

File: C.G. 541.460.d 244

DEFENSE DEPOT MEMPHIS

BRAC SAMPLING PROGRAM REPORT

CH₂M Hill

May 1997

Executive Summary

.

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Executive Summary BRAC Sampling Program Defense Depot Memphis, Tennessee

1

The Base Realignment and Closure (BRAC) 95 Commission selected the Defense Depot Memphis, Tennessee (DDMT) for closure under the BRAC process. All 642 acres of this facility are considered BRAC property. As part of the preparation of the *Environmental Baseline Survey* (Woodward-Clyde, November 1996), the DDMT facility was split into 35 parcels based on the environmental condition of the property. All but 6 of the 35 parcels were sampled to better define the environmental condition of the property before transfer. Table ES-1 explains why soil sampling was not conducted at 6 of the BRAC parcels during the initial BRAC field sampling effort. Concrete wipe and air sampling will be completed during another sampling effort.

This report presents a summary of the BRAC sampling program conducted at DDMT. The attached Parcel letter reports are presented in a modular style so that the DDMT Parcels may be evaluated individually. The Parcel letter reports consist of text describing the site, sampling procedures, and data summary tables. The Draft Sampling and Analyses Recommendations (Woodward-Clyde, June 1996) were used as the basis for the BRAC sampling plan. Sampling was conducted for areas where data gaps exist and where sampling and analyses are required to verify the environmental condition of the property.

BRAC data were collected for surface soil, subsurface soil, and sediment. Samples were collected and sent to CH2M HILL Analytical Services in Montgomery, Alabama, in accordance with the procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995). Corps of Engineers' (COE) split samples were collected from approximately 10 percent of the samples collected at DDMT for a quality control check by the COE laboratory in Georgia. Results of the split samples will be reported in the final Remedial Investigation (RI) Report.

A relational, statistical database was used as the basis for creating data summary tables and for comparisons of BRAC data with screening level data. Screening level data are comparison criteria that were developed from applicable regulatory criteria, or from background values. The comparison criteria are used to "screen" sites to evaluate whether a potential release has occurred that exceeds an acceptable risk. Tables ES-2 presents the compounds that were detected in surface soils for all of the parcels and compares the detected compounds to five types of screening levels. The five types of screening levels include background values, soil ingestion risk-based concentrations (RBCs) in both a residential and industrial setting, soil screening levels for transfer from soil to groundwater, and terrestrial ecological values. Table ES-3 presents the detected compounds to two types of screening levels and compares the detected in subsurface soils for all of the parcels and compares the detected in subsurface soils for all of the parcels and soil screening levels. Subsurface soil screening levels consist of background values and soil screening levels for transfer from soil to groundwater.

Metals in both the surface soil and subsurface soil samples were detected at generally higher concentrations than background values. The maximum detected metal values in subsurface samples exceeded all available background values. Some of the maximum detected metal values in surface soil (aluminum, antimony, arsenic, beryllium, cadmium, chromium, iron, lead, and manganese) exceeded U.S. Environmental Protection Agency (EPA) risk-based criteria for residential areas. Only arsenic in the surface soil exceeded all five available surface soil screening levels. Beryllium and manganese in surface soil exceeded RBC residential criteria; however, their highest detected concentrations did not exceed the background values. Some of the detected metals in surface soil (arsenic, cadmium, chromium, lead, nickel, and selenium) exceeded both groundwater protection (GWP) and terrestrial ecological screening values. Some of the detected metals in the subsurface soil (arsenic, barium, chromium, lead, and nickel) exceeded both background values and GWP values.

Methlyene chloride and petroleum hydrocarbons were the only volatile organic compounds (VOCs) detected in surface soils that exceeded available screening levels. No VOC values exceeding available screening levels were detected in subsurface soil samples.

The highest detected pesticides/polychlorinated biphenyls (PCBs) in surface soil samples exceeded all available background values. Dieldrin also exceeded RBC industrial, RBC residential, and GWP screening values. Aroclor-1260, chlordane, 1,1,1-Dichloro-2-2-bis(4-chlorophenyl)ethylene (DDE), dichlorodiphenyltrichloroethane (DDT), and gamma-Chlordane also exceeded RBC residential criteria. The only pesticide/PCBs detected in subsurface soil samples were DDE and dieldrin. The detected subsurface soil dieldrin concentration did not exceed background values but did exceed the GWP value.

Although some of the highest detected concentrations of BRAC data exceeded screening levels, further evaluation is still needed to evaluate whether reported concentrations of those constituents are caused by DDMT operations, are naturally occurring, or are caused by ambient effects from the urban environment surrounding DDMT.

.

TABLE ES-1 **DDMT/BRAC Parcel Locations Not Sampled** BRAC Sampling Program Defense Depot Memphie, Tennessee The following table presents the BRAC parcels and associated tabel locations that were not sampled during the

October 1996 field effort.

Brac Parcel Number	Label Location	BRAC Parcel Description	Non-Sampling Explanation
7	7.2	Building 249	Parcel entailed only concrete wipe sampling.
12	12.2	Building 629	Parcel entailed only concrete wipe sampling.
19	19.1, 19.2, 19.3	Bulidings 465, 467, 468, 469	Label locations 19.1 and 19.2 were not sampled because the area was completely paved. Label 19.6 entailed concrete wipe sampling.
26	26.2	Building 970	Parcel entailed only concrete wipe sampling.
27	27.2	Building 972	Parcel entailed only concrete wipe sampling.
30	30.4	Buildings 925 and P-949	Parcel entailed only concrete wipe sampling.

.

Ċ	ES-2
	Table

.

Compounds Detected in Surface Soil Compared to Surface Soli Screening Levels for All Parcels

BRAC Sampling Program

Defense Depot Memphis, Tennessee

						Crossedurator	Tarrantrial
		Detected	Background	Risk-Based C	Risk-Based Concentrations	Incounting	
		Values	Values ²	Soil Ingesti	Soil Ingestion ³ (<u>mg/kg)</u>	Protection ⁴	Ecological
Parcel	Parameter ¹	(mg/kg)	(mg/kg)	Industrial	Residential	(mg/kg)	(mg/kg)
-	Dieldrin	0.59	0.53	.36	.04	.001	NA
~	Chlordane	1.2	0.029	4.4	.49	2	NA
~	DDE	2.3	0.16	17	1.9	0.5	AN
	DDT	3.5	0.074	17	1.9	F	NA
N	Dieldrin	5.5	0.53	.36	1 0.	100.	NA
N	gamma-Chlordane	1.1	0.026	4.4	0.49	2	NA
<i>с</i> о	Aluminum	17100	24000	100000	7800	NA	NA
ო	Arsenic	101	2	3.8	64.	15	10
9	Barium	202	250	14000	550	32	500
ო	Calcium	4260	5800	NA	NA	NA	NA
e	Chlordane	0.041 J	0.029	4.4	.49	5	NA
6	Chromium	39.3	27	1000	66	19	-
6	Cobalt	14.3	18	12000	470	AN	20
ო	Copper	51.9	33	8200	310	NA	100
ო	DDE	0.53	0.16	17	1.9	0.5	NA
ю	DDT	0.14.1	0.074	17	1.9	+	NA
e	Dieldrin	10	0.53	.36	2	100.	NA
m	gamma-Chlordane	0.023 J	0.026	4.4	0.49	2	NA
ო	Iron	28400	37000	61000	2300	NA	NA
m	Lead	167	43	1000	200	1.5	50
n	Magnesium	3370	4600	NA	NA	NA	AN
6	Manganese	1070	1300	4700	180	NA	AN
m	Nickel	27	33	4100	160	21	30
B	Potassium	2770	2000	NA	NA	NA	AA
m	Vanadium	43.2	52	1400	55	NA	7
n	Zinc	170	130	61000	2300	42000	20
2	Chlordane	0.017 J	0.029	4,4	49	2	AN
2	000	0.026 J	0.0067	24	2.7	0.7	AN

mgm97-DDMT BRAC Sampling Reports/Exesum/Surface Soil

244 6

5-72
Table

.

Compounds Detected in Surface Soil Compared to Surface Soil Screening Levels for All Parcels

BRAC Sampling Program Defense Depot Memphis, Tennessee

:							-
		Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	l errestrial
		Values	Values ²	Soil Ingesti	Soil tngestion ³ (mg/kg)	Protection ⁴	Ecological
Parcel	Parameter	(mg/kg)	(mg/kg)	Industrial	Residential	(mg/kg)	(mg/kg)
ю	DOE	0.13	0.15	17	1.9	0.5	NA
5 C	DDT	0.25	0.074	17	1.9	•	NA
ŝ	Dieldrin	0.034 J	0.53	.36	6	.001	NA
S	gamma-Chlordane	0.017 J	0.026	4.4	0.49	2	NA
G	Arocior-1260	2.9.1	0.11	4.1	.16	NA	40
ç	DDE	0.82	0.16	17	1.9	0.5	NA
9	DDT	0.83	0.074	17	1.9	1	AA
ъ	Dieldrin	1.4	0.53	36	Þ.	100.	AN
80	DDE	0.098	0.16	17	1.9	0.5	NA
	DDT	0.16	0.074	17	1.9	-	AN
8	Dieldrin	6.0	0.53	.36	-04	.001	NA
6	DDE	0.7	0.16	17	1.9	0.5	A
6	DDT	76.0	0.074	17	1.9	Ŧ	NA
6	Dieldrin	5.6	0.53	.36	.04	.001	AA
ç	DDE	1.4	0.16	17	1.9	0.5	AA
0	DDT	0.99	0.074	17	1.9	•	AN
0	Dieldrin	2.7	0.53	36	-04	.001	AN
11	DDE	0.44	0.16	17	1.9	0.5	NA
11	DDT	0.26	0.074	17	1.9	+	NA
=	Dieldrin	4.5	0.53	.36	5	8	NA
13	Chlordane	0.026 J	0.029	4.4	.49	5	M
13	DDE	0.12	0.16	17	1,9	0.5	AN
13	DDT	0.17	0.074	17	1.9	-	AN
13	Dieldrin	0.28	0.53	.36	.04	100	AN
13	gamma-Chtordana	0.088	0.026	4.4	0.49	8	AN
14	Chlordane	0.03.J	0.029	4.4	.49	2	AN
14	DDE	0.39	0.16	17	1.9	0.5	AN
14	DDT	0.44	0.074	17	1.9		NA

244

7

mgm97-DDMT BRAC Sampling Reports/Exesum/Surface Soll

Ш Ш	
Table	

.

Compounds Detected in Surface Soil Compared to Surface Soil Screening Levels for All Parcels

BRAC Sampling Program

Defense Depot Memphis, Tennessee

			Detense Depot Mempins, rennessee				1
		Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	lerrestrial
	_	Values	Values ²	Soil Ingesti	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parcel	Parameter ¹	(ma/ka)	(mg/kg)	Industrial	Residential	(mg/kg)	(<u>mg/kg)</u>
14	Dieldrin	1.3	0.53	.36	9 4	.001	NA
14	gamma-Chlordane	L 860.0	0.026	4.4	0.49	2	NA
5	Dieldrin	1.9	0.53	.36	9	.001	NA
16	Chlordane	0.019 J	0.029	4.4	.49	2	NA
1 8	DDE	0.42	0.16	17	1.9	0.5	NA
16	DDT	0.41	0.074	17	1.9	1	NA
9	Dieldrin	1.3	0.53	36	.04	.001	NA
ļ₽	gamma-Chlordane	0.02	0.026	4,4	0.49	2	NA
1	DDE	0.27 J	0.16	17	1.9	0.5	NA
1	DDT	L 22.0	0.074	17	1.9	-	NA
17	Dieldrin	3.3	0.53	.36	2	100.	NA
₽	DDE	U.800.0	0.16	17	1.9	0.5	NA
18	DDT	0.012	0.074	17	1.9	+	NA
18	Dieldrin	0.028	0.53	.36	0.	.001	NA
g	Acenaphthene	3.1 J	NA	12000	470	200	NA
8	Aluminum	3910	24000	100000	7800	NA	AN
ຊ	Anthracene	4.7.1	0.096	61000	2300	4300	NA
8	Arsenic	26.4	ន	3.8	.43	15	₽
8	Barlum	43.9	250	14000	550	32	200
8	Benzo(a)anthracene	13	0.71	7.8	88		AN
20	Benzo(a)pyrene	12	0.96	.78	.088	4	NA
50	Benzo(b)fluoranthene	12	0.9	7.8	.88	4	AA
8	Benzo(g,h,i)perylene	9.1	0.82	6100	230	1400	AN
8	Benzo(k)fluoranthene	11	0.78	78	8.8	4	ΨN
30	Cedmium	12	1.4	9 <u>-</u>	3.9	9	۳ ا
20	Calcium	79600	5800	AN	NA	NA	A
8	Carbazole	4 J	0.067	290	32	S,	NA
20	Chromium	29.6	27	1000	39	19	

244

8

•

mgm97-DDMT BRAC Sampling Reports/Exesum/Surface Soli

		ES-2
_	,	[able

.

-

•

•

.

Compounds Detected in Surface Soil Compared to Surface Soil Screening Levels for All Parcels

BRAC Sampling Program

Defense Depot Memphis, Tennessee

ľ						Crownerster	
		Detected	Background	h baseq-x614	Kigx-based Concentiauons		
		Values	Values ²	Soll Ingest	Soil ingestion ³ (mg/kg)	Protection [*]	Ecological
Parcel	Parameter	(mg/kg)	(mg/kg)	Industrial	Residential	(mg/kg)	(mg/kg)
_	Chrysene	-15	0.94	780	88	-	A
1	Cobalt	6.7	18	12000	470	NA	ନ୍ଦ
1	Copper	38.3	33	8200	310	NA	100
╢━	Dibenz(a,h)anthracene	4	0.26	82.	.088	11	AA
	Dibenzofuran	1.2.1	NA	820	31	12	NA
	Dieldrin	1.1	0.53	.36	5	100.	NA
	Fluoranthene	8	1.6	8200	310	980	NA
	Fluorene	2.2 J	AN	8200	310	160	NA
	Indeno(1,2,3-cd)pyrene	đ	0.7	7.8	88.	35	AN
1	lron	12900	37000	61000	2300	NA	AN
1	Lead	217	5	1000	200	1.5	20
Τ	Magnesium	2320	4600	NA	NA	NA	٩N
	Manganese	87.4	1300	4700	180	NA	NA
1	Methylene chloride	0.002 J	NA	760	85	.01	AN
	Naphthalene	1.4.1	NA	8200	310	30	AN
	Nickel	8.3	33	4100	160	21	90
1-	Phenanthrene	23	0.61	61000	2300	4300	AN
1	Pyrene	26	1.5	6100	230	1400	A
	Sodium	330	NA	NA	NA	AN	¥
1-	Toluene	0.001 J	0.002	41000	1600	5	¥.
202	Vanadium	14.4	25	1400	55	AN	~
	Zinc	164	130	61000	2300	42000	20
	Dieldrin	5.3	0.53	.36	.04	.001	AN
	000	0.022 J	0.0067	24	2.7	0.7	¥
Т	DDE	0.039	0.16	17	1.9	0.5	NA
	DDT	0.19	0.074	17	1.9	-	¥X
	Aluminum	19700	24000	100000	7800	NA	AN
1	Barium	156	250	14000	550	32	200

244

9

mgm97-DDMT BRAC Sampling Reports/Exegum/Surface Soil

<u></u> 13 13
Table

.

Compounds Detected in Surface Soil Compared to Surface Soil Screening Levels for All Parcels

BRAC Sampling Program Defense Depot Memphis, Tennessee

		Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	Terrestrial
		Values	Values ²	Soil Ingest	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parcel	Parameter ¹	(mg/kg)	(mg/kg)	Industrial	Residential	(mg/kg)	(mg/kg)
23	bis(2-Ethylhexyl)phthalate	r 40'0	NA	410	46		¥
23	Calcium	35600	5800	AN	NA	NA	AN
53	Chromium	29.5	27	1000	39	19	٢
23	Cobalt	14.7	18	12000	470	NA	50
23	Copper	20.6	33	8200	310	NA	100
23	DDE	0.02	0.16	17	1.9	0.5	A
23	DOT	0.049	0.074	17	1.9	1	NA
23	Di-n-butylphthalate	0.26 J	NA	20000	780	120	NA
23	Dieldrin	0.024	0.53	36.	8	.001	NA
23	lran	26100	37000	61000	2300	NA	NA
23	Lead	22.1	4 3	1000	200	1.5	50
23	Magnesium	4620	4600	AN	NA	NA	NA
23	Manganese	941	1300	4700	180	NA	NA
23	Nickel	27.6	33	4100	160	21	30
23	Potassium	1390	2000	AN	NA	NA	AN
23	Selenium	18.9	0.81	1000	66	6	-
23	Vanadium	50.3	52	1400	55	NA	5
23	Zinc	74.9	130	61000	2300	42000	20
24	Atuminum	10800	24000	100000	7800	NA	AN
24	Anthracene	0.44 J	0.096	61000	2300	4300	AN
24	Arsenic	84.2	ន	3.8	.43	15	₽
24	Barium	75	250	14000	550	32	500
24	Benzo(a)anthracene	L 2.t	0.71	7.8	88.		¥
24	Benzo(a)pyrene	1	0.96	.78	.088	4	AN
24	Benzo(b)fluoranthene	L 68.0	0.9	7.8	88.	4	NA
24	Benzo(g,h,i)perylene	0.65 J	0,82	6100	230	1400	AN
24	Benzo(k)fluoranthene	11	0.78	82	8.8	4	AN
24	bis(2-Ethylhexyl)phthalate	0.53 J	NA	410	46	11	AN
J							

244 10

mgm97-DDMT BRAC Sampling Reports/Exesum/Surface Soil

5-2 2-2
Table

.

,

Compounds Detected in Surface Soil Compared to Surface Soil Screening Levels for All Parcels

BRAC Sampling Program

Detense Depot Memphis, Tennessee

		Detected	Background	Fisk-Based C	Risk-Based Concentrations	Groundwater	Terrestrial
		Values	Values ²	Soil Ingest	Soil Ingestion ³ (mg/kg)	Protection ⁴	Ecological ^s
Parcel	Parameter	(mg/kg)	(mg/kg)	Industrial	Residential	(mg/kg)	(mg/kg)
24	Butytbenzylphthalate	0.2 J	NA	41000	1600	89	AN
24	Calcium	65000	5800	NA	AN	NA	AN
24	Chromium	13.4	27	1000	39	19	
24	Chrysene	1.4.1	0.94	780	88	-	AN
24	Cobalt	2.2	18	12000	470	NA	20 20
24	Copper	12.8	33	6200	310	NA	90
24	DDT	0.011	0.074	17	1.9	-	AN
24	Di-n-butytphthalate	0.75 J	NA	20000	780	120	NA
24	Dibenz(a,h)anthracene	0.34 J	0.26	.78	.088		AN
24	Dieldrin	0.0027 J	0.53	.36	.04	.001	AN
24	Fluoranthene	2.2 J	1.6	8200	310	980	AN
24	Indeno(1,2,3-cd)pyrene	0.62 J	0.7	7.8	88	35	NA
24	l'on	11100	37000	61000	2300	NA	NA
24	Lead	47.4	43	1000	200	1.5	22
24	Magnesium	5680	4600	AN	NA	AN	AN
24	Manganese	485	1300	4700	180	NA	NA
24	Nickel	10.6	33	4100	160	21	8
24	Pentachlorophenol	0.094 J	NA	48	5.3	2	AA
24	Petroletum Hvdracarbons ⁶	1570	NA	100	NA	NA	AA
24	Phenanthrene	L 7.1	0.61	61000	2300	4300	AN
24	Potassium	887	2000	AN	NA	NA	AN
24	Pyrene	2.3	1.5	6100	230	. 1400	AN
24	Vanadium	17.5	52	1400	55	NA	7
24	Zinc	64.2	130	61000	2300	42000	20
25	Acetone	0.004 J	AN	20000	780	8	AN
25	Aluminum	4180	24000	100000	7800	NA	AN
25	Arsenic	2.4	ន	3.8	.43	15	6
25	Barium	33.7	250	14000	550	32	200

244 11

mgm97-DDMT BRAC Sampling Reports/Exesum/Surface Soli

5-2
ğ

,

Compounds Detected in Surface Soil Compared to Surface Soil Screening Levels for All Parcels

BRAC Sampling Program Defense Depot Memphls, Tennessee

		Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	
		Values	Values ²	Soil Ingest	Soil Ingestion ³ (mg/kg)	Protection ⁴	Ecological ³
Parcel	Parameter ¹	(By/6m)	(mg/kg)	Industrial	Residential	(mg/kg)	(mg/kg)
25	Benzo(a)anthracene	0.082 J	0.71	8.7	.88	.7	AN
25	Benzo(a)pyrene	0.088 J	96.0	.78	.088	4	AA
25	Benzo(b)ftuoranthene	0.084 J	0.9	7,8	88.	4	NA
25	Benzo(g,h,i)perylene	0.048 J	0.82	6100	230	1400	¥
25	Benzo(k)fluoranthene	L 860.0	0.78	78	8.8	4	AN
25	Calcium	31200	5800	NA	NA	NA	Ą
55	Chlordane	0.071	0.029	4.4	.49	2	AA
52	Chromium	5.5	27	1000	39	19	-
55	Chrysene	0.12 J	0.94	780	88	-	NA
	Copper	3.3	33	8200	310	NA	100
	Di-n-buty/phthalate	0.075 J	NA	2000	780	120	NA
25	Fluoranthene	0.16.J	1.6	8200	310	980	AN
25	gamma-Chlordane	0.092	0.026	4.4	0.49	2	NA
25	Indeno(1,2,3-cd)pyrene	0.052 J	0.7	7.8	.88	35	AN
25	Iran	5220	37000	61000	2300	NA	NA
25	Lead	2.8	43	1000	200	1.5	20
25	Magnesium	1850	4600	NA	AN	AN	NA
25	Manganese	66.3	1300	4700	180	NA	NA
25	Methylene chloride	0.001 J	AN	760	85	<u>10</u>	AN
25	Phenanthrene	0.092 J	0.61	61000	2300	4300	NA
25	Pyrene	0.18.1	1.5	6100	230	1400	NA
25	Vanadium	8.9	52	1400	55	NA	5
25	Zinc	23.4	130	61000	2300	42000	20
28	Acetone	L 600.0	NA	2000	780	8	AN
28	Aluminum	24700	24000	100000	7800	NA	NA
28	Arsenic	17.6	53	3.8	.43	15	₽
28	Banum	246	250	14000	550	32	200
28	Benzo(a)anthracene	0.056 J	0.71	7.8	.88	2	¥

244 12

mgm97-ODMT BRAC Sampling Reports/Exesum/Surface Soil

.

•

Compounds Detected In Surface Soll Compared to Surface Soll Screening Levels for All Parcels

BRAC Sampling Program

	Tennessee
2	•
	ທີ
	-
	÷.
	α
	_
	•
	÷
	~
	+
	Ö
	Ā
	*
	Ψ
ŀ.	Δ
	_
	œ
	<u>9</u>
	6
	Φ
	÷
	Φ
	Δ
	_

		הסוסח					
		Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	Terrestrial
		Values	Values ²	Soll Ingest	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecological ^s
Parcel	Parameter ¹	(mg/kg)	(By/6m)	Industrial	Residential	(mg/kg)	(mg/kg)
28	Benzo(a)pyrene	0.065 J	0.96	.78	980'	4	NA
28	Benzo(b)fluoranthene	L 580.0	6.0	7.8	88.	4	NA
28	Benzo(g,h,i)perylene	0.072 J	0.82	6100	230	1400	NA
28	Benzo(k)fluoranthene	L 770.0	0.78	78	8.8	4	NA
28	Beryllium	0.95	1.1	1.3	.15	180	10
8	bis(2-Ethylhexyl)phthalate	0.12 J	NA	410	46	11	NA
28	Cadmium	0.7	1.4	100	3.9	9	e
28	Calcium	104000	5800	NA	NA	NA	NA
28	Chromium	26.1	27	1000	8	19	-
28	Chrysene	0.088 J	0.94	760	88	-	NA
28	Cobalt	13.7	18	12000	470	AN	20
28	Copper	34.5	8	B200	310	AN	100
28	000	D.046	0.0067	24	2.7	0.7	NA
28	DDE	0.044	0.16	- 17	1.9	0.5	NA
28	DDT	0,22	0.074	17	1.9	-	Ā
[.	Di-n-butylphthalate	0.28 J	NA	20000	780	120	AA
28	Fluoranthene	0.14 J	1.6	8200	310	086	NA
28	Indeno(1,2,3-cd)pyrene	0.068 J	0.7	7.8	.68	35	AA
28	Iron	38400	37000	61000	2300	NA	NA
28	Lead	58.8	8	1000	200	1.5	20
28	Magnesium	7200	4600	٩N	NA	NA	Ā
88	Manganese	1100	1300	4700	180	NA	AA
28	Mercury	2.13	0.43	61	2.3	3	Ċ.
8	Methylene chloride	0.005 J	NA	760	85	.01	NA
58	Nickel	37.4	33	4100	160	21	8
82	Phenanthrene	C 70.0	0.61	61000	2300	4300	NA
28	Potassium	2650	2000	NA	NA	AN	AN
i	Pyrene	0.13 J	1.5	6100	230	1400	NA

244 13

mgm97-DDMT BRAC Sampling Reports/Exesum/Surface Soil

5-7 12-7	
Table	

.

Compounds Detected In Surface Soil Compared to Surface Soil Screening Levels for All Parcels

BRAC Sampling Program Defense Depot Memphis, Tennessee

						C antimetration	Tarraatrial
		Detected	Background	NISK-Based C	HISK-Based Concentrations		
		Values	Values ²	Soll ingesti	Soll ingestion ³ (mg/kg)	Protection [*]	Ecological
Parcel	Parameter ¹	(mg/kg)	(mg/kg)	Industrial	Residential	(mg/kg)	(mg/kg)
28	Toluene	0.001 J	0.002	41000	·1600	5	NA
28	Vanadium	49.8	52	1400	55	NA	2
28	Zinc	185	130	61000	2300	42000	ន
29	Acetone	0.019	NA	20000	7B0	8	NA
29	Aluminum	9240	24000	100000	7800	NA	NA
29	Arsenic	12.8	ន	3.8	43	15	10
29	Barium	142	250	14000	550	32	500
59	Benzo(a)anthracene	L 760.0	0.71	7,8	88.	2	NA
58	Benzo(a)pyrene	0.057 J	0.96	.78	980.	4	A
29	Benzo(b)fluoranthene	<u>f 60.0</u>	0.0	7.8	88.	4	AN
59	Benzo(g,h,i)perylene	0.051 J	0.82	6100	230	1400	AA
29	Benzo(k)ftuoranthene	0.072 J	0.78	78	8,8	4	AN
29	bis(2-Ethylhexyi)phthalate	0.083 J	NA	410	46	11	AN
29	Butytbenzytphthalate	0.7	NA	41000	1600	89	AN
29	Calcium	6590	5800	AN	NA	NA	AN
29	Chlordane	0.011	0.029	4.4	.49	2	Ą
29	Chloromethane	L 100.0	NA	440	49	.0066	AN
58	Chromium	54.7	27	1000	39	19	-
28	Chrysena	L 170.0	0.94	780	88	+	AN
29	Cobalt	8.7	18	12000	470	AN	50
29	Copper	25.3	ខ	8200	310	AN	100
	DDT	0.043	0.074	17	1.9	-	AN
59	Di-n-butytphthalate	0.13 J	NA	20000	780	120	NA
29	Di-n-octylphthalate	0.12 J	AN	4100	160	1000000	٩N
59	Dieldrin	0.13	0.53	.36	9	.001	NA
29	Fluoranthene	0.11 J	1.6	8200	310	980	NA
29	gamma-Chlordane	0.017	0.026	4.4	0.49	2	NA
29	lon	20800	37000	61000	2300	AN	AN

mgmg7-0DMT BRAC Sampling Reports/Exesum/Surface Soil

244 14

_ <u> </u>	1
<u>ν</u> γ	
<u> </u>	
<u>a</u>	
្មគ្ន	
4	
•	

.

Compounds Detected In Surface Soil Compared to Surface Soil Screening Levels for All Parcels

BRAC Sampling Program

Defense Depot Memphis, Tennessee

		nelen					
	-	Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	i errestrial
		Values	Values ²	Soil Ingest	Sail Ingestion ³ (mg/kg)	Protection ⁴	Ecological
Parcel	Parameter	(ma/ka)	(mg/kg)	Industrial	Residential	(mg/kg)	(<u>mg/kg</u>)
50	Lead	23	\$	1000	200	1.5	20
50	Magnesium	2110	4600	AN	NA	NA	NA
	Manoanese	601	1300	4700	180	NA	NA
	Methylene chloride	0.032	NA	760	85	.01	NA
53	Nickel	15.5	33	4100	160	21	30
	Pentachlorophenol	0.096 J	AN	48	5.3	2	NA
5	Phenanthrene	0.042 J	0.61	61000	2300	4300	NA
	Potassium	911	2000	AN	NA	AN	NA
	Pyrene	0.11 J	1.5	6100	230	1400	NA
183	Selenium	12.5	0.81	1000	68	3	-
58	Vanadium	27.4	52	1400	55	NA	5
59	Zinc	152	130	61000	2300	42000	20
31	Acetone	L 700.0	NA	20000	780	8	NA
ا	Aluminum	7150	24000	100000	7800	NA	AN
31	Barium	32.5	250	14000	550	32	200
3	bis(2-Ethylhexyl)phthelate	L 60.0	NA	410	46	11	NA
6	Calcium	32400	5800	NA	NA	NA	AN
	Chromium	15.4	27	1000	39	19	-
91	Cobalt	2.2	18	12000	470	NA	50
31	Copper	4.8	ន	8200	310	NA	100
31	DDT	0.0092	0.074	17	1.9	-	NA
<u>9</u>	Iron	12300	37000	61000	2300	NA	NA
31	Lead	22.4	43	1000	200	1,5	20
31	Magnesium	984	4600	AN	NA	AA	AA
31	Manganese	106	1300	4700	180	NA	AN
<u>9</u>	Methylene chloride	0.002 J	NA	760	85	5	NA
31	Nickel	7.3	33	4100	160	21	ខ
31	Potassium	293	2000	AN	NA	NA	A N

-

244 15

mgm97-DDMT BHAC Sampling Reports/Exesum/Surface Soll

.

Compounds Detected in Surface Soil Compared to Surface Soil Screening Levels for All Parcels

BRAC Sampling Program Defense Depat Memphis, Tennessee

		Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	Terrestria!
		Values	Values ²	Soll Ingest	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecological
Parcel	Parameter	(mg/kg)	(mg/kg)	Industrial	Residential	(mg/kg)	(mg/kg)
31	Toluene	0.002 J	0.002	41000	1600	S	NA
31	Vanadium	19.6	52	1400	55	NA	2
31	Zinc	25.2	130	61000	2300	42000	ß
32	Acetone	0.005 J	NA	20000	780	8	AA
32	Aluminum	7720	24000	100000	7800	NA	AA
32	Arsenic	14.8	ន	3.8	.43	15	9
32	Barium	22.2	250	14000	550	32	200
32	bis(2-Ethylhexyl)phthalate	0.048 J	NA	410	46	11	٩
32	Calcium	22400	5800	NA	NA	NA	NA
32	Chromium	22.7	27	1000	39	19	
32	Cobalt	2.2	18	12000	470	AA	8
33	Copper	7.5	33	8200	310	AN	100
32	DDT	0.044	0.074	17	1,9	-	AN
32	tron	16000	37000	61000	2300	AA	NA
32	Lead	13.5	43	1000	200	1.5	20
32	Magnestum	719	4600	NA	NA	Ą	AN
8	Manganese	93.7	1300	4700	180	ΥN	A
33	Methylene chloride	L 700.0	NA	760	85	ē	AN
32	Nickel	15.3	R	4100	160	21	8
32	Potassium	246	2000	AN	NA	AA	AA
32	Vanadium	26.5	25	1400	55	NA	8
32	Zinc	16.5	130	61000	2300	42000	8
33	Acetone	L 900.0	NA	20000	780	9	AN
33	Aluminum	22600	24000	100000	7800	NA	AN
33	Anthracene	0.057 J	960.0	61000	2300	4300	NA
33	Antimony	9.6	1	8	3.1	ŇA	5
33	Arsenic	63.1	22	3.8	.43	15	9
	Banum	258	250	14000	550	32	200

244 16

•

1

- 444 -

Ż

•

.

Compounds Detected in Surface Soil Compared to Surface Soil Screening Levels for All Parcels

BRAC Sameling Program

uroit	lennessee
ampiing rrogra	Memphis,
BKAC VOI	se Depot
	ŝ

		Defent	Defense Depot Memphls, Tennessee	his, Tennessee			
		Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	Terrestrial
		Values	Values ²	Soil Ingesti	Soil Ingestion ^a (mg/kg)	Protection [*]	Ecological
Parcel	Parameter ¹	(mg/kg)	(mg/kg)	Industrial	Residential	(mg/kg)	(mg/kg)
33	Benzo(a)anthracene	1.2.1	0.71	7.8	.88	2	NA
33	Benzo(a)pyrene	1.4.1	0.96	.78	.088	4	NA
33	Benzo(b)fluoranthene	1.5.1	0.9	7.8	88.	4	NA
33	Benzo(k)fluoranthene	1.4.1	0.78	78	8.8	4	NA
33	bis(2-Ethylhexyl)phthatate	0.47 J	NA	410	46	11	NA
8	Calcium	38200	5800	NA	AN	NA	NA
33	Carbazole	0.21 J	0.067	290	32	.5.	NA
8	Chromium	41.5	27	1000	ĝ	19	+
33	Chrysene	1.7.1	0.94	780	88	-	NA
	Cobalt	14.8	18	12000	470	NA	20
1	Copper	38.5	33	8200	310	AN	100
1	DDE	0.012	0.16	17	1.9	0.5	NA
	DDT	0.045	0.074	17	6.1	1	NA
	Di-n-butylphthalate	0.26 J	NA	20000	780	120	NA
33	Fluoranthene	2.4	1.6	8200	310	086	NA
33	Iron	32600	37000	61000	2300	AN	NA
	Lead	145	43	1000	500	1.5	50
	Magnesium	3940	4600	NA	NA	AN	NA
ន	Manganese	948	1300	4700	180	NA	AN
ŝ	Methylene chloride	0.008 J	AN	260	85	.01	AN
33	Nickel	30.5	33	4100	160	21	30
33	Phenanthrene	1.4.1	0.61	61000	2300	4300	AN
33	Potassium	3000	2000	NA	NA	NA	AN
33	Pyrene	2.3	1.5	6100	230	1400	٩N
33	Selenium	22.4	0.81	1000	39	3	-
8	Vanadium	51.7	52	1400	55	NA	~
ŀ	Zinc	295	130	61000	2300	42000	20
34	Chlordane	0.14	0.029	4.4	.49	2	AN

244 17

mgm97-DDMT BRAC Sampling Reports/Exesum/Surface Soil

5	
ř.	

•

Compounds Detected In Surface Soil Compared to Surface Soil Screening Levels for All Parcels

BRAC Sampling Program

Defense Depot Memphis, Tennessee

				Diek-Hacad D	Diek-Raead Concentratione		
		nelected	Decryfroutiu				
		Values	Values ⁴	Soll Ingest	Soll Ingestion* (mg/kg)	Protection	Ecological
Parcel	Parameter ^t	(mg/kg)	(mg/kg)	Industrial	Residential	(mg/kg)	(mg/kg)
34 gan	gamma-Chlordane	0.15	0.026	4.4	0.49	2	NA
35 Alu	Aluminum	13600	24000	100000	1800	NA	NA
35 Ars	Arsenic	71.6	22	3.8	.43	15	10
35 Bar	Barium	479	250	14000	550	32	500
35 Ber	Benzo(a)anthracene	0.039 J	0.71	7.8	88.		NA
35 Ber	Benzo(a)pyrene	C 950.0	0.96	.78	.089	4	NA
35 Ber	Benzo(b)fluoranthene	0.045 J	0.9	7.8	88 '	4	NA
35 Ber	Benzo(g,h,i)perylene	0.037 J	0.82	6100	230	1400	NA
35 Ber	Benzo(k)fluoranthene	0.043 J	0.78	78	8.8	4	NA
35 bis(bis(2-Ethylhexyl)phthalate	0.092 J	NA	410	46	=	NA
1	Cadmium	4.9	1.4	100	3.9	ß	8
35 Cal	Calcium	60200	5800	NA	AN	٩N	NA
35 Chr	Chromium	12	27	1000	66	19	-
35 Chr	Chrysene	0.046 J	0.94	780	88	1	NA
35 Cot	Cobalt	5.6	18	12000	470	NĂ	20
35 Cor	Copper	95.2	33	8200	310	AN	100
35 ODE	U	0.066	0.16	17	1.9	0.5	NA
35 DDT		0.15	0.074	17	1.9	F	NA
35 Dì-r	Di-n-butyphthalate	0.25 J	٩N	20000	780	120	NA
35 Diel	Dieldrin	0.086	0.53	.36	2.	.001	AN
	Fluoranthene	0.076 J	1.6	8200	310	980	NA
35 Iron		24500	37000	61000	2300	AN	NA
35 Lead	p	744	43	1000	200	1.5	60
35 Mac	Magnesium	3910	4600	NA	NA	¥	NA
35 Mar	Manganese	534	1300	4700	180	AN	NA
35 Mer	Mercury	0.28	0.43	61	2.3	3	e.
35 Nickel	kal	21.3	ន	4100	160	21	30
35 Pot	Petroleum Hvdrocamons ⁶	274	AN	100	NA	AN	N

244 18

mgm97-DDMT BRAC Sampling Reports/Exesum/Surface Soil

_	2
	<u>ن</u>
	0
	Ā
	2

Compounds Detected in Surface Soli Compared to Surface Soli Screening Levels for All Parcels

BRAC Sampling Program

Defense Depot Memphis, Tennessee

		Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	lerrestrial
		Values	Values ²	Soll Ingest	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parcel	Parameter	(mg/kg)	(mg/kg)	Industrial	Residential	(mg/kg)	(mg/kg)
35	Phenanthrene	0.053 J	0.61	61000	2300	4300	NA
35	Potassium	1090	2000	NA	NA	AN	NA
35	Pyrene	0.076 J	1.5	6100	230	1400	NA
35	Sodium	399	AN	AN	NA	NA	NA
35	Vanadium	27.1	52	1400	55	NA	8
SS	Zinc	463	130	61000	2300	42000	20
10+014							

Notes:

2. Background Values are from Table 5-1 of the Draft Background Sampling Program Technicat Memorandum, CH2M HILL 1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed. September 1996.

Risk Based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R. L. Smith, April 30, 1996. ന്

Groundwater Protection Vatues are from the EPA Region III Risk-Based Concentrations Table, R. L. Smith, April 30, 1996. 4

Terrestrial Ecological values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects an Terrestrial Plants, Suter II, Will, and Evans, 1993. ഗ്

For petroleum hydrocarbon comparisons, the most conservative value of 100 ppm. from Soli Clean-Up Levels for Petroleum Contaminated Sites (provided by IDEC), was used. ÷

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - Indicates screening level values are not available for comparison.

J - Indicates estimated value above the method detection limit but below the reporting limit.

Compounds Detected in Subsurface Soil Compared to Subsurface Soil Screening Levels for all Parcels¹ BRAC Sampling Program Defense Depot Memphis, Tennessee

,

.

		Detected Values	Background Values ³	Grooundwater Protection ⁴
Parcel	Parameter ²	(mg/kg)	(mg/kg)	(mg/kg)
3	DDE	0.0057 J	0.0015	0.5
3	Dieldrin	0.047	0.37	.001
20	Aluminum	22100	22000	NA
20	Arsenic	20.6	17	15
20	Barium	175	300	32
20	Beryllium	1.5	1.2	180
20	bis(2-Ethylhexyl)phthalate	0.041 J	NA	<u>i1</u>
20	Calcium	2750	2400	NA
20	Chromium	96.6	26	19
20	Chrysene	0.04 J	NA	<u> </u>
20	Cobalt	34	20	NA
20	Copper	21.3	33	
20	Di-n-butylphthalate	0.054 J	NA	120
20	Fluoranthene	0.1 J	0.045	980
20	Iron	49500	36000	NA
20	Lead	30.5	24	1.5
20	Magnesium	3760	4900	NA
20	Manganese	4520	1500	NA
20	Methylene chloride	0.003 J	NA	.01
20	Nickel	24.6	37	21
20	Phenanthrene	0.069 J	NA	4300
20	Potassium	1810	1800	NA
20	Pyrene	0.081 J	0.042	1400
20	Vanadium	74.9	51	NA
20	Zinc	67	110	42000
23	Aluminum	39000	22000	NA
23	Arsenic	14.4	17	15
23	Barium	182	300	32
23	Benzo(a)anthracene	0.068 J	NA	
23	Benzo(a)pyrene	U.08 J	NA	4
23	Benzo(b)fluoranthene	0.088 J	NA	4
23	Benzo(g,h,i)perylene	0.1 J	NA	1400
23	Benzo(k)fluoranthene	0.081 J	NA -	4
23	Beryllium	1.7	1.2	180
23	Calcium	3890	2400	NA
23	Chromium	35.1	26	19
23	Chrysene	0.093 J	NA	1
23	Cobalt	17.4	20	NA
23	Copper	40.2	33	NA
23	Indeno(1,2,3-cd)pyrene	0.09 J	NA	35

.

.

.

щ

.

Compounds Detected in Subsurface Soll Compared to Subsurface Soll Screening Levels for all Parcels¹ BRAC Sampling Program Detense Depot Memphis, Tennessee

Parcel	Parameter ²	Detected Values (mg/kg)	Background Values ³ (mg/kg)	Grooundwater Protection ⁴ (mg/kg)
23	Iron	46700	38000	<u> </u>
23	Lead	24.3	24	1.5
23	Magneslum	4600	4900	NA
23	Manganese	1000	1500	NA
23	Nickel	34.2	37	21
23	Petroleum Hydrocarbons ⁵	3.2	NA	NA
23	Potassium	2530	1800	NA
23	Vanadium	69.3	51	NA
23	Zinc	100	110	42000
24	Aluminum	24900	22000	NA
24	Arsenic	22.1	17	15
24	Barium	271	300	32
24	Benzo(a)anthracens	0.074 J	NA	.7
24	Benzo(a)pyrene	0.071 J	NA	4
24	Benzo(b)fluoranthene	0.082 J	NA	4
24	Benzo(g,h,i)perylene	0.044 J	NA	1400
24	Benzo(k)fluoranthene	0.039 J	NA	4
24	Beryllium	1	1.2	180
24	bis(2-Ethylhexyl)phthalate	180	NA	
24	Calcium	3350	2400	NA
24	Chromium	24.2	26	19
24	Chrysene	0.076 J	NA	1
24	Cobalt	16	20	NA
24	Copper	33.9	33	NA
24	Di-n-butylphthalate	0.68	NA	120
24	Fluoranthene	0.1 J	0.045	980
24	Iron	39800	38000	NÁ
24	Lead	27.6	24	1.5
24	Magnesium	168000	4900	NA
24	Manganese	1670	1500	NA
24	N-Nitrosodiphenylamine (1)	0.14 J	NA	.2
24	Nickel	38.2	37	21
24	Petroleum Hydrocarbons ⁵	19.8	NA	NA
24	Phenanthrene	0.049 J	NA	4300
24	Potassium	7430	1800	NA
24	Pyrena	0.09 J	0.042	1400
24	Selenium	2.7	0.64	3
24	Sodium	526	NA	NA
24	Vanadium	51.1	51	NA
24	Zinc	120	110	42000

+

۲.

Compounds Detected in Subsurface Soil Compared to Subsurface Soil Screening Levels for all Parcels¹ BRAC Sampling Program Defense Depot Memphis, Tennessee

Parcel	Parameter ²	Detected Values (mg/kg)	Background Values ³ (mg/kg)	Grooundwater Protection ⁴ (mg/kg)
25	2-Hexanone	0.003 J	NA	NA
25	Aluminum	29400	22000	NA
25	Arsenic	21.3	17	15
25	Barium	301	300	32
25	Benzo(a)anthracene	0.044 J	NA	.7
25	Beryllium	1.1	1.2	180
25	bis(2-Ethylhexyl)phthalate	0.52	NA	11
25	Calcium	3580	2400	NA
25	Chromium	25.8	26	19
25	Chrysene	0.053 J	NA	1
25	Cobalt	17,1	20	NA
25	Copper	36,3	33	NA
25	Di-n-butylphthalate	0.34 J	NA	120
25	Fluoranthene	0.092 J	0.045	980
25	Iron	41700	38000	NA
25	Lead	31.6	24	1.5
25	Magnesium	5180	4900	ŇA
25	Manganese	2330	1500	NA
25	Methylene chloride	0.002 J	NA	.01
25	Nickel	41.1	37	21
25	Phenanthrena	0.056 J	NA	4300
25	Potassium	4210	1800	NA
25	Pyrene	0.083 J	0.042	1400
25	Sodium	366	NA	NA
25	Vanadium	54	51	NA
25	Zinc	122	110	42000
28	Aluminum	25000	22000	NA
28	Arsenic	22.9	17	15
28	Barium	352	300	32
28	bis(2-Ethylhexyl)phthalate	0.041 J	NA	11
28	Calcium	21700	2400	NA
28	Chromium	27.1	26	19
28	Cobalt	16.8	20	NA
28	Copper	41.1	33	NA
28	Di-n-butylphthalate	0.058 J	NA	120
28	Iron	46900	38000	NA
28	Lead	25.7	24	1.5
28	Magnesium	15500	4900	NA
28	Manganese	1230	1500	NA
28	Methylene chloride	0.004 J	NA	.01

Table ES-3

.

Compounds Detected in Subsurface Soil Compared to Subsurface Soil Screening Levels for all Parcels¹ BRAC Sampling Program Defense Depot Memphis, Tennessee

Parcel	Parameter ²	Detected Values (mg/kg)	Background Values ³ (mg/kg)	Grooundwater Protection ⁴ (mg/kg)
28	Nickel	44.8	37	21
28	Potassium	2390	1800	NA
28	Sodium	353	NA	NĂ
28	Vanadium	57.6	51	
28	Zinc	123	110	42000
29	Aluminum	22200	22000	NÄ
29	Arsenic	19.1	17	15
29	Barium	256	300	32
29	Beryllium	0.98	1.2	180
29	bis(2-Ethylhexyl)phthalate	0.085 J	NA	11
29	Bromomethane	0.002 J	NA	.1
29	Calcium	3430	2400	NA
29	Chloromethane	0.002 J	NA	.0066
29	Chromium	22.8	26	
29	Cobalt	16.4	20	NA
29	Copper	32.9	33	NA
29	Di-n-buty/phthalate	0.062 J	NA	120
29	Iron	38700	38000	NA
29	Lead	21.8	24	1.5
2 9	Magneslum	4660	4900	NA
2 9	Manganese	1150	1500	NA
29	Methylene chloride	0.002 J	NA	.01
29	Nickel	37	37	21
29	Potassium	2260	1600	NA
29	Vanadium	48.3	51	NÄ
29	Zinc	109	110	42000
31	Aluminum	28200	22000	NA
31	Arsenic	22.5	17	15
31	Barium	286	300	32
31	bis(2-Ethylhexyl)phthalate	0.076 J	NA	· 11
31	Calcium	2850	2400	NA
31	Chromium	25.5	26	19
31	Cobalt	21.3	20	NA
31	Copper	41.2	33	NA
31	Di-n-butylphthalate	0.043 J	NA	120
31	Iron	44300	38000	NA
31	Lead	29.6	24	1.5
31	Magnesium	5420	4900	NA
31	Manganese	1590	1500	NA
31	Methylene chloride	0.003 J	NA	.01

Table ES-3

Compounds Detected In Subsurface Soll Compared to Subsurface Soil Screening Levels for all Parcels¹ BRAC Sampling Program

Defense Depot Memphis, Tennessee

Parcel	Parameter ²	Detected Values (mg/kg)	Background Values ³ (mg/kg)	Grooundwater Protection ⁴ (mg/kg)
31	Nickel	38.6	37	21
31	Potassium	2350	1800	NĂ
31	Sodium	538	NA	NA
31	Vanadium	57.1	51	ŇA
31	Zinc	136	110	42000
32	Aluminum	20300	22000	NA
32	Arsenic	17.1	17	15
32	Barium	278	300	32
32	bis(2-Ethylhexyl)phthalate	0.2 J	NA	11
32	Butylbenzylphthalate	0.43	NA	68
32	Calcium	3760	2400	NA
32	Chromium	20.4	26	19
32	Cobalt	14.4	20	NA
32	Copper	32.4	33	NA
32	Di-n-butylphthalate	0.09 J	NA	120
32	Iron	35100	38000	NA
32	Lead	20.8	24	1.5
32	Magnesium	4490	4900	NA
32	Manganese	1100	1500	NA
32	Methylene chloride	0.004 J	NA	.01
32	Nickel	35.6	37	21
32	Potassium	2440	1800	NA
32	Vanadium	44,1	51	NA
32	Zinc	104	110	42000
-33	2-Butanone	0.011 J	NA	NA
33	Acetone	0.048	NA	
33	Aluminum	36300	22000	NA
33	Arsenic	25.3	17	15
33	Barlum	313	300	32
33	Beryllium	1.1	1.2	180
33	bis(2-Ethylhexyl)phthalate	0.18 J	NA	11
33	Calcium	3830	2400	NA
33	Chloromethane	0.001 J	NA	.0066
33	Chromium	32.4	26	19
33	Cobalt	27.3	20	NA
33	Copper	41.7	33	NA
33	Di-n-butylphthalate	U.3 J	NA	120
33	Dimethylphthalate	0.18 J	NA	1200
33	Iron	46500	38000	NA
33	Lead	43.6	24	1.5

,

Compounds Detected in Subsurface Soil Compared to Subsurface Soil Screening Levels for all Parcels¹ BRAC Sampling Program Defense Depot Memphis, Tennessee

		Detected Values	Background Values ³	Grooundwater Protection ⁴
Parcel	Parameter ²	(mg/kg)	(mg/kg)	(mg/kg)
33	Magneslum	5670	4900	NA
33	Manganese	2160	1500	NÁ
33	Methylene chloride	0.003 J	NA	.01
33	Nickel	45	37	21
33	Potassium	5120	1800	NA
33	Sodium	250	NA	NA
33	Vanadium	74.1	51	NA
33	Zinc	189	110	42000
35	Aluminum	38100	22000	NA
35	Arsenic	17.5	17	15
35	Barium	168	300	32
35	Beryllium	1.5	1.2	180
35	Calcium	3060	2400	NA
35	Chromium	54.5	26	19
35	Cobalt	13.6	20	NA
35	Copper	28.6	33	NA
35	tron	43400	38000	NA
35	Lead	23.8	24	1.5
35	Magnesium	3880	4900	NA
35	Manganese	959	1500	NA
35	Methylene chloride	0.004 J	NA	.01
35	Nicke	29.9	37	21
35	Potassium	2390	1800	NA
35	Vanadium	63.8	51	NA
35	Zinc	73.2	110	42000

Notes:

Only parcels with subsurface soil samples from soil borings are presented.

- The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.
- Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL, September 1996.
- Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R. L. Smith, April 30, 1996.
- 5. For petroleum hydrocarbon comparisons, the most conservative value of 100 ppm, from Soil Clean-Up Levels for Petroleum Contaminated Sites (provided by TDEC), was used.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.

NA - indicates screening level values are not available for comparison.

J - indicates estimated value above the method detection limit but below the reporting limit.

.

.

-

Acronyms

•

Ċ

.

.

BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDE	1,1,1-Dichloro-2-2-bis(4-chlorophenyl)ethylene
DDMT	Defense Depot Memphis, Tennessee
DDT	Dichlorodiphenyltrichloroethane
EPA	Environmental Protection Agency
GWP	Groundwater protection
mg/kg	Milligrams per kilogram
PCB	Polychlorinated biphenyl
RBC	Risk-based concentrations
RI	Remedial Investigation
TDEC	Tennessee Department of Environment and Conservation
VOC	Volatile organic compound

 $\mathcal{D}_{\mathcal{A}}$

Parcel 1 Report

1.

-

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 1 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Number	Label	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
1	144	1.8	32,8	3	N/A	N/A

Site Description

Parcel 1 is a 5,449 ft¹ parcel in the east central part of the Main Installation, in OU-3, as shown on Drawing 1. Parcel 1 consists of the administration building (Building 144) and the parking lots located north and south of Building 144. According to the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), the southern parking lot in this parcel was the location of former housing units. These housing units were demolished.

Soil sampling was conducted at Label 1.8. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. Label 1.8 is associated with the southern parking lot within this parcel. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

In addition, this parcel is associated with two previously reported petroleum, oil, and lubricant spills. A 4-gallon motor oil spill was reported on March 22, 1995, at the Gate 1 parking lot. In addition, a minor diesel spill was reported on October 28, 1993, in the street at Gate 1 (Defense Logistics Agency, DDMT 1995 Spill Response Checklist, 1993 Spill Response Summary as cited in Woodward-Clyde, November 1996). The precise locations of the spills are unknown. Application of absorbent was sufficient to contain the spills, and no further remedial action was deemed necessary. Therefore, the current sampling activities are not in response to these remediated spills.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, two samples were collected for Label 1.8. Sample A(1.8) was located towards the southwestern corner of the southern parking lot and Sample B(1.8) was located toward the northwestern corner of the southern parking lot (See Drawing 1, BRAC Soil Sample Locations).

1

· . .

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Both samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

The two samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling Procedures

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 1 which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

				Defense Dep	Defense Depot Memphis, Tennessee	am Artessee		
			Detected Value	Background Value ²	Risk-Based Concentrations Soil ingestion ^a (mg/kg)	oncentrations on ^a (mg/kg)	Groundwater Protection ⁴	Terrestrial/ Ecological ^s
Parameter ¹		Station ID Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Dieldrin	A(1.8)	0 to .5	0.31	0.53	Ą.	.36	100.	NA
	B(1.8)	0 to .5	0.59	0.53	<u>ą</u>	96.	.001	AN
Notes: 1. The parameter lis: 2. Background Valut September 1995.	Notes: 1. The parameter listing includes only the pa 2. Background Values are from Table 5-1 of September 1996.	cludes only the from Table 5		ırs detected with aft Background	in each parcel a Sampling Progra	nd not all the pan im Technical Mar	Notes: 1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed. 2. Background Values are from Table 5-1 of the <i>Draft Background Sampling Program Technical Mamorandum</i> , CH2M HILL, September 1996.	-ī
3. Risk-base	3. Risk-based Concentrations are from the I	ons are from	the EPA Re	ıgion III Risk-Ba	sed Concentration	ons Table, R.L. S	EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	
4. Groundwa	4. Groundwater Protection Values are from	Values are fi	rom the EP,	4 Region III Ris	k-Based Concen.	trations Table, A.	the EPA Region 11 Risk-Based Concentrations Table, P.L. Smith, April 30, 1996.	96.
5. Terrestrial Terrestrial	Terrestrial Ecological Values are from <i>Toxicologic Terrestrial Plants</i> , Suter II, Will, and Evans, 1993.	alues are fron	n <i>Toxicologi</i> Evans, 1995	ical Benchmerk 1.	for Screening Pr	stential Contamin.	 Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants, Suter II, Will, and Evans, 1993. 	fects on
Bold text ind	Bold text indicates detections that exceed a	ins that excer	ed a screeni	ing level value a	Bold text indicates detections that exceed a screening level value and the associate	ad screening level	screening level value and the associated screening level value that was exceeded.	sded.

÷

e.

.

mgm97-DDMT-BRAC Sampling Reports2/Ssdet/Parcel 1

....

-

•

• • •

244 30

;

γ.,

Acronyms

,

r

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
РСР	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
трн	total petroleum hydrocarbon
VOC	volatile organic compound

λ.

Parcel 3 Report

Ţ

5

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 3 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Facility Number	Labels	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
3	Golf Course Area	3.5, 3.10	31,6	Э	N/A	N/A

Site Description

Parcel 3 is a 15,022 ft² parcel in the southeast corner of the Main Installation in OU-3, as shown on Drawing 1. Parcel 3 consists of the golf course, Lake Danielson, the golf course pond, and Buildings 188, 189, 192, 193, 194, 195, 196, 197, and 198.

Soil sampling was conducted at Labels 3.5 and 3.10. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. Label 3.5 includes the golf course area. Pesticide application has been periodically performed to provide routine golf course maintenance. Label 3.10 is associated with the location of a former pistol range. A 1947 installation map shows a pistol range directly behind the current location of Building 271, near the 9th hole of the golf course (Chemical Systems Laboratory 1981; Office of Post Engineer, DDMT 1947 as cited in Woodward-Clyde, November 1996). For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

The descriptions below present the labels sampled within this parcel. All samples received at CH2M HILL's Analytical Services in Montgomery, Alabama were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Label 3.5 - Golf Course Area

Based on the recommendations of the Environmental Baseline Survey Report (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, six samples were collected for Label 3.5. Sample A(3.5) was located north of the rip rap surrounding the golf course pond. Sample B(3.5) was located west of the drainage ditch and the 9th green. Sample C(3.5) was located west of 1st Street. Sample D(3.5) was located east of the 8th hole fairway. Sample E(3.5) was located at the northeastern corner of Lake Danielson. Sample F(3.5) was located in the southeastern corner where two drainage ditches meet (See Drawing 1, BRAC Soil Sample Locations).

1

A stainless steel trowel was used to remove the top layer of sod and collect the soil sample directly into the sample jars. All six samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

The six samples were sent to CH2M HILL's laboratory for pesticides and PCBs analyses.

Label 3.10 - Former Pistol Range

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, one sample was collected for Label 3.10. Sample A(3.10) was located southwest of Building 271 and north of the 9th green.

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless steel trowel was used to collect the soil sample directly into the sample jars. Sample A(3.10) was collected from beneath the grass to less than 6 inches bgs.

The sample A(3.10) was sent to CH2M HILL's laboratory for pesticides, PCBs, and TAL metals analyses.

Subsurface Soil Sampling and Analyses Procedure

Subsurface soil samples were collected using a 2-foot, stainless-steel, split-spoon sampler. Samples were collected from intervals of zero to 4 ft, 4 to 7 ft, and 7 to 10 ft. Soil was placed into a stainless-steel bowl, mixed thoroughly with stainless-steel spoons, and then placed into the appropriate sample jars.

Soil Boring SB-1, is at the same location where surface soil sample B(3.5) was collected. Soil Boring SB-2, is at the same location where surface soil sample D(3.5) was collected.

Three samples were collected from each of the two soil borings (SB-1 and SB-2). The six samples were sent to CH2M HILL's laboratory for pesticides and PCBs analyses.

Results

Surface soil sampling locations with values above detection limits are shown in Table 3-A, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold. The same information is presented in Table 3-B for subsurface soil sampling locations, except there are only two types of comparison criteria appropriate for subsurface soil samples.

`~

Table A Summary of Detected Compounds In Surface and Compared to Screening Levels for Parcel 3

٠

BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based	Risk-Based Concentrations	Groundwater	Terrestrial
			Value	Value ²	Soll Inges	Soll Ingestion [®] (mg/kg)	Protection ⁴	Ecological ⁵
Parameter'	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Aluminum	A(3.10)	0 to .5	17100	24000	7800	100000	NA	AA
Arsenic	A(3.10)	0 to .5	101	22	.43	3.8	15	10
Banum	A(3.10)	0 to .5	202	250	550	14000	32	500
Calcium	A(3.10)	0 to .5	4260	5800	NA	NA	NA	NA
Chlordane	A(3.5)	0 to .5	0.041 J	0.029	.49	4,4	2	NA
Chromium	A(3.10)	0 to .5	39.3	27	39	1000	19	-
Cobalt	A(3.10)	0 to .5	14.3	18	470	12000	NA	20
Copper	A(3.10)	0 ta .5	51.9	33	310	8200	NA	100
DDE	A(3.10)	0 to .5	0.019	0.16	1.9	17	0.5	NA
	A(3.5)	0 to .5	0.26	0.16	1.9	17	0.5	NA
	E(3.5)	0 to .5	0.53	0.16	1.9	17	5'0	NA
	F(3.5)	0 to .5	L 71.0	0.16	1.9	17	0.5	NA
IDD	A(3.10)	0 to .5	0.023	0.074	1.9	17	ŀ	NA
	A(3.5)	0 to .5	0.13	0.074	1.9	17	F	NA
	F(3.5)	0 to .5	0.14 J	0.074	1,9	17		NA
Dieldrin	A(3.10)	0 to .5	0.06	0.53	.04	.36	100.	NA
	A(3.5)	0 to .5	0.5	0.53	.04	.36	.001	NA
	B(3.5)	0 to .5	10	0.53	,04	.36	100.	NA
	C(3.5)	0 to .5	0.068	0.53	.04	.36	.001	NA
	D(3.5)	0 to .5	1.4	0.53	40	.36	.001	NA
	E(3.5)	0 to .5	0.57	0.53	5	.36	.001	NA
		0 to .5	0.44	0.53	.04	.36	100.	NA
gamma-Chlorde	A(3.5)	0 to .5	0.023 J	0.026	0.49	4.4	2	NA
Iron	A(3.10)	0 to .5	28400	37000	2300	61000	NA	NA
Lead	A(3.10)	0 to .5	167	43	200	1000	1.5	50
Magnesturn	A(3.10)	0 to .5	3370	4600	NA	NA	NA	NA
Manganese	A(3.10)	0 to .5	1070	1300	180	4700	NA	NA
Nickel	A(3.10)	0 to .5	27	33	160	4100	21	30
Potassium	A(3.10)	0 to .5	2770	2000	NA	NA	NA	NA
Vanadium	A(3.10)	0 to .5	43.2	52	55	1400	NA	2

ъ.

mgm97-DDMT BRAC Sampling Reports2/Ssdet/Parcel 3

Summary of Detected Communds in Surface of Commund to Secondar Loude for Barrel a	ouring of percent compounds in surgered in compared to surgering tevels for Parcel 3 BRAC Sampling Program	Defense Depot Memphis, Tennessee
---	---	----------------------------------

			Detected	Background	Risk-Based	Detected Background Risk-Based Concentrations Groundwater	Groundwater	Terrestrial/
			Value	Value ²	Soll Inges	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station ID Depth (Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/ka)
Zinc	A(3.10)	0 to .5	170	130	2300	61000	42000	20
Notes:			 -					
1. The parameter listing includes only 2. Background Values are from Table	1. The parameter listing includes only 2. Background Values are from Table	des only the p vm Table 5-1 o	Arameters d	etected within ∈ \ackground San	each parcel an mpling Program	the parameters detected within each parcel and not all the parameters analyzed. 5-1 of the Draft Background Sampling Program Technical Memorandum. CH2M Hitt	teters analyzed. <i>vandum</i> , CH2M H	

September 1996.

3. Hisk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, P.L. Smith, April 30, 1996. 4

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants, Suter II, Will, and Evans, 1993.

Bold text indicates detections that exceeded a screening fevel value and the associated screening level value that was exceeded. NA - indicates screening level values are not avaitable for comparison.

J - indicates estimated value above the method detection limit but below the reporting limit.

Table 3-B

Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 3 BRAC Sampling Program Defense Depot Memphis, Tennessee

Parameter ¹	Station ID	Depth (ft)	Detected Value (mg/kg)	Background Value ² (mg/kg)	Groundwater Protection Values ³ (mg/kg)
DDE	B(3.5)	_0 to 4	0.0057 J	0.0015	0.5
Dieldrin	B(3.5)	0 to 4	0.042	0.37	.001
	D(3.5)	0 to 4	0.047	0.37	.001
	D(3.5)	7 to 10	0.016	0.37	.001

Notes:

 The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.

 Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL, September 1996.

3. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table , R.L. Smith, April 30, 1996.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.

NA - indicates screening level values are not available for comparison.

J - Indicates estimated value above the detection limit but below the reporting limit.

 ${\bf k}_{i}$

Acronyms

٠

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
РСР	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
трн	total petroleum hydrocarbon
VOC	volatile organic compound

Ъ.

Parcel 4 Report BRAC Sampling Program for Defense Depot Memphis, Tennessee

1 ⁴⁷

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 4 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Numbers	Labels	CERFA Map Location	RI/FS OU	Site No.	CERCL A Status
4	251, 252, 253, 254, 256, 257, 260, 261, 263, 265, 270, 271, 273	4.12,4.13	31,9 and 31,8	3	N/ A	N/A

Site Description

a,

Parcel 4 is a 3,001 ft² parcel in the southeast/east corner of the Main Installation in OU-3, as shown on Drawing 1. Parcel 4 consists of Buildings 251, 252, 253, 254, 256, 257, 260, 261, 263, 265, 270, 271, and 273.

Sump sediment sampling was conducted at Labels 4.12 and 4.13. Label is a term used in the *Environmental Baseline Survey Report* (Woodward Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. Label 4.12 is associated with Building 251. According to the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), a visual inspection noted a sump/waste oil tank located inside the building. Label 4.13 is associated with Building 265. A visual inspection indicated a floor drain inside the building that is connected to the sanitary sewer. No previous sampling had been conducted at either Label 4.12 or Label 4.13. Sampling and analyses were conducted for sump sediments in both buildings.

Sediment Sampling and Analyses Procedure

The descriptions below present the labels sampled within this parcel. All samples received at CH2M HILL's Analytical Services in Montgomery, Alabama were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Label 4.12 - Building 251

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, one sample was collected for Label 4.12. Sample A(4.12) was taken from a sump beneath a floor drain located towards the south end of Building 251 (See Drawing 1, BRAC Soil Sample Locations).

1

A stainless-steel spoon was used to collect the sediment sample directly from the sump into the sample containers. The sample was sent to CH2M HILL's laboratory for SVOCs, TAL metals, and TPH Method 418.1 analyses.

Label 4.13 - Building 265

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, one sample was collected for Label 4.13. Sample A(4.13) was taken from a sump beneath a floor drain located towards the east side of Building 265 (See Drawing 1, BRAC Soil Sample Locations).

A stainless-steel spoon was used to collect the sediment sample directly from the sump into the sample containers. The sample was sent to CH2M HILL's laboratory for SVOCs, TAL metals, and TPH Method 418.1 analyses.

Surface Soil Sampling Procedure

No surface soil samples were collected at this site during this sampling event.

Subsurface Soil Sampling Procedures

No subsurface soil samples were collected at this site during this sampling event.

Results

Sump sediment sampling locations with values above detection limits are shown in Table 4. Detected compounds from sump samples have no appropriate screening criteria to use for comparison.

244 42

ī.

Table 4 Summary of Detected Compounds in Sump Samples for Parcel 4 BRAC Sampling Program Defense Depot Memphis, Tennesses

			Detected Value ²
Parameter ¹	Station ID	Depth (ft)	(mg/kg)
Acanaphthene	A(4.12)	0 10 .5	0.56 J
Aluminum	A(4.12)	0 to .5	6550
	A(4.13)	0 to .5	16400
Anthracene	A(4.12)	0 to .5	1.2 J
Antimony	A(4.12)	0 to .5	2420
	A(4.13)	0 to .5	307
Arsenic	A(4.13)	0 to .5	10.6
Barium	A(4,12)	0 to .5	7300
	A(4.13)	0 10 .5	7270
Benzo(a)anthracene	A(4.12)	0 to .5	6.5
• • •	A(4.13)	0 to .5	0.62 J
Benzo(a)pyrene	A(4.12)	0 to .5	5.4
	A(4.13)	0 to .5	0.65 J
Benzo(b)fluoranthene	A(4.12)	0 to .5	8.7
	A(4.13)	0 to .5	1.2 J
Benzo(g,h,i)perytene	A(4.12)	0 to .5	0.39 J
Benzo(k)fluoranthene	A(4.12)	0 to .5	8.1
Benzolityindora harono	A(4.13)	0 to .5	0.95 J
Cadmium	A(4.12)	0 to .5	65
	A(4.13)	0 to .5	54.3
Calcium	A(4.12)	0 to .5	61600
- Concrean	A(4.13)	0 to .5	158000
Carbazolo	A(4.12)	0 to .5	0.B3 J
Chromium	A(4.12)	0 to .5	315
Cindeman	A(4.13)	0 to .5	513
Chrysono	A(4.12)	0 to .5	9,8
Chiysono	A(4.13)	0 to .5	8.0 1.2 J
Cobalt		0 to .5	131
Coular	A(4.12)	0 to .5	182
C	A(4.13)	0 to .5	5000
Coppor	A(4.12)	0 to .5	28500
Dihanala binadhraatad	A(4.13)	· · · ·	
Dibenz(a,h)anihracène	A(4.12)	0 to .5	0.86 J
Fluoranthene	A(4.12)		9
	A(4.13)	0 to .5	0.56 J
Iron	A(4.12)	0 to .5	192000
	A(4.13)	0 to .5	242000
Lead	A(4.12)	0 to .5	7130
	A(4.13)	0 to .5	6220
Magnesium	A(4.12)	0 to .5	34100
	A(4.13)	0 to .5	23300
Manganese	A(4.12)	0 to .5	1010
	A(4.13)	0 to .5	1480
Mercury	A(4.12)	0 to .5	0.67
Nickel	A(4.12)	0 ta .5	. 277
	A(4.13)	0 to .5	165
Petroleum Hydrocarbons	A(4.12)	0 to .5	1460
	A(4.13)	0 to .5	1410

Table 4 Summary of Detected Compounds in Sump Samples for Parcel 4 BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected Value ²
Peremotor ¹	Station ID	Dopth (ft)	(mg/kg)
Phananthrano	A(4.12)	0 to .5	6.7
	A(4.13)	0 to .5	0.36 J
Phanol	A(4.13)	0 to .5	0.39 J
Potassium	A(4.12)	0 to .5	2110
	A(4.13)	0 to .5	2790
Pyrene	A(4,12)	0 to .5	9.7
	A(4.13)	0 to .5	0.9 J
Selenium	A(4.12)	0 to .5	364
	A(4.13)	0 to .5	99.8
Sîlver	A(4.12)	0 to .5	97.9
Sodium	A(4,12)	0 to .5	1610
	A(4.13)	0 to .5	3500
Thallium	A(4.13)	010.5	42
Vanadium	A(4.12)	Q to .5	30.8
	A(4.13)	0 to .5	22.9
Zinc	A(4.12)	0 to .5	11100
	A(4.13)	0 to .5	9950

Notes:

 The parameter listing includes only the parameters detected within such parcel and not all the parameters analyzed.

 Detected compounds from sump samples have no appropriate screening criteria to use for comparison.

 Indicates estimated value above the method detection limit but below the reporting limit.

.

mgm97-DDMT BRAC Sampling Reports2/Ssdat/Parcel 4

ъ.

Acronyms

-

•

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
PCB	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
TPH	total petroleum hydrocarbon
VOC	volatile organic compound

5.2

Parcel 5 Report

z

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 5 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Numbers	Label	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
5	272, 274	5.1	29,7	3	N/A	N/A

Site Description

Parcel 5 is a 605 ft² parcel in the southeast portion of the Main Installation in OU-3, as shown on Drawing 1. Parcel 5 consists of Buildings 272 and 274.

Soil sampling was conducted at Label 5.1, which is associated with Building 272. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, one sample was collected for Label 5.1. Sample A(5.1) was located southwest of Building 272 and directly west of a bin filled with bark (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Sample A(5.1) was collected from beneath the grass to less than 6 inches below ground surface (bgs).

The sample was sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995).

1

. .

Subsurface Soil Sampling Procedures

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 5, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

	Compai
ŝ	Soil
L	Surface
	<u>2</u>
	Compounds
	ected

ired to Screening Levels for Parcel 5 **BRAC Sampling Program** Summary of Detr

Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	TerrestriaV
			Value	Value ²	Soil Ingest	Soil Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station ID	Station ID Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Chlordane	A(5.1)	0 to .5	L 710.0	0.029	49	4,4	2	NA
000	A(5.1)	0 to .5	0.026 J	0.0067	2.7	24	0.7	NA
DDE	A(5.1)	0 to .5	0.039 J	0.16	1.9	17	0.5	NA
	A(5.1)	0 to .5	0.13	0.16	1.9	17	0.5	NA
DDT	A(5.1)	0 to .5	0.081	0.074	1.9	17	1	NA
	A(5.1)	0 to .5	0.25	0.074	1.9	17	1	NA
Dieldrin	A(5.1)	0 to .5	0.034 J	0.53	.04	.36	100'	NA
gamma-Chlordane	A(5.1)	0 to .5	0.017 J	0.026	0.49	4.4	2	NA
Notes: 1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed. 2. Background Values are from Table 5-1 of the <i>Draft Background Sampling Program Technical Memorandum</i> , CH2M Hil September 1996. 3. Risk-based Concentrations are from the <i>EPA Realon III Risk-Based Concentrations Table</i> . R.L. Smith. April 30. 1996.	sting include ues are from tentions a	es only the p Table 5-1 c re from the	oarameters (of the <i>Draft</i> E FPA Realon	detected withlr lackground Sa 111 Risk-Based C	n each parcel c mpling Program	and not all the pr n Technical Merr Table, R.L. Smith.	arameters detected within each parcel and not all the parameters analyzed. the Draft Background Sampling Program Technical Memorandum, CH2M HILL, PA Reaton III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	ad. HILL

Record of the second second and the craned of the card of the second of the second s

Terrestrial Plants. Suter II, Will, and Evans, 1993.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - Indicates screening level values are not available for comparison.

J - Indicates estimated value above the method detection limit but below the reporting limit.

mgm97-ODMT BRAC Sampling Reports2/Ssdet/Parcel 5

з.,

Acronyms

۲

,

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
ТРН	total petroleum hydrocarbon
VOC	volatile organic compound

 $\mathbf{x}_{\mathbf{z}}$

Parcel 6 Report

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 6 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Numbers	Label	CERFA Map Location	RI/FS OU	Site No.	CÉRCLA Status
6	250, 349, 350	6.1	29,10	3	N/A	N/A

Site Description

Parcel 6 is a 4,129 ft² parcel in the central east part of the Main Installation in OU-3, as shown on Drawing 1. Parcel 6 consists of Buildings 250, 349, 350 and the adjacent railroad tracks.

Soil sampling was conducted at Label 6.1, which is associated with Buildings 250, 349, and 350. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, three samples were collected for Label 6.1. Sample A(6.1) was located south of Building 250. Sample B(6.1) was located west of Building 349. Sample C(6.1) was located south of Building 350 between two transformer poles (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. All samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

The three samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in

1

i.e.

accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling Procedures

No subsurface soil samples were collected at this site during this sampling event.

Results

٦,

Surface soil sampling locations with values above detection limits are shown in Table 6, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

•

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 6

BRAC Sampling Program Defense Depot Memphis, Tennessee

, 			Detected	Background	Risk-Based Concentrations	oncentrations	Groundwater	Terrestrial
			Value	Value ²	Soll Ingestion ³ (mg/kg)	on³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter	Station ID Dept	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Amclor-1260	A(6.1)	0 to .5	2.3	0.11	.16	4.1	AA	40
	A(6.1)	0 to .5	L 9.2	0.11	.16	4.4	AN	40
DDE	A(6.1)	0 to .5	0.67	0.16	1.9	17	0.5	NA
	A(6.1)	0 to .5	0.82	0.16	1.9	17	0.5	MA
	B(6.1)	0 to .5	0.18	0.16	1.9	17	0.5	NA
	C(6.1)	0 to .5	0.24 J	0.16	1.9	17	0.5	NA
DDT	A(6.1)	0 to .5	0.44	0.074	1.9	17	+-	AN
	A(6.1)	0 to .5	0.45	0.074	1.9	17	•	AN
	B(6.1)	0 to 5	U. 860.0	0.074	1.9	17	-	AA
	C(6.1)	0 to .5	0.83	0.074	1,9	17		AA
Dieldrin	A(6.1)	0 to .5	0.54	0.53	ą	.36	100.	A
	A(6.1)	0 to .5	0.59	0.53	ą	.36	.001	AN
	B(6.1)	0 to .5	0.38	0.53	Ą	.36	.001	NA
	C(6.1)	0 to .5	1.4	0.53	-04	.36	100.	NA
Notes:								
1. The parameter listing includes	eter listing i		the paramet	ters detected wit	only the parameters detected within each parcel and not all the parameters analyzed.	ind not all the par	ameters analyzed	d.
2. Background Values are from	d Values an	•	5-1 of the D	hafi Background	Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL.	am Technical Me	morandum, CH2I	M HILL,
September 1996.	1996.							
3. Risk-based	Concentral	tions are froi	m the EPA A	legion III Risk-B.	3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	ons Table, R.L. 5	Smith, April 30, 15	<u> 196.</u>
4. Groundwatt	er Protectio	n Values are	o from the EF	PA Region III Ris	4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	trations Table, R	.L. Smith, April 3(0, 1996.

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants, Suter II, Will, and Evans, 1993.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - indicates screening level values are not available for comparison.

J - indicates estimated value above the method detection limit but below the reporting limit.

Acronyms

2

.

,

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
РСР	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
TPH	total petroleum hydrocarbon
VOC	volatile organic compound

۰.

Parcel 8 Report

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 8 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Numbers	Label	CERFA Map Location	RI/FS OU	Site No.	CERĈLA Status
8	229, 230, 329, 330	8.1	28,13	3	N/A	N/A

Site Description

Parcel 8 is a 5,554 ft² parcel in the northeast portion of the Main Installation in OU-3, as shown on Drawing 1. Parcel 8 consists of Buildings 229, 230, 329, 330 and the adjacent railroad tracks.

Soil sampling was conducted at Label 8.1, which consists of Buildings 229, 230, 329, and 330. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the Environmental Baseline Survey Report (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, four samples were collected for Label 8.1. Sample A(8.1) was located southeast of Building 330. Sample B(8.1) was located east of Building 230. Sample C(8.1) was located north of Building 229. Sample D(8.1) was located northwest of Building 329 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. All samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

The four samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in

1

3...

244 57

accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling Procedures

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 8, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

Tal

ţ

Summary of Detected Compounds in Surface Soil Comparted to Screening Levels for Parcel 8

BRAC Sampling Program

	nphis, Tennessee
Ĺ	ē
	Ξ
	pod
	ŏ
	lense
	ő

			Detected	Background	Risk-Based Concentrations	oncentrations	Groundwater	TerrestriaV
			Value	Value ²	Soil Ingestion ^a (mg/kg)	on ³ (mg/kg)	Protection ⁴	Ecological ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(63/6w)	Residential	Industrial	(mg/kg)	(mg/kg)
DDE	<u>A(</u> 8.1)	0 to .5	C 90.0	0.16	1.9	17	0.5	NA
	B(8.1)	0 to .5	0.047 J	0.16	1.9	17	0.5	AN
	C(8.1)	0 to .5	0.098	0.16	1.9	17	0.5	NA
	D(8.1)	0 to .5	0.045	0.16	1.9	17	0.5	NA
DDT	A(8.1)	0 to .5	0.14 J	0.074	1.9	17		NA
	B(8.1)	0 to .5	D.078 J	0.074	1.9	17	- -	AN
	C(8.1)	0 to .5	0.16	0.074	1.9	17	-	AN
	D(8.1)	0 to .5	0.045	0.074	1.9	17	1	NA
Dieldrin	A(8.1)	0 to .5	0.4	0.53	व्	.36	.001	NA
	A(8.1)	0 to .5	0.9	0.53	8	.36	.001	NA
	B(8.1)	0 to .5	0.16	0.53	\$	36	100.	NA
	C(8.1)	0 to .5	0.27	0.53	2	36.	.001	NA
	D(8.1)	0 to .5	0.052	0.53	.04	.36	.001	NA
Notes: Notes: 1. The parameter listing includes only 2. Background Values are from Table September 1996. 3. Risk-based Concentrations are from 4. Groundwater Protection Values are	eter Isting 1 Values a 1996. Concentra er Protectik	ncludes only re from Table flons are froi on Vatues ar	 the parami 5-1 of the t m the EPA R e from the E 	eters detected Jraft Backgrour 'egton III Risk-Ba	within each par nd Sampling Proy ised Concentrati sk-Based Conce	cel and not all th gram Technical. tons Table, R.L. S intrations Table.	Notes: 1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed. 2. Background Values are from Table 5-1 of the <i>Draft Background Sampling Program Technical Memarandum</i> , CH2M HILL September 1996. 3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996. 4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	yzed. M HILL, 996.

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants, Suter II, Will, and Evans, 1993.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - Indicates screening level values are not available for comparison.

J - Indicates estimated value above the method detection limit but below the reporting limit.

244 59

5.

ŀ

Acronyms

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
TPH	total petroleum hydrocarbon
VOC	volatile organic compound

Parcel 9 Report

*

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 9 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Numbers	Label	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
9	429, 430, 449, 450	9.1	22,15	3	N/A	N/A

Site Description

Parcel 9 is a 5,524 ft¹ parcel in the central part of the Main Installation in OU-3, as shown on Drawing 1. Parcel 9 consists of Buildings 429, 430, 449, and 450 and the adjacent railroad tracks.

Soil sampling was conducted at Label 9.1, which consists of Buildings 429, 430, 449, and 450. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, three samples were collected for Label 9.1. Sample A(9.1) was located towards the northwest corner of Building 429. Sample B(9.1) was located towards the southwest corner of Building 430. Sample C(9.1) was located towards the southeast corner of Building 450 between two transformer poles (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. All samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

The three samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

1

244 62

Subsurface Soil Sampling Procedures

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 9, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

			Detected	Background	Risk-Based	Risk-Based Concentrations	Groundwater	Terrestrial
			Value	Value ²	Soll Inge	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station ID Depth (ft)	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kq)
DDE	<u> </u>	0 to .5	2.0	0.16	6 , F	17	0.5	NA
DOT	B(9.1)	0 to .5	0.37	0.074	1,9	17	-	NA
Dieldrin	A(9.1)	0 to .5	1.8	0.53	8	.36	.001	NA
	A(9.1)	0 to .5	5.6	0.53	6	36.	100.	NA
	B(9.1)	0 to .5	0.47	0.53	-0.	.36	.001	NA
	C(9.1)	0 to .5	4	0.53	10	.36	100.	NA
Notes: 1. The parame	Notes: 1. The parameter listing includes only	ludes only :	the parame	aters detected with	hin eoch porce	the parameters detected within each parcel and not all the parameters analyzed.	irameters analyze	تو
santembor 1006	d Vulues are 1 1004	lion laoi		var sackgrouna :	ngoring Hridmod	4. exceptioning values are from rapie 3-1 of the <i>Drait sackgroung sampling Program rechnical Memoranaum</i> , CH2M HIL, Sentember 1004	oranawn, CHZM	HIL

r.

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 9

σ

September 1996.

4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996. 3. Risk-bosed Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Patential Contaminants of Concern for Effects on Terrestrial Plants, Suter II, Will, and Evans, 1993.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - indicates screening level values are not available for comparison.

Ъ.,

Acronyms

'n

÷

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
трн	total petroleum hydrocarbon
VOC	volatile organic compound

۰.,

Parcel 10 Report BRAC Sampling Program for Defense Depot Memphis, Tennessee

1.7

17

April 1997

Prepared for U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 10 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Numbers	Label	CERFA Map Location	RI/PS OU	Site No.	CERCLA Status
10	549, 550, 649, 650	10.2	19,13	Bidg. 549, 550 - 3 Bidg. 649, 650 - 4	N/A	N/A

Site Description

Parcel 10 is a 5,479 ft² parcel in the central part of the Main Installation in OU's 3 and 4, as shown on Drawing 1. Parcel 10 consists of Buildings 549, 550, 649, 650 and the adjacent railroad tracks. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility.

Soil sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the Environmental Baseline Survey Report (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, four samples were collected for Label 10.2. Label is a term used in the Environmental Baseline Survey Report (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. Sample A(10.2) was located north of Building 549. Sample B(10.2) was located east of Building 550. Sample C(10.2) was located west of Building 469. Sample D(10.2) was located south of Building 650 between two transformer poles (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. All samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

The four samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in

1

244 67

accordance with procedures outlined in the Generic Quality Assurance Project Plan (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling Procedures

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 10, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

<u>~</u> °	è
Tab	2
-	E L

•

٠.

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 10

Defense Depot Memphis, Tennessee **BRAC Sampling Program**

Value Pro 0 0 0 0 0 0 0 0 17				Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	Terrestrial
tter ¹ Station ID Depth (ft) (mg/kg) (mg/kg) Residential Industrial $A(10.2)$ 0 to .5 0.88 J 0.16 1.9 17 17 $A(10.2)$ 0 to .5 0.08 J 0.16 1.9 17 17 $B(10.2)$ 0 to .5 0.08 J 0.16 1.9 17 17 $B(10.2)$ 0 to .5 0.051 0.16 1.9 17 17 $C(10.2)$ 0 to .5 0.074 0.16 1.9 17 17 $A(10.2)$ 0 to .5 0.074 1.9 17 17 17 $A(10.2)$ 0 to .5 0.074 1.9 17 17 17 $A(10.2)$ 0 to .5 0.074 1.9 17 17 17 $A(10.2)$ 0 to .5 0.074 1.9 17 17 17 $A(10.2)$ 0 to .5 0.052 0.074 1.9				Value	Value ²	Soll Ingest	on ³ (mg/kg)	Protection ⁴	Ecological ⁶
A(10.2) 0 to 5 0.88 J 0.16 1.9 17 $A(10.2)$ 0 to 5 1.4 0.16 1.9 17 $B(10.2)$ 0 to 5 0.37 0.16 1.9 17 $B(10.2)$ 0 to 5 0.37 0.16 1.9 17 $C(10.2)$ 0 to 5 0.075 J 0.16 1.9 17 $C(10.2)$ 0 to 5 0.074 1.9 17 17 $A(10.2)$ 0 to 5 0.052 J 0.074 1.9 17 $A(10.2)$ 0 to 5 0 to 5 0.062 J 0.074 1.9 17 $A(10.2)$	Parameter	Station (D	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
A(10.2) 0 to 5 1.4 0.16 1.9 17 $B(10.2)$ 0 to 5 0.37 0.16 1.9 17 $C(10.2)$ 0 to 5 0.37 0.16 1.9 17 $C(10.2)$ 0 to 5 0.075 0.16 1.9 17 $D(10.2)$ 0 to 5 0.039 0.074 1.9 17 $A(10.2)$ 0 to 5 0.24 0.074 1.9 17 $B(10.2)$ 0 to 5 0.052 0.074 1.9 17 $C(10.2)$ 0 to 5 0.052 0.074 1.9 17 $D(10.2)$ 0 to 5 0.052 0.074 1.9 17 $A(10.2)$ 0 to 5 0.052 0.074 1.9 17 $D(10.2)$ 0 to 5 0.052 0.074 1.9 17 $A(10.2)$ 0 to 5 0.052 0.074 1.9 17 $D(10.2)$	DDE	A(10.2)	0 to .5	0.88 J	0.16	1.9	17	0.5	NA
B(10.2) 0 to $.6$ 0.37 0.16 1.9 17 $C(10.2)$ 0 to $.5$ 0.62 J 0.16 1.9 17 $D(10.2)$ 0 to $.5$ 0.075 J 0.16 1.9 17 $A(10.2)$ 0 to $.5$ 0.074 1.9 17 17 $A(10.2)$ 0 to $.5$ 0.039 0.074 1.9 17 $A(10.2)$ 0 to $.5$ 0.024 0.074 1.9 17 $B(10.2)$ 0 to $.5$ 0.074 1.9 17 17 $C(10.2)$ 0 to $.5$ 0.074 1.9 17 17 $D(10.2)$ 0 to $.5$ 0.074 1.9 17 17 $A(10.2)$ 0 to $.5$ 0.074 1.9 17 17 $A(10.2)$ 0 to $.5$ 0.074 1.9 17 17 $A(10.2)$ 0 to $.5$ 0 to $.5$ 0.074 1.9 17 <		A(10.2)	0 to .5	1.4	0.16	1,9	17	0.5	NA
C(10.2) 0 to $.5$ 0.62 J 0.16 1.9 1.7 D(10.2) 0 to $.5$ 0.075 J 0.16 1.9 1.7 A(10.2) 0 to $.5$ 0.075 J 0.074 1.9 1.7 A(10.2) 0 to $.5$ 0.099 0.074 1.9 1.7 A(10.2) 0 to $.5$ 0.093 0.074 1.9 1.7 D(10.2) 0 to $.5$ 0.24 0.074 1.9 1.7 C(10.2) 0 to $.5$ 0.24 0.074 1.9 1.7 D(10.2) 0 to $.5$ 0.052 J 0.074 1.9 1.7 A(10.2) 0 to $.5$ 0.652 J 0.074 1.9 1.7 A(10.2) 0 to $.5$ 0.653 J 0.074 1.9 1.7 A(10.2) 0 to $.5$ 0.653 J 0.074 1.9 1.7 A(10.2) 0 to $.5$ 0.653 J 0.64 .36 1.7 B(10.2) 0 to $.5$ 0.53 .04 .36		B(10.2)	0 to .5	0.37	0.16	- - -	17	0.5	NA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		C(10.2)	0 to .5	0.62 J	0.16	1.9	17	0.5	NA
A(10.2) $D(0.5)$ 0.69 0.074 1.6 1.7 1.7 $A(10.2)$ 010.5 0.99 0.074 1.9 1.7 1.7 $B(10.2)$ 010.5 0.24 0.074 1.9 1.7 1.7 $B(10.2)$ 010.5 0.24 0.074 1.9 1.7 1.7 $C(10.2)$ 010.5 0.52 0.074 1.9 1.7 1.7 $D(10.2)$ 010.5 0.52 0.074 1.9 1.7 1.7 $A(10.2)$ 010.5 1.6 0.53 0.4 $.36$ 1.7 $A(10.2)$ 010.5 2.7 0.53 $.04$ $.36$ 1.7 $B(10.2)$ 010.5 0.53 $.04$ $.36$ $.36$ $.04$ $.36$ $.04$ $.36$ $.04$ $.36$ $.04$ $.36$ $.04$ $.36$ $.04$ $.36$ $.04$ $.36$ $.04$ $.04$		D(10.2)	0 to .5	0.075 J	0.16	1.9	17	0.5	NA
A(10.2) 0 to 5 0.99 0.074 1.9 17 B(10.2) 0 to 5 0.24 0.074 1.9 17 C(10.2) 0 to 5 0.52 J 0.074 1.9 17 C(10.2) 0 to 5 0.52 J 0.074 1.9 17 D(10.2) 0 to 5 0.52 J 0.074 1.9 17 A(10.2) 0 to 5 1.6 0.53 0.04 36 A(10.2) 0 to 5 1.6 0.53 0.4 36 B(10.2) 0 to 5 0.16 0.53 0.4 36 C(10.2) 0 to 5 1.3 0.53 0.4 36	DOT	A(10.2)	0 to .5	0.69 J	0.074	1.9	17	-	M
B(10.2) 0 to .5 0.24 0.074 1.9 17 $C(10.2)$ 0 to .5 0.52 J 0.074 1.9 17 $D(10.2)$ 0 to .5 0.52 J 0.074 1.9 17 $D(10.2)$ 0 to .5 0.062 J 0.074 1.9 17 $A(10.2)$ 0 to .5 1.6 0.53 0.4 $.36$ $A(10.2)$ 0 to .5 2.7 0.53 0.4 $.36$ $B(10.2)$ 0 to .5 0.53 0.4 $.36$ $.36$ $C(10.2)$ 0 to .5 0.53 0.4 $.36$ $.36$ $A(10.2)$ 0 to .5 0.53 0.4 $.36$ $.36$ $C(10.2)$ 0 to .5 0.53 0.4 $.36$ $.36$		A(10.2)	0 to .5	0.99	0.074	1.9	17	-	NA
C(10.2) 0 to 5 0.52 J 0.074 1.9 1.7 D(10.2) 0 to 5 0.062 J 0.074 1.9 1.7 A(10.2) 0 to 5 1.6 0.53 .04 .36 A(10.2) 0 to 5 2.7 0.53 .04 .36 A(10.2) 0 to 5 2.7 0.53 .04 .36 B(10.2) 0 to 5 2.7 0.53 .04 .36 C(10.2) 0 to 5 0.16 0.53 .04 .36 C(10.2) 0 to 5 0.53 .04 .36 .06 C(10.2) 0 to 5 0.53 .04 .36 .06		B(10.2)	0 to .5	0.24	0.074	1.9	17		AN
D(10.2) 0 to .5 0.062 J 0.074 1.9 17 A(10.2) 0 to .5 1.6 0.53 0.4 .36 A(10.2) 0 to .5 1.6 0.53 .04 .36 A(10.2) 0 to .5 2.7 0.53 .04 .36 B(10.2) 0 to .5 2.7 0.53 .04 .36 C(10.2) 0 to .5 0.16 0.53 .04 .36 C(10.2) 0 to .5 0.53 .04 .36 .04 .36 C(10.2) 0 to .5 0.53 .04 .36 .04 .36 .06 .04 .36 .06 <td></td> <td>C(10.2)</td> <td>0 to .5</td> <td>0.52 J</td> <td>0.074</td> <td>1.9</td> <td>+7</td> <td>-</td> <td>AN</td>		C(10.2)	0 to .5	0.52 J	0.074	1.9	+7	-	AN
A(10.2) 0 to .5 1.6 0.53 .04 .36 A(10.2) 0 to .5 2.7 0.53 .04 .36 B(10.2) 0 to .5 2.7 0.53 .04 .36 C(10.2) 0 to .5 0.16 0.53 .04 .36 C(10.2) 0 to .5 0.53 .04 .36 C(10.2) 0 to .5 0.53 .04 .36 C(10.2) 0 to .5 0.53 .04 .36	1	D(10.2)	0 to .5	0.062 J	0.074	1.9	17	-	AN
0 to :5 2.7 0.53 .04 .36 0 to :5 0.16 0.53 .04 .36 0 to :5 1.3 0.53 .04 .36 0 to :5 1.3 0.53 .04 .36 0 to :5 1.3 0.53 .04 .36	Dieldrin	A(10.2)	0 to .5	1.6	0.53	.04	.36	001	AN
0 to :5 0.16 0.53 0.4 36 0 to :5 1.3 0.53 .04 36 0 to :5 1.3 0.53 .04 36		A(10.2)	0 to .5	2.7	0.53	9	.36	100	AN
0 to 5 1.3 0.53 04 36		B(10.2)	0 to .5	0.16	0.53	Ą	.36	100	NA
		C(10.2)	0 to .5	1.3	0.53	9	.36	100.	AN
0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		D(10.2)	0 to .5	0.2	0.53	.04	36	100.	NA
	1								1
	he param: kackgroun(ater listing inclu d Values are fr	udes only the orn Table 5-	e paramete 1 of the Dra:	rs detected w ft Background	Ithin each parce. (Sampling Progra	l and not all the ; im Technica! Me	oorameters analy morandum, CH2!	zed. M HILL
The parameter listing includes only the parameters detected within each parcel and not all the parameters analyze Background Values are from Table 5-1 of the <i>Draft Background Sampling Program Technical Memorandum</i> , CH2M	September	1996.			I	•	-		ı
. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed. . Background Values are from Table 5-1 of the <i>Draft Background Sampling Program Technical Memorandum</i> , CH2M HIL September 1996.	. Risk-based (Concentration		he EPA Regl	on III Risk-Base	nd Concentration	is Table, R.L. Smith	h, April 30, 1996.	
₽7 Ē	. Groundwat Terrestrint Fr	ter Protection /	Values are fr	Towhorks EPA	Region III Risk "Bosobmody	-Based Concentr	ations Table, R.L.	Smith, April 30, 1	996.
 The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed. Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M Hill September 1996. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996. Grantial Ecological Values are from Technical Memorandum (2000) 	Terrestrial Pl	ants. Suter IL V	Will, and Eval	rush undurch	יי מכיוכו וויויכוא	ית אמפויוויום רמי		מווא מי כמהכפות ו	OF EFFECTS OF
£255						:			

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - indicates screening level values are not available for comparison.

J - indicates estimated value above the method detection limit but below the reporting limit.

-

Ξ.

 $\overline{\mathcal{T}}_{n,n}$

Acronyms

-

.

٠

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
PCB	Polychlorinated biphenyl
РСР	pentachlorophenol
R1/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
TPH	total petroleum hydrocarbon
VOC	volatile organic compound

Parcel 11 Report BRAC Sampling Program for Defense Depot Memphis, Tennessee

J

2

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 11 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Numbers	Label	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
11	529, 530, 630	11.1	18,15	Bldgs. 529, 530 - 3 Bldg. 630 - 4	N/A	N/A

Site Description

Parcel 11 is a 4,184 ft² parcel in the north central part of the Main Installation in OU's 3 and 4, as shown on Drawing 1. Parcel 11 consists of Buildings 529, 530, 630 and the adjacent railroad tracks.

Soil sampling was conducted at Label 11.1, which consists of Buildings 529, 530, and 630. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, three samples were collected for Label 11.1. Sample A(11.1) was located west of Building 529. Sample B(11.1) was located east of Building 530. Sample C(11.1) was located west of Building 630 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. All samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

1

The three samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling Procedures

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 11, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

Į	Ì
9	1
F	1
	4

Summary of Detected Compounds in Surface Soli Compared to Screening Levels for Parcel 11

BRAC Sampling Program

	Tennessee
<u>.</u>	F
	ጅ
	Ξ
	ō
	Š.
!	5
	ŏ.
	55
	ō.
	~
	Ж.
	č
	žer
	1
	×

		:	Detected	Beckground	Risk-Based Concentrations	oncentrations	Groundwater	Terrestrial/
			Value	Value ²	Soll Ingestion ³ (mg/kg)	on ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station [D	Depth (ft)	(mg/kg)	(mg/kg)	Residential	industrial	(mg/kg)	(mg/kg)
DDE	B(11.1)	0 to ,5	0.44	0,16	1.9	17	0.5	NA
	C(11.1)	0 to .5	0.34	0,16	1.9	17	0.5	NA
DDT	B(11.1)	0 to .5	0.26	0.074	1.9	17	-	NA
	C(11.1)	0 to 5	0.24 J	0.074	1.9	17	•	NA
Dieldrin	A(11.1)	0 ta .5	3.4	0.53	.04	.36	-001	NA
	A(11.1)	0 to .5	4.5	0.53	.04	.36	.001	NA
	C(11.1)	0 to .5	0.98	0.53	.04	.36	.001	NA
Notes:								

2. Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL 1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed. September 1996.

3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

5. Terrestrial Ecological Values are from Taxlcological Benchmark for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants, Suter II, Will, and Evans, 1993. Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - indicates screening level values are not available for comparison.

J - Indicates estimated value above the method detection (imit but below the reporting limit.

'n.

Acronyms

•

-

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
TPH	total petroleum hydrocarbon
VOC	volatile organic compound

Acronyms

•

ī.

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
РСР	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
ТРН	total petroleum hydrocarbon
VOC	volatile organic compound

Tabl

Summary of Detected Compounds in Surface Soll Compared to Screening Levels for Parcel 13

Defense Depot Memphis, Tennessee **BRAC Sampling Program**

, r	-		Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	Terrestrial/
			Value	Value ²	Soll Ingesti	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecological ^s
Parameter'	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Chlordane	A(13.5)	0 to .5	0.026 J	0.029	49	4.4	21	NA
	B(13.5)	0 to .5	0.023 J	0.029	.49	4.4	2	AN
DDE	A(13.5)	0 to 5	0.12	0.16	1.9	17	0.5	NA
DDT	A(13.5)	0 to .5	21.0	0.074	1.9	17	-	AN
Dieldrin	A(13.5)	0 to .5	0.28	0.53	ą	36	.001	NA
	B(13.5)	0 to .5	0.24	0.53	.04	.36	100.	NA
gamma-Chlordane	A(13.5)	0 to 5	0.088	0.026	0.49	4'4	2	NA
	B(13.5)	0 to .5	0.034 J	0.026	0.49	4.4	2	NA
Notes:								
1. The parameter listing includes only	sting include	s only the pc	ardmeters d	etected within	h each parcel c	and not all the p	the parameters detected within each parcel and not all the parameters analyzed.	eď.
2. Background Values are from Table	Jes are from	Table 5-1 of	the Draft B	ackground Sa	mpiling Program	n Technical Mer	5-1 of the Draft Background Sampling Program Technical Memorandum. CH2M HILL	I HILL

September 1996.

Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.
 Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

5. Terrestrial Ecological Values are from Toxtcological Benchmark for Screening Potential Contaminants of Concern for Effects on Terrestriai Plants. Suter II, Will, and Evans, 1993.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - Indicates screening level values are not available for comparison.

J - indicates estimated value above the method detection limit but below the reporting limit.

Subsurface Soil Sampling Procedure

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 13, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

Parcel 13 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Number	Label	CERFA Map Location	RI/PS OU	Site No.	CERCLA Status
13	210	13.5	30,16	4	N/A	N/A

Site Description

Parcel 13 is a 3,119 ft² parcel in the northeast corner of the Main Installation in OU-4, as shown on Drawing 1. Parcel 13 consists of Building 210 and the adjacent railroad tracks.

Soil sampling was conducted at Label 13.5, which consists of Building 210. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, two samples were collected for Label 13.5. Sample A(13.5) was located south of Building 210. Sample B(13.5) was located towards the southeast corner of Building 210 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Both samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

The two samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

1

.....

Parcel 13 Report BRAC Sampling Program for Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

ĸ,

Parcel 14 Report BRAC Sampling Program for Defense Depot Memphis, Tennessee

ί.

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 14 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Number	Label	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
14	S209	14.2	28,10	4	N/A	N/A

Site Description

Parcel 14 is a 3,752 ft² parcel in the northeast corner of the Main Installation, in OU-4, as shown on Drawing 1. Parcel 14 consists of Building 209 and the adjacent railroad tracks.

Soil sampling was conducted at Label 14.2, which is associated with Building 209. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

In addition, this parcel is associated with a 12,000-gallon heating oil tank that was located outside of Building 209, but was removed in July of 1994 (The Pickering Firm, Inc., 1993 Storage Tank Survey as cited in Woodward-Clyde, November 1996). There has been no documented release associated with this tank. No evidence was found of disposal, or migration of hazardous substances or petroleum products from an adjacent property.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, two samples were collected for Label 14.2. Sample A(14.2) was located towards the northwest section of Building 209. Sample B(14.2) was located towards the northeast section of Building 209 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the

1

sample jars. All samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

The two samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling Procedure

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 14, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

Summary of Detected Compounds In Surface Soll Compared to Screening Levels for Parcel 14

BRAC Sampling Program

Tennesee	
pot Memphis, '	
Defense De	

-			Detected	Background	Risk-Based Concentrations	Incentrations	Groundwater	Terrestrial
			Value	Value ²	Soll Ingestion ³ (mg/kg)	on ^a (mg/kg)	Protection ⁴	Ecological ⁵
Parameter	Station ID Dept	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Chlordane	B(14.2)	0 to .5	r 880.0	0.029	49	4.4	~	AN
DDE	A(14.2)	0 to .5	0.39	0.16	1,9	17	0.5	NA
	B(14.2)	0 to .5	0.085 J	0.16	1.9	17	0.5	AN
001	A(14.2)	0 to .5	0.44	0.074	1.9	17	 	NA
	B(14.2)	0 to .5	0.16 J	0.074	1.9	17	-	NA
Dieldrin	A(14.2)	0 to .5	1.3	0.53	1 9	.36	.001	NA
	B(14.2)	0 to .5	ł	0.53	ą	.36	.00	NA
gamma-Chlordane	B(14.2)	0 to .5	L 860.0	0.026	0.49	4,4	2	NA
Notes: 1. The parameter (Isting Includes on),	ting Include	es only the p	oarameters (detected with	In each parcel	and not all the	y the parameters detected within each parcel and not all the parameters analyzed.	llyzed.

2. Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HiLL September 1996.

4. Groundwater Protection Values are from the EPA Region II Risk-Based Concentrations Table. R.L. Smith. April 30, 1996. 3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants, Suter II. Will, and Evans, 1993.

Bold text Indicates detections that exceeded a screening level value and the associated level value that was exceeded. NA - Indicates screening level values are not available for comparison.

J - Indicates estimated value above the method detection limit but below the reporting limit.

76.0

Acronyms

ł

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
TPH	total petroleum hydrocarbon
VOC	volatile organic compound

Parcel 15 Report

2

ı.

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 15 Report ²⁴⁴ BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building or Facility Numbers	Label	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
15	308, 309, 319, 416, 417, 702, X09, Y10, Y50	15.6	21,17	4	N/A	N/A

Site Description

Parcel 15 is a 18,936 ft¹ parcel in the north central part of the Main Installation, in OU-4, as shown on Drawing 1. Parcel 15 consists of Buildings 308, 309, 319, 416, 417, 702, the open storage areas X09, Y10, Y50, and the adjacent railroad tracks.

Soil sampling was conducted at Label 15.6, which consists of open storage area X09 and Building 702. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. According to the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), spills of a dark liquid were observed on the concrete pad (Real Property 88015) located south of Building 702 and west of Building 629. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

In addition, this parcel is associated with a 4,000-gallon heating oil tank that was located outside of Building 319, but was removed in July of 1994 (The Pickering Firm, Inc., 1993) Storage Tank Survey as cited in Woodward-Clyde, November 1996). There has been no documented release associated with this tank. No evidence was found of disposal, or migration of hazardous substances or petroleum products from an adjacent property.

This parcel is also associated with a 30-gallon solvent spill south of Building 309 that was reported on December 2, 1991. The precise location of the spill is currently unknown. The contaminated soils associated with this release have been removed, and no further removal or remedial actions are required (Defense Logistics Agency, DDMT 1992 as cited in Woodward-Clyde, November 1996). Therefore the current sampling activities are not in response to this remediated spill.

in.

86

244

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the Environmental Baseline Survey Report (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, two samples were collected for Label 15.6. Sample A(15.6) was located north of the railroad tracks in open storage area X09. Sample B(15.6) was located north of the drainage swale and south of the railroad tracks in open storage area X09 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. All samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

The two samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling Procedure

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 15, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

5	ipounds in Surface Soli Comp	BDAC Samoling Drag
5	Sol	
-8 1	8	2
	urfa	U C
	ŝ	
	-sb	
	50	
	ē.	

ared to Screening Levels for Parcel 15 Summary of Detected Com

ļ

4

Defense Depot Memphis, Tennessee ынаС sampling Program

	-		Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	Terrestrial/
			Value	Value ²	Soil Ingesti	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(@y/kg)
Dieldrin	A(15.6)	9' 01 0	6'1	0.53	5 .	.36	.001	NA
	B(15.6)	0 to .5	0,19	0.53	4 9.	.36	.001	AN

Notes:

2. Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL 1. The parameter thing includes only the parameters detected within each parcel and not all the parameters analyzed September 1996.

3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on 4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table. R.L. Smith, April 30. 1996.

Terrestrial Plants, Suter II, Will, and Evans, 1993.

Bold text Indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - indicates screening level vatues are not available for comparison.

_

.

 \mathbb{V}_{0}

Acronyms

t

.

.

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
TPH	total petroleum hydrocarbon
VOC	volatile organic compound

Parcel 16 Report

..

, ×

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 16 Report 244 BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Number	Label	CERFA Map Location	RI/FS : OU	Site No.	CERCLA Status
16	558, 559	16.1	16,10	3	N/A	N/A

Site Description

Parcel 16 is a 2,744 ft² parcel in the center of the Main Installation, in OU-3, as shown on Drawing 1. Parcel 16 consists of Buildings 558 and 559 and the adjacent railroad tracks.

Soil sampling was conducted at Label 16.1, which consists of Building 559. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, two samples were collected for Label 16.1. Sample A(16.1) was located towards the northwest section of Building 559. Sample B(16.1) was located towards the northwest section of Building 559 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. All samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

The two samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in

١

9 F

accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling Procedure

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 16, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

λ.

	φ	
-		=
		٦,
		ÿ
-	- 65	0
	÷.	ē
		.9

Summary of Detected Compounds in Surface Soll Compared to Screening Levels for Parcel 16

BRAC Sampling Program

Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based Concentrations	oncentrations	Groundwater	Terrestrial/
	•		Value	Value ²	Solt Ingestion ³ (mg/kg)	on³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station ID Dep	Depth (ft)	(mg/kg)	(mg/kg)	Residentia!	Industrial	(mg/kg)	(mg/kg)
Chlordane	A(16.1)	0 to .5	0.019 J	0.029	.49	4.4	2	AA
	A(16.1)	0 to .5	0.067	0.16	1.9	17	0.5	AN
	B(16.1)	0 to ,5	0.42	0.16	1.9	17	0.5	NA
DDT	A(16.1)	0 to .5	0.076	0.074	1.9	17	-	NA
	B(16.1)	0 to .5	0.41	0.074	1.9	17	-	NA
Dieldrin	A(16.1)	0 to .5	0.19	0.53	1 0'	36.	,001	AN
	B(18.1)	0 to 5	1.3	0.53	8	.36	.001	NA
gamma-Chlordane	A(16.1)	0 to .5	0.02	0.026	0.49	4.4	ŝ	٩X

Notes:

2. Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum. CH2M HIL 1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed. September 1996.

Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996. 3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith. April 30. 1996. ಳ

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants. Suter II. Will and Evans. 1993.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - Indicates screening level values are not available for comparison.

J - Indicates estimated value above the method detection limit but below the reporting limit.

....

Acronyms

.

.

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
PCB	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
TPH	total petroleum hydrocarbon
VOC	volatile organic compound

Parcel 17 Report

٠,

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 17 Report 244 BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Numbers	Label	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
17	359, 459	17.2	24,10	3	N/A	N/A

Site Description

Parcel 17 is a 3,114 ft² parcel in the east central part of the Main Installation, in OU-3, as shown on Drawing 1. Parcel 17 consists of Buildings 359, 459 and the adjacent railroad tracks.

Soil sampling was conducted at Label 17.2, which consists of Building 359. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

In addition, this parcel is associated with the following tanks:

- A 12,000-gallon and a 500-gallon fuel oil tank that were located at Building 359 and were closed in place in July 1994 and September 1995, respectively (The Pickering Firm, Inc., 1993 Storage Tank Survey as cited in Woodward-Clyde, November 1996).
- A 1,000-gallon fuel oil tank and a 500-gallon diesel tank that were located at Building 359, but were removed in 1993 (The Pickering Firm, Inc., 1993 Storage Tank Survey; Facilities Engineering Division, DDMT 1993 as cited in Woodward-Clyde, November 1996).
- A 12,000-gallon and a 500-gallon fuel oil tank that were located at Building 359, but were removed in 1993 (The Pickering Firm, Inc., 1993 Storage Tank Survey; Facilities Engineering Division, DDMT 1993 as cited in Woodward-Clyde, November 1996).

There have been no documented releases associated with these tanks, and no evidence was found of disposal, or migration of hazardous substances or petroleum products from an

1

9.6

adjacent property. Therefore the current sampling activities are not associated with these tanks.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, two samples were collected for Label 17.2. Sample A(17.2) was located towards the northwest section of Building 359. Sample B(17.2) was located towards the northeast section of Building 359 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. All samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

The two samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling Procedure

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 17, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

			- -	BRAC Sampling Program Defense Depot Memphls, Tennessee	BRAC Sampling Program se Depot Memphls, Tennes	868		
			Detected Value	Background Value ²	Risk-Based Soli Inge	Risk-Based Concentrations Soli Ingestion ³ (mg/kg)	Groundwater Protection ⁴	Terrestrial/ Ecological ⁵
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
DDE	A(17.2)	0 to .5	0.27 J	0.16	1.9	17	0.5	NA
	B(17.2)	0 to .5	0.047	0.16	1.9	17	0.5	NA
DDT	A(17.2)	0 to .5	0.33 J	0.074	1.9	41	F	NA
	B(17.2)	0 to .5	0.071	0.074	1.9	- 11	1	NA
Dieldrin	A(17.2)	0 to .5	3.3	0.53	10	.36	100.	NA
	B(17.2)	0 to .5	0.083	0.53	.04	.35	.001	NA
Notes:								
 The parameter listing includes only the pa 	st listing inclu	ides only th		s detected with	iin each parce	I and not all the p	ameters detected within each parcel and not all the parameters analyzed.	Ţ
 Background Valu September 1996. 	/alues are fr. 96.	om Table 5-	I of the Draf	† Background Sv	ampling Progra	am Technical Мел	Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL, September 1996.	HILL
3. Risk-based Co	incentration	is are from t	he EPA Regit	on III Risk-Based	Concentration	3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table , R.L. Smith. April 30, 1996.	, April 30, 1996.	
4. Groundwater	Protection V	/alues are fi	rom the EPA.	Region III Risk-Bo	ased Concent	ations Table, R.L. S	4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table. R.L. Smith, April 30, 1996.	ý
 Terrestrial Ecological Values are from Toxic Terrestrial Plants, Suter II, Will, and Evans, 11 	logical Valu 15, Suter II, V	es are from Vill, and Eva	Toxicologica Ins. 1993.	il Benchmark foi	r Screening Poi	tential Contamina	 Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants, Suter II, Will, and Evans, 1993. 	Effects on
Bold text indicat	es detection	ns that exce	seded a scre	ening level valu	ie and the ass	oclated screening	Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.	as exceeded.
NA • Indicates screening level values are not	creening lev	el values an		available for comparison.	on.			
:		:			-	:: ::		

ĵ,

Summary of Detected Compounds In Surface Soil Compared to Screening Levels for Parcel 17

2

ĩ

J - indicates estimated value above the method detection limit but below the reporting limit.

244 98

'n.

Acronyms

, **`**

.

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
РСР	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
ТРН	total petroleum hydrocarbon
VOC	volatile organic compound
· -	

.

•

Parcel 18 Report BRAC Sampling Program for Defense Depot Memphis, Tennessee

5

i

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 18 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Number	Label	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
18	560	18.2	17,8	3.	N/A	N/A

Site Description

Parcel 18 is a 2,490 ft² parcel in the center of the Main Installation, in OU-3, as shown on Drawing 1. Parcel 18 consists of Building 560 and the adjacent railroad tracks.

Soil sampling was conducted at Label 18.2, which consists of Building 560. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, one sample was collected for Label 18.2. Sample A(18.2) was located south of Building 560 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. The sample was collected from beneath the grass to less than 6 inches below ground surface (bgs).

The sample were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. Samples received at the laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

1

Subsurface Soil Sampling Procedure

No subsurface soil samples were collected at this site during this sampling event.

Results

ş

Surface soil sampling locations with values above detection limits are shown in Table 18, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

.....

	ŝ
Ŧ	ĝ
	Ē
	콧

I Compared to Screening Levels for Parcel 18 **BRAC Sampling Program** Summary of Detected Compounds in Si

Defense Depot Memphis, Tennessee

	0	Background	Risk-Based	Risk-Based Concentrations	Groundwater	Terrestrial/
Value		Value [*]	Soil Inges	Soil Ingestion' (mg/kg)	Protection*	Ecological
Depth (ft) [(mg/kg)	_	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
0 to .5 0.0038 v	ВJ	0.16	1.9	17	0.5	NA
0 to .5 0.012	2	0.074	1.9	17	1	, AN
0 to .5 0.028	28	0.53	1 0'	.36	-001	NA

Notes:

2. Background Vatues are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL 1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed September 1996.

3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table. R.L. Smith. April 30, 1996.

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects an Terrestrial Plants, Suter II, Will, and Evans, 1993.

Bold text Indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - Indicates screening tevel values are not available for comparison.

Indicates estimated value above the method detection limit but below the reporting limit.

mgm97-DDMT BRAC Samping Reports2/Sedet/Parcel 18

ų,

:

Acronyms

. ' `

.

)

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
TPH	total petroleum hydrocarbon
VOC	volatile organic compound

.

.

Ъ.,

Parcel 20 Report

. .

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HLL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 20 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Numbers	Labels	CERFA Map Location	RI/PS OU	Site No.	CERCLA Status
20	470, 489, 670	20.5, 20.6	19,6 and 20,4	3	N/A	N/A

Site Description

. ÷

Parcel 20 is a 8,752 ft¹ parcel in the south central part of the Main Installation, in OU-3, as shown on Drawing 1. Parcel 20 consists of Buildings 470, 489, 670 and the adjacent railroad tracks.

Soil sampling was conducted at Labels 20.5 and 20.6. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations.

Label 20.5 is associated with Building 670, and Label 20.6 is associated with Building 489. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. Label 20.6 is associated with the location of a sulfuric acid spill that was reported on June 10, 1993, between Buildings 489 and 490 (Defense Logistics Agency, DDMT 1993 Spill Response Summary as cited in Woodward-Clyde, November 1996). The precise location of the spill, the action taken, and the quantity of the spill are unknown. Current sampling activities are associated with this spill. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

The descriptions below present the labels sampled within this parcel. All samples received at CH2M HILL's Analytical Services in Montgomery, Alabama were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

1

Label 20.5 - Building 670

. :

244 107

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, one sample was collected for Label 20.5. Sample A(20.5) was located southeast of Building 670 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. The sample was collected from beneath the grass to less than 6 inches below ground surface (bgs).

The sample was sent to CH2M HILL's laboratory for pesticides and PCBs analyses.

Label 20.6 - Building 489

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, one sample was collected for Label 20.6. Sample A(20.6) was located south of Building 489 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of gravel. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. The sample was collected from beneath the surface gravel to less than 1 ft bgs.

The sample was sent to CH2M HILL's laboratory for metals, VOCs, and SVOCs analyses.

Subsurface Soil Sampling and Analyses Procedure

Subsurface soil samples were collected using a 2-foot, stainless-steel, split-spoon sampler. Samples were collected from intervals of 1 to 4 ft, 4 to 7 ft, and 7 to 10 ft at the same sample location where the surface soil sample A(20.6) was collected. VOC soil samples were collected directly from the continuous sampler using stainless-steel spoons. The remaining soil was placed into a stainless-steel bowl, mixed thoroughly with stainless-steel spoons, and then placed into the appropriate sample jars.

Three samples were collected from the soil boring (SB-21). The samples were sent to CH2M HILL's laboratory for metals, VOCs, and SVOCs analyses.

Results

Surface soil sampling locations with values above detection limits are shown in Table 20-A, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold. The same information is presented in Table 20-B for subsurface soil sampling locations, except there are only two types of comparison criteria appropriate for subsurface soil samples.

্ৰ	č
<u>_</u>	5
	5
	4
- e	ž
-	4
	- 5

. •

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 20

BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	Terrestrial
			Value	Value ²	Soil Ingesti	Soll Ingestion ^a (mg/kg)	Protection ⁴	Ecologica1 ⁵
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Acenaphthene	A(20.6)	.5 to 1	3.1 J	NA	470	12000	200	NA
Aluminum	A(20.6)	.5 to 1	3910	24000	7800	100000	NA	NA
Anthracene	A(20.6)	.5 to 1	4.7.3	0.096	2300	61000	4300	NA
Arsenic	A(20.6)	.5 to 1	26.4	22	.43	3.8	15	10
Barium	A(20.6)	.5 to 1	43.9	250	550	14000	32	500
Benzo(a)anthracene	A(20.6)	.5 to 1	13	0.71	.88	7.8	7	NA
Benzo(a)pyrene	A(20.6)	.5 to 1	12	96.0	.068	. 81.	4	NA
Benzo(b)fluoranthene	A(20.6)	.5 to 1	12	6.0	.88	7.8	4	NA
Benzo(g,h,i)perylene	A(20.6)	.5 to 1	9.1	0.82	230	6100	1400	NA
Benzo(k)fluoranthene	A(20.6)	.5 to 1	11	0.78	8.8	78	4	NA
Cadmium	A(20.6)	.5 to 1	12	1.4	3.9	100	9	3
Calcium	A(20.6)	.5 to 1	79600	5800	NA	NA	NA	NA
Carbazole	A(20.6)	.5 to 1	4 J	0.067	32	290	- 2	NA
Chromium	A(20.6)	.5 to 1	29.6	27	39	1000	19	-
Chrysene	A(20.6)	.5 to 1	15	0.94	88	780	F	AN
Cobalt	A(20.6)	.5 to 1	6.7	18	470	12000	NA	20
Copper	A(20.6)	.5 to 1	38.3	8	310	8200	NA	100
Dibenz(a,h)anthracene	A(20.6)	.5 to 1	5 4 J	0.26	.088	.78	11	NA
Dibenzofuran	A(20.6)	.5 to 1	1.2 J	NA	31	820	12	AN
Dieldrin	A(20.5)	0 to .5	1.1	0.53	.04	.36	.001	AA
Fluoranthene	A(20.6)	.5 to 1	33	1.6	310	8200	980	AN
[Fluorene	A(20.6)	.5 to 1	2.2 J	NA	310	8200	160	AN
Indeno(1,2,3-cd)pyrene_	A(20.6)	.5 to 1	6	0.7	.88	7.8	35	AN
Iron	A(20.6)	.5 to 1	12900	37000	2300	61000	NA	NA
Lead	A(20.6)	.5 to 1	212	43	200	1000	1.5	20
Magnesium	A(20.6)	.5 to 1	2320	4600	NA	NA	NA	NA
Manganese	A(20.6)	.5 to 1	87.4	1300	180	4700	ŇA	AA
Methylene chloride	A(20.6)	.5 to 1	0.002 J	NA	85	760	0.	NA
Naphthalene	A(20.6)	.5 to 1	L 4.1	NA	310	8200	8	AN
Nickel	A(20.6)	.5 to 1	6.9	33	160	4100	21	8
Phenanthrene	A(20.6)	.5 to 1	23	0.61	2300	61000	4300	NA
Pyrene	A(20.6)	.5 to 1	26	1.5	230	6100	1400	NA

angm97-DDMT BRAC Sampling Reports2Ssdet/Parcel 20

5

108 244

Tab 20-A	inface Soll C
	ū

Summary of Detected Compounds in Surface Soll Compared to Screening Levels for Parcel 20

BRAC Sampling Program

	Tennessee
	60
<u>.</u>	_
1	ā
	7
	đ۵
-	Ξ.
	-
	-
	ñ.
	ă.
	*
	-
	Ο.
	-
	÷.
	- 92
	Ē.
	÷.
	đ.
	Ă.
	ω

,			Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	Terrestrial
			Value	Value ²	Soll Ingesti	Soli Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station (D	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Sodium	A(20.6)	.5 to 1	330	NA	NA	NA	NA	NA
Toluene	A(20.6)	.5 to 1	0.001 J	0.002	1600	41000	5	NA
Vanadium	A(20.6)	.5 to 1	14.4	52	55	1400	NA	2
Zinc	A(20.6)	.5 to 1	184	130	2300	61000	42000	50

Notes:

2. Background Values are from Table 5-1 of the Draft Background Sompling Program Technical Memorandum. CH2M HiLL). The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.

September 1996.

4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996. 3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on

Botd text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - indicates screening level values are not available for comparison. Terrestrial Plants, Suter II, Will, and Evans, 1993.

J - Indicates estimated value above the method detection limit but below the reporting limit.

244 109

Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 20 BRAC Sampling Program Defense Depot Memphis, Tennessee

Table 20-B

			Detected Value	Background Value ²	Groundwater Protection Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	A(20.6)	1 to 4	22100	22000	NA
••	A(20.6)	4 to 7	21100	22000	NA
· · · · · · · · · · · · · · · · · · ·	A(20.6)	7 to 10	22000	22000	NA
Arsenic	A(20.6)	1 to 4	7.9	17	15
	A(20.6)	4 to 7	12.5	17	15
	A(20.6)	7 to 10	20.6	17	15
Barium	A(20.6)	1 10 4	143	300	32
	A(20.6)	4 to 7	117	300	32
	A(20.6)	7 to 10	175	300	32
Beryllium	A(20.6)	1 to 4	0.98	1.2	180
	A(20.6)	4 to 7	1.5	1.2	180
	A(20.6)	7 to 10	1.5	1.2	180
bis(2-Ethylhexyl)phthalate	A(20.6)	1 to 4	0.041 J	NA	11
Calcium	A(20.6)	1 to 4	2750	2400	NA
	A(20.6)	4 to 7	2110	2400	NA
	A(20.6)	7 to 10	2180	2400	NA
Chromium	A(20.6)	1 to 4	27.5	26	19
	A(20.6)	4 to 7	96.6	26	19
	A(20.6)	7 to 10	45.7	26	19
Chrysene	A(20.6)	1 to 4	0.04 .		1
Cobalt	A(20.6)	1 to 4	11.3	20	NA
	A(20.6)	4 to 7	9.4	20	NA
	A(20.6)	7 to 10	34	20	NA
Copper	A(20.6)	1 to 4	21.3	33	NA
	A(20.6)	4 to 7	16.9	33	NA
	A(20.6)	7 to 10	18.7	33	NA
Di-n-butylphthalate	A(20.6)	1 to 4	0.054 ა	•	120
Fluoranthene	A(20.6)	1 to 4	0.1 、		980
Гол	A(20.6)	1 to 4	27400	38000	NA
	A(20.6)	4 to 7	41200	38000	NA
	A(20.6)	7 to 10	49500	38000	NA
Lead	A(20.6)	1 to 4	13.7	24	1.5
	A(20.6)	4 to 7	15	24	1.5
	A(20.6)	7 to 10	30.5	24	1.5
Magnesium	A(20.6)	1 to 4	3760	4900	NA
	A(20.6)	4 to 7	2530	4900	NA
	A(20.6)	7 to 10	1830	4900	NA
Manganese	A(20.6)	1 to 4	761	1500	NA
	A(20.6)	4 to 7	567	1500	NA
	A(20.6)	7 to 10	4520	1500	NA
Methylene chloride	A(20.6)	1 to 4	0.002		.01
	A(20.6)	4 to 7	0.003		.01
	A(20.6)	7 to 10	0.002 J		.01
Nickel	A(20.6)	1 to 4	24.6	37	21
	A(20.6)	4 to 7	22.3	37	21
	A(20.6)	7 to 10	16.3	37	21
Phenanthrene	A(20.6)	1 to 4	0.069 J		4300

۰,

Table 20-B 244 111 Summary of Detected Compounds in Subsurface Soli Compared to Screening Levels for Parcel 20 BRAC Sampling Program Defense Depot Memphis, Tennessee Defense Depot Memphis, Tennessee

			Detected	Background	Groundwater Protection
			Value	Value ²	Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Polassium	A(20.6)	1 to 4	1690	1800	NA
	A(20.6)	4 to 7	898	1800	NA
	A(20.6)	7 to 10	1810	1800	NA
Pyrene	A(20.6)	1 to 4	0.081 J	0.042	1400
Vanadium	A(20.6)	1 to 4	55.6	51	NA
	A(20.6)	4 to 7	74.9	51	NA
	A(20.6)	7 to 10	62	51	NA
Zinc	A(20.6)	1 to 4	67	110	42000
	A(20.6)	4 to 7	46.8	110	42000
-	A(20.6)	7 to 10	48.8	110	42000

Notes:

1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.

 Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL, September 1996.

3. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table , R.L. Smith, April 30, 1996.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.

NA - indicates screening level values are not available for comparison.

J - indicates estimated value above the method detection limit but below the reporting limit.

-

Acronyms

.

· · · ·

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
PCB	Polychlorinated biphenyl
РСР	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
ТРН	total petroleum hydrocarbon
VOC	volatile organic compound

-

Parcel 21 Report BRAC Sampling Program for Defense Depot Memphis, Tennessee

12 3

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 21 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Numbers	Label	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
21	490, 685, 689, 690	21.5	20,2	3	N/A	N/Ā

Site Description

- 5

Parcel 21 is a 7,906 ft² parcel in the south central part of the Main Installation, in OU-3, as shown on Drawing 1. Parcel 21 consists of Buildings 490, 685, 689, and 690.

Soil sampling was conducted at Label 21.5, which consists of Building 490. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Samples collected from Label 21.5 were collected for both CH2M HILL and Corps of Engineers (COE) laboratory analysis. Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, a total of four samples were collected for Label 21.5. Samples A(21.5) and a split sample were located towards the southwest section of Building 490. Samples B(21.5) and a split sample were located towards the southeast section of Building 490 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. The samples were collected from beneath the grass to less than 6 inches below ground surface (bgs).

Samples A(21.5) and B(21.5) were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. The split samples were sent to COE's Atlanta, Georgia laboratory for pesticides and PCBs analyses. Samples received at CH2M HILL's laboratory were analyzed in accordance with procedures outlined in the *Generic Quality*

244 115 Assurance Project Plan (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling Procedure

No subsurface soil samples were collected at this site during this sampling event.

Results

12

Surface soil sampling locations with values above detection limits are shown in Table 21, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

5.5

2	Solic
P	face :

Summary of Detected Compounds in Surface Soll Compared to Screening Levels for Parcel 21 **BRAC Sampling Program**

Defense Depot Memphis, Tennessee

•			Detected	Background	Fisk-Based (Risk-Based Concentrations	Groundwater	Terrestrial
			Value	Value ²	Soll ingesi	Soll ingestion ^a (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station (D	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Dieldrin	Á(21.5)	0 to .5	0.86	0.53	.04	.36	.001	NA
	B(21.5)	0 to .5	5.3	0.53	7 07	.36	.001	AA

Notes:

2. Bockground Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL L. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed. September 1996.

3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concem for Effects on 4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

Terrestrial Plants. Suter II, Will, and Evans, 1993.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - Indicates screening level values are not available for comparison.

2

ι

.

.

Acronyms

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
ТРН	total petroleum hydrocarbon
VOC	volatile organic compound

MGM97-DDMT-BRAC SAMPLING REPORTS2/ACRONYMS.DOC

244 118

Parcel 22 Report BRAC Sampling Program for Defense Depot Memphis, Tennessee

÷

•

April 1997

Prepared for U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

....

Parcel 22 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Numbers	Label	CERPA Map Location	RI/FS OU	Site No.	CERCLA Status
22	Between Buildings 689 and 690	22.1	18,4	3	N/A	N/A

Site Description

÷

Parcel 22 is a 376 ft² parcel in the south central part of the Main Installation, in OU-3, as shown on Drawing 1. Parcel 22 consists of an area between Buildings 689 and 690.

Soil sampling was conducted at Label 22.1, which consists of an area between Buildings 689 and 690. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Samples collected from Label 22.1 were collected for both CH2M HILL and Corps of Engineers (COE) laboratory analysis. Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, a total of two samples were collected for Label 22.1. Sample A(22.1) and a split sample were located towards the southern edge of the northern corridor foundation between Buildings 689 and 690 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. All samples were collected from beneath the surface to less than 6 inches below ground surface (bgs).

Sample A(22.1) was sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. The split sample was sent to COE's Atlanta, Georgia laboratory for pesticides and PCBs analyses. Samples received at CH2M HILL's laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

1

244 120

Subsurface Soil Sampling Procedure

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 22, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

2	Ŭ
<u> </u>	₹
	ŏ
-	8
-	ğ
	Ē.

1

Compared to Screening Levels for Parcel 22 **BRAC Sampling Program** Summary of Detected Compounds in Su

Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based	Risk-Based Concentrations	Groundwater	Terrestrial/
			Value	Value ²	Soil Inges	Soil Ingestion ^a (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
000	A(22.1)	0 to .5	0.022 J	0.0067	2.7	24	0.7	NA
DOE	A(22.1)	0 to .5	0.039	0.15	1.9	17	0.5	NA
DOT	A(22.1)	0 to .5	0.19	0.074	1.9	17	<u> </u>	NA

Notes:

2. Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL). The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed. September 1996.

3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on 4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. Terrestrial Plants, Suter II, Will, and Evans, 1993.

J - indicates estimated value above the method detection limit but below the reporting limit. NA - indicates screening level values are not available for comparison.

.

•

.

Acronyms

. . . .

-

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
PCB	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
трн	total petroleum hydrocarbon
VOC	volatile organic compound

Parcel 23 Report BRAC Sampling Program for Defense Depot Memphis, Tennessee

.

April 1997

Prepared for U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 23 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building or Facility Number	Labels	CERFA Map Locations	RI/FS OU	Site No.	CERCLA Status
23	783, 787, 793, 995, X01	23.6, 23.9, 23.10	10,1: 8,2: 4,2	2	N/A	N/A

Site Description

1

Parcel 23 is a 8,815 ft² parcel in the southwest portion of the Main Installation, in OU-2, as shown on Drawing 1. Parcel 23 consists of Buildings 783, 787, 793, 995, open storage area X01 and the adjacent railroad tracks.

Soil sampling was conducted at Labels 23.6, 23.9, and 23.10. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. Label 23.6 is associated with the western portion of Parcel 23. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Label 23.9 is associated with the location of a gasoline spill that was reported on September 13, 1993 outside of Building 995. The precise location of the spill, action taken, and quantity of the spill are unknown (Defense Logistics Agency, DDMT 1993 Spill Response Summary as cited in Woodward-Clyde, November 1996). Sampling was performed to provide information on the presence of gasoline in soil.

Label 23.10 is associated with open storage area X01. According to the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), open storage area X01 is the site of a former lake. The former lake sediments were possibly contaminated with PCB and pesticide/herbicide residues.

Surface Soil Sampling and Analyses Procedure

The descriptions below present the labels sampled within this parcel. All samples received at CH2M HILL's Analytical Services in Montgomery, Alabama were analyzed in

1

۰.

accordance with procedures outlined in the *Generic Quality Assurance Project Plan* 244 125 (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Label 23.6 - West Portion of Parcel 23

s,

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, two samples were collected for Label 23.6. Sample A(23.6) was located south of the parking lot located west of Gate 8. Sample B(23.6) was located northwest of the K Street and 9th Street intersection (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod at sample location A(23.6). A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Sample A(23.6) was collected from beneath the grass to less than 6 inches below ground surface (bgs).

A pick-hoe and sharpshooter shovel were used to remove the gravel and rock surface at sample location B(23.6). A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Sample B(23.6) was collected from beneath a gravel layer to less than 6 inches bgs.

Both samples were sent to CH2M HILL's laboratory for pesticides and PCBs analyses.

Label 23.9 - Building 995

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, one sample was collected for Label 23.9. Sample A(23.9) was located west of Building 995 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Sample A(23.9) was collected from beneath the surface to less than 6 inches bgs.

The sample was sent to CH2M HILL's laboratory for SVOCs, metals, and TPH Gas method 8015 and BTEX method 8020.

Label 23.10 - Open Storage Area X01

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, one sample was collected for Label 23.10. Sample A(23.10) was located south of Building 875 and M Street in open storage area X01 (See Drawing 1, BRAC Soil Sample Locations).

A pick-hoe and sharpshooter shovel were used to remove the gravel and rock surface at sample location A(23.10). A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Sample A(23.10) was collected from beneath the highly compacted gravel surface to less than 1 ft bgs.

244 126

The sample was sent to CH2M HILL's laboratory for pesticides and PCBs analyses.

Subsurface Soil Sampling and Analyses Procedure

Subsurface soil samples were collected using a 2-foot, stainless-steel, split-spoon sampler. Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, samples were collected from intervals of 0 to 4 ft, 4 to 7 ft, and 7 to 10 ft.

Label 23.9 - Building 995

٩.

Soil Boring, SB-6, is at the same location where surface soil sample A(23.9) was collected. Soil was placed into a stainless-steel bowl, mixed thoroughly with stainless-steel spoons, and then placed into the appropriate sample jars.

Three samples were collected from the soil boring (SB-6). The samples were sent to CH2M HILL's laboratory for metals, SVOCs, and TPH method 418.1 analyses.

Label 23.10 - Open Storage Area X01

Samples collected from the Label 23.10 soil boring were collected for both CH2M HILL and Corps of Engineers (COE) laboratory analysis. Soil Boring, SB-7, is at the same location where surface soil sample A(23.10) was collected. Soil was placed into a stainless-steel bowl, mixed thoroughly with stainless-steel spoons, and then placed into the appropriate sample jars.

A total of six samples were collected from the soil boring (SB-7). Three samples were sent to CH2M HILL's laboratory for pesticides and PCBs analyses. Three quality assurance split samples were sent to COE's Atlanta, Georgia laboratory for pesticides and PCBs analyses.

Results

Surface soil sampling locations with values above detection limits are shown in Table 23-A, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold. The same information is presented in Table 23-B for subsurface soil sampling locations, except there are only two types of comparison criteria appropriate for subsurface soil samples.

. .

Tab	Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 23	BRAC Sampling Program	Defense Depat Memphis, Tennessee
-----	--	-----------------------	----------------------------------

۰,

·

			Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	Terrestrial
			Value	Value ²	Soil Ingest	Soil Ingestion ³ (mg/kg)	Protection ⁴	Ecological ^a
Parameter	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Aluminum	A(23.9)	0 to .5	19700	24000	7800	10000	AN	NA
Barium	A(23.9)	0 to .5	156	250	550	14000	32	2009
bis(2-Ethylhexyl)phthalate	A(23.9)	0 to 5	0.04 J	NA	4 6	410	=	AN
Calcium	A(23.9)	0 to .5	35600	5800	AN	VN	NA	AN
Chromium	A(23.9)	0 to .5	29.5	27	90 30	1000	19	-
Cobatt	A(23.9)	0 to .5	14.7	18	470	12000	MA	50
Copper	A(23.9)	0 to .5	20.6	33	310	8200	AN	100
DDE	A(23.10)	0 to 1	0.02	0.16	1.9	17	0.5	AN
	B(23.6)	0 to .5	D.014 J	0.16	6.1	17	0.5	NA
DDT	A(23.10)	0 ta 1	0.049	0.074	1.9	17	-	AN
	B(23.6)	0 to ,5	0.047	0.074	1.9	17	-	NA
Di-n-butylph(halate	A(23.9)	0 to .5	0.26 J	AN	780	20000	120	AA
Dieldrin	A(23.10)	0 to 1	0.024	0.53	Ş	36	100.	AN
	B(23.6)	0 to .5	0.0074 J	0.53	.04	36	100.	NA
tron	A(23.9)	0 to .5	26100	37000	2300	61000	AA	AN
Lead		0 to .5	81	£3	200	1000	1.5	50
Magnesium		0 to .5	4620	4600	AN	AN	AN	NA
Manganese		0 to .5	941	1300	180	4700	NA	NA
Nickel		0 to .5	27.8	£	160	4100	21	30
Potassium	A(23.9)	0 to .5	1390	2000	NA	AN	NA	NA
Selenium	A(23.9)	0 to .5	18.9	0.81	æ	1000	•	-
Vanadlum	A(23.9)	0 to .5	50.3	25	55	1400	AN	2
Zinc	A(23.9)	0 to .5	74.9	130	2300	61000	42000	20
Notes:								
1. The porameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.	cludes only the from Johio Eu	e parameter Af the Aret	rs detected	within each p	arcel and not .	all the paramets	ers analyzed.	
September 1996.			n euckfillon	a Buildwide de	പാര്യവന ശവവം	כםו אופורוסיםואמת	m, כאצוא אונגן	
3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	ons are from th	ne EPA Regli	on III Risk-Bo	ised Concentr	ations Table, R	the smith, April 30	1, 1996.	
4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	n Values are fr	om the EPA	Region III R	Isk-Based Con	centrations Tot	ofe, R.L Smith, A	oril 30, 1996.	
b. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on Terrestrial Plante Science With and Press, 2000	lues are from i	loxicologicc	il Benchma	rk for Screenin	g Potential Ca	ntaminants of Co	oncern for Effects or	_
	, will, and Eval	TS, 1993.				•		
bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.	ions that exce	eded o scre	ening level	value and the	associated sc	treening level vo	lue that was exceed	ded.
1 - Indicates estimated value above the method detection limit but be	wer values are vie above the	mathor de	tection limit	parsan. • but below the	alcole for comparison. detection limit huit below the reporting limit	+		
						-		

mgm97-DDMT BRAC Sampling Reports2/Ssdet/Parcel 23

2

, "ne

Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 23 BRAC Sampling Program Defense Depot Memphis, Tennessee

Table 23-B

			Detected	Background	Groundwater Protection
			Value	Value ²	Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	A(23.9)	0 to 4	21000	22000	NA
	A(23.9)	4 to 7	26100	22000	NĂ
	A(23.9)	7 to 10	39000	22000	NA
Arsenic	A(23.9)	0 to 4	7.6	17	15
	A(23.9)	4 to 7	12.3	17	15
	A(23.9)	7 to 10	14.4	17	• 15
Barium	A(23.9)	0 to 4	153	300	32
	A(23.9)	4 to 7	117	300	32
	A(23.9)	7 to 10	182	300	32
Benzo(a)anthracene	A(23.9)	0 to 4	0.068 J	NA	.7
Benzo(a)pyrene	A(23.9)	0 to 4	0.08 J	NA	4
Benzo(b)fluoranthene	A(23.9)	0 to 4	0.088 J	NA	4
Benzo(g,h,i)perylene	A(23.9)	0 to 4	0.1 J	NA	1400
Benzo(k)fluoranthene	A(23.9)	0 to 4	0.081 J	NA	4
Beryllium	A(23.9)	0 to 4	1	1.2	160
	A(23.9)	4 to 7	1.1	1.2	180
	A(23.9)	7 to 10	<u>1.7</u>	1.2	180
Calcium	A(23.9)	0 to 4	3390	2400	NA
	A(23.9)	4 to 7	2350	2400	NA
	A(23.9)	7 to 10	3890	2400	NA
Chromium	A(23.9)	0 to 4	35.1	26	19
	A(23.9)	4 to 7	29.7	26	19
	A(23.9)	7 to 10	32.4	26	19
Chrysene	A(23.9)	0 to 4	0.093 J	NA	1
Coball	A(23.9)	0 to 4	14.8	20	NA
	A(23.9)	4 to 7	13.1	20	NA
	A(23.9)	7 to 10	17.4	20	NA
Copper	A(23.9)	0 to 4	15.1	33	NA
	A(23.9)	4 to 7	20.1	33	NA
	Ä(23.9)	7 to 10	40.2	33	NA
Indeno(1,2,3-cd)pyrene	A(23.9)	0 to 4	0.09 J	ŃĀ	35
Iron	A(23.9)	0 to 4	28500	38000	NA NA
	A(23.9)	4 to 7	33100	38000	NA
	A(23.9)	7 lo 10	46700	38000	NA
Lead	A(23.9)	0 to 4	17.2	24	1.5
	A(23.9)	4 to 7	16.8	24	1.5
	A(23.9)	7 to 10	24.3	24	1.5
Magnesium	A(23.9)	0 to 4	2930	4900	NA
	A(23.9)	4 to 7	1630	4900	NA
	A(23.9)	7 to 10	4600	4900	NA
Малдапеве	A(23.9)	0 to 4	969	1500	NA
	A(23.9)	4 to 7	411	1500	NA
	A(23.9)	7 to 10	1000	1500	NA
Nickel	A(23.9)	0 to 4	21	37	21
	A(23.9)	4 to 7	20.3	37	21
	A(23.9)	7 to 10	34.2	37	21
Petroleum Hydrocarbons ⁴		0 to 4	3.2	NA	NA

mgm97-DDMT BRAC Sampling Reports2/Sbdet/Parcal 23

٨,

.

Ъ.,

Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 23 BRAC Sampling Program Defense Depot Memphis, Tennessee

Table 23-B

			Detected	Background	Groundwater Protection
			Value	Value ²	Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Potassium	A(23.9)	0 to 4	1640	1800	NA
	A(23.9)	4 to 7	949	1800	<u></u>
	A(23.9)	7 to 10	2530	1800	NA
Vanadium	A(23.9)	0 to 4	- 61	51	NA
	A(23.9)	4 to 7	53.8	51	NA
	A(23.9)	7 to 10	69.3	51	NA
Zinc	A(23.9)	0 to 4	57	110	42000
	A(23.9)	4 to 7	52.3	110	42000
	A(23.9)	7 to 10	100	110	42000

Notes:

۰.

1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.

2. Background Values are from Table 5-1 of the *Draft Background Sampling Program Technical* Memorandum, CH2M HILL September 1996.

3. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

4. For petroleum hydrocarbon comparisons, the most conservative value of 100 ppm, from *Soli* Clean-Up Levels for Petroleum *Contaminated Sites* (provided by TDEC), was used.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.

NA - Indicates screening level values are not available for comparison.

J - Indicates estimated value above the method detection limit but below the reporting limit.

•

.

-

Acronyms

. '

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
ТРН	total petroleum hydrocarbon
VOC	volatile organic compound

۰.

Parcel 24 Report

5.14

BRAC Sampling Program

for

.

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.Z.Z

Parcel 24 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building or Facility Numbers	Label	CERFA Map Locations	RI/PS OU	Site No.	CERCLA Status
24	770, 771, X03	24.2	12,8	2	N/A	N/A

Site Description

Parcel 24 is a 5,614 ft² parcel in the southwest portion of the Main Installation, in OU-2, as shown on Drawing 1. Parcel 24 consists of Buildings 770, 771, open storage area X03, and the adjacent railroad tracks.

Soil sampling was conducted at Label 24.2, which consists of Building 770. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. According to the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), this parcel is associated with area X03 which was used for storage of flammable materials in 55-gallon drums until 1988. The area was then used for steel storage. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, two samples were collected for Label 24.2. Sample A(24.2) was located towards the northeast section of Building 770. Sample B(24.2) was located southeast of Building 770 (See Drawing 1, BRAC Soil Sample Locations).

A pick-hoe and sharpshooter shovel were used to remove the gravel and rock surface. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Sample A(24.2) was collected from beneath a gravel layer to less than 1 ft below ground surface (bgs). Sample B(24.2) was collected from beneath a gravel layer to less than 6 inches bgs.

Both samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides, PCBs, metals, SVOCs, and TPH method 418.1 analyses. All samples received at

1

- A.

244 133

CH2M HILL's laboratory were analyzed in accordance with procedures outlined in the Generic Quality Assurance Project Plan (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, subsurface soil samples were collected using a 2-foot, stainless-steel, split-spoon sampler. Soil was placed into a stainless-steel bowl, mixed thoroughly with stainless-steel spoons, and then placed into the appropriate sample jars.

Soil Boring, SB-16, is at the same location where surface soil sample A(24.2) was collected. SB-16 samples were collected from intervals of 0 to 4 ft and 7 to 10 ft. There was no sample recovery from 4 to 7 ft.

Soil Boring, SB-17, is at the same location where surface soil sample B(24.2) was collected. SB-17 samples were collected from intervals of 0 to 4 ft, 4 to 7 ft, and 7 to 10 ft.

The five samples were sent to CH2M HILL's laboratory for metals, pesticides, PCBs, SVOCs, and TPH method 418.1 analyses.

Results

Surface soil sampling locations with values above detection limits are shown in Table 24-A, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold. The same information is presented in Table 24-B for subsurface soil sampling locations, except there are only two types of comparison criteria appropriate for subsurface soil samples.

æ	Tab	in Surface Soll Compa
		6

ared to Screening Levels for Parcel 24 Summary of Detected Compound

Defense Depot Memphis, Tennessee **BRAC Sampling Program**

•

1400

4 4 4

6100 78 78

0.9 0.9

L 68.0

0.65 J 0.34 J

> 0 to 1 0 to 1 0 to 1

0 to 1

A(24.2)

0.82

0.78

0.53 J 0.11 J 0.2 J

0 to .5

A(24.2) A(24.2) A(24.2) A(24.2) A(24.2) A(24.2) B(24.2) B(24.2) B(24.2)

bis(2-Ethylhexyl)phthalate

Butytbenzylphthalate

Calcium

Benzo(k)fluoranthene

Benzo(g,h,i)perylene

0 to 1

19000 65000

4 4

N,

4.6 7.8 82 82 8. 7.8

0.96 96.0

0 to 1 0 to 1 0 to 1 0 10

<u>A(24.2)</u>

A(24.2)

Benzo(b)fluoranthene

0.71

1.2 J 0.3 J -0.23 J

Benzo(a)anthracene

Benzo(a)pyrene

A(24.2) A(24.2) A N N

÷ 11

410 410

4

<u> Y Y Y</u>

BARA

41000

46 1600

<u>6</u> ₽ 6

470 88 33 33 34 NA NA

NA NA 5800 5800 5800 5800 10.94 18 18

10.6 9100

0 to .5

0 to 1

A(24.2)

Chromium

13.4

11.3

0 to .5

<u>A(24.2)</u> B(24.2) A(24.2)

Chrysene

0 to 1

--

•

			Deletise Depot mempins, Tetricasee					
		Detected	Background	Risk-Base	Risk-Based Concentrations	Groundwater	Terrestrial/	_
		Value	Value ²	Soll Ing	Soli Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵	
Station ID Depth (ft)	£	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)	
0 to 1	ب ہ	0969	24000	7800	100000	NA	NA	
0 to 1		7080	24000	7800	100000	NA	NA	
0 to .5	Ŝ	10800	24000	7800	10000) NA	NA	
0 to 1	-	0.44 J	0.096	2300	61000	4300	NA	
0 to 1	-	4.1	22	.43	3.8	15	10	
0 to 1	-	5.9	22	.43	3.8	15	10	
0 to .5	Ň	84.2	22	.43	3.8	15	10	
0 to 1	1	63.9	250	220	14000	32	500	
0 to 1	F	75	250	250	14000	32	500	
0 to .5	υį	22.9	250	550	14000	32	500	
0 to 1	L	r 8.0	0.71	88.	7.8		NA	
							Í	

Anthracene

Arsenic

Barium

Parameter¹ Aluminum mgm97-DDMT BRAC Sampling Reports2/Ssdet/Parcel 24

 \overline{a}

134 244

<u>¥</u>¥88

A N

8200

310

ន្ល

25 10.5

0 to .5

B(24.2)

A(24.2)

0 to 1

A(24.2)

Copper Cobalt

0.35 J 1,4 J

4	00
	Soll
Tat	rface
	in Su

npared to Screening Levels for Parcel 24 Summary of Detectad Compounds in Surface Soil Compared to Scr BRAC Sampling Program Defense Depot Memphls, Tennessee

•

•

			Detected	Background	Risk-Based	Risk-Based Concentrations	Groundwater	Terrestrial/
-			Value	Value ²	Soil Inge	Soil Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
	A(24.2)	0 to 1	12.8	33	310	8200	NA	100
	B(24.2)	0 to .5	5.8	33	310	8200	VN	100
100	B(24.2)	0 to .5	0.011	0.074	1.9	17	•	AN
Di-n-buty/phthalate	A(24.2)	0 to 1	0.51 J	NA	780	20000	120	NA
	A(24.2)	0 to 1	0.75 J	NA	780	2000	120	NA
	B(24.2)	0 to .5	0.17 J	NA	780	20000	120	NA
Dibenz(a,h)anthracene	A(24.2)	0 to 1	0.34 J	0.26	.088	.78	11	NA
Dieldrin	B(24.2)	0 to .5	0.0027 J	0.63	.04	.36	.001	NA
Fluoranthene	A(24.2)	0 to 1	0.52 J	1.6	310	8200	980	NA
	A(24.2)	0 to 1	2.2 J	1.6	310	8200	980	NA
Indeno(1,2,3-cd)pyrane	A(24.2)	0 to 1	0.62 J	0.7	88	7.8	35	AN
lron	A(24.2)	0 to 1	8380	37000	2300	61000	AN	۲ ۲
	A(24.2)	0 to 1	11100	37000	2300	61000	NA	AN
	B(24.2)	0 to .5	9730	37000	2300	61000	NA	AN
Lead	A(24.2)	0 to 1	39.6	43	200	1000	1.5	20
	A(24.2)	0 to 1	47.4	43	200	1000	1.5	S.
	B(24.2)	0 to .5	10	43	200	1000	1.5	50
Magnesium	A(24.2)	0 to 1	2230	4500	NA	NA	AN	AN
	A(24.2)	0 to 1	5880	4600	NA	NA	NA	NĂ
	B(24.2)	0 to .5	553	4600	NĀ	NA	NA .	NA
Manganese	A(24.2)	0 to 1	382	1300	180	4700	NA	NA
	A(24.2)	0 to 1	485	1300	180	4700	NA	AN
-	B(24.2)	0 to .5	68.7	1300	160	4700	NA	NA
INICKEI	A(24.2)	0 to 1	8.8	33	160	4100	21	30
	A(24.2)	0 to 1	10.6	33	160	4100	21	ន
, , , , ,	B(24.2)	0 to ,5	4.6	33	160	4100	21	8
Pentachlorophenol	B(24.2)	0 to .5	0.094 J	NA	5.3	48	2	NA
Petroleum Hydrocarbons"	A(24.2)	0 to 1	1300	NA	NA	100	NA	NA
į	A(24.2)	0 to 1	1570	NA	NA	100	NA	NA
Phananthrene	A(24.2)	0 to 1	0.27 J	0.61	2300	61000	4300	NA
	A(24.2)	0 to 1	1.7 J .	0.61	2300	61000	4300	NA
Fotassium	A(24.2)	0 to 1	656	2000	NA	NA	NA	NA

mgm97-DDMT BRAC Sampling Reports2/Sadet/Parcel 24

Ъ.

244 135

			Detected	Background	Risk-Base	Risk-Based Concentrations	Groundwater	Terrestrial
			Value	Value ²	Soil Ing	Soil Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
	A(24.2)	0 to 1	749	2000	NA	NA	NA	NA
Potassium	B(24.2)	0 to .5	887	2000	NA	NA	NA	ΨN
Pyrene	A(24.2)	0 to 1	0.56 J	1.5	230	6100	1400	٧N
	A(24.2)	0 to 1	2.3	1.5	230	6100	1400	VN
Vanadium	A(24.2)	0 to 1	14	52	55	1400	NA	2
	A(24.2)	0 to 1	15.2	52	55	1400	NA	2
	B(24.2)	0 to .5	17.5	52	55	1400	NA	2
Zinc	A(24.2)	0 to 1	42	130	2300	61000	42000	05
	A(24.2)	0 to 1	64.2	130	2300	61000	42000	20
	B(24.2)	0 to .5	11.2	130	2300	61000	42000	20
Notes: 1. The parameter listing Includes only the parameters detected within each parcel and not all the parameters analyzed. 2. Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HilL	ting Includes only es are from Table	the parame 5-1 of the Dr	ters detected raft Backgrou	l within each p nd Sampling Pi	arcel and no rogram Techi	nt all the parameters nical Memorandum,	analyzed. CH2M HILL	
September 1996. 3. Risk-based Conce	intrations are fror	т the £РА Re	gion II Risk-Bo	sed Concentry	ations Table.	September 1996. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	996.	
 Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996. Terrestrial Ecological Values are from Toxicalogical Benchmark for Screening Potential Contaminants of Concern for E Terrestrial Plants, Suter II, Will, and Evans. 1993. 	tection Values ar cal Values are fro suter II, Will, and E	e from the EF am Toxicologi Evans. 1993.	A Region III R Ical Benchma	Isk-Based Conu it's for Screening	centrations Tr g Potential C	Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996. Terrestrial Ecological Values are fram Taxicalogical Benchmark for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants, Suter II, Will, and Evans, 1993.	30, 1996. cem for Effects c	Ę
 For petroleum hydrocarbon comparisons. The most Contaminated Sites (provided by TDEC), was used 	drocarbon comp es (provided by 1	artsons, the r IDEC), was us	nost conserva ted.	ittve value of 1(30 ppm, from	most conservative value of 100 ppm, from Soil Clean-Up Levels for Petroleum used.	s for Petroleum	
Bold text indicates detections that exceeded a screening level value (NA - indicates screening level values are not available for comparison J - indicates estimated value above the method detection limit but be	detections that ex ning level values ed value above	ceeded a sc are not avail the method c	creening level lable for com detection limit	creening level value and the associated scr illable for comparison. detection limit but below the reporting limit.	essociated Freporting lin	screening level value and the associated screening level value that was exceeded. Jilable for comparison. I detection limit but below the reporting limit.	e that was excet	sded.

•

4

Tabi

mgm97-DDMT BRAC Sempling Reports2/Ssdet/Parcel 24

. .

244 136

Table 24-B Summary of Detected Compounds in Subsurface Soll Compared to Screening Levels for Parcel 24 BRAC Sampling Program 2 4 4 1 3 7 Defense Depot Memphis, Tennessee

			Detected	Background	Groundwater Protection
			Value	Value ²	Values ³
Parametar ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	A(24.2)	0 to 4	3600	22000	NA
	A(24.2)	7 to 10	19700	22000	NÄ
	B(24.2)	0 to 4	24900	22000	NA
	B(24.2)	4 to 7	19300	22000	NA
	B(24.2)	7 lo 10	15300	22000	ŇĂ
Arsenic	A(24.2)	0 to 4	3.8	17	15
	A(24.2)	7 lo 10	13.4	17	15
	B(24.2)	0104	20.4	17	15
	B(24.2)	4 to 7	22.1	17	15
	B(24.2)	7 to 10	<u>14.5</u>	17	15
Barium	A(24.2)	0 to 4	13.4	300	32
	A(24.2)	7 to 10	162	300	32
	B(24.2)	0 to 4	250	300	32
	B(24.2)	4 to 7	271	300	32
	B(24.2)	7 to 10	198	300	32
Benzo(a)anthracene	A(24.2)	7 to 10	0.074 J	NA	.7
Benzo(a)pyrene	A(24.2)	7 to 10	0.071 J	NA	4
Benzo(b)fluoranthene	A(24.2)	7 to 10	0.082 J	NA	4
Benzo(g,h,i)perylene	A(24.2)	7 to 10	0.044 J	NA	1400
Benzo(k)fluoranthene	A(24.2)	7 to 10	0.039 J	NA	4
Beryllium	8(24.2)	4 to 7	1	1.2	180
bis(2-Ethylhexyl)phthalate	A(24.2)	0 to 4	0.081 J	NĀ	11
	A(24.2)	7 to 10	180 D	NA	11
	B(24.2)	0 to 4	0.041 J	NA	11
	B(24.2)	4 to 7	0.23 J	NA	11
	B(24.2)	7 to 10	0.12 J	NA	11
Calcium	A(24.2)	7 to 10	3350	2400	NA
	B(24.2)	0 to 4	2020	2400	NA
	B(24.2)	4 to 7	1620	2400	NA
	B(24.2)	7 to 10	2790	2400	NA
Chromium	A(24.2)	0 to 4	3.7	26	19
	A(24.2)	7 to 10	24.2	26	19
	B(24.2)	0 to 4	23	26	19
	B(24.2)	4 to 7	19.3	26	19
	B(24.2)	7 to 10	17.9	26	19
Chrysene	A(24.2)	7 to 10	0.076 J	NA	<u> </u>
Cobalt	A(24.2)	0 to 4	2.1	20	NA
	A(24.2)	7 to 10	11.2	20	NA
	B(24.2)	0 to 4	15	20	NA
	<u> </u>	4 to 7	16	20	NA
	B(24.2)	7 to 10	13.6	20	NA
Copper	A(24.2)	0104	6		NA
	A(24.2)	7 lo 10	25.7	33	NA
	B(24.2)	0 to 4	33.9	33	NA
	B(24.2)	4 to 7	33.1	33	NA
	B(24.2)	7 to 10	27.5	33	NA NA
Di-n-butylphthalate	A(24.2)	0 to 4	0.24 J	NA	120
	A(24.2)	7 to 10	0.4	NA	120
	B(24.2)	4 to 7	0.66	NA	120
	B(24.2)	7 to 10	0.3 J	NA	120
Fluoranthene	A(24.2)	0 to 4	0.05 J	0.045	980
	A(24.2)	7 to 10	0.1 J	0.045	980

Table 24-B Summary of Detected Compounds in Subsurface Soli Compared to Screening Levels for Parcel 24 BRAC Sampling Program Defense Depot Memphis, Tennessee 2 4 4 1 3 8

			Detected	Background	Groundwater Protection
			Value	Value ²	Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Iren	A(24.2)	0104	6900	38000	NA
	A(24.2)	<u>7 to 10</u>	29800	38000	NA
	8(24.2)	0 to 4	39800	38000	NA
	8(24.2)	4 to 7	36400	38000	NA
	8(24.2)	7 to 10	31700	38000	NA NA
Lead	A(24.2)	0 to 4	9.1	24	1.5
	A(24.2)	7 to 10	20.3	24	1.5
	B(24.2)	0 to 4	27.6	24	1.5
	8(24.2)	4 to 7	22.3	24	1.5
	B(24.2)	7 to 10	17.1	24	1,5
Magneslum	A(24.2)	0 to 4	168000	4900	
	A(24.2)	7 to 10	3690	4900	NA
	B(24.2)	0 to 4	4790	4900	NA
	B(24.2)	4 to 7	4400	4900	NA
	B(24.2)	7 to 10	4090	4900	NA
Manganese	A(24.2)	0 to 4	331	1500	NA
	A(24.2)	7 to 10	636	1500	NA
	8(24.2)	0104	1120	1500	NA
	B(24.2)	4 to 7	1670	1500	NA
	B(24.2)	7 to 10	908	1500	NA
N-Nitrosodiphenylamine	A(24.2)	7 to 10	0.14 J	NA	.2
Nickel	A(24.2)	0 to 4	6.6	37	21
	A(24.2)	7 to 10	28.9	37	21
	B(24,2)	0 to 4	34.3	37	21
	B(24.2)	4 to 7	38.2	37	21
	B(24.2)	7 to 10	33	37	21
Petroleum Hydrocarbons ⁴	A(24.2)	0 to 4	18.5	NA	NA
	A(24.2)	7 to 10	19.8	NA	NA
Phenanthrene	A(24.2)	7 to 10	0.049 J	NA	4300
Potassium	A(24.2)	0 to 4	7430	1800	NÄ
	A(24.2)	7 to 10	3410	1800	NA
	B(24,2)	0 to 4	1930	1800	NA
	B(24,2)	4 to 7	1600	1800	NA
	B(24.2)	7 to 10	1570	1800	NA
Pyrene	A(24.2)	0 to 4	0.044 J	0.042	1400
	A(24.2)	7 to 10	0.09 J	0.042	1400
Selenium	B(24.2)	4 to 7	2.7	0.64	3
Sodium	A(24.2)	0 to 4	526	NA	NA
Vanadium	A(24,2)	0 to 4	10.2	51	NA
	A(24.2)	7 to 10	45.1	51	NA
	B(24.2)	0 to 4	51.1	51	NA
	B(24.2)	4 10 7	44.2	51	NA
	B(24.2)	7 to 10	39.B	51	NA
Zinc	A(24.2)	0 to 4	19.7	110	42000
	A(24.2)	7 to 10	85,9	110	42000
	B(24.2)	O to 4	120	110	42000

. 2

•

Table 24-B

Summary of Detected Compounds in Subsurface Soli Compared to Screening Levels for Parcel 24 BRAC Sampling Program

Defense Depot Memphis, Tannessee

244 139

Parameter ¹	Station ID	Depth (fi)	Detected Value (mg/kg)	Background Value ² (mg/kg)	Groundwater Protection Values ³ (mg/kg)
	B(24.2)	4 to 7	108	110	42000
	B(24.2)	7 to 10	96.1	110	42000

 Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HiLL September 1996.

3. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table , R.L. Smith, April 30, 1996.

4. For petroleum hydrocarbon comparisons, the most conservative value of 100 ppm, from Soll Clean-Up Levels for Petroleum*Contaminated Sites* (provided by TDEC), was used. Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.

NA - indicates screening level values are not available for comparison.

D - indicates estimated value identified at a secondary dilution factor.

J - indicates estimated value above the method detection limit but below the reporting limit.

Acronyms

. . . .

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
PCB	Polychlorinated biphenyl
РСР	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
ТРН	total petroleum hydrocarbon
VOC	volatile organic compound

-

Parcel 25 Report BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

. .

1

Parcel 25 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Numbers	Label	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
25	873, 875	25.2	8,7	2	N/A	N/A

Site Description

Parcel 25 is a 5,770 ft¹ parcel in the southwest part of the Main Installation, in OU-2, as shown on Drawing 1. Parcel 25 consists of Buildings 873, 875 and the adjacent railroad tracks.

Soil sampling was conducted at Label 25.2, which consists of Building 875. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

In addition, this parcel is associated with a 1,000-gallon heating oil tank that was located outside of Building 875 and was closed in place in July of 1994 (The Pickering Firm, Inc., 1993 Storage Tank Survey as cited in Woodward-Clyde, November 1996). There has been no documented release associated with this tank. No evidence was found of disposal, or migration from an adjacent property of hazardous substances or petroleum products.

Surface Soil Sampling and Analyses Procedure

Samples collected from Label 25.2 were collected for both CH2M HILL and Corps of Engineers (COE) laboratory analysis. Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, a total of two samples were collected from Label 25.2. Sample A(25.2) and a quality assurance split sample were located east of Building 875 (See Drawing 1, BRAC Soil Sample Locations).

244 143

A pick-hoe and sharpshooter shovel were used to remove the gravel and rock surface. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. The samples were collected from beneath the gravel surface to less than 6 inches below ground surface (bgs).

Sample A(25.2) was sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides, PCBs, metals, SVOCs, and VOCs analyses. The split sample was sent to COE's Atlanta, Georgia laboratory for pesticides, PCBs, metals, semivolatiles, and volatiles analyses. All samples received at QAL's Montgomery laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, subsurface soil samples were collected using a 2-foot, stainless-steel, split-spoon sampler. Samples were collected from intervals of 0 to 4 ft, 4 to 7 ft, and 7 to 10 ft at the same sample location where the surface soil sample A(25.2) was collected. VOC soil samples were collected directly from the continuous sampler using stainless-steel spoons. The remaining soil was placed into a stainless-steel bowl, mixed thoroughly with stainless-steel spoons, and then placed into the appropriate sample jars.

Three samples were collected from the soil boring (SB-8). The samples were sent to CH2M HILL's laboratory for metals, pesticides, PCBs, VOCs, and SVOCs analyses.

Results

Surface soil sampling locations with values above detection limits are shown in Table 25-A, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold. The same information is presented in Table 25-B for subsurface soil sampling locations, except there are only two types of comparison criteria appropriate for subsurface soil samples.

2

- A.,

٩ بە Tab

٦

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 25 BRAC Sampling Program Defense Depot Memphis, Tennessea

			Detected	Background	Fisk-Based	Risk-Based Concentrations	Groundwater	Terrestrlal
			Value	Value ²	Soil Inges	Soil Ingestion ³ (mg/kg)	Protection [*]	Ecological ^s
Parameter	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Acetone	A(25.2)	0 to .5	0.004 J	NA	780	20000	æ	AN
Aluminum	A(25.2)	0 to .5	4180	24000	7800	100000	NA	NA
Arsenic	A(25.2)	0 to .5	2.4	22	.43	3.8	15	10
Barium	A(25.2)	0 to .5	33.7	250	550	14000	32	500
Benzo(a)anthracene	A(25.2)	0 to .5	0.082 J	0.71	.88	7.8	.7	NA
Benzo(a)pyrene	A(25.2)	0 to .5	L 880.0	0.96	880.	.78	4	NA
Benzo(b)fluoranthene	A(25.2)	0 to .5	0.084 J	0.9	.88	7.8	4	NA
Benzo(g,h,i)perylana	A(25.2)	0 to .5	0.048 J	0.82	230	6100	1400	NA
Benzo(k)fluoranthene	A(25.2)	0 to .5	U 860.0	0.78	8.8	82	4	NA
Catcium	A(25.2)	0 to .5	31200	5800	NA	AN	NA	NA
Chlordane	A(25.2)	0 to .5	0.071	0.029	49	4.4	2	NA
Chromium	A(25.2)	0 to .5	5.5	27	39	1000	19	1
Chrysene	A(25.2)	0 to .5	0.12 J	0.94	88	780	÷	NA
Copper	A(25.2)	0 to .5	3.3	33	310	8200	NA	100
Di-n-butylphthalate	A(25.2)	0 to .5	0.075 J	NA	780	20000	120	NA
Fluoranthene	A(25.2)	0 to .5	0.16 J	1.6	310	8200	980	NA
gamma-Chlordane	A(25.2)	0 to .5	0.092	0.026	0.49	4,4	2	NA
Indeno(1,2,3-cd)pyrene	A(25.2)	0 to .5	0.052 J	0.7	.88	7.8	35	NA
lron	A(25.2)	0 to .5	5220	37000	2300	61000	NA	NA
Lead	A(25.2)	0 to .5	2.8	43	200	1000	1.5	20
Magnesium	A(25.2)	0 to .5	1850	4600	NA /	NA	NA	NA
Manganese	A(25.2)	0 to .5	66.3	1300	180	4700	NA	AN
Methylene chloride	A(25.2)	0 to .5	0.001 J	NA	85	760	.01	ΝŇ
Phenanthrene	A(25.2)	0 to .5	0.092 J	0.61	2300	61000	4300	NA
Pyrene	A(25.2)	0 to .5	0.18 J	1.5	230	6100	1400	NA
Vanadium	A(25.2)	0 to .5	8.9	52	55	1400	NA	2

mgm97-DDMT BRAC Sampling Reports2/Ssdet/Parcel 25

.... -

-

		Ō	efense Depo	Defense Depot Memphis, Tennessee	nnessee			
			Detected Value	Background Value ²	Risk-Based C Soil Ingest	Risk-Based Concentrations Soil Ingestion ³ (mg/kg)	Groundwater Protection ⁴	Terrestrial/ Ecological ⁵
Parameter ¹ Station ID		Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Zinc A(25.2)	(ק	0 to .5	23.4	130	2300	61000	42000	50
 Notes: Notes: The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed. Background Values are from Table 5-1 of the <i>Draft Background Sampling Program Technical Memorandum</i>, CH2M HILL Background Values are from Table 5-1 of the <i>Draft Background Sampling Program Technical Memorandum</i>, CH2M HILL Risk-based Concentrations are from the <i>EPA Region III Risk-Based Concentrations Table</i>, R.L. Smith, April 30, 1996. Groundwater Protection Values are from the <i>EPA Region III Risk-Based Concentrations Table</i>, R.L. Smith, April 30, 1996. Ferrestrial Ecological Values are from the <i>EPA Region III Risk-Based Concentrations Table</i>, R.L. Smith, April 30, 1996. Ferrestrial Ecological Values are from the <i>EPA Region III Risk-Based Concentrations Table</i>, R.L. Smith, April 30, 1996. Ferrestrial Ecological Values are from the <i>EPA Region III Risk-Based Concentrations Table</i>, R.L. Smith, April 30, 1996. Ferrestrial Ecological Values are from the <i>EPA Region III Risk-Based Concentrations Table</i>, R.L. Smith, April 30, 1996. Ferrestrial Ecological Values are from the <i>EPA Region III Risk-Based Concentrations Table</i>, R.L. Smith, April 30, 1996. Ferrestrial Plants, Suter II, WIII, and Evans, 1993. Restrict Plants, Suter II, WII, and Evans, 1993. Restrict Plants, Suter II, WIII, and evans, 1993. Restrict Plants, Suter II, WII, and evalues are not available for comparison. Indicates scheening	ble 5- from the from the from the from the devolution the are the from the from the	e parameter 1 of the Draf he EPA Regit om the EPA. <i>Toxtcologica</i> ns, 1993. Heded a scre e not availat	s detected † Backgrour on III Risk-Ba Region III Ri Region III Ri Region III Ri Benchmai ening level ble for comp	within each p od Sampling P sed Concentr sk-Based Conc k for Screenin value and the but below the	arcel and not ogram Techni ottons Table, F sentrations Tal p Potential Co associated sc reporting limi	all the parame (cal Memorand R.L. Smith, April 3 ble, R.L. Smith, <i>J</i> intaminants of C creening level v t.	arameters detected within each parcel and not all the parameters analyzed. The Draft Background Sampling Program Technical Memorandum, CH2M HILL FA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996. The EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996. Cological Benchmark for Screening Potential Contaminants of Concern for Effect 1993. A a screening level value and the associated screening level value that was est thad detection limit but below the reporting limit.	cts on (ceeded.

;

¥-2

Tab

mgm97-DDMT BRAC Sampling Reports25sdat/Parcel 25

. പ

244 145

Table 25-B Summary of Detected Compounds in Subsurface Soli Compared to Screening Levels for Parcel 25 BRAC Sampling Program Defense Depot Memphis, Tennessee 2 4 4 1 4 6

			Detected	Background	Groundwater Protection
			Value	Value ²	Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
2-Hexanone	A(25.2)	4 to 7	0.003 J	NA	NA
Aluminum	A(25.2)	0 to 4	29400	22000	NA
	A(25.2)	4 to 7	22800	22000	NA
	A(25.2)	7 to 10	18000	22000	NA
Arsenic	A(25.2)	0 to 4	20	17	15
	A(25.2)	4 to 7	21.3	17	15
	A(25.2)	7 to 10	17.3	17	15
Barlum	A(25.2)	0 to 4	160	300	32
	A(25.2)	4 to 7	301	300	32
	A(25.2)	7 to 10	242	300	32
Benzo(a)anthracene	A(25.2)	O to 4	0.044 J	NA	.7
Beryllium	A(25.2)	4 to 7	1.1	1,2	180
bis(2-Ethylhexyl)phthalate	A(25.2)	0 to 4	0.52	NA	11
	A(25.2)	4 to 7	0.15 J	NA	11
	A(25.2)	7 to 10	0.098 J	NA	11
Calcium	A(25.2)	0 to 4	2540	2400	NA
	A(25.2)	4 to 7	3040	2400	NA
	A(25.2)	7 to 10	3580	2400	NA
Chromium	A(25.2)	0 to 4	25.8	26	19
	A(25.2)	4 to 7	23.3	26	19
	A(25.2)	7 to 10	23.9	26	19
Chrysene	A(25.2)	0 to 4	0.053 J	NA	1
	A(25.2)	4 to 7	0.043 J	NA	1 1
Cobalt	A(25.2)	0 to 4	15.3	20	NA
	A(25.2)	4 to 7	17.1	20	NA
	A(25.2)	7 to 10	13.3	20	NA
Copper	A(25.2)	0 to 4	35.2	33	NA
	A(25.2)	4 to 7	36.3	33	NA
	A(25.2)	7 to 10	31.1	33	NA
Di-n-butylphthalate	A(25.2)	0 to 4	0.34 J	NA	120
	A(25.2)	4 to 7	0.27 J	NA	120
	A(25.2)	_ 7 to 10	0.32 J	NA	120
Fluoranthene	A(25.2)	0 to 4	0.092 J	0.045	980
	A(25.2)	4 to 7	0.069 J	0.045	980
Iran	A(25.2)	0 to 4	41700	38000	NA
	A(25.2)	4 to 7	38800	38000	NA
	A(25.2)	7 to 10	35800	38000	NA
Lead	A(25.2)	_ 0 to 4	31.6	24	1.5
	A(25.2)	4 to 7	23.7	24	1.5
	A(25.2)	7 to 10	19.5	24	1.5
Magnesium	A(25.2)	D to 4	5180	4900	NA
	A(25.2)	4 to 7	4940	4900	NA
	A(25.2)	7 to 10	4700	4900	NA
Manganese	A(25.2)	O to 4	1280	1500	NA
	A(25.2)	4 to 7	2330	1500	NA NA
	A(25.2)	7 to 10	941	1500	NA NA
Methytene chloride	A(25.2)	0104	0.002 J	NA	.01
	A(25.2)	4 to 7	0.001 J	NA	.01

. "A.

mgm97-DDMT BRAC Sampling ReportsZ/Sbdst/Parcel 25

Table 25-B Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 25 BRAC Sampling Program Defense Depot Memphis, Tennessee 2 4 4 1 4 7

			Detected Value	Background Value ²	Groundwater Protection Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Nickel	A(25.2)	0 to 4	34.6	37	21
	A(25.2)	4 to 7	41.1	37	21
	A(25.2)	7 to 10	38.4	37	21
Phenanthrene	A(25.2)	0 to 4	0.056 J	NA	4300
	A(25.2)	0 to 4	4010	1600	NA
	A(25.2)	4 to 7	4210	1800	NA
	A(25.2)	7 to 10	3640	1800	NĂ
Pyrene	A(25.2)	0 to 4	L 680.0	0.042	1400
	A(25.2)	4 to 7	0.064 J	0.042	1400
Sodium	A(25.2)	_4 to 7	366	NA	NA
Vanadium	A(25.2)	O to 4	54	51	NA
	A(25.2)	4 to 7	53.5	51	NA
	A(25.2)	7 to 10	46.5	51	. NA
Zinc	A(25.2)	0 to 4	122	110	42000
	A(25.2)	4 to 7	121	110	42000
	A(25,2)	7 to 10	111	110	42000

Notes:

 The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.

 Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL September 1996.

3. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table , R.L. Smith, April 30, 1996.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.

NA - indicates screening level values are not available for comparison.

J-indicates estimated value above the method detection limit but below the reporting limit.

۰.

-

Acronyms

• '

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
ТРН	total petroleum hydrocarbon
VOC	volatile organic compound

.

Parcel 28 Report BRAC Sampling Program for

-,

į.

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 28 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building or Facility Number	Label	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
28	1089, X04	28.1	3,7	2	N/A	N/A

Site Description

Parcel 28 is a 3,725 ft³ parcel in the southwest part of the Main Installation, in OU-2, as shown on Drawing 1. Parcel 28 consists of Building 1089, open storage area X04, and the adjacent railroad tracks.

Soil sampling was conducted at Label 28.1, which consists of open storage area X04. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. According to the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), the open storage areas have the potential for hazardous materials to have been released. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the Environmental Baseline Survey Report (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, samples collected from Label 28.1 were collected for both CH2M HILL and Corps of Engineers (COE) laboratory analysis. Sample A(28.1) was located northeast of Building 1089. Sample B(28.1) was located north of Sample A(28.1) in open storage area X04 (See Drawing 1, BRAC Soil Sample Locations).

A pick-hoe and sharpshooter shovel were used to remove the gravel and rock surface. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Sample A(28.1) was collected from beneath the gravel surface to less than 8 inches below ground surface (bgs). Sample B(28.1) was collected from beneath the gravel surface to less than 6 inches bgs.

Samples A(28.1) and B(28.1) were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides, PCBs, metals, SVOCs , and VOCs analyses. The quality assurance

split sample was sent to COE's Atlanta, Georgia, laboratory for pesticides, PCBs, metals, semivolatiles, and volatiles analyses. All samples received at CH2M HILL's laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, subsurface soil samples were collected, using a 2-foot, stainless-steel, split-spoon sampler. Samples were collected from intervals of 0 to 4 ft, 4 to 7 ft, and 7 to 10 ft. VOC soil samples were collected directly from the continuous sampler using stainless-steel spoons. The remaining soil was placed into a stainless-steel bowl, mixed thoroughly with stainless-steel spoons, and then placed into the appropriate sample jars.

Soil Boring, SB-3, is at the same location where surface soil sample A(28.1) was collected. Soil Boring, SB-4, is at the same location where surface soil sample B(28.1) was collected.

Three samples were collected from each of the two soil borings (SB-3 and SB-4). The six samples were sent to CH2M HILL's laboratory for metals, pesticides, PCBs, VOCs, and SVOCs analyses.

Results

Surface soil sampling locations with values above detection limits are shown in Table 28-A, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold. The same information is presented in Table 28-B for subsurface soil sampling locations, except there are only two types of comparison criteria appropriate for subsurface soil samples.

<pre></pre>	
<u> </u>	
E STATE	
e e	
- a	
Ē	

,

ñ

ŀ

۰.

ï

.

Summary of Detected Compounds in Surface Soll Compared to Screening Levels for Parcel 28

BRAC Sampling Program Defense Depot Memphls, Tennessee

			Detected	Background	Risk-Based	Risk-Based Concentrations	Groundwater	Terrestrial/
			Value	Value ²	Soll Inges	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecological ^s
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Acetone	A(28.1)	0 to .7	0.004 J	AN	780	20000	8	NA
	A(28.1)	0 to .7	0.005 J	AN	780	20000	8	NA.
	B(28.1)	0 to .7	f 600.0	NA	780	20000	8	NA
Aluminum	A(28.1)	0 to .7	2820	24000	7800	1000001	NA	NA
	A(28.1)	0 to .7	3690	24000	7800	100000	NA	ŇA
	B(28.1)	0 to .7	24700	24000	7800	100000	NA	NA
Arsenic	A(28.1)	0 to .7	3.4	22	.43	3.8	15	10
	A(28.1)	0 to .7	6.2	ิส	.43	3.8	15	10
	B(28.1)	0 to .7	17.6	22	.43	3.8	15	10
Barlum	A(28.1)	0 to .7	39.3	250	550	14000	32	500
	A(28.1)	0 ta .7	63.1	250	550	14000	32	500
	B(28.1)	0 to .7	246	250	550	14000	32	500
Benzo(a)anthracene	A(28.1)	0 to .7	0.053 J	0.71	88.	7.8	.7	AN
	A(28.1)	0 to .7	0.056 J	0.71	. 88	7.8	.7	NA
Benzo(a)pyrene	A(28.1)	0 to .7	0.053 J	0.96	.088	.78	4	AA
	A(28.1)	0 to .7	0.065 J	0.96	.088	.78	4	NA
Benzo(b)fluoranthene	A(28.1)	0 to .7	0.062 J	0.9	88.	7.8	4	NA
	A(28.1)	0 to .7	0.083 J	0.9	88.	7.8	4	AN
Benzo(g,h,i)perylene	A(28.1)	0 to .7	0.054 J	0.82	230	6100	1400	AN
	A(28.1)	0 to .7	0.072 J	0.82	230	6100	1400	NA
Benzo(k)fluoranthene	A(28.1)	0 to .7	0.066 J	0.78	8.8	78	4	AN
	A(28.1)	0 to .7	0.077 J	0.78	8.8	78	4	NA
Beryllîum	B(28.1)		0.95	1.1	.15	1.3	180	10
bis(2-Ethylhexyl)phthalate	A(28.1)	0 to .7	0.048 J	NA	46	410		NA
	A(28.1)		0.12 J	NA	46 [410	11	AN
	B(28.1)	0 to .7	0.048 J	NA	46	410	11	NA
Cadmium	A(28.1)		0.54	1.4	3.9	100	6	n
	A(28.1)	0 to .7	0.7	1.4	3.9	100	6	တ
Catcium	A(28.1)	0 to .7	86400	5800	NA	NA	NA	AA
	A(28.1)	0 to .7	104000	5800	AN	NA	NA	AN
	B(28.1)	0 to .7	24600	5800	NA	NA	NA	NA
Chromium	A(28.1)	0 to .7	18.7	27	39	1000	19	-
	A(28.1)		19.9	27	39	1000	19	

mgm97-DDMT BRAC Sampling Reports2/Sadet/Parcel 28

244 152

-	4 -8	<
	0	Ĩ
-	T ab	

۲r

.

۰.

Summary of Detected Compounds in Surface Soli Compared to Screening Levels for Parcel 28

BRAC Sempling Program Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based (Risk-Based Concentrations	Groundwater	Terrestrial
	_		Value	Value ²	Soll Inges	Soil Ingestion ³ (mg/kg)	Protection ⁴	Ecological ^s
Parameter	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
	B(28.1)	0 to .7	26.1	27	39	1000	19	1
Chrysene	A(28.1)	0 to .7	L E70.0	0.94	88	780	1	NA
-	A(28.1)	0 to .7	0.068 J	0.94	88	780	1	NA
Cobalt	B(28.1)	0 to .7	13,7	81	470	12000	NA	20
Copper	A(28.1)	0 to .7	13.8	33	310	8200	NA	100
	A(28.1)	0 to .7	15.5	33	310	8200	NA	100
	B(28.1)	0 to .7	34.5	33	310	8200	NA	100
000	A(28.1)	0 to .7	0.041	0.0067	2.7	24	0.7	NA
	A(28.1)	0 to .7	0.046	0.0067	2.7	24	0.7	NA
DDE	A(28.1)	0 to .7	0.04	0.16	1.9	17	0.5	NA
	A(28.1)	0 to .7	0.044	0.16	6.1	17	0.5	NA
DDT	A(28.1)	0 to .7	0.2	0.074	1.9	17	1	NA
	A(28.1)	0 to .7	0.22	0.074	1.9	17	1	NA
Di-n-butylphthalate	A(28.1)	0 to .7	0.21 J	NA	780	20000	120	NA
	A(28.1)	0 to .7	0.28 J	NA	780	20000	120	NA
	B(28.1)	0 to .7	L 0000	NA	780	20000	120	NA
Fluoranthene	A(28.1)	0 to .7	0.13 J	1.6	310	8200	980	NA
	A(28.1)	0 to .7	0.14 J	1.6	310	8200	980	NA
Indeno(1,2,3-cd)pyrene	A(28.1)	0 to .7	0.048 J	0.7	.88	7.8	35	NA
	A(28.1)	0 to .7	0.068 J	0.7	89.	7.8	35	NA
Iron	A(28.1)	0 to .7	7800	37000	2300	61000	NA	NÀ
	A(28.1)	0 to .7	9180	37000	2300	61000	NA	NA
	B(28.1)		38400	37000	2300	61000	NA	AN
Lead	A(28.1)	0 to .7	48.1	43	200	1000	1.5	50
	A(28.1)	0 to .7	58.8	43	200	1000	1.5	50
	B(28.1)	0 to .7	28.7	43	200	1000	1.5	20
Magnesium	A(28.1)		3350	4600	NA I	NA	NA	AN
	A(28.1)	0 to .7	4700	4600	NA	NA	NA	NA
	B(28.1)	0 to .7	7200	4600	NA	NA	NA	NA
Manganese	A(28.1)		131	1300	180	4700	NA	NA
	A(28.1)	0 to .7	186	1300	180	4700	NA	AA
	B(28.1)	0 to .7	1100	1300	180	4700	AN	NA
Mercury	B(28.1)	0 to .7	2.13	0.43	2.3	61	ē	ų.

244 153

mgm97-DDMT BRAC Sampting Reports2/Ssdet/Parcel 28

5	4
le θu	4
- E	
jaj	

•

€:

Summary of Datected Compounds in Surface Soli Compared to Screening Levels for Parcel 28

BRAC Sampifng Program Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based (Risk-Based Concentrations	Groundwater	Terrestrial/
			Value	Value ²	Soil Ingest	Soll Ingestion ^a (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Methylene chloride	A(28.1)	0 to .7	0.001 J	AN	85	760	<u>10</u>	NA
	A(28.1)	0 to .7	0.002 J	AN	85	760	<u>10</u>	NA
	B(28.1)	0 to .7	0.005 J	NA	85	760	<u>6</u>	NA
Nickel	A(28.1)	0 to .7	7.2	33	160	4100	21	30
	A(28.1)	0 to .7	. 13.2	33	160	4100	21	30
	B(28.1)	0 to .7	37.4	33	160	4100	21	30
Phenanthrene	A(28.1)	0 to .7	0.054 J	0.61	2300	61000	4300	NA
	A(28.1)	0 to .7	0.07 J	0.61	2300	61000	4300	NA
Potassium	B(28.1)	0 to .7	2650	2000	AN	NA	NA	NA
Pyrene	A(28.1)		0.11 J	1.5	230	6100	1400	AN
	A(28.1)	0 to .7	0.13 J	1.5	230	6100	1400	AN
Toluene	A(28.1)	0 to .7	0.001 J	0.002	1600	41000	ŝ	NA
Vanadium	A(28.1)		7.3	52	55	1400	NA	2
	A(28.1)	0 to .7	9 ,4	52	55	1400	NA	2
	B(28.1)	0 to .7	49.8	25	SS	1400	NA	2
Zinc	A(28.1)	0 to .7	184	130	2300	61000	42000	50
	A(28.1)	0 to .7	185	130	2300	61000	42000	50
	B(28.1)	0 to .7	128	130	2300	61000	42000	50
Notes:								
 The parameter listing includes only the particulation. Background Values are from Table 5-1 of the particulation. 	ncludes only t re from Table (he paramet 5-1 of the <i>Dr</i>	iers detecte aff Backaro	d within eact und Sampline	n parcel and n 2 Proaram Teci	rameters detected within each parcel and not all the parameters analyzed. The Draft Backaround Sampling Program Jechnical Memorandum. CH2M Hill	eters analyzed. dum. CH2M HiLL	
September 1996.			0				- - -	
3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	itions are from	the EPA Re	gion III Risk-6	kased Conce	ntrations Table	, R.L. Smith, April	30, 1996.	
4. Groundwater Protection Values are from	on Values are	from the EP	A Region III	Risk-Based C	oncentrations	the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	April 30, 1996.	
5. Terrestrial Ecological Values are from Toxicalogical Benchmark for Screening Potential Contaminants of Concern for Effects on Toxostial Plants Science 1999	Values are from	n Taxicalagi	cai Benchm	ark for Screer	ling Potential (Contaminants of	Concern for Effe	icts on
	a, yval, cho ev	Ans. 1995.				-	-	
boid text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded	chons that exc	ceeded a sc	reening leve	al value and t	he associated	screening level	value that was e	xceeded.
1	Liever values o		available for companion	npanson.	1 - 1 - 1			

J - indicates estimated value above the method detection limit but below the reporting limit.

Table 28-B Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 28 BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected Value	Background Vatue ²	Groundwater Protection Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	A(28.1)	0 to 4	25000	22000	NA
	A(28.1)	4 to 7	16600	22000	NA NA
	A(28.1)	7 to 10	14400	22000	NA NA
	B(28.1)	0 to 4	15000	22000	NA NA
	B(28.1)	4 to 7	14500	22000	NA NA
-	B(28.1)	7 to 10	12000	22000	NA NA
Arsenic	A(28.1)	0 to 4	22.9	17	15
Vilgenie	A(28.1)	4107	15.3	17	15
	A(28.1)	7 to 10	13.3	17	15
	B(28.1)	0 to 4	17.3	17	15
	B(28.1)	4 to 7	15.8	17	15
	B(28.1)	7 to 10	8.5	17	15
Barlum	A(28.1)	0 to 4	352	300	32
Building	A(28.1)	4 to 7	248	300	32
	A(28.1)	7 to 10	136	300	32
	B(28.1)	0 to 4	297	300	32
· · · ·	B(28.1)	4 to 7	208	300	32
	B(28.1)	7 to 10	118	300	32
bis(2-Ethylhexyl)phthalate	B(28.1)	7 to 10	0.041 J	<u>300</u>	
Calcium	A(28.1)	0 to 4	2090	2400	11
Guicipin	A(28.1)	4 to 7	2030	2400	NA NA
	A(28.1)	7 to 10	3650	2400	NA
	B(28.1)	0 to 4	3070	2400	NA
······································	B(28.1)	4 to 7	5390	2400	NA
	B(28.1)	7 to 10	21700	2400	NA
Chromium	A(28.1)	0 to 4	27.1		NA
ernomen	A(28.1)	4 to 7	20.3	26	19
	A(28.1)	7 to 10		26	19
	B(28.1)	0 to 4	20.7	26	19
·	B(28.1)	4 to 7	20.4	26	19
	B(28.1)	7 to 10	20.6	26	19
Cobalt	A(28.1)	0 to 4	19.5	26	<u> </u>
	A(28.1) A(28.1)	4 to 7	<u>16.8</u> 15.2	20	<u> </u>
	A(28.1) A(28.1)	7 to 10		20	NA
		0 to 4	14 15	20	NA
···	8(28.1)			20	NA
·		4 to 7	15.3	20	<u>NA</u>
Copper	B(28.1)	7 to 10	11.4	20	NA
	A(28.1)	0 to 4	41.1	33	NA
	A(28.1)	4 to 7			<u>NA</u>
	A(28.1)	7 to 10	28.8	33	NA
	B(28.1)		30.9	33	NA
	B(28.1)	4 to 7	32.5	33	NA
Di-n-butylphthalate	B(28.1)	7 to 10	24.8	33	NA
om-outyphthalate	A(28.1)	0 to 4	0.051 J	NA	120
	A(28.1)	4 to 7	0.058 J	<u>NA</u>	120
	B(28.1)	4 to 7	0.051 J	NA	120
	B(28.1)	7 to 10	0.058 J	NA	120
Iron	A(28.1)	0 to 4	46900	38000	NA
	<u>A(2</u> 8.1)	4 to 7	34000	38000	NA

· .

ŀ.

.

2

*

:

Table 28-BSummary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 28BRAC Sampling ProgramDatense Depot Memphis, Tennessee2 4 4 15 6

			Detected	Background	Groundwater Protection
			Value	Value ²	Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
	A(28.1)	7 to 10	30800	38000	NA
•	B(28.1)	0 to 4	34700	38000	NA
	B(28.1)	4 to 7	35000	38000	NA
	B(28.1)	7 to 10	25500	38000	NA
Lead	A(28.1)	0 to 4	25.7	24	1.5
	A(28.1)	4 to 7	17.7	24	1.5
	A(28.1)	7 to 10	15.1	24	1.5
	B(28.1)	0 to 4	19.7	24	1.5
	B(28.1)	4 to 7	20.2	24	1.5
	B(28.1)	7 to 10	12.4	24	1.5
Magnesium	A(28.1)	0 to 4	5730	4900	NA NA
	A(28.1)	4 to 7	4330	4900	NA
	A(28.1)	7 to 10	4050	4900	NA
	B(28.1)	O to 4	4760	4900	NA NA
	B(28.1)	4 to 7	5160	4900	NA NA
	B(28.1)	7 to 10	15500	4900	NA
Manganese	A(28.1)	0 to 4	1230	1500	NA
	A(26.1)	4 to 7	951	1500	NA NA
	A(28.1)	7 to 10	954	1500	
	B(28.1)	0 to 4	969	1500	NA NA
	B(28.1)	4 to 7	1010	1500	<u> </u>
	B(28.1)	7 to 10	875	1500	
Methylene chloride	A(28.1)	0 to 4	0.004 J	NA	.01
	A(28.1)	4 to 7	0.002 J	NA	.01
	A(28.1)	7 to 10	0.001 J	NA -	.01
	B(28.1)	4 to 7	0.002 J	NA	
Nickel	A(28.1)	0 to 4	44.8	37	.01
	A(28.1)	4 to 7	33.9	37	21
	A(28.1)	7 to 10	32.7	37	21
	B(28.1)	0 to 4	41	37	21
	B(28.1)	4 to 7	36.3	37	21
	B(28.1)	7 to 10	29.5		21
Potassium	A(28.1)	0 to 4	2130	37	21
	A(28.1)	4 to 7		1600	<u>NA</u>
· · · ·	A(28.1)	7 to 10	<u>1520</u> 1350	1600	<u>NA</u>
·	B(28.1)			1800	NA
	8(28.1)	0104	1910	1800	NA
	B(28.1)	4 to 7	2390	1800	<u>NA</u>
Sodium		7 to 10	1710	1800	<u>NA</u>
	B(28.1)	4 to 7	353	NA	
/anadium	B(28.1)	7 to 10	331	NA	
	A(28.1)	0 to 4	57.6	51	
- <u> </u>	A(28.1)	4 to 7	43.7	51	<u>NA</u>
	A(28.1)	7 to 10	44.5	51	<u>NA</u>
	B(28.1)	0 to 4	40.3	51	<u>NA</u>
	B(28.1)	4 10 7	42.2	51	<u>NA</u>
	B(28.1)	7 to 10	38.7	<u>51</u>	NA

. . .

١.

Ŀ,

Table 28-B Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 28 BRAC Sampling Program Defense Depot Memphis, Tennessee 244 157

Parameter ¹	Station ID	Depth (ft)	Detected Value (mg/kg)	Background Value ² (mg/kg)	Groundwater Protection Values ³ (mg/kg)
Zinc	A(28.1)	0 to 4	123	110	42000
	A(28.1)	4 to 7	103	110	42000
	A(28.1)	7 to 10	79.3	110	42000
	B(28.1)	0 to 4	100	110	42000
	B(28.1)	4 to 7	108	110	42000
	B(28.1)	7 to 10	63.1	110	42000

Notes:

 The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.

2. Background Values are from Table 5-1 of the *Draft Background Sampling Program Technical* Memorandum, CH2M HILL September 1996.

3. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table , R.L. Smith, April 30, 1996.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.

NA - Indicates screening level values are not available for comparison.

J - indicates estimated value above the method detection limit but below the reporting limit.

Acronyms

•

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
ТРН	total petroleum hydrocarbon
VOC	volatile organic compound

.

۰.

Parcel 29 Report BRAC Sampling Program for Defense Depot Memphis, Tennessee

. •

×.

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 29 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Facility Numbers	Labei	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
29	X27, X30	29.2	3,14	4	N/A	N/A

Site Description

Parcel 29 is a 7,771 ft² parcel in the northwest corner of the Main Installation, in OU-4, as shown on Drawing 1. Parcel 29 consists of open storage areas X27, X30 and the adjacent railroad tracks.

Soil sampling was conducted at Label 29.2, which consists of open storage areas X27 and X30. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. According to the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), the open storage areas have the potential for hazardous materials to have been released. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

In addition, this parcel is associated with a 1.25-gallon hydraulic fluid spill in the street that was reported on September 12, 1995. The spill reportedly spread north, out Gate 15 and across Dunn Avenue (Defense Logistics Agency, DDMT 1995 Spill Response Checklist as cited in Woodward-Clyde, November 1996). The precise location of the spill is currently unknown. Application of absorbent was sufficient to contain the spill, and no further remedial action was deemed necessary. Therefore the current sampling activities are not in response to this remediated spill.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, two samples were collected for Label 29.2. Sample A(29.2) was located west of Building 925 in open storage area X27. Sample B(29.2) was located north of Sample A(29.2) across a drainage ditch in open storage area X30 (See Drawing 1, BRAC Soil Sample Locations).

A pick-hoe and sharpshooter shovel were used to remove the gravel and rock surface. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Sample A(29.2) was collected from beneath the highly compacted gravel surface to less than 8 inches below ground surface (bgs). Sample B(29.2) was collected from beneath the gravel surface to less than 6 inches bgs.

Both samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides, PCBs, metals, SVOCs, and VOCs analyses. All samples received at CH2M HILL's laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling and Analyses Procedure

Based on the recommendations of the Environmental Baseline Survey Report (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, subsurface soil samples were collected, using a 2-foot, stainless-steel, split-spoon sampler. Samples were collected from intervals of 0 to 4 ft, 4 to 7 ft, and 7 to 10 ft. VOC soil samples were collected directly from the continuous sampler using stainless-steel spoons. The remaining soil was placed into a stainless-steel bowl, mixed thoroughly with stainless-steel spoons, and then placed into the appropriate sample jars.

Soil Boring, SB-9, is at the same location where surface soil sample A(29.2) was collected. Soil Boring, SB-5, is at the same location where surface soil sample B(29.2) was collected.

Three samples were collected from each of the two soil borings (SB-9 and SB-5). The six samples were sent to CH2M HILL's laboratory for metals, pesticides, PCBs, VOCs, and SVOCs analyses.

Results

Surface soil sampling locations with values above detection limits are shown in Table 29-A, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold. The same information is presented in Table 29-B for subsurface soil sampling locations, except there are only two types of comparison criteria appropriate for subsurface soil samples.

Tab	Table 29-A
-----	------------

•

•

Summary of Detected Compounds in Surface Soll Compared to Screening Levels for Parcel 29 BRAC Sampling Program

Defense Depot Memphis, Tennessee

						•		
			Detected	Background	Risk-Based	Risk-Based Concentrations	Groundwater	Terrestrial
,			Value	Value ^z	Soil Inge	Soil Ingestion ³ (mg/kg)	Protection [*]	Ecological
Parameter	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Acetone	A(29.2)	0 to .5	0.019	NA	780	20000	8	AN
Aluminum	A(29.2)	0 to .5	3670	24000	7800	100000	NA	NA
	A(29.2)	0 to .5	4420	24000	7800	10000	NA	NA
	B(29.2)	0 to .5	9240	24000	7800	100000	NA	NA
Arsenic	A(29.2)	0 to .5	3.2	22	64.	3.8	15	10
	A(29.2)	0 to .5	3.7	22	.43	3.8	15	10
	B(29.2)	0 to .5	12.8	22	,43	3.8	15	10
Banum	B(29.2)	0 to .5	.142	250	550	14000	32	500
Benzo(a)anthracene	B(29.2)	0 to .5	0.037 J	0.71	88.	7.8	7	NA
Benzo(a)pyrene	B(29.2)	0 to .5	0.057 J	0.96	.088	.78	4	NA
Benzo(b)fluoranthene	B(29.2)	0 to .5	0.09 J	0.9	88.	7.8	4	NA
<u>Benzo(g,h,i)perylene</u>	B(29.2)	0 to .5	0.051 J	0.82	230	6100	1400	NA
Benzo(k)fluoranthene	B(29.2)	0 to .5	0.072 J	0.78	8.8	78	4	NA
bis(2-Ethylhexyl)phthalate	A(29.2)	0 to .5	0.049 J	AN	46	410	11	NA
	B(29.2)	0 to 5	L 580.0	NA	46	410	11	NA
Butylbenzylphthalate	A(29.2)	0 to .5	0.7	NA	1600	41000	68	NA
Calcium	A(29.2)	0 to .5	529	5800	NA	NA	NA	AN
	B(29.2)	0 to .5	6590	5800	NA	NA	NA	NA
Chlordane	B(29.2)	0 to .5	0.011	0.029	.49	4.4	2	AN
Chloromethane	A(29.2)	0 to .5	0.001 J	NA	49	440	.0066	NA
Chromium	A(29.2)	0 to .5	13.1	27	39	1000	19	-
	A(29.2)	0 to .5	13.2	27	39	1000	19	-
	B(29.2)	0 to .5	54.7	27	39	1000	19	1
Chrysene	B(29.2)	0 to .5	L 170.0	0.94	88	780	٢	NA
Cobalt	B(29.2)	0 to .5	8.7	18	470	12000	NA	20
Copper	A(29.2)	0 to .5	4	33	310	8200	NA	100
	A(29.2)	0 to .5	4.8	33	310	8200	NA	100
	B(29.2)	0 to .5	25.3	ន	310	8200	NA	100
DDT	B(29.2)	0 to .5	0.043	0.074	1.9	17	1	AA
Di-n-butylphthalate	A(29.2)	0 to .5	0.075 J	NA	780	20000	120	NA
	A(29.2)	0 to 5	0.13 J	NA	780	20000	120	NA
Di-n-octy/phthalate	A(29.2)	0 to .5	0.12 J	NA	160	4100	1000000	AN

•

•

.

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 29

BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based	Risk-Based Concentrations	Groundwater	TerrestriaV
			Value	Value ²	Soil Inge	Soil Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Dieldrin	B(29.2)	0 to .5	0.13	0.53	.04	.36	100.	NÀ
Fluoranthene	B(29.2)	0 to .5	0.11 J	9.1	310	8200	980	NA
gamma-Chlordane	B(29.2)	0 to .5	0.017	0.026	0.49	4.4	2	NA
Iron	A(29.2)	0 to .5	8750	37000	2300	61000	NA	NA
	A(29.2)	0 to .5	6980	37000	2300	61000	NA	NA
-	B(29.2)	0 to .5	20800	37000	2300	61000	NA	NA
Lead	A(29.2)	0 to .5	29.7	43	200	1000	1.5	50
	A(29.2)	0 to .5	35.5	43	200	1000	1.5	20
	B(29.2)	0 to .5	223	43	200	1000	1.5	50
Magnesium	B(29.2)	0 to .5	2110	4600	NA	NA	NA	NA
Manganese	A(29.2)	0 to .5	64.8	1300	180	4700	NA	NA
	A(29.2)	0 to .5	113	1300	180	4700	NA	NA
	B(29.2)	0 to .5	601	1300	180	4700	NA	NA
Methylene chloride	A(29.2)	0 to 5	0.002 J	AN	85	760	.01	NA
	A(29.2)	0 to .5	0.003 J	AN	85	760	.01	NA
	B(29.2)	0 to .5	0.032	NA	85	760	.01	NA
Nîckel	A(29.2)	0 to .5	5	33	160	4100	21	30
	B(29.2)	0 to .5	15.5	33	160	4100	21	30
Pentachlorophenol	B(29.2)	0 to .5	0.096 J	AN	5.3	48	.2	NA
Phenanthrene	B(29.2)	0 to .5	0.042 J	0.61	2300	61000	4300	NA
Potassium	J B(29.2)	0 to .5	911	2000	AN	NA	NA	NA
Pyrene	B(29.2)	0 to .5	0.11 J	1.5	230	6100	1400	NA
Selenium	B(29.2)	0 to .5	12.5	0.81	39	1000	3	-
Vanadium	A(29.2)	0 to .5	12.4	52	55 [1400	NA	2
	A(29.2)	0 to .5	12.9	52	55	1400	NA	2
	B(29.2)	0 to .5	27.4	52	55	1400	NA	2

mgm97-00MT BRAC Sampling Reports2/Sade//Parcel 29

244 163

- 4	I
Ś	i
<u> </u>	I
a de	

Summary of Detected Compounds In Surface Soil Compared to Screening Levels for Parcel 29 **BRAC Sampling Program**

Defense Depot Memphis, Tennessee

			Detected	Detected Background	i	Risk-Based Concentrations	Groundwater	Terrestrial/
			Value	Value ⁻	Soll Inge	Soll Ingestion (mg/kg)	Protection'	Ecological
Parameter ¹	Station ID	Station ID Depth (ft)	(by/6w)	(mg/kg)	Residential	Industrial		(mg/kg)
Zinc	A(29.2)	0 to .5	23.4	130	2300	61000	42000	50
	A(29.2)	0 to .5	24.8	130	2300	61000	42000	50
	B(29.2)	0 to .5	152	130	2300	61000	42000	50
Notes:								
1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.	icludes only	the parame	sters detecte	ad within eac	h parcel and	not all the parame:	ters analyzed.	
2. Background Vatues are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum. CH2M HILL	e from Table	5-1 of the D	haft Backgro	inid Samplin	g Program Ter	chnical Memorand	um. CH2M HILL	
September 1996.								
3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	tions are fror	n the EPA Re	egion III Risk-I	Based Conce	intrations Tabl	(e, R.L. Smith, April 3	10, 1996.	
4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	on Values ar	e from the E	PA Region III	Risk-Based C	oncentrations	s Table, R.L. Smlth, A	April 30, 1996.	

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on

Terrestrial Plants, Suter II, Will, and Evans, 1993.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - Indicates screening level values are not available for comparison.

J - Indicates estimated value above the method detection limit but below the reporting limit.

Table 29-B Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 29 BRAC Sampling Program Defense Depot Memphis, Tennessee

	ļ		Detected	Background	Groundwater Protection
			Value	Vatue ²	Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	A(29.2)	0 to 4	22200	22000	NA NA
· · · · · · · · · · · · · · · · · · ·	A(29.2)	4 to 7	16400	22000	NA
· · · · ·	A(29.2)	7 to 10	14800	22000	NA NA
1	B(29.2)	0 to 4	18300	22000	NA NA
	B(29.2)	4 to 7	15600	22000	NA
	B(29.2)	7 to 10	14400	22000	NA NA
Arsenic	A(29.2)	0 ta 4	19.1	17	15
	A(29.2)	4 to 7	14.8	17	15
	A(29.2)	7 to 10	9.8	17	15
	B(29.2)	0 to 4	16.1	17	15
	B(29.2)	4 to 7	13.4	17	15
Derture	B(29.2)	7 to 10	10	17	15
Barlum	A(29.2)	0 to 4	258	300	32
	A(29.2) A(29.2)	4 to 7 7 lo 10	<u>219</u> 143	300	32
	B(29.2)	0 to 4	143	300	32
	B(29.2) B(29.2)	4 to 7	188	300	32
	8(29.2)	7 to 10	131		32
Beryllium	A(29.2)	0 to 4	0.98	300	32
bis(2-Ethylhexyl)phthalate	B(29.2)	7 to 10	0.085 J	<u>1.2</u> NA	180
Bromomethane	A(29.2)	0 to 4	0.003 J	NA	11
Calcium	A(29.2)	0 to 4	1730	2400	1
	A(29.2)	4 to 7	2730	2400	NA NA
	A(29.2)	7 to 10	3430	2400	NA NA
	B(29.2)	0 10 4	1760	2400	
	B(29.2)	4 10 7	2840	2400	NA
	B(29.2)	7 to 10	3430	2400	NA
Chloromethane	A(29.2)	0104	0.002 J	NA	.0066
Chromlum	A(29.2)	0 to 4	22.8	26	19
	A(29.2)	4 to 7	20.5	26	19
	A(29.2)	7 to 10	19	26	19
	B(29.2)	0 to 4	21.6	26	19
	B(29.2)	4 10 7	18.5	26	19
	<u>B(29.2)</u>	7 to 10	18.1	26	19
Cobalt	A(29.2)	0 to 4	16,4	20	NA
	A(29.2)	4 to 7	14.8	20	NA
	A(29.2)	7 to 10	13.4	20	NA
·	B(29.2)	0104	13.6	20	NA
	8(29.2)	4 to 7	13.4	20	NĂ
<u> </u>	B(29.2)	7 to 10	12.1	20	NA NA
Copper	A(29.2)	0 to 4	32.9		NA
· · · · · · · · · · · · · · · · · · ·	A(29.2)	4 to 7		33	NA
	A(29.2)	7 to 10	26.7	33	NA
	B(29.2)	0 to 4	30.9	33	NA
	B(29.2) B(20.2)	4 to 7 7 to 10	27.5	33	NA
Di-n-butylphthalate	B(29.2) A(29.2)	0 to 4	25.6	33	NA
		4 to 7	0.041 J	NA	120
	A(29.2) A(29.2)	7 to 10	0.046 J		120
	B(29.2)	0 to 4	0.058 J 0.045 J	NA	120
	B(29.2) B(29.2)	4 to 7	0.045 J	NA NA	120
	0(23.2)		U.Voz J	<u>NA</u>	120
Iron	A(29.2)	0 to 4	38700	38000	NA

•

• 1

ņ

÷

Table 29-8 Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 29 BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected Value	Background Value ²	Groundwater Protection Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
	A(29.2)	7 to 10	26800	38000	NA NA
	B(29.2)	0 to 4	35800	38000	NA
	B(29.2)	4 to 7	31500	38000	NA
	B(29.2)	7 to 10	28600	38000	NA
	A(29.2)	0104	21.8	24	1.5
	A(29.2)	4 to 7	17.6	24	1.5
	A(29.2)	7 to 10	19.7	24	1.5
	B(29.2)	0 to 4	19.9	24	1.5
	B(29.2)	4 to 7	17.5	24	1.5
	B(29.2)	7 to 10	12.9	24	1.5
Magnesium	A(29.2)	0 to 4	4660	4900	NA
	A(29.2)	4 to 7	4250	4900	NA
	A(29.2)	7 to 10	4060	4900	NA
	B(29.2)	0 to 4	4380	4900	NA
	B(29.2)	4 to 7	3970	4900	NA
	B(29.2)	7 to 10	3900	4900	NA
Manganese	A(29.2)	0 to 4	1150	1500	NA
	A(29.2)	4 to 7	930	1500	NA
	A(29.2)	7 to 10	997	1500	NA
	B(29.2)	0 to 4	903	1500	NA NA
	B(29.2)	4 to 7	695	1500	NA
	B(29.2)	7 to 10	607	1500	NA
Methylene chloride	A(29.2)	0 to 4	0.002 J	NA	.01
	A(29.2)	4107	0.002 J	NA	.01
	B(29.2)	0104	0.002 J	ŃA	.01
Nickel	A(29.2)	0 to 4		37	21
	A(29.2)	4 to 7	34.1	37	21
	A(29.2)	7 to 10	31.5	37	21
	B(29.2)	0104	34.4	37	21
	B(29.2)	4 to 7	32.2	37	21
	B(29.2)	7 to 10	31.1	37	21
Potassium	A(29.2)	0104	2260	1600	NA
	A(29.2)	4 to 7	1740	1600	NA
	A(29.2)	7 to 10	1570	1800	NA
	B(29.2)	0104	1970	1600	NA
	B(29.2)	4 to 7	1780	1800	NA
	B(29.2)	7 to 10	1210	1800	NA
Vanadium	A(29.2)	0 to 4	48.3	51	NA
	A(29.2)	4 to 7	44.4	51	NA
	A(29.2)	7 to 10	42.5	51	NA
	B(29.2)	0 to 4	46	51	NA
	B(29.2)	4 to 7	40.6	51	NA NA
	B(29.2)	_ 7 to 10	40.4	51	NA
Zinc	A(29.2)	0 to 4	109	110	42000
	A(29,2)	4 to 7	101	110	42000
	A(29.2)	7 to 10	69.8	110	42000

4

• *

.

Table 29-B Summary of Detected Compounds in Subsurface Soli Compared to Screening Levals for Parcel 29 BRAC Sampling Program

Defense Depot Memphis, Tennessee

244 167

	6 4 - 47 - 18		Detected Value	Background Value ²	Groundwater Protection Values ⁴
Parameter'	Station ID	Oepth (ft)	(mg/kg)	<u>(mg/kg)</u>	(mg/kg)
	B(29.2)	0 to 4	106	110	42000
	B(29.2)	4 to 7	92.4	110	42000
	B(29.2)	7 to 10	75.6	110	42000
Technical Memor	/zed. les are from Table 5-1 randum, CH2M HILL \$ fection Values are fro	September i	1996.	, , ,	7
R.L. Smith, April 30	J, 1996.		-		
Bold text indicates o value that was exce	detections that excer seded.	eded a scre	ening level vatu	ie and the associat	ed screening level

NA - Indicates screening level values are not available for comparison. J - Indicates estimated value above the method detection **limit** but below the reporting limit.

mgm97-DDMT BRAC Sampling Reports2/Sbdat/Parcel 29

. . .

Acronyms

÷.

-

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
ТРН	total petroleum hydrocarbon
VOC	volatile organic compound
	• · ·

-

. .

Parcel 31 Report

٠.

P . .

ł,

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 31 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Facility Numbers	Label	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
31	X17, X19, X20, X21	31.1	7,12	4	N/A	N/A

Site Description

Parcel 31 is a 7,176 ft² parcel in the northwest portion of the Main Installation, in OU-4, as shown on Drawing 1. Parcel 31 consists of open storage areas X17, X19, X20, X21, and the adjacent railroad tracks.

Soil sampling was conducted at Label 31.1, which consists of open storage area X17. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. According to the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), the open storage areas have the potential for hazardous materials to have been released. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, one sample was collected for Label 31.1. Sample A(31.1) was located west of Building 835 in open storage area X17 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of gravel from the sample site. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Sample A(31.1) was collected from beneath the highly compacted gravel surface to less than 6 inches below ground surface (bgs).

The sample was sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides, PCBs, metals, SVOCs, and VOCs analyses. All samples received at CH2M HILL's laboratory were analyzed in accordance with procedures outlined in the *Generic*

Quality Assurance Project Plan (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling and Analyses Procedure

Samples collected from the Label 31.1 soil boring were collected for both CH2M HILL and Corps of Engineers (COE) laboratory analysis. Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, subsurface soil samples were collected, using a 2-foot, stainless-steel, split-spoon sampler. Samples were collected from intervals of 0 to 4 ft, 4 to 7 ft, and 7 to 10 ft at the same sample location where the surface soil sample A(31.1) was collected. VOC soil samples were collected directly from the continuous sampler using stainless-steel spoons. The remaining soil was placed into a stainless-steel bowl, mixed thoroughly with stainless-steel spoons, and then placed into the appropriate sample jars.

A total of six samples were collected from the soil boring (SB-10). Three samples were sent to CH2M HILL's laboratory for metals, pesticides, PCBs, VOCs, and SVOCs analyses. Three quality assurance split samples were sent to COE's Atlanta, Georgia laboratory for pesticides and PCBs analyses.

Results

Surface soil sampling locations with values above detection limits are shown in Table 31-A, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold. The same information is presented in Table 31-B for subsurface soil sampling locations, except there are only two types of comparison criteria appropriate for subsurface soil samples.

Parcel 31-A

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 31

Defense Depot Memphis, Tennessee BRAC Sampling Program

			Detected	Background	Hisk-Based	Risk-Based Concentrations	Groundwater	Terrestrial/
			Value	Value ²	Soll Inges	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecological
Parameter	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Acetone	A(31.1)	0 to .5	r 200.0	۸A	780	20000	B	NA
Aluminum	A(31.1)	0 to .5	7150	24000	7800	100000	NA	NA
Barium	A(31.1)	0 to .5	32.5	250	550	14000	32	500
bis(2-Ethylhexyl)phthalate	A(31.1)	0 to .5	L 60.0	NA	46	410	11	AN
Calcium	A(31.1)	0 to .5	32400	5800	AN	AN	AA	NA
Chromium	A(31.1)	0 to .5	15.4	27	£	1000	19	+
Cobalt	A(31.1)	0 to .5	2.2	18	470	12000	ΑN	20
Copper	A(31.1)	0 to .5	4.8	33	310	8200	AN	100
DDT	A(31.1)	0 to .5	0.0092	0.074	1.9	17	-	NA
Iron	A(31.1)	0 to .5	12300	37000	2300	61000	AN	NA
Lead	A(31.1)	0 to .5	22.4	43	200	1000	1.5	S
Magnesium	A(31.1)	0 to .5	984	4600	AN	NA	AN	NA
Manganese	A(31.1)	0 to .5	106	1300	180	4700	AN	NA
Methylene chloride	A(31.1)	0 to .5	0.002 J	AN	85	760	0	NA
Nickel	A(31.1)	0 to .5	5.3	33	160	4100	21	ສ
Potassium	A(31.1)		293	2000	AN	AN	NA	AA
Toluene	A(31.1)	0 to .5	0.002 J	0.002	1600	41000	5	AN
Vanadium	A(31.1)	0 to .5	19.8	25	55	1400	NA	7
Zinc	A(31.1)	0 to .5	25.2	130	2300	61000	42000	50
Notes: 1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed 2. Background Values are from Table 5-1 of the <i>Draft Background Sampling Program Technical Memorandum</i> , CH2M HI September 1996.	udes only the rom Tabla 5-1		s detected v t Backgroun	within each p d Sampling P	iarcel and noi rogram Techr	teters detected within each parcel and not all the parameters analyzed. Draft Background Sampling Program Technical Memorondum, CH2M HILI	ters analyzed. um, CH2M HILL	
Risk-based Concentrations are from the EPA	ns are from th		on III Risk-Bas	ed Concentr	attons Table, I	Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.	0, 1996.	

7044 YOU INTO 1111 5

 Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.
 Terrestrial Ecological Values are from Taxicalogical Benchmark for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants, Suter II, Will, and Evans, 1993.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded. NA - Indicates screening level values are not available for comparison.

J - indicates estimated value above the method detection limit but below the reporting limit.

244 173 Table 31-B Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 31 **BRAC Sampling Program**

			Detected	Background	Groundwater Protection
			Value	Value ²	Velues ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	A(31.1)	0 to 4	28200	22000	NA NA
	A(31.1)	_ 4 to 7	20300	22000	NA
	A(31.1)	7 to 10	15900	22000	NA
Arsenic	A(31.1)	0 to 4	22.5	17	15
	A(31.1)	4 to 7	18.7	17	15
	A(31.1)	7 to 10	14.7	17	15
Barium	A(31.1)	0 to 4	208	300	32
	A(31.1)	4 to 7	286	300	32
	A(31.1)	7 to 10	212	300	32
bis(2-Ethylhexyl)phthalate	A(31.1)	0 to 4	0.076 J	NA	<u> </u>
Calcium	A(31.1)	0 to 4	1560	2400	NA
	A(31.1)	4 to 7	1750	2400	NA
	A(31,1)	7 to 10	2850	2400	NA
Chromium	A(31.1)	0 to 4	25.5	26	19
	A(31.1)	4 to 7	19.9	26	19
	A(31.1)	7 to 10	18.8	26	19
Cobalt	A(31.1)	0 to 4	21.3	20	NA
	A(31.1)	4 to 7	16.6	20	NA
	A(31.1)	7 to 10	13.7	20	NA
Copper	A(31.1)	0 to 4	41.2	33	NA
<u> </u>	A(31.1)	4 to 7	33.8	33	NA
	A(31.1)	7 to 10	29.4	33	
Di-n-butylphthalate	A(31.1)	4 to 7	0.043 J	NA	120
Iron	A(31.1)	0 to 4	44300	38000	NA
	A(31.1)	4 to 7	37500	38000	NA
	A(31.1)	7 to 10	32900	38000	NA
Lead	A(31.1)	0 to 4	29.6	24	1.5
	A(31.1)	to 7	21.7	24	1.5
	A(31.1)	7 to 10	17.9	24	1.5
Magnesium	A(31.1)	0 to 4	5420	4900	
<u> </u>	A(31.1)	4 to 7	4530	4900	NA NA
<u> </u>	A(31.1)	_ 7 to 10	4120	4900	NA
Manganese	A(31.1)	0 to 4	1470	1500	NA ·
· · · · · · · · · · · · · · · · · · ·	A(31.1)	4 to 7	1590	1500	NA
	A(31.1)	<u>7 to</u> 10	923	1500	
Methylene chloride	A(31.1)	0 to 4	0.0 <mark>03 J</mark>	NA	.01
Nickel	A(31.1)	0 to 4	38.6	37	21
	A(31.1)	4 to 7	38.6	37	21
	A(31.1)	7 to 10	33.5	37	
Polassium	A(31.1)	0 to 4	2350	1800	NA
	A(31.1)	4 to 7	2050	1800	
	A(31.1)	_ 7 to 10	1580	1800	NA
Sodium	A(31.1)	<u>0 to 4</u>	538	NA	NA
Vanadium	A(31.1)	0 to 4	57.1	51	NA
	A(31.1)	4 to 7	44.6	51	NA
	A(31.1)	7 to 10	41.3	51	NA

.

1

14

.

Table 31-B

Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 31 BRAC Sampling Program 2

Defense	Depot	Memphis,	Tennessee
---------	-------	----------	-----------

			Detected	Background	Groundwater Protection
			Value	Value ²	Values ^a
Parameter ¹	Station (D	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Zinc	A(31.1)	0 to 4	136	110	42000
· · · · · · · · · · · · · · · · · · ·	A(31.1)	4 to 7	129	110	42000
	A(31.1)	7 to 10	112	110	42000

Notes:

1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.

2. Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL September 1996.

3. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.

NA - Indicates screening level values are not available for comparison.

J - indicates estimated value above the method detection limit but below the reporting limit.

Acronyms

. . '

.

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
PCB	Polychlorinated biphenyl
РСР	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
трн	total petroleum hydrocarbon
VOC	volatile organic compound

-

÷

-

Parcel 32 Report

:

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 32 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Γ	Parcel	Building and Facility Numbers	Label	CERFA Map Location	RI/PS OU	Site No.	CERCLA Status
	32	835, 865, X02, X13, X15	32.1	8,16	4	N/A	N/A

Site Description

.

Parcel 32 is a 3,148 ft² parcel in the northwest portion of the Main Installation, in OU-4, as shown on Drawing 1. Parcel 32 consists of Buildings 835, 865, open storage areas X02, X13, X15, and the adjacent railroad tracks.

Soil sampling was conducted at Label 32.1, which consists of open storage areas X13 and X15. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. According to the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), the open storage areas have the potential for hazardous materials to have been released. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, two samples were collected for Label 32.1. Sample A(32.1) was located north of Building 835 and west of the railroad tracks in open storage area X15. Sample B(32.1) was located north of Building 835 and east of the railroad tracks in open storage area X13 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of gravel from the sample sites. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Both samples were collected from beneath the highly compacted gravel surface to less than 6 inches below ground surface (bgs).

Both samples were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides, PCBs, metals, SVOCs, and VOCs analyses. All samples received at CH2M HILL's laboratory were analyzed in accordance with procedures outlined in the *Generic*

Quality Assurance Project Plan (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, subsurface soil samples were collected, using a 2-foot, stainless-steel, split-spoon sampler. Samples were collected from intervals of 0 to 4 ft, 4 to 7 ft, and 7 to 10 ft. VOC soil samples were collected directly from the continuous sampler using stainless-steel spoons. The remaining soil was placed into a stainless-steel bowl, mixed thoroughly with stainless-steel spoons, and then placed into the appropriate sample jars.

Soil Boring, SB-11, is at the same location where surface soil sample B(32.1) was collected. Soil Boring, SB-12, is at the same location where surface soil sample A(32.1) was collected.

Three samples were collected from each of the two soil borings (SB-11 and SB-12). The samples were sent to CH2M HILL's laboratory for metals, pesticides, PCBs, VOCs, and SVOCs analyses.

Results

Surface soil sampling locations with values above detection limits are shown in Table 32-A, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold. The same information is presented in Table 32-B for subsurface soil sampling locations, except there are only two types of comparison criteria appropriate for subsurface soil samples.

Table 32-A
8

. •

۰.

•

Ŀ,

ŧ,

.

,

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 32

BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based	Risk-Based Concentrations	Groundwater	Terrestrial
			Value	Value ²	Soil Inge	Soil Ingestion ³ (mg/kg)	Protection*	Ecological ⁵
Parameter ¹	Station (D	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Acetone	A(32.1)	0 to .5	0.005 J	NA	780	20000	8	NA
Aluminum	A(32.1)	0 to .5	3940	24000	7800	100000	NA	NA
	B(32.1)	0 to .5	7720	24000	7800	100000	NA	NA
Arsenic	B(32.1)	0 to .5	14.8	22	.43	3.8	15	10
Barium	A(32.1)	0 to .5	9.3	250	550	14000	32	500
	B(32.1)	0 to .5	22.2	250	550	14000	32	500
bis(2-Ethylhexyl)phthalate	A(32.1)	0 to .5	0.048 J	NA	46	410	11	NA
Calcium	A(32.1)	0 to .5	347	5800	AN	NA	NA	NA
	8(32.1)	0 to 5	22400	5800	NA	NA	NA	AN
Chromium	A(32.1)	0 to 5	6.3	27	39	1000	19	-
	B(32.1)	0 to .5	22.7	27	39	1000	19	
Cobalt	B(32.1)	0 to ,5	2.2	18	470	12000	NA	20
Copper	A(32.1)	0 to .5	7.3	g	310	8200	NA	100
	B(32.1)	0 to .5	7.5	ŝ	310	8200	NÀ	100
DDT	B(32.1)	0 to .5	0.044	0.074	1.9	17	-	NA
Iron	A(32.1)	0 to .5	6400	37000	2300	61000	NA	AA A
	B(32.1)	0 to .5	16000	37000	2300	61000	NA	NA
Lead	B(32.1)	0 to .5	13.5	43	200	1000	1.5	22
Magnesium	A(32.1)	0 to .5	126	4600	NA	NA	NA	NA
	B(32.1)	0 to .5	719	4600	AN	NA	NA	AN
Manganese	A(32.1)	0 to .5	43.6	1300	180	4700	NA	NA
	B(32.1)	0 to .5	93.7	1300	180	4700	NA	NA
Methylene chloride	A(32.1)	0 to .5	0.005 J	AN	85	760	01	AA
	B(32.1)	0 to .5	0.007 J	AN	85	760	.01	AN
Nickel	A(32.1)	0 to .5	3.8	R	160	4100	21	8
	B(32.1)	0 to .5	15.3	33	160	4100	21	8
Potassium	B(32.1)	0 to .5	246	2000	NA	NA	NA	NA
Vanadium	A(32.1)	0 to .5	9.2	52	55	1400	NA	2
	B(32.1)	0 to .5	26.5	52	55	1400	NA	2

244 179

<u>.</u>--

4	ł
n [⊗]	2
	9
- 6	j

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 32 **BRAC Sampling Program**

Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based	Risk-Based Concentrations	Groundwater	Terrestrial/
			Value	Value ²	Soil Inge	Soil Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter	Station ID Depth	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Zinc	A(32.1)	0 to .5	9.5	130	2300	61000	42000	50
	B(32.1)	0 to .5	16.5	130	2300	61000	42000	50

Notes:

2. Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL 1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.

September 1996.

3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table. R.L. Smith, April 30, 1996:

Groundwater Protection Vatues are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996. Ц

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects an Terrestrial Plants, Suter II, Will, and Evans, 1993.

Bold text indicates detections that execeeded a screening level value and the associated screening tevel value that was exceeded. NA - Indicates screening level values are not available for comparison.

J - indicates estimated value above the method detection limit but below the reporting limit.

Table 32-B Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 32 BRAC Sampling Program Defense Depot Memphis, Tennessee

		1	Detected	Background	Groundwater Protection
			Value	Value ²	Velues ²
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	A(32.1)	0 10 4	14200	22000	NA
	A(32.1)	4 10 7	13500	22000	NA
	A(32.1)	7 to 10	12900	22000	NÁ
	B(32.1)	0 to 4	20300	22000	NA
	B(32.1)	4 to 7	15300	22000	NA
	8(32.1)	7 to 10	13100	22000	NA
Arsenic	A(32.1)	0 to 4	15.1	17	15
	A(32.1)	4 to 7	13.7	17	15
	A(32.1)	7 to 10	8.2	17	15
	B(32.1)	0 to 4	17.1	17	15
	B(32.1)	4107	14.6	17	15
	B(32.1)	7 to 10	11.6	17	15
Barium	A(32.1)	0 10 4	235	300	32
	A(32.1)	4 to 7	139	300	32
	A(32.1)	7 to 10	106	300	32
	8(32.1)	0 to 4	278	300	32
	B(32.1)	4 to 7	228	300	32
	B(32.1)	7 to 10	147	300	32
bis(2-Ethylhexyl)phthalat	A(32.1)	0 to 4	0.072 J	NA	11
	A(32.1)	4 to 7	0.2 J	NA	11
	A(32.1)	7 to 10	0.05 J	NA	11
	B(32.1)	0 to 4	0.058 J	NA	11
	B(32.1)	4 to 7	0.041 J	NA	11
	B(32.1)	7 to 10	0.16 J	NA	11
Butylbenzylphthalate	A(32.1)	4 to 7	0.43	NA	68
Calcium	A(32.1)	0 to 4	2880	2400	NA
	A(32.1)	4 to 7	3760	2400	NA
	A(32.1)	7 to 10	3230	2400	NA
	B(32.1)	0 to 4	1810	2400	NA
	B(32.1)	4 to 7	2820	2400	NA
	B(32.1)	7 to 10	3410	2400	NA
Chromium	A(32.1)	0to4	17.8	26	19
	A(32.1)	4 to 7	19.2	26	19
	A(32.1)	7 to 10	17,3	26	19
	B(32.1)	0.104	20.4	26	19
	8(32.1)	4107	17,7	26	19
	B(32.1)	7 to 10	17.4	26	19
Cobalt	A(32.1)	0 lo 4	14.3	20	NA
	A(32.1)	4 to 7	13.9	20	NA
	A(32.1)	7 to 10	12.1	20	NA
	B(32.1)	0 to 4	14.4	20	NA
	B(32.1)	4 to 7	13.3	. 20	NA
	B(32.1)	7 to 10	13.6	20	NA
Connor	A/20 1)	0 40 4	00.4		

mgm97-00MT 8RAC Sampling Reports2/Sbdet/Percol 32

A(32.1)

A(32.1) A(32.1)

B(32.1)

B(32.1)

B(32.1)

0 to 4

4 to 7

7 to 10

0 to 4

4 to 7

7 to 10

32.4

28.2

20.7

30.8

28.6

27.8

33

33

33

33

33

33

NA

NA

NA

NA

NA

NA

Copper

. •

•

1:

¥.

Table 32-B 2.9.4 1.0.2 Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 32[°] BRAC Sampling Program Defense Depot Memphis, Tennessee Defense Depot Memphis, Tennessee

· · · · · · · · · · · · · · · · · · ·		1	Detected Value	Background Value ²	Groundwater Protection Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Di-n-butylphthalate	A(32.1)	.4 to 7	10 20.0	NA	120
	B(32.1)	0 to 4	0.041 J	NA	120
·	8(32.1)	4107	0.044 J	NA	120
	B(32.1)	7 to 10	0.044 J	NA	120
Iron	A(32.1)	0 to 4	32800	38000	NA 120
1041	A(32.1)	4107	32000	38000	NA NA
	A(32.1)	7 to 10	22700	38000	NA NA
	B(32.1)	0 to 4	35100	38000	NA NA
	B(32.1)	4 to 7	31700	38000	NA
	B(32.1)	7 to 10	29600		
	A(32.1)			38000	ŇĂ
Lead		0 to 4		24	1.5
	A(32.1)	4 to 7	16.9	24	1.5
	A(32.1)	7 to 10	12.4	24	1.5
	B(32.1)	0 to 4	20.8	24	1.5
- ···	B(32.1)	4 to 7	17.2	24	1.5
	B(32.1)	7 to 10	15.4	24	1.5
Magnesium	A(32.1)	0 to 4	4250	4900	NA NA
	A(32.1)	4 to 7	4300	4900	NA
	A(32.1)	7 to 10	3910	4900	NA
	B(32.1)	0 to 4	4490	4900	NA
	B(32.1)	4 to 7	4040	4900	NA
	B(32,1)	7 to 10	3900	4900	NA
Manganese	A(32.1)	0 to 4	953	1500	NA
	Á(32.1)	4 to 7	1010	1500	NA
	A(32.1)	7 to 10	863	1500	NA
	B(32.1)	0 to 4	1100	1500	NA
	B(32.1)	4 to 7	828	1500	NA NA
	B(32.1)	7 to 10	1060	1500	NA
Methylene chloride	A(32.1)	4 to 7	0.003 J	NA	.01
	A(32.1)	7 to 10	0.0 <mark>02 J</mark>	NA	.01
<i>s</i>	B(32.1)	0 to 4	0.004 J	NA	.01
	B(32.1)	4 to 7	L 200.0	NA	.01
	B(32.1)	7 to 10	0.002 J	NA	.01
Nickel	A(32.1)	0 to 4	35.6	37	21
	A(32,1)	4 to 7	34.9	37	21
	A(32.1)	7 to 10	25.7	37	21
	8(32.1)	0 to 4	35.3	37	21
	B(32.1)	4 to 7	33.2	37	
	B(32.1)	7 to 10	32.8	37	21
Potassium	A(32.1)	0 to 4	2440	1800	21
	A(32.1)	4 to 7	1440		NA NA
· ·				1800	NA
 - -	A(32.1)	7 to 10	1300	1800	NA
	B(32,1)	0 to 4	1940	1800	NA
	B(32.1)	4 to 7	1500	1800	NA
Vecedium	B(32.1)	7 to 10	1420	1800	NA
Vanadium	A(32.1)		. 39	51	<u>NĀ</u>
·	A(32.1)	4 to 7	41.6	51	NA
	A(32.1)	7 to 10	36.3	51	NA NA
	B(32.1)	0 to 4	44.1	51	NA

• •

۰.

÷.

Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 32 BRAC Sampling Program

Table 32-B

Defense Dej	pot Memph	ls, Tenne	998666	

		1	Detected Value	Background Value ²	Groundwater Protection Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
	8(32.1)	4 to 7	39,9	51	NA
-	B(32.1)	7 to 10	35.8	51	NA
Zinc	A(32.1)	0 lo 4	99.4	110	42000
	A(32.1)	4 to 7	86	110	42000
	A(32.1)	7 to 10	60.2	110	42000
	B(32.1)	0 to 4	104	110	42000
	B(32.1)	4107	93.2	110	42000
	B(32.1)	7 to 10	72	110	42000

Notes:

•

 The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.

2. Background Values are from Table 5-1 of the *Draft Background Sampling Program Technical* Memorandum, CH2M HILL, September 1996.

3. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table , R.L. Smith, April 30, 1996.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.

NA - indicates screening level values are not available for comparison,

J - indicates estimated value above the method detection limit but below the reporting limit.

Acronyms

۰, ۱

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
PCB	Polychlorinated biphenyl
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
ТРН	total petroleum hydrocarbon
VOC	volatile organic compound

.

٠.

Parcel 33 Report

۱.

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 33 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building or Facility Numbers	Label	CERFA Map Location	RI/FS ! OU	Site No.	CERCLA Status
33	720, 737, 753, 754, 755, 756, 765, 860, 863 X05, X06, X07, X08, X10, X11, X12	33.9	14,11	4	N/A	N/A

Site Description

×.

Parcel 33 is a 12,034 ft² parcel in the northwest portion of the Main Installation, in OU-4, as shown on Drawing 1. Parcel 33 consists of Buildings 720, 737, 753, 754, 755, 756, 765, 860, 863, open storage areas X05, X06, X07, X08, X10, X11, X12, and the adjacent railroad tracks.

Soil sampling was conducted at Label 33.9. Label is a term used in the Environmental Baseline Survey Report (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. Label 33.9 consists of open storage areas X05, X06, X10, X11, and X12. According to the Environmental Baseline Survey Report (Woodward-Clyde, November 1996), storage areas X05, X06, X07, X08, X10, X11, and X12 formerly contained drums with flammable contents. Building 737 is currently used for storing and mixing pesticides. Building 720 was used for dispensing fuel and cleaners. The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

In addition, this parcel is associated with a 12,000-gallon diesel AST that is located at Building 720 (Facilities Engineering Division, DDMT 1993; CH2M Hill 1995 Screening Sites Field Sampling Plan for Defense Distribution Depot Memphis as cited in Woodward-Clyde, November 1996). This parcel is also associated with a 1,000-gallon diesel fuel tank that was located outside of Building 756, but was removed in July 1994 (The Pickering Firm, Inc., 1993 Storage Tank Survey as cited in Woodward-Clyde, November 1996). There have been no documented releases associated with these tanks. No evidence was found of disposal, or migration of hazardous substances or petroleum products from an adjacent property. The current sampling activities are not associated with these tanks.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, five samples and one Corps of Engineers (COE) quality assurance split sample were collected for Label 33.9. Sample A(33.9) was located west of Building 650 and north of the DDMT flagpole in open storage area X05. Sample B(33.9) was located west of Building 649 across 6th Street in open storage area X06. Samples C(33.9) and the split sample were located west of the railroad tracks and northwest of Power Pole G449 in open storage area X10. Sample D(33.9) was located northwest of Building 860 in open storage area X11. Sample E(33.9) was located east of both Building 835 and the railroad tracks in open storage area X12 (See Drawing 1, BRAC Soil Sample Locations).

A sharpshooter shovel was used to remove an approximately 1-foot by 0.5-foot rectangular top layer of sod at sample location A(33.9). A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Sample A(33.9) was collected from beneath the grass to less than 6 inches below ground surface (bgs).

A pick-hoe and sharpshooter shovel were used to remove the gravel and rock surface at sample locations B(33.9), C(33.9), D(33.9), and E(33.9). A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Samples B(33.9), C(33.9), and D(33.9) were collected from beneath the gravel surface to less than 6 inches bgs. Sample E(33.9) was collected from beneath the gravel surface to less than 10 inches bgs.

Samples A(33.9), B(33.9), C(33.9), D(33.9), and E(33.9) were sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides, PCBs, metals, SVOCs, and VOCs analyses. The quality assurance split sample was sent to COE's Atlanta, Georgia laboratory for pesticides, PCBs, metals, SVOCs, and VOCs analyses. All samples received at CH2M HILL's laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Subsurface Soil Sampling and Analyses Procedure

Based on the recommendations of the Environmental Baseline Survey Report (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, subsurface soil samples were collected, using a 2-foot, stainless-steel, split-spoon sampler. Samples were collected from intervals of 0 to 4 ft, 4 to 7 ft, and 7 to 10 ft. VOC soil samples were collected directly from the continuous sampler using stainless-steel spoons. The remaining soil was placed into a stainless-steel bowl, mixed thoroughly with stainless-steel spoons, and then placed into the appropriate sample jars.

Soil Boring, SB-13, is at the same location where surface soil sample A(33.9) was collected. Soil Boring, SB-14, is at the same location where surface soil sample B(33.9) was collected. Soil Boring, SB-18, is at the same location where surface soil sample C(33.9) was collected. Soil Boring, SB-19, is at the same location where surface soil sample D(33.9) was collected. Soil Boring, SB-20, is at the same location where surface soil sample D(33.9) was collected.

Three samples were collected from each of the five soil borings (SB-13, SB-14, SB-18, SB-19, and SB-20). The fifteen samples were sent to CH2M HILL's laboratory for metals, pesticides, PCBs, VOCs, and SVOCs analyses.

1

2

Results

:

Surface soil sampling locations with values above detection limits are shown in Table 33-A, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold. The same information is presented in Table 33-B for subsurface soil sampling locations, except there are only two types of comparison criteria appropriate for subsurface soil samples.

Tab		Table 33-A	
-----	--	------------	--

;

•

÷

•

•

. -

Ż,

.

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 33

BRAC Sampling Program Defense Depot Memphis, Tennesses

			Datasted 1	Barbarand	Dieb. Based	Bisk-Based Concentrations	Groundwater	Tarractulal/
			Value	Value ²	Soil Inges	Soil Ingestion ³ (mg/kg)	Protection ⁴	Ecological
Parameter	Station ID	Depth (ft)	(bi)(bi)	(mg/kg)	Residential	Industrial	(тд/кд)	(mg/kg)
Acetone	A(33.9)	0 to .5	0.004 J	AN AN	780	20000	8	NA -
	A(33.9)	0 to .5	0.004 J	AN	780	20000	8	NA
-	B(33.9)	0 to .5	0.006 J	NA	780	20000	8	NA
	C(33.9)	0 to .5	0.005 J	NA	780	20000	8	NA
	D(33.9)	0 to .5	0.005 J	NA	780	20000	8	NA
1	E(33.9)	0 to .8	0.004 J	NA	780	20000	8	NA
Aluminum	A(33.9)	0 to .5	22500	24000	7800	100000	NA	NA
	8(33.9)	0 to .5	7460	24000	7800	100000	NA	NA
	C(33.9)	0 to .5	22800	24000	7800	100000	· NA	NA
	[D(33.9)	0 to .5	4480	24000	7800	100000	NA	NA
	E(33.9)	0 to .8	10000	24000	7800	100000	AN .	NA
Anthracene	D(33.9)	0 to .5	0.057 J	0.096	2300	61000	4300	NA
Antmony	E(33.9)	0 to .8	9.6	7	3.1	82	NA	5
Arsenic	A(33.9)	0 to 5	63.1	ន	£4.	3.6	15	10
	B(33.9)	0 to .5	8.5	52	64.	3.6	15	10
	C(33.9)	0 to .5	6	22	.43	3.8	. 15	10
	E(33.9)	0 to .8	4.4	ន	C 4 .	3.8	15	10
Barium	A(33.9)	0 to .5	189	250	550	14000	32	500
	B(33.9)	0 to .5	50.2	250	550	14000	32	500
	C(33.9)	0 to .5	258	250	550	14000	32	500
	D(33.9)	0 to .5	26.1	250	550	14000	32	500
	E(33.9)	0 to .8	72.5	250	550	14000	32	500
Benzo(a)anthracene	A(33.9)	0 to -5	1.2.1	0.71	.88	7.8	.7	NA
	D(33.9)	0 to .5	0.14 J	0.71	88,	7.8		NA
Benzo(a)pyrene	A(33.9)	0 to .5	L 4.1	0:96	.088	.78	4	NA
	B(33.9)	0 to .5	0.04 J	0.96	.089	.78	4	AA
	D(33.9)	0 to .5	0.11 J	0.96	.088	.78	4	NA
Benzo(b)fluoranthene	A(33.9)	0 10 .5	1.5.1	0.9	.88	7.8	4	NA
	B(33.9)	0 to .5	0.052 J	0.9	88.	7.8	4	NA
	D(33.9)	0 to .5	0.11 J	0.9		7.8	4	AA
Benzo(k)fluoranthene	A(33.9)		1.4 J	0.78	8.8	78	4	AA
	B(33.9)		0.042 J	0.78	8.8	78	4	AA
	D(33.9)	0 to .5	0.12 J	0.78	8.8	78	4	AN

244 189

· 第

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 33

Table 33-A

1

•

÷

ي. ج

>		מתפרובה הי		PAC Samultu	ovinpareu w st Procram	i compareu to screening cerais toi Farcer as a Program		
			Detens	e Depot Memp	Defense Depot Memphis, Tennessee			
			Detected	Background	Risk-Based	Risk-Based Concentrations	Groundwater	Terrestrial
			Value	Value ²	Soil Inge:	Soil Ingestion ^a (mg/kg)	Protection ⁴	Ecological ⁵
Parameter	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
bis(2-Ethylhexyl)phthalate	A(33.9)	0 to .5	0.47 J	AN	46	410	11	NA
	C(33.9)	0 to .5	0.062 J	NA	46	410	11	NA
	(6°££)Q	0 to .5	0.08 J	VN	46	410	11 [NĀ
Calcium	A(33.9)	0 to 5	3710	2800	AN	NA	NA I	AN
	B(33.9)	0 to .5	22900		NA	NA	AN	M
	C(33.9)	0 to .5	2110	5800	A	AA	AN 1	NA
	D(33.9)	0 to .5	4450		AN	NA	NA	AA
	E(33.9)	0 to .8	38200		A	NA	NA	NĂ
Carbazole	A(33.9)	0 to 5	0.21 J		32	230	5.	NA
	D(33.9)	0 to .5	0.035 J	0.067	32	290	5.	NA
Chromium	A(33.9)	0 to .5	24.4		39	1000	19	1
	· B(33.9)	0 to .5	12.7	27	69	1000	19	1
	C(33.9)	0 to .5	24.9	27	39	1000	19	1
	D(33.9)	0 to .5	19.3	27	39	1000	19	1
	E(33.9)	0 to .8	41.5	27	39	10:00	19	-
Chrysene	A(33.9)	0 to .5	1.7 J	0.94	69	780	1	AN
	B(33.9)	0 to .5	0.045 J	0.94	88	780]	NA
	D(33.9)	0 to .5	0.16 J	0.94	88	780	+	NA
Cobalt	A(33.9)	0 to .5	14.8	18	470	12000	NA	20
	B(33.9)	0 to .5	3.3	18	470	12000	NA	20
	C(33.9)	0 to .5	9.4	18	470	12000	NA	20
	0(33.9)	0 to .5	4.8	18	470	12000	NA .	20
	E(33.9)	0.10,8	4,3	18	470	12000	NA	20
Copper	A(33.9)	0 to .5	31.2	ខ្ល	310	8200	NA	100
	B(33.9)	0 to .5	17.2	ŝ	310	8200	NA	100
	C(33.9)	0 to .5	38.5	8	310	8200	NA	100
	D(33.9)	0 to .5	8.7	33	310	8200	NA	100
	E(33.9)	0 to .8	28.2	33	310	8200	NA	<u>6</u>
DDE	D(33.9)	0 to .5 [0.012	0.16	1.9	17	0.5	NA
DDT	D(33.9)	0 to .5	0.045	0.074	1.9	17	-	NA
	E(33.9)	0 to .8	0.024 J	0.074	1.9	17	-	AN
Di-n-butylphthalate	A(33.9)	0 to 5	0.23 J	A	780	20000	120	NA

244 190

AN

ដ

20000

80

¥

0.2 J

0 to .5

B(33.9)

Table 33-A

:

;

.

.

×.

:

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 33

BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based	Risk-Based Concentrations	Groundwater	Terrestrial
			Value	Value ²	Soll Inges	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecologica! ⁵
Parameter ¹	Station ID	Depth (ft)	(D3/6m)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
	C(33.9)	0 to .5	0.22 J	٨٨	780	20000	120	NA
	D(33.9)	0 to .5	0.25 J	NA	780	20000	120	NA
	E(33.9)	0 to .8	0.26 J	AA	780	20000	120	NA
Fluoranthene	A(33.9)	0 to .5	2.4	1.6	310	8200	980	NA
	B(33.9)	0 to .5	0.049 J	1.6	310	8200	980	NA
	D(33.9)	0 to .5	0.24 J	1.6	310	8200	980	NA
Iron	A(33.9)	0 to .5	32600	37000	2300	81000	NA	NA
	B(33.9)	0 to .5	11800	37000	2300	61000	NA	NA
	C(33.9)	0 to .5	31900	37000	2300	81000	NÅ	NA
	D(33.9)	0 to 5	11300	37000	2300	61000	NA	NA
	FE(33.9)	0 to .B	21100	37000	2300	61000	NA	NA
Lead	A(33.9)	0 to .5	47.4	43	200	1000	1.5	50
	B(33.9)	0 to .5	19.9	t3	200	1000	1.5	50
	C(33.9)	0 to .5	22.1	£	200	1000	1.5	50
	D(33.9)	0 to .5	45.9	43	200	1000	1.5	50
	E(33.9)	0 to .8	145	43	200	1000	1.5	50
Magnesium	A(33.9)	0 to .5	3680	4600	NA.	NA	NA	NA
	B(33.9)	0 to :5	2990	4600	AN	NA	NA	NA
	C(33.9)	0 to .5	3940	4600	NA	NA	NA	NA
	D(33.9)	0 to .5	383	4600	AN	NA	NA	NA
	E(33.9)	0 to .8	1450	4600	NA	NA	NA	NA
Manganese	A(33.9)	0 to .5	948	1300	180	4700	NA	NA
	B(33.9)	0 to .5	106	1300	180	4700	NA	NA
	C(33.9)	0 to .5	297	1300	180	4700	NA	AA
	D(33.9)	0 to .5	125	1300	180	4700	NA	AA
	E(33.9)	0 to .8	111	1300	180	4700	NA	NA
Methylane chloride	A(33.9)	0 to .5	0.008 J	NA	85	760	.01	NA
	A(33.9)	0 to .5	0.008 J	NA	85	760	.01	NA
	B(33.9)	0 to .5	0.002 J	NA	85	760	10	NA
	C(33.9)	· 0 to .5	0.001 J	NA	85	760	.01	NA
Nickel	A(33.9)	0.10.5	30.5	33	160	4100	21	30
	B(33.9)	0 to .5	7.4	33	160	4100	21	g
	C(33.9)	0 to .5	28.8	33	160	4100	21	8

Table 33-A

.

ł

:

Summary of Detected Compounds in Surface Soll Compared to Screening Levels for Parcel 33 **BRAC Sampling Program**

Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based	Risk-Based Concentrations	Groundwater	Terrestrial/
		_	Value	Value ¹	Soll Inge	Soll Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station (D	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
	D(33.9)	0 to .5	6.1	ន	160	4100	21	8
	E(33.9)	0 to .8	9.6	33	160	4100	21	30
Phenanthrene	A(33.9)	0 to .5	L 4.1	0.61	2300	61000	4300	NA
	D(33.9)	0 to .5	0.27 J	0.61	2300	61000	4300	AN
Potassium	A(33.9)	0 to .5	3000	2000	NA	NA	NA	NA
	C(33.9)	0 to .5	2130	2000	AN	NA	AN	AN
Pyrene	A(33.9)	0 to .5	5.3	1.5	230	6100	1400	NA
	B(33.9)	0 to .5	0.051 J	1.5	230	6100	1400	- NA
	D(33.9)	0 to .5	0.24 J	1.5	230	6100	1400	AN
Selenium	C(33.9)		22.4	0.81	39	1000	~	-
	0(33.9)	0 to .5	10	0.81	39	1000		-
	E(33.9)	0 to .B	15.3	0.81	39	1000	6	-
Vanadium	A(33.9)	0 to .5	51.7	22	55	1400	AN	2
-	B(33.9)	0 to .5	22.2	22	55	1400	AN	8
	C(33.9)	010.5	47.8	52	55	1400	NA	2
	(<u>6:02</u>)0	0 to .5	16.4	25	55	1400	AN	2
	E(33.9)	0 to ,8	30,9	25	55	1400	AN	2
Zinc	(6'62'8)	0 to 5	104	130	2300	61000	42000	20
	B(33.9)	0 to .5	33.2	130	2300	61000	42000	50
	C(33.9)	0 to .5	295	130	2300	61000	42000	50
	D(33.9)	0 to .5	52.5	130	2300	61000	42000	50
	E(33.9)	0 to .8	118	130	2300	61000	42000	20
Notes: 1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed	includes only	/ the paran	neters dated	cted within eq.	ch parcel and I	not all the parame	ters analyzed.	
2. Background Values are from (able 5-1 of)	re trom lable	e5-1 of the	Draft Back	jidwos punot	ng Program Tec	the Draft Background Sampling Program Technical Memorandum , CH2M Hill	(um, CH2M HILL	
September 1990.	•	:		-				
 Idisk based Concentrations are from the Eff Gravingharter Protection Violates are from the 	filons are fror loo Values ar	n the EPA /	Region III Ris Reduced Action	k-Based Conc	entrations Table	PA Region III Risk-Based Concentrations Table , R.L. Smith, April 30, 1996. The EBA Device III Day Presid Concentrations Table , D. Smith , April 30, 1004.	X0, 1996. ∆ndi30, 1004	
5. Terrestital Ecological values are from Toxicational Renchmark for Screening Patential Contaminants of Concem for Effects on	ratues are fro	en non e m Toxicolo	icitical Benct	mark for Scree	eoircerinoita enino Potential	Contominants of C	Concern for Effec	ts on
Terrestrict Plants, Suter II, Will, and Evans, 1993.	r II, WIII, and E	Evans, 1993)		þ			
Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded	ctions that ex	xceeded a	i screening l	evel value and	d the associated	d screening level v	alue that was ex	ceeded.
NA - Indicates screening level values are not	l level values	are not av	available for comparison.	compartson.				

J - indicates estimated value above the method detection limit but below the reporting limit.

Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 33 BRAC Sampling Program

Table 33-B

Defense	Depot	Memphia,	Tennessee
---------	-------	----------	-----------

			Detected	Background	Groundwater Protection
			Value	Value ²	Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
2-Butanone	A(33.9)	4 10 7	0.011 J	0.002	NA
Acetonei	A(33.9)	4 10 7	0.048	NA	
	8(33.9)	7 to 10	0.011 J	NA	8
Aluminum	A(33.9)	0 to 4	32500	22000	NA
	A(33.9)	4 to 7	19600	22000	NA
	A(33.9)	7 to 10	20800	22000	NA
	B(33.9)	0 to 4	27300	22000	NA
	B(33.9)	4 to 7	25700	22000	
-	B(33.9)	7 to 10	17700	22000	NA
	C(33.9)	0 to 4	18200	22000	
	C(33.9)	4 ta 7	24400	22000	NA
	C(33.9)	7 to 10	26500	22000	NA NA
	D(33.9)	0 to 4	21300	22000	NA
	D(33.9)	4 to 7	21600	22000	<u>NA</u>
	D(33.9)	7 to 10	26000	22000	NA
	E(33.9)	O to 4	25000	22000	
	E(33.9)	4 to 7	16500	22000	NA
	E(33.9)	7 to 10	36300	22000	NA
Arsenic	A(33.9)	0 to 4	20.2	17	15
	A(33.9)	4 to 7	16.3	17	15
	A(33.9)	7 to 10	17.3	17	<u>15</u> 15
·	B(33.9)	0 to 4	19.6	17	15
	8(33.9)	4 to 7	22.5	17	15
-	B(33.9)	7 to 10	16.7	17	
	C(33.9)	0 to 4	15.9	17	<u>15</u>
	C(33.9)	4 to 7	21.8	17	15
· • · · · ·	C(33.9)	7 to 10	20.6	17	<u>15</u>
	D(33.9)	0 to 4	18.1	17	15
	D(33.9)	4 to 7	16.8	17	
	D(33.9)	7 to 10	22.3	17	15
· ·	E(33.9)	0 to 4	16.9	17	15
	E(33.9)	4 to 7	15.7	17	15
	E(33.9)	7 to 10	25.3	17	15
Barium	A(33.9)	0 to 4	249	300	
	A(33.9)	4 to 7	304	300	32
	A(33.9)	7 to 10	221	300	32
	B(33.9)	0 to 4	229	300	32
	B(33.9)	4 to 7	280	300	
	B(33.9)	7 to 10	258	300	
· · ·	C(33.9)	0 to 4	238	300	32
	C(33.9)	4 to 7	275	300	32
	C(33.9)	7 10 10	234	300	
	D(33.9)	0 to 4	313	300	32
	D(33.9)	4 to 7	237	300	32
	D(33.9)	7 to 10	212	300	32
	E(33.9)	0 to 4	270	300	32
	E(33.9)	4 to 7	172	300	32
	E(33.9)	7 to 10	236	300	32
Beryllium	A(33.9)	0 to 4	1	1.2	<u></u>
	B(33.9)	4 10 7	1.1	1.2	180

-

.

:

.

.

١.

 $\frac{1}{2}$ $\frac{1}$

```
mgm97-DDMT BRAC Sampling Reports2/Sbdel/Parcel 33
```

Table 33-B Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 33 BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected	Background	Groundwater Protection
			Value	Value ²	Values ^a
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
	E(33.9)	7 to 10	1.1	1.2	180
bis(2-Ethylhexyl)phthalate	A(33.9)	0 to 4	0.18 J	NA	11
	A(33.9)	7 to 10	0.16 J	NA	
	B(33.9)	0 to 4	0.063 J	NA	11
	B(33.9)	4 to 7	0.069 J	NA	
	B(33.9)	7 to 10	0.049 J	NA	11
	D(33.9)	0 to 4	0.12 J	NA	11
	D(33.9)	4 to 7	0.072 J	NA	
	D(33,9)	7 to 10	0.05 J	NA	11
_	E(33.9)	0 to 4	0.069 J	NA	11
	E(33.9)	7 to 10	0.072 J	NA T	11
Calcium	A(33.9)	0 to 4	2230	2400	NA
	A(33.9)	4 to 7	3830	2400	NA
	A(33.9)	7 to 10	2040	2400	· NA
	B(33.9)	0 to 4	2540	2400	NA
	B(33.9)	4 to 7	1880	2400	NA
	B(33.9)	7 to 10	1760	2400	NA
	C(33.9)	O to 4	2080	2400	NA
	C(33.9)	4 to 7	2620	2400	NA
	C(33.9)	7 to 10	2050	2400	NA
	D(33.9)	0 to 4	2410	2400	NA
	D(33.9)	4 to 7	3290	2400	
	D(33.9)	7 to 10	1380	2400	NA
	E(33.9)	0 to 4	3530	2400	NA
	E(33.9)	4 to 7	1470	2400	NA
	E(33.9)	7 to 10	1660	2400	NA
Chloromethane	D(33.9)	0 to 4	0.001 J	NA	.0066
Chromlum	A(33.9)	0 to 4	27.4	26	19
	A(33.9)	4107	21	26	19
	A(33.9)	7 to 10	22	26	19
	B(33.9)	0 to 4	27.2	26	19
	B(33.9)	4 10 7	24.6	26	
	B(33.9)	7 to 10	22.6	26	19
	C(33.9)	0104	19.8	26	19
	C(33.9)	4 to 7	26	26	19
	C(33.9)	7 to 10	27.6	26	19
	D(33.9)	0 to 4	21.3	26	19
	D(33.9)	4 to 7	26.2	26	19
	D(33.9)	7 to 10	25	26	19
	E(33.9)	0 to 4	29.1	26	19
	E(33.9)	4 to 7	20.8	26	19
	E(33.9)	7 to 10	32.4	26	<u>19</u>
Cobalt	A(33.9)	0 to 4	15.5	20	NA NA
	A(33.9)	4 to 7	14.5	20	NA
	A(33.9)	7 10 10	12.5	20	
	B(33.9)	0 to 4	18.4	20	<u>NA</u>
	B(33.9)	4 to 7	17.9	20	NA
 [B(33.9)	7 to 10	14,1	20	<u>NA</u>
·····	C(33.9)	0 to 4		20	NA NA
	C(33.9)	4 to 7	19.2	20	<u></u>

:

.

.

.

.

-

1

4.

Table 33-8 ~ 4 4 Summary of Detected Compounds In Subsurface Soil Compared to Screening Levels for Parcel 33 BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected Value	Background Value ²	Groundwater Protection Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
	C(33.9)	7 10 10	9.9	20	NA
1	D(33.9)	0 to 4	16.8	20.	NA
	D(33.9)	4 to 7	15,5	20	NA
	D(33.9)	7 to 10	19.2	20	NA
	E(33.9)	0 to 4	19.1	20	NA
	E(33.9)	4 to 7	27.3	20	NA
	E(33.9)	7 to 10	18	20	ŇĀ
Copper	A(33.9)	0 to 4	37.2	33	NA
	A(33.9)	4 to 7	31.2	33	NA
	A(33.9)	7 to 10	30	33	ŇA
	B(33.9)	0 to 4	38.1	33	NA
	B(33.9)	4 10 7	39.3	33	NA
	B(33.9)	7 to 10	31.8	33	NA
	C(33.9)	0 lo 4	32.5	33	NA
	C(33.9)	4 10 7	39.7	_33	NA
	C(33.9)	7 to 10	35.7	33	NÄ
	D(33.9)	0 to 4	33.7	33	NA
	D(33.9)	4 to 7	30.9	33	NA
	D(33.9)	7 to 10	38.1	33	NA
	E(33.9)	0 to 4	36.1	33	NA
	E(33.9)	4 to 7	30.1	33	NA
	E(33.9)	7 to 10	41.7	33	NA
)i-n-butylphthalate	A(33.9)	0 to 4	0.057 J	NA	120
· _	A(33.9)	4 to 7	0.044 J	NA	120
	A(33.9)	7 to 10	0.058 J	NA	120
	B(33.9)	0 to 4	0.27 J	NA T	120
	B(33.9)	4 to 7	0.26 J	NA	120
	B(33.9)	7 to 10	0.24 J	NA	120
	C(33.9)	0 to 4	0.041 J	NA -	120
	C(33.9)	4 to 7	0.05 <mark>2 J</mark>	NA	120
	C(33.9)	7 to 10	0.048 J	· NA	120
	D(33.9)	0 to 4	0.22 J	NA	120
	D(33.9)	4 to 7	0.25 J	NA	120
	D(33.9)	7 to 10	0.27 J	NA	120
	E(33.9)	0 to 4	0.3 J		120
	E(33.9)	4 to 7	0.14 J	NĂ	120
	E(33.9)	7 to 10	0.22 J	NA	120
	E(33.9)	4 to 7	0.18 J	NA	1200
ron	A(33.9)	0104	42600	38000	NA
•	A(33.9)	4 10 7	34600	38000	NA
	A(33.9)	7 to 10	35500	38000	NA
	8(33.9)	0 to 4	42300	38000	NA
	B(33.9)	4 to 7	40900	38000	NA
	B(33.9)	<u>7 lo 10</u>	35200	38000	NĂ
	C(33.9)	0 to 4	34700	38000	NA
	C(33.9)	4 to 7	45300	38000	NA
	C(33.9)	7 to 10	40500	38000	NA
	D(33.9)	0 to 4	37000	38000	NA
	D(33.9)	4 to 7	36300	36000	NA
	D(33.9)	7 to 10	41600	36000	

mgm97-00MT BRAC Sampling Reports2/Sbdot/Parcol 33

÷

.

9 24

ş!

. .

Table 33-B Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 33 BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected	Background	Groundwater Protection
•		_	Value	Value ²	Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
	E(33.9)	0 to 4	40800	38000	NA
	E(33.9)	4 to 7	27600	38000	NA
	E(33.9)	7 to 10	46500	36000	NA
Lead	A(33.9)	0 to 4	28.1	24	1.5
	A(33.9)	4 to 7	37.1	24	1.5
	A(33.9)	7 to 10	20.4	24	1.5
	B(33.9) B(33.9)	0 to 4 4 to 7	26.2 25.1	24	1.5
	B(33.9)	7 to 10	19.8	24	1.5
	C(33.9)	0 to 4	21.6	24	1.5
	C(33.9)	4 to 7	26.8	24	1.5
	C(33.9)	7 to 10	43.6	24	1.5
	D(33.9)	0 to 4	22.8	24	1.5
	D(33.9)	4 10 7	21.1	24 24	
	D(33.9)	7 to 10	26.5	24	<u> </u>
=	E(33.9)	0104	20.5	24	1.5
	E(33.9)	4 to 7	25	24	
	E(33.9)	7 to 10	26.9	24	1.5
Magnesium	A(33.9)	0 to 4	5000	4900	<u></u>
	A(33.9)	4 to 7	4160	4900	NA
	A(33.9)	7 to 10	4360	4900	NA
	B(33.9)	0 to 4	5070	4900	NA
	B(33.9)	4 to 7	5070	4900	NA
	B(33.9)	7 to 10	4210	4900	NA
	C(33.9)	0 to 4	3630	4900	NA
	C(33.9)	4 to 7	5670	4900	NA
	C(33.9)	7 to 10	4570	4900	NĂ
	D(33.9)	0 to 4	4610	4900	NA
	D(33.9)	4 to 7	4500	4900	NA
	D(33.9)	7 to 10	4430	4900	NA
	E(33.9)	0 to 4	5460	4900	NA
	E(33.9)	4 to 7	3380	4900	NA
	E(33.9)	7 to 10	5470	4900	
Manganese	A(33.9)	0 to 4	1220	1500	
······	A(33.9)	4 to 7	1440	1500	NA
<u></u> .	A(33.9)	7 to 10	928	1500	NA
	B(33.9)	0 to 4	1290	1500	NA
	B(33.9)	4 10 7	2160	1500	NA
	B(33.9)	7 to 10	1010	1500	NA
. <u></u> .	C(33.9)	0 to 4	1020	1500	NA
	C(33.9)	4 to 7	1510	1500	NA
	C(33.9)	7 to 10	576	1500	NA
	D(33.9)	0 to 4	1560	1500	NA
	D(33.9)	4 to 7	1170	1500	NA
	D(33.9)	7 to 10	1650	1500	NA
. <u>.</u>	E(33.9)	0104	1320	1500	NA
	E(33.9)	4 to 7	859	1500	NA
	E(33.9)	7 to 10	1740	1500	NA
Methylene chloride	A(33.9)	4 to 7	0.002 J		.01
	A(33.9)	_ 7 to 10	0.003 J	NA	.01

*

.

÷

ċ

.

| . | .

1.5

1.

.

Table 33-B Summary of Detected Compounds in Subsurface Soil Compared to Screening Levels for Parcel 33 BRAC Sampling Program Defense Depot Mamphia, Tennessee

		Detected	Background	Groundwater Protection
		Value	Value ²	Values ³
Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
B(33.9)	4 to 7	0.001 J	NA	.01
B(33.9)	7 to 10	0.002 J	NA	.01
D(33.9)	7 to 10	0.001 J	NA	.01
E(33.9)	0 to 4	0.003 J	NA	.01
E(33.9)	4 to 7	0.002 J	NA	.01
E(33.9)	7 to 10	L 600.0	NA	.01
A(33.9)	0 to 4	36.9	37	21
A(33.9)	4 to 7	34,6	37	21
		33.7	37	21
	0 to 4	39.1	37	21 ,
B(33.9)	4 to 7	43.7	37	21
8(33.9)	7 to 10	35.1	37	21
<u>C(33.9)</u>	0 to 4	30,3	37	21
C(33.9)	4 to 7	45	37	21
C(33.9)	7 to 10	31.7	37	21
D(33.9)	0 to 4	35.8	37	
D(33.9)	4 to 7	34.7	37	21
D(33.9)	7 to 10	34.9	37	21
E(33.9)	0 to 4	42	37	21
E(33.9)	4 to 7	27.3		21
E(33.9)	7 to 10	41.8		21
A(33.9)	0 to 4			NA
A(33.9)	4 to 7	2110		NA
A(33.9)	7 to 10			
				NA NA
				NA
B(33.9)				NA
C(33.9)				
				NA
				NA
		-		
				NA
				<u>NA</u>
				NA
				NA
				NA NA
	· · · · ·			<u>NA</u>
	1.010	00.0	- 10	NA
	B(33.9) B(33.9) D(33.9) E(33.9) E(33.9) E(33.9) E(33.9) A(33.9) A(33.9) A(33.9) A(33.9) B(33.9) B(33.9) C(33.9) A(33.9) B(33.9) B(33.9) B(33.9)	B(33.9)4 to 7 $B(33.9)$ 7 to 10 $D(33.9)$ 7 to 10 $E(33.9)$ 0 to 4 $E(33.9)$ 0 to 4 $E(33.9)$ 7 to 10 $A(33.9)$ 0 to 4 $A(33.9)$ 0 to 4 $A(33.9)$ 0 to 4 $A(33.9)$ 0 to 4 $B(33.9)$ 0 to 4 $C(33.9)$ 0 to 4 $C(33.9)$ 0 to 4 $C(33.9)$ 0 to 4 $D(33.9)$ 0 to 4 $D(33.9)$ 7 to 10 $D(33.9)$ 7 to 10 $D(33.9)$ 0 to 4 $E(33.9)$ 7 to 10 $E(33.9)$ 7 to 10 $A(33.9)$ 0 to 4 $B(33.9)$ 7 to 10 $B(33.9)$ 7 to 10 $B(33.9)$ 0 to 4 $B(33.9)$ 7 to 10 $B(33.9)$ 7 to 10 $B(33.9)$ 0 to 4 $B(33.9)$ 7 to 10 $C(33.9)$ 7 to 10 $D(33.9)$ 0 to 4 $C(33.9)$ 7 to 10 $D(33.9)$ 0 to 4 $E(33.9)$ 7 to 10 $D(33.9)$ 0 to 4 $E(33.9)$ 7 to 10 $C(33.9)$ 7 to 10 $D(33.9)$ 0 to 4 $E(33.9)$ 7 to 10 $D(33.9)$ 0 to 4 <tr< td=""><td>Value Station ID Depth (ft) (mg/kg) B(33.9) 4 to 7 0.001 J B(33.9) 7 to 10 0.002 J D(33.9) 7 to 10 0.003 J E(33.9) 0 to 4 0.003 J E(33.9) 7 to 10 0.003 J A(33.9) 0 to 4 36.9 A(33.9) 0 to 4 39.1 B(33.9) 4 to 7 43.7 B(33.9) 0 to 4 39.1 B(33.9) 7 to 10 33.7 B(33.9) 7 to 10 35.1 C(33.9) 0 to 4 30.3 C(33.9) 7 to 10 31.7 D(33.9) 7 to 10 31.7 D(33.9) 7 to 10 31.7 D(33.9) 7 to 10 34.9 E(33.9) 7 to 10 34.</td><td>Station ID Depth (tt) Value Value² (mg/kg) B(33.9) 4 to 7 0.001 J NA B(33.9) 7 to 10 0.002 J NA D(33.9) 7 to 10 0.001 J NA E(33.9) 0 to 4 0.003 J NA E(33.9) 4 to 7 0.002 J NA E(33.9) 7 to 10 0.003 J NA E(33.9) 7 to 10 0.003 J NA A(33.9) 7 to 10 33.7 37 B(33.9) 7 to 10 33.7 37 B(33.9) 7 to 10 35.1 37 C(33.9) 7 to 10 35.1 37 C(33.9) 7 to 10 31.7 37 D(33.9) 7 to 10 34.8 37 D(33.9) 7 to 10 34.9 37 <tr< td=""></tr<></td></tr<>	Value Station ID Depth (ft) (mg/kg) B(33.9) 4 to 7 0.001 J B(33.9) 7 to 10 0.002 J D(33.9) 7 to 10 0.003 J E(33.9) 0 to 4 0.003 J E(33.9) 7 to 10 0.003 J A(33.9) 0 to 4 36.9 A(33.9) 0 to 4 39.1 B(33.9) 4 to 7 43.7 B(33.9) 0 to 4 39.1 B(33.9) 7 to 10 33.7 B(33.9) 7 to 10 35.1 C(33.9) 0 to 4 30.3 C(33.9) 7 to 10 31.7 D(33.9) 7 to 10 31.7 D(33.9) 7 to 10 31.7 D(33.9) 7 to 10 34.9 E(33.9) 7 to 10 34.	Station ID Depth (tt) Value Value ² (mg/kg) B(33.9) 4 to 7 0.001 J NA B(33.9) 7 to 10 0.002 J NA D(33.9) 7 to 10 0.001 J NA E(33.9) 0 to 4 0.003 J NA E(33.9) 4 to 7 0.002 J NA E(33.9) 7 to 10 0.003 J NA E(33.9) 7 to 10 0.003 J NA A(33.9) 7 to 10 33.7 37 B(33.9) 7 to 10 33.7 37 B(33.9) 7 to 10 35.1 37 C(33.9) 7 to 10 35.1 37 C(33.9) 7 to 10 31.7 37 D(33.9) 7 to 10 34.8 37 D(33.9) 7 to 10 34.9 37 <tr< td=""></tr<>

-

¥.

.

.

.

.

Table 33-B Summary of Detected Compounds in Subsurface Soll Compared to Screening Levels for Parcel 33 BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected Value	Background Value ²	Groundwater Protection Values ³
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
	E(33.9)	4 to 7	43,1	51	NA
	E(33.9)	7 to 10	74.1	51	NA
Zine	A(33.9)	0 to 4	128	110	42000
	A(33.9)	4 to 7	125	110	42000
	A(33.9)	7 to 10	104	110	42000
	B(33.9)	0 to 4	128	110	42000
	B(33.9)	4 to 7	133	110	42000
	B(33.9)	_7 to 10	116	110	42000
	C(33.9)	D to 4	125	110	42000
	C(33.9)	4 to 7	189	110	42000
	<u>C(3</u> 3.9)	7 to 10	127	110	42000
	D(33.9)	0 to 4	108	110	42000
	D(33.9)	4 to 7	108	110	42000
	D(33.9)	7 to 10	142	110	42000
	E(33.9)	0 to 4	108	110	42000
	E(33.9)	4 to 7	90	110	42000
	E(33.9)	7 to 10	134	110	42000

Notes:

1. The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.

2. Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M Hill, September 1996.

 Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.

NA - Indicates screening level values are not available for comparison.

J - Indicates estimated value above the method detection limit but below the reporting limit.

244 199

Acronyms

• • [•]

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
РСР	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
ТРН	total petroleum hydrocarbon
VOC	volatile organic compound

Parcel 34 Report

۰,

.

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

244 201

Į.

Parcel 34 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parcel	Building Number	Label	CERFA Map Location	RI/PS OU	Site No.	CERCLA Status
34	360	34.2	24,7	3	N/A	N/A

Site Description

Parcel 34 is a 2,098 ft² parcel in the southeast part of the Main Installation, in OU-3, as shown on Drawing 1. Parcel 34 consists of Building 360 and the adjacent railroad tracks.

Soil sampling was conducted at Label 34.2, which consists of Building 360. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. The surface soil surrounding buildings at the installation may contain pesticides because of routine pesticide application at the facility. Sampling was performed to provide information on the presence of pesticides and PCBs in surface soil. In addition, this parcel contains railroad tracks that were historically sprayed with pesticides, herbicides, and waste oil containing pentachlorophenol (PCP). The railroad tracks, also known as Screening Sites 70/71, are to be sampled during the Screening Sites field effort. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

Surface Soil Sampling and Analyses Procedure

Based on the recommendations of the Environmental Baseline Survey Report (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, one sample was collected for Label 34.2. Sample A(34.2) was located towards the southwest corner of Building 360 (See Drawing 1, BRAC Soil Sample Locations).

A stainless-steel trowel was used to remove the top layer of sod and collect the soil sample directly into the sample jars. Sample A(34.2) was collected from beneath the grass to less than 6 inches below ground surface (bgs).

The sample was sent to CH2M HILL's Analytical Services in Montgomery, Alabama for pesticides and PCBs analyses. All samples received at CH2M HILL's laboratory were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

244 202

Subsurface Soil Sampling Procedure

No subsurface soil samples were collected at this site during this sampling event.

Results

Surface soil sampling locations with values above detection limits are shown in Table 34, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold.

8	
.	
- Q	
B	¢
	i
•	

۰.

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 34

BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based Concentrations	ncentrations	Groundwater	Terrestrial
			Value	Value	Soil Ingestion [*] (mg/kg)	in* (mg/kg)	Protection [*]	Ecological [°]
Parameter	Station ID D	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
Chlordane	A(34.2)	0 to .5	0.14	0.029	0.49	4.4	2	NA
gamma-Chlordane	A(34.2)	0 to .5	0.15	0.026	0.49	4.4	2	NA

Notes:

2. Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL). The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed. September 1996.

3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on 4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that Terrestrial Plants, Surter II, WIII, and Evans, 1993. was exceeded.

NA - indicates screening level values are not available for comparison.

ļ

.

Acronyms

.

.

bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tenness ee
mg/kg	milligrams per kilogram
РСВ	Polychlorinated biphenyl
РСР	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
TPH	total petroleum hydrocarbon
VOC	volatile organic compound

.

Parcel 35 Report

BRAC Sampling Program

for

Defense Depot Memphis, Tennessee

April 1997

Prepared for

U.S. Army Engineering and Support Center, Huntsville

Prepared by

CH2M HILL

2567 Fairlane Drive

Montgomery, Alabama 36116

136410.BR.ZZ

Parcel 35 Report BRAC Sampling Program Defense Depot Memphis, Tennessee

The chart below presents location and status information for this parcel.

Parce	Building Numbers	Labels	CERFA Map Location	RI/FS OU	Site No.	CERCLA Status
35	1084, 1086, 1087, 1088, 1090, 1091	35.2 and 35.3	3,4 and 3,5	2	N/A	N/A

Site Description

Parcel 35 is a 1,823 ft² parcel in the southwest corner of the Main Installation, in OU-2, as shown on Drawing 1. Parcel 35 consists of Buildings 1084, 1086, 1087, 1088, 1090, and 1091.

Soil sampling was conducted at Labels 35.2 and 35.3. Label is a term used in the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996) to describe a group of facilities, or an area of concern such as a spill location, that was sampled during the BRAC field sampling effort. A label is a subarea of a parcel, and a label may contain one or several sample locations. Label 35.2 is associated with Building 1084 and former Building 1085. Label 35.3 is associated with Building 1086. For this phase of the program, only surface and subsurface soil samples are collected and analyzed.

According to the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), former Building 1085 was the site of an old concrete grease rack and storage area for petroleum, oil, and lubricants (POL). An underground storage tank (UST) associated with the grease rack was removed in 1988. Building 1084 was once used for storage of DDT and other pesticides (CH2M HILL 1995 Technical Memorandum, Summary of Information Inventory, Defense Distribution Depot, Memphis, Tennessee, Early Removal Task as cited in Woodward-Clyde, November 1996).

Building 1086 was used to store hazardous materials from 1959 through 1984. The building is currently a spray paint booth. Upon visual inspection, a sump was found within Building 1086.

Surface Soil Sampling and Analyses Procedure

The descriptions below present the labels sampled within this parcel. All samples received at CH2M HILL's Analytical Service in Montgomery, Alabama were analyzed in accordance with procedures outlined in the *Generic Quality Assurance Project Plan* (CH2M HILL, August 1995) for the RI/FS currently being conducted at DDMT.

Label 35.2 - Building 1084 and Former Building 1085

Based on the recommendations of the Environmental Baseline Survey Report (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, three samples were collected for Label 35.2. Sample A(35.2) was located east of Building 1086. Sample B(35.2) was located north of Sample A(35.2). Sample C(35.2) was located southeast of Building 1084 (See Drawing 1, BRAC Soil Sample Locations).

A pick-hoe and sharpshooter shovel were used to remove the gravel and rock surface. A stainless-steel trowel was used to collect the soil sample directly into the sample jars. Both Samples A(35.2) and B(35.2) were collected from beneath the gravel surface to less than 6 inches below ground surface (bgs).

Samples A(35.2) and B(35.2) were sent to CH2M HILL's laboratory for pesticides, PCBs, metals, SVOCs, and TPH method 418.1 analyses.

Label 35.3 - Sump in Building 1086

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, one sump sediment sample was collected for Label 35.3. Sample A(35.3) was collected from the sump inside Building 1086 (See Drawing 1, BRAC Soil Sample Locations).

A clean stainless-steel spoon was taped onto a pole in order to collect the sediment sample from the sump directly into the sample jar. The sediment sample was collected from a depth of 2.5 ft of liquid to less than 3 ft bgs.

Sample A(35.3) was sent to CH2M HILL's laboratory for metals, SVOCs, and TPH method 418.1 analyses.

Subsurface Soil Sampling and Analyses Procedure

Based on the recommendations of the *Environmental Baseline Survey Report* (Woodward-Clyde, November 1996), Tennessee Department of Environment and Conservation, and Environmental Protection Agency, subsurface soil samples were collected, using a 2-foot, stainless-steel, split-spoon sampler. Samples were collected from intervals of 0 to 4 ft, 4 to 7 ft, and 7 to 10 ft. VOC soil samples were collected directly from the continuous sampler using stainless-steel spoons. The remaining soil was placed into a stainless-steel bowl, mixed thoroughly with stairless-steel spoons, and then placed into the appropriate sample jars.

Soil Boring, SB-15, is at the same location where surface soil sample C(35.2) was collected.

Three samples were collected from the soil boring (SB-15). The three samples were sent to CH2M HILL's laboratory for metals, pesticides, PCBs, VOCs, and SVOCs analyses.

Results

Surface soil sampling locations with values above detection limits are shown in Table 35-A, which also contains the five types of comparison criteria. If a value from a sampling location exceeds one of the comparison criteria, that value and the comparison criterion are shown in bold. The same information is presented in Table 35-B for subsurface soil sampling locations, except there are only two types of comparison criteria appropriate for subsurface soil samples. The sump sediment sampling location with values above detection limits is shown in Table 35-C. Detected compounds from sump samples have no appropriate screening criteria to use for comparison.

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 35 Table 35-A

· .

•

.

BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected	Background	Fisk-Based (Risk-Based Concentrations	Groundwater	Terrestrial
			Value	Value ²	Soil Ingest	Soil Ingestion ³ (mg/kg)	Protection ⁴	Ecologicai
Parameter	Station ID	, Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(67/6W)
Aluminum	A(35.2)	0 to .5	2830	24000	7800	100000	NĂ	NA
	A(35.2)	0 to .5	2840	24000	7800	100000	NA	NA
	B(35.2)	0 to .5	8650	24000	7800	100000	NA	NA
	C(35.2)	0 to .5	13500	24000	7800	100000	NA	NA
Arsenic	A(35.2)	0 to .5	7.2	ឧ	43	3.8	15	10
	A(35.2)	0 to .5	8.3	ୟ	.43	3.8	15	10
	B(35.2)	0 to .5	6.6	हर	.43	3.8	15	5
	C(35.2)	0 to .5	211.6	ន	.43	3.8	15	9
Barium	A(35.2)	0 to .5	31.5	250	550	14000	32	500
	A(35.2)	0 to .5	33.5	250	550	14000	32	500
	B(35.2)	0 to .5	479	250	550	14000	32	500
	C(35.2)	0 to .5	115	250	550	14000	32	500
Benzo(a)anthracene	A(35.2)	0 to .5	0.039 J	0.71	.88	7.8	.7	NA
Benzo(a)pyrene	C(35.2)	0 to .5	0.039 J	0.96	.088	.78	4	NA
Benzo(b)fluoranthene	B(35.2)	0 to 5	0.042 J	0.9	.86	7.8	4	NA
	C(35.2)	0 to 5	0.045 J	0.9	.88	7.8	4	NA
Benzo(g,h,i)perylene	A(35.2)	0 to .5	0.037 J	0.82	230	6100	1400	NA
Benzo(k)tivoranthene	C(35.2)	0 to .5	0.043 J	0.78	8.8	78	4	ŇA
bis(2-Ethylhexyl)phthalate	C(35.2)	0 to .5	0.092 J	NA	46	410	1	NA
Cadmium	A(35.2)	0 10 .5	0.95	1.4	3.9	100	9	ຕ
	A(35.2)	0 10 .5	1.1	1.4	3.9	100	9	e
	B(35.2)	0 to .5	4.9	1.4	3.9	100	9	9
	C(35.2)	0 to .5	1.8	1.4	3.9	100	9	ę
Calcium	A(35.2)	0 to .5	5700	5800	NA	NA	NA	NA
	A(35.2)	0 to .5	6940	5800	NA	NA	NA	NA
	B(35.2)	0 to .5	5470	5800	NA	NA	NA	NA
	C(35.2)	0 to .5	60200	5800	NA	NA	NA	AN
Chromium	A(35.2)	0 to .5	27	27	39	1000	18	-
	A(35.2)	0 to .5	27.3	27	39	1000	18	-
	B(35.2)	0 to .5	98	27	39	1000	19	-
	C(35.2)	0 to .5	122	12	39	1000	19	-
Chrysene	A(35.2)	0 to .5	0.046 J	0.94	88	780	-	NA
	C(35.2)	0 to .5	0.043 J	0.94	83	780	-	AA
Cobalt	8(35.2)	0 to .5	5.3	18	470	12000	NA	20
	C(35.2)	0 to .5	5.6	18	470	12000	NA	20
Copper	A(35.2)	0 10.5	45.9	33	310	8200	NA	100
	A(35.2)	010.5	55.8	33	310	8200	NA	100

•

- 1	C
8	Ę
6	20
Ξā	_
Ē	A second second
•	ì
	1

F.

- .

• ٠

Summary of Detected Compounds in Surface Soil Compared to Screening Levels for Parcel 35 BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	TerrestriaV
			Value	Value ²	Solf Ingest	Soli Ingestion ³ (mg/kg)	Protection ⁴	Ecological ⁵
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
	B(35.2)	0 to .5	95.2	33	310	8200	NA	100
	C(35.2)	0 to .5	83.3	33	310	8200	NA	100
DOE	A(35.2)	0 to .5	0.045	0.16	1.9	17	0.5	NA
	A(35.2)	0 to .5	0.052	0.16	1.9	17	0.5	NA
	C(35.2)	0 to .5	0.068	0,16	1.9	17	0.5	AN
DDT	A(35.2)	0 to .5	0.074	0.074	1.9	17	1	NA
	A(35.2)	0 to .5	0.084	0.074	1.9	17.	1	NA
	C(35.2)	0 to .5	0.15	0.074	1.9	17	1	AN
Di-n-butytphthalate	A(35.2)	0 to .5	0.17 J	NA	780	20000	120	AA
	A(35.2)	0 to .5	0.25 J	NA	780	20000	120	AN
	B(35.2)	0 to .5	0.13 J	AN	780	20000	120	AN
	C(35.2)	0 to 5	0.17 J	NA	780	20000	120	NA
Dieldrin	A(35.2)	010.5	0.079	0.53	.04	.36	.001	NA
	A(35.2)	0 to 5	0.086	0.53	-04	.36	.001	AA
	B(35.2)	0 to 2	0.025	0.53	,04	.36	.001	NA
Fluoranthene	A(35.2)	0 to .5	0.076 J	1.6	310	8200	880	ΝA
	C(35.2)	0 to .5	0.044 J	1.6	310	8200	880	NA
Iron	A(35.2)	0 to .5	7630	37000	2300	61000	NA	NA
	A(35.2)	0 to .5	7730	37000	2300	61000	NA	NA
	B(35.2)	0 to .5	20200	37000	2300	61000	NA	AN
	C(35.2)	0 10 .5	24500	0007E	2300	61000	NA	٩N
Lead	A(35.2)	0 to .5	144	43	200	1000	1.6	50
	A(35.2)	0 to .5	201	43	200	1000	1.5	60
	B(35.2)	0 to .5	744	43	200	1000	1.5	20
	C(35.2)	0 to .5	550	43	200	1000	1.5	20
Magnesium	A(35.2)	0 to .5	1420	4600	AN	NA	NA	AN
	A(35.2)	0 to .5	3910	4600	NA	NA	NA	AN
	B(35.2)	0 to .5	1350	4600	NA	NA	NA	AN
	C(35.2)	0 to .5	2400	4600	NA	NA	NA	AN
Manganese	A(35.2)	0 to .5	81.8	1300	180	4700	NA	AN
	A(35.2)	010.5	86	1300	180	4700	NA	AN
	B(35.2)	0 to .S	228	1300	180	4700	NA	AN
	C(35.2)	0 to .5	534	1300	180	4700	NA	AN
Mercury	B(35.2)	0 ta .5	0.28	0.43	2.3	61	9	ti Uj
Nickel	B(35.2)	0 to .5	13.6	33	160	4100	21	Ŕ
	C(35.2)	0 to .5	21.3	33	160	4100	21	8
Petroleum Hydrocarbons ⁶	A(35.2)	0 10 .5	26.3	NA	NA	õ	AN	AN

.

	٩,	e
	K.	~
_ i	к.	=
	_	å
	P	Q
	6	đ
	•	- 2
		- 2
-		Ŧ
		-

Summary of Detected Compounds in Surface Soll Compared to Screening Levels for Parcel 35 Defense Depot Memphis, Tennessee **BRAC Sampling Program**

			Detected	Background	Risk-Based C	Risk-Based Concentrations	Groundwater	Terrestrial
			Value	Value ²	Solt Ingest	Soli Ingestion ^a (mg/kg)	Protection*	Ecological ⁵
Parameter ¹	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	Residential	Industrial	(mg/kg)	(mg/kg)
	A(35.2)	0 to .5	35.8	AN	AN	100	NA	NA
	B(35.2)	D to .5	274	AN	NA	100	NA	NA
	C(35.2)	0 to .5	54	AN	AN	100	NA	NA
Phenanthrene	A(35.2)	0 to .5	0.053 J	0.61	2300	61000	4300	NA
	B(35.2)	0 to .5	0.043 J	0.61	2300	61000	4300	NA
Potassium	8(35.2)	0 to .5	754	2000	AN	NA	AN	NA
	C(35.2)	0 to .5	1090	2000	NA	NA	AN	NA
Pyrene	A(35.2)	0 to .5	0.078 J	1.5	230	6100	1400	NA
	C(35.2)	0 to .5	0.048 J	1.5	230	6100	1400	NA
Sodium	B(35.2)	0 to .5	342	AN	AA	NA	NA	AN
	C(35.2)	0 to .5	399	AN	AA	NA	NA	NA
Vanadium	A(35.2)	0 to .5	10.8	52	55	1400	NA	2
	A(35.2)	0 ta .5	11.1	25	55	1400	NA	2
	B(35.2)	0 ta .5	27.1	ស	55	1400	NA	21
	C(35.2)	0 ta .5	25.2	3	55	1400	NA	2
Zinc	A(35.2)	0 to .5	212	130	2300	81000	42000	50
	A(35.2)	0 to .5	263	130	2300	61000	42000	50
	B(35.2)	0 to .5	311	130	2300	81000	42000	50
	C(35.2)	0 to .5	463	130	2300	81000	42000	50

2. Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum. CH2M HilL . The parameter listing includes only the parameters detected within each porcel and not all the parameters analyzed. 3. Risk-based Concentrations are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith. April 30, 1996. September 1996.

5. Terrestrial Ecological Values are from Toxicological Benchmark for Screening Potential Contaminants of Concern for Effects on 4. Groundwater Protection Values are from the EPA Region III Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

Terrestrial Plants. Suter II, Will, and Evans, 1993.

6. For petroleum hydrocarbon comparisons, the most conservative value of 100 ppm, from Soil Clean-Up Levels for Petroleum Contaminated Sites (provided by TDEC), was used.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded NA - Indicates screening level values are not available for comparison.

J - Indicates estimated value above the method detection (imit but betow the reporting limit.

Table 35-6 C 4 4

			Detected Value	Background Value ²	Groundwater Protection Values ³
Parameter ^t	Station ID	Depth (ft)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	C(35.2)	0 to 4	20300	22000	NA
	C(35.2)	4 to 7	22000	22000	NA
	C(35.2)	7 to 10	38100	22000	NA
Arsenic	C(35.2)	0 to 4	7.6	17	15
•	C(35.2)	4 to 7	7.1	17	15
	C(35.2)	7 to 10	17.5	17	15
Barium	C(35.2)	0 to 4	144	300	32
	C(35.2)	4 to 7	168	300	32
	C(35.2)	7 to 10	156	300	32
Beryllium	C(35.2)	0 to 4	1.1	1,2	180
	C{35.2}	4 to 7	1.1	1.2	180
	C(35.2)	7 to 10	1.5	1.2	180
Calcium	C(35.2)	0 to 4	3040	2400	NA
	C(35.2)	4 to 7	3060	2400	NA
	C(35.2)	7 to 10	2670	2400	NÄ
Chromium	C(35.2)	0 to 4	33.9	26	19
	C(35.2)	4 to 7	33.4	26	19
	C(35.2)	7 to 10	54.5	26	19
Cobatt	C(35.2)	0 to 4	13.2	20	NA
	C(35.2)	4 to 7	11.8	20	NA
-	C(35.2)	7 to 10	13.6	20	NA
Copper	C(35.2)	0 to 4	23.2	33	NA
	C(35.2)	4 10 7	19	33	NA
	C(35.2)	7 to 10	28.6	33	NA
fron	C(35.2)	0 to 4	28600	38000	NA
	C(35.2)	4 to 7	28100	38000	NA
	C(35.2)	7 to 10	43400	38000	NA
Lead	C(35.2)	0 to 4	13.9	24	1.5
	C(35.2)	4 to 7	15.4	24	1.5
	C(35.2)	7 to 10	23.6	24	1.5
Magnesium	C(35.2)	0 to 4	3860	4900	NA
	C(35.2)	4 to 7	3620	4900	NA
	C(35.2)	7 to 10	2350	4900	NA
Manganese	C(35.2)	O to 4	959	1500	NA
	C(35.2)	4 to 7	719	1500	NA
	C(35.2)	7 to 10	559	1500	NA
Methylene chloride	C(35.2)	O to 4	0.002 J	NA	.01.
	C(35.2)	4 to 7	0.002 J	NA	.01
	C(35.2)	7 to 10	0.004 J	NA	.01
Nickel	C(35.2)	0 to 4	29.9	37	21
	C(35.2)	4 to 7	24.5	37	21
	C(35.2)	7 to 10	27.4	37	21
Potassium	<u>C(35.2)</u>	0 10 4	1400	1800	NA
··	C(35.2)	4 10 7	1240	1800	NA
	C(35.2)	7 to 10	2390	1800	NA NA
Vanadium	C(35.2)	0 to 4	59.5	51	
	C(35.2)	4 to 7	57, 6	51	NA NA

Table 35-B Summary of Detected Compounds in Subsurface Soll Compared to Screening Levels for Parcel 35 BRAC Sampling Program Defense Depot Memphis, Tennessee

Parameter'	Station (D	Depth (ft)	Detected Value (mg/kg)	Background Value ² (mg/kg)	Groundwater Protection Values ³ (mg/kg)
Zinc	C(35.2)	0 to 4	73.2	110	42000
	C(35.2)	4 to 7	58.7	110	42000
	C(35.2)	7 to 10	66.9	110	42000

Notes:

 The parameter listing includes only the parameters detected within each parcel and not all the parameters analyzed.

 Background Values are from Table 5-1 of the Draft Background Sampling Program Technical Memorandum, CH2M HILL, September 1996.

 Groundwater Protection Values are from the EPA Region ill Risk-Based Concentrations Table, R.L. Smith, April 30, 1996.

Bold text indicates detections that exceeded a screening level value and the associated screening level value that was exceeded.

NA - indicates screening level values are not available for comparison.

J - indicates estimated value above the method detection limit but below the reporting limit.

Table 35-C Summary of Detected Compounds in Sump Samples for Parcel 35 BRAC Sampling Program Defense Depot Memphis, Tennessee

			Detected
			Value ²
Parameter ¹	Station ID	Depth (ft)	(mg/kg)
Acenaphthene	A(35.3)	0 to .5	0.39 J
Aluminum	A(35.3)	0 to .5	7090
Anthracene	A(35.3)	0 to .5	0.51 J
Antimony	A(35.3)	0 to .5	56.7
Arsenic	A(35.3)	0 to .5	11.7
Barium	A(35.3)	0 to .5	2240
Benzo(a)anthracene	A(35.3)	0 to .5	1.2 J
Benzo(a)pyrene	A(35.3)	0 to .5	0.84 J
Benzo(b)fluoranthene	A(35.3)	0 to .5	1.4 J
Benzo(k)fluoranthene	A(35.3)	0 to .5	1.1 J
Cadmium	A(35.3)	0 to .5	168
Calcium	A(35.3)	0 to .5	31800
Carbazole	A(35.3)	0 to .5	0.4 J
Chromium	A(35.3)	0 to .5	3400
Chrysene	A(35.3)	0 to .5	1.6 J
Cobalt	A(35.3)	0 to .5	88.7
Copper	A(35.3)	0 to .5	305
Fluoranthene	A(35.3)	0 to .5	2.4 J
Iron	A(35.3)	0 to .5	49300
Lead	A(35.3)	0 to ,5	7640
Magnesium	A(35.3)	0 to .5	3180
Manganese	A(35.3)	0 to .5	448
Naphthalene	A(35.3)	0 to .5	5.5
Nickel	A(35.3)	0 to .5	59.5
Phenanthrene	A(35.3)	0 to .5	3.1
Pyrene	A(35.3)	0 to .5	2.2 J
Sodium	A(35.3)	0 to .5	2660
Zinc	A(35.3)	0 to .5	5100

Notes:

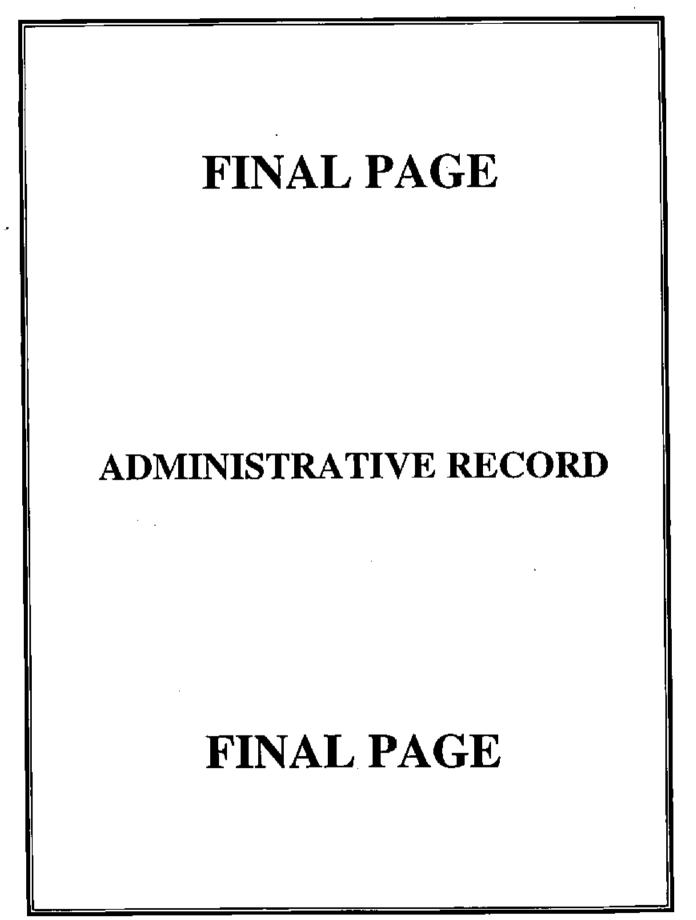
1. The parameter listing includes only the parameters

detected within each parcel and not all the parameters analyzed. 2. Detected compounds from sump samples have no appropriate

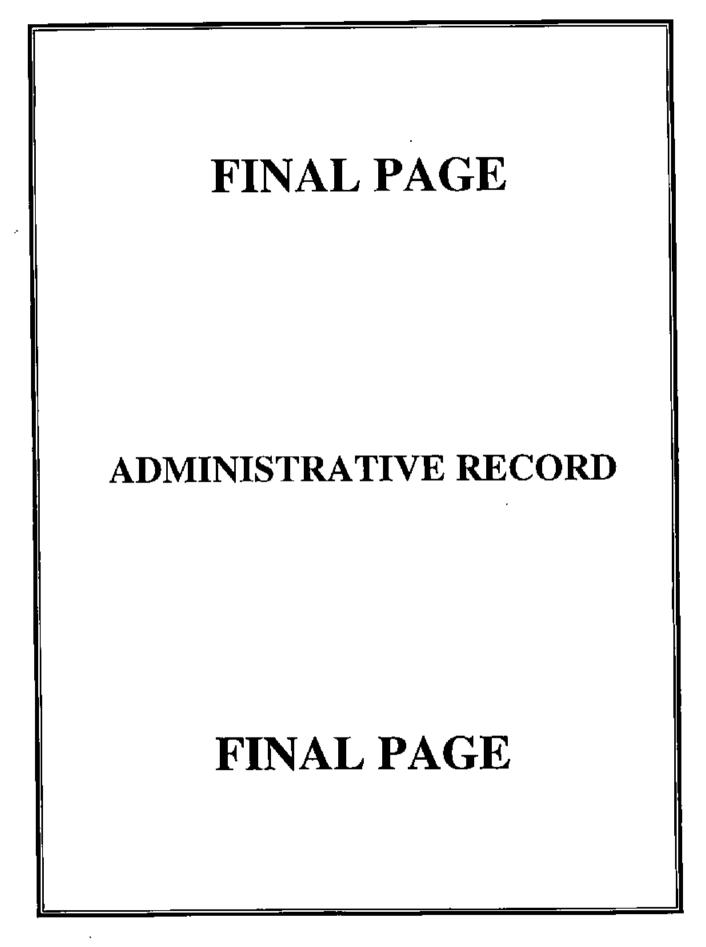
screening criteria to use for comparison.

J - Indicates estimated value above the method detection limit but below the reporting limit.

· ~-.


Acronyms

. •


bgs	below ground surface
BRAC	Base Realignment and Closure
COE	Corps of Engineers
DDMT	Defense Depot Memphis Tennessee
mg/kg	milligrams per kilogram
PCB	Polychlorinated biphenyl
РСР	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
SVOCs	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
трн	total petroleum hydrocarbon
VOC	volatile organic compound

244 216

244 217

