	
		Depth			_	Background	Background Exceedance	Direct Exposure	Exposure Exceedance	GWP	GWP Exceedance	Ecological Criterion	Criterion Exceedance	Exceeded
Ste	۽	Range	Parameter		Qualifier	Vafue	Flag	Value	Flag	Value	Flag	Value	Flag	Criteria Flag
	E(10.2)	001010	PYRENE			1.5	×	230		088		0	×	>
BHAC	ı	00100	PYREME	- 4	MG/KG	2	,	230		OBB		0 1	×	z
DAM.	ŀ	ì	FIMENE			7	,	000		000			ζ,	-
DE PER	SCS A SCS	00000	DVDENE	1 30	MONO		×	062		O O O			,	2 >
200	Τ	П	DVOCNE		MONG	-	 	000					,	,
200	A Poss	0 0 0 0	DYDENE	=67	MOMO	0 4	\ \	000		O G			,	- 3
	Ī,	0000	SEI ENITH	1.4.5	MGAG	- 0	×	3 2		200		180		>
Τ	Τ	0000	OFFICE OFFI	-	MOAKG	80	×	96		1		180		,
Ī	Ţ,	0 1 2 0 0	SELECTION SELECTION	-	MGKG	0	×	8		2		180		- >
I	Т		SELECTION		MOWG		< >	2		9 4		100	()	- >
	T	0000	SELECTION SELECTION	0 0		2 0	\ <u>\</u>	5		n w		900		- >
	Ŧ	0 0 0 0	SELENION	* 1			,	5		0 2		000		
2	PS5/C	001000	SILVER	= 1 P	MGAG	1		20		3		7	;	2
l	T	0 000	TOUR	10000	MONO	0000	^	0031		•		20.0		<u> </u>
١	Т	0 0 0 0	TOURING	= 7100	DANGE OF THE PERSON	2000	<>	0001		3 5		200		2 :
65	Т	001000	TOLUENE	± 0.0140	MG/KG	0.002	×	1600		2		0 05		z
	Ţ	0.0100	TOLUENE	0.000	MOVE	0 002		0091		2 3		SOO		z
Ş	T	0.0000	FOLUENE	61000	MG/KG	200 0		1900		12		200		z
	П	00 to 10	Total Polynuclear Aromatic Hydrocarbons	12 165=	MG/KG							-	×	>
2	9/92	00100	Lotal Pownuctear Aromatic Hydrocarbons	25.755= 25.755=	MG/KG								×	,
	T	0.0100	Total Pownuciear Aromatic Hydrocarbons	≃nRZ	MG/KG								,	- ;
27	Т	0 to 10	Total Polynuclear Aromatic Hydrocarbons	308 t	MG/KG					Ì		-	× ,	>
1	Т	001020	Total Polynuclear Aromatic Hydrocarbons		MG/KG								×	> ;
1	FS65A 0	0 0 to 1 0	Total Polynuciear Aromatic Hydrocarbons	279 6=	MG/KG					1			×	\ \
1	1	0 0 to 1 0	Total Pownuciear Aromatic Hydrocarbons	83.2									ζ,	-
Т	Т	0 D to 1 D	Total Polynuciear Aromatic Hydrocarbons	2112						1		1	× ;	-
Τ	Т	0 1 01 0	total Polynuciear Aromatic Hydrocarbons	2 249 5				1		1			< >	-
T	Т	0.010	I otal Polynuclear Aromatic Hydrocarbons	2015				1		1			,	-
T	SS65A	001010	Total Polynuclear Aromatic Hydrocarbons	484 3=									κ,	,
T	Τ	0 0 0 0	Total Poynacidar Aromatic Hydroxianoris	C ENJ								•	< >	- >
8 8	Т	0.01010	Total Debaudios: Aromatic Disdocations	= 741 2	MONG			Ì					,	,
T	Τ	0000	Total Pokrucioar Aromate Hydrocarbona	722 407	Ī					Ī			\\\	\
	T	0 0 0	Total Dokumelear Assesse Livercations	7007333	l							-	,	,
T		0000	Total Polynician Ammate Hydrocarbons	370									×	,
3 12	SS65H	0000	Total Polymelear Aromatic Hydrocarbons	#2878 # #286									×	>
Γ	1	0000	Total Polynician Aromatic Hydrocarbons	= 4 4	MG/KG								×	\
Ī	SSEGB	001010	Total Polynuclear Aromatic Hydrocarbons	157				<u> </u>					×	۲
Γ	Τ	001010	Total Polynuclear Aromatic Hydrocarbons	18 86								1	×	>
Π	Γ	001010	Total Polynuclear Aromatic Hydrocarbons	1891								1	×	٨
Ş	Γ	001010	Total Polynuclear Aromatic Hydrocarbons	24 86=								•	×	>
BRACIF	Γ	00100	Total Polynuclear Aromatic Hydrocarbons	= 8 659 =								-	×	>
BRAC	SSIIA	00 to 10	Total Polynuclear Aromatic Hydrocarbons	72 25=	MG/KG							-	×	٨
BHAC	П	00 to 10	Total Polynuclear Aromatic Hydrocarbons	6 228=								1	X	>
BHAC		00 to 10	Total Polynuclear Aromatic Hydrocarbons	1664=						_		•	×	>
	SS8A 0	0 0 to 1 0	Total Polynuciear Aromatic Hydrocarbons	1651=								1	×	>
BHAC	SS9A 0	0000	Total Polynuclear Aromatic Hydrocarbons	1 945 J								1	×	>
59	SS65H 0	0000	Total Xylenes	₹ 600 0		600 0		16000		0.2				z
	li	0 0 to 1 0	Total Xylenes	f 600 0		6000		16000		0.2				z
AC	1	00 to 10	TRICHLOROETHYLENE (TCE)	0 005 J				58		90 0		0 001	×	>
	l	00 to 10	VANADIUM	107		484		55		9		2	×	z
65	Γ	00 to 10	VANADIUM	84=	MG/KG	48 4		55		0009		2	×	z
59	SSESH	00100	VANADIUM	=96	MG/KG	484		55		0009		2		z
89	Г	00000	VANADIUM	25.8=	MG/KG	484		98		0009		2	×	z
BRACE		00 to 10	VANADIUM	22.2≈	MG/KG	484		99		9		7	×	z
BRAC	li	0 0 to 1 D	VANADIUM	215=	MG/KG	48 4		25		9009		2	×	z
BRAC	Ш	0 0 to t 0	VANADIUM	286≈	MG/KG	48 4		55		9009		2		z
BRAC		00 to 10	VANADIUM	22.1	MG/KG	48 4		55		9009		2	×	z
BRAC :		0.0 to 1.0	VANADIUM	27.4	MG/KG	484		55		6000		7		z

L 17

P \147543\FU1_NE Screening Tables xis\Surface Soil

TABI Sumn Memp	TABLE L-1 Summary of Detec Memphis Depot M	TABLE L-1 Summary of Detected Parameters in Memphis Depot Main Installation RI	TABLE L-1 Sumnary of Defected Parameters in Surface Sot at FU1 Compared to Background and Screening Level Values Memphis Depot Main Installation R1	ng Level Values											
L	L				-					RBC					
					•			•		Direct				Ecological	
		,						Background	Direct	Exposure		GWP	Ecological	Criterion	•
Site	Station	Range	Parameter	Concentration	Qualifler	S-lts	Sackground Value	Fixeedance	Exposure	Exceedance	Value	Exceedance	Value	Exceedance	Exceeded Criteria Flag
BHAC	SSBA	00100		22 7.	-	MG/KG	484		SS		9		2	×	z
BRAC		00100	VANADIUM	213		MG/KG	484		55		0009		2	×	z
25	FS57A	001010	ZINC	50 25		MG/KG	126		2300		12000		90	×	z
23	FS57C	0 0 10 0	ZINC	1525		MG/KG	126	×	2300		12000		90	×	>
22	SBS7C	00to 20	ZINC	99		MG/KG	126		2300		12000		S	×	z
57	SB57D	0000	ZINC	75.2		MG/KG	126		2300		12000		25	×	z
22	SB57E	0000	ZINC	=9 66		MG/KG	126		2300		12000		50	×	z
25	SB57F	0000	ZINC	113=		MG/KG	126		2300		12000		S	×	z
25	SB57G	001020	ZINC	54		MG/KG	126		2300		12000		95	×	z
9	SB65A	1	ZINC	96		MG/KG	126		2300		12000		90	×	z
92	SB65B	ľ	ZINC	1961		MG/KG	126	×	2300		12000		20	×	>
65	SBesc	0.000	ZINC	134=		MG/KG	126	×	2300		12000		20	×	>
99	SS65A	[ZINC	646		AG/KG	126	×	2300		12000		52	×	>
92	SSesB		ZINC	=6 99		MG/KG	126		2300		12000		25	×	z
9	SSesc		ZINC	131		AG/KG	126	×	2300		12000		95	×	>
92	SSesD	00 to 125 ZINC	ZINC	±€96		MG/KG	126		2300		12000		20	×	z
59	SS65E	00 to 10	ZINC	116=		MG/KG	126		2300		12000		20	×	z
9	SS65H		ZINC	142		MG/KG	126	×	2300		12000		20	×	>
65	SS65H	001010	ZINC	14.8		fG/KG	126		2300		12000		50	×	z
9	SSest		ZINC	r /2 85		MG/KG	126		2300		12000		20	×	z
99	SS66B		ZINC	59 4		IG/KG	126		2300		12000		50	×	z
99	SSeec		ZINC	76 6		MG/KG	126		2300		12000		20	×	z
99	SS66D	000010	ZINC	r 2 59		MG/KG	126		2300		12000		20	×	z
99	SSee		ZINC	80 e)		MG/KG	126		2300		12000		20	×	z
99	SSEE		ZINC	r 6 2 8		MG/KG	126		2300		12000		20	×	z
BHAC	E(10.2)		ZINC	57=		MG/KG	126		2300		12000		20	×	z
BHAC	BRAC F(10.2)	00 to 10	ZINC	519=		MG/KG	126		2300		12000		50	×	z
BHAC	BRAC SS11A		ZINC	C 65		MG/KG	126		2300		12000		50	×	z
BRAC	BRAC SS6A		ZINC	F,8 87		MG/KG	126		2300		12000	:	99		Z
BHAC	BRAC SSBA		ZINC	614		to/KG	126		2300		12000		20	×	z
BRAC	BRAC SSBA		Zinc	C S 19		MG/KG	126		2300		12000		50	×	z
BRAC	BRAC SS9A	00000	ZINC	f 27	2	MG/KG	126		2300		12000		20		z

TABLE L-2
Summary of Detected Parameters in Subsurface Soil at FU1 Compared to Background and Screening Level Values Memphis Depot Main Installation RI

						T .	l			RBC	
			•					Background		GWP	
Site	Station	Depth Range	Parameter	Concentration	Qualifler	Unite	Sackground Value	Exceedance Flag	GWP Value	Exceedance Flag	Exceeded Criteria Fla
7		30 to 50	ACETONE	800 0		MG/KG	Yaide	rieg	16	rang	N
7		8 0 to 10 0	ACETONE	0 008		MG/KG			16		N
7	SB57D	30 to 50	ACETONE	0 008	J	MG/KG			16		N
7	SB57D	30 to 50	ACETONE	0 008	J	MG/KG			16		N
7		8 0 to 10 0	ACETONE	0 009		MG/KG			16		N
7	SB57E	30 to 50	ACETONE	0 007		MG/KG			16		N
7	SB57E	8 0 to 10 0	ACETONE	0.006		MG/KG			16		N
7	SB57F SB57F	30 to 50 60 to 100	ACETONE .	0 017		MG/KG MG/KG			16. 16		N
57		30 to 50	ACETONE	0 017		MG/KG			16		N
57		80 to 100	ACETONE	0 018		MG/KG			16		N
57	5857G	30 to 50	ACETONE	0 017	-	MG/KG			16		N
70	5870F	3 0 to 5 D	ALUMINUM	13200	-	MG/KG	21829				N
70	SB70F	80 to 100	ALUMINUM	9180	-	MG/KG	21829				N
0	SB70H	3 C to 5 O	ALUMINUM	9310	=	MG/KG	21829				N
70		80 to 100	ALUMINUM	13200		MG/KG	21829				N
70		30 to 50	ALUMINUM	12000		MG/KG	21829				N
70		30 to 50	ALUMINUM	10500		MG/KG	21829		ļ		N
70		80 to 100 30 to 50	ALUMINUM	18700 9440		MG/KG MG/KG	21829 21829		<u> </u>		2
70		80 to 10 0	ALUMINUM	9620	L	MG/KG	21829		 		N
57		30 to 50	ANTIMONY	12		MG/KG	2.023		5		N
57		8 0 to 10 0	ANTIMONY	11		MG/KG	l		5		N N
7	SB57G	30 to 50	ANTIMONY	t	E	MG/KG			5		N
57	SB57G	9 0 to 10 0	ANTIMONY	13		MG/KG			5		N
57		3 D to 5 O	ANTIMONY	12		МСИКС			5	1	N
57		301050	ARSENIC	96	<u>. </u>	MG/KG	17		29		N N
57	SB57C	8 0 to 10 0	ARSENIC	89	4	MG/KG MG/KG	17		29 29		N
57 57	SB57D SB57D	30 to 50	ARSENIC ARSENIC	11	J	MG/KG	17		29	-	N
57		8 0 to 10 0	ARSENIC	8		MG/KG	17		29		N
57	SB57E	30 to 50	ARSENIC	91		MG/KG	17		29		N
57	SB57E	8 0 to 10 0	ARSENIC	77	-	MG/KG	17		29		N
57	SB57F	3 0 to 5 D	ARSENIC	8.6	-	MG/KG	17		29		N
57		8 0 to 10 0	ARSENIC	5.5		MG/KG	17		29		N
57	5857G	301050	ARSENIC	69		MG/KG	17		29		N
57	SB57G	8 0 to 10 0	ARSENIC	47 85	l	MG/KG MG/KG	17		29 29		N
57 70	SB57G SB70F	3 0 to 5 0	ARSENIC ARSENIC	13.3		MG/KG	17		29		N
70	5870F	8 0 to 10 0	ARSENIC	94		MG/KG	17		29		N
70	S870H	3 0 to 5 0	ARSENIC	5.5	I	MG/KG	17		29		N
70	SB70H	8 0 to 10 0	ARSENIC	4.9	-	MG/KG	17		29	1	N
70	SB701	3 0 to 5 0	ARSENIC	E	=	MG/KG	17		29		N
70	SB701	30 to 50	ARSENIC	10		MG/KG	17		29		N N
70	SB70I	8 0 to 10 0	ARSENIC '	9 9		MG/KG	17		29		N
70	SB70J	301050	ARSENIC	85	<u> </u>	MG/KG	17		29	1	N
70	SB7QJ	8 0 to 10 0	ARSENIC	9		MG/KG MG/KG	300	ļ	1600	1	N
70 70	SB70F SB70F	3 0 to 5 0	BARIUM	132		MG/KG	300	 	1600		N
70	SB70H	30 to 50	8ARIUM	76		MG/KG	300	<u> </u>	1600		N
70	SB70H	80 to 100	BARIUM	87 2		MG/KG	300		1600		N N
70		30 to 50	BARIUM	161	=	MG/KG	300		1600		N
70	5970t	30 to 50	BARIUM	181		MG/KG	300		1600		N
70	5B701	8 0 to 10 0	BARIUM	154		MG/KG	300		1600		N
70	SB70J	30 to 50	BARIUM	115	II.	мажа	300	1	1600	<u> </u>	N
70	SB70J	8 0 to 10 0	BARIUM	0.04		MG/KG	300	 	1600 3600		N
57 57	SB57C SB57C	3 0 to 5 0 8 0 to 10 0	bis(2 ETHYLHEXYL) PHTHALATE	0.047	1	MG/KG	 	1	3600		N N
57 57	SB57C	3 0 to 5 0	bis(2 ETHYLHEXYL) PHTHALATE	0 072	1	MG/KG	 	 	3600		N N
57	\$B57D	8 0 to 10 0	bis(2-ETHYLHEXYL) PHTHALATE	033	1	MG/KG	 	 	3600	!	N -
57	SB57E	30 to 50	bis(2-ETHYLHEXYL) PHTHALATE	0.08		MG/KG	 	<u> </u>	3600		N
57	S857E	80 to 100	bis(2-ETHYLHEXYL) PHTHALATE	0 098	J	MG/KG	1		3600		N
57	SB57F	30 to 50	bis(2-ETHYLHEXYL) PHTHALATE	12		MG/KG		L <u></u>	3600		N.
57	SB57F	8010100	bis(2-ETHYLHEXYL) PHTHALATE	0.076	1	MG/KG			3600		N
57	SB57G	301050	bis(2-ETHYLHEXYL) PHTHALATE	0.065	1	MG/KG	ļ		3600	<u> </u>	N
57	SB57G	8 0 to 10 0	bis(2 ETHYLHEXYL) PHTHALATE	0 16		MG/KG	 	 	3600	<u>:</u>	N N
57	SB57G	3 0 to 5 0	DIS(2-ETHYLHEXYL) PHTHALATE	0.22		MG/KG MG/KG	-		3600 3600	1	N N
65 57	SB65A SB57C	8 0 to 10 0 3 0 to 5 0	bis(2 ETHYLHEXYL) PHTHALATE BROMOMETHANE	0 002		MG/KG	1	-	0.2		N
70	SB70F	30 to 50	CALCIUM	1830		MG/KG	2432		"	 	N
70	SB70F	8 0 to 10 0	CALCIUM	2750		MG/KG	2432			 	NA NA
70	SB70H	301050	CALCIUM	2320		MG/KG	2432		 		N
70	SB70H	8 0 10 10 0	CALCIUM	1730		MG/KG	2432		 	 	N
70	SB70I	30 to 50	CALCIUM	1370	<u> </u>	мсжс	2432		1		N
70	SB70i	30 to 50	CALCIUM	1170) =	MG/KG	2432	1		Į.	N

TABLE L-2
Summary of Detected Parameters in Subsurface Soil at FU1 Compared to Background and Screening Level Values Memphis Depot Main Installation RI

										RBC	,
		Depth					Background	Background Exceedance	GWP	GWP Exceedance	Exceeded
Site	Station	Range	Parameter	Concentration	Qualifier	Units	Value	Flag	Value	Flag	Criteria Flag
)		8 0 to 10 0	CALCIUM	978		MG/KG	2432				N
_	5B70J	30 to 50	CALCIUM	1870		MG/KG	2432				N
0	SB70J	8 0 to 10 0	CALCIUM	2020		MG/KG	2432				N
7	SB57C	30 to 50	CHROMIUM TOTAL	12 1		MG/KG	26 4		38		N
7		80 to 10 0	CHROMIUM TOTAL	13 2		MG/KG	26 4		38		N
7	S857D	30 to 50	CHROMIUM TOTAL	10 2		мсжа	26 4		38		N
7	\$857D	30 to 50	CHROMIUM TOTAL	119		MG/KG	26 4		38		N N
7	SB57D	8010100	CHROMIUM TOTAL	10 6		MG/KG	26 4		38		N
7	SB57E	3 0 to 5 0	CHROMIUM TOTAL	128		MG/KG	26 4		38		N
7	SB57E	8 0 to 10 0	CHROMIUM TOTAL	108		MG/KG	26 4		38		N
7	SB57F	30 to 50	CHROMIUM TOTAL	118		MG/KG	26 4		38		N
7	SB57F	8 0 to 10 0	CHROMIUM TOTAL	113		MG/KG	26 4		38		N
7	SB57G	30 to 50	CHROMIUM, TOTAL	13		MG/KG	26 4		38		N
i7 i7	5857G	8 0 to 10 0	CHROMIUM TOTAL	14		MG/KG	26 4		38		N
	SB57G	30 to 50	CHROMIUM TOTAL	14		MG/KG	26 4		38		N.
0	SB70F SB70F	30 to 50	CHROMIUM TOTAL	14.9		MG/KG	26 4		38		N
0	SB70H	80 to 10 0	CHROMIUM TOTAL	12 9		MG/KG	26 4		38		N N
70	SB70H	8 0 to 10 0	CHROMIUM TOTAL	12 19 3		MG/KG MG/KG	26 4 26 4		38 38		N N
70	SB701	3 0 to 5 0	CHROMIUM TOTAL	13 9		MG/KG	26 4		38		N N
70	58701	30 to 50	CHROMIUM TOTAL	129		MG/KG	26 4		38		N N
70	S8701	80 to 10 0	CHROMIUM TOTAL	175		MG/KG	26 4		38		N N
70	S870J	30 to 50	CHROMIUM TOTAL	1/3		MG/KG	26 4		38		N
70	SB70J	8 0 to 10 0	CHROMIUM TOTAL	125		MG/KG	26 4		38		N N
55	SB65A	8 D to 10 O	CHRYSENE	0.05		MG/KG	1 -34		160	 	N N
70	SB70F	8 0 to 10 0	CHRYSENE	D 047		MG/KG	1		160		N
70	SB70F	3 0 to 5 0	COBALT	99		MG/KG	20 4		100		N
70	SB70F	8010100	COBALT	76		MG/KG	20 4				N N
70	SB70H	30 to 50	COBALT	68		MG/KG	20 4		 		N N
70	S870H	8 0 to 10 0	COBALT	63		MG/KG	20 4			<u> </u>	N N
70	SB701	301050	COBALT	7 4		MG/KG	20 4		 	l	N
70	SB70I	3 0 to 5 0	COBALT	82		MG/KG	20 4				N
70	SB70I	8 0 to 10 0	COBALT	9.5		MG/KG	20 4		·		N
70	SB70J	30 to 50	COBALT	71		MG/KG	204			····	N
70	SB70J	8 0 to 10 0	COBALT	76	<u> </u>	MG/KG	20 4				N .
57	SB57C	30 to 50	COPPER	16 2		MG/KG	327		-		N N
57	SB57C	8 0 to 10 0	COPPER	186		MG/KG	327				N
57	SB57D	30 to 50	COPPER	16.6		MG/KG	327				N N
57	SB57D	30 to 50	COPPER	18.5		MG/KG	327				N
57	SB57D	8 0 to 10 0	COPPER	17.9	L .	MG/KG	327		\vdash		N
57	SB57E	30 to 50	COPPER	16 5		MG/KG	32 7				N
57	SB57E	8 0 to 10 0	COPPER	17 9		MG/KG	327			· · · · · · · · · · · · · · · · · · ·	N
57	SB57F	3 D to 5 O	COPPER	16 1	<u> </u>	MG/KG	32 7			 	N
57	SB57F	8 D to 10 O	COPPER	13 6		MG/KG	32 7		i 	·	N
57	SB57G	301050	COPPER	15.8		MG/KG	32 7				N
57	SB57G	B 0 to 10 0	COPPER	12 2	=	MG/KG	32 7		1		N
57	SB57G	3 0 to 5 0	COPPER	17 1		MG/KG	32 7	 			N
70	SB70F	30 to 50	COPPER	22	=	MG/KG	32 7		1	1	N
70	SB70F	8 0 10 10 0	COPPER	16 €	1	MG/KG	32 7		<u> </u>	.	N
70	SB70H	301050	COPPER	14		мажа	32 7				N
70	SB70H	8 0 to 10 0	COPPER	113		мака	32 7		1		N
70	SB701	30 to 50	COPPER	16 7	I	MG/KG	32 7		1		N
70	SB701	301050	COPPER	16 7		мсжс	32 7		1	1	N
70	S870I	8 0 to 10 0	COPPER	18 4		мджд	32 7		1	l	N
70	SB70J	30 to 50	COPPER	16 1	=	мажа	32 7	i .		i	N
70	SB70J	8 0 to 10 0	COPPER	16 9		мажа	32 7			1	N
57	SB57E	8 G to 10 G	DDE	0 0018	J	MG/KG	0 0015	x	54	l	N
57	SB57F	8 0 to 10 0	DOE	0.0016	J	MG/KG	0 0015	х	54	1	N
57	SB57G	301050	DOE	0 0056	æ	MG/KG	0 0015	X	54	1	N.
57	S857G	3 0 to 5 D	DDE	0.011	=	MG/KG	0 0015	×	54	1	N
70	SB70F	3 0 to 5 D	DOE	0 021	=	MG/KG	0 0015	X	54		N
70	SB70F	8 D to 10 O	DOE	0.032	=	MG/KG	0 0015	×	54		N
70	SB70I	301050	DOE	0 0035	J	MG/KG	0 0015	×	54		N
70	SB701	8 0 to 10 0	DOE	0 0021	J	мажа	0 0015	Х	54	1	N N
57	\$857D	30 to 50	DOT	0 0021	J	MG/KG	0 0072		11		N
57	SB57E	8 0 to 10 0	DOT	0.0016	1	MG/KG	0 0072		11	1	N
57	SB57F	8 0 to 10 0	DOT	0 0026	1	MG/KG	0 0072	l	11		N
57	SB57G	30 to 50	DOT	0 015	1	MG/KG	0 0072		11		N
57	S857G	8 0 to 10 0	DDT	0 0022		MG/KG	0 0072		111		N
57	SB57G	30 to 50	DOT	0 031		MG/KG	0 0072	1	11		N N
70	SB70F	30 to 50	DDT	0.081		MG/KG	0 0072		11		N N
70	SB70F	8 0 to 10 0	DOT	0.058		MG/KG	0 0072	x	11		N
70	SB70i	3 0 to 5 0	DDT	0 0081		MG/KG	0 0072		11		N N
0	SB70f	8 0 to 10 0	IODT	0 0034		MG/KG	0 0072		31	1	N
5	SB65C	4 0 to 6 0	DI-n-BUTYL PHTHALATE	0 052		MG/KG	+	 	2300		N
	1	1.0.000	I	I 0 1/32	17	1	1	1	2500	1	.1 . "

TABLE L-2
Summary of Detected Parameters in Subsurface Soil at FU1 Compared to Background and Screening Level Values Memphis Depot Main Installation RI

			1								
		Depth	<u> </u>					Background Exceedance		RBC GWP	Exceeded
eu.			_ ,	<u> </u>			Background		GWP	Exceedance	
Site 70	Station SB70H	3 0 to 5 0	Parameter DI-n SUTYL PHTHALATE	Concentration 0 058	Qualifier	Units MG/KG	Value	Flag	Value	Flag	Criteria Flag
65		8 0 to 10 0	FLUORANTHENE	0 066		MG/KG	0 045	x	2300 4300		N N
70		8 0 to 10 0	FLUORANTHENE	0 072		MG/KG	0 045	x	4300		N
57		3 D to 5 D	GAMMA BHC (LINDANE)	0 0022		MG/KG			0 009		N
57	SB57D	301050	GAMMA BHC (LINDANE)	0 0014	J	MG/KG			0 009		N
57	SB57D	8 0 to 10 0	GAMMA BHC (LINDANE)	0 0027	=	MG/KG			0 009		N
70	SB70F	301050	IRON	23400	=	MG/KG	38480				N
70		8010100	IRON	19600		MG/KG	38480				N
70		3 0 to 5 0	IRON	16400		MG/KG	38480				N
70		8 0 to 10 0	IRON	15900		MG/KG	38480				N
70 70		30 to 50	IRON	18300 20300	1	MG/KG MG/KG	38480 38480				N
70		8 0 to 10 0	IRON	21200	1	MG/KG	38480				N
70		3 0 to 5 0	IRON	18500		MG/KG	38480				N
70		8 0 to 10 0	IRON	19500		MG/KG	38480				N N
57	SB57C	301050	LEAD	10 B	=	MG/KG	23 9				N
57	SB57C	8 0 10 10 0	LEAD ,	10	-	MG/KG	23 9				N
57		301050	LEAD	11	-	MG/KG	23 9				N
57		3 0 to 5 0	LEAD	13 1	*	MG/KG	23 9				, N
57		8 0 to 10 0	LEAD	8.6		MG/KG	23 9				N
57		3 0 to 5 0	LEAD	10.5	=	MG/KG	23 9				N
57 57		8 0 to 10 0	LEAD	98	-	MG/KG	23 9 23 9	 	ļ		N
57		8 0 to 10 0	LEAD	75		MG/KG	23 9				N
57		30 to 50	LEAD	8.5		MG/KG	23 9				N
57		8 0 to 10 0	LEAD	83		MG/KG	23 9				N
57	SB57G	301050	LEAD	94	=	MG/KG	23 9				N
70	SB70F	301050	LEAD	132	=	MG/KG	23 9				N
70		8 0 to 10 0	LEAD	10 1		MG/KG	23 9				N
70		30 to 50	LEAD	73		MG/KG	23 9				N
70		8 0 10 10 0	LEAD	8.2		MG/KG	23 9				N
70 70	SB70I SB70I	30 to 50	LEAD LEAD	11		MG/KG MG/KG	23 9	<u> </u>			N N
70		8 0 to 10 0	LEAD	144		MG/KG	23 9	 	<u> </u>	<u> </u>	N
70		30 to 50	LEAD	91		MG/KG	23 9			<u> </u>	N
70		8 0 to 10 0	LEAD	9.5		мажа	23.9			· 	N
70	SB70F	30 to 50	MAGNESIUM	2920	-	MG/KG	4900				N
70	SB70F	8 0 to 10 0	MAGNESIUM	2580	*	MG/KG	4900			Î	N
70		301050	MAGNESIUM	2310		MG/KG	4900				N
70		8 0 to 10 0	MAGNESIUM	2210		MG/KG	4900				N
70 70		30 to 50	MAGNESIUM	2530 2480		MG/KG	4900		<u> </u>		N
70 70		3 0 to 5 0 8 0 to 10 0	MAGNESIUM ;	2480		MG/KG	4900	ļ			N
70		30 to 50	MAGNESIUM	2420		MG/KG	4900				N
70		8 0 to 10 0	MAGNESIUM	2520		MG/KG	4900			ļ	N N
70	S870F	30 to 50	MANGANESE	1110	2	MG/KG	1540				N
70	S870F	80 to 100	MANGANESE	541	=	MG/KG	1540			•	N
70	5870H	301050	MANGANESE	523	=	MG/KG	1540				N
70	S870H	8 0 to 10 0	MANGANESE	405	1	MG/KG	1540				N
70	SB70)	301050	MANGANESE	533		MG/KG	1540		ļ		N
70	SB701	3 0 to 5 0 8 0 to 10 0	MANGANESE	684		MG/KG	1540	ļ	<u> </u>	ļ	N N
70 70	SB701 SB70J	30 to 50	MANGANESE MANGANESE	560 487		MG/KG MG/KG	1540 1540	 		 	N
70 70		8 0 to 10 0	MANGANESE	540		MG/KG	1540			ļ	N
57		3 0 to 5 0	NICKEL	18		MG/KG	36 6		130	 	N N
57	SB57C	8 0 to 10 0	NICKEL	194		можа	36 6		130	<u> </u>	N
57		3 0 to 5 0	NICKEL	18		мслкс	36 6		130		N
57	SB57D	30 to 50	NICKEL	19.5		MG/KG	36 6		130	1	N
57		8 0 to 10 0	NICKEL	16 1		MG/KG	36 6		130	1	N
57	SB57E	30 to 50	NICKEL	18 5		MG/KG	36 6		130		N
57		8 0 to 10 0	NICKEL	16 2		MG/KG	36 6		130	1	Ni Ni
57		30 to 50	NICKEL	17 6		MG/KG MG/KG	36 £	1	130	1	N
57 57		80 to 100	NICKEL NICKEL	16 2		MG/KG	36 6		130	1	N N
57	S857G	8010100	NICKEL	14 7		MG/KG	36 6		130		N N
57	S857G	301050	NICKEL	18 6	1	MG/KG	36 6		130		N N
70	S870F	301050	NICKEL	20 4		MG/KG	36 6		130		N
70	SB70F	8 0 10 10 0	NICKEL	18 4	1	MG/KG	36 6		130		N
70	SB70H	3 0 to 5 0	NICKEL	16 1	=	MG/KG	36 6	<u> </u>	130	1	N
70	SB70H	8 0 to 10 0	NICKEL	13 9		MG/KG	36 6		130		N
70	SB70I	301050	NICKEL	17 2		MG/KG	36 6		130		N
70	SB70i	3 0 to 5 0	NICKEL	17.9		MG/KG	36 6		130		N
70	SB701	8 0 10 10 0	NICKEL	18 1		MG/KG	36 6		130		N
70	SB70J	301050	NICKEL	16 9		MG/KG	36 6		130		N
70	S870J	8 0 10 10 0	NICKEL	17 9	=	MG/KG	36 6	L	130	L	N

TABLE L-2Summary of Detected Parameters in Subsurface Soil at FU1 Compared to Background and Screening Level Values *Memphis Depot Main Installation RI*

				1		Γ			RBC		
				İ				Background	GWP		
Site	Station	Depth Range					Background	Exceedance	GWP	Exceedance	Exceeded
65		8 0 to 10 0	Parameter PHENANTHRENE	Concentration 0 089	Qualitier	Units MG/KG	Value	Flag	Value	Flag	Criteria Flag
70		3 0 to 5 0	POTASSIUM	2780	1	MG/KG	1800		250		N
70		8 0 to 10 0	POTASSIUM	2410		MG/KG	1800	X		 	NA NA
70		3 0 to 5 0	POTASSIUM	2180		MG/KG	1800	X			NA NA
70		8 0 to 10 0	POTASSIUM	1880		MG/KG	1800	×			NA NA
70	SB70t	30 to 50	POTASSIUM	2460	L	MG/KG	1800	- x			NA NA
70	SB701	30 to 50	POTASSIUM	2280		MG/KG	1800	x		 	NA NA
70	SB701	8 0 to 10 0	POTASSIUM	2750		MG/KG	1800	- x			NA NA
70	SB70J	30 to 50	POTASSIUM	2340	1	MG/KG	1800	x			NA NA
70	SB7GJ	8 0 to 10 0	POTASSIUM	2420		MG/KG	1800	×	 		NA NA
65	SB65A	8 0 to 10 0	PYRENE	0.06		MG/KG	0 042	×	880		N N
70	SB70F	8 0 to 10 0	PYRENE	0 058		MG/KG	0.042	- X	880		N
70	SB70F	30 to 50	SILVER	0 17	J	мажа	1		34		N N
70	SB70F	8 0 to 10 0	SILVER	0 16	J	мажа	1		34		N
70	SB701	30 to 50	SILVER	0 12	J	мажа			34		N
70	SB7QI	30 to 50	SILVER	0 15	1	MG/KG	1		34		N
70	SB70I	8 D to 10 0	SILVER	01		мажа	1	L	34	[N
70	SB7¢J	8 0 to 10 0	SILVER	0 11	J	мажа	1		34		N
57	SB\$7G	30 to 50	TETRACHLOROETHYLENE(PCE)	0 002	1	MG/KG	 		0 06		N N
57	SB57G	8 0 to 10 0	TETRACHLOROETHYLENE(PCE)	0 007	J	MG/KG	 		0.06		Ni
57	SB57G	30 to 50	TETRACHLOROETHYLENE(PCE)	0 003		мажа			0.06		N
70	SB70F	30 to 50	VANADIUM	31.5	=	мсжа	51 3		6000		
70	S870F	9 0 to 10 0	VANADIUM	24 9		MG/KG	51 3		6000		N
70	SB70H	30 to 50	VANADIUM	26 2	-	MG/KG	51 3		6000		N
70	5B70H	8 0 10 10 0	VANADIUM	31 8	-	MG/KG	51 3		6000		N N
70	SB70I	301050	VANADIUM	27 1	-	MG/KG	51 3		6000	-	N
70	58701	30 to 50	VANADIUM	24 6		MG/KG	51 3		6000		N
70	SB70I	80 to 100	VANADIUM	36.2		MG/KG	513		6000	 	N
70	S870J	30 to 50	VANADIUM	24 9	=	MĠ/KG	513		6000		N
70	5870.	8 0 to 10 0	VANADIUM	25 7	-	MG/KG	513	-	6000		N
57	SB57C	30 to 50	ZINC	57 3		MG/KG	114		12000		N
57	SB57C	80 to 100	ZINC	46 4	-	MG/KG	114		12000		N
57	SB57D	30 to 50	ZINC	55 2	=	MG/KG	114		12000		N.
57	SB57D	30 to 50	ZINC	59 5	2	MG/KG	114	-	12000		N
57	SB57D	8 0 to 10 0	ZINC	46 9	-	MG/KG	114	***	12000		N
57	SB57E	30 to 50	ZINC	55 5	=	MG/KG	114		12000		N
57		8 0 to 10 0	ZINC	46	=	MG/KG	114		12000		- N
57		30 to 50	ZINC	58 9	=	MG/KG	114		12000	-	N
57		8 0 to 10 D	ZINC	36 8		MG/KG	114		12000		N
57		3 0 to 5 0	ZINC	44 9	1	MG/KG	114		12000	Ĭ	N
		8 0 to 10 0	ZINC	37.5	<u>. </u>	MG/KG	114		12000		N
57		30 to 50	ZINC	53 6		MG/KG	114		12000		N
65	S865A	40 to 60	ZINC	155	70	MG/KG	114	X	12000		N
65		8 0 to 10 0	ZINC	121		MG/KG	114	X	12000		N
65	SB65B	40 to 60	ZINC	127	*	MG/KG	114	Х	12000		N
65		9 5 to 11 0	ZINC	95 7	-	MG/KG	114		12000		N
65	SB65C	4 0 to 6 0	ZINC	112		MG/KG	114		12000		N
65	SB65C	9010110	ZINC	78 3	=	MG/KG	114		12000		N
70	SB70F	301050	ZINC	72 1	=	MG/KG	114		12000		N
70	SB70F	8 0 10 10 0	ZINC	53 9		MG/KG	114		12000		N
70		301050	ŽINC	35 8	=	MG/KG	114		12000		N
70		8 0 10 10 0	ZINC	37 7	•	MG/KG	114		12000		N .
70		301050	ZINC	56 1	-	MG/KG	114		12000		N
70		30 to 50	ZINC	54 6		мажа	114		12000		N
70		80 to 10 0	ZINC	61		MG/KG	114		12000		N
70		30 to 50	ZINC	51 2	i	MG/KG	114		12000		N
70	5870J	80 to 100	ZINC	53 2	=	MG/KG	114		12000		N

THIS PAGE INTENTIONALLY LEFT BLANK.

TAB

Appendix M

TAB

Detected Parameters in FUZ

Detected Parameters in FU2

The following are included in this appendix:

- Table M-1-Detected Parameters Summary in Surface Soil
- Table M-2-Detected Parameters Summary in Subsurface Soil
- Table M-3-Detected Parameters Summary in Surface Water
- Table M-4–Detected Parameters Summary in Sediment/Soil

APPENDIX M-DETECTED PARAMETERS IN FU2

THIS PAGE INTENTIONALLY LEFT BLANK.

£

Ecological Criterion Exceedance Flag Ecological Criterion Value GWP Exceedance Flag 12000 GWP Direct Exposure Exceedance Flag Direct Exposure Value Background Exceedance Flag 티티티티티티티티티티 Background Value Unita MAGKG Concentration | 0 002 | 1 0 006 | 1 Parameter

TABLE IN-1
Summary of Detected Parameters in Surface Soil at FU2 Compared to Background and Screening Level Values
Memphis Depot Main Installation RI

₹

PVI47543/FU2_NE Screening Tables xis\Surface Soil

									RBC					
							,		Direct				Ecological	
		Depth				Background	Background Exceedance	Direct Exposure	Exposure Exceedance		GWP Exceedance	Ecological Criterion	Criterion Exceedance	Exceeded
Site	5	Range	Parameter	-+	Qualifier Units	Value	- 1	Value	Flag		Flag	Value	Fleg	Criteria Flag
69	l.	0 0 to 1 D	ARSENIC	135J	MG/KG	2		0 43		50		Ç.	×	z
8	- 1	00 to 10	ARSENIC	20=	MGKG	20		0 43	×	23		0 ;	×	z ;
35	TEC92A	00100	ARSENIC	25.00	MG/KG	20	×	0.43		53		01	χ;	> :
35		0 0 to 1 0	ARSENIC	146	MG/KG	2 2	,	0 40		52 8	,	0.5	≺ >	z
2		0000	AHSENIC	26.06			l	2 0		8 8	,	1	,	
2	(35)	00000	ARSENIC	S OL		3 8		0 0	Š	2 6		2 9	,	2 2
HA D	H(3.5)	00000	AHSENIC	10 C		2 2		0 40	١	87 8		2 5	,	2 >
BRAC	(3 5)	00100	ARSENIC	2100		200	×	0.43		8 8		2 9	×,	- :
S C	1(3.5)	00000	ARSENIC	200		3 6		200	*	2 2		2 3	< >	2
S S	K(3.5)	0.0100	ARSENIC	12.4		3 8		9 0		2 2		2 3	<,	٤ :
BHAC	K(3 5B)	0 0 to 0 0	ARSENIC	142=		200		0 0	1	2 8		2 3	<,	z .
BHAC	L(3 5)	00000	- 1	= 8.21		2 2		200	,	2 2		2 3		2
BHAC	M(3.5)	0 0 to 0 0	- 1	=96		201		0	١	2 8		2 5	,	z :
HA PHA PHA PHA PHA PHA PHA PHA PHA PHA P	N(3.5)	0 0 to 0 0	ARSENIC	194=		2		040	×	S		P	×	z
53	SS51C	0 0 to 1 0	BARIUM	106=		234		250		0091		165		z :
25	SSSZA	0 0 to 1 0	BARIUM	152=		234		250		1600		165		z
29	SS59H	0 0 to 1 0	BARIUM	103 =		234		250		9		165		z
<u>8</u>	SS69A	00 to 10	BARIUM	1145		234		250		1600		91		z
95	TEC92A	00 to 10	BARIUM	=86		234		220		0091		165		z
35	TEC92A	0 0 to 1 0	BARIUM	111=		234		220		1600		165		z
35	TEC92B	0 0 to 1 0	BARIUM	92.7=		234		220		89		165		z
BAC BEAC	A(3 10)	0 0 to 0 S	BARIUM	101	MG/KG	234		250		909		165		z
BHAC	G(35)	00to00	BARIUM	160=		234		250		1600		291		z
BHAC	H(3.5)	0 0 to 0 0	BARIUM	112=		234		220		1600		9		z
BIAS BIAS	1(3.5)	0 0 to 0 0	BARIUM	163=		234		250		391		591		2
BHAC	1(35)	00 to 0 0	BARIUM	183 =		234		250		1600		591	×	z
BHA BHA	K(3.5)	00000	BAHIUM	=002		234		250		000		COL		2 2
BRAC	K(3.5B)	000100	BARIUM	126=		234		ogg		200		60		z
BHA S	BAAC L(35)	0 0 to 0 0	BAHIUM	1124	MG/KG	234		200		300		SOL		2 2
2	M(3 5)	0 0 to 0 0	BARIUM	# /OL		233		200		000		Cal		2 3
HA	N(3 5)			13/1		457		200		000		col		2 2
35	1EC92B	0 0 to 1 0		C 200 D		Į,		200		500		600	,	2 2
5	SB51A			= 0.25 = 0.25	MG/KG	0 / 2		780		N			\	2 2
5	S851B	- 1	BENZO(a)ANTHHACENE	0.059		70		V 200		7		0		2 2
23	S551C			0.0543		0 / 1		180		4		5		2 2
23	SS51D	0 0 to 1 0	BENZO(a)ANTHRACENE	= 171.0	MG/KG	0 7		0 8/		7		5	\	z
5 2	SSS1D			= / L O		0 0		200		7				2 2
3	15552B	- 1	BENZO(8)ANTHHACENE	= 0.24		0 / 0				7				2 3
22	SSS2C	- 1	BENZO(a)ANTHRACENE	= 60 O	MG/KG	0 73		0 87		7		0		2 2
25	SS52D	- 1	BENZO(a)ANIHHACENE	E ROO O		1/0		/80		,		0		2 2
65	26585	- 1	BENZO(8)ANTHHACENE	1000				180		7		0	< >	2 2
3	2000	•	BENZO(a)ANIMIACENE	=120				000		7		•		2
3 8	20000	00.00	BENZO(8)ANTINACENE	44 0	MOVAG	0 21		K 0 0		46		,		z
20	22020	1	DENZO(a)ANTIDACENE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 21		200		. 6		0		z
200	03000	-1	BENZO(s)ANTHRACENE	19200		0 71		280		100		10		z
	13.5	00000	DCIAZO(2)ANTHDACENE	70700				5		1		6		z
2	CDC10	- [BENZO(a)ANTIMACENE BENZO(a)BYDENE	1 700		900		7800	×	1 4		0 1	×	z
	20017		BENZO(s)DYDENE	0.057.1	MGMG	3		0.087		4		6		z
	2022		BENZO(s)DYBENE	I K C		90.0		7800	×	-		0	×	z
2	2000		BENZO(s)PYBENE	= 3+0		96.0		0.087		æ		0		z
ទ	55528		RENZO(a) DYRENE	0.26		96.0		0 087	×	*		0 1		z
3 2	2889		RENZO(a)PYRENE	C850 0		96.0		7800		-		5		z
9	SBS9B	ı	BENZO(a)PYRENE	2010		96.0		0 087	×	80		0	×	z
8	SSS9E			0.2		96.0		0 0 0	×	85		10	X	z
69	SB69B	0 0 to 1 0		± 0 12	MG/KG	96 0		280 0	×	8		t o	×	z
69	86988			=[980 0		96 0		280 0		85		0		z
69	G69SS			0 054]1	MG/KG	0.96		0 087		80		0		z
BHAC	H(3.5)	0 0 to 0 0	BENZO(a)PYRENE	r za0 0	MG/KG	96 0		0 087		8		0 11		z
										i				

Methods Operation of Secretary and Secretary a			
Value Flag Value Flag Value 0.06 0.07 X 6 0.01 0.09 0.07 X 6 0.01 0.0 0.07 X 6 0.01 0.0 0.0 0.07 0.01 0.01 0.0 0.0 0.07 0.01 0.01 0.0 0.0 0.07 0.01 0.01 0.0 0.0 0.07 0.02 0.01 0.0 0.0 0.07 0.02 0.01 0.0 0.0 0.07 0.02 0.02 0.0 0.0 0.07 0.02 0.02 0.0 0.0 0.07 0.02 0.02 0.0 0.0 0.07 0.02 0.02 0.0 0.0 0.00 0.00 0.00 0.0 0.0 0.00 0.00 0.00 0.0 0.0 0.00 0.00 0.00 <td< th=""><th>tin</th><th>45</th><th>Death</th></td<>	tin	45	Death
MCMCG	Parameter	Parameter	Parameter
MACKING	o 0 DENZO(a)PYRENE	1	1
MCNYCG	1	1	U U D D U DENZO (D) FLOORAN THENE
MCMCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			
MCMCNCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1	1	1
MACKING			0.0 to 1.0 BENZO(b) FLUORANTHENE
Marked	5 1 0 BENZO(b)FLUORANTHENE	ŀ	ŀ
MGMCR	- 1	- 1	- 1
Michael Correction	•	•	•
MCKCG	- 1	- 1	- 1
MGKG	- 1	- 1	O DE LO DENZONELIODANTHENE
MGKGG	O O BENZONIE LIOBANTHENE		
MCMCG			
MGMCG	Т	Т	Т
MGMCG			
MCMCG	10 BENZO(a h,i)PERYLENE		
MCMCG			
MCACG 0.62 220 32000 0 0			•
MGNCG	Π	Π	Π
E MGANG 0 78 8 7 449 0 1 MGANG 0 78 8 7 449 0 1 MGANG 0 78 8 7 449 0 1 MGANG 0 78 8 7 449 0 1 MGANG 0 78 8 7 449 0 1 MGANG 0 78 8 7 449 0 1 MGANG 0 78 8 7 449 0 1 MGANG 0 78 8 7 449 0 1 MGANG 0 78 8 7 449 0 1 MGANG 0 78 8 7 449 0 1 MGANG 1 1 16 62 1 1 MGANG 1 1 16 63 1 1 MGANG 1 1 16 63 1 1 MGANG 1 1 16 63 1 1 MGANG 1 1 16 63 1 1 MGANG 1 1 16 63 1 1			Г
MANCE 0.78 8.7 449 0.1	П	П	П
MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1	П	П	0.0 to 1.0 BENZO(k) FLUORANTHENE
MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG O 78 8 7 49 0 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1 16 63 1 1 MGKG 1 1	П	П	П
MGKG	Г	Г	Г
MGKG	Г	Г	0.0 to 1.0 BENZO(k)FLUORANTHENE
MCMCG	Г	Г	0 0 to BENZO(k)FLUORANTHENE
= MGKG 0.78 8.7 48 0.1 = MGKG 0.78 8.7 48 0.1 = MGKG 0.78 8.7 49 0.1 J MGKG 0.78 8.7 49 0.1 J MGKG 0.78 8.7 49 0.1 J MGKG 1.1 16 6.3 1.1 MGKG 1.1 16 6.3 1.1 J MGKG 1.1 16 6.3 1.1 J MGKG 1.1 16 6.3 1.1 J MGKG 1.1 16 6.3 1.1 J MGKG 1.1 16 6.3 1.1 J MGKG 1.1 16 6.3 1.1 J MGKG 1.1 1.6 6.3 1.1 J MGKG 1.1 1.6 6.3 1.1 J MGKG	5 1 0 BENZO(k)FLUORANTHENE	Г	0.0 to 1.0 BENZO(k)FLUORANTHENE
MGKG			0.0 to 1.0 BENZO(k)FLUORANTHENE
MCAKG 0.78 8.7 4.8 0.1 MCAKG 0.78 8.7 4.9 0.1 MCAKG 0.78 8.7 4.9 0.1 MCAKG 1.1 1.6 6.3 1.1 MCAK			
MACKG 0.78 8.7 49 0.1 MACKG 0.78 8.7 4.9 0.1 MACKG 1.1 19 6.3 1.1 MACKG 1.1 16 6.3 1.1 MACKG 1.1 16 6.3 1.1 MACKG 1.1 16 6.3 1.1 MACKG 1.1 16 6.3 1.1 MACKG 1.1 16 6.3 1.1 MACKG 1.1 16 6.3 1.1 MACKG 1.1 16 6.3 1.1 MACKG 1.1 16 6.3 1.1 MACKG 1.1 16 6.3 1.1 MACKG 1.1 16 6.3 1.1 MACKG 1.1 16 6.3 1.1 MACKG 1.1 1.6 6.3 1.1 MACKG 1.1 1.6 6.3 1.1 MACKG			
MACKG 0.78 B.7 49 0.1 MCAKG 1.1 1.6 6.3 1.1 MCAKG </td <td>o 1 0 BENZO(k)FLUORANTHENE</td> <td>╗</td> <td>0 0 to 1 0 BENZO(k)FLUORANTHENE</td>	o 1 0 BENZO(k)FLUORANTHENE	╗	0 0 to 1 0 BENZO(k)FLUORANTHENE
MASKG V 28 F 2 45 45 47 MASKG 1 1 16 63 1 1 MASKG	⋾	⋾	Ţ
MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63 11 MASKG 11 16 63	۰	۰	۰
MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63	0.10 BEHYLLIUM	۵,	Т
MGAKG 11 16 62 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63	Т	Т	DOI: 10 DENTILION
MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63	1	1	1
MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 MGAG 11 16 63 11 <td>П</td> <td>П</td> <td>П</td>	П	П	П
MGAKG 11 16 68 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 63 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 63 MGAKG 11 16 63	1 o local cutto		
MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 01 MGMC 11 16 63 01 <td>1</td> <td>1</td> <td>1</td>	1	1	1
MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 63 MGAKG 11 16 63	Т	Т	Т
MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 11 MGAKG 11 16 63 10 MGAKG 12 46 3600 01 MGAKG 14 46 3600 </td <td>a la bentellom</td> <td>Т</td> <td></td>	a la bentellom	Т	
MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 01 MGMG 12 46 3600 01 MGMG 12 13 02 01 MGMG 13 02 01 <td></td> <td></td> <td></td>			
MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 <td>-</td> <td>-</td> <td>-</td>	-	-	-
MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 01 MGMG 12 46 3600 01 MGMG 12 14 66 02 MGMG 14 46 3600 0	210 BEHTLIUM	- 1	- 1
MACKG 11 16 63 11 MGAKG 11 16 63 01 MGAKG 11 16 63 01 MGAKG 11 16 63 01 MGAKG 12 46 3600 01 MGAKG 12 13 02 01	- 1	- 1	1
MACKG 11 16 63 11 MACKG 11 16 63 11 MACKG 11 16 63 11 MACKG 11 16 63 11 MACKG 11 16 63 11 MACKG 11 16 63 11 MACKG 11 16 63 11 MACKG 11 16 63 11 MACKG 11 16 63 01 MACKG 11 16 63 360 01 MACKG 46 3600 01 01 MACKG 46 3600 01 01 MACKG 11 02 02 01	000 BERYLLIUM	- 1	- 1
MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 11 16 63 11 MGMC 14 16 63 01 MGMC 46 3600 01 MGMC 46 3600 01 MGMC 11 02 01			
MGNG 11 16 63 11 MGNG 11 16 63 11 MGNG 11 16 63 11 MGNG 11 16 63 11 MGNG 11 16 63 11 MGNG 11 16 63 11 MGNG 1 16 63 11 MGNG 1 16 63 01 MGNG 46 3500 01 MGNG 46 3500 01 MGNG 46 3500 01 MGNG 11 02 01	DE BERYLLIUM	Г	Г
MGMG 11 18 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 11 16 63 11 MGMG 46 3600 01 MGMG 46 3600 01 MGMG 11 02 01	Г	Г	Г
MGKG 11 16 63 11 MGKG 11 16 63 11 MGKG 11 16 63 11 MGKG 11 16 63 11 MGKG 11 16 63 11 MGKG 14 46 3600 01 MGKG 46 3600 01 MGKG 46 3600 01 MGKG 11 02 01	1	1	1
MGAKG 1 1 16 63 1 1 MCMC 1 1 16 63 1 1 MCMC 1 1 16 63 1 1 MGAKG 1 1 16 63 1 1 MGAKG 46 3500 0 1 MGAKG 46 3500 0 1 MGAKG 46 3600 0 1 MGAKG 11 0 2 0 1	OO BEBYLLIM	1	1
MGNG 11 16 63 11 MGNG 11 16 63 11 MGNG 11 16 63 11 MGNG 46 3600 01 MGNG 46 3600 01 MGNG 46 3600 01 MGNG 11 02 01	1	1	1
MGMCG 1 16 63 1 1 16 63 1 1 16 63 1 1 16 63 1 1 16 63 1 1 1 16 63 1 1 1 1 1 1 1 1 1	- 1	- 1	- 1
MGAKG 11 16 63 11 MGAKG 46 3600 0.1 MGAKG 46 3600 0.1 MGAKG 46 3600 0.1 MGAKG 46 3600 0.1 MGAKG 11 0.2 0.1	┪	┪	┪
MGMG 46 3600 0.1 MGMG 46 3600 0.1 MGMG 46 3600 0.1 MGMG 11 0.2 0.1	7	7	٦
MGAKG	П	П	П
MGKG 46 3600 MGKG 11 02	П	П	П
MG/KG 11	o 1 0 bis(2 ETHYLHEXYL) PHTHALATE	П	П
	0.0 to 1.0 BROMOMETHANE	1	I

TABLE IN-1
Summary of Detected Parameters in Surface Soif at FU2 Compared to Background and Screening Level Values
Memphis Depot Main Installation RI

The control of the	_				_									
Control Cont							Beckground	- to	Direct		GWD.	Feological	Cottogical	
Color Colo							Exceedance	Exposure	Exceedance	GWP	Exceedance	Criterion	Exceedance	Exceeded
	4	= 3		-	1	_	Sel		Flag	•alce	Fiso	Value	Fieg	Criteria Fia
Control Cont	CCEAC	ı	1	- KP 6	MG/KG			8 2		5 0		1		2 2
10 10 10 10 10 10 10 10	SS51D			1000	MG/KG			7 8				16		2
	SSS1D	ı	1	F 20 0	MG/KG			78		8		16		z
	TEC92	П	1	0.25J	MG/KG			7.8		•		16		z
10 10 10 10 10 10 10 10	TEC92,		Г	0.28	MG/KG	1.4		7.8		8		16		z
DE DES COMMAN DES DES COMMAN DES DES COMMAN DES DES COMMAN DES DES COMMAN DES DES COMMAN DES DES COMMAN DES DES COMMAN DES DES COMMAN DES DES DES DES DES DES DES DES DES DES	TEC92			0 32)	MG/KG			7.8		180		16		z
CONTROLLED CON	1C A(3 10)		1 1	038	MG/KG			7.8		8		16		z
CONDIGUIDAD CONDIGUIDAD	(C G(35)	00to00		r 66 0	MC/KG			7.8		8		1 6		z
COUNTY C	VC H(3 S)	00 to 00		F 66 0	MG/KG			7.8		E		16		z
CONTROLLED CON	AC 1(3.5)	00 to 00		0 44 J	MG/KG			7.8		8		16		z
CONDIGE CONTRACTION CONT	(5 5)			0.49	MG/KG			7 8		8		16		2
CORDINION CORD	(C K(35)	П		0.41	MG/KG			78				16		z
	1C K(3 5B)			r90	MG/KG	- 1		7.8		80		16		z
	C L(35)	7		0417				7.8		*		16		2
	NG M35	ı	ŀ	035J				78		*		9		2
	(C N(35)	- 1	- 1	054 J				7.8		80		91	-	z
DECEND OF DECENDARY THINS	SSS1C	1	- 1	1920 ≈						Ì				z
10 DR 10 CANCIUM 1700 1867 1867 1867 1867 1868 1867	SS52A	╗	ŀ	≈ 3190 =										z
10 DR 10 CALCLUM 1700 1800	SSSBH	- 1	- 1	980 =										z
	SS69A	- 1	- 1	1700=				1						z
	TEC92	- 1	- 1	1790=				1						z
	1EC92	┱	Т	1960=		-				1				z :
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.592	_	Т	3550						1				z :
CORDIO CALCIUM CORD	2 2 2	1	Т	2130				1	1					2 2
DODO O CALCIUM CALCIUM	200	00000	т	= 20102				l	1	T				2 2
	1 2 2	00000	Т	= 0015 - 0026	SACAKO MACAKO	 -								z
	2 2 2	0000	Т	2140	MOKS									z
Decided Characteristics Ch	C K(3.5)	0.0 to 0.0	Т	1880=	MG/XG					ľ				z
	(C K(3 5B)	Π	T	2210=	MG/KG									z
O D D D D C PALCIUM O D D D C PALCIUM O D D D D D D D D D D D D D D D D D D	(C ((3.5)	П		1830	MG/KG									z
Marked O to be to CAMBOANCIAL C to be to	C M(3 5)	П	П	1840=	MG/KG									z
3854 A DO LO LO CARRACACLE 0 185J MGMG 0 067 N MGMG	(C N(3 5)		- 1	2340=	MC/KG	5840								z
Section of Carrieration of C	V 100	1	- 1	0.00	MG/KG	400		प्र		2 2				2 3
0 to to CHROMIUM, TOTAL 25 to 24 to X 25 to X 25 to X 25 to X 25 to X 25 to X 25 to X 25 to X 25 to X 25 to X 25 to X 25 to X 25 to 25 to X 25 to	2000 S	ı	Ŧ	10000		2000		780		3 5				2
Did to CHFOANIUM, TOTAL 27 6 =	SRAIA	Т	Т	25.50 25.50 25.50	ĺ	24 8				38		0.4	×	
DICTION CHICAMIUM, TOTAL Total MGKG 24 B X S S S S S S S S S	SAGIA	1		2000		24 8				38		0.4	×	z
DO ID 10 CHECAMUM, TOTAL 178	SB510	1		27.6=		24 8				38		0.4	×	>
DO ID ID ID ID ID ID ID ID ID ID ID ID ID	SSS1A	ı		76=		24 8				38		0.4	×	z
O D D D D D D D D D D D D D D D D D D	SSS1B			294=		24 8				38		0.4	X	>
O D D D D D D D D D D D D D D D D D D	SS51C			113=	MG/KG	248				38		0.4	×	z
O D D D D O CHROMIUM, TOTAL 2 S	SS510	1		13.23	MG/KG	24 8				8		0.4	×	2
00 to 10 CHROMIUM, TOTAL 12 8	SS510	T	- 1	196	MG/KG	24 B				38		0 4	×	z :
United Chicago, Chi	SB52A	T		12.6=	MG/KG	24.8				8 8		700	ζ,	z
O 10 10 10 CHROMIUM TOTAL 22 9 MGKG 24 8 X 38 0.4 X X X X X X X X X	SB52A	Ţ	- 1	13.88	MG/KG	24.8		1		8 8		0	×	z
O TO TO CHROMIUM TOTAL 13 = MGKG 24 8 X 38 0.4 X O TO TO TO CHROMIUM TOTAL 13 = MGKG 24 8 X 38 0.4 X O TO TO CHROMIUM TOTAL 17 5 = MGKG 24 8 X 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 0.4 X O TO TO TO TO CHROMIUM TOTAL 15 = MGKG 24 8 38 38 38 38 38 38 38	SB52B	Т	Ł	± 02.7.7	MG/KG	+		1		5 6		80	×	2 2
O TO TO TO CHROMIUM, TOTAL O TO TO TO TO TO TO TO TO TO TO TO TO T	86524	Т	1	13 64	MG/KG					8		700	×	z
0.0 to 10 CHROMIUM, TOTAL 20.3 = MGKG 24.8 24	SS52B	T	1	40.3	MG/KG					38	×	0.4	×	
00 to 10 CHROMIUM, TOTAL 17 to 24 t	SSS2C	Г	1	=603	MG/KG					88		0.4	×	z
00 to 10 CHROMIUM, TOTAL MCMCG 24 8 39 04 X 2 2 2 2 2 2 2 2 2	SSS2D	Г	,	17.5=	MG/KG					38		0.4	x	Z
O DIO 10 CHROMIUM, TOTAL 16 1 × MGKG 24 8 O 4 X	SSSZE	П	П	21[=	MG/KG	248				38		0.4	×	z
00 to 10 CHFOMIUM TOTAL 12 6 J MG/KG 24 8 04 X 00 to 10 CHFOMIUM TOTAL 11 5 MG/KG 24 8 04 X 00 to 10 CHFOMIUM TOTAL 12 2 MG/KG 24 8 04 X 04 X 05 to 10 CHFOMIUM TOTAL 12 2 MG/KG 24 8 04 X 05 to 10 05	H65SS	П	П	±191 =	MG/KG	248				33		0.4	×	z
00 to 10 CHROMIUM TOTAL 115 MG/KG 248 38 04 X	SS69A	П	T	12 6 J	MG/KG	24.8				38		40	×	z :
04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TEC92	Т	Т	100	MG/KG	24.8				38		200	× ,	z z
	15092	Т	Т	254	MUNG	0 47				8		*	Ý	2

#

				_							acino con	
-									-	Confederation	Cettedon	
	4				Background	Background Direct Exposure	re Exceedance	GWP	Exceedance	Criterion	Exceedance	Exceeds
Site Station		Parameter	Concentration Qualifier		_	\dashv	┪	7	-	Value	"	Criteria
۲	١ē	CHROMIUM TOTAL	7		248				38	0		2
BRAC G(35)	00000	CHROMIUM TOTAL	136=	MC/KG	248				38	0		
BRAC H(3 5)	00100	CHROMIUM, TOTAL	189=	MC/KG	248				38	0		Z
BRAC 1/(3.5)	0.010.0	CHROMIUM, TOTAL	14.2=	MG/KG	248		_		38	ò		2
BRAC (3.5)	0 0 to 0 0	CHROMIUM TOTAL	16.3=	MG/KG	248				38	ŏ	×	Z
BRAC K(35)	Г	CHROMIUM, TOTAL	15.3=	MG/KG	248				88	0		
BRAC K(3 5B)	Г	CHROWIUM, TOTAL	14=	MG/KG	24.8				38	0.4		2 2
BRAC (L/35)	Γ	CHROMIUM TOTAL	16.3=	MG/KG	248				38	0.4	×	Z
BRAC M(3.5)	00000	CHROMIUM TOTAL	12=	MG/KG	24 8				38	ŏ	1	
BRAC N/3 5)	0 0 0 0 0	CHROMIUM TOTAL	13.7≖	MG/KG	248				38	0.4		
S. S. S. S. S.	ŀ	CHRYSENE	0.26=	MG/KG	0 94		87		160	0	×	Z
CBCIB	T	CUDVENE	0.059	MG/KG	0.94		67		091	0 1		z
T	Т	CHOCKERE	0.074.J	MG/KG	0.94		B7		09)	0		
51 33310	-		1810	MG/KG	80		87		091	0.1	×	Z
Τ	Т	CHRYSENE	0 18=	MG/KG	0.94		87		160	0.1	×	Z
52 SS52A	0000	CHRYSENE	0 046 J	MG/KG	0 94		87		160	0 1		
Γ	ı	CHRYSENE	= 0.26=	MG/KG	0.94		87		09)	0	×	Z
Γ	ŀ	CHRYSENE	* 990 O	MG/KG	960		87		160	0		2 3
Г	Г	CHRYSENE	0.057 J	MG/KG	80		87		160	0	,	2
59 SBS9B		CHRYSENE	0 14=	MG/KG	0.94		87	1	160		×,	2 2
	0000	CHRYSENE	0.2=	MG/KG	0.94		87	1	000			
	0 0 to 1 O	CHRYSENE	013=	MG/KG	0.00		/a !		000			
69 SS69D	ı	CHRYSENE	= 690 O	MG/KG	0.00		24		001	5 6		2
BRAC H(35)	00000		0 094 J	MG/KG	500		, a		083		×	Z
BRAC M(35)	00000		1 0800	MONG	700		-		091	0		
BRAC N(3.5)	00000	COBALT	200	MC/KG	183		470			20		
Τ	ı		126=	MG/KG	183		470			50		Z
S9 SS59H	1	COBALT	6.4=	MG/KG	183		470			8		Z
Г	001010		±1	MG/KG	183		470			20		
1	l		- 402	MG/KG	183		470			30		2
Γ	ı	COBALT	82=	MG/KG	183		470			8		z ;
92 TEC928	Г	COBALT	6.7=	MG/KG	183		4 70			×		2
BRAC A(3 10)		COBALT	723	MC/KG	183		470					1
BRAC (G(3.5)	00100	COBALT	1.4	MG/KG	200		470	<u> </u>	+			L
BRAC H(35)	00100	COBALI	300	S CALCON	200		470			×		L
BHAC 1(3.5)	00000	COBALI	ᆒ	MC/KG	6 6		470	<u> </u>		52		L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	CODA! *	= 0	MG/KG	183		470			20		
BRAC K(3 SB)	1	COBALT	= 68	MG/KG	183		470			X		
BRAC 1 (3.5)	00000	COBALT	7.5=	MG/KG	183		470	_		20		
BRAC M(3.5)	00400	COBALT	B 4 =	MG/KG	183		470			30		
BRAC N(3 S)	ļ	COBALT	76=	MG/KG	183		470			20		1
51 SB51A	Γ	COPPER	289=	MG/KG	33 5		310			¥		1
Γ	!	соррея	282=	MG/KG	33.5		310			4		
		COPPER	326=	MG/KG	33.5		310			*		1
51 SS51A		COPPER	337	MG/KG	33.5		310					1
	0 0 to 1 0	соррея	37.2=	MG/KG	33.5	×	310	1				2 2
51 SS51C	١		16.1	MC/KG	33.5		310	+				1
	00 to 10	- 1	105=	MG/KG	33.5		010	1				
١	- 1	СОРРЕЯ	# 50 CO	MG/KG	6 2 2		310	+				
١	Т	COPPEH	- 7 2 2	D C C C C C C C C C C C C C C C C C C C	3 22		250			¥		L
52 SB52A	Т	COPPER	- 804	MOKO	33.5		310			Ă		L
1	0 0 0 0	Cooper	199	MG/KG	33.5		310			4		z
١	Т	COBBER	1384	MG/KG	33.5		310			4		
	L		30.5=	MG/KG	33.5		310					
52 SS52C	0 0 to 1 0	COPPER	213=	MG/KG	33.5		310	Н		40	0	
1	1											

١..١

4 1 L

TABLE M-1 Summany of Detected Parameters in Surface Soil at FU2 Compared to Background and Screening Level Values Memphis Depot Main Installation R1

Property Property			_		_						_		
Controlled Outside Outside Outside Controlled Outside Outside Controlled Outside Outsi					- A			Olrect Exposure Eventune	d a	GWP	Ecological	Ecological Criterion	
MGN/G 131 13		Parameter	- 1		Yalue	-	Value		Value	Flag	Value	Flag	Criteria Fia
MCNOC	COPPER		283=	MG		33.5	310				40		z
MGKKG	COPPER		18.5	MG/N		33.5	310				0 0		2
MCMCG	ž.		15.4.3	MGA		33.5	310				2 9		2 2
MANCE 335 319 64 64 64 64 64 64 64 64 64 64 64 64 64	COPPER		L6 5J	MGA		33 5	310				6		z
MACKIG	λĒR		Les1	MG/	_	33.5	310				40		z
MARKEG 10.15 1.0	COPPER		25.9J	MGA		33.5	310				07		z
No. 10.000 No.	Įį,		5 7	MG/		33.5	310				40		z
MCNYCC			100	W. W.	ļ -	33.5	210				2		2 2
MCNYCG 235 S 910	Ϋ́Ε̈́		23.5=	MGV		33.5	310				40		z
MCNOC	žΕΡ		23.2=	MGA		33 5	310				Q.		z
MCNYCC	Ä		192	MGA		33 5	310				9		z
MCNYC 0.0057 X 0.007 X 0.0057	λĒΒ			MGV		33.5	310		,		0.		z
MGNKG	COPPER		15.8	MGA	_	33.5	310				40		z
MGKG	ER H		55.4=	NC.	_		310				40		>
Michael Mich	000		= 20017=	MG			27		٣		0 0025	ı	 -
MCNGC 0.0007 X 2.7 116 0.0008 X MCNGC 0.0007 X 2.7 116 0.0008 X MCNGC 0.0007 X 2.7 116 0.0008 X MCNGC 0.0007 X 2.7 116 0.0008 X MCNGC 0.016 X	l		I BOUCO	Č			27		1		20000	ı	. 2
MGNGC CORR X C			0.012	MOM			27		2		9000	ζ >	
MGNG 0.0021 X 2 7 16 0.0028 X MGNG 0.0027 X 2 7 16 0.0028 X MGNG 0.0027 X 2 7 16 0.0028 X MGNG 0.16 1.9 54 0.0028 X MGNG 0.16 1.9 54 0.0028 X MGNG 0.16 1.9 54 0.0028 X MGNG 0.16 1.9 54 0.0028 X MGNG 0.16 X 1.9 54 0.0028 X MGNG 0.16 X 1.9 54 0.0028 X MGNG 0.16 X 1.9 54 0.0028 X MGNG 0.16 X 1.9 54 0.0028 X MGNG 0.16 X 1.9 54 0.0028 X MGNG 0.16 X			L BSDOO	MGM	-		10		2 2		50000	, ×	2
MGNG 0.0067 2.7 16 0.025 X MGNG 0.0067 2.7 16 0.025 X MGNG 0.0067 1.9 54 0.025 X MGNG 0.16 1.9 54 0.025 X MGNG 0.16 1.9 54 0.025 X MGNG 0.16 X 0.025 X 0.025 X MGNG 0.16 X 1.9 54 0.025 X MGNG 0.16 X 1.9 54 0.025 X MGNG 0.16 X 1.9 54 0.025 X MGNG 0.16 X 1.9 54 0.025 X MGNG 0.16 X 1.9 54 0.025 X MGNG 0.16 X 1.9 54 0.025 X MGNG 0.16 X 1.9 54 0.025 X <td></td> <td></td> <td>0.016</td> <td>VON</td> <td> </td> <td>١</td> <td>2.3</td> <td></td> <td>1</td> <td></td> <td>2000</td> <td>, ,</td> <td></td>			0.016	VON		١	2.3		1		2000	, ,	
MANYCC 0 1067			0.0033	MG/	<u> </u>		27		1		0.0025	×	2
MGNG 0.16			1,600 n	MG/I	_	2900	2.4		9		0.0025	×	z
MGNG 0.16	1		0.044=	MGA		0 16	0		54		20000	×	z
MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X MGNG 0.16 1.9 54 0.0026 X </td <td>l</td> <td></td> <td>=800</td> <td>N.</td> <td></td> <td>0.16</td> <td>-</td> <td></td> <td>54</td> <td></td> <td>0.0025</td> <td>×</td> <td>2</td>	l		=800	N.		0.16	-		54		0.0025	×	2
MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X MGMG 0.16 1.9 54 0.0025 X </td <td>ı</td> <td></td> <td>L REO D</td> <td>MGA</td> <td> </td> <td>0.16</td> <td>5</td> <td></td> <td>5.4</td> <td></td> <td>0 0005</td> <td>×</td> <td>2</td>	ı		L REO D	MGA		0.16	5		5.4		0 0005	×	2
MGMC 0 16 1 9 54 0 0025 X MGMC 0 16 X 1 9 54 0 0025 X MGMC 0 16 X 1 9 54 0 0025 X MGMC 0 16 X 1 9 54 0 0025 X MGMC 0 16 X 1 9 54 0 0025 X MGMC 0 16 X 1 9 54 0 0025 X MGMC 0 16 X 1 9 54 0 0025 X MGMC 0 16 X 1 9 54 0 0025 X MGMC 0 16 X 1 9 54 0 0025 X MGMC 0 16 X 1 9 54 0 0025 X MGMC 0 16 X 1 9 54 0 0025 X MGMC 0 16 X 1 9 54 0 0025 X MGMC 0 16 X			0 022	MG/	9	0 16	6		54		0 0025	×	z
MGMCG			0.10	MGW	9	0.16	6		54		0 0025	×	Z
MGNG 016 X 19 54 00025 X MGNG 016 19 54 00025 X MGNG 016 19 54 00025 X MGNG 016 19 54 00025 X MGNG 016 19 54 00025 X MGNG 016 X 19 54 00025 X MGNG 016 X 19 54 00025 X MGNG 016 X 19 54 00025 X MGNG 016 X 19 54 00025 X MGNG 016 X 19 54 00025 X MGNG 016 X 19 54 00025 X MGNG 016 X 19 54 00025 X MGNG 016 X 19 54 00025 X	ı		0 039	MGA	9	0 16	6		52		0 0025	×	z
MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG 016 19 54 00255 X MGKG <td>1</td> <td></td> <td>0 43 7</td> <td>MG/k</td> <td>Ç</td> <td>0 16 X</td> <td>1.9</td> <td></td> <td>2</td> <td></td> <td>0 0025</td> <td>×</td> <td>></td>	1		0 43 7	MG/k	Ç	0 16 X	1.9		2		0 0025	×	>
MGMCG			0 0084=	MC/k	5)	0 16	1.9		5		0 0025	×	z
MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG 016 19 54 0.025 X MGKG <td></td> <td></td> <td>0 0043 3</td> <td>MG/k</td> <td>9</td> <td>0 16</td> <td>6.</td> <td></td> <td>54</td> <td></td> <td>0 0025</td> <td>×</td> <td>z</td>			0 0043 3	MG/k	9	0 16	6.		54		0 0025	×	z
MGMCG	1		0 025 5	MC/M	9)	0.16	1.9		2		0 0025	×	z
MGMCG	ı		0 03=	MÇ.	9)	0.16	- 10		3		0 0025	×	z
MGMCG 0.16	ı		0 0064 J	MG/K		0 16	19		54		0 0025	×	z
MGMCG			≈ 6£0.0	MG/N		0 16	161		25		0 0025	×	z
MGMCG	1		0.44=	MC/k		0 16 X	19		72		0 0025	×	>
MGMCG			= \$100	MG/k		0 16	19		54		0 0025	×	z
MGMCG 016 X 19 54 00025 X MGMCG 016 X 19 54 00025 X MGMCG 016 19 54 00025 X MGMCG 016 19 54 00025 X MGMCG 016 19 54 00025 X MGMCG 016 19 54 00025 X MGMCG 016 19 54 00025 X MGMCG 016 19 54 00025 X MGMCG 016 19 54 00025 X MGMCG 016 19 54 00025 X MGMCG 016 X 19 54 00025 X MGMCG 016 X 19 54 00025 X MGMCG 016 X 19 54 00025 X MGMCG 016 X 19 54 00025 X MGMCG 016 X 19 54 00025 X MGMCG 016 X 19 54 00025 X MGMCG 016 X 19 54 00025 X MGMCG 016 X 19 54 00025 X MGMCG 016 X 19 54 00025 X MGMCG 016 X 19 54 00025 X MGMCG 016 X 19 54 00025 X MGMCG 016 X 19 00025 X MGMCG 016 X 19 00025 X MGMCG 016 X 19 00025 X MGMCG 016 X 19 00025 X MGMCG 016 X 19 00025 X MGMCG 016 X 19 00025 X MGMCG 016 X 19 00025 X MGMCG 016 X 19 00025 X MGMCG 016 X 19 00025 X MGMCG 016 X MGM	l		C 200 0	MG/k		0 16	6		54		0 0025		z
MGMCG			= 69 0	MC/k			61		54		0 0025	×	*
MGMCG 0.16	ļ		= 960 0	MCK					3		0 0025	×	z
MGMCG	ŀ		0.024 =	MC/k		0 16	6-		54		0 0025	×	z
MGMCG 0.16	l		0 0082	MG/k		0 16	6		54		0 0025	×	z
MGMCG 0.16			0.011=	MG/K		016	61		54		0 0025	×	z
MGMCG 0 16			0 0028	MG/R		0 16	19		54		0 0025	×	Z
MGMCG 0 16			0 0051 =	MG/k		D 16	1.9		54		0 0025	×	z
MGANG 0 16	ļ		0.084=	MG/K		0 16			54		0 0025	×	z
MGKG 0 16	-		0.074 =	MG/X		0 16			<u>v</u>		0 0025	×	2
MGAKG 0 16 19 54 0 0025 X	1		0016J	MG/X		0 16	6-		24		0 0025	×	z
MGMCG 0 16 X 19 54 0 0 0 0 0 0 0 0 0	ı		0 019 J	MG/X		0 16	6		Z		0 0025	×	z
MGKG			0 26 J	MG/K			19		54		0 0025	×	>
MGMG	Ī		0 53 J	MG/K			0		ž		0 0025	×	>
MGKG 016 19 54 0.025 X			0 17 J	MG/K			6		3		0 0025	×	>
### MGKG 016 X 19 54 0.0025 X MGKG 016 X 19 54 0.0025 X	ļ		0 080	MG/K		0 16	9		54		0 0025	×	z
MGKG	ļ			MG/K					54		0 0025	×	z
MUMINIA 1 19 54 1 0 00225 X MUMINIA 1 19 54 1 0 00225 X MUMINIA 1 19 54 1 0 00225 X MUMINIA 1 19 54 1 0 00225 X MUMINIA 1 19 54 1 0 00225 X MUMINIA 1 19 54 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300			MO/K			6		25		0 0025	×	<u>-</u>
G2000 FG S A OFF A OFF A COND.	1			A COL	1		5		8 3		0.000	,	<u>.</u> >
	ı		04/3	MON			5		ă î		6700 0	<>	- >

Ecological Criterion Exceedanca Flag Ecological Criterion Value GWP Exceedance Flag GWP Direct Exposure Exceedance Flag Direct Exposure Value Background Value Çiğt G Qualifier 0 29 J 0 002 = 0 0 0013 J 0 075 J 0 075 J 0 016 J 0 016 J 0 016 J 0 016 J Concentration Parameter
 Stee
 Station
 Paepth
 Person

 BFAC (16.5)
 0 to to 1 0
 DOE

 BFAC (16.5)
 0 to to 1 0
 DOE

 51
 385.4
 0 to to 1 0
 DOT

 51
 385.4
 0 to to 1 0
 DOT

 51
 385.4
 0 to to 1 0
 DOT

 52
 385.4
 0 to to 1 0
 DOT

 52
 385.4
 0 to to 1 0
 DOT

 52
 385.2
 0 to to 1 0
 DOT

 52
 385.2
 0 to to 1 0
 DOT

 52
 385.2
 0 to to 1 0
 DOT

 52
 385.2
 0 to to 1 0
 DOT

 52
 385.2
 0 to to 1 0
 DOT

 52
 385.2
 0 to to 1 0
 DOT

 52
 385.2
 0 to to 1 0
 DOT

 52
 385.2
 0 to to 1 0
 DOT

 52
 385.2
 0 to to 1 0
 DOT

 53
 385.2
 0 to to 1 0
 DOT

 54
 385.2

TABLE M-1

٥ 2

Controller			_										
Controlled Con						Background	C	Direct		dwg	Feological	Ecological	
Deciriorary Deciriorary		o de la companya de l			Background	Exceedance	Exposure	Exceedance	GWP	Exceedance	Criterion	Exceedance	Exceeded Criterie Elec
Control Cont	ᆤ		₩	Įž			000	×	0 000	×	0 0000	Ž ×	- N
100 100	45	E DBIN	.1=	MG/KG	9800		000	×	0 000	×	0 0005	×	,
100 100	10	ELDRIN	= 90 0	MG/KG	0 086		000	×	0 000	×	0 0005	×	z
Control Cont	P	ELDRIN		MG/KG	0 086		0.04	×	0 004	×	0 0005	×	,
Colored Notice Colo	12	ELDRIN	ros l	MC/KG	9800		0.04	×	0 004	×	90000	×	٨
Colored National Colo	P	ELDRIN	× 890 0	MG/KG	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 04	×	0 004	×	9000 0	×	Z
100 100	무	ELDRIN	1 4 1	MG/KG	0 086		0.04	×	0 004	×	0 0005	×	٨
10,000 1,0	우	ELDRIN	0.57J	MG/KG	0 086		0.04	×	0 0004	×	0 0005	×	>
1	睁	ELDRIN	0 44 0	MG/KG	0 086		0.04	×	0 004	×	0 0005	×	>
Color Colo	무	ELDRIN	0.74	MG/KG	0 086		0.04	×	0 000	×	0 0005	×	>
Delicition Del	무	ELDRIN	0.23=	MG/KG	9800		0 0 0	×	0 004	×	5000 O	×	٨
Deciding	尸	ELDRIN	0 16=	MC/KG	3800		0.04	×	0 004	×	0 0000	×	 -
CHECKERN CORP. C	٩	ELDRIN	11:	MG/KG	0 086		0.04	×	0 00	×	0 0005	×	>
	۴	ELDRIN	-00	MG/KG	980 0		0 0	×	7 00 0		5000 0	×	,
ORIEDTININ OFFICE NAME	屵	ELDRIN	0 28=	MG/KG	0.096		90	×	0000	×	50000	×	>
OBLEDINA OFFISA MAYOR ORDER X ORDER	ľ	ELDBIN	= 129	MOYG	0.086	ŀ	0	×	0000	×	0 0005	×	>
DELIDINI DELIDINI DELIDINI DELIDINI N. COMBANIA N. CO	T		- 120	MOKG	1800		000	×	0.00	×	5000	×	
OEICIDINAL 2 day MACKION N. O. O. O. O. O. O. O. O. O. O. O. O. O.	#	FLORIN	1.90	MG/KG	0.09		0.00	×	0 004	×	0 0005	×	>
OFECINIST OFESTIONS OFESTIONS X	+	FLOOR STATE OF THE PROPERTY OF	26.0	MCKG	0.08	ļ	7 0 0	×	0 004	×	0 0005	×	>
OPECINISH C 0.04 X 0.04 X 0.04 X 0.04 X 0.00 X 0.	#		300	Monco	380 0		200	: ×	2004	×	2000	×	,
OFFICINITY OFFICIN	4	NING CHILD	440	MONG	0000		5 6	,	3 6	,	2000	\ \ \	
ORLEDINI ORGANISA	4	ELUTIN	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000	9000			,	3	•	9	,	- >
OFFICIARY OFFICIARY <t< td=""><td>7</td><td>ELUMIN</td><td>R 77.0</td><td>MGNG</td><td>0000</td><td></td><td>3 6</td><td>< ></td><td>5000</td><td>< ></td><td>60000</td><td>< ></td><td>- ></td></t<>	7	ELUMIN	R 77.0	MGNG	0000		3 6	< >	5000	< >	60000	< >	- >
OFFICIALIS OFFICIA	쒸	ELDHIN	0.54	MG/KG	0.086		200	Κ,	8	ζ,	0000	,	- ;
CHELORIN 0.34 cm WAYG 0.088 X 0.04 X 0.000 X DRELDRIN 0.021 WAYG 0.088 X 0.04 X 0.000 X DRELDRIN 0.021 WAYG 0.088 X 0.04 X 0.000 X DRELDRIN 0.021 WAYG 0.088 X 0.04 X 0.000 X DRELDRIN 0.021 WAYG 0.088 X 0.04 X 0.000 X DRELDRIN 0.021 WAYG 0.088 X 0.04 X 0.000 X DRELDRIN 0.021 WAYG 0.08 X 0.000 X 0.000 X RUDAMINER 0.021 WAYG 1.08 X 0.000 X 0.000 X RUDAMINER 0.021 WAYG 1.6 3.00 X 0.000 X RUDAMINER 0.021 WAYG 1.6 3.00	믝	ELORIN	0.33*	MGKG	380 0	×	800	×	8	×	6000	×	-
DELICINIMENTENE COMPA CO	믝	ELORIN	0.34=	MG/KG	0 08	×	800	×	8	×	0000	×	>
DELLORIN ORDERISH	믝	ELDRIN	0 50=	MG/KG	0 086	×	0 00		0000	×	0 0005	×	*
DRILDIAMITHER 0.045 X 0.044 0.044 0.044	믝	IELORIN	0 0085=	MG/KG	980 0		200		000	×	0 0005	×	z
FULCIAMITIÈRE 0.45= MGNG 16 310 450 0.41 X X X X X X X X X	믝	ELDRIN	0.21=	MG/KG	9800		800	×	8000	×	0 0000	×	<u> </u>
	쒸	UORANTHENE	0.45≈	MG/KG	<u> </u>		350		4300		0	×	z
CLOCAMITHENE CONTINUENCE	4	UORANTHENE	= 10	MG/KG	-		310		4300		0.1		z
PLUCADATITIENE 0.14J MACKG 1 6 310 4300 0.91 X PLUCADATITIENE 0.32= MACKG 1 6 310 4300 0.91 X PLUCADATITIENE 0.024= MACKG 1 6 310 4300 0.01 X PLUCADATITIENE 0.024= MACKG 1 6 310 4300 0.01 X PLUCADATITIENE 0.024= MACKG 1 6 310 4300 0.01 X PLUCADATITIENE 0.034= MACKG 1 6 310 4300 0.01 X PLUCADATITIENE 0.034= MACKG 1 6 310 4300 0.01 X PLUCADATITIENE 0.024= MACKG 1 6 310 4300 0.01 X PLUCADATITIENE 0.024= MACKG 1 6 310 4300 0.01 X PLUCADATITIENE 0.024= MACKG 1 6 310 4300 0.01 X	_	UORANTHENE	= 0.077	MG/KG	=		310		4300		0		z
PLUORANTHERE 0.3= MACKG 1 6 310 4360 0 1 X PLUORANTHERE 0.23= MACKG 1 6 310 4360 0 1 X PLUORANTHERE 0.094= MGKG 1 6 310 4300 0 1 X PLUORANTHERE 0.094= MGKG 1 6 310 4300 0 1 X PLUORANTHERE 0.094= MGKG 1 6 310 4300 0 1 X PLUORANTHERE 0.073= MGKG 1 6 310 4300 0 1 X PLUORANTHERE 0.081= MGKG 1 6 310 4300 0 1 X PLUORANTHERE 0.073= MGKG 1 6 310 4300 0 1 X PLUORANTHERE 0.073= MGKG 1 6 310 4300 0 1 X PLUORANTHERE 0.0441 MGKG 1 6 310 4300 0 1 X PLUORANTHERE 0.04	7	UORANTHENE	0 14 0	MG/KG	-		310		4300		=	×	z
PLUORANTHENE 0 28 - MGXG 16 310 4300 0 1 X PLUORANTHENE 0 004 - MGXG 1 6 310 4300 0 1 X PLUORANTHENE 0 004 - MGXG 1 6 310 4300 0 1 X PLUORANTHENE 0 07 - MGXG 1 6 310 4300 0 1 X PLUORANTHENE 0 07 - MGXG 1 6 310 4300 0 1 X PLUORANTHENE 0 07 - MGXG 1 6 310 4300 0 1 X PLUORANTHENE 0 07 - MGXG 1 6 310 4300 0 1 X PLUORANTHENE 0 07 - MGXG 1 6 310 4300 0 1 X PLUORANTHENE 0 07 - MGXG 1 6 310 4300 0 1 X PLUORANTHENE 0 07 - MGXG 1 6 310 4300 0 1 X PLUORANTHENE 0 07 - MGXG 1 6 310 4300 0 1 X PLUORANTHENE	П	JOHANTHENE	0.3=	MG/KG	16		310		4300		0	×	z
FLUCRANTHENE 0 42° MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0 004= MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0 0 09= MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0 37 = MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Г	DORANTHENE	0.23=	MG/KG	16		310		4300		0.1	×	z
FLUCRANTHENE CODAS MGNCG 1 6 310 4300 0 1		UORANTHENE	0.42=	MG/KG	1		310		4300		0.1	×	Z
FLUORANTIENE 0.08 = MACKG 1 6 310 4300 0.0 1 X FLUORANTIENE 0.03 = MACKG 1 6 310 4300 0.1 X FLUORANTIENE 0.08 = MACKG 1 6 310 4300 0.1 X FLUORANTIENE 0.08 = MACKG 1 6 310 4300 0.1 X FLUORANTIENE 0.08 = MACKG 1 6 310 4300 0.1 X FLUORANTIENE 0.01 = MACKG 1 6 310 4300 0.1 X FLUORANTIENE 0.01 = MACKG 1 6 310 4300 0.1 X FLUORANTIENE 0.04 = MACKG 1 6 310 4300 0.1 X FLUORANTIENE 0.04 = MACKG 1 6 310 4300 0.1 X FLUORANTIENE 0.04 = MACKG 1 6 310 4300 0.1 X FLUORANTIENE	۳	UOHANTHENE	0 094=	MG/KG	-		310		4300		10		z
FLUORAMTHEME 0 28 mm MGNG 1 6 mm 310 mm 4300 mm 0 1 mm X FLUORAMTHEME 0 081 mm MGNG 1 6 mm 310 mm 4300 mm 0 1 mm X FLUORAMTHEME 0 081 mm MGNG 1 6 mm 310 mm 4300 mm 0 1 mm X FLUORAMTHEME 0 073 mm MGNG 1 6 mm 310 mm 4300 mm 0 1 mm X FLUORAMTHEME 0 073 mm MGNG 1 6 mm 310 mm 4300 mm 0 1 mm X FLUORAMTHEME 0 14 mm MGNG 1 6 mm 310 mm 4300 mm 0 1 mm X FLUORAMTHEME 0 14 mm MGNG 1 6 mm 310 mm 4300 mm 0 1 mm X FLUORAMTHEME 0 064 JMGNG 1 6 mm 310 mm 4300 mm 0 1 mm X FLUORAMTHEME 0 064 JMGNG 1 6 mm 310 mm 4300 mm 0 1 mm X FLUORAMTHEME 0 064 JMGNG 1 6 mm 310 mm 4300 mm 0 1 mm	۴	UORANTHENE	= 80 0	MC/KG	-		310		4300		0		ż
FLUORANTHENE 0 37 = MGNG 1 6 310 4300 0 7 X	۴	UORANTHENE	0.28=	MG/KG	-		310		4300		10	×	z
FLUORANTHENE 0081 = MGKG 1 G 310 4300 0 1 FLUORANTHENE 0081 = MGKG 1 G 310 4300 0 1 X FLUORANTHENE 0071 = MGKG 1 G 310 4300 0 1 X FLUORANTHENE 0 103 = MGKG 1 G 310 4300 0 1 X FLUORANTHENE 0 21 = MGKG 1 G 310 4300 0 1 X FLUORANTHENE 0 0 41 = MGKG 1 G 310 4300 0 1 X FLUORANTHENE 0 0 41 MGKG 1 G 310 4300 0 1 X FLUORANTHENE 0 0 41 MGKG 1 G 310 4300 0 1 X FLUORANTHENE 0 0 41 MGKG 1 G 310 4300 0 1 X FLUORANTHENE 0 0 41 MGKG 1 G 310 4300 0 1 X FLUORANTHENE 0 0 41 MGKG 1 G 310 4300 0 1 X FLUORANTHENE 0 0 41	- 14	LICERALTHENE	0.37=	MGKG			310		4300		0	×	z
FLUCRANTHEINE 0.061 = 0.073 =	1	LOBANTHENE	#800	MCAG			310		4300		6		z
FLUCRANTHEINE 0.073 = 0.073 = 0.073 = 0.073 = 0.073 = 0.073 = 0.073 = 0.073 = 0.039		LOBANTHENE	0.081	MC/KG			310		4300		0		z
FLUORANTHEINE 0 19 = MGKG 1 6 310 4300 0 1 X FLUORANTHEINE 0 21 = MGKG 1 6 310 4300 0 1 X FLUORANTHEINE 0 04 J MGKG 1 6 310 4300 0 1 X FLUORANTHEINE 0 05 J MGKG 1 6 310 4300 0 1 X FLUORANTHEINE 0 05 J MGKG 1 6 310 4300 0 1 X FLUORANTHEINE 0 05 J MGKG 1 6 310 4300 0 1 X FLUORANTHEINE 0 05 J MGKG 1 6 310 4300 0 1 X FLUORANTHEINE 0 05 J MGKG 1 6 310 4300 0 1 X FLUORANTHEINE 0 06 J MGKG 1 6 310 4300 0 1 X I FLUORANTHEINE 0 06 J MGKG 1 6 310 4300 0 1 X I FLUORANTHEINE	1	LOBANTHENE	= 0.000	MG/KG	-		310		4300		6		z
FLUORANTHEINE 0.21 = MGXG MGXG 1 6 310 4300 0.1 X FLUORANTHEINE 0.14 = MGXG 1 6 310 4300 0.1 X FLUORANTHEINE 0.08 J MGXG 1 6 310 4300 0.1 X FLUORANTHEINE 0.08 J MGXG 1 6 310 4300 0.1 X FLUORANTHEINE 0.08 J MGXG 1 6 310 4300 0.1 X FLUORANTHEINE 0.048 J MGXG 1 6 310 4300 0.1 X FLUORANTHEINE 0.048 J MGXG 1 6 310 4300 0.1 X FLUORANTHEINE 0.048 J MGXG 1 6 310 4300 0.1 X FLUORANTHEINE 0.048 J MGXG 1 6 310 4300 0.1 X FLUORANTHEINE 0.048 J MGXG 1 6 310 560 0.1 X FLUORANTHEINE	LL.	UORANTHENE	60.0	MG/KG	-		310		4300		10	×	z
FLUCRANTHENE 0.14= MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0.04 MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0.04 MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0.054 MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0.054 MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0.054 MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0.054 MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0.078 MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0.078 MGKG 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 <t< td=""><td>۳</td><td>UORANTHENE</td><td>0 21=</td><td>MG/KG</td><td>1</td><td></td><td>310</td><td></td><td>4300</td><td></td><td>10</td><td>×</td><td>z</td></t<>	۳	UORANTHENE	0 21=	MG/KG	1		310		4300		10	×	z
FLUCHANTHEINE 0 0el J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 0el J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 1 0 0el J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 0el J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 0el J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 0el J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 0el J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 0fl MGKG 1 6 310 560 0 1 X FLUCHANTHEINE 0 0fl MGKG 1 6 310 560 0 1 X FLUCHANTHEINE 0 0fel J MGKG 1 8 0 0fel J X X GAMMA CHLORDANE	Т	UORANTHENE	0.14	MG/KG	1		310		4300		0	×	z
FLUCHANTHEINE 0 06 J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 16 J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 046 J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 046 J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 046 J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 078 J MGKG 1 6 310 4300 0 1 X FLUCHANTHEINE 0 078 J MGKG 1 6 310 560 0 1 X FLUCHANTHEINE 0 048 J MGKG 1 6 310 560 0 1 X FLUCHANTHEINE 0 048 J MGKG 0 046 1 8 0 0 1 X 0 0 FLUCHANTHEINE 0 046 J MGKG 0 046 X X X X GAMMA CHLORIDANE <td>Т</td> <td>LOBANTHENE</td> <td>1000</td> <td>MG/KG</td> <td>+</td> <td></td> <td>310</td> <td></td> <td>4300</td> <td></td> <td>0</td> <td></td> <td>z</td>	Т	LOBANTHENE	1000	MG/KG	+		310		4300		0		z
FLUCRANTHENE 0 16 J MGKG 1 6 310 4300 D 1 X FLUCRANTHENE 0 046 J MGKG 1 6 310 4300 D 1 X FLUCRANTHENE 1 6 310 4300 D 1 X FLUCRANTHENE 0 046 J MGKG 1 6 310 4300 D 1 X FLUCRANTHENE 0 058 J MGKG 1 6 310 4300 D 1 X FLUCRANTHENE 0 058 J MGKG 1 6 310 4300 D 1 X FLUCHENE 0 058 J MGKG 0 028 J 1 8 0 1 X D 1 GAMMA CHLORIDANE 0 058 J MGKG 0 026 J 1 8 0 1 X D 1 GAMMA CHLORIDANE 0 058 J MGKG 0 026 J 1 8 0 1 D 1 D 1 GAMMA CHLORIDANE 0 058 J MGKG 0 026 J 1 8 D 1 D 1 D 1 GAMMA CHLORIDANE 0 0574 S	1	LOBANTHENE	F 50 0	MG/KG			310		4300		0 1		z
FLUCRANTHENE 0046 MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0046 MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0046 MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0.078 MGKG 1 6 310 4300 0 1 X FLUCRANTHENE 0.078 MGKG 1 6 310 560 0 1 X FLUCRANTHENE 0.078 MGKG 1 6 310 560 0 1 X FLUCRANTHENE 0.078 MGKG 0.026 310 560 0 1 X GAMACHUCHENE 0.016 MGKG 0.026 1 8 0 1 X 0 GAMAA CHUCHUCHENE 0.016 MGKG 0.026 X 1 8 0 1 X GAMAA CHUCHUCHENE 0.016 MGKG 0.026 X 1 8 0 1 X GAMAA CHUCHUCHENE 0.016	Т	DORANTHENE	0.16	MG/KG			310		4300		0	×	z
FLUCRANTHENE 6 GARD 16 310 4320 0 1 X FLUCRANTHENE 1 Z MGXG 1 E 310 4300 0 1 X FLUCRANTHENE 0 OFFI MGXG 1 E 310 4300 0 1 X FLUCHANTENE 0 OFFI MGXG 1 E 310 560 0 1 X FLUCHENE 0 OFFI MGXG 0 026 310 560 0 1 X GAMARA CHICRIDANE 0 OFFI MGXG 0 026 X 1 B 0 1 X GAMARA CHICRIDANE 0 OFFI MGXG 0 026 X 1 B 0 1 X GAMARA CHICRIDANE 0 OFFI MGXG 0 026 X 1 B 0 1 X GAMARA CHICRIDANE 0 OFFI MGXG 0 026 X 1 B 0 1 X	Т	UORANTHENE	0.054.J	MG/KG	-		310		4300		10		z
FLUCRANTHENE 1.2= MGKG 1 6 310 4300 0.1 X FLUCRANTHENE 0.061 J MGKG 1 6 310 430 0.1 X FLUCRANTHENE 0.078 - MGKG 0.078 - 0.078 - 0.01 X 0.0 FLUCRINE 0.048 - MGKG 0.026 1.8 0.0 0.1 X GAAMAA CHLORIDANE 0.061 J MGKG 0.026 X 0.0 0.0 0.0 GAAMA CHLORIDANE 0.0674 - MGKG 0.026 X 0.0	Т	UORANTHENE	0 046 J	MG/KG	1		310		4300		10		z
FLUCRANTHENE 0 061 1 MG/KG 1 6 310 4300 0 1	4	UORANTHENE	121	MG/KG	1		310		4300		0 1	×	z
FLUCIENE 0.078= MGKG 310 560 0.1 X FLUCIENE 0.14J MGKG 0.026 310 560 0.1 X GAMMA CHLORIDANE 0.061J MGKG 0.026 X 18 0.1 X GAMMA CHLORIDANE 0.015- MGKG 0.026 X 18 0.1 X GAMMA CHLORIDANE 0.015- MGKG 0.026 X 18 0.1 X	۳	DORANTHENE	0 061	MG/KG	-		310		4300		0.1		z
FLUGRENE 0 14J MG/KG 0 026 310 560 0 1 X GAMMA CHLORIANE 0 016J MG/KG 0 026 X 18 0 1 0 GAMMA CHLORIANE 0 015J MG/KG 0 026 X 1 8 0 1 0 GAMMA-CHLORIANE 0 0574= MG/KG 0 026 1 8 0 1 0	۴	UORENE	0 078	MG/KG			310		260		10		z
0016 J MGAG 0.026 18 01 01 01 01 01 01 01 01 01 01 01 01 01	۴	UORENE	0 14 J	MG/KG			310		260		10	×	٨
GAMMAR CHLORDANE 0 061 J MG/KG 0 026 X 1 8 0 1 GAMMA CHLORDANE 0 0074 = MG/KG 0 026 1 8 0 1	15	AMMA CHLORDANÉ	U 0 1 0 0 1 6 J	MG/KG	0 026		18				10		z
0.015 ≠ MG/KG 0.026 18 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.028 1.8 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	19	AMMA CHLORDANE	0 061 J	MG/KG	0 0 0 0 0 0 0 0 0 0	×	18				10		z
00074= MGKG 0026 18 01	2	AMMA CHLORDANE	0.015	MG/KG	0.026		18				10		z
	9	AMMA-CHLORDANE	0 0074 =	MG/KG	0 0 0 5 6		<u></u>				č		z

₩-11

144

P1147543/FU2_NE Screening Tables xistSurface Soil

Background Exceedance		
Value		Concentration Qualifier Units
	MG/KG	
4600	MG/KG	2140 = MG/KC
	MG/K	
	ΧĞ	
	MG/K	
	MG/	
	ΣŽ	
-	Σ	2490= MG
	Σ	
	M	İ
	ž	
	ž	
	ž	
	ž	
	M	
_	Ž	
1304	ľ	
	₹ :	
	Ž	
	Ž	
	Σ	1
	2	
	1	
	1	
	2	
	2	
	_	
	f	
No.	Ť	
	T	
	7	
]	
	T	
	T	
		- VOO
	Γ	
	T	
	1	=100
		900
		F800
MG/KG 0.4	l	0.03.1
	Ť	Ţ
	Ī	
MG/KG 04	_	
MG/KG 0.4		
	٦	
	ľ	
	Ï	
	2	
MG/KG 0.4	2	
	2	
5000		
2000		
9 002	Σ	=
MG/KG 0 002 X	Σ	0 028 = M
	2	_
SUP.	2	0.000
G/KG -	Σ	
טאט	P	
	2	
	2	
	2	27.8 = M
000	f	
	7	
	_	
X 00°	f	34.0=
	Ť	
-	١.	11.8

M

P-\147543/5U2_NE Screening Tables xis/Surface Sod

	-									ABC					
		Dept					Background	Background Exceedance		Direct Exposure Exceedance	dWp	GWP Exceedance	Ecological Criterion	Ecological Criterion Exceedance	Exceeded
Site	5	- 1	Parameter	- 10	Qualifler	\top	Value		щ,	Flag	Value	Flag	Value		Criteria Flag
51	T	NICKEL		200	E 2	AGKG GAKG	5 0		30		5 5		5		Z
52 3652A	24 001010			101	2 2	SAKG GAKG	2		91		30		90		z
262	T	1		24.1		GAKG	G.		160		30		8		z
	1	1		28.5		CKG CKG	30		160		30		30		z
52 655	T	1		87		SKG GKG	30		160		130		8		z
ł	Т	ŀ			١	O.K.O.	8	×	160		130		30	×	Y
1	T	Т		96.90		TO WOO	90	<	160		30	-	30		Z
l	T	7		6 96		Carce	2 2		160		9		30		Z
25 25	25 0000	NICKEL 1 P. NICKEL		1 0 92		e we	908		150		130		30		z
	Т	T		E.		GWG	S		160		130		90		z
		NICKEI		15.6		G/KG	30		160		130		30		z
S L	Т	Т		13.7		4G/KG	30		160		130		30		z
92	ı	Τ-		7.5		-CKG	308		160		130		30		z
15CO2D	1	7		16.8		G.K.G	Ç		160		130		30		z
92 1EC92	10) 0000	7		2 2		GKG	S		160		30		99		z
DATE OF THE		т		0 81		10 KG	8		160		200		8		z
O CONTRACTOR	T	NICKEL MICKEL		7.54	ŀ	SKG GKG	S.		160		130		S		z
S EVI CARRO	Τ	Т		20.5		GAKG	30		160		130		30		z
S S S S S S S S S S S S S S S S S S S		1		-90%		S S S S S S S S S S S S S S S S S S S	30		160		30		30		z
DOAC KISS	200000	MICKEL		24.5		CKG.	S C		9		130		S		z
S S S S S S S S S S S S S S S S S S S	ı	Т		17.0		IOKG	S		160		130		ĝ		z
OVER DAME	1	Т		18.2°=		CAKG	30		160		130		30		2
DAAC LIS		Т		13 E2		CKG	OE.		160		130		900		z
C CIM CYCO	T	Т		0 8		toko.	e e		160		30		S.		z
51 CC518	Т	Т	POPHENOI	7500		CAKG			53		0 03	×	0 002		>
	Τ	10 DHENANTHRENE	JENE JENE	= 0.00		CVKG	0.61		230		250		÷o	×	z
	Τ	Т	J. J. J. J. J. J. J. J. J. J. J. J. J. J	0 12	l	fc/KG	061		230		250		0.1		z
51 SS510	Τ	10 PHENANTHRENE	SPE	0 0 0		10/KG	0 61		230		250		0 #		ż
Γ	ı	1	PENE	0.24=		ACKG.	0 61		230		250		0.1		z
51 SS54D	40 00 01		JENE	0 22=		GYKG	061		230		250		10		z
ľ			JENE	0 22		1G/KG	0 61		230		250		-	×	z
SS SS S	Т	1	ENE	0 075		£0KG	0 61		230		250		0 1		z
	Т	1	FNE	- 590 O		GWG	0 61		230		250		0		z
	Т	PHENANTHRENE	JENE.	0 22		6c/KG	0 61		230		250		0	×	z
I	Г		SNE	0 24=		(G/KG	061		230		250		0		z
	l		JENE	- 9/0 0		10/KG	0 61		230		250		0.0		z
59 SS 59F	9F 001010		YENE	- 670 0	 	1G/KG	0 61		230		250		0.1		z
	l		4ENE	. 0 1		40/KG	190		230		250		0.1		z
988	Г	1 0 PHENANTHRENE	HENE	0 16 =	,	AG/KG	0.61		230		250		-0	×	z
O69SS 69	П	!	HENE	960 O		AG/KG	061		230		250		0		z
BRAC H(3.5)	S) 001000	li	RENE	0 072		AC/KG	0.61		230		250		5	:	z
BRAC M(3 5)		[RENE	-		AG/KG	0 61	×	230		250		0	×	\
BRAC N(3			HENE	0 072		Acks	0 61		230		250		•		z
S1 SS51C				1090		ACKG	1820								2
	٦	- 1		904		AG/KG	1820						1		z
		- 1		2060		AC/KG	1820	×			1				¥.
	9A 00 to 10	- 1		1190		AG/KG	1820								2
92 TEC	TEC92A 00 to 10	10 POTASSIUM		1790;	nt l	ACKG	1820								2
92 TEC		00to 10 POTASSIUM		2330		AG/KG	1820	×							¥Z:
li		- 1		16001		AGKG	1820								z
BRAC A(3	10) 001005			1380		4C/KG	1820								z
BRAC G(3	П			2620		4C/KG	1820	×							¥
BRAC H(3				2160:		AG/KG	1820	١							ΨŽ
BRAC 1(3.5)	001000			3060		AG/KG	1820								¥Z.
BRAC J(3.5)				3360		AG/KG	1820	ŀ			1				¥
BRAC K(3 5)	٦	ı		3300		JOK6	1820	×							ž
BRAC K(3 5B)	T	O POTASSIUM		2810		MG/KG	1820	1	<u> </u>		1				MA
BRAC L(3.5)	5) 00 to 0 0			10/87		JAN G	1820	Y							\$

¥ 15

PA147543/FU2_NE Screening Tables xistSurface Sox

				_					RBC					
Depth	Depth			-		Background	Background	Direct Exposure	Direct Exposure Exceedance	GWP	GWP	Ecological	Ecological Criterion Exceedance	Freeday
Range	Range		-		Qualifler Units	Value	L	Value	Flag	Value	Flag	Value	Fieg	Criteria Flag
	Т	POTASSIUM		2570=	MC/KG	1820	××							ž
SB51A 0.0 to 1.0	П	PYRENE	-	0.21=	MG/KG	1.5		230		980		0 1	×	ź
0010	П	PYRENE	щ	= 80 0	MG/KG	1.5		230		980		0.1		z
SSSIC 0010 PYHENE	T	PYMENT	_	0 127	MG/KG	15		230		880		0	×	z
0000	Т	PYBENE	┵	= 0 - 0 - 0	MG/KG			052		OB8		0	×,	z
00000	Г	PYPENE	Ļ	0 055 J	MG/KG	1.0		230		880		-	•	2 2
00100	П	PYRENE	Ш	0 33=	MG/KG	1.5		230		880		0.1	×	z
0000	7	PYRENE	┙	0.084 ≠	MG/KG	1.5		230		880		0.1		z
0 0	Т	PYHENE	1	0.061=	MG/KG	8		230		980		0.1		z
SSSSE OFFICE	Т	PYRENE	\perp	= 700	MUNG	-		230		986		100	×,	z
0 0 0 0 0	Т	PYRENE	1	- 0.064=	Merco	1 2		230		288	·	0 -	,	2 2
0 to to 0 0	٥	PYRENE		≈ 2200	MG/KG	1.5		230		880		0		z
0 0 to 1 0	٥	PYRENE		= 910	MG/KG	15		230		880		0.1		z
0 0 to 1 0		PYRENE		0.16≈	MG/KG	15		230		880		6	×	z
ĺ	ı	PYRENE		0 12 =	MG/KG	15		230		880		0		z
4 00to 10	1	PYRENE		0 045 J	MG/KG	15		230		980		0.1		z
┱	┱	PYRENE		0.17J	MG/KG	15		230		880		10	×	z
BRAC ((3.5) (0.000 PTAENE BRAC ((3.5) (0.000 PTAENE	т	TYTENE		0.046.3	MGKG	15		230		880		0		z
M(3.5) GO IO U O	T-	DYDENE		11=	MGNG	-		230		980 8		0 1	×	z
SS51B 00 lo 10	1	SELENDA		2 1 2	MG/KG	- 0		230		288		0 0	^	z
00000	1	SELENIUM		-	MG/KG	80	×	8		5 4		200		- >
SSS1D 00to 10 SELENIUM		SELENIUM		= 1	MG/KG	90		9		5		18.0	×	
0000	l l	SELENIUM		0 58 J	MG/KG	80		39		9		0.81		z
TEC92A	П	SELENIUM		0.44.J	MG/KG	0.8		39		5		0.81		z
H(3 5) 0 0 to 0 0	- 1	SELENIUM		0 56J	MG/KG	80		39		S		180		2
00000	- 1	SELENIUM		0 82=	MG/KG	80	×	39		S		0.81	×	٨
ı	ł	SELENICA		10.64	MONG	0 0		36		a u		180		z
M(3 S) 0 0 to 0 0	1	SELENIUM		0.42	MG/KG	80		30		5 45		0 81		z
00100		SELENIUM		0.56 J	MG/KG	9.8		30		2		0.81		z
0 0 to 1 0	-	SODIUM		218 J	MG/KG									ΝA
Ŧ	ŀ	TETRACHLOROETHYL ENE(PCE)		C 0003	MG/KG			12		900		001		z
0 0 0		TETAACHI OBOCTUVI ENERGICE		0.073	MGAG			21		900	×	0.01	×	≻ ;
0 0 0 0 0	I	TOLIENE			MONG	000	>	1200		90 5		100		z
0 0 to 1 0	Ť	TOTAL 1,2-DICHLOROETHENE	L	0 0000	MG/KG	200 0	,	02		2		000		2
0.000	Г	Total Polynuclear Aromatic Hydrocarbons		2 74 =	MGKG								×	<u>.</u>
0.0 to 1.0	П	Total Polynuclear Aromatic Hydrocarbons		0 629 =	MG/KG									z
0 0 to 1 0	┑	Total Polynuciear Aromatic Hydrocarbons		≈ 2200	MG/KG							ı		z
0 0 to 1 0	┱	Total Polynuclear Aromatic Hydrocarbons		0 661 J	MG/KG							-		z
SSSID 0.00 0 1 10tal Powniciear Aromatic Hydrocarbons	7	Lotal Poynuciear Aromatic Hydrocarbons		1 93=	MGKG								×	>
0 0 0 0 0	+	Total Polynuciear Aromatic Hydrocarbons		# B .	MGVKG							-	×	>
0.000	Т	Lorar Polynuciear Aromatic Hydrocarbons		0 101 3	MGVKG							-		z
SSSZB U U to T U I otal Pownuciear Aromatic Hydrocarbons	Т	Iotal Poynuciear Afomatic Hydrocarbons		238=	MG/KG							-	×	>
0 0 to 1 0	✝	Jotal Polynuciear Aromatic Hydrocarbons		= 609 c	MG/KG							-		z
Т	Ť	Total Polynuclear Aromatic Hydrocarbons		0 332 =	MG/KG							-		z
0.010	Ť	Fotal Polyniciaar Aromatic Hydrocarbons		163=	MG/KG							-	×	>
00000	7	Total Polynuclear Aromatic Hydrocarbons		- B3	MG/KG					İ		-	×	<u>,</u>
Т	┱	Total Polynuciear Aromatic Hydrocarbons	_]	0 22=	MG/KG							-		z
1	+	Total Polynucies Aromatic Hydrocarbons	_!	0 232 =	MG/KG									z
0 0 0 0	1	Total Potyniciaar Aromatic Hydrocarbons		0.059	MGKG			i		Ť	:	- -		z
001010	-	Total Polynuclear Aromatic Hydrocarbons		1111	MG/KG							 	×	>
0 to 1 0				1 085	MG/KG	<u> </u>		-		Ī		-	×	,
SS69D 0 0 to 1 0 Total Polynuclear Aromatic Hydrocarbons				0 671 =	MG/KG							1		z
										ĺ				

Ecological Criterion Exceedance Flag Ecological Criterion Value 900 GWP Exceedance Flag 6000 GWP Value Direct Exposure Exceedance Flag Direct Exposure Value Background Exceedance Flag Background Value 5 TABLE M-1
Summary of Detected Parameters in Surface Soil at FU2 Compared to Background and Screening Level Values
Memphis Depot Main Installation R1

Exceeded Criteria Flag N N

TABLE M-2
Summary of Detected Parameters in Subsurface Soil at FU2 Compared to Background and Screening Level Values Memphis Depot Main Installation RI

					ı	ı ·			1	ABC	
		Depth					Background	Background Exceedance	GWP	GWP Exceedance	Exceeded
Site	Station	Range	Parameter	Concentration	Qualifler	Units	Value	Flag	Value	Flag	Criteria Flag
51 51		9 0 to 11 0 9 0 to 12 0	ACETONE ,	0 03		MG/KG MG/KG			16 16		N
		8 0 to 10 0	ACETONE	0 006		MG/KG			16	· · ·	N
		8 0 to 10 0	ALKALINITY, TOTAL (AS CaCO3)	234		MG/KG					NA NA
	GT59	8 0 to 10 0	ALKALINITY, TOTAL (AS CaCO3)	193		MG/KG				 	NA
59		8 0 to 10 0	ALUMINUM	9650	=	MG/KG	21829				N
59 .		8 0 to 10 0	ANTIMONY	0 58	J	MG/KG			5		N
		90 to 110	ARSENIC	24 7		MG/KG	17	X	29		N
51		501070	ARSENIC	4.8	1	MG/KG	17		29		×
51 51		60 to 80	ARSENIC ARSENIC	77		MG/KG	17		29		N
51		90 to 120 50 to 60	ARSENIC	15.4	=	MG/KG MG/KG	17		29 29		N N
		80 to 10 0	ARSENIC	19.5		MG/KG	17	X	29		N
52		40 to 60	ARSENIC	172	1	MG/KG	17	x	29		N
$\overline{}$		8 0 to 10 0	ARSENIC	19	1	MG/KG	17	×	29		N
52	SB52B	40 to 60	ARSENIC	179	=	MG/KG	17	X	29		N
52	SB52B	80 to 100	ARSENIC	77	=	MG/KG	17		29		N
		8 0 to 10 0	ARSENIC	7.8		MG/KG	17		29		N
59		80 to 100	BARIUM	97		MG/KG	300		1600		N
		90 to 110	BERYLLIUM	14		MG/KG	12	X	63		N
51 51		50 to 70 50 to 60	BERYLLIUM BERYLLIUM	0 27	J	MG/KG MG/KG	12		63 63		N N
51		80 to 10 0	BERYLLIUM	14		MG/KG	12	х	63		N
52		80 to 10 0	BERYLLIUM	13		MG/KG	12	X	63	-	N N
59	SB59C	8 0 to 10 0	BERYLLIUM	0 41	J	MG/KG	12		63		N
51	SB51A	9 0 to 11 0	bis{2-ETHYLHEXYL} PHTHALATE	0 23	J	MG/KG			3600		N
51		60 to 80	bis(2-ETHYLHEXYL) PHTHALATE	0 079	L	MG/KG			3600		N
51		5 0 to 6 0	bis(2-ETHYLHEXYL) PHTHALATE	16		MG/KG			3600		N
51		8 0 to 10 0 8 0 to 10 0	bis(2-ETHYLHEXYL) PHTHALATE	0 19		MG/KG MG/KG			3600		N
59 51		60 to 80	bis(2-ETHYLHEXYL) PHTHALATE BROMOMETHANE	0 13	L	MG/KG MG/KG			3600 0 2		N N
51		9 0 to 12 0	BROMOMETHANE	0 001		MG/KG			02		N
52		4 0 to 6 0	CADMIUM	1.5		MG/KG	1 4	х	8		N
59		8 0 to 10 0	CADMIUM	0 15		MG/KG	14		В		N
59	SB59C	8 0 to 10 0	CALCIUM	1980	=	MG/KG	2432				. N
51		9 0 to 11 0	CHROMIUM, TOTAL	32 7		MG/KG	26 4	X	38		N
51		50 to 70	CHROMIUM, TOTAL	10 5		MG/KG	26 4		38		N
51		60 to 80	CHROMIUM, TOTAL	17 1	I	MG/KG	26 4		38		N
51 51		90 to 120 50 to 60	CHROMIUM, TOTAL CHROMIUM, TOTAL	17 2 25 6	1	MG/KG MG/KG	26 4 26 4		38		N
51		8 0 to 10 0	CHROMIUM, TOTAL	49 1		MG/KG	26.4	Х	38	x	Y
52		4 0 to 6 0	CHROMIUM TOTAL	37 6		MG/KG	26 4	X	38		N
52		8 0 to 10 0	CHROMIUM TOTAL	53 2	=	MG/KG	25 4	x	38	X	Υ
52	SB52B	4 0 to 6 0	CHROMIUM TOTAL	31	=	MG/KG	26 4	х	38		N
52	S852B	8 0 to 10 0	CHROMIUM, TOTAL	32 9	=	MG/KG	26 4	Х	38		N
		8 0 to 10 0	CHROMIUM, TOTAL	12 9		MG/KG	26 4		38		N
59		8 D to 10 D	COBALT	4.7	1	MG/KG	20 4				N
51		90 to 11 0 50 to 70	COPPER	28 11 2	1	MG/KG MG/KG	32 7 32 7				N N
51 51		5 U to 7 U	COPPER	18 9		MG/KG	32 7		├	 	N N
		90 to 120	COPPER	18		MG/KG	32 7		 	1	N
		50 to 60	COPPER	23 4		MG/KG	32 7		 		N
		8 0 to 10 0	COPPER	30 1	=	MG/KG	32 7				N
		4 0 to 6 0	COPPER	36 1		MG/KG	32 7	X			NA
		8 0 to 10 0	COPPER	31		MG/KG	32 7				N
		4 G to 6 G	COPPER	22 8		MG/KG	32 7				N
		8 0 to 10 0	COPPER	18 8	=	MG/KG MG/KG	32 7 32 7			ļ	N N
	B(3 5)	80 to 100	IDDE	0 0057		MG/KG	0 0015	X	54		N N
		80 to 100	IDDT	0 0018		MG/KG	0 0072		11	 	N
		8 0 to 10 0	DIELDRIN	0 0017		MG/KG	0 37		0 004	· · · -	N
	SB52B	4 0 to 6 0	DIELDRIN	0 0053	<u>t </u>	MG/KG	0 37		0 004	X	N
		8 D to 10 D	DIELDRIN	0 0018	J	MG/KG	0 37		0 004		N
BRAC	B(3 5)	00 to 40	DIELDRIN	0 042	=	MG/KG	0 37		0 004	Х	N
	D(3 5)	00040	DIELDRIN	0 047		MG/KG	0 37		0 004	X	N
	D(3 5)	70 to 100	DIELDAIN	0 016		MG/KG	0 37		0 004	Х	N
	SB59C	8 0 to 10 0	IRON	16500		MG/KG	38480				N
		9010110	LEAD	32 9		MG/KG	23 9	Х			NA NA
	SB51A	50 to 70	LEAD	96		MG/KG	23 9		} ——-	ļ .	N
		60 to 80	LEAD	17.5		MG/KG	23 9		 		N
51	S851B	9 0 to 12 0	LEAD	15 9	7=	Imaka	L 23 9	l		ł	I

•••

TABLE M-2
Summary of Detected Parameters in Subsurface Soil at FU2 Compared to Background and Screening Level Values
Memphis Depot Main Installation RI

	7									RBC	
Site	Station	Depth Range	Parameter	Concentration	Qualifier	Units	Background Value	Background Exceedance Flag	GWP Value	GWP Exceedance Flag	Exceeded Criteria Flag
51	SB51C	50 to 60	LEAD	198	*	MG/KG	23 9				N
51	SB51C	80 to 100	LEAD	24 7	=	MG/KG	23 9	×			NA
52	SB52A	40 to 60	LEAD	31 7	=	MG/KG	23 9	×			NA
52	SB52A	8 0 to 10 0	LEAD	27 4	=	MG/KG	23 9	X			NA
52	SB52B	40 to 60	LEAD	22 9	=	MG/KG	23 9				N
52	SB52B	B 0 to 10 0	LEAD	24 2	=	MG/KG	23 9	X			NA NA
59	S859C	8 0 to 10 0	LEAD	8	=	MG/KG	23 9			_	N
59	SB59C	8 0 to 10 0	MAGNESIUM	2380	=	MG/KG	4900				N
59	SB59C	8 0 to 10 0	MANGANESE	334	=	MG/KG	1540				N
51	SB51A	9 0 to 11 0	METHYL ETHYL KETONE (2-BUTANONE)	0 003	1	MG/KG			17		N
51	SB51A	90 to 11 0	NICKEL	32 2	= -	MG/KG	36 6		130		N
51	SB51A	50 to 70	NICKEL	119	J	MG/KG	36 6		130		N
51	SB51B	60 to 80	NICKEL	24 4	=	MG/KG	36 6		130		N
51	SB51B	9 0 to 12 0	NICKEL	20 4	-	MG/KG	35 6		130		N
51	S851C	501060	NICKEL	23 4	=	MG/KG	36 6		130		N
51	SB51C	8 0 to 10 0	NICKEL	31 2	=	MG/KG	36 6		130		N
52	SB52A	4 0 to 6 0	NICKEL	40 2	=	MG/KG	36 6	X	130		N
52	SB52A	80 to 100	NICKEL	35 2	=	MG/KG	36 6	,	130		N
52	SB52B	40 to 60	NICKEL	25 1	=	MG/KG	36 6		130		N
52	SB52B	80 ს 100	NICKEL	23 4	=	MG/KG	36 6		130	-	N
59	S859C	80 ಬ 100	NICKEL	14 3	=	MG/KG	35 6		130		N
-	GT27	8 0 to 10 0	pH	61	×	PH UNITS					NA NA
	GT59	8 0 to 10 0	pH	6.4	=	PH UNITS					NA NA
59	SB59C	8 0 to 10 0	POTASSIUM	2900	=	MG/KG	1800	Х			NA NA
51	SB51A	90 to 110	SELENIUM	1 €	=	MG/KG	0.6	X	5		Z
59	SB59C	8 0 to 10 0	SELENIUM	13	l on	MG/KG	0.6	Х	5	l	N
59	SB59C	80 to 100	Total Xylenes	0 001	J.	MG/KG	0 002		0.2		Z
59	SB59C	8 0 to 10 0	VANADIUM	25 5	=	MG/KG	51 3		6000		N
51	SB51A	9 0 to 11 0	ZINC	109) =	MG/KG	114		12000		N
51	SB51A	50 to 70	ZINC	36 9	ı n	MG/KG	114		12000		N
51	SB51B	60 to 80	ZINC	66 (=	MG/KG	114		12000		N
51	S851B	9010120	ZINC	59 3	=	MG/KG	114		12000	1	N
51	S851C	5 0 to 6 0	ZINC	Bo	=	MG/KG	114		12000		×
51	SB51C	8 0 to 10 0	ZINC	99 9	i =	MG/KG	114		12000		N
52	SB52A	4 0 to 6 0	ZINC	133	3 =	MG/KG	114	X	12000	l	N
52	SB52A	8 0 to 10 0	ZINC	110	=	MG/KG	114		12000		N
52	SB52B	4 0 to 6 0	ZINC	82 5	= ======	MG/KG	114		12000		N
52	SB52B	8 0 to 10 0	ZINC	60 8	3 =	MG/KG	114		12000	1	N
59	SB59C	8 0 to 10 0	ZINC	39 3	3[=	MG/KG	114		12000		N

TABLE M-3
Summary of Detected Parameters in Surface Water at FU2 Compared to Backgound and Screening Level Values
Memphis Depot Main Installation RI

	Exceeded	Criteria Flag	z	z	z	z	z	z	z	Z	z	z	z	z	z	z	z	z	z	Z	z	Z	Z	٨	\	Υ	Y	z	z	Z	Ż	z	z	z	z	z	z
Ecological	Exceedance	Flag			×	×	×	×	×	×																											
Frotogical	Criterion	Value	0 087	280 0	0 087	280 0	280 0	0 087	280 0	280 0	280 0	280 0	280 0	0 087	0 087	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19	0 19
Regulatory	Exceedance	Flag								1						×	×	×	×	×	×	×	×	×	×	×	×	×	×	×							
Background	Exceedance	Flag																						×	×	×	×										
	Background	Value	5 0 7 7	2 0 2 7	5 077	2017	2 0 2 7	5 077	5 0 7 7	5077	5 0 7 7	5 0 7 7	0 471	0 471	0 471	0 0 18	0 0 18	0 0 18	0 0 18	0 0 18	0 018	0 0 18	0 0 18	0 018	0 018	0 0 18	0 018	0 018	0 018	0 018	0 0 12	0 0 12	0 0 1 2	0 0 12	0 0 12	0 0 1 2	0 0 1 2
		Units	MG/L	√DW	MG/L	1/9W	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MGAL
		Qualifier	J	ſ	=	I	n	=	٦	J _ [-	9	7	7	7	ıı	٦	ſ				н	=		=	#1	=	ſ	_	٦		ſ		7	J	7	
		Concentration	0 064	0 0498	0 351	0 25	= 0 262 =	0 576 =	0 118	0 0892 J	0 0843	0 052	0 0 1 4	0 0147	0 0814	0 013=	0 0026	C 8600 0	r 800 0	0 0153 =	≈ 0.017	0 0 1 2 3	0 0123	0 0364	0 0223	6290 0	0 0774	r]900 0	0 0027	0 0041 J	0 0084 J	0 0025	0 0018	0 0034	0 0073	0 0084	0 0078
		Parameter	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	Aluminum, Dissolved	Aluminum, Dissolved	Aluminum, Dissolved	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	Arsenic, Dissolved	Arsenic, Dissolved	Arsenic, Dissolved	Arsenic, Dissolved	Arsenic, Dissolved	Arsenic, Dissolved	Arsenic, Dissolved
		Station	SW25B2	SW25B2	SW25E	SW25F	SW25G	SW26C1	SW26C2	SWZ6E	SW26F	SW26H	SW25B2	SW25B2	SW26C2	SW25A1	SW25C1	SW25C2	SW25D1	SW25D2	SW25F	SW26A1	SW26A2	SW26B1	SW26B2	SW26D1	SW26D2	SW51C	SW52A	SW52B	SW25A1	SW25B1	SW25B2	SW25C2	SW25D1	SW25D2	SW26A1
		Site	52	25		52	22	56		_ 	56	56	25		56	52	52		Г	25	52	56	56	56	56		56	51	25	25	52	52	25	25	25		56

TABLE M-3
Summary of Detected Parameters in Surface Water at FU2 Compared to Backgound and Screening Level Values Memphis Depot Main Installation RI

							Parace a	Regulatory	Foological	Ecological	
Ş	Station	Parameter	Concentration	Qualifier	Units	Background Value	Exceedance	Exceedance	Criterion	Exceedance Flag	Exceeded Cnteria Flag
26	Т	Arsenic, Dissolved	9	十一	MG/L	0 0 1 2			0 19		z
26	SW26B1	Arsenic, Dissolved	C 9600 0		MG/L	0 0 1 2			0 19		z
2g	SW26B2	Arsenic, Dissolved	0 0193		MG/L	0 0 1 2	×		0 19		z
56	SW26C1	Arsenic, Dissolved	0 0024 J		MG/L	0 0 1 2			0 19		z
56	SW26D1	Arsenic, Dissolved	0 0216		MG/L	0 0 0 1 2	×		0 19		z
26	Т	Arsenic, Dissolved	= 0 0405		MG/L	0 0 1 2	×		0 19		z
51	SW51C	Arsenic, Dissolved	0 003e		MG/L	0 0 1 2			0 19		z
25	SW52A	Arsenic, Dissolved	0 0043		MG/L	0 0 1 2			0 19		z
52	SW52B	Arsenic, Dissolved	0 0033	_	MG/L	0 0 1 2			0 19		z
25	SW25E	BARIUM	0 0 177	7	MG/L	0 1253					z
35	SW25F	BARIUM	0 0172		MG/L	0 1253					z
25	SW25G	BARIUM	0 0167		MG/L	0 1253					z
26 26	SWZ6E	BARIUM	0 0131		MG/L	0 1253					z
26	SW26F	BARIUM	0 013		MG/L	0 1253					z
26	SW26G	BARIUM	U 0 0127		MG/L	0 1253					z
26	SW26G	BARIUM	0 0127	ſ	MG/L	0 1253					z
26	SWZ6H	BARIUM	0 0132		MG/L	0 1253					z
9Z	SW26I	BARIUM	0 0 1 28		MG/L	0 1253					z
5g	SW26I	bis(2-ETHYLHEXYL) PHTHALATE	0 001	ſ	MG/L				0 0003	×	>
25	SW25B1	CALCIUM	2 49 J		MG/L	318					z
25	SW25B1	CALCIUM	2 44 J		MG/L	318					z
25	SW25B2	CALCIUM	8 37 =		MG/L	318					z
52	SW25B2	CALCIUM	8 15 =		MG/L	318					z
25	SW25E	CALCIUM	8 92=		MG/L	318					z
25	SW25F	CALCIUM	934=		MG/L	318					z
52	SW25G	CALCIUM	9 13	=	MG/L	318					z
58 28	SW26C1	CALCIUM	4 2 J		MG/L	318					z
92	SW26C2	CALCIUM	80 6	-	MG/L	318					z
56	SW26E	CALCIUM	6 64	=	MG/L	318					z
56	SW26F	CALCIUM	6 78 =		MG/L	318					z
58 28	SW26G	CALCIUM	= 99 9		MG/L	318					z
92	SW26G	CALCIUM	= 69 9		MG/L	318					z
56	SW26H	CALCIUM	6 78 =		MG/L	318					z
26	SW26I	CALCIUM	671	=	MG/L	318				, ,	z
25	SW25B1	Calcium, Dissolved	2 29 J		MG/L	30.5					z

TABLE M-3
Summary of Detected Parameters in Surface Water at FU2 Compared to Backgound and Screening Level Values
Memphis Depot Main Installation RI

	Exceeded Criteria Flag	z	z	z	z	z	z	z	ż	z	z	z	z	z	<u></u>	 	>	→	<u> </u>	¥	, ,	¥	>	X		٨	_	<u></u>	X	_	,				7	7
L	Criter			Ĺ	_											Ĺ									, -			λ			Ϋ́	٨	λ	Y	Z	z
Ecological Criterion	Exceedance Flag							×	•	×	×	×	×							×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		
Ecological	Criterion						0 011	0 011	0 011	0 0 1 1	0 011	0 00654	0 00654	0 00654	0 0105	0 0105	0 0105	0 0105	0 0 0 0 5	0 000001	0 000001	0 000001	0 0000019	0 0000019	0 0000019	0 0000019	0 0000019	0 0000019	0 0000019	0 0000019	0 0000019	0 0000019	0 0000019	0 0000019	-	-
Regulatory Criterion	Exceedance Flag														×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
Background	Exceedance																																			
	Background Value	30.2	30.5	30 2	30 2	30.2	0 0361	0 0361	0 0361	0 0361	0 0361	0 0746	0 0746	0 0746																				:	6 1035	6 1035
	Units	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MGAL	MG/L	WG/L	7/9W	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	WG/L	MG/L	MG/L
	Qualifier	J	=	ıı	7	N	٦	11	11	11	11	ſ	ſ	7	,)	ſ	ſ	ſ	ſ	31	ſ	=	=	J	ſ	ſ		=	J	=	=	=	J	=	tl
	Concentration	2 68	67 /	= 908	3 34	3 6 5	11000	0 0 1 4	. 00101	0 0128	0 0186	0 0213	0 0216	0 0046	0 000032	0 000031	0 000059	850000 0	0 000026	C 240000 0	0 00015	0 000054	0 00043 =	0 00016	0 000044	0 000053	0 000045	0 000093	1000 0	r seoooo o	0 00028	0 00022 =	0 0001 =	0 000066	906 0	0 245 =
	Parameter	Calcrum, Dissolved	Calcium, Dissolved	Calcium, Dissolved	Calcium, Dissolved	Calcium, Dissolved	CHROMIUM, TOTAL	CHROMIUM, TOTAL	CHROMIUM, TOTAL	CHROMIUM, TOTAL	CHROMIUM, TOTAL	COPPER	COPPER	COPPER	DDE	DDE	DDE	300	DDE	DDT	рот	100	DIELDRIN	DIELDRIN	DIELDRIN	DIELDRIN	DIELDRIN	DIELDRIN	DIELDRIN	DIELDRIN	DIELDRIN	DIELDRIN	DIELDRIN	DIELDRIN	IRON	IRON
	Station	SW25B1	SW25B2	SW25B2 C	SW26C1	SW26C2	SW25E C	SW26A2	SW26B1	SW26D1	SW26D2 C	SW26D1 C	SW26D2 C	SW52A C	SW25B1	SW26A1		SWZ6C1 [SW26A1	SW26C1	SW26D1 C			SW25C2 [SW26B1	2				SW25B1	SW25B1
	Site	25 SV	25 SV	25 SV	26 SV	26 SV	25 SV	26 SV	26 SV	26 SV	26 SV	26 SV	26 SV	25 SV	25 SV	26 SV	26 SV	3e SV	26 SV	26 SV	26 SV	3e Sv		25 SV	25 SV	25 SV			26 SV	26 SV	56 SV	51 SV	51 SV		25 SV	25 SV

TABLE M-3
Summary of Detected Parameters in Surface Water at FU2 Compared to Backgound and Screening Level Values
Memphis Depot Main Installation RI

	Criteria Flag	z	z	z	z	z	z	z	z	z	z	, Z	z	z	z	z	z	z	z	z	z	z	z	>	z	z	>	>	Z	Z	>	Z	2	2 2	2 2 2
Ecological Criterion Exceedance	Flag															×	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×		×	××
Ecological Criterion	Value	-	-	-	1	1	1	1	1	1	1	1	1	1	1	0 00132	0 00132	0 00132	0 00132	0 00132	0 00132	0 00132	0 00132	0 00132	0 00132	0 00132	0 00132	0 00132	0 00132	0 00132	0 00132	0 00132		0 00132	0 00132
Regulatory Critenon Exceedance	Flag	×	×	×	×	×	×																								×				
Background Exceedance	Flag													×	×									×			×	×			×				
Background	Vafue	6 1035	6 1035	6 1035	6 1035	6 1035	6 1035	6 1035	6 1035	6 1035	6 1035	6 1035	6 1035	0 1201	0 1201	0 0186	0 0186	0 0 186	0 0 186	0 0 186	0 0 186	0 0 186	0 0186	0 0186	0 0186	0 0186	0 0186	0 0186	0 0186	0 0186	0 0 186	0 0186	20.50	00100	0.0186
	Units	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MGA	MGA	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	2074	700	MG/L
	Qualifier																																		
		0 417 =	0 432 =	= 797 0	0 604 ≂	= 282 0	0 835=	= 0.269	0 219=	0 149=	0 156	= 0 189	0 166	0 253 =	0 215 =	0 0 169	0 0052 J	0 002e	0 0023	0 005	0 0162 J	C 6800 0	U 1800 0	0 0 188	C 2600 0	0 011	0 0262	0 0224	0 0022 J	0.0168	0 0594=	0 003	0.0003		0 0023
	Parameter	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	Iron, Dissolved	Iron, Dissolved	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	IFAN	ייי	Lead, Dissolved
	Station	SW25B2	SW25B2	SW25E	SW25F	SW25G	SW26C1	SW26E	Т	SW26G	SW26G	SW26H	SW261	SW25B2	SW25B2	SW25A1	SW25B1	SW25B1	SW25C1	SW25D1	SW25D2	SW26A1	SW26A2	SW26B1	SW26B2	SW26C1	SW26D1	SW26D2	SW51A	SW51B	SWELC	SW52A	903	SWSZB	SW52B SW25D1
		L/V	10,	۳	10,	נט	101	ا"	100	100	נט	۲"	۳	۲"	1"	۲,	۲,	۳	۳	ľ	ť	ť	╁	 "	۳,	۳	10,	╨	†"	1"	٦	+"	+		" "

TABLE M-3
Summary of Detected Parameters in Surface Water at FU2 Compared to Backgound and Screening Level Values
Memphis Depot Main Installation RI

Exceedance Criterion E Flag Value Va								Backaround	Regulatory	Footonies	Ecological	
Section Mich. Control Contro	è	è		•		<u>.</u>	Background	Exceedance	Exceedance	Criterion	Exceedance	Exceeded
MGAL	SWS1C Lead, Dissolved 0	Lead, Dissolved	Concentrat	0313	- Cualifier	MG/L	0 0226		S.	0 00132	Sp. X	Ciliena riag
MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 6845 MGAL 6845 MGAL 6845 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652	1_	1		0 286		MG/L	7 7018					z
MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 6845 MGAL 6845 MGAL 6845 MGAL 6845 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652 MGAL 6652	SW25B1 MAGNESIUM	П		0 271		MG/L	7 7018					z
MGAL	SW25B2 MAGNESIUM			1 58		MG/L	7 7018					z
MGAL	SW25B2 MAGNESIUM			157		MG/L	7 7018					z
J MG/L 7 7018 J MG/L 7 7018 J MG/L 7 7018 J MG/L 7 7018 J MG/L 7 7018 J MG/L 7 7018 J MG/L 7 7018 J MG/L 7 7018 J MG/L 7 7018 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 8645 J MG/L 6 6562 J	SW25E MAGNESIUM	MAGNESIUM		23		MG/L	7 7018					z
J. MG/L	SW25F MAGNESIUM	MAGNESIUM		2 37	٦	MG/L	7 7018					z
MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 77018 MGAL 68645 </td <td>SW25G MAGNESIUM</td> <td>MAGNESIUM</td> <td></td> <td>233</td> <td>,</td> <td>MG/L</td> <td>7 7018</td> <td></td> <td></td> <td></td> <td></td> <td>Z</td>	SW25G MAGNESIUM	MAGNESIUM		233	,	MG/L	7 7018					Z
J. MG/L 77018 J. MG/L 77018 J. MG/L 77018 J. MG/L 77018 J. MG/L 77018 J. MG/L 77018 J. MG/L 77018 J. MG/L 68645 J. MG/L 68645 J. MG/L 68645 J. MG/L 68645 J. MG/L 68645 J. MG/L 68645 J. MG/L 68645 J. MG/L 68645 J. MG/L 68645 J. MG/L 68645 J. MG/L 68645 J. MG/L 68645 J. MG/L 68645 J. MG/L 68645 J. MG/L 66645 J. MG/L 66645 J. MG/L 66562 J. MG/L 66562 J. MG/L 66562 J. MG/L 66562 J. MG/L 66562 J. MG/L 66562 J. MG/L 66562 J. MG/L	SW26C1 MAGNESIUM			0 388		MG/L	7 7018					Z
Jumble Mich. 7 7018 Jumble Mich. 7 7018 Jumble Mich. 7 7018 Jumble Mich. 7 7018 Jumble Mich. 6 8645 Jumble Mich. 6 8645 Jumble Mich. 6 8645 Jumble Mich. 6 8645 Jumble Mich. 6 8645 Jumble Mich. 6 8645 Jumble Mich. 6 8645 Mich. Jumble Mich. 6 8645 Mich. Mich. Jumble Mich. 6 8645 Mich. Mich. Mich. Jumble Mich. 6 8645 Mich.	SW26C2 MAGNESIUM			1 28		MG/L	7 7018					z
J MGAL 7 7018 J MGAL 7 7018 J MGAL 7 7018 J MGAL 7 7018 J MGAL 7 7018 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 6562 X J MGAL 6 6562 X J MGAL 6 6562 X J MGAL 6 6562 X J MGAL 6 6562 X J MGAL 6 6562 X <td>SW26E MAGNESIUM</td> <td>MAGNESIUM</td> <td></td> <td>0 737</td> <td></td> <td>MG/L</td> <td>7 7018</td> <td></td> <td></td> <td></td> <td></td> <td>z</td>	SW26E MAGNESIUM	MAGNESIUM		0 737		MG/L	7 7018					z
Jumbor MGAL 7 7018 Jumbor 7 7018 7 7018 Jumbor 7 7018 7 7018 Jumbor 7 7018 7 7018 Jumbor 7 7018 7 7018 Jumbor 7 7018 7 7018 Jumbor 6 8645 7 7018 Jumbor 6 8645 7 7018 Jumbor 6 8645 7 7018 Jumbor 6 8645 7 7018 Jumbor 6 8645 7 7018 Jumbor 7 8645 7 7018 Jumbor 7 8645 7 7018 Jumbor 7 8645 7 7018 Jumbor 7 8645 7 7018 Jumbor 7 8645 7 7018 Jumbor 8 8645 8 7018 8 7018 Jumbor 8 8645 8 7018 8 7018 8 7018 Jumbor 8 8645 8 8645 8 8645 8 8645 8 8645 8 8645 Jumor 8 8645 8 8645 8 8645 8 8645 8 8645 <td>SW26F MAGNESIUM</td> <td>MAGNESIUM</td> <td></td> <td>0 752</td> <td></td> <td>MG/L</td> <td>7 7018</td> <td></td> <td></td> <td></td> <td></td> <td>z</td>	SW26F MAGNESIUM	MAGNESIUM		0 752		MG/L	7 7018					z
J MGAL 7 7018 J MGAL 7 7018 J MGAL 6 8645 Color J MGAL 6 8645 Color Color J MGAL 6 8645 Color Color J MGAL 6 8645 Color Color J MGAL 6 8645 Color Color J MGAL 6 8645 Color Color J MGAL 6 6865 X Color J MGAL 6 6562 X Color J MGAL 6 6562 X Color J MGAL 6 6562 X Color J MGAL 6 6562 X Color J MGAL 6 6562 X Color J MGAL 6 6562 X Color J MGAL 6 6562 X Color J MGAL 6 6562 X Color<	SW26G MAGNESIUM	MAGNESIUM		0714		MG/L	7 7018					Z
J MGAL 7 7018 J MGAL 7 7018 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8645 J MGAL 6 8652 J MGAL 0 6562 J	SW26G MAGNESIUM	MAGNESIUM		0 719		MG/L	7 7018					N
J MGAL 7 7018 C	SW26H MAGNESIUM	MAGNESIUM		0 73		MG/L	7 7018					z
J MG/L 6 8645 C J MG/L 6 8645 C J MG/L 6 8645 C J MG/L 6 8645 C J MG/L 6 8645 C J MG/L 0 6562 C J MG/L 0 6562 X J MG/L 0 6562 X J MG/L 0 6562 X J MG/L 0 6562 X J MG/L 0 6562 X J MG/L 0 6562 X J MG/L 0 6562 X J MG/L 0 6562 X J MG/L 0 6562 X J MG/L 0 6562 X J MG/L 0 6562 X J MG/L 0 6562 X J MG/L 0 6562 X J MG/L 0 6562	SW26! MAGNESIUM	MAGNESIUM		0 71	J	MG/L	7 7018					Z
July MG/L 6 8645 Color	SW25B1 Magnesium, Dissolved			0 263	J	MG/L	6 8645					z
J MG/L 6 8645 C J MG/L 6 8645 C J MG/L 6 8645 C J MG/L 0 6562 C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 X C MG/L 0 6562 C	SW25B1 Magnesium, Dissolved			0418	J	MG/L	6 8645					z
June MG/L 6 8645 Control June MG/L 6 8645 Control June MG/L 6 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June MG/L 0 6562 Control June <td></td> <td></td> <td></td> <td>1 62</td> <td></td> <td>MG/L</td> <td>6 8645</td> <td></td> <td></td> <td></td> <td></td> <td>z</td>				1 62		MG/L	6 8645					z
J MG/L 6 8645 J MG/L 6 8645 M MG/L 0 6562 X M MG/L 0 6562 X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X MG/L 0 6562 X X M				1 57		MG/L	6 8645					z
MG/L 6 8645	\neg	\neg		0.213		MG/L	6 8645					z
MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X				4	ſ	MG/L	6 8645					z
J MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X = MG/L 0 6562 X	SW25B1 MANGANESE			0 0167		MG/L	0 6562					z
MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X	SW25B1 MANGANESE			0 0146	J	MG/L	0 6562					z
MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X MG/L 0 6562 X	SW25B2 MANGANESE			0 0684	=	MG/L	0 6562		×			z
#G/L 0 6562 X # MG/L 0 6562 X	SW25B2 MANGANESE			0 0698		MG/L	0 6562		×			z
#G/L 0 6562 X #G/L 0 6562 X #G/L 0 6562 X #G/L 0 6562 X #G/L 0 6562 X #G/L 0 6562 X #G/L 0 6562 X #G/L 0 6562 X #G/L 0 6562 X #G/L 0 6562 X	SW25E MANGANESE	MANGANESE		0 0659	=	MG/L	0 6562		×		į	z
MG/L 0 6562 X MG/L 0 6562 A MG/L 0 6562 B MG/L 0 6562 B MG/L 0 6562 B MG/L 0 6562 B MG/L 0 6562 B MG/L 0 6562 B	SW25F MANGANESE	MANGANESE		0 0562	_	MG/L	0 6562		×			z
MGAL 0 6562 MGAL 0 6562 MGAL 0 6562 MGAL 0 6562 MGAL 0 6562 MGAL 0 6562 MGAL 0 6562	SW25G MANGANESE	MANGANESE		0 0547		MG/L	0 6562		×			Z
MG/L 0 6562 MG/L 0 6562 MG/L 0 6562 MG/L 0 6562 MG/L 0 6562 MG/L 0 6562	SW26C1 MANGANESE			0 0461		MG/L	0 6562					Z
MG/L 0 6562 MG/L 0 6562 MG/L 0 6562 MG/L 0 6562	SW26C2 MANGANESE	1		0 0084		MG/L	0 6562					z
MG/L 0 6562 MG/L 0 6562 MG/L 0 6562	SW26E MANGANESE	MANGANESE		0 0203		MG/L	0 6562					Z
MG/L 0 6562 MG/L 0 6562	SW26F MANGANESE	MANGANESE		0 0267		MG/L	0 6562					z
MG/L 0 6562	SW26G MANGANESE	MANGANESE		0 0178		MG/L	0 6562					z
	SW26G MANGANESE	MANGANESE		0 0179		MG/L	0 6562					z

TABLE M-3
Summary of Detected Parameters in Surface Water at FU2 Compared to Backgound and Screening Level Values
Memphis Depot Main Installation R1

Exceeded Cutoria Flan	SEL Z	z	z	z	z	z	>	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	>		z	zz
د ق) lag						×																		-					×			
Ecological Criterion	vaiue						0 000012	0 08771	0 08771	0 08771	0 08771	0 08771	0 08771											-						0 005			
Criterion Exceedance	Flag																																
Background Exceedance	Flag																																
Background	Value 0 6562	0 6562	0 352	0 352	0 352	0 352		0 228	0 228	0 228	0 228	0 228	0 228	7 28	7 28	7 28	7 28	7 28	7 28	7 28	7 28	7 28	7 28	7 28	7 28	6 72	6 72	6 72	672		21 4		214
	Units MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L		MG/L
3	Qualifier					_										,	1	, , ,))		· · · · · ·))								
	Concentration 0 0205	0 0197	0 0103	, 7600 0	0 0 0 0 0 0 0 0 0	0 0074	00000	0 0117	0 016	0 0175	0 00049	0 0061	0 007	2 73.	2 54	3 95	311	376	191	1 25 J	101	151	14	1 19	1 03	2 55 J	2.58 J	0 751	1 43	0 0028	1 08		0 993
	Parameter MANGANESE	MANGANESE	Manganese, Dissolved	Manganese, Dissolved	Manganese, Dissolved	Manganese, Dissolved	MERCURY	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	Potassium, Dissolved	Potassium, Dissolved	Potassium, Dissolved	Potassium, Dissolved	SEI ENITIM	SODIUM	1101000	SODIUM
	_	1	1	1_	I_	2	1	-	=	2	ļ,,	٦	L	l۵	Ω	l	l	<u>ر</u> ا	N	ļ.,,	la	٥	ص ا	Ŀ	_	82	8	5	ខ		B2		82
	SwzeH	SW261	SW25B1	SW25B1	SW26C1	SW26C2	SW26G	SW26B1	SW26D1	SW26D2	SW26G	SW51A	SW51C	SW25B2	SW25B2	SW25E	SW25F	SW25G	SW26C2	SW26E	SW26F	SW26G	SW26G	SW26H	SW261	SW25B2	SW25B2	SW26C1	SW26C2	SWS	SW25B2		SW25B2

TABLE M-3
Summary of Detected Parameters in Surface Water at FU2 Compared to Backgound and Screening Level Values
Memphis Depot Main Installation RI

SWAZED SUSPENDED SOLUDS RESIDUE, NON-HITERABLE] 154							Background	Background Exceedance	Regulatory Criterion Exceedance	Ecological Criterion	Ecological Critenon Exceedance	Exceeded
SWAZED SUSPENDED SOLUS RESIDUE, MON-HITEMALE 194 MGA	ţ.	Station	Parameter	Concentration	Qualifier	Units	Value	Flag	Flag	Value	Flag	Criteria Flag
9WZEGS SURSEMENDE SOLUS (RESDIDLE, NON-ELLTERABLE) 15 a MG4. <	25	SW25A1	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	94	a	MG/L						NA
SWAZEQ SUSPENDED SOLUS (RESIDLE, NON-RITERABLE) 10		SW25B1	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	15	11	MG/L						NA
9WZZOZ SURSPENDED SOULDS (RESIDUE, NONFILTERABLE) 57 MG4 MG4 <t< td=""><td>25</td><td>SW25B1</td><td>SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)</td><td>01</td><td></td><td>MG/L</td><td></td><td></td><td></td><td></td><td></td><td>Ą</td></t<>	25	SW25B1	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	01		MG/L						Ą
SWYSENDE SOLUCIOR (RESIDULE, MON-HITERABLE) SWS SAT SUSPENDED SOLUCIOR (RESIDULE, MON-HITERABLE) LOS	25	SW25D1	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	21	Iš	MG/L	:					Ą
SWARED SURSEPLICED SOLLOS (RESIDUE, NON-FITTERABLE) 7824 MGL 7	52	SW25D2	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	255	=	MG/L						Ϋ́
SWASEZ SUSPENDED SOLDS (RESIDUE, NON-HITEMALE) 282 a MGL AGL<	56	SW26A1	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	106		MG/L						Ā
WWARDS SUPPREMIDE DOLISO (RESIDUE, NON-FILTERABLE) 364 MG1 MG2 SWARDS SUPPREMIDE DOLISO (RESIDUE, NON-FILTERABLE) 19 = MG1 SWARDS SUPPREMIDE DOLISO (RESIDUE, NON-FILTERABLE) 1160 = MG1 <		SW26A2	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	282		MG/L						ΑN
SWAZEZ SUSPERIDES SOLIDIS (RESIDUE, NON-FILTERABLE) HG/L MG/L		SW26B1	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	364		MG/L					t	- NA" -
SWASCZ SUSPERDED SOLUS (RESIDUE, NON-FILTERABLE) 160-1 MG/L <t< td=""><td>Г</td><td>SW26B2</td><td>SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)</td><td>14</td><td></td><td>MG/L</td><td></td><td></td><td></td><td></td><td></td><td>Ϋ́</td></t<>	Г	SW26B2	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	14		MG/L						Ϋ́
SWASEZ SUSPENDED SOLLOS (RESIDUE, NON-FILTERABLE) 1980 = NGAL MGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) MGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) MGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) MGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) CORRIGORATION (RESIDUE, NON-FILTERABLE) MGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) CORRIGORATION (RESIDUE, NON-FILTERABLE) MGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) CORRIGORATION (RESIDUE, NON-FILTERABLE) CORRIGORATION (RESIDUE, NON-FILTERABLE) MGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) CORRIGORATION (RESIDUE, NON-FILTERABLE) CORRIGORATION (RESIDUE, NON-FILTERABLE) MGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) CORRIGORATION (RESIDUE, NON-FILTERABLE) XMGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) XMGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) XMGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) XMGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) XMGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) XMGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) XMGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) XMGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) XMGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) XMGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) XMGAL CORRIGORATION (RESIDUE, NON-FILTERABLE) XMGAL	Ī	SW26C1	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	6	11	MG/L						A A
SWAGEO SINSPENDED SOLIDS (FRESDUE, NON-FILTERABLE) 1880 = MGAL MGAL 0.039 MGAL 0.039 SWAZEO SURPENDED SOLIDS (FRESDUE, NON-FILTERABLE) 0.0043 MGAL 0.039 0.00591 X SWAZEO SURPENDED SOLIDS (FRESDUE, NON-FILTERABLE) 0.0043 MGAL 0.039 0.00591 X SWAZEO ZINC 0.0070 MGAL 0.0387 0.00591 X 0.00591 X SWAZEO ZINC 0.0072 MGAL 0.02873 0.00591 X 0.05891 X SWAZEO ZINC 0.0072 MGAL 0.02873 0.05891 X 0.05891 X SWAZEO ZINC 0.0072 MGAL 0.02873 X 0.05891 X SWAZEO ZINC 0.0124 MGAL 0.2873 X 0.05891 X SWAZEO ZINC 0.05891 MGAL 0.2873 X 0.05891 X SWAZEO ZINC 0.05891 MGAL 0.2873 X 0.05891 X SWAZEO<	Γ	SW26C2	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	9		MG/L						NA
SWAZED SINCEPTOR MICH ORSE	Γ	SW26D1	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	1180		MG/L						ΨZ.
SW2562 VANADIUM 00044 MGL 0.039 N SW2562 LAC 0.043 MGL 0.039 N SW2562 ZINC 0.0613 MGL 0.2873 0.05891 X SW2562 ZINC 0.0752 MGL 0.2873 0.05891 X SW2562 ZINC 0.0752 MGL 0.2873 0.05891 X SW2562 ZINC 0.0752 MGL 0.2873 0.05891 X SW2692 ZINC 0.0752 MGL 0.2873 0.05891 X SW2692 ZINC 0.0857 MGL 0.2873 0.05891 X SW2692 ZINC 0.0857 MGL 0.2873 0.05891 X SW2692 ZINC 0.047 MGL 0.2873 X 0.05891 SW2602 ZINC 0.049 MGL 0.2873 X 0.05891 SW2602 ZINC 0.049 MGL 0.2873 X <td>Г</td> <td>SW26D2</td> <td>SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)</td> <td>609</td> <td>11:</td> <td>MG/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ΑN</td>	Г	SW26D2	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE)	609	11:	MG/L						ΑN
SWZ5CZ ZINC 0.0081 J MGL 0.03973 0.05891 X SWZ5CZ ZINC 0.00813 J MGL 0.2873 0.05891 X SWZ5CZ ZINC 0.00820 J MGL 0.2873 0.05891 X SWZ5CZ ZINC 0.00820 J MGL 0.2873 0.05891 X SWZ5CZ ZINC 0.01820 J MGL 0.2873 0.05891 X SWZ5CZ ZINC 0.0882 J MGL 0.2873 0.05891 X SWZ5CZ ZINC 0.0882 J MGL 0.2873 0.05891 X SWZ5CZ ZINC 0.0184 J MGL 0.2873 0.05891 X SWZ5CZ ZINC 0.0184 J MGL 0.2873 X 0.05891 X SWZ5CZ ZINC 0.0184 J MGL 0.2873 X 0.05891 X SWZ5CZ ZINC 0.0184 J MGL 0.2873 X 0.05891 X	Γ	SW25E	VANADIUM	0 0043		MG/L	660 0					z
SW2562 ZNC 0 0613 J MG/L 0 2873 0 06891 X SW2562 ZNC 0 0702 J MG/L 0 2873 0 05891 X SW2562 ZNC 0 0732 J MG/L 0 2873 0 05891 X SW2562 ZNC 0 0732 J MG/L 0 2873 0 05891 X SW2562 ZNC 0 0685 J MG/L 0 2873 0 05891 X SW2662 ZNC 0 0685 J MG/L 0 2873 0 05891 X SW2662 ZNC 0 0685 J MG/L 0 2873 0 05891 X SW2662 ZNC 0 0685 J MG/L 0 2873 0 05891 X SW2662 ZNC 0 0734 J MG/L 0 2873 0 05891 X SW2662 ZNC 0 0734 J MG/L 0 2873 0 05891 X SW2662 ZNC 0 0168 J MG/L 0 2873 0 05891 X SW2662 ZNC <t< td=""><td></td><td>SW25F</td><td>VANADIUM</td><td>0 0041</td><td>,</td><td>MG/L</td><td>0 039</td><td></td><td></td><td></td><td></td><td>z</td></t<>		SW25F	VANADIUM	0 0041	,	MG/L	0 039					z
SWESCE ZINC CORDEAD DOISE		SW25B2	ZINC	0 0613	ſ	MG/L	0 2873			0 05891	×	z
SWX5C2 ZINC 0.0862 MG/L 0.2873 MG/L 0.0583 X SWX5C2 ZINC 0.0734 MG/L 0.2873 0.05891 X SWX5C3 ZINC 0.05591 MG/L 0.2873 0.05891 X SWX5B1 ZINC 0.06591 MG/L 0.2873 0.05891 X SWX5B1 ZINC 0.1841 MG/L 0.2873 X 0.05891 X SWX5B1 ZINC 0.1841 MG/L 0.2873 X 0.05891 X SWX5B2 ZINC 0.1841 MG/L 0.2873 X 0.05891 X SWX5B2 ZINC 0.0184 MG/L 0.2873 X 0.05891 X SWX5B2 ZINC 0.0184 MG/L 0.2873 X 0.05891 X SWX5B4 ZINC 0.0184 MG/L 0.2873 X 0.05891 X SWX5B4 ZINC 0.0144 MG/L 0.28		SW25B2	ZINC	2020 0		MG/L	0 2873	_		0 05891	×	Z
SWZ5C2 ZINC 0 0734 MGL 0 2873 0 06891 X SWZ5C2 ZINC 0 0675 MGL 0 2873 0 05891 X SWZ8C2 ZINC 0 06881 MGL 0 2873 0 05891 X SWZ8C2 ZINC 0 06881 MGL 0 2873 X 0 05891 X SWZ8C2 ZINC 0 184 MGL 0 2873 X 0 05891 X SWZ8C2 ZINC 0 184 MGL 0 2873 X 0 05891 X SWZ8C2 ZINC 0 0 199 MGL 0 2873 X 0 05891 X SWZ8C ZINC 0 0 0 199 MGL 0 2873 X 0 05891 X SWZ6L ZINC 0 0 0 0 1 1 MGL 0 2873 X 0 05891 X SWZ6L ZINC 0 0 0 0 1 1 MGL 0 2873 X 0 05891 X SWZ6L ZINC 0 0 0 0 0 1 1 MGL 0	Г	SW25C2	ZINC	0 0862	٦	MG/L	0 2873			0 05891	×	z
SWZ6D ZINC 005891 MGAL 0 2873 0 05891 X SWZ6D2 ZINC 0 0587 MGAL 0 2873 0 05891 X SWZ6D2 ZINC 0 184 MGAL 0 2873 0 05891 X SWZ6D2 ZINC 0 447 MGAL 0 2873 0 05891 X SWZ6D2 ZINC 0 124 MGAL 0 2873 0 05891 X SWZ6D2 ZINC 0 0 124 MGAL 0 2873 0 05891 X SWZ6D2 ZINC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		SW25D2	ZINC	0 0734	Ĵ	MG/L	0 2873	1		0 05891	×	Z
SWZ6B1 ZINC 0.0859 J MG/L 0.2873 0.0589 J X SWZ6B2 ZINC 0.0658 J MG/L 0.2873 X 0.05891 X SWZ6C1 ZINC 0.184 J MG/L 0.2873 X 0.05891 X SWZ6C2 ZINC 0.124 J MG/L 0.2873 X 0.05891 X SWZ6C2 ZINC 0.05891 MG/L 0.2873 X 0.05891 X SWZ6C2 ZINC 0.05891 MG/L 0.2873 X 0.05891 X SWZ6C2 ZINC 0.016 J MG/L 0.2873 X 0.05891 X SWZ6C2 ZINC 0.016 J MG/L 0.2873 X 0.05891 X SWZ6C2 ZINC 0.063 J MG/L 0.2873 X 0.05891 X SWZ6C2 ZINC 0.063 J MG/L 0.2873 X 0.05891 X SWZ6C ZINC 0.06		SW25G	ZINC	25100	7	MG/L	0 2873			0 05891		z
SWZ6B2 ZINC 0.658 J MG/L 0.2873 N 0.05891 X SWZ6C1 ZINC 0.144 J MG/L 0.2873 X 0.05891 X SWZ6C2 ZINC 0.467 J MG/L 0.2873 X 0.05891 X SWZ6D2 ZINC 0.0298 J MG/L 0.2873 X 0.05891 X SWZ6F ZINC 0.018 J MG/L 0.2873 X 0.05891 X SWZ6F ZINC 0.018 J MG/L 0.2873 X 0.05891 X SWZ6H ZINC 0.018 J MG/L 0.2873 X 0.05891 X SWZ6H ZINC 0.0648 J MG/L 0.2873 X 0.05891 X SWZ6H ZINC 0.0648 J MG/L 0.2873 X 0.05891 X SWZ1NC ZINC 0.0648 J MG/L 0.2873 X 0.05891 X SWZ1NC ZINC		SW26B1	ZINC	2580 0	ر ا	MG/L	0 2873			0 05891	×	Z
SWZ6C1 ZINC 0 184 M G/L 0 2873 X 0 05891 X SWZ6C2 ZINC 0 467 M G/L 0 2873 X 0 05891 X X SWZ6D1 ZINC 0 124 M G/L 0 2873 X 0 05891 X X SWZ6D2 ZINC 0 0098 M G/L 0 2873 X 0 05891 X X SWZ6D2 ZINC 0 0098 M G/L 0 2873 X 0 05891 X X SWZ6D2 ZINC 0 0099 M G/L 0 2873 X 0 05891 X X SWZ6D2 ZINC 0 0099 M G/L 0 2873 X X X X SWZ6D2 ZINC 0 0099 M G/L 0 2873 X X X X SWZ6D2 ZINC 0 0099 M G/L 0 2873 X X X X SWZ6D2 ZINC 0 0099 M G/L 0 2873 </td <td>ļ</td> <td>SW26B2</td> <td>ZINC</td> <td>0 0658</td> <td>7</td> <td>MG/L</td> <td>0 2873</td> <td></td> <td></td> <td>0 05891</td> <td>×</td> <td>z</td>	ļ	SW26B2	ZINC	0 0658	7	MG/L	0 2873			0 05891	×	z
SW26C2 ZINC O 647 J MG/L O 2873 X 0 05891 X Q SW26D1 ZINC 0 124 J MG/L 0 2873 Q 0 05891 X X SW26D2 ZINC 0 0 0581 MG/L 0 2873 Q 0 05891 X X SW26D2 ZINC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		SW26C1	ZINC	0 184	,	MG/L	0 2873			0 05891	×	z
SW26D1 ZINC 0 124 J MG/L 0 2873 X 0 05891 X SW26D2 ZINC 0 199 J MG/L 0 2873 0 05891 X X SW26D2 ZINC 0 0098 J MG/L 0 2873 0 05891 X X SW26H ZINC 0 011 J MG/L 0 2873 0 05891 X X SW26H ZINC 0 0699 J MG/L 0 2873 0 05891 X X SW26H ZINC 0 0699 J MG/L 0 2873 0 05891 X X SW51A ZINC 0 0699 J MG/L 0 2873 0 05891 X X SW51B ZINC 0 0699 J MG/L 0 2873 0 05891 X X SW51C ZINC 0 0699 J MG/L 0 2873 0 05891 X X SW52A ZINC 0 0699 J MG/L 0 02873 X 0 05891 X SW52A ZINC	Г	SW26C2	ZINC	0 467	ſ	MG/L	0 2873	×		0 05891	×	٨
SW26D2 ZINC 0 199 J MG/L 0 2873 X 0 05891 X SW26E ZINC 0 0098 J MG/L 0 2873 0 05891 X SW26F ZINC 0 011 J MG/L 0 2873 0 05891 X SW26F ZINC 0 0099 J MG/L 0 2873 0 05891 X SW26F ZINC 0 0648 J MG/L 0 2873 0 05891 X SW51A ZINC 0 0648 J MG/L 0 2873 0 05891 X SW51C ZINC 0 0699 J MG/L 0 2873 0 05891 X SW51C ZINC 0 0698 J MG/L 0 2873 0 05891 X SW52A ZINC 0 0698 J MG/L 0 2873 0 05891 X SW52B ZINC 0 0698 J MG/L 0 2873 0 05891 X SW52B ZINC 0 0698 J MG/L 0 2873 0 05891 X		SW26D1	ZINC	0 124		MG/L	0 2873			0 05891	×	Z
SW26E ZINC 0009B J MGAL 0 2873 005891 7 SW26F ZINC 0016B J MGAL 0 2873 005891 0 SW26F ZINC 0 0099 J MGAL 0 2873 0 0 05891 X SW51A ZINC 0 064B J MGAL 0 2873 0 0 05891 X SW51B ZINC 0 064B J MGAL 0 2873 0 0 05891 X SW51C ZINC 0 05891 MGAL 0 2873 X 0 05891 X SW52A ZINC 0 05891 MGAL 0 2873 X 0 05891 X SW52B ZINC 0 05891 MGAL 0 2873 0 05891 X SW52B ZINC 0 05891 MGAL 0 2873 0 05891 X		SW26D2	ZINC	0 199		MG/L	0 2873			0 05891	×	z
SWZ6F ZINC 00168 J MGAL 0 2873 0 05891 7 SWZ6H ZINC 0 0019 J MGAL 0 2873 0 05891 X SWZ6I ZINC 0 0648 J MGAL 0 2873 0 05891 X SW51A ZINC 0 0648 J MGAL 0 2873 X 0 05891 X SW51A ZINC 0 06589 J MGAL 0 2873 X 0 05891 X SW52A ZINC 0 0589 J MGAL 0 2873 X 0 05891 X SW52B ZINC 0 0589 J MGAL 0 2873 X 0 05891 X		SW26E	ZINC	8600 0		MG/L	0 2873			0 05891		z
SW26H ZINC 0 011 J MGA 0 2873 0 05891 7 SW26I ZINC 0 0099 J MGA 0 2873 0 05891 X SW51A ZINC 0 0648 J MGA 0 2873 0 05891 X SW51B ZINC 0 063 J MGA 0 2873 X 0 05891 X SW52A ZINC 0 04908 J MGA 0 2873 X 0 05891 X SW52B ZINC 0 04908 J MGA 0 2873 X 0 05891 X SW52B ZINC 0 05891 MGA 0 2873 0 05891 X	ļ	SW26F	ZINC	0 0 168		MG/L	0 2873			0 05891		Z
SWZ6I ZINC 0 0059 J MGAL 0 2873 0 05891 X SW51A ZINC 0 0648 J MGAL 0 2873 0 05891 X SW51B ZINC 0 06908 J MGAL 0 2873 0 05891 X SW51C ZINC 0 0908 J MGAL 0 2873 X 0 05891 X SW52A ZINC 0 0196 J MGAL 0 2873 X 0 05891 X SW52B ZINC 0 0305 J MGAL 0 2873 0 05891 X 0		SW26H	ZINC	0 011	,	MG/L	0 2873			0 05891		Ż
SW51A ZINC 0 0648 MGAL 0 2873 X 7 SW51B ZINC 0 063 MGAL 0 2873 0 05891 X SW51C ZINC 0 0908 MGAL 0 2873 0 05891 X SW52A ZINC 0 0196 MGAL 0 2873 0 05891 X SW52B ZINC 0 0305 MGAL 0 2873 0 05891 X		SW261	ZINC	6600 0	7	MG/L	0 2873			0 05891		Z
SW51B ZINC 0 063 MGAL 0 2873 X X X SW51C ZINC 0 0908 MGAL 0 2873 0 05891 X SW52A ZINC 0 0196 MGAL 0 2873 0 05891 X SW52B ZINC 0 05891 MGAL 0 2873 0 05891 X		SW51A	ZINC	0 0648	J	MG/L	0 2873			0 05891	×	z
SW51C ZINC 0 05891 X SW52A ZINC 0 0196 J MG/L 0 2873 0 05891 X SW52B ZINC 0 0305 J MG/L 0 2873 0 05891 X	51	SW51B	ZINC	690 0		MG/L	0 2873			0 05891	×	z
SW52A ZINC 0 0305 MGAL 0 2873 0 05891 SW52B ZINC 0 0305 MGAL 0 2873 0 05891		SW51C	ZINC	8060 0		MG/L	0 2873			0 05891	×	z
SW52B ZINC 0.0305 WG/L 0.2873 0.05891		SW52A	ZINC	96100		MG/L	0 2873			0 05891		z
	52	SW52B	ZINC	9050 0		MG/L	0 2873			0 05891		z

TABLE M·3
Summary of Detected Parameters in Surface Water at FU2 Compared to Backgound and Screening Level Values
Memphis Depot Main Installation RI

						Background	Regulatory Criterion	Ecological	Ecological Criterion	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
					Background	Exceedance	Exceedance	Criterion	Exceedance	Exceeded
Site	Station	Parameter	Concentration Qua	Qualifier Units	Value	Flag	Flag	Value	Flag	Criteria Flag
25	SW25C1	SW25C1 Zinc, Dissolved	0 136 J	MG/L	0 41			0 05891	×	z
56	SW26C1	SW26C1 Zinc, Dissolved	0 145 J	MG/L	0 41			0 05891	×	z
56	SW26C2	SW26C2 Zinc, Dissolved	0 406 J	MG/L	0 41			0 05891	×	z
51	SW51A	SW51A Zinc, Dissolved	0 0432 ==	MG/L	0.41			0 05891		z
51	SW51B	SW51B Zinc, Dissolved	0 045=	MG/L	0 41			0 05891		z
51	SW51C	SW51C Zinc, Dissolved	0 0763 ==	MG/L	0.41			0 05891	×	z
52	SW52A	SW52A Zinc, Dissolved	0 0271	MG/L	0.41			0 05891		z

TABLE M4
Summary of Detected Parameters in Sediment Soil at FU2 Campared to Background and Screening Level Values
Memphis Deport Mari Installation R1

Aggrand Escréptions Exposure Exposure Exposure CNP Flag Eccrédical Critérion Condition Condition Condition Eccrédical Exposure Exposure Exposure CNP Flag Critérion Critérion Condition Condition Condition VAVID Condition VAVID Condition VAVID VAVI		•	
Background Freeded note Fing of Nation Find of Natio			
COUNTY C			Concentration Oualifler
Company	┰	┰	1, 9620000 0
0.00000043 0.0000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.0000004 0.0000004 0.0000004 0.0000004 0.0000004	ŕ	ŕ	0 00045 =
Company	Ħ	Ħ	=
0 0000552 X 0 00000044 X 0 00005 X 0	П	П	
0 0005581 X 0 00000043 X 0 000058 X 0 0000581 X 0 0000581 X 0 0000581 X 0 0000581 X 0 0000581 X 0 0000581 X 0 0000581 X 0 00000043 X 0 0000581 X 0 0000581 X 0 0000581 X 0 0000581 X 0 0000581 X 0 0000581 X 0 0000581 X 0 000058 X 0 0000581 X 0 000058 X 0 0000581 X 0 000058 X 0 0000581 X 0 000058 X 0 0000043 X 0 000058	ı	ı	0 000307 ≠
0.000583 X 0.0000043 X 0.00005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X X 0.0005 X X 0.0005 X 0.0005 X X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005 X 0.0005		- 1	0 000226 J
0 0005581 X 0 000058 X 0 0005581 X 0 000058 X 0 0005583 X 0 000056 X 0 0005583 X 0 000056 X 0 0000583 X 0 000056 X 0 00000043 X 0 00005 X 0 00000043 X 0 00005 X 0 00000043 X 0 00005 X 0 00000043 X 0 00005 X 0 0000043 X 0 000		,	1.2.3.4.6.7 R HEPTACHI ORONIBENZO - DIOXIN 000001.1
0 0000583 X 0 00000043 X 0 0000004 X 0 00000004 X 0 00000004 X			
0 0000583 X 0 00000043 X 0 000056 X 0 000050043 X 0 000056 X 0 000056 X 0 00000043 X 0 00005 X 0 00005 X 0 00000043 X 0 00005 X 0 00005 X 0 00000043 X 0 00005 X 0 00005 X 0 00000043 X 0 00005 X 0 00005 X 0 00000043 X 0 00005 X 0 00005 X 0 00000043 X 0 00005 X 0 00005 X 0 0000040 X 0 00005 X 0 00005 X X 0 00005 X X 0 00005 X X 0 00005 X X 0 00005 X X 0 00005 X X 0 00005 X X 0 00005 X X 0 00005 X X 0 00005 X X X X 0 00005 X<	1	1	
0 00000583 X 0 00000043 X 0 00005 0 00000043 X 0 00005 0 000000043 X 0 00005 0 000000043 X 0 00005 0 000000043 X 0 00005 0 000000043 X 0 00005 0 000000043 X 0 00005 0 000000043 X 0 00005 0 000000043 X 0 00005 0 000000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000040 X 0 00005 0 00000040 X 0 00005 0 000000040 X 0 00005 0 000000040 X 0 00005 0 000000040 X 0 00005 0 000000040 X 0 00005 0 0000000040 X 0 00005 0 0000000040 X 0 00005 0 0000000040 X 0 00005 0 0000000000000000000000000000	1	1	
0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 0 0000043 X 0 00005 0 0 0000043 X 0 00005 0 0 0000043 X 0 00005 0 0 0000043 X 0 00005 0 0 000044	1	1	
0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 0 00000043 X 0 00005 0 0 0000043 X 0 00005 0 0 0 0000043 X 0 00005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ı	1	
0 00000043 X 0 00005 0 00000043 X 0 00005 0 000000043 X 0 00005 0 000000043 X 0 00005 0 000000043 X 0 00005 0 000000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000000043 X 0 00005 0 000000043 X 0 00005 0 000000043 X 0 0 00017 X 0 00017 X 0 00017 X 0 00017 X 0 00017 X 0 00005 0 0000000000000000000000000000	i i		0 0000929
0 0000043 X 0 00006 0 00000043 X 0 00006 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 00000043 X 0 00005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			= 0.0000767
0 00000043 X 0 000056			0 0000175 =
0 00000043 X 0 00006 0 000000043 X 0 00006 1 0 0 00000043 X 0 00005 1 0 0 00000043 X 0 00006 1 0 0 00000043 X 0 00006 1 0 0 0000043 X 0 00006 1 0 0 0 0000043 X 0 0 0000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0000043 J
0 00000043 X 0 00005 0 0000043 X 0 00005 1 0 0000043 X 0 00005 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 27 0 33 1 8 7 60 16 16 1 8 1 8 0 33 2 7 0 33 1 8 2 8 1 8 0 33 2 8 1 8 0 33 2 9 1 8 0 33 3 9 1 8 0 3017 X 4 9 1 8 0 3017 X <td></td> <td>1</td> <td>0.000146</td>		1	0.000146
0 00000043 X 0 0005 1 60 6 1 0 33 1 60 6 1 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 1 70 570 0 33 1 8 570 0 33 1 8 570 0 33 2 7 0 33 0 33 3 8 470 570 0 33 4 7 470 570 0 33 4 8 1 8 0 5 4 9 1 8 0 63 4 1 8 1 8 0 6017 x 4 1 8 </td <td></td> <td>1</td> <td>0 0000782 =</td>		1	0 0000782 =
0 777 470 6 1 0 33 0 777 470 570 0 33 0 777 470 570 0 33 0 777 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 1 7 470 27 0 33 1 8 16 0 33 1 8 16 0 33 1 8 1 8 0 33 1 8 1 8 0 0017 1 8 0 0017 X 1 8 0 0017 X 1 8 0 0017 X 1 8 0 0017 X 1 8 0 0017 X 1 8 0 0017 X 1 8 0 0017			L 0000036
0 777 160 61 0 33 0 777 470 570 0 33 0 777 470 570 0 33 0 777 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 1 8 780 16 0 33 1 8 16 0 33 1 8 16 0 33 1 8 16 0 33 1 8 1 8 0 0017 1 8 1 8 0 0017 1 8 1 8 0 0017 1 8 0 0017 1 8 1 8 0 0017 1 8 1 8 0 0017 1 8 1 8 <td></td> <td></td> <td>1.810.0</td>			1.810.0
0 777 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 1 8 770 0 33 1 8 16 0 33 1 8 16 0 33 1 8 18 0 33 1 8 1 8 0 0017 1 8 1 8 0 0017 1 8 0 00017 X 1 90052 X 1 8 0 0017 1 8 1 8 0 0017 X 1 90052 X 1 8 0 0017 X 1 1 8 1 8 0 0017			0.086.1
0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 4 70 27 0 33 6 70 16 0 33 7 80 16 0 33 8 70 16 0 33 8 70 16 0 33 9 80 16 0 33 10 16 0 33 10 18 0 33 10 18 0 0017 10 18 0 0017 10 18 0 0017 10 18 0 0017			1 96 0
0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 27 0 33 4 70 27 0 33 7 80 16 0 33 7 80 16 0 33 8 70 16 0 33 8 70 16 0 33 9 8 16 0 33 10 8 0 5 0 33 10 8 0 5 0 33 10 8 0 5 0 33 10 8 0 5 0 33 10 8 0 5 0 33 10 8 0 5 0 33 10 8 0 6 0 6 10 8 0 6 0 6 10 8 0 6 0 6 10 8 0 6		1	- 400
0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 1 470 27 0 33 2 7 0 33 0 33 2 80 16 0 33 2 80 16 0 33 2 80 16 0 33 2 80 16 0 33 2 80 16 0 33 2 80 16 0 33 2 80 16 0 33 2 80 16 0 33 2 80 16 0 33 3 80 16 0 33 4 7 18 0 6 4 7 18 0 0017 4 7 18 0 0017 4 8 18 0 0017 4 9 18 0 0017 4 18 0 0027 0 0017			- 200
0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 27 0 33 4 70 27 0 33 7 80 16 0 33 7 80 16 0 33 8 7 80 16 0 33 9 80 16 0 33 10 80 16 0 33 10 80 16 0 33 10 80 16 0 33 10 80 16 0 33 10 80 16 0 33 10 80 18 0 0017 10 80 18 0 0017 10 80 18 0 0017 10 80 18 0 0017 10 80 18 0 0017 10 80 18 0 0017 10 80 18 0 0017 10 80 18 0 0017 <			1 020 0
0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 570 0 33 0 77 470 27 0 33 4 70 27 0 33 7 470 27 0 33 7 80 16 0 33 7 80 16 0 33 8 70 16 0 33 9 8 16 0 33 10 8 16 0 33 10 8 0 5 0 33 10 8 0 5 0 33 10 8 0 5 0 33 10 8 0 5 0 0017 10 8 0 5 0 0017 10 8 0 0017 X 10 8 0 0017 X 10 9052 X 18 0 0017 10 9052 X 18 0 0017 10 9052 X 18 0 0017 10 9052 X 18 0 0017 10	1		1 0200
0 77 470 570 0.53 0 77 470 570 0.33 0 77 470 27 0.33 4 70 27 0.33 4 70 27 0.33 7 80 16 0.33 7 80 16 0.33 8 80 16 0.33 9 90 16 0.33 10 0.038 0.5 10 0.038 0.5 10 0.5 0.0017 10 18 0.0017 18 0.0017 0.0017 18 0.0017 0.0017 18 0.0017 0.0017 18 0.0017 0.0017 18 0.0017 0.0017 18 0.0017 0.0017 18 0.0017 0.0017 18 0.0017 0.0017 18 0.0017 0.0017 18 0.0017 0.0017 18	ı	1	- 2000
0 77 470 570 0.33 0 77 470 570 0.33 0 77 470 27 0.33 4 70 27 0.33 7 80 16 0.33 7 80 16 0.33 8 7 80 16 0.33 9 80 16 0.33 10 0.038 0.5 10 0.038 0.5 10 0.038 0.5 10 0.038 0.5 10 0.038 0.5 10 0.038 0.5 10 0.038 0.5 10 0.038 0.5 10 0.038 0.5 10 0.038 0.5 10 0.038 0.5 10 0.038 0.5 10 0.038 0.5 10 0.037 0.0017 10 0.0027 0.0017 10 0.0027	ı	1	5 /20.0
0 77 470 570 0.33 0 77 470 27 0.33 4 70 27 0.33 4 70 27 0.33 7 80 16 0.33 7 80 16 0.33 7 80 16 0.33 8 7 80 16 0.03 9 003B 0.5 0.03 10 0.03 0.5 10 0.03 0.03 47 18 0.017 18 0.017 X 0 0052 X 1.8 0.0017 10 18 0.0017 X 0 0052 X 1.8 0.0017 X 0 0052 X 1.8 0.0017 X 0 0052 X 1.8 0.0017 X 0 0052 X 1.8 0.0017 X 0 0052 X 1.8 0.0017 X 0 0052 X 1.8 <	ł	ł	0 13
A	l	١	2 2 2
A			0300
A A A A A A A A A A	l		1 6900
The color of the			0.066
780 16 780 16 780 16 780 16 6038 0 5 6038 0 5 77 18 8 18 9 18 18 2017 18 2017 18 2017 18 0017 18			0 028
16 16 16 16 16 16 16 16			0 023
780 16 0.038 0.5 0.038 0.5 0.038 0.5 47 18 0.062 X 18 0.0017 0.052 X 18 0.0017 0.052 X 18 0.0017 0.052 X 18 0.0017 0.052 X 18 0.0017 0.052 X 18 0.0017 0.052 X 18 0.0017 0.052 X 18 0.0017 0.052 X 0.052 X 18 0.0017 0.052 X 18 0.0017 0.052 X 18 0.0017 0.052 X 18 0.0017 0.0027 X 0.0027 X 0.0027 X			C 100 0
Colored Colo			0 013
0.038 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5			C 2600 0
0 0052 X 18 0 0017			0 0 14 J
47 18 47 18 6 0052 X 18 0017 X 0 0052 X 18 0017 X 0 0052 X 18 0017 X 0 0052 X 18 0017 X 0 0052 X 18 0017 X 0 0052 X 18 0017 X 0 0052 X 18 0017 X 0 0052 X 18 0017 X 0 0052 X 18 0017 X 0 0052 X 18 0017 X 0 0052 X 18 0017 X 0 0052 X 18 0017 X 0 0052 X 18 0017 X			0.01
47 18 47 18 47 18 47 18 0 0017 5 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X			U 0 00055 J
47 18 0 0062 X 0 0052 X 0 0052 X 1 8 0 0017 0 0052 X 1 8 0 0017 0 0052 X 1 8 0 0017 0 0052 X 1 8 0 0017 0 0052 X 1 8 0 0017 0 0052 X 1 8 0 0017 0 0052 X 1 8 0 0017 0 0052 X 1 8 0 0017 0 0017 X 0 0052 X 1 8 0 0017 0 0017 X 0 0017 X 0 0017 X		-	C 0000
0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X	i	ΙÌ	0.0045 J
0.0652 X 18 0.0017 X 0.0652 X 18 0.0017 X 0.0652 X 18 0.0017 X 0.0652 X 18 0.0017 X 0.0652 X 18 0.0017 X 0.0652 X 18 0.0017 X 0.0652 X 18 0.0017 X 0.0652 X 18 0.0017 X 0.0652 X 18 0.0017 X 0.0652 X 18 0.0017 X 0.0652 X 18 0.0017 X 0.0653 X 18 0.0017 X		ıl	0.0081
0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X	!	f	0 0054 3
0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X	ı	1	1,5600.0
0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X 0 0052 X 18 0 0017 X	ı	1	0.034 =
0.0052 X 18 0.0017 X 0.0052 X 18 0.0017 X 0.0052 X 18 0.0017 X 0.0052 X 18 0.0017 X 0.0052 X 18 0.0017 X 0.0053 X 18 0.0017 X	ı	ĺ	1.970
0 0052 X 18 0 0077 X 0 0052 X 18 0 0077 X 0 0052 X 18 0 0077 X 0 0052 X 18 0 0077 X 0 0052 X 18 0 0077 X 0 0077	١		7500
0.0052 X 18 0.0077 X 0.0052 X 18 0.0077 X 0.0052 X 18 0.0077 X 0.0052 X 18 0.0077 X 0.0052 X 18 0.0077 X 0.0077			0.020
0.0052 X 18 0.0017 X 0.0052 X 18 0.0017 X 0.0052 X 18 0.0017 X 0.0052 X 18 0.0017 X 0.0052 X 18 0.0017 X 0.0052 X 18 0.0017 X 0.0052 X 18 0.0017 X 0.0052 X 18 0.0017 X 0.0052 X 18 0.0052 X 0.0			0.0095
0.0052 X 18 0.0017 0.0052 X 18 0.0017 0.0052 X 1.8			0.0043 J
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.0087
			r senno

Background Breedance Chieval Chiever Chieval Chieval Chiever Chieval		_	_		_		-									
No. 10.00 No.									Background	Direct	Direct Exposure		GWP	Ecological	Ecological Criterion	
N. STORE D. A. MARINA M. STORE S	Site	Stallon	Depth	Parameter	Concentration	Qualifier	Cnits	Background Value	Exceedance	Exposure Value	Exceedance Flag	GWP	Exceedance	Criterion	Exceedance Flag	Exceeded Criteria Fiag
N SCOR C ALUMINIAN C SCORE C ALUMINIAN C SCORE C ALUMINIAN C SCORE SCORE C SCORE C SCORE C SCORE C SCORE C SCORE		M SDt6	Q.	I		,	MG/KG	0 0052	×	18				0 0017	×	>
		+	2	ALUMINUM	3200	ti	mg/kg	10085		7800						z
STATE O. D. D. O. D. D. D. D. D. D. D. D. D. D. D. D. D.		M SDOS	و	ALUMINUM	6320	=	mg/kg	10085		7800						z
STATE OF THE PARTY TOTAL DESCRIPTION TOT				ALUMINUM	3860		MG/KG	10085		7800						z
Microsop 10 to Authority 12500 1 to Microsop 1 to				ALUMINUM	9030	ìt	MG/KG	10085		7800	×					z
M. SIGNE O DE OR ALLIMANUM M. SIGNE		П		ALUMINUM	12800	11	MG/KG	10085	×	7800	×					> :
Signed Other Of Authentical Control of A		П		ALUMINUM	2170	P	mg/kg	10085		7800						2
STATES DE DE ALLAMINIA STATES DE DE ALLAMINIA STATES DE DE ALLAMINIA STATES DE DE ALLAMINIA STATES DE DE ALLAMINIA STATES DE DE ALLAMINIA STATES DE DE DE ALLAMINIA STATES DE DE DE ALLAMINIA STATES DE DE DE ALLAMINIA STATES DE DE DE ALLAMINIA STATES DE DE DE ALLAMINIA STATES DE DE DE ALLAMINIA STATES DE DE DE ALLAMINIA STATES DE DE DE ALLAMINIA STATES DE DE DE ALLAMINIA STATES DE DE DE DE ALLAMINIA STATES DE DE DE DE DE DE DE DE DE DE DE DE DE	T	╗		ALUMINUM	2810	*	mg/kg	10085		7800						2 3
Mistration Mis		\neg	İ	ALUMINUM	9280		mo/kg	10085		7800						2 2
STOCK O D D D ALLAMINIA STOCK O D D D ALLAMINIA STOCK O D D D ALLAMINIA STOCK O D D D ALLAMINIA STOCK O D D D ALLAMINIA STOCK O D D D ALLAMINIA STOCK O D D D ALLAMINIA STOCK O D D D ALLAMINIA STOCK O D D D ALLAMINIA STOCK O D D D D D D D D D D D D D D D D D D	Ī	╗		ALUMINUM	2420	11	gy/gr	10085		7800	;					2
STATEM COLOR DE ALLUMINA COLOR DE ALLUMI	I	╗	<u>-</u>	ALUMINUM	8640		WG/KG	10085		7800	×					z
STACE OF DOE OF ALLWANIAN STACE OF DOES		П		ALUMINUM	7160		₩Ğ,KG	10085		882						z ;
STATES COLOR OF A MATHRACEME COLOR OF A MATHRACEME COLOR OF A MATHRACEME COLOR OF A MATHRACEME COLOR OF A MATHRACEME COLOR OF A MATHRACEME COLOR OF A MATRRACE		┰	\neg	ALUMINUM	10300		NOKG	10085	×,	7800	× >					- >
STATE COUNTY ACCORDANY COU	Ι	Т	_	ALUMINUM	0006		MOND MOND	2000	,	7800	< >					z
Microsot Control of Authorities Control	Τ	Т		ALUMINOM	9906		0 0 0 0	10000	,	2800	,					,
Mission Landon Missi	T	Т.		ALUMINUM	02.64		200	1000	†	282						Z
M.SDIG ID. MONTAL 1138 MONTAL 1700 M.SDIG ID. ALIMANIMA 1138 MONTAL 100 100 M.SDIG ID. AMITHALORNE 0.16.J MONTAL 16 2200 17200 M.SDIG ID. AMITHALORNE 0.16.J MONTAL 16 2200 17200 M.SDIG ID. AMITHALORNE 0.06.J MONTAL 16 2200 17200 M.SDIG AMITHALORNE 0.06.J MONTAL 16 2200 17200 M.SDIG AMITHALORNE 0.06.J MONTAL 16 2200 17200 SIDRE O.D. D. AMITHALORNE 0.06.J MONTAL 16 2200 17200 SIDRE O.D. D. AMITHALORNE 0.06.J MONTAL 16 2200 17200 SIDRE O.D. D. AMITHALORNE 0.06.J MONTAL 16 2200 17200 SIDRE D.D. D. AMITHALORNE 0.06.J MONTAL 16	T	+		ALUMINOM ALUMINA	0775		200	10085		7800						z
MASDIG DO MASDIG DO CECTOR PORTOR TO CECTOR	T	+	2 2	ALIMINIM	1130	,	DA/OT	10085		7800						z
NESCOS DE DESCRIPTION DE DES	T	+	2	ALLMINIM	299		no/ko	10085		7800						z
STATES OF DE 10 ANTHRIGENIE OF LE 1 ANTHRIGENIE OF LE 2 ANTHRIGENIE	Τ	_	2 2	ANTHRADENE	0.62		MG/KG	16		2300		1200		0 33	×	z
STORED O DE DI ANTHRACERE O 64 J MGPG 1 6 2200 1 7000 N SDD1 O MATCHACERE O D 1 MGPG 1 6 2200 1 7000 N SDD1 O MATCHACERE O D 1 MGPG 1 6 2200 1 7000 N SDD1 O MATCHACERE O D 1 MGPG 1 6 2200 1 7000 N SDD1 O MATCHACERE O D 2 MGPG 1 6 2200 1 7000 N SDD1 O MATCHACERE O D 2 MGPG 1 6 2200 1 2000 N SDD2 O D 1 AMTCHACERE O D 2 MGPG 1 6 2200 1 2000 N SDD2 O D 1 AMTCHACERE O D 2 MGPG 1 6 2200 1 2000 N SDD2 O D 1 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE O D 2 AMTCHACERE	T	7	_	ANTHRACENE	0 11	, _	MG/KG	16		2300		1200		0.33		z
M. SDOT 1 OR ANTHARCENE O. 2 J. MGMCM T G 2.000 1 12000 M. SDOT 1 OR ANTHARCENE O. 1 J. MCHARCENE O.	Γ	_	Т	ANTHRACENE	0 46		MG/KG	16		2300		12004		0 33	×	Z
M STOR 0	Γ	Т	٥	ANTHRACENE	02	_	MG/KG	16		2300		12000		0 33		z
10.0 ANTH-ACEME		-	10	ANTHRACENE	0.5		MG/KG	16		2300		1200		0.33		z
OT DE DE ANTHRACENE OT BJ DE ANTRRACENE	Γ	⇈	9	ANTHRACENE	250.0		MG/KG	16		2300		1200		0.33		z
0 to to 0 ANTHARCENE 0 to 10 ANTHARCENE 0 to 2 J MCMC 1 6 2200 12000 0 to to 0 ANTHARCENE 0 to to 5 ANTHARCENE 0 to 5 ANTHARCENE 0 to 5 ANTHARCENE 12000 12000 to ANTHARCENE 0 to 5 ANTHARCENE 0 to 5 ANTHARCENE 0 to 5 ANTHARCENE 12000 12000 to ANTHARCENE 0 to 5 ANTHARCENE 0 to 5 ANTHARCENE 0 to 5 ANTHARCENE 12000 12000 to ANTHARCENE 0 to 5 ANTHARCENE 0 to 5 ANTHARCENE 0 to 5 ANTHARCENE 12000 12000 to b to 5 ANTHARCENE 0 to 5 ANTHARCENE 0 to 5 ANTHARCENE 2 to 5 ANTHARCENE 12000 12000 to b to 5 ANTHARCENE 0 to 5 ANTHARCENE 0 to 5 ANTHARCENE 2 to 5 ANTHARCENE 2 to 5 ANTHARCENE 2 to 5 ANTHARCENE 2 to 5 ANTHARCENE to b to 6 ANTHARCENE 1 to 5 ANTHARCENE 1 to 5 ANTHARCENE 1 to 5 ANTHARCENE 2 to 5 ANTHARCENE 2 to 5 ANTHARCENE 2 to 5 ANTHARCENE to b to 5 ANTHARCENE 1 to 5 ANTHARCENE 1 to 5 ANTHARCENE 1 to 5 ANTHARCENE 2 to 5 ANTHARCENE 2 to 5 ANTHARCENE 2 to 5 ANTHARCENE 2 to 5 ANTHA				ANTHRACENE	0 16	_	MG/KG	16		2300		1200		0 33		z
O O O O O O O O O O				ANTHRACENE	0.5	٦	MG/KG	16		2300		1200		0 33		z
Decompose Deco	П			ANTHRACENE	0 046	J	MG/KG	16		2300		1200		0 33		2
Decided Residue AMTHRACENE Cold of a col		╗		ANTHRACENE	0.35		WG/KG	16		2300		1200		0 33	×	z
10 10 10 10 10 10 10 10	1	_		ANTHRACENE	0 025	_	MQ/KG	9		2300		1200		0 33		2 2
10 to to 6 ANTIMONY	1		т	ANTHRACENE	9100	_	MG/KG	9 ,		2300	,	1200		0.33		2 2
10 10 10 10 10 10 10 10	T	Т.	0000	ANTIMONY	p 0	_	WG/NG	1 0		2 6	*			, v		z
Decomposition of the particular color of the particu	T	Т	00 00	ANTIMONY	0.44		CACO	0 /		2 5				12		z
10 AFSENIC 14 14 14 14 14 14 14 1	T	Т	2000	ADORACIO	25		Day of	2		0 43	×	No.		7.24		z
0 to 0 to 5 AFSENIC AFSENIC 14 m MGMG 12 m MGMG	Τ	+	2 2	ABSENIC	315		DO/ko	121		0 43	×	Ž		7.24		z
0 0 to 0 0 S ARSENIC ARSENIC 4 9 = MCAKG 12 X 239 10 to 1 O ARSENIC 0 443 X 23 X 23 10 to 1 O ARSENIC 0 443 X 23 X 23 10 to ARSENIC 0 43 X 23 X 23 10 to ARSENIC 1 18 J mg/kg 12 0 43 X 23 10 to ARSENIC 1 8 J mg/kg 12 0 43 X 23 10 to 10 ARSENIC 5 8 = MG/KG 12 0 43 X 23 10 to 0 5 ARSENIC 6 8 = MG/KG 12 0 43 X 23 10 to 0 5 ARSENIC 8 4 = MG/KG 12 0 43 X 23 10 to 0 5 ARSENIC 8 4 = MG/KG 12 0 43 X 23 10 to 0 5 ARSENIC 8 4 = MG/KG 12 0 43 X 23 10 to 0 5 ARSENIC 8 4 = MG/KG 12 0 43	Γ	Т	7	ARSENIC	14	h	MG/KG	12	×	0 43	×	Š		7.24	×	٨
Of Drig 1 ARSENIC HGNKG 12 X 0.43 X 29 ID ARSENIC 0.43 X 29 29 29 ID ARSENIC 0.43 X 29 29 29 ID ARSENIC 0.43 X 29 29 29 ID ARSENIC 0.43 X 29 29 29 ID ARSENIC 0.43 X 29 29 29 ID ARSENIC 0.43 X 29 29 29 ID ARSENIC 0.43 X 29 29 29 ID OLO DO GARSENIC 0.43 X 29 29 29 ID ARSENIC 0.43 X 29 29 29 29 ID ARSENIC 0.43 X 0.43 X 29 29 ID ARSENIC 0.13 X 0.43 X 29	Τ	Т	_	ARSENIC	6 7		MG/KG	73		0 43	×	č		7.24		z
Do AFSENIC Language Langu	Γ	Г		ARSENIC	134	=	MG/KG	12	×	0.43	×	č.		7.24	×	>
to ARSENIC 18 J mg/kg 12 0.43 X 29 to ARSENIC 0.00 to 10 ARSENIC 0.43 X 29 to ARSENIC 0.00 to 10 ARSENIC 0.43 X 29 0.00 to 0.00 ARSENIC ARSENIC 0.43 X 29 0.00 to 0.00 ARSENIC 0.00 to 0.00 ARSENIC 0.43 X 29 0.00 to 0.00 ARSENIC 0.00 to 0.00 ARSENIC 0.00 to 0.00 ARSENIC 0.00 to 0.00 ARSENIC 0.00 to 0.00 ARSENIC to ARSENIC 0.00 to 0.00		M-SD01		ARSENIC	2	J L	пуле	15		0.43	×	2		7.24		z
10 AFSENIC 17 17 17 17 17 17 17 1				ARSENIC	18	7	ло/ка	12		0 43	×	2		7 24		z
to ARSENIC FIRETRIC MGMG 12 0.43 X 229 0 0 to 0 5 ARSENIC 6 = MGMG 12 0.43 X 229 0 0 to 0 5 ARSENIC 6 = MGMG 12 0.43 X 229 0 to 0 to 0 6 ARSENIC 6 4 X 229 X 229 0 to 0 to 0 7 ARSENIC 6 4 MGMG 12 0.43 X 229 0 to 0 to 0 7 ARSENIC 8 4 MGMG 12 0.43 X 229 0 to 0 to 0 7 ARSENIC 8 1 MGMG 12 0.43 X 229 0 to 0 to 0 to 0 to 0 to 0 to 0 to 0 to	П	M-SD02		ARSENIC	17	_	g/kg	12		0 43	×	200		7 24		z .
00 to 0 1 0 APSENIC APSENIC 56 = MG/KG 12 0 43 X 29 0 to 1 0 APSENIC 0 0 to 0 0 APSENIC 0 0 to 0 0 APSENIC 0 0 to 0 0 APSENIC 0 0 to 0 0 APSENIC 0 0 to 0 0 APSENIC 0 0 to 0 0 APSENIC 0 0 to 0 0 APSENIC 0 0 to 0 APSENIC 0 0 to 0 APSENIC 0 0 to 0 APSENIC 0 0 to 0 APSENIC 0 0 to 0 APSENIC 0 0 to 0 APSENIC 0 0 to 0 APSENIC 0 0 to 0 APSENIC 0 0 to 0 APSENIC 0 0 to 0 to 0 APSENIC 0 0 to 0 to 0 APSENIC 0 0 to 0 to 0 to 0 to 0 to 0 to 0 APSENIC 0 0 to 0 to 0 to 0 to 0 to 0 to 0 to 0	T	ᇧ		ARSENIC	- 18		ту/ка	2		0	×	7		/ 24		z 2
00 to 0.0 A PASENIC 58 = MG/KG 12 0 43 X 28 0 to 0.0 G A PASENIC 7 1 = MG/KG 12 0 43 X 29 0 to 0.0 G A PASENIC 8 4 = MG/KG 12 0 43 X 29 0 to 0.0 G A PASENIC 7 1 = MG/KG 12 0 43 X 29 to ARSENIC 9 1 = MG/KG 12 0 43 X 29 to ARSENIC 3 = mg/kg 12 0 43 X 29 to 00 to 3 0 ARSENIC 6 7 = MG/KG 12 0 43 X 29 to 00 to 3 0 ARSENIC 6 7 = MG/KG 12 0 43 X 29 to 00 to 3 0 ARSENIC 6 7 = MG/KG 12 0 43 X 29 to 00 to 3 0 ARSENIC 6 7 = MG/KG 12 0 43 X 29	٦	╗		ARSENIC	5.6	13	MG/KG	27		0 13	×	7		/ 24		2
10 to 0 to A MASENIC	7	T	_	ARSENIC	28	=	WQ/KG	27		0 43	× ,			7.24		z
United Artistatic Control of Artistatic Control	T	T		AHSENIC	2/		MC/KG	2 5		0 43	,	v 6		7.24	×	2 2
0 0 10 0 4 AFSENIC 0 1	T	1	00000	ADSERVO	7 1		OCARO D	2 0		640	< ×	1		7.24		z
to ARSENIC 6 = mg/kg t2 0.43 X 29 to ARSENIC 3 = mg/kg t2 0.43 X 29 0.0 to 3.0 ARSENIC 67 = MG/KG t2 0.43 X 29 0.0 to 3.0 ARSENIC 67 = MG/KG t2 0.43 X 29 0.0 to 3.0 ARSENIC 13 B s MG/KG t2 0.43 X 29	Ţ	T		ABRENIC	10		O WO	2		0.43	×	Ĭ,		7 24	×	z
to ARSENIC A	T	Τ.	_	ABSENIC			Dayer .	2		0 43	×	100		7.24		z
001030 AFISENIC 67	T	†_		ARSENIC			TIO/ko	12		0 43	×	Z.		7 24		z
001030 APSENIC 67 = MG/KG 12 043 X 29 001020 APSENIC 138 = MG/KG 12 X 043 X 29	Τ	Г		ARSENIC	67	1	MG/KG	12		0 43	×	ä		724		Z
138 X 043 X 29 1	Τ	П	000000	ARSENIC	67		MG/KG	12		0 43	×	5	•	7.24		z
	Τ	Т-	00 to 20	ARSENIC	138	n	MG/KG	12	×	0.43	×	Ž.		724	×	٨

TABLE M4
Summary of Detected Parameters in Sediment Soil at FU2 Campared to Background and Screening Level Values
Memphs Depot Main Installation R1

GWP Exceedance Flag - 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 GWP Direct Exposure Exceedance Flag 8 7 8 7 1600 Direct Exposure Value Background Exceedance Flag 2 2 2 1605 Background Value MG/KG Units Qualifler Summany of Detected Parameters in Sediment Soil at FU2 Campared to Background and Screening Level Values Memphis Depot Main Installation RI Concentration Parameter Depth Range

Ecological Criterion Exceedance

Ecological Criterion Value

Ø-30

P \147543VFU2_NE Screening Tables xis\Sedmem

_			_				RAC	e e				
							-	,				
				Background	Background	Olrect	Direct Exposure Freedance	gwp.	GWP	Ecological	Ecological Criterion Evreedance	Popular
Station Range			Qualifier Units	_	Flag	Value	Flag	Value	Flag	Value	Flag	Criteria Flag
L	BERYLLIUM	0.27.J	mg/kg	1.		16		63				z
SD25A 00 to 05	5 BEHYLLIUM	010	MG/KG	13		16		63				z
		0.52.1	MG/KG			16		63				z
┪	_	0.54.0	MG/KG		000	16		3 5				z
M S500 10	BERTLINA	0.23	DAYNO.	7 5		18		33				2 2
1.	BERYLLIM	121	mo/kg			16		63				z
+	DESCRIPTION OF THE PROPERTY OF	0 22	marka			16		69				2
Ť		0 55 0	MG/KG	KG 1		16		63				z
Т	5 BERYLLIUM	0 42 J	MG/KG	KG 1:		16		63				z
Т		0 45 J	MGV	-		16		63				z
		0 52	MG/KG	KG 1:		16		63				z
SO260 00 to 07	•	049	MG/KG	KG 1.		16		63				z
Ħ	\neg	L 27.0	MG/KG	KG 13		16		63				z
M SD17 to	BERYLLIUM	0.4 J	mg/kg			16		63				z
_1	BERYLLIUM	0 62 J	mg/kg	9		16		8				z
SE51A 00 to 30	O BERYLLIOM	0.320	MUNIC	2 9				2 5				z
- 1	O BEHALLIUM	0430	N. C.	500		9		6.9				2 2
Т	DENTITION DESTITION	1.920	MOKG			91		3 2				z
Т		L/250	MG/	9		16		63				z
Τ.	_	0 051 J	MG			46		3600		0 182		z
1 ⁻	+	0 22 0	MG/KG	KG 0.48		46		3600		0 182	×	z
1	•	15=	MG		×	94		3600		0 182	×	٠
M SD01 to	•	0 082	MG/KG			46		3600		0 182		z
4 SD01 to	bis(2-ETHYLHEXYL) PHTHALATE	012	MG/			46		3600		0 182		z
M-SD02 to	bis(2-ETHYLHEXYL) PHTHALATE	0.29	MG/KG			46		3600		0 182	×	Z
M-SD03 to	bis(2-ETHYLHEXYL) PHTHALATE	re0	MGV			46		3600		0 182	×	z
7		D 095 J	MG/KG			46		3600		0 182		z
7		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MG			46		3600		0 182		z
T	_	0111	MG			46		3600		0 182	,	z
+	\neg	0.26	WG/KG	KG 0 48		46		3600		0 182	× >	z
01 7105-W	bis(2-EINTLAEXTL) PHINALAIE	0.130	MG/KG			94		3600		0 182	<	2 2
+	DISCRETATION OF THE ALE	191	MG/KG	KG 0.48	×	46		3600	•	0 182	×	:
+	bis/2-ETHYLHEXYL) PHTHALATE	0 19 0	MG/KG			46		3600		0 182	×	z
+	CADMIUM	0 4 J	NOT.			7.8		80				ż
۳	•	18	MG/KG			7.8		æ		1	×	z
SD25C 00 to 10	-	U 87 0	MG/KG	KG 289		8 2		8		1		z
4-SD01 to	САБМІОМ	038	тд/кд			7.8		8		-		z
H	САБМІОМ	0 44 J	mg/kg			7.8		8		-		z
_	CADMIUM	12=	mg/kg			7.8		80		-	×	z
		24=	mg/kg	687		7.0		0		-	Υ.	z
90 90 00 09705	CADMICIA	7 7 7	MOVE			9 /		-				2 2
7	_	1000	Ī			7.8						z
1	_					7.8		8		 		z
1	1	0 46	mg/kg	289		7.8		8		-		z
	CADMIUM	0.26	ngn)			7.8		8		1		z
SE528 00 to 10	0 CADMIUM	0 52 7	MG/KG			9.2		8		-		z
M-SD04 to	CALCIUM	13300=		1								z
5	-	43100=			×			ļ			1	Y.
T	_	= 20200										Y.
SD25B 00 to 0 5	5 CALCIUM	= 2000	MG/KG	KG 14860								z
	Op to 10 CALCRIM	=81/8/	I KAL -		_				_		•	

83

Ecological Criterion Value GWP Exceedance Flag GWP Direct Exposure Exceedance Flag Direct Exposure Value Background Exceedance Flag 14860 14860 14860 14860 14860 14860 14860 14860 14860 14860 Background Value <u> ଅଟାରାଯାୟାଯାୟାଯାୟାଯାୟାଯାୟାଯାୟା</u> mg/kg mg/kg mg/kg MG/KG MG/KG MG/KG MG/KG mg/kg mg/kg mg/kg mg/kg MG/kG MG/kG mg/kg MG/kG MG/kG MG/kG MG/kG mg/kg mg/kg MG/KG MG/KG MG/KG MG/KG Units Concentration 19200 = 192000 = 1920000 = 1920000 = 1920000 = 1920000 = 192000 = 1920000 = 1920000 = 192000 = 192000 = 192000 = 192000 = 1920000 = 1920000 = 192 Summary of Detected Parameters in Sediment Soil at FU2 Campared to Background and Screening Level Values Memphis Depot Main Installation RI 10 9 113 5 114 9 10 7 10 7 10 7 11 4 11 4 Parameter
 Stee
 Station
 Range
 CALCILMA

 26
 M SD01
 10
 CALCILMA

 26
 M SD02
 10
 CALCILMA

 26
 M SD03
 10
 CALCILMA

 26
 M SD02
 10
 CALCILMA

 26
 SD286
 00
 10
 CALCILMA

 26
 SD286
 00
 10
 CALCILMA

 26
 SD286
 00
 10
 CALCILMA

 26
 SD286
 00
 10
 CALCILMA

 26
 SD286
 00
 10
 CALCILMA

 26
 SD286
 00
 10
 CALCILMA

 26
 SD286
 00
 10
 CALCILMA

 26
 M SD18
 10
 CALCILMA

 26
 M SD18
 10
 CALCILMA

 27
 M SD18
 10
 CALCILLMA

 28
 SD286
 00
 10
 CALCILLMA

 29
 M SD18
 10
 CALCILLMA

 20
 Depth Range

Exceeded Criteria Fiag NA NA NA NA NA

Ecological Criterion Exceedance Flag

M-32

P \147543\FU2_NE Screening Tables xistSedment

-	-									RBC	0				
							•	Background	Direct	Direct Exposure		GWP	Ecological	Ecological	
Site	Station Rar	Depth Range	Parameter	Concentration	Qualifler	Units	Background Value	Exceedance	Exposure Value	Exceedance Flag	GWP Value	Exceedance Flag	Criterion		Exceeded Criteria Flag
ΜS		т	CHROMIUM, TOTAL	9		mg/kg	20				38		52 3		z
SE52A	T		CHROMIUM TOTAL	কা	2 2	C/KG	2 2				38		523		z
SE528	٦,	0000	CHROMIUM, TOTAL	0.050		MG/KG	300		78		25		0.33		2 2
2 2	M SD04	Ť	SASSIBLE	46		CAKO	32	×	87		189		0 33	×	>
800	Т	00000	CHRYSENE	0.34		MG/KG	32		87		160		0 33	×	z
SD25B	Т	т-	CHRYSENE	96.0	₹.	MG/KG	32		87		160		0 33	×	z
SD25C	Т		CHRYSENE	2.5		fG/KG	32		87		160		0 33	×	Z
Ş.			CHRYSENE		2	MG/KG	32		87		160		0 33	×	z
M-S	M-SD01 to	Ĭ	CHRYSENE		2	AG/KG	32		87		160		0 33	×	z
S-M	M-SD02 to	Ĭ	CHRYSENE	0.51	2	4C/KG	32		87		160		0 33	×	z
y) ≥	ᄀ		CHRYSENE	0 88	<u> </u>	Ç/KG	32		4		160		0 33	×	z
SD26A	╗	0 0 to 1 0 0	CHRYSENE	14	<u>* 2</u>	MG/KG	200		8/8		160		0.33	×	z
Shore	Т		CHRYSENE	0.078		GYKG	32		87		160		0 33		z
SDSCC	Т	_	CHRYSENE	0.083	2	IG/KG	32		87		160		0 33		z
SD260	Т		CHRYSENE	0.062		MG/KG	32		87		160		0 33		z
SE	Т	00 to 04 C	CHRYSENE	26		1G/KG	32		87		160		0 33	×	z
M-S	_		CHRYSENE	0.064	_	MG/KG	32		87		160		0 33		z
M-S	M-SD18 10	ĭ	CHRYSENE	0 065		4G/KG	32		87		160		0 33		z
ž	7	٦	CHRYSENE	0 14		4G/KG	32		87		160		0 33		z
ž	-	1	CHRYSENE	0 17	4	MG/KG	32	,	/# F		Jec.		0.33		2 2
4	M-SCO4	†	COBALI	200			900	,	027						z
έξ	┰	00000	COBALT	35		C/KG	13.6		470						z
S	Т	_	COBALT	28		IG/KG	136		470						z
S	$\overline{}$	_	COBALT	63		MG/KG	136		470						z
ĭ¥			COBALT	0.76		mg/kg	136		470						z
ž	M-SD01 to		COBALT	-	-	mg/kg	136		470						z
ž	_		COBALT	80	_	υα/κα	136		0/4						z
M-SUUS	ℷ	4 4	COBALI	0 4	= 2	MC/KC	9 5		470					1	z
50268	Т	1	COBALT	5.4	12	ō/KG	13.6		470						z
SDZ6C	Т		COBALT	5.4	2	fG/KG	136		470						z
SD26C	П		COBALT	5.8		4G/KG	136		470						z
SD.	П		COBALT	6.1		4G/KG	13.6		470						z
ŝ	╗	to 04	COBALT	69		MG/KG	136		470						z
≚	┪		COBALT	9		то/ка	136		470						z
¥ :	\neg		COBALT	63		ng/kg	136		470						z
ž	M-SU35 10		COBALI	67		ру/би	130		470						z
٤	M-SD to to	+	CODDER	7.77		N S	2 8		310				18.7	×	z
٤	-		COPPER	7.4		zo/ko	88		310				187		z
i G	_	0 0 to 0 5	COPPER	49.4	2	MC/KG	28		310				187	×	z
SD25B	П	_	COPPER	15.		MG/KG	58		310				187		z
ŝ	Г	_	COPPER	31.4		4G/KG	28		310				187	×	z
∑ S	M SD01 to		СОРРЕЯ	119		19/kg	58		310				187		z
MS	M SD01 to	Ĭ	COPPER	43	E	Ďγ/δι	58		310				18.7		z
Σ	Н)	согрея	69	E ::	ру/рп	58		310				18.7		z
Σ	╗	_	СОРРЕЯ			570	28		310				187		2
SD26A	Т		COPPER	4		Q KG	95		310				2 9		2 2
20208	т	_	COPPER			ON/O	200		210				7 84		2 2
٥	20202	90900	TO TO TO TO TO TO TO TO TO TO TO TO TO T	944	2 2	מאלט ש	85		310				187		z
Š		20000	COPPER	0 0	2	MG/KG	3 87		310				18.7		z
ì		,	COLLECT.	is a:			1	A	1	7					

8

P \147543\FU2_NE Screening Tables xts\Sediment

									RBC	U			_
			•			Background	Background Exceedance	Direct Exposure	Direct Exposure Exceedance	GWP	GWP	Ecological Criterion	Exceed Exceed
9	_	Parameter	Concentration	Qualifier	Units	Vatue	Frag	Value	Flag	Value	Fiag	ADIRA L	┸
26 SU26E	₹	СОРРЕН	412	H	We/KG	8 5		010				787	
M-SD1/	-	COPPER	150		mg/kg	200		100				18.7	
SECTO	2000		8 8	. -	יאט/אנט	3 22		310				18.7	
SF518	00000	COPPER	391		NG/KG	38.5		310				18.7	
SESTO	00100		136		MG/KG	58		310				18.7	
52 M SD15	-	COPPER	96	,	marko	58		310				18.7	
	2 2	COPPER			mo/kg	58		310				18.7	
52 SE52A	00 to 40	COPPER	128		MG/KG	58		310				18.7	
Γ	0 to 1 0		116		MG/KG	58		310				18.7	
	Ş	CYANIDE	0.34		mg/kg			160		Q			
	-	CYANIDE	0.2%		тдук			160		9		0000	
25 M-SD05	_	000	0000	_	MG/KG	0 0061		27		16		0.0033	
SD25A	00 to 05	000	0 12	,	MG/KG	0 0061	×>	27		10		0.0033	
25 50258	001005		0.0		MG/KG	10000	\	16		2 4		0.003	
2003 11 0003	0000	_	1100		9 0	19000	×	12.6		1		0 0033	
1	_	000	0 0 0 1		MQ/KG	0 0061	×	27		16.		0 0033	
M-SD02	-	000	0 0058		MG/KG	0 0061		2.7		16		0 0033	
SD26B	+=	000	0 007;		MG/KG	0 0061	×	27		16		0 0033	
SD26C	•		1000	Į,	MG/KG	0 0061	×	27,		9		0 0033	
SD26C		DOD	200		MG/KG	0 0061	×	27		5		0 0033	
SDZ6D	00 to 07		2600 0		MG/KG	0 0061	×	27		16		0.003	
SD26E			0.4		MG/KG	0.0061	×	2 2		91		0.0033	
M-SD17	_	000	19000		S CALCON	0 0001		120		9		0.0033	
M SU IO	2000	200	0.0044		NO.KO	19000		27		1		0 0033	
M S015	-	dod	990 0		MG/KG	0 0061		27		16		0 0033	
52 M-SD16	1	god	0 13		MG/KG	0 0061		27		16		0 0033	
SESSA	1	000	700		MG/KG	0 0061	×	27		16		0 0033	
SE52B		aca	0 0046	_	MG/KG	0 0061		27		16		0 0033	
M-S004	_	DOE	3100	h	MG/KG	0 0072	×	19		54		0 0033	
M-S005	_		001		MG/KG	0 0072		19		54		0 0033	
SD25A			0.13	ľ	MG/KG	0 0072		6		54		0.0033	
SD25B	00 to 05		000		MQ/KG	0 0072		61		20 2		0.0033	
\$025C		DUE	03		D CALCO	0.0072	×,	2		200		0.003	
M SEC	ي و	DOE	9000		NO.KO	27000		6		5.4		0 0033	
SD02	+	DOF	0 0081		MG/KG	0 0072		6		2		0 0033	
SD26A	┿	_	0015		MG/KG	0 0072		6		22		0 0033	
8020S	7	DOE	1600 0		MG/KG	0 0072		19		25		0 0033	
SD26C		DOE	0 05		MG/KG	0 0072		19		Ÿ		0 0033	
SD26C	+	DOE	00		MG/KG	0 0072		19		54		0 0033	J
SD26D		DOE	0 0005		MG/KG	0 0072	×	19		52		0 0033	
SD26E	0 0 to 0 4		32.0	=	MG/KG	0 0072		19		52		0 0033	
M S017	-	DOE	0 020		MG/KG	0 0072	×	6		56		0 0033	
M S018	-	DDE	0 002		MG/KG	0.0072		19		24		0.0033	
M-SD15	_	DDE	0.0		MG/KG	0.0072	×	6		ă l		0.000	
M-SD16	$\overline{}$		0.02		MG/KG	0.0072	<,	2 0		75		5000	
AZESZA SESZA	0000		0.0021		() () () () () () () () () ()	27000				54		0 0033	
5005	_	TOG	0.044		MG/KG	7000		61		Ξ		0 0033	
SDSS	+=		0 057		MG/KG			5		-		0.003	L
T								•	•				
	2	DOT	260 0		MG/KG			19		-		0 0033	

TABLE M.4
Summary of Detected Parameters in Sediment Soil at FU2 Campared to Background and Screening Level Values
Memphis Depot Main Installation RI

Direct Exposure Exceedance Value Flag	Background Exceedance Value Flag	Oustifier Units MGKG MGKG MGKG MGKG MGKG MGKG MGKG MGK	Concentration Ou 0 0042 J 0 036 J 0 042 J 0 042 J 0 042 J 0 042 J 0 042 J 0 025 ± 0 003 J 1 0 003 J 1
6			<u> </u>
•		MG/KG MG/KG MG/KG MG/KG MG/KG	
19		MG/KG MG/KG MG/KG MG/KG	111
19		MG/KG MG/KG MG/KG MG/KG	ارارا
19		MG/KG MG/KG	_
1.9		MG/KG	
	07	3000	
X 7800	,	UX/UM	- - - -
X 280 0	0.7	MG/KG	24 J
L	0.7	MG/KG	0 12 J
	0.7	MG/KG	18.1
0.087	0.7	MG/KG	0 028 J
31	_ 0.38	MG/KG	0 11
31	0 38	MG/KG	0.073
31	0.38	MG/KG	0.056 J
31	0 38	MG/KG	0 022 J
31	0.38	MG/KG	_
0.04		MG/KG	0.038
D 04 X		MG/KG	_
0.04	0.011 X	MG/KG	0 012 J
70 O	0.011	MG/KG	0 0081 J
0 04		MG/KG	_
0 04		MG/KG	0014)
0.04		MG/KG	2
200		MONO	1910
200		MG/KG	0 031
0.00		MG/KG	24 =
0.04	Ļ	MG/KG	0 0028 J
9000		MG/KG	D27 J
6300		MG/KG	0.076.J
6300		MG/KG	0387
6300		MG/KG	0.52
0200		MUNCH	0 070
2000		MOJKO.	0000
007		MOMO	0 000
780		MG/KG	0 019
780		MQ/KG	0.044.3
280		MG/KG	0 022 J
780		MG/KG	0.045.J
780		MG/KG	0.034
780		MG/KG) 02e[J
780		MG/KG	0 02 J
160	0 0 4 7 X	MG/KG	C 60 0
160	0.047	MG/KG	021 J
23		MG/KG	018.7
2.3		MG/KG	0 014 J
2.3		MG/KG	0 026 J
23		MG/KG	0.015.J
200		Move	0013
23		MG/KG	00113
23		MG/KG	0.014
23		MG/KG	0 0046 J
23		MG/KG	0 019
	31 31 31 31 31 31 31 31 31 31	1	0 0 38 31 31 31 31 31 31 31 31 31 31 31 31 31

¥538

TABLE M4
Summary of Detected Parameters in Sediment Soil at FU2 Campared to Background and Screening Level Values
Memphis Depot Main installation R1

Concentration Council Concentration Council Concentration Council Concentration Council Concentration Council Concentration Council Concentration Council Concentration Council Concentration Council Concentration Council Concentration Council Council Concentration Council Co	Concentration Qualifier 0 0097,1 0 0097,1 0 0037,1 0 037,1 0 037,1 0 048,2 0 058,3 0 048,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0039,4 0 0037,1	Background	Direct Exposur Value	Direct				
COUNTY C	0.000010 0.000	Ш	Anna	Exceedance				
0.001/2 J. MONTO 2.3 1.1 0.001/2 J. MONTO 2.3 1.1 0.001/2 J. MONTO 2.3 1.1 0.001/2 J. MONTO 2.1 2.3 1.1 0.001/2 J. MONTO 2.3 1.1 0.001/2 J. MONTO 0.001/2 J. 0.	0.002 J 0.002 J 0.003 J J 0.003 J J 0.003 J J 0.003 J J 0.003	MG/KG MG/KG			Value	\dagger	+	N N
County Marker County M	0.004 J	MEKE	23		-			z
0.007 Micros 71 X 310 4300 0.03 X X X X X X X X X	0.037 J 0.038 J 0.048 J 0.058		2 3		1			z
1	9 9 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		310		4300			2
1 1 1 1 1 1 1 1 1 1	0.58 J 0.08 Z 1.6 Z 0.0 S Z 0.1 J				4300			٠,
1 8	1 1 1 1 1 1 1 1 1 1		310		4300	+		2 2
1 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1		DLE		4300			2 2
0.05 Widney V V Widney V V Widney V V Widney V V Widney V V Widney V V Widney V V Widney	0.83 = 0.083 = 0.083 = 0.083 = 0.083 = 0.04		JUG		4300			2 2
1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0		310		4300			z ;
12 2 MGMG	2 2 8 = 0 55 = 0 55 = 0 1 1 1 1 1 1 1 1 1		310		4300			z
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 8 = 0 5 5 = 0 1 4 1 1 1 1 1 1 1 1 1		310	_	4300			z
0 0 14 J MCMC 7 1 310 4700 0 0 33	0 55 = 0 0 14 J		310		4300			z
0 14.1 MCMC 71 310 4200 0.33 0 10.14 MCMC 71 310 4200 0.33 0 10.15 MCMC 71 310 4200 0.33 0 10.15 MCMC 71 310 4200 0.33 0 10.15 MCMC 71 310 4200 0.33 0 10.15 MCMC 71 310 550 0.33 0 10.15 MCMC 71 310 550 0.33 0 10.15 MCMC 71 310 550 0.33 0 10.15 MCMC 71 310 550 0.33 0 10.15 MCMC 71 310 550 0.33 0 10.15 MCMC 71 310 550 0.33 0 10.15 MCMC 71 310 550 0.33 0 10.15 MCMC 71 18 0.031 0 10.15 MCMC 71 18 0.031 0 10.15 MCMC 71 18 0.0017 X 0 10.	0 14 J 0 17 J 0 16 J 0 18 J 0 18 J 0 18 J 0 18 J 0 18 J 0 0 18 J 0 0 18 J 0 0 18 J 0 0 18 J 0 0 0 1 J 0 0 0 1 J 0 0 0 1 J 0 0 0 1 J 0 0 0 1 J 0 0 0 1 J 0 0 0 1 J 0 0 0 1 J 0 0 0 J 0 0 D 0 0 D 0 0 D 0 0 D 0 0 D 0 0 D 0 0 D 0 0 D 0 D		310		4300			z
0 17.1 MCMC 7 1 310 4500 0 03 0 15.2 MCMC 7 1 310 4200 0 03 0 15.2 MCMC 7 1 310 4200 0 03 0 15.2 MCMC 7 1 310 4200 0 03 0 15.2 MCMC 7 1 310 4200 0 03 0 15.2 MCMC 7 1 310 4200 0 03 0 15.2 MCMC 7 1 310 4200 0 03 0 15.2 MCMC 7 1 310 4200 0 03 0 15.2 MCMC 0 87 310 4200 0 03 0 15.2 MCMC 0 87 310 4200 0 03 0 15.2 MCMC 0 87 310 4200 0 03 0 15.2 MCMC 0 87 310 4200 0 03 0 15.2 MCMC 0 87 310 4200 0 03 0 15.2 MCMC 0 87 <td>0 17 J 0 1 J 0 1 J 0 15 J 0 28 J 0 0 28 J 0 0 29 J 0 0 098 J 0 0 098 J 0 0 098 J 0 0 098 J 0 0 098 J 0 0 001 J</td> <td></td> <td>310</td> <td></td> <td>4300</td> <td></td> <td>0 33</td> <td>z</td>	0 17 J 0 1 J 0 1 J 0 15 J 0 28 J 0 0 28 J 0 0 29 J 0 0 098 J 0 0 098 J 0 0 098 J 0 0 098 J 0 0 098 J 0 0 001 J		310		4300		0 33	z
0 15 MCMC 71 210 4200 0.33	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		310		4300		0 33	z
O O O O O O O O O O	0 15, 1 0 28, 1 0 28, 1 0 22, 1 0 22, 1 0 22, 1 0 29, 1 0 13, 1 0 039, 1 0 039, 1 0 039, 1 0 048, 1 0 048, 1 0 041, 1 0 041, 1 0 00		310		4300		0.33	z
0.28 0.000	0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		340		4300		68.0	Z
0.18 MGMG	0 18 1 0 22 1 0 29 1 0 29 1 0 19 2 1 0 10 39 1 0 039 1 0 039 1 0 039 1 0 039 1 0 0048 1 0 0048 1 0 005 1 0 001 1 0 0 001 1		- Contraction of the contraction		4300		0.33	z
0 0 22 James 1 Michael Michael 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.22 J 0.22 J 0.29 J 0.29 J 0.29 J 0.13 J 0.039 J 0.039 J 0.039 J 0.039 J 0.039 J 0.029 J 0.029 J 0.029 J 0.021 J 0.011 J 0.011 J 0.011 J 0.0018 J				2000		220	
0 0060 1 MGARG 0 87 310 560 0 53 0 01 1 MGARG 0 87 310 560 0 53 0 01 1 MGARG 0 87 310 560 0 53 0 01 1 MGARG 0 87 310 560 0 53 0 01 1 MGARG 0 87 310 560 0 53 0 01 20 2 MGARG 0 87 310 560 0 53 0 01 20 3 MGARG 0 87 310 560 0 53 0 01 20 3 MGARG 0 87 310 560 0 53 0 01 20 3 MGARG 0 87 310 560 0 501 X 0 02 3 1 MGARG 2 1 8 0 501 X 0 501 X 0 02 3 1 MGARG 2 1 8 0 501 X 0 501 X 0 501 X 0 501 X 0 501 X 0 501 X 0 501 X 0 501 X 0 50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		010		4300		000	2 2
0 10 1 1 MCMC 0 6 7 310 550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		310		nac		0.00	2 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 29 J 0 19 J 0 10 J 0 10 J 0 10 J 0 10 J 0 10 J 0 10 J 0 10 J 0 10 J 0 10 J 0 11 J 0 0 11 J 0 0 11 J 0 0 11 J 0 0 11 J 0 0 0 J 0 0 0 J 0 0 0 J 0 0 0 J 0 0 0 J 0 0 0 J 0 0 0 J 0 0 D 0 0 J 0 0 D 0 D		310		ngc		000	2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		310		260		0.33	z
0.0098	0 098 J 0 039 J 0 084 J 0 084 J 0 023 J 0 022 J 0 022 J 0 011 J 0 001 J 0 0 001 J 0 0 0 0 0 0 0 J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		310		260		0 33	z
DESM MICKING	0.039 J 0.033 J 0.033 J 0.033 J 0.032 J 0.023 J 0.024 B 0.024 B 0.027 B 0.027 B 0.027 J 0.011 J 0.011 J 0.011 J 0.011 J 0.011 J 0.017 J 0.0018 B 0.00167 E 0.0018 B		310	•	260		0 33	z
0 0044 MG/KG	0.084 J 0.073 J 0.03 J 0.028 J 0.028 J 0.028 J 0.028 J 0.028 J 0.011 J 0.001 B 0.00		310		260		0.33	z
0.073 MG/MC	0 073 J 0 029 J 0 0048 J 0 0048 J 0 0059 J 0 018 J 0 011 J 0 011 J 0 0051 J 0 001 J 0 0 001 J 0 0 0 0 0 0 0 J 0 0 0 0 0 0 0 0 0 0 J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		310		260		0 33	Z
0.03 J MGMC 087 310 560 0.03 0.0048 J MGMC 2 18 0.0017 X 0.0017 0.0018 MGMC 2 18 0.0017 X 0.0018 MGMC 2 18 0.0017 X 0.0018 MGMC 2 18 0.0017 X 0.0018 MGMC 2 18 0.0017 X 0.0018 MGMC 2 18 0.0017 X 0.0018 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0017 X 0.0011 MGMC 2 18 0.0018 MGMC 2 18	0.029 J 0.029 J 0.0248 J 0.0248 J 0.054 = 0.054 = 0.054 = 0.054 = 0.054 = 0.054 J 0.011 J 0.011 J 0.011 J 0.011 J 0.011 J 0.011 J 0.011 J 0.011 J 0.0018 J 0.0016 = 0.001		310		999		0.33	z
0 0029 J MG/KG 2 18 0 033 0 0058 = MG/KG 2 18 0 00017 X 0 0058 = MG/KG 2 18 0 00017 X 0 0071 J MG/KG 2 18 0 00017 X 0 0011 J MG/KG 2 18 0 00017 X 0 0011 J MG/KG 2 18 0 00017 X 0 0011 J MG/KG 2 18 0 00017 X 0 0011 J MG/KG 2 18 0 00017 X 0 0011 J MG/KG 2 18 0 00017 X 0 0011 J MG/KG 2 18 0 00017 X 0 0011 J MG/KG 2 18 0 00017 X 0 0011 J MG/KG 2 18 0 00017 X 0 0011 J MG/KG 2 0 18 0 00017 X 0 0011 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 23 0 0 14 23 0 00018 J MG/KG 0 0 23 0 0 14 23 0 00018 J MG/KG 0 0 23 0 0 14 2 3 0 0 0 14 2 3 0 0 0 14 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.029 0.008 0.0048 0.0025 0.002		310		260		0.33	z
0 00168 J. MGNKG 2 18 0 0017 X 0 0025 = MGNKG 2 18 0 0017 X 0 018 J. MGNKG 2 18 0 0017 X 0 018 J. MGNKG 2 18 0 0017 X 0 018 J. MGNKG 2 18 0 0017 X 0 0017 J. MGNKG 2 18 0 0017 X 0 0017 J. MGNKG 2 18 0 0017 X 0 0017 J. MGNKG 2 18 0 0017 X 0 0017 J. MGNKG 0 23 0 14 23 0 0017 X 0 0018 J. MGNKG 0 23 0 14 23 0 0017 X 0 00018 J. MGNKG 0 23 0 14 23 0 0017 X 0 00018 J. MGNKG 0 23 0 14 23 0 0017 X X 0 00018 J. MGNKG 0 23 0 14 <	0.0048 J 0.025 = 0.054 = 0.018 J 0.027 J 0.027 J 0.011 J 0.021 J 0.001 J 0.001 J 0.001 J 0.001 J 0.001 B 0.		310		260		0 33	z
0.022 = MGKG 2 = 18	0.025 = 0.054 = 0.054 = 0.054 = 0.0016		18					z
0.054 = MG-NG 2	0.054 = 0.018 J	MG/KG	81					z
0 018 J MGMG 2 18 0 0017 X 18 18 0 0017 X 18 18 18 18 18 18 18	0 018 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MG/KG 9	8		_			z
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.027 J 0.011 J 0.005 J 0.011 J 0.011 J 0.011 J 0.017 J 0.0018 J 0.0016 E 0.0016 E 0.00167 E 0.00180 B 0.00167 E 0.00180 B 0.00167 E 0.00180 B 0.00167 E 0.00180 B 0.00167 E	MSKG	8+					z
0.0051 MGMG 2	0 011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WG/KG	8					z
0 0051 J MGMG 2	0 0051 J 0 0051 J 0 0175 J 0 0175 J 0 0075 J 0 0018 J 0 0002 J 0 0018 J 0 0019 J 0 0019 J 0 0018 J 0 00167 B 0 00078 B 0 00078 B 0 00078 B	Merko						z
1	0 011 J 0 001 J 0 001 J 0 001 J 0 001 J 0 001 J 0 001 J 0 001 J 0 001 J 0 001 J 0 001 S 0 0	S CONTRACTOR OF THE CONTRACTOR						2
0 0011 J MGMG 2 18 00017 X 0 017 J MGMG 2 2 18 0 0017 X 0 017 J MGMG 2 2 18 0 0017 X 0 0017 J MGMG 2 2 18 0 0017 X 0 0018 J MGMG 0 23 0 14 23 0 0017 X 0 0018 J MGMG 0 23 0 14 23 0 0017 X 0 00018 J MGMG 0 23 0 14 23 0 014 0 0017 X 0 00018 J MGMG 0 23 0 014 23 0 014 0 0017 X 0 00018 J MGMG 0 23 0 014 23 0 014 0 0017 X 0 00018 J MGMG 0 23 0 014 0 0017 X 0 00018 J MGMG 0 23 0 014 0 0017 X 0 00018 J MGMG 0 23 0 014 0 0017 X 0 00018 J MGMG 0 0 0017 X 0 0 0018 J MGMG 0 0 0 0017 X 0 0 0018 J MGMG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0011 J 0 0017 J 0 017 J 0 017 J 0 0018 J 0 0018 J 0 0018 J 0 0013 J 0 0013 J 0 0013 J 0 0013 B 0 0013 B 0 0013 B 0 0013 B 0 0013 B 0 0013 B 0 0013 B 0 0013 B 0 0013 B	אנייאני	8					2
00075 J MGMG 2 18 00017 X 00075 J MGMG 2 18 00017 X 00025 J MGMG 0 2 18 0 00017 X 0 00018 J MGMG 0 2 0 14 2 2 0 0 0 0 0 0 0 0	0 0075 J 0 0177 J 0 0023 J 0 0022 J 0 0022 J 0 0037 J 0 0018 J 0 0013 J 0 001678 = 0 00078 = 0 00078 = 0 00078 = 0 00078 =	MGVKG	18					z
0 077 J MGMG 2 18 0 0017 X 0 0023 0 14 23 0 0017 X 0 0023 0 14 23 0 0018 0 0023 0 14 23 0 0023 0 014 24 0 014 24	0 0017 J 0 023 J 0 0018 J 0 0002 J 0 0003 J 0 0016 = 0 00167 = 0 000883 = 0 00078 = 0 00078 = 0 00078 =	MGVKG	8					z
0 023 J MGMG 0 23 0 14 23 0 0017 X 0 0018 J MGMG 0 23 0 144 23 0 014 23 0 014 0 0021 J MGMG 0 23 0 014 23 0 014 0 0021 J MGMG 0 23 0 014 23 0 014 0 0021 J MGMG 0 23 0 014 23 0 014 0 0021 J MGMG 0 23 0 014 0 23 0 014 0 0021 J MGMG 0 0 0013 J MGMG 0 0 0013 J MGMG 0 0 0015 J MGMG 0 0 00018 = MGMG 0 0 00018 = MGMG 0 0 00028 = MGMG 0 0 0028 = MGMG 0 0	0 023 J 0 0018 J 0 002 J 0 002 J 0 00156 = 0 00150 0 00158 0 00188 0 000883 = 0 000883 = 0 000883 = 0 000883 = 0 000883 =	MG/KG 2	18					z
0 0018 J MGMG	0 0018 J 0 0022 J 0 0037 J 0 0013 J 0 0013 J 0 0013 J 0 0013 S 0 0013 S 0 0005 S 0 0007 S 0 0007 S 0 0007 S		- 18					2
0 00Z J MGMG	0 002 J 0 0037 J 0 0037 J 0 000166 = 0 00167 = 0 00088 = 0 00078 = 0 00078 = 0 00078 =		0 14		23			z
0.0037 Mi2KG 0.23	0.0037 J 0.000166 = 0.000166 = 0.000168 = 0.000167 = 0.000883 = 0.000883 = 0.000786 = 0.		0 14		23			z
0 000166	0.000166 = 0.000160							z
0.0013 MG/KG MG/	0 0013 J 0 00167 = 0 000883 = 0 00078 = 0 00078 = 0 00078	[MG/KG]						Ϋ́
0.00198	0.00198 = 0.00167 × 0.00167 × 0.000833 = 0.00078 × 0.00078 = 0.00078 = 0.00078 = 0.00078 = 0.00078 = 0.00078 = 0.00043 = 0.000444 = 0.000	MG/KG						Ϋ́
0.00167 = MGMG MGMG	0 00167 ± 0 000883 ± 0 00078 = 0 00078 = 0 00078 = 0 00078 = 0 00078 = 0 00043 = 0 000443 = 0 000444 = 0 00044	MG/KG						Ϋ́
0 000883 = MG/KG M	0 000883 = 0 00078 = 0 00078 = 0 00078 =	MG/KG			-			Ϋ́
0.0078	0 00078 ≈ 0 00078 = 0 0043 =	MG/KG						Ϋ́
0 00078 = MG/KG 0 0043 = MG/KG 0 0128 = MG/KG 0 0126 = MG/KG 0 007262 = MG/KG	0.00078 =	MG/KG			_			ž
0 0043 = MG/KG 0 0123 = MG/KG 0 0126 = MG/KG 0 00262 = MG/KG	0.0043=	MG/KG						¥
0 0123 = MG/KG 0 0126 = MG/KG 0 00262 = MG/KG 0 00145 = MG/KG		MG/KG						ž
0 0 0 1 2 6 MG/KG MG/KG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0123=	MG/KG						Ϋ́
0.00762 ≠ MG/KG 0.001451 = MG/KG	0.0126 =	MG/KG						NA
0.00145 s MG/KG	0 00262 ≈	MG/KG						ΝA
	0.001451	MG/KG						¥

1.11

TABLE M-4
Summary of Detected Parameters in Sediment Soil at FUZ Campared to Background and Screening Level Values
Memphis Depot Main Installation RI

		Exceeded Criteria Fiao	¥	¥	¥	¥	¥	V.	¥	ž	₹ :	2	× 2	z	z	z	Z	z	z	z	z	z	z	z	z	2	Z	z	z	z	z	z	z	z z	z	z	z	z	z	z		z	>	>	z	z	>	z	2 2	2 2	2 2	Ţ
_							_			-			+	<u> </u> 	-				-	1	+	1	+	+		+	-	-	ŀ			$\frac{1}{1}$	+	1	-	L			-	+	$\frac{1}{1}$	_	_	_		\sqcup	+	+	+	$\frac{1}{1}$	1	-
	Ecological	Criterion Exceedance Flag										,	×		×	×	×	×	×	×			×																				×	×	×		×					
		Ecological Criterion Value									0	0.33	0 33	0 33	0 33	0 33	0 33	0 33	0 33	0 33	0 33	0 33	0 33	0 33	0 00	200																	30.2	30.2	30.2	30.2	30.2	30.2	30.2	308	30.5	200
		GWP Exceedance Flee																																																1		†
		GWP									1	2	4 4	=	7	14	14	14	14	14	14	14	4	7	7 7	<u>.</u>					-										1		-	-						\dagger		1
RBC	Direct	Exposure Exceedance Flag											×		×								×			>	×	×	×	×	×	×	×	× >	< ×	×	×	×	×	×	×	\ \								1		T
	- 	Direct Exposure Value			:						100	0 87	/80	0 87	0.87	0.87	0.87	0.87	0.87	0 87	0.87	0.87	0.87	0.87	0 00	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	400	400	400	400	400	400	400	8 8	5	\$ 2
•		Background Exceedance Flag	<u>.</u>				-					1	\ \															T					1										×	×			×					
		Background										,		-	17	1.1	17	1.7	17	1.7	17	17	17	- !		03080	23080	23080	23080	23080	23080	23080	23080	23080	23080	23080	23080	23080	23080	23080	23080	23080	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	39.5	200
		Units	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MCKG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	S CAN	S CAC	Day of	SACE	MG/KG	MG/KG	MG/KG	mg/kg	mg/kg	mg/kg	mg/kg	MG/KG	MQ/KG	MG/KG	MG/KG	MG/KG	mg/kg	Dy/G	TAC/Bri	mo/kg	mo/kg	MG/KG	MG/KG	MG/KG	πg/kg	mg/kg	mg/kg	mg/kg	MG/AG
		Qualifier	,		-		=										3	н													41	_		n			Ĭ.,		11	1)	-		ıĸ	11	=		11	=		n		В
		Concentration	0.000495	0 000598	0 000345	0 000289	0 0000559	0 00103	0 000649	0 00017	0 000178	1,100	323	0 18	-	12.0	0.62	0.62	0.47	0 86	0.17	0.051	1.5	0.028	0.033	. 0.092	4700	12900	17000		3470	2810	2470		14500	15100	17200	17900	19200	0606	9840	3340		42.6	308	148		17.7	22.4	199	282	200
		Parameter	IRANS (TOTAL)	HEXACHLORINATED DIBENZOFURANS (TOTAL)	HEXACHLORINATED DIBENZOFURANS, (TOTAL)	HEXACHLORINATED DIBENZOFURANS, (TOTAL)	HEXACHLORINATED DIBENZO-p DIOXINS, (TOTAL)	HEXACHLORINATED DIBENZO-p DIOXINS, (TOTAL)	HEXACHLORINATED DIBENZO p-DIOXINS (TOTAL)	HEXACHLORINATED DIBENZO p-DIOXINS, (TOTAL)	HEXACHLORINATED DIBENZO p-DIOXINS, (TOTAL)	INDENO(123-c,d)PYRENE	INDENO(1,2,3 c,d)PYRENE	INDENOTO 3 c.d/PYRENE	INDENO(1,2,3 c,d)PYRENE	(NDENO(1,2 3-c,d)PYRENE	INDENO(1 2 3-c d)PYRENE	INDENO(123-cd)PYRENE	INDENO(1.2.3-c d)PYRENE	INDENO(1,2,3-c,d)PYRENE	INDENO(1,2,3-c,d)PYRENE	INDENO(1,2,3-c,d)PYRENE	INDENO(123-c d)PYRENE	INDENO(12,3-c,d)PYHENE	INDENO(1/2/3-c/d)PYHENE	INDENO(1,2,3-c,u)PTMENE	NOCE	NOBI	NCBI	IRON	IRON	IRON	IRON	IRON	NOBE	IPON	NORI	IRON	IRON	NOR	IBON	NOB!	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	(EAU	LEAD
		Depth	2	2 2				10	<u>o</u>	٥	٥	0	0 0 0 0	00000	00 to 10	đ	to.	to	t)				1004	_اء	2	2 9	2 2	0.0 10.5	Т		to	Q.		(00000	00 to 0 6	00 to 06	00 to 07	00 to 04		راع	2 2	2 2	2	to 0.5		00 to 10				0	00 to 1 U LEAD
		Station	M Spot	+	SD02	✝	1.	Н	H	┪	7	┪	M-SD05	Т	Т	П	Н		M SD03		SD26B (П	-+	╅	M-SD IO	╈	7	SD2SB	Т	Ļ	\vdash	┪	I	Shoen	Т	SDZ6C	П	П	\dashv	\neg	M SD15	+	╈	Т	П	П	\neg	┪	-+		SUZEA
		į.	+=	Ī	Γ	Γ	Γ		26 h	1	1	Ī	25	Τ	T		26 N		Г				5 92	Т	Т	20 20	T	T	1,5			П		T	9 %	Γ	Π		26		T		3.5	Γ	Г	П	П		T	T	T	9

M 37

P \147543\FU2_NE Screening Tables xis\Sedment

						-				000					
														Footooleel	
				_	1			Background	Direct	Exposure	!	GWP	Ecological	Criterion	
i di	Station	Depth	Parameter	Concentration	Ovalifier	Chits	Background Value	Exceedance	Exposure	Exceedance Flaq	CWP	Exceedance	Value	Exceedance	Criteria Flag
$\overline{}$	_	0 0 to 0 6	LEAD	15:	-	MG/KG			400				30.2		z
		0 0 to 0 6	\vdash	162=		MG/KG	35.2		400				30.2		z
П	П	0 0 to 0 7		86	∑ :	MG/KG	35.2	,	400				30.2	,	Z
	$\overline{}$	0 0 to 0 4	\neg	121		E KG	35.5	× ,	400				200	,	ļ
	M SD17	٥.	LEAD	75=		mg/kg	35.2	××	004				205	< ×	>
1	т	10		4 00		g/kg	35.2	,	204				300	,	Z
7	7	0 0 10 3 0	LEAD	000		0 0 0	200		36				300		z
	Т	0 0 0 0	т	000	11 1	0 0	200		200				200		z
	_	02010	-	103		2000	2 20		Apol A				30.5		z
7 .	N SO15	ا و	LEAD	0.0		N L	2 50		1004				208		z
Ì	_	10		9.0		CARC.	35.2		4004				302		z
T	O PESSO	0 0 0 0					25.2		500				30.2		z
N K	· i_			ZBC	1 -	morkon	2440								z
Ţ	✝		MACNESIM	0686	E	, CA	2440	×							¥
T	7	50.05	MAGNESILM	1.0862		MG/KG	2440	×							¥
T	Т			1870		OK6	2440								z
1 1	Т	0 to 10	$\overline{}$			OKG	2440	×							¥
Γ	Т		$\overline{}$	884	Ε	ma/ka	2440								z
	✝	_	MAGNESIUM		Ε.	g/kg	2440								z
	t	0	MAGNESIUM			mg/kg	2440	×							AA
	┰	9	MAGNESIUM	19100		g/kg	2440	×							¥
Γ	✝	0 to 10	1	1820 =		G/KG	2440								z
Ī	Т	00 to 05	_	1620		G/KG	2440								z
	Г	00000	MAGNESIUM	2800	W	G/KG	2440	×							¥Z
	Ĩ	900100		Z640 =		G/KG	2440	×							¥
	SD26D 0	200100	MAGNESIUM	2880		MG/KG	2440	×							¥
		00to 04		2490=		G/KG	2440	×							Š.
	┪	ţ	MAGNESIUM	1030	ε	mg/kg	2440								2 2
1	_	to	MAGNESIUM	1130,	E	g/kg	2440	1							2 2
	-+	2	MAGNESIUM	714	E):	D. J.	2440	,							z
٦	-+	ا ۽	MAGNESIUM	3930	٤١١	SX.	2440	\\	20,						2
T	+	ا ۾	MANGANESE	ng	EIG	200	100		1100						2
Ţ	M SDOS	10		- 26b		MG/KG	971		100						z
9	Т	20000	MANOANESE	1 188		000	124		1100						2
	Т		AAAAAAAESE AAAAAAAESE	208		OKO OKO	871		1001						z
T	1		MANGANESE	74	E	D.Vo	871		1100						z
Τ	1		MANGANESE	115,	ε	o/ka	871		1100						2
T	+		MANGANESE	232	٤	g/kg	871		1100						2
	t		MANGANESE	77.	Ē	6×6	871		1100						2
		0 0 to 1 0		162	2	G/KG	871		1100						z
56				230=		G/KG	871		1100						z
		00 to 06	MANGANESE	271		G/KG	871		100						z
	П		MANGANESE	295 =		GKG GKG	871		200						z .
56	╗	00 to 07	_	328	ž	MG/KG	871		100						2
	П	00 to 04	_	183	×	G,KG	871		1,00						2 2
	_	t t	MANGANESE	218.	ε	mo/kg	871		1300						2 2
	┪		MANGANESE	161	E	DO'KO	871		001						2
1	-		MANGANESE	236	E	Ş,	871		1,00						z
		2	MANGANEGE	112.	£ ;	Ox/out	8/1		001		Í		5		-
	┰	20000		0.12	2 3	MG/KG MG/KG	7		60		,		0 0		z
1	7	00000	MCHCCOT	0 0	24	MONG W	7 4		2 6				5 6	×	ž
1	SDZSC	20000	Out to Menount	0.55	2	MG/KG	4		2 60		2		0 13	×	z
97	٦.	200	MEDUON												

Į

TABLE M4
Summary of Detected Parameters in Sediment Sol at FU2 Campared to Background and Screening Level Values
Memphis Depot Main Installation R1

£ ₹

Part Part					-				RBC	U				
		Depth						Direct Exposure	Direct Exposure Exceedance	GWP	GWP Exceedance		Ecological Criterion Exceedance	Exceed
			Parameter	ncentration	_ 1	-		Value	Flag	Value	Flag	Value	Flag	Criteria
	+		PENTACHLORINATED DIBENZOFURANS (TOTAL)	0 0000829 =	Ø Ø	S S								źź
Decomposition Control	+		PENTACHLORINATED DIBENZOFURANS (TOTAL)	0.0000434=	MG	KG								¥
Color of Performance Color of Performance	+	T	PENTACHLORINATED DIBENZO D-DIOXINS (TOTAL)	0.0000128	MQ	KG								Ϋ́
	. I	30 to 10	PENTACHLOROPHENOL	0 14 J	MG	KG		53		0 03	×			>
Dec 10 Principality Height Dec 10		30 to 04	PENTACHLOROPHENOL	0 12 J	MQ	KG		53		0 03	×			>
Decided Hereal Programmer Decided Hereal Programmer	l	to	PHENANTHRENE	47=	MQ		6.9	230		250		0 33	×	z
Dec 10 Programmer Dec	Т	30 to 05	PHENANTHRENE	0 22 J	MG		6.9	230		250		0 33		z
10 10 10 10 10 10 10 10		00 to 05	PHENANTHRENE	= 69 0	MG		69	230		250		0 33	×	z
Dec Processive Control Contr		001010	PHENANTHRENE		MQ		6.9	230		250		. 033	×	z
10 PHENANTHEREE 1 1 1 1 1 1 1 1 1			PHENANTHRENE	15.	ΨŎ		6.9	230		520		0.33	Y.	z
Decomposition Decompositio			PHENANTHRENE	13=	MQ		6.9	230		250		0 33	×,	z :
10 10 10 10 10 10 10 10	_		PHENANTHRENE	0 46 =	MQ		6.9	230		250		0 33	×	z
1	_		PHENANTHRENE	= 190	ΜQ		69	230		250		0 33	Κ,	z :
Decide Performative Decide Michael George Geo			PHENANTHRENE	1 4 #	MĢ		6.9	230		250		3 5	,	<u>- </u> -
Decide Performative Corporation Corp			PHENANTHRENE	0.28 J	MQ		6.9	230		250		0 33		z :
Decomposition Decompositio			PHENANTHRENE	0 078 J	MÇ		6.9	230		22		0.33		2 :
December December	_	00 to 06	PHENANTHRENE	0 083 J	MQ		69	230		220		0 33		2
Decide D		0 0 to 0 7	PHENANTHRENE	0 044 J	MQ		6.9	230		250		0 33		z :
10 PHEMATITHERE 0.029 MCMCM 6 B 200 0.03 B 10 PHEMATITHERE 0.134 MCMCM 6 B 200 220 0.03 B 10 PHEMATITHERE 0.134 MCMCM 6 B 200 0.03 B 0.03 B 10 PHEMATITHERE 0.141 MCMC 6 B 200 0.03 B 0.03 B 10 PHEMATITHERE 0.141 MCMC 1560 X 0.03 B 0.03 B 10 POTASSUM 3731 mptg 1560 X 0.03 B 0.03 B 10 10 10 10 POTASSUM 3731 mptg 1560 X 0.03 B 0.03 B 10 10 10 10 POTASSUM 3731 mptg 1560 X 0.00 B <td></td> <td></td> <td>PHENANTHRENE</td> <td>25=</td> <td>MQ</td> <td></td> <td>6.9</td> <td>230</td> <td></td> <td>520</td> <td></td> <td>0 33</td> <td>×</td> <td>z :</td>			PHENANTHRENE	25=	MQ		6.9	230		520		0 33	×	z :
December December	₩		PHENANTHRENE	0 029 0	MG		6.9	230		520		0 33		z
Declarative Declarative	+-		PHENANTHRENE	0 13 1	MG		6.9	230		250		0 33		z
POTE/SENIUM 2775 POTE/SE	+-		PHENANTHRENE	0 14 J	MQ		6.9	230		250		0 33		z
Decided Performance Perfor	-		PHENANTHRENE	C 690 O	MQ		69	230		250		0 33		z
Decide Pottassium 11772 Michael 1560 Na	•		POTASSIUM	271 J	/gm		260							2
100 to 0.0 FOTASSIUM 1190 1500			POTASSIUM	375 J	ľα		260							z :
Decomposition 1950 Decomposition 1950			POTASSIUM	1170 J	MC									z
Dec Dec	Г		POTASSIUM	1950 =	MQ									ž
Decided Portassium 180 100 180	Г		POTASSIUM	2630=	MQ									ž
tip PCTASSIUM 1153J Mygg 1660	1		POTASSIUM	180 J	l∕gm		260							z
Portage Port	1		POTASSIUM	253 J	2gm		260							z
Up of Dot SSUM ACMS (MISS) 1660 X ACMS (MISS) ACMS (M	+-		POTASSIUM	1150	15m		260							z
Decide Pottassium Color of Portassium Color of of portassium Color of of portassium Color of of portassium Color of of portassium Color of of portassium Color of of portassium Color of of portassium Color of of portassium Color of of portassium Color of of portassium Color of of portassium Color of of portassium Color	-		POTASSIUM	7 40 0	ľω		260							z
	Г	ı	POTASSIUM	2060 ≈	ďΜ									ž
0 0 10 0 0 POTASSIUM 2050 = MGKG 1560 X N	T		POTASSIUM	1860=	MQ									ž
O TO LO OR ON AGENIUM POTAGENIUM 2310 = 1650 MGMG 1660 X C	T		POTASSIUM	2050=	MG									¥χ
0 0 0 0 0 7 SSIUM 1950 = MG/KG MG/KG 1560 X X C	Τ"		MILISATOR	2310=	MG									Ä
0 0 to 0 4 POTASSIUM 3240 = MG/NG MG/NG 1560 X C	Т		POTASSIUM	1950=	MQ									AN
to POTASSIUM 496 J mg/kg 1560 6 7 6 6 6 7 7 7 7 7 8 7 8 8 9 8 9 8 9 9 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	Т		POTASSILM	3240 =	MG		1							¥
10 POTASSIUM 408 J mg/kg 1560 6 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 7 8 7 8 9	Τ		POTASSILM	198	шау		260							z
10 POTASSIUM 106 J mg/kg 1560	+	١	POTASSIUM	408.1	Mer.		260							z
to POTASSUM 126 J mgkg 1560	-		POTASSILM	190	ľά		095							z
to PYRENE 0 0 0 6 1 MGAKG 2 882 X 230 880 0 33 X to PYRENE 9 3 = MGAKG 2 882 X 230 880 0 33 X 0 0 to 0 5 S HARE 2 882 X 880 0 33 X 0 0 to 1 0 S HARE 2 882 2 30 880 0 33 X 0 to 1 0 PYRENE S 82 2 30 880 0 33 X to PYRENE S 82 2 30 880 0 33 X to PYRENE S 82 2 30 880 0 33 X to PYRENE S 82 2 30 880 0 33 X to PYRENE S 82 2 82 2 82 0 33 X to PYRENE S 82 2 82 0 33 X to PYRENE S 82 2 82 0 0 0 33 X to PYRENE	-		POTASSILM	126	Anna A		260							z
to PYRENE 9.3 = MGKG 2.882 X 290 880 0.33 X 00 to 0.5 PYRENE 0.0 to 0.5 PYRENE 0.0 to 0.5 PYRENE 0.0 to 0.5 PYRENE 0.0 to 0.5 PYRENE 0.0 to 0.0 to 0.0 PYRENE 0.0 to 0.0 t	-		PYDENE	0.056.1	MQ		382	230		880		0 33		z
00 to 0 5 PYRENE 880 880 0 33 X 00 to 0 5 PYRENE 230 880 0 33 X 00 to 0 10 PYRENE 282 230 880 0 33 X 10 PYRENE 2 8 MGKG 2 882 230 880 0 33 X 10 PYRENE 2 8 MGKG 2 882 230 880 0 33 X 10 PYRENE 0 9 = MGKG 2 882 230 880 0 33 X 10 PYRENE 0 9 = MGKG 2 882 230 880 0 33 X 10 PYRENE 0 9 = MGKG 2 882 230 880 0 33 X 10 PYRENE 2 82 2 82 80 0 33 X 10 PYRENE 2 82 2 82 80 0 33 X 10 PYRENE 2 82 2 82 20 80 0 33	┿	l	DVDENE	16.9	/SW			230		880		0 33	×	>
O 0 10 0 5 PYRENE 230 880 0 33 X O 0 10 0 5 PYRENE 5 = MGKG 2 882 X 230 880 0 33 X 10 PYRENE 2 ± MGKG 2 882 230 880 0 33 X 10 PYRENE 2 ± MGKG 2 882 230 880 0 33 X 10 PYRENE 0 9 = MGKG 2 882 230 880 0 33 X 10 PYRENE 0 9 = MGKG 2 882 230 880 0 33 X 10 PYRENE 2 882 230 880 0 33 X 10 PYRENE 2 882 230 880 0 33 X 10 PYRENE 2 882 230 880 0 33 X 10 PYRENE 2 882 230 880 0 33 X 10 PYRENE 2 882 230 880	.1	_	DADENIE	1 - 190	N CW			230		088		0 33	×	z
0 00 10 PYRENE 5 = MG/MG 2 882 X 230 880 0 33 X 10 PYRENE 2 5 = MG/MG 2 882 230 880 0 33 X 10 PYRENE 2 MG/MG 2 882 230 880 0 33 X 10 PYRENE 0 = MG/MG 2 882 230 880 0 33 X 10 PYRENE 1 2 = MG/MG 2 882 230 880 0 33 X 10 PYRENE 2 4 = MG/MG 2 882 230 880 0 33 X 10 10 PYRENE 2 4 = MG/MG 2 882 230 880 0 33 X 10 10 10 PYRENE 1 2 4 = MG/MG 2 882 230 880 0 33 X	Т	\neg		0.75	NG.		282	230		880		0 33	×	z
to PYRENE 2 S = 1 MG/KG 2 882 230 880 0 33 X to PYRENE 2 S = 2 MG/KG 2 882 230 880 0 33 X to PYRENE 1 S = 2 MG/KG 2 882 230 880 0 33 X 0 to to to p PYRENE 2 4 = MG/KG 2 882 230 880 0 33 X 0 to to to p PYRENE 2 4 = MG/KG 2 882 230 880 0 33 X 0 to to to g by PYRENE 0 to to g by PRENE 2 882 230 880 0 33 X	Т		PYRENE	= 9	MGV			230		880		0 33	×	>
10 PYFENE 2 2 2 2 2 2 2 2 2	7	- 1	TANDON O	'n	7074			086		ARO.		0.33	×	z
Lo PYRENE CO to 0 5 FARENE CO to 0 5 CO TO 0 5 </td <td>+</td> <td>2 .</td> <td>PTENE</td> <td>o l c</td> <td>000</td> <td></td> <td>182</td> <td></td> <td></td> <td>088</td> <td></td> <td>033</td> <td>×</td> <td>z</td>	+	2 .	PTENE	o l c	000		182			088		033	×	z
ID PYRENE 24 = MG/KG 2 882 230 880 0.33 X 0.0 to 1:0 PYRENE 2.4 = MG/KG 2 882 230 880 0.33 X 0.0 to 0:0 5 PYRENE 0.47 = MG/KG 2 882 230 880 0.33 X	+	_ اء		10	3 2	1	282	230		880		0.33	×	Z
OD 01 to PYRENE 2 4 = MG/KG 2 882 230 880 0 33 X 00 to 10 PYRENE 0 0 to 2 pyrene 2 882 230 880 0 33 X	ZOOS-W	ا و		करि	ON I	1	200	050		980		033	×	z
0.0.0.0.5 PYHENE 230 880 0.33 X	7	0	PYKENE	v١٩	Ď.	,	200	200		980		200	< ×	z
0.0 to 0.5 PYRENE 2.50 050 050 050 050 050 050 050 050 050	Т	00000	PYRENE	₹ 5. 4 =	3	N	295	757	_	200	_	2		:
					9.5		1	700		000		0.00	>	Z

P \147543\FU2_NE Screening Tables xis\Sediment

TABLE M4
Summary of Detected Parameters in Sediment Soil at FU2 Campared to Background and Screening Level Values
Memphis Depot Main Installation R1

	Exceeded Cateria Flan	2	z	<u> </u>	z	z	z	z	z	z	z	z	z	2 2	z	z	z	z	z	٨	z	z	z	z	z	¥	z	z	z	z	z	>	>	>	,	- ¥	¥	z	z	z.	z	2 2	z	z	z	z	z	Z 2	.
	Ecological Criterion Exceedance E	ľ		×			×		_			1		+		-		-		×										1				1		$\frac{1}{1}$					$\frac{1}{1}$				H		+		
		33	3 2	8 8	0 33	33	33	0 33				1	-	+	-	-	-	-		2	2			1	+				-	1	+			-	+	+	-	Ц		1	+		-	-		+	+	1	
	Ecological Criterion Value					0	0	0																																									
	GWP Exceedance Flao	P																																															
	GWP	880	880	880	880	980	980	880	5	'n	S.	S	S C		n un	3 10	क	5	5	34	34										0.005	0 005	0 005	0 005	0 002	coon		0009	9000	9000	0009	38	0009	9	9000	000	0009	9009	
	Direct Exposure Exceedance	î			Ī									1																	×	×	×	×	×	\ \													
	Direct Exposure Value	230	230	230	230	230	230	230	39	39	39	39	39	66	5	30	33	39	39	39	39					-					0.0000043	0 0000043	0 0000043	0 0000043	0 0000043	0.000043		55	55	55	52	SS 33	55	52	55	55	55	000	3
_	Background Exceedance	ĥ		×					×		×						×			×						×						×	×	×	×	Ť			-										
	Background	2 882	2 882	2 882	2 882	2 882	2 682	2 682	1.7	1.7	1.7	17	17	/-	11	1	1	17	17	18	1.8	240	240	240	240	240	240	240	240	200	6000000	600000 0	6000000	600000 0	6000000	n nonona	İ	30	30	8	30	9 6	8 8	99	30	30	9	05	3
	<u> </u>	MG/KG	MG/KG	MQ/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MQ/KG	тд/кд	mg/kg	0 X O	MG/KG	MQ/KG	MG/KG	ma/kg	MG/KG	тауко	MG/KG	mg/kg	mg/kg	MG/KG	mo/ko	mo/kg	mg/kg	mg/kg	mg/kg	mg/kg	O KO	MG/KG	MG/KG	MG/KG	MQ/KG	D WONE	MG/KG	mg/kg	mg/kg	MG/KG	MG/KG	MG/NG mg/kg	DO/KG	₽Q/kd	mg/kg	MG/KG	MG/KG	D WOW	
	Oualifier	1		, , ,		,	,	ſ		=	я	_	_		11 1			ا	ı	11				_					3		ا							,		7					7				
	Concentration	0 14	260 0	4.9	0.039	0 23	0 42	0 15	3.8		28	0.71	0 73	6/0	12	13	0	10-	860	91	0.28	457	889	201	57.5	282	134	74	424	406	0 000004417	0 0000224	0 00005336	0 0000635	000001646	0.00009271	0 0000087	6.7	129	25 4	265	27.9	29	47	7.1	223	209	1 62	
-	Daramenteline		PYBENE	PYBENE	PYRENE	PYRENE	PYRENE	PYRENE	RELENIUM	SELENIUM	SELENIUM	SELENIUM	SELENIUM	SELENIUM	SELENIUM	E FAITH	SEEDIUM	SELENIUM	SELENIUM	SILVER	SILVER	SODIUM	SODIUM	SODIUM	MUIOOS	MUIOS	SODIUM	SODIUM	SODIUM	SODIUM	TODD Formalant	TCDD Equivalent	TCDD Equivalent	TCDD Equivalent	TCOD Equivalent	TETBACHI OBINATED DIBENZOELIBANS (TOTAL)	TETRACHLORINATED DIBENZOFURANS, (TOTAL)	VANADIUM	VANADIUM	VANADIUM	VANADIUM	VANADIUM	VANADILIA	VANADIUM	VANADIUM	VANADIUM	VANADIUM	VANADIUM	
	Depth	т	_	┰	1	á	P	P			00 to 10 SE	SE	35		200000		00 to 04 SF		6	T	0	S		00 to 05 SC	ŏδ	5 6	N N	S	Š	<u>ند</u>	ă[È	1	ΤC	길	¥	<u>= </u>	1	'n	_		\neg	00 to 10 V	<u> </u>	<u> </u>	1	-		000000	
	- Collection	.T	Т	┱	Τ.	╆	+	•	Г			D01 to	_	. T	T	1	1	Ι.	✝	1	2B 00 to 1	D04 to	┪	_	2 2	+	+-	Н	-+	-+	9 9	+-	\vdash	╛	D02	+	-	⊢	П	П	Т	7	+	+		П	Ţ	T	
_		۳.	Shakh	SDSGE	M-SD17	M-SD18	M-SD15	M-SD16	SD25A	SD258	SD25C		٦	M-S002	26 50266	T	SD26F	M-SO18	SES2B	25 M-SD04	Γ	25 M-SC	M-SD05	SDS	M-SD01	N SD02	M-SD03	M-SD17	M-SD18	M-SD15	M-SD16	M-SD05	M-SD01	M-SD01	M-SD02	M-5003	S-S	M-SD04	M-SD05	SD25A	SD258	SDZSC	S S S	M-SD02	M-SD03	SD26A	SD26B	SUZPC	20200

¥

P \147543/FU2_NE Screening Tables xis\Sedment

					7	_		Pasianian
			Background		Direct			Ecological Criterion
Concentration Qualifier	Units	Background Value	Exceedance	Exposure I	Exceedance	GWP Exc	Exceedance Criterion Flag Value	
13.1=	по∕ко	30		55		0009		
22.1 =	mg/kg			52		9009		
58J	mg/kg			52		0009		
46.	mg/kg			25		0009		
1170=	шд/ка		×	2300		12000	124	×
= 9.69	mg/kg			2300		12000	124	4
190=	MG/KG			2300		12000	15.	×
464=	MCKG			2300		12000	12.	74
175=	MG/KG			2300		12000	124	×
33=	mg/kg			2300		12000	15.	.4
406=	mg/kg			2300		12000	12.	14
= 699	mg/kg			2300		12000	12.	4
120=	mg/kg			2300		12000	12,	7.
503=	MG/KG			2300		12000	12,	7
445=	MG/KG			2300		12000	12,	4
573 =	MG/KG	197		2300		12000	124	
128 =	MG/KG			2300		12000	12	
142 =	MG/KG			2300		12000	12,	
233 =	MG/KG			2300		12000	12,	
135 =	[mg/kg			2300		12000	12	×
403=	mg/kg			2300		12000	12,	*
39 J	MG/KG			2300		12000	12,	7
42.7.3	MG/KG			2300		12000	12,	4
4623	MG/KG			2300		12000	12.	.4
425=	төл		-	2300		12000	12.	4
= 6 99	mg/kg			2300		12000	12.	4
40.1		7.05		0000		12000	- 12	7
201.04	MG/KG	1.67	1	2300	-	- FORM		

· •

THIS PAGE INTENTIONALLY LEFT BLANK.

FINAL PAGE

ADMINISTRATIVE RECORD

FINAL PAGE