

THE MEMPHIS DEPOT **TENNESSEE**

ADMINISTRATIVE RECORD **COVER SHEET**

AR File Number ___ Q3

File: C.G. 541.460.d

UNITED STATES ARMY ENVIRONMENTAL HYGIENE AGENCY

ABERDEEN PROVING GROUND, MD 21010

GEOHYDROLOGIC STUDY NO. 38-26-0195-83 DEFENSE DEPOT MEMPHIS MEMPHIS, TENNESSEE 21 JUNE - 2 JULY 1982

Distribution limited to US Government agencies only; protection of privileged information evaluating another command; Jan 83. Other requests for this document must be referred to Director, Defense Logistics Agency, ATTN: DLA-WS, Alexandria, VA 22314

1367 63

DEPARTMENT OF THE ARMY

Mr. Curran/csp/AUTUYON 584-2024

U.S. ARMY ENVIRONMENTAL HYGIENE AGENCY ABERDEEN PROVING GROUND, MARYLAND 210:0

20 JAN 1983

SUBJECT: Geohydrologic Study No. 38-26-0195-83, Defense Depot Memphis, Memphis, Tennessee, 21 June - 2 July 1982

Director Defense Logistics Agency ATTN: DLA-WS Alexandria, VA 22314

EXECUTIVE SUMMARY

The purpose, essential findings, and major recommendations of the inclosed report follow:

a. <u>Purpose</u>. To determine and evaluate the geohydrologic setting, identify sources of potential ground-water contamination, and construct monitoring wells around the sites of greatest potential. During the construction of the wells, well logs and soil samples will be collected. Ground-water samples will be taken for subsequent analysis at this Agency. If significant ground-water contamination is found, a plan for future remedial action will be prepared.

b. Essential Findings.

- (1) The geohydrologic setting includes a soil which extends to a depth of 80 feet and consists of fine-grained, Loessial material of Aeolian origin. The ground water exists under water table conditions, has a static level of between 73 and 62 feet below the land surface, and flows to the west. There is a limited perched ground-water system identified in the northern section, which flows to the north.
- (2) Two areas of the installation were identified as having a potential for ground-water contamination, Dunn Field and the pentachlorophenol (PCP) Dip Yat. The Dunn Field area was determined to have a greater potential than the PCP Dip Yat and six monitoring wells were installed and logged and sampled in that location.
- (3) Data from the monitoring wells indicated that no significant ground-water degradation or contamination exists in the Dunn Field area.
- c. Major Recommendations. Perform no remedial ground-water actions at the Dunn Field area.

FOR THE COMMANDER:

1 Incl as (5 cy) NELSON H. LUND, P.E.

Colonel, MSC

Director, Environmental Quality

CF:
HUDA (DASG-PSP) wo incl
Cdr, HSC (HSPA-P)
Comdt, AHS (HSKA-IPM)
Cdr. DDEAMC (PYNTMED Acty)
Cdr, MEDDAC, Fort Campbell (PYNTMED Acty)(2 cy)
C, USAEHA-Rgn Div South

CONTENTS

Paragraph	Page
1. AUTHORITY 2. REFERENCES	1 1 1 1 1
d. Background FINDINGS AND DISCUSSION a. Physiographic Description b. Geology c. Hydrogeology d. Soils e. Sources of Potential Ground-water Contamination f. Monitoring Wells in Dunn Field Area g. Soil Sampling and Testing h. Ground-water Elevation and Flow Direction i. Ground-water Sampling and Analysis 6. CONCLUSIONS 7. RECOMMENDATIONS 8. TECHNICAL ASSISTANCE	2 2 5 5 9 9 13 13 18 18
Appendix	
A - References B - Abbreviations and Definitions C - Personnel Contacted D - Stratigraphic Column - Memphis Area E - Defense Depot Memphis Location Map for Monitoring Wells	B-1 C-1 U-1
F - Drilling Logs	F-1

DEPARTMENT OF THE ARMY U.S. ARMY ENVIRONMENTAL HYGIERE AGENCY ABERDEEN PROVING GROUND, MARYLAND 21010

GEOHYDROLOGIC STUDY NO. 38-26-0195-83
DEFENSE DEPOT MEMPHIS
MEMPHIS, TENNESSEE
21 JUNE - 2 JULY 1982

AUTHORITY.

- a. Letter, DLA-W, HQ DLA, 29 October 1981, subject: USAEHA Mission Services, FY 82, with initial indorsement, HSPA-P, HSC, 3 November 1981.
- b. Interservice Support Agreement, W23MWN-78083-001, US Army Environmental Hygiene Agency/Defense Logistics Agency, effective through 30 September 1985.
- REFERENCES. See Appendix A.
- 3. PURPOSE.
 - a. Determine and evaluate the geohydrologic setting.
 - b. Identify sources of potential ground-water contamination.
- c. Construct monitoring wells around the sites of greatest potential. During the construction of the wells, well logs and soil samples will be collected. Ground-water samples will be taken for subsequent analysis at USAEHA.
- d. If significant ground-water contamination is found, a plan for future remedial action will be prepared.
- 4. GENERAL.
 - a. Abbreviations and Definitions. See Appendix B.
 - b. USAEHA Personnel Conducting the Study.
- (1) Mr. Stephen F. Curran, Jr. Project Officer, Geohydrologist, Waste Disposal Engineering Division (WDED).
 - (2) Mr. I. Richard Kestner, Physical Science Technician, WDED.
 - (3) Mr. Thomas Thomer, Student Aide, WDEO.
 - c. Personnel Contacted. See Appendix C.

d. Background. Defense Depot Memphis is located approximately three-fourths of a mile south-southwest of the city of Memphis (see Figure 1). It is a Defense Logistics Agency activity which receives, stores, and ships all Department of Defense commodities except electronics, bulk POL, ammunition, explosives, weapons, and perishable substance items for the various services within the south-central United States. The general layout of DOMT is shown on Figure 2. The annual nominal temperature range is from -15°F to 105°F. The average seasonal temperatures are 80°F in the summer, 40°F in the winter, and 60°F as a mean average (reference 1, Appendix A). Average monthly precipitation varies from 2.72 inches in October to 6.06 inches in January. The average annual snowfall is 6.10 inches. The prevailing winds are from the southwest, and the average relative humidity is 70 percent.

FINDINGS AND DISCUSSION.

į

- a. Physiographic Description. Memphis is located in a narrow band, known as the "Loess Hills," which parallels the eastern wall of the Mississippi River Valley. This band lies within the East Gulf Coastal Plain section of the Atlantic and Gulf Coastal Plains Province, and is included in a portion of the section called the Mississippi Embayment. This section is described as a youthfully to maturely dissected, belted coastal plain.
- Geology. The Mississippi Embayment is a downwarped, partly downfaulted trough in the Paleozoic rocks. The axis of the trough has migrated in past geologic time but now approximates the course of the Mississippi River. The trough has been filled with unconsolidated gravels, sands, and clays, ranging in age from Upper Cretaceous to Recent. In Tennessee, the unconsolidated sediments reach their maximum thickness at Memphis where they are from 2700- to 3000-feet thick (reference 2, Appendix A). Late in the Tertiary Period and early in the quarternary Period, streams carried extensive quantities of sand and gravel into the area and formed widespread terraces of these materials mixed with varying amounts of silt and clay on top of the older Tertiary deposits. Aeolian deposits or windblown silts and clays (Loess) comprise the presently exposed ground surface in the Memphis area. In general, the Loess is >75 feet thick on the bluffs forming the eastern valley wall but thins out to the east and disappears within about 50 miles of Memphis (reference 3, Appendix A). Appendix U describes the post-Midway geologic units which underlie the Memphis area and some of their environmental significances (references 1 and 2, Appendix A).

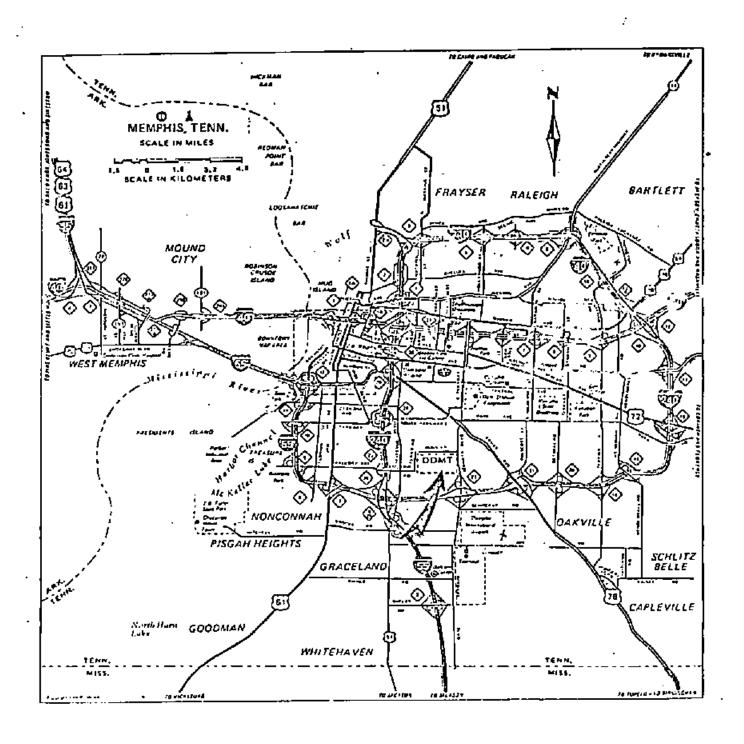


FIGURE 1. DDMT General Location Map

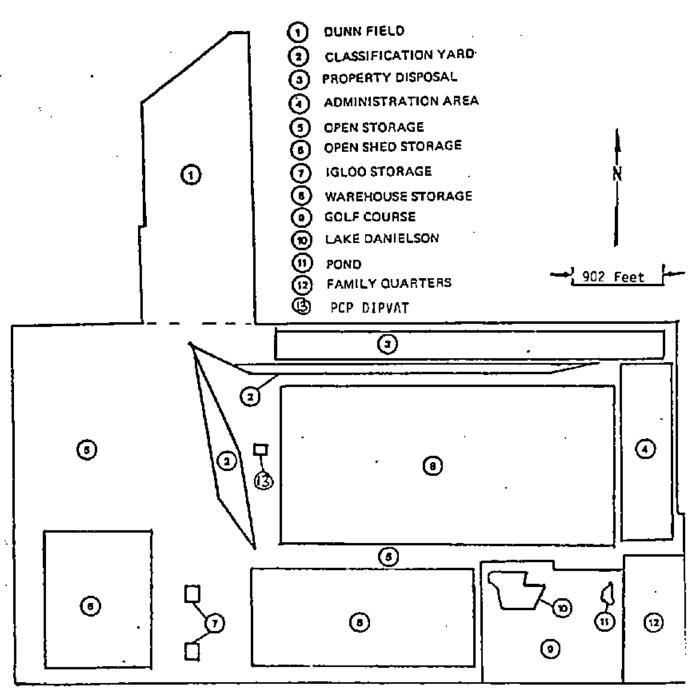


FIGURE 2. General Layout of DDMT

- c. Hydrogeology. The city of Memphis depends solely on ground water for its potable and nonpotable water supply. In 1980, an inventory of pumpage in the Memphis area indicated that 97 percent of the water used in the area was derived from the Memphis sand of the Claiborne Group and 3 percent from the Fort Pillow Sand of the Wilcox Group (reference 2, Appendix A). The depot receives all of its water from the city of Memphis and has no ground-water wells. The Memphis Sand is separated from the overlying shallow water-table aquifer by a relatively thick and widespread confining bed consisting chiefly of clay. Studies by the US Geologic Survey (reference 4, Appendix A) have indicated that part of the recharge to the Memphis Sand is derived by vertical leakage from the shallow water-table aquifer by an exchange of water through the confining bed, or by water running through local "windows" of sand in the confining bed. The "windows," if they are located near a possible source of contamination, could provide a pathway through which any contaminants in the shallow water-table aquifer might enter the Memohis Sand (reference 5, Appendix A). The shallow water-table aquifer is most susceptible to contamination in areas which have been or are being used for waste disposal. Memphis and Shelby Counties, along with commercial establishments and industries, have used dumps and landfills in two geologically and topographically different areas - the flood plains of nearby streams and abandoned gravel pits in upland areas (reference 2, Appendix A). The dumps and landfills were closed in the early 1970's with the beginning of State regulation of waste disposal practices. The DDMT operated a waste disposal operation in the Dunn Field area during the late 1940's and early 1950's (trash burning). The Dunn Field area has also been used for the burial of various types of unuseable or contaminated solid wastes. These burial sites and/or storage sites are described in Table 1, and located on Figures 3, and 4.
- d. <u>Soils</u>. According to the US Soil Conservation Service which compiled a Generalized Soil Association Map in 1970, the DDMT is in the Memphis-Grenada-Loring association, which is characterized by nearly level to sloping, well-drained and moderately well-drained, silty soils on broad uplands. The soils in this association developed in silty deposits more than 20 feet deep (reference 1, Appendix A). Before construction of DDMT, the soils were identified as Memphis soil, which is well-drained soil on the broader ridgetops and steeper hillsides. Memphis soil has a brown, silty surface layer and subsoil. The construction of DDMT destroyed all of the natural structure of the Memphis soil, except in the northeast corner of Dunn Field and in the golf course area, these two areas retain the original Memphis silt loam. The construction areas have been classified as graded land, with silty materials.

TABLE 1. DESCRIPTION OF DUNN FIELD DISPOSAL AND STORAGE SITES

Location	•
Burial Sites	· · · · · · · · · · · · · · · · · · ·
1 2	Training sets, nine each, mustard and Lewisite, 1955 7 pounds (lbs) ammonium hydroxide, 1 gal glacial
3	acetic acid, 1955 3,000 quarts (qt) chemicals, 5 cubic feet (ft ³)
4	ortho-tolidine dihydrochloride, 1955 Thirteen 55-gal drums oil, grease, and paint, date
5	unknown Thirty-two 55-gal drums oil, grease, and thinner, 1955
6	3 ft ³ methyl bromide, 1955
7	
8	40,037 units ointment (eye), 1955
9	1,700 bottles fuming nitric acid, 1954 3,768 l-gal cans methyl bromide, 1954
10	Ashes and metal refuse from burning pit, 1955
11	1,433 1-ounce (oz) bottles trichloroscetic acid, 1965
12	Sulphuric/hydrochloric acids, 1967
13	32 cubic yards mixed chemicals and acid, 900 lbs
	detergent, 7,000 lbs aluminum sulphate, 200 lbs
14	Sodium, 1968
15	Sodium phosphate, 1968
16	Acid, 1969
17	Herbicide, cleaning compound, medical supplies, 1969
18	Acid, date unknown
19	Hardware (nuts and bolts)
22	XXCC3 impregnite
29	Food supplies
30	Burial site prior to bauxite storage; foods, construction debris burned; 1948
33	14 burial pits containing sodium phosphate, sodium, acid, medical supplies, chlorinated lime; 1970
Burn Sites	
21	Sanitary waste, smoke pots, CN canisters
31	Old burn area, 1946
Storage Sites	
25 -	Pesticide storage
27	Bauxite
28	Fluorspar
32	Bauxite, 1942-72
Other Sites	
20	Asphalt dump
23	Open drain ditches
24	Pistol range
26	Buried drainpipe

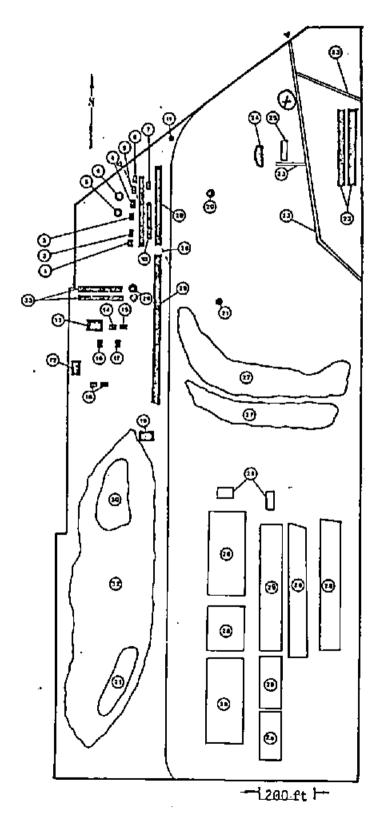
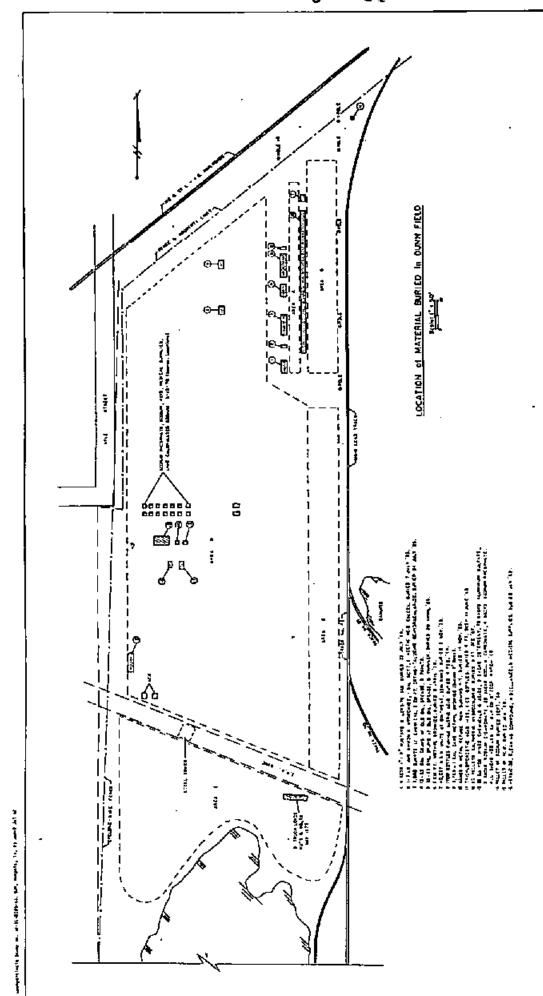



Figure 3. Dunn Field Disposal and Storage Sites

the first tree of the

e. Sources of Potential Ground-water Contamination. The Dunn Field area of DDMT was identified as the most likely location for an existing potential ground-water contamination problem, based on the fact that waste disposal operations were conducted in that area in the past (see paragraph 5c, this report). This area was identified by USAEHA and USATHAMA personnel (reference 1, Appendix A) as the most likely area of DDMT for ground-water contamination. The PCP Dip Vat area (see Figure 2) was noted as having a potential for future contaminant migration, if a leak were to occur in the tank (12,000 gallon capacity) or if a serious spill were to occur. This facility has received little use since the late 1960's (reference 1, Appendix A). Because of this, and the fact that no leaks or spills have been reported, no ground-water monitoring wells were installed at this location.

f. Monitoring Wells in Dunn Field Area.

- (1) Location. Seven ground-water monitoring wells were installed during this study to determine ground-water quality and ground-water table elevations. These well locations are shown in Appendix E and are identified as MW-1 through MW-7. These locations were selected, based on information contained in paragraphs 5a through 5e, this report, to provide ground-water quality information which would indicate if a ground-water contamination problem exists.
- (2) Construction. The wells were drilled using an Acker Ab-II auger drilling rig with a 6-inch, hollow-stem auger. This type of drilling method allows for the collection of disturbed soil samples (bag samples) and undisturbed soil samples (Shelby tube samples) for soil testing. Each well was constructed by first augering a 6-inch-diameter vertical hole and then inserting a 2-inch ID, Schedule-40, PVC casing with a PVC screen (0.010-inch slots) and sand pack. The depth and length of screen of each well are listed in Table 2. On completion of the installation of the casing, screen, and sand pack, a 3-foot bentonite (clay) seal was emplaced in the annulus, on top of the sand. The annulus (void around the casing) was filled with cement from the top of the seal to the ground surface. The wells were capped with a cast iron casing to physically protect the PVC casing from accidental breakage. See Figure 5 for a generalized description of the monitoring well construction. A survey was conducted by DOMT personnel to establish the elevation of the ground surface at each well (see Table 2).

g. Soil Sampling and Testing.

(1) Sampling Procedure. Thirteen soil samples, eight disturbed and five undisturbed, were collected during the construction of the seven monitoring wells. The soils testing program for these samples included grain size, Atterberg Limits, permeability, void ratio, percent saturation, porosity, dry density, moisture content, and specific gravity. Disturbed soil samples (bag samples) were obtained by collecting the soil which comes

US ARMY ENVIRONMENTAL HYGIENE AGENCY TABLE 2 - GROUNDWATER MONITOR WELL SUMMARY

·o				
<u>←</u>		1 1]	<u>и</u>

Ц	_	\$200 SEC.		9 (18%)
		 <		
ا ا	\ /	==	\ /	
ي 2	⊨	Ž.	ş	
20 20 20 20 20 20 20 20 20 20 20 20 20	20.	NA PA	SAI	
22	ຮັ	8 S		
	GROUND CEVEL O.	GROUND GROUT	F 1	

- TOP	C TOP OF WELL SCREEN D TOP OF SEDIMENT TRAP	E - TOTAL WELL DEPTH
-------	--	----------------------

~I	WELL NO.	MM 1	MW 2	MW 3	MN 4	MR 5	14M 6	NW 7
	V		9,6"	60'-0"	3'-0"	54'-0"	30'-0"	49'-0"
	6 0		13,-0,,	630"	30"	U-' 25	331-0"	54 ' -0"
	D .		18'-0"	63'6"	.9-,85	57 '-0"	200	64'-0"
	a		32'-0"	73'-6"	.,9-,8/	77'-0"	70'-0"	74'-0"
	ы		32'-0"	73'-6"	.9-,8/	"077	70,-0,	74'-0"
	GROUT		, "9-,6	15'-0"	3'-0"	15,-0"	0-,6	15'-0"
	BENTONITE SEAL THICKNESS		3,-6"	3 -0"	0	3'-0"	3'-0"	5'-0"
	LENGTH OF PIPE	72,5"	20.0	.9-,-9	,0-09	.0-,09	51'-0"	.029
	LENGTH OF STANDPIPE		12	21.	9-,1	3,	1'	3'
	LENGTH OF SCREEN	10.	10,	10,	,07	20,	20.	10.
	LENGTH OF SEDIMENT TRAP		c	0	0	0	0	. 0
	SCREEN(1n.) SLOT SIZE	0.010	0.010	0.010	0.010	0.010	0.010	0.010
	(NITIAL(ft.) WATER LEVEL	N/A	274'-3"	228'-5"	230'-4"	228'-6"	229'-7"	231,-6"
	24 HOUR (ft.) WATER LEVEL	H/A	269,-5	"01-'822	230'-3"	"9-,82Z	229'-1"	231'-1"
	GROUND LEVEL ELEVATION ft.		289'-8'	.S~,06Z	300'-0"	301'-4"	288'-1"	293 -1"
	REMARKS Completion Date	casing broken 24 JUNE	34 JUR	26 JUNE	26 JUNE	27 JUNE		29 JUNE 29 JUNE

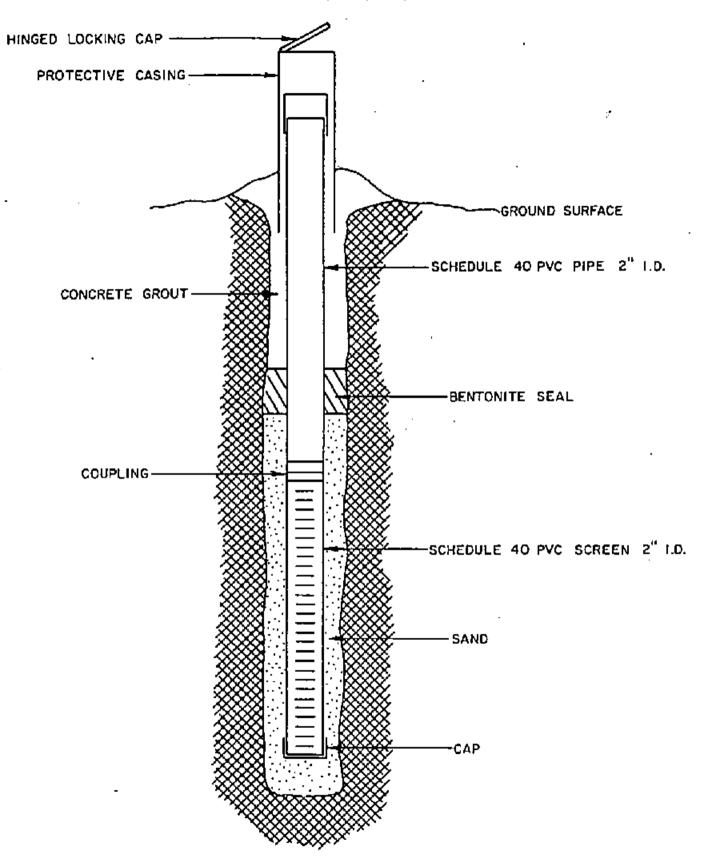


Figure 5. GENERALIZED MONITORING WELL CONSTRUCTION

e e la companya de l

Geohydrologic Study No. 38-26-0195-83, DDM, Memphis, TN, 21 Jun-2 Jul 82

to the surface on the auger and placing it in a soil sample bag. This type of sample is called a "bag sample" and is identified as "BS" on the drilling logs (see Appendix F). Undisturbed soil samples were obtained using a metal, thin-walled Shelby tube. This tube is pressed into the undisturbed soil through the hollow stem of the auger flights. These samples are identified in the drilling logs (Appendix F) as "ST."

(2) Testing Results. Appendix G shows the results of all the soils testing completed by the WDED Soils Laboratory. The soils range from CL (inorganic clays of high plasticity) to GW-GM (well graded gravels or gravel-sand mixtures with little or no fine-silty gravels, gravel-sand silt mixtures). Table 3 summarizes the soil properties, including the sample type and depth, unified soils classification, and permeability. The permeability data suggest that the upper zone of the area contains soils of very low permeability (3.5 x 10^{-8} cm/sec). The potential for migration of contaminants is greatly reduced when soils of this type are found in an area. The sandier zones (GW, GC, and SM areas), where the transmittability of water is greater, are located at depths of over 30 feet below the land surface, indicating that the potential for contaminating these zones from the disposal of wastes in the upper 10 feet of soil is minimal.

TABLE 3. SUMMARY OF SOIL PROPERTIES IN STUDY AREA

Monitoring Well	Sample (feet)	Sample Type	Classification (Unified System)	Permeability (cm/sec
1	0-2.5	BS	CL	-
1	4.5-6.5	ST	ML-CL	7.20 x 10 ⁻⁷
ī	9-10	ST -	ML-CL	8.15 x 10 ⁻⁸
ī	19-21	ST	CL	4.71 x 10 ⁻⁸
1	23-24	BS	CL	3.59 x 10 ⁻⁸
i	29-31	ST	SM-SC	1.14×10^{-4}
ī	39-39.5	\$T	GW-GC	8.19 x 10 ⁻⁴
1	45-50	BS	SM-SC	6.89 x 10 ⁻⁵
1	55-60	BS	GW-GM	4.27×10^{-3}
3	4-5	BS	ML	-
3	28-30	85	ML-CL	4.14 x 10 ⁻⁵
3 5	41-45	ŖŞ	GW-GM	5.92×10^{-3}
5	35-40	BS	SM	6.57 x 10 ⁻⁴

h. Ground-water Elevations and Flow Direction.

- (1) Elevations. The depths to the top of the water table were determined using an electric drop-line and were measured from the ground surface or the top-of-casing (TOC). These depth determinations were made upon the setting of the PVC well casing and 24 hours later. The depths, as measured, can be found in Appendix F. These data were used in conjunction with the ground surface elevations in Table 2 to determine the elevations of the top of the water table at each monitoring well. The elevations, above mean sea level, of the water table are as follows: MW-2 269.4 feet, MW-3 228.8 feet, MW-4 230.25 feet, MW-5 228.5 feet, MW-6 229.1 feet, and MW-7 231.1 feet. These elevations are shown in Table 2 and Appendix H.
- (2) Flow Direction. The ground water, as determined from the elevation data, has a very slight flow gradient (0.006 feet per foot) towards the west. The water table in the area has a maximum difference in elevation of 2.6 feet (MW-7 231.1 feet to MW-5 228.5 feet). The ground-water flow direction is shown on Appendix H. The MW-2 has a measured elevation of 269.4 feet; this is significantly higher than the values obtained from all the other monitoring wells. This water level is indicative of a perched ground water system in this area and reflects a buried drainage system which flows to the north-northwest from the location of the MW-2. This is a localized phenomenon based on the absence of this clay horizon in the logs of all the other monitoring wells.

i. Ground-water Sampling and Analysis.

- (1) Well Development. After all the wells were completed, with the exception of MW-1 (casing broken), they were "developed," i.e., the turbid water was removed from the casing to allow better flow into the casing. This "developing" consisted of hand-bailing 15 gallons of water from each well.
- (2) Sampling Procedure. Twenty-four hours after the wells were developed, each well was pumped to remove water from the casing. The wells were allowed to recover and then sampling began. The pumping and sampling of monitoring wells MW-2 through -6 was accomplished using a Geofilter® small-diameter well pump (Middleburg Sampler) which is a "bladder-type" sampler pump. Water flows into the sampler under static water column pressure and is then forced to the surface by gas (nitrogen). This type of pump isolates the sample from the gas used to remove the sample. The MW-7 was pumped and sampled using a Kemmerer Samples (bailer) because the Geofilter pump would not drop through the casing. The casing probably has a slight bend in it which would not allow the Geofilter to pass through. This in no way affects the validity of the samples obtained from this well.

Geofilter is a registered trademark of Leonard Moldand Die Works, Inc., Denver, CO. Use of trandemarked names does not imply endorsement by the US Army, but is intended only to assist in identification of a specific product.

- (3) Filtering and Preserving of the Samples. All samples were filtered and/or preserved onsite and then transported to this Agency for chemical analysis according to Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 15th ed., 1980, for all the inorganic parameters analyzed. All samples obtained from the wells were quite turbid and required a long time to filter.
- (4) Parameters Tested. Specific pH and conductivity were determined in the field at the time the samples were taken. The following parameters were analyzed at the USAEHA Radiological and Inorganic Chemistry Division: chemical oxygen demand, chloride sulfate, phenol, specific conductivity, fluoride, nitrate-nitrite nitrogen, mercury, arsenic, barium, cadmium, chromium, lead, selenium, silver, copper, aluminum, manganese, sodium, zinc, and iron.
- (5) Results of Analysis. -The ground-water quality in the Dunn Field area does not reflect any serious ground-water pollution problems from the disposal operations which have occurred in the past. The EPA Interim Primary Drinking Water Standards or Secondary Urinking Water Criteria (references 6 and 7, Appendix A) are shown in Table 4. The only parameters which were found in excess are: manganese - all wells, lead - MW-2 and MW-7, and cadmium - MW-6. The results of all the analyses are shown in Tables 5 and 6. The secondary criteria for manganese (0.05 mg/L) is the only one which is exceeded by an order of magnitude or greater. High manganese is objectionable in water supplies because of its effect on taste, staining of plumbing fixtures, spotting of laundered clothes, and accumulation of deposits in water distribution systems (reference 8, Appendix A). Manganese is a commonly found constituent in ground water, and its presence at the levels indicated in Table 6 do not pose any significant health hazard. The ground water in the area is not used for drinking water purposes, but, if it were, the manganese would only be a problem from an aesthetic viewpoint. The standards for lead and cadmium are 0.05 mg/L and 0.01 mg/L, respectively, and were only slightly exceeded. The highest lead value was 0.069 mg/L and the highest value for cadmium was 0.014 mg/L. This is also not an indication of a serious ground-water pollution problem.

TABLE 4. EPA INTERIM PRIMARY DRINKING WATER STANDARDS OR SECONDARY DRINKING WATER CRITERIA

	Maximum Level
Parameter	(mg/L)
Primary	
ri imai y	
Arsenic	0.05
Barium	1.0
Cadmium	0.01
Chromium	0.05
Fluoride	1.4-2.4
Lead	0.05
Mercury	0.002
Nitrate (as)	10
Selenium	0.01
Silver	0.05
Endrin	0.002
Lindane	0.004
Methoxychlor	0.1
Toxaphene	0.005
2,40	0.01
2,4,5 TP Silvez	0.01
Secondary	
Chloride	250
Copper	1_
Foaming Agents	0.5
Hydrogen Sulfide	o. 05
Iron	0.3
Manganese	0.05
Sulfate	250
Total Dissolved Solids	50 0
Zinc	5
Color	15 Color Units
Corrosivity	None
Odor -	3 Threshold Odor Number
рH	6.5-8.5 standard units

TABLE 5. ANALYTICAL RESULTS, DEFENSE DEPUT MEMPHIS

Monitoring	NO2NO3	COD	CT	SO4	SpC	Phenol	F	pH
Well	mg/L	mg/L	mg/L	mg/L	umnos	mg/L	mg/L	-
MW-2 MW-3 MW-4 MW-5 MW-6 MW-7	0.10 1.2 2.2 2.0 1.9 0.82	75.0 11.0 11.0 <5.0 13 11	6.4 9.8 16.0 24.0 70.0	35.0 41.0 17.0 16.0 16.0 21.0	570 300 234 224 431 229	<0.04 <0.04 <0.04 <0.04 <0.04 <0.04	0.67 0.22 0.27 0.23 0.30 0.28	6.4 6.0 6.0 6.2 6.1 6.1

ROGER E. BOLDT, Ph.U. Chief, Non-Metals Analysis Branch Radiological and Inorganic Chemistry Division

Section is Missing from the Official Government

Document

APPENDIX B

ABBREVIATION AND DEFINITIONS

Aeolian Applied to deposits arranged and/or transported by

the wind

Annulus Annular space between drill pipe and casing

or between casing and walls

Atterberg Limits Soil mechanics' indices based on the concept

that a fine-grained soil can exist in any of four states, depending on its water content. A soil is solid when dry and, upon the addition of water, proceeds through the semisolia, plastic, and finally liquid state. The water contents at the boundaries between adjacent states are termed shrinkaye limit,

7

plastic limit, and liquid limit.

8ailer A long, cylindrical container with a valve

at the bottom, used for removing water from a well

BH Borehole BS Bag Sample

Bentonite A clay formed from the decomposition of

volcanic ash and is largely composed of the clay minerals montmorillonite and beidellite. The clay commonly has great ability to absorb

or adosrb water and swell accordingly

Casing Permanent liner of a well

Cretaceous The third and latest of the periods included in the

Mesozoic era

DOMT Defense Depot Memphis, Memphis, Tennessee

Embayment Describes a continental border area that has sayyed

concurrently with deposition so that an unusually thick

section of segiment results

EPA US Environmental Protection Agency

Grout Slurry or watery mixture of cement and clay

which is used to fill the annular space between the casing and the wall of a borehole to seal out water

from the surface

ID inside giameter

Loess A homogeneous, non-stratified, unindurated

deposit consisting predominantly of silt, with a subordinate amount of very fine sand and/or clay

MW Monitoring well

NIPOWR National Interim Primary Drinking Water Regulations

NSDWR National Secondary Drinking Water Regulations

Paleozoic One of the eras of geologic time that.

One of the eras of geologic time that, between the late Precambrian and Mesozoic eras, comprises the Cambrian, Ordovician.

Silurian, Devonian, Mississippi, Pennsylvania, 🧳
and Permian systems
Pentachlorophenol -
The negative logarithm of the hydrogen ion activity
The ratio of the aggregate volume of interstices
in a rock or soil to its total volume
Polyvinyl chloride
The younger of the two geologic periods or
systems of the Cenozoic era. Comprises all time
from Tertiary to present, includes Recent and
Pleistocene deposits; 3 million years ago to present
Time and strata younger than the Pleistocene,
considered by some to be the last subdivision of
the Pleistocene
Slotted casing section positioned opposite the producing
horizon to prevent in flow of sand into the well
A type of thin-walled tube sampler for acquiring
undisturbed soil samples
Specific conductivity, which is the numerical
expression of the ability of a water sample to
carry an electrical current
Total depth
The earlier of the two geologic periods
comprised in the Cenozoic era, also, the
system of strata deposited during that period
Top of casing
System of classifying soils for engineering
purposes. This system is based on the
identification of soils according to their particle
size, gradation, plasticity index, and liquid limit
inorganic clays of high plasticity, fat clays
inorganic clays of low-to-medium plasticity,
generally clays, sandy clay, silty clays, lean clays
clayey gravels, gravel-sand-clay mixtures
poorly graded gravels, gravel-sand mixtures,
little or no fines
well-graded gravels, gravel-sand mistures,
little or no fines
inorganic silts, micaceous or diatomaceous
fine sandy or silty soils, elastic silts
inorganic silts and very fine sands, rock flour,
silty or clayey fine sands, or clayey silts with
slight plasticity
organic clays of medium-to-high plasticity,
organic silts
organic silts and organic silty clays of low
plasticity

PT	peat and other highly organic soils
SC	clayey sands, sand-clay mixtures
SM	silty sand, sand-silt mixutres
SP	poorly graded sands, gravelly sands, little or no fines
2M	well-graded sands, gravelly sands, little or no fines
USAEHA	US Army Environmental Hygiene Agency
USATHAMA	US Army Toxic and Hazardous Materials Agency
void ratio	ratio of intergranular voids to volume of
	solid material in a sediment or sedimentary rock
WOED	Waste Disposal Engineering Division, USAEHA
ИT	water table

APPENDIX C

PERSONNEL CONTACTED

- 1. COL William E. Freedman, Jr., Commander, DDMT
- 2. COL James A. Lovell, Deputy Commander, DUMT
- 3. Mr. P. S. Mott, Depty Director, Directorate of Installation Services (DIS)
- 4. MAJ Roger Gorres, Facility Engineering Division, DIS
- 5. Mr. A. L. Sides, Chief, Buildings and Grounds Branch, DIS
- 6. Mr. T. Walker, Planner Estimator/Scheduler, Production Control Office, Buildings and Grounds Branch, DIS
- 7. Mr. T. Bumpus, Chief, Production Control Office, Buildings and Grounds Branch, DIS
- 8. Mr. R. Montgomery, Supply Clerk, Material Aquisition Division, DIS
- 9. Mr. J. Gayhart, Pipe Fitter, Utilities Branch, DIS

Geohydrologic Study No. 38-26-0195-83, DDM, Memphis, TN, 21 Jun-2 Jul 82

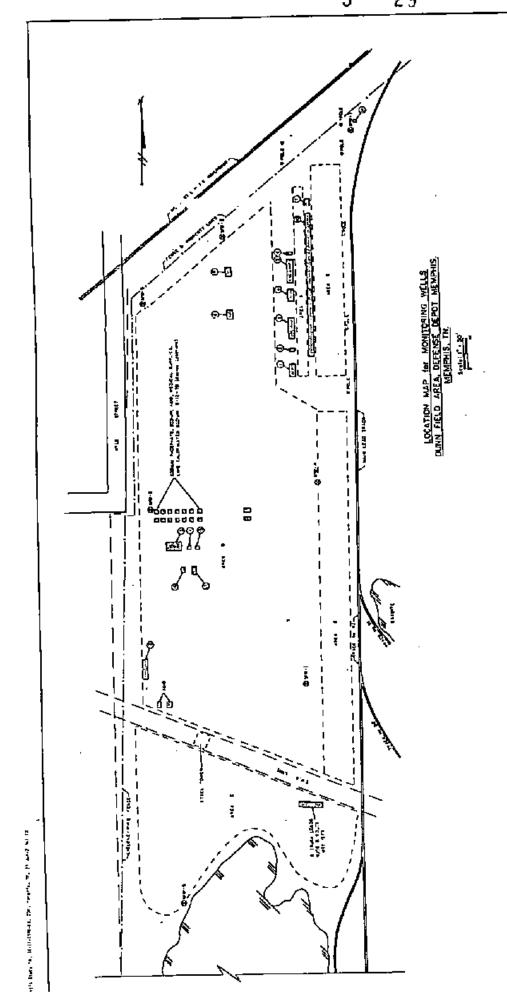
APPENDIX D

STRATIGRAPHIC COLUMN - MEMPHIS AREA

ness Lithology and Environmental	Sand, gravel, silt, and clay. Provides borrow material for fills and leveas and some aggregates for concrete and bituminous mixes. Used as foundation material or base on which fill is placed for residences and light buildings in flood plains. Lower sand and gravel beneath Mississippi Alluvial Plain used as foundation material for heavy structures. Supplies water to a few industrial wells on President and Mud Islands.	Silt, silty clay, and minor sand. Used generally as foundation material for residences and light buildings in upland areas. Provides material for fills placed in low places and flood plains. Thick deposits utilized for solid waste disposal.	Sand and gravel; minor ferruginous sendstone and clay. Provides most commercial aggregates for concrete and bituminous mixes. Used as a foundation material for heavy structures and highrise buildings in upland areas. Supplies water to many shallow
Thickness (feet)	0-175	0-65	0-100
Stratigraphic Unit	Alluvium	Loeas	Pluvial deposits (terrace deposits)
Group			
Series	Holocena and Pleistocene	Pleistocene	Pleistocene and Pliocene (?)
System	Quaternary		Quaternary and Terciary (?)

Lithology and Environmental Significance	domestic wells in suburban and county areas. Some abandoned gravel pits utilized for solid waste disposal.	Clay, Fine-grained sand, and lig- nite. Used as foundation material for heavy structures and for high-rise buildings	where overlying fluvial deposits are thin or absent and where alluvial materials are unsuitable. Supplies water to some shallow wells completed in sands below the fluvial deposits, but generally considered to be of low permeability and to confine water in Memphis Sand. Lower boundary very poorly defined.	Pine- to coarse-grained sand; sub- ordinate lenses of clay and lig- nite. Very good aquifer from which most water for public and industrial supplies is obtained. Upper boundary very poorly defined.	Clay, fine-grained sand, and lig- nite. Confines water in Hemphis Sand and Fort Pillow Sand.
Thicknese (feet)		0-350		200-800	160-350
Stratigraphic Unit		Jackson Formation and upper part of	Clatborne Group ("capping clay")	Memphis Sand ("500-foot" sand)	Plour Island Formation
Group		ł .		Claiborne	W11cox
Series				Eocene	
System	Quaternary and Terclary -Continued		Terttary		

 $\frac{3}{27}$ Geohydrologic Study No. 38-26-0195-83, DDM, Memphis, TN, 21 Jun-2 Jul 82


Lithology and Environmental Significance	Fine- to medium-grained sand; sub- ordinate lenses of clay and lig- nite. Once used as second principal aquifer for Memphis; now reserved for future use. Presently supplies water to a few industrial wells.	Clay, fine-grained sand, and lig- nite. Relatively impermeable lower confining bed for water in Fort Pillow Sand.
Thickness (Feet)	210-280	200-250
Stratigraphic Unit Thickness (Feet)	Fort Pillow Sand ("1400-foot" sand)	Old Breastworks Formation
Group	Wilcox Continued	
Series	- CO	
System	Terclary -Continued	

APPENDIX E

LOCATION MAP FOR MONITORING WELLS

DUNN FIELD AREA

DEFENSE DEPOT MEMPHIS

APPENDIX F DRILLING LOGS

DRILLING LOG

LC	OJECT CATION	38-26- Dunn acks	phis, TN 0195-82 Field Area - 95' west	DATE — DRILLERS		1982 r, Thoner, Curran
DF	RILL RI	G <u>Acker</u>	ADII/6" hollow stem a	^{u9} BORE KOLI	<u></u>	1 -1
	DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		TD - 80'	tial)-no measure- ments, casing REMARKS
	.	BS	Lt. brown, plastic, s	ilty clay		
	5	ST/P 4.5-6.5	Lt brown, plastic, si moist	ity clay,		
	10	ST/P 9-11	Lt brown plastic, sil	ty clay		

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

PROJECT	00 Hemphis, TN 38-26-0195-82	DATE -23	. <u>June</u> 1982
LOCATION	Dunn_Field_Area 95' west	DRILLERS	Kestner. Thoner. Curra
DRILL RIG		BORE HOLE	<u> </u>

	a num C c		· · · · · · · · · · · · · · · · · · ·
DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION	REMARKS
		•	
I _		·	
-	:		
!			•
19		·	
	ST/P		
20	19-21	Lt Red silty clay/minor amount of	
Ì		sand	•
-			
I _		-	
ļ —	B\$	·	
	0.5	·	
25			
·			
		. • •	
]			
] -		· .	
]			
	ST/P		
30	29-31		

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

			ohis, TN.		
P	ROJECT	38-26-01	<u> </u>	DATE2	
L	CATION	<u>Dunn_Fi</u>	ield Area - 95' west	DRILLERS	<u>Kestner, Thoner, Cur</u> rar
_	of RR tr	acks			·
D	RILL RI	G Acker auger	r AD11/6" hollow stem	BORE HOLE	
1	DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		REMARKS
		ST/P 29-31	Red, silty clay/sand	• .	
	_				•
	35		Red, silty clay		
	_		Reu, Sifty Clay		
	-				
	_				
	40	ST/P			
	-	1	Red, silty clay/rock fr buff colored shale and ed sandstone	ragments, white color-	
			22 30.170 571.0	i	
	_	•			
	-	1			

HSE-E5 Form 78, 1 Jun 80

DRILLING LOG

	-	his, TN	DATE _23	June 1982	
PROJECT			_		
LOCATION Dunn Field Area - 95' west			DRILLERS , Kesther, Thomer, Curran		
of RR trac					
DRILL RIG	<u>Acker</u> auger	- AD11/6" hollow stem	BORE HOLE	MW 1	
l Lī	AMPLE YPE BLOWS				
	ER 6 IN	DESCRIPTION		REMARKS	
	вЅ	No soil return - water	?	·	
	,				
50					
		Red-brown silty sand t	o sand		
	. !	-			
1 7					
55		<u></u>			
	85	Brown-red silty sand/n subangular quartz grai			
┤╶┼					
-					
	į		;		
60					

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

PROJECT		DD Memphis, TN 38-26-0195-82		DATE 23	3 June 1982	
L(CATION		ield Area - 95' west	DRILLERS	Kestner Thoner Curran	
	of RR tra	acks				
Di	RILL RI	G Ackey auger	ADII/6" hollow stem.	BORE HOLE	Mw 1	
1	DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		REMARKS	
	60		Red-brown slity sand			
	_					
	5 5		Red-yellow (It orange)	silty sand		
	_		- sand			
	-					
	70 <u> </u>					
	-		Flowing sand			
	-					
	_					
	75					

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

	no icct	DD Mem	phls, TN	NATE _21	3 June 1982		
r	KOJECI			DATE _23_lone_1982			
L	LOCATION Dunn Field Area - 95' west			DRILLERS	Kestner Thoner Curran		
_	of RR t	racks	······································				
D	RILL RI	6 <u>Acker</u> auger	ADII/6" hollow stem	BORE HOLE	MW -1		
	DEDTU	SAMPLE TYPE BLOWS	DESCRIPTION		remarks		
	DEPTH	PER 6 IN		<u> </u>	10.00.00		
		1	Flowing sand				
ļ	_	1	·				
	_	1					
	_	1					
	Bo	вон					
	_				Total Depth - 80'		
	_			-			
	-						
		1					
	_	-					
	-						
	-		·				
	-		·				

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

PROJECT LOCATION of the fence DRILL R	38-26-0 N Dunn NW corner	Field Area-190' east of fence & 20' south of AD[1/6" hollow stem	DRILLERS	Vune 1982 Kestner, Thoner, Curran MW - 2 GL- 289-69
DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		TD - 30'' WL (initia!) 17'-5" TOC WL (24 hr) 22-3" TOC REMARKS
5		Blue-gray, clay, moist Blue-gray, clay, plasti Blue-gray, clay, plasti		As the auger was being removed a metalic cylinger approx. 3" long by 1" diameter was noted. A pungent odor was also noted

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

₩. [(ROJECT DCATION COTDET	38-26-6 	phis, TN 0195-82 ield Area-190'east of 6 20' south of fence ADII/6"hollow stem		Kestner, Thomes, Curran
	DEPTH	SAMPLE TYPE BLOWS PER 6 IN			REMARKS
	_		Brown-bluegray clay, m billty of a brown silt mixed with the blue-gr	y material 🔰	•
·	- -	initial WL			
	<u></u>		·		
	20				
		24 HR WL	-		
	_				
	25				
	<u> </u>			;	
	_				

HSE-ES Form 78, 1 Jun 80

вон

DRILLING LOG

		DD Memp	his, TN	•	, y
ΡI	ROJECT	<u> 38-26-0</u>	195-82	DATE -	25 June 1982
L(CATION	<u>Dunn</u> F	ield Area-20' south of	DRILLER	S <u>Kestner Thomes Curc</u> an
	orth fen	ce & 22!	east of west fence		<u> </u>
DI	RILL RI	G Acke	r ADIJ/6" hollow stem	BORE HO	LE -HW - 3
		auge	·•		GL- 290.38'
	DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION ·		TD - 75' WL (initial) - 64'-0" WL (24 hr) - 63'-7" TOC REMARKS
			Brown, silty clay		encountered more canistrers of unknown material (similar to one found in MW - 2)
	5	85	dark brown, silty clay dark gray-black silty c	lay	
	10		brown to dark brown, si	lty clay	
	116	1			

HSE-E5 Form 78, 1 Jun 80

DRILLING LOG

Project	38-26-0195-82	DATE - 24 June 1982	-
LOCATION	Dunn Field Area-20' south of	DRILLERS Kestner, Thomas, Curre	ner <u>, furra</u> r
DRILL RIG	A-(1011/CD b-11	BORE HOLE	-

DC DTU	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION	REMARKS
DEPTH	PER O IN	Brown, silty clay	
-			,
20	:		·
	:		
_		-	
		,	
25		more clay, and moist	-
-			
	BS		·
30		<u> </u>	

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

OD Memphis, TN

ROJECT -3	38-26-0195-82	DATE - 24 June 1982
	<u>Dunn Field Area-20' south of</u>	DRILLERS Kestner Thomas Curran
	& 22' east of west fence	
RILL RIG	Acker ADII/6" hollow stem_ auger	BORE HOLE
TYP	MPLE PE OWS R 6 IN DESCRIPTION	REMARKS
35	Lt brown, silty sand	Noise frow auger? Noise, possibly gravel
40 B	No return, sand sand-silt/red-yellow-l Red-yellow (It orange)	
45		

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

. DO Hemphis, TN	<i>:</i>
PROJECT <u>38-26-0195-82</u>	DATE
LOCATION Dunn Field Area-20' south	of DRILLERS <u>Kestner Thoner Corra</u>
north fence & 22' east of west fence	
DRILL RIG Acker ADII/6" hollow st.	em_ BORE HOLE

DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION	REMARKS
		Red-yellow (It orange) sand/silt	
		•	•
50			
, —			
		_	
			-
	!		
55			
		Same/small gravel 🕍 diameter	
			·
60			

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

PROJECT 38-26-0195-82 LOCATION Dunn Field Area-20' south of					Liune 1987
_	•		south of west fence	DIVERSE	
	ILL RI	<u></u>	ADI1/6" hollow stem	BORE HOLE	
	DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		REMARKS
	_		Red-yellow(It orange) moist	sand/silt -	Moist flowing
1		24 HR wa	ter level water level		
	55		Red-yellow (It orange)	silt, sand	Wet ·
			-		
					•
	70				Extremely difficult to connect auger flight (flowing Sands)
	1				
ŀ	75		вон		

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

OD Memphis, TN

ROJECT	<u> 38-26-0</u>	195-82	DATE	_26_	June 1982		
OCATIO		ield Area-due east of.	DRILLE	ERS	<u>Kestner</u>	Thoner.	<u>Сигг</u> аг
Kyle St	<u>ε_601 west</u>	of RR tracks					
ORILL I	RIG <u>Acker</u> auger	ADII/6" hollow stem	BORE H				—
	SAMP LE				L- 300.0	<u>S</u>	
ктазо	TYPE BLOWS PER 6 IN	DESCRIPTION		l w	/L (initia /L (24 hr)	1) - 71' - 71'3' MARKS	2" TOC ' TOC
2		Brown silty clay, grave	l, noted				
'- .	<u> </u>	Lt brown silty clay					
5							
	-	Brown silty clay					
10	-	•					
-							
12 .	-	Brown silty clay/more	silt cont	text			
15	-						,

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

Kule St &	38-26-0 Dunn F	his, TN 195-82 Teld Area-due east of of RR tracks AD11/6" hollow stem			
DRILL RI	auger		BONE HOLL		
DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		TD - REMARKS	
. –	·				
20			!	·	
-		-			
25		Lt brown silty clay			
-		,			
30					

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

PROJECT — LOCATION P Kyle St 6 60	DD Memphis, TN 38-26-0195-82 unn Field Area-due east west of RR tracks Acker ADII/6" hollow s auger		Kestner. Thoner. Curren
TYP BLO		ON	REMARKS
	Red-brown, weak r	ed, silty clay	-
35	Red-brown, weak i	red silty sand	
		-	
40			

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

Kv		_38-26- _Dunn_F & 60' wes	phis, TN 0195-87 ield Area-due east of t of RR tracks r ADII/6" bollow stem		Kestner Thomer Currar
אנז	LL RI	SAMP LE		BOKE HOLL	
DS	EPTH_	TYPE BLOWS PER 6 IN	DESCRIPTION		REMARKS
				•	
	1				
50			Red-yellow (It orange)	sand/silt	
			-		
55					
			Lt brown silty sand, mi of sandstone fragments		

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

PROJECT <u>18-26-</u> LOCATION <u>Dunn F</u> Kyle 5t & 60' west	r ADII/6" hollow stem_	DRILLERS	26 June 1982 <u>Kestner Thoner Curra</u> n <u>MW - 4</u>
SAMPLE TYPE BLOWS DEPTH PER 6 IN	DESCRIPTION Red-yellow (1t orange)	d/e:1+	REMARKS
	wed-Asilom (if olends)	Sandysiit	-
65			
initial	Red-yellow- It brown si		 Flowing sands
24 hr wa	iter level		

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

PROJECT 38-26-0195-82 LOCATION Dunn Field Area-due east of Kyle St & 60' west of RR tracks DRILL RIG Acker ADII/6" hollow stem auger			ield Area-due east of of RR tracks	· · · · · · · · · · · · · · · · · · ·		
•	DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		REMARKS	
	80		вон		Flowing sand	
	_					

HSE-ES Form 78, 1 Jun 80

DRILLING LOG-

	DKILLING	LUG		
, DD Hei	mphis, TN			
PROJECT 38-26	-0195-82	DATE27 June 1982		
	Field Area-283' west of	DRILLERS	Kestmer, Thomes, Curran	
MW 4 and 30' eas	t of NS fence	DATELLIA		
DRILL RIG Ack	er ADII/6" hollow stem	BORE HOLE	MW - 5	
			61-301.33	
SAMP LE TYPE		· ·	TD - 80'	
DEPTH PER 6 I	DESCRIPTION		WL (initial) - 75'-10"T00 WL (24 hr) - 75'-10" T0C REMARKS	
	Brown Silty Clay			
	1	•		
			ĺ	
			1	
-				
5				
1 7	-			
-				
	•			
	1			
10	Dark brown silty clay		Moist	
-	Dark brown stricy clay		MD15E	
	Į			
I → ·			İ	

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

HW 4 and 30' east of		eld Area-283' west of of NS fence - ADII/6" hollow stem	DATE 27 DRILLERS BORE HOLE	June 1982 Kestner, Thoner, Curran MW - 5
	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		REMARKS
	:			·
20		Brown silty clay		not as moist
25				· · · · · · · · · · · · · · · · · · ·
		Red-brown (weak red) s	silty clay	Dry

HSE-ES Form 78, 1 Jun 80

30

DRILLING LOG

PROJECT	OD Memphis, TN 38-26-0195-82	DATE 27	7 June 1982	
LOCATION	Dunn Field Area-283' west of	DRILLERS	Kestner, Thoner, Currar	
HW 4 and	30' east of NS fence			
DRILL RIG	Acker AD11/6" hollow stem	BORE HOLE	MW - 5	

	SAMPLE TYPE		
DEPTH	BLOWS PER 6 IN	DESCRIPTION	REMARKS
		Red-brown (weak red) silty sand	
-	:		
35			
_	85	Red-brown silty sand - red brown sandy silt	
_			
-			
40			
_			
45	•		

HSE-ES Form 78, 1 Jun 80

DRILLING LOG . *

PROJECT -	DD Memphis, TN 38-26-0195-82	DATE 27	7 June 1982		
LOCATION	Dunn Field Area-283' west	DRILLERS	Kestner, Thoner, Curran		
	30' east of NS fence				
DRILL RIG	Acker A011/6" hollow stem	BORE HOLE	KW - 5		

.:	SAMPLE TYPE BLOWS		
DEPTH	PER 6 IN	DESCRIPTION	REMARKS
_		Red-brown - brown sandy silt/minor gravel, diameter $\frac{1}{2}$ "	
ļ <u></u>			
-			
50			
] ³⁰		Grave 1	•
-			
_			
55	. :	Red-brown-yellow silty sand	
	•	Borwn, silty sand/gravel	
		Red-yellow (It orange) sand/silt	Moist
_			
-			
60			

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

		DD Mems	phis, TN		, ,
P	ROJECT	38-26-0	0195-82	DATE —	27 June 1982
LOCATION Dunn Field Area-283' west		DRILLERS	Kestner, Thoner, Curran		
			ast of NS fence		
D	RILL RI	G Acker auger	ADII/61 hollow stem	BORE HOLE	MW - 5
	DEDTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		remarks
	DEPTH	PER O IIC	Brown silty sand/grav	el·	
	_		, -		
	<u> </u>		Red-yellow (It orange	\ sand/silt	·
			Red-yellow (It orange	, sand/sirc	
		1			
	65	1			
	-	-			
	_]			
	<u> </u>]			
	70	1			Moist - wet
	[^] —	1			Flowing sand
		-			
	<u> </u>				
		<u> </u>			
	_]			
	75]			

HSE-ES Form 78, 1 Jun 80

DRILLING LOG .

DD Memphis, TN							
PI	ROJE	ст	38-26-0	195-82	DATE	27	June 1982
	LOCATION Dunn Fleld Area-283' west			_ DRILLE	DRILLERS Kestner, Thoner, Curra		
				st of NS fence			
DI	RILL	. RI	G Acker	ADII/6" hollow stem	BORE H	IOLE	
1	DEP	TH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION			REMARKS
	*	Injit	ial and 2	4 hr water level			Flowing sand
	_ _	_					•
		_					
	80	_		вон			
	•						
i		_	-		•		
,		_					
		_				أ	
	-						
						ļ	·
		<u>-</u> -	}				

HSE-ES Form 78, 1 Jun 80

DRILLING LOG.

DD Memphis, TN DD0 IFCT 38-0195-82				DATE -28	June 1982	
LOCATION Dunn Field area-79' east of				DRILLERS	Kestner, Thoner, Curran	
N	S fence	and 311' u	west of RR tracks			
DI	RILL RI	G Acker	AD11/6" hollow stem	BORE HOLE	,	
1		(r		·····	GL- 288,06°	
	DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		WL (initial) - 59'-6" TOC WL (24 hr) - 60'-0" TOC REMARKS	
			Cinders			
	_		Brown silty clay, mois	st		
	-					
	-		Blue-gray silty clay,	moist		
	5		1.00 3 .1, 2.10, 1		1	
	_		Brown, silty clay, mo			
	<u> </u>		Brown, Street,			
	_					
	_	•				
	10					
	_					
	_					
	_]				
	15					

HSE-ES Form 78, 1 Jun 80

DRILLING LOG.

DBO IECT	DD Memphis, TN 38-26-0195-82	DATE - 28	June 1982	
PROJECT LOCATION NS fence	Dunn Field Area-79' east of and 311' west of RR tracks	DRILLERS	Kestner, Thoner, Curra	
DRILL RIG	Asker ADIL/6" bollow stem	BORE HOLE	MW - 6	
F	SAMPLE	-		

	SAMPLE TYPE BLOWS		
DEPTH	BLOWS PER 6 IN	DESCRIPTION	REMARKS
		· .	
_			
_			
│			
20			Wet
_			
	-		
<u>. </u>			
25			
_		!	
<u>-</u>			·
-		Red-brown silty sand to sandy eilt	Wet
_		Red-brown silty sand to sandy silt (weak red)	
30	Į l		

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

	mphis, TN -0195-82	DATE _2	7 June 1982
NS fence 3111 wes	Field Area-79' east of t of RR tracks	DRILLERS	Kestmer, Thoner, Curran
DRILL RIG Ack	er ADII/6" hollow stem er	BORE HOLE	MW - 6
SAMPLE TYPE BLOWS DEPTH PER 6 IN	L DESCRIPTION		REMARKS
40	Lt brown (buff) sandy silty sand	silt to	₩et

DRILLING LOG

PROJECT	DD Memphis, TN 38-26-0195-82	DATE 28	8 June 1982	
LOCATION	Dunn Field Area-79' east of	DRILLERS	Kestner, Thoner, Curre	
NS fence 3	11' west of RR tracks			
DRILL RIG	Acker ADII/6" hollow stem	BORE HOLE		

	CHICLE	· · · · · · · · · · · · · · · · · · ·	<u> </u>
! '	SAMPLE Type		
]	BLOWS		
DEPTH	PER 6 IN	DESCRIPTION	REMARKS
		Lt brown sand/silt, very minor	
-		amount of gravel or rock chips	
			, ,
			Heavy thunderstorm, stop
50			drilling, after 1 hr re- sumed drilling. Hole had
		No. coll sobusts	filled with water; surface water
_		•	
_		•	
-			
_			
55			
<u> </u>			
. <u>_</u>			
	,		
ļ. V 	in¢isi-w	ter-level	
60 🔻 🚈	24 hour v	vater level	

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

Project		phls, TN 0195-82	DATE 28	June 1982	
		ield Area-79' east of	DRILLERS	Kestner, Thoner, Currar	
LOCATION NS. fence 3		of RR tracks	DIVICEEING		
DRILL RIG	A	ADII/6" hollow stem	BORE HOLE	HW - 6	
	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		REMARKS	
			,		
1 -					
\perp			ļ		
-					
65					
1 -					
1 -				•	
1 4					
70		вон			
7					
	į				
I			Ì		

HSE-ES Form 78, 1 Jun 80

DRILLING LOG.

PROJECT LOCATION E-W fence east of p DRILL RI	,26' nort ower pole G Acker auger	95-82 eld Area-26' south of h of RR tracks \$ 44' #47104 ADII/6" hollow stem	BORE HOLE HW - 7 GL- 293.10'		
DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		WL(initial)-64'-7" TOC WL(24 hr)-65'-0" TOC REMARKS	
5		Darker brown silt			

HSE-ES Form 78, 1 Jun 80

15

DRILLING LOG

PROJECT 4	DD Hemphis, TN 38-26-0195-82	DATE 28	June 1982	
LOCATION	Dunn Field Area-26' south of north of RR tracks & 44' east	DRILLERS	Kestner, Thoner, Curran	
of power po DRILL RIG	Te #4/104	BORE HOLE	HW - 7	
	AMPLE YPE LOWS		REMARKS	

DEP TH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION	REMARKS
-	,		-
-			
-			
_			
20	<u> </u>		
_		Red-brown silty clay (weak read)	
	.:	-	
		•	
-			
-	1		
25	-		·
_			
\ · _			
_			
30]		

HSE-ES Form 78, 1 Jun 80

			DRILLING	LOG	
L(ROJECT DCATION W fence, Bast of p	38-26- Dunn , 26' nort	AD11/6" hollow stem	DAIE	June 1982 Kestner, Thoner, Curran MW - 7
1	DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		REMARKS
	35				

Brown, silty sand, moist Red-yellow (it orange) sand/silt

HSE-ES Form 78, 1 Jun 80

DRILLING LOG-

DD Memphis, TN PROJECT	DATE
LOCATION Dunn Field Area-26' south of EW fence, 26' north of RR tracks & 44'	DRILLERS Kestner, Thoner, Curran
DRILL RIG Acker ADII/6" hollow stem	BORE HOLE HW - 7
SAMPLE TYPE BLOWS	DEMARKS

			*	
	SAMP L TYPE BLOWS			
DEPTH	PER 6	IN	. DESCRIPTION	REMARKS
			Brown, sand/silt with minor gravel	
_ _			Red-yellow (it orange) sand/silt	
50			Brown sand/silt	
-		-	,	
_			Red-yellow (It orange) sand/silt	
<u>-</u>				
- 60				

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

PROJECT LOCATION EW fence, east of p DRILL RI	26' norti	195-82 eld Area-26' south of E h of RR tracks & 44' #4/104 ADII/6" hollow stem	DATE ORILLERS BORE HOL	
DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		REMARKS
_				Wet, flowing sand
 65 ▼	F	<u>Water Level</u> ter Level		
-		Brown sand/silt		Very wet Water
70				
/° —		Red-yellow (it orange)	sand/silt	Very wet
_	 			
75		вон		4

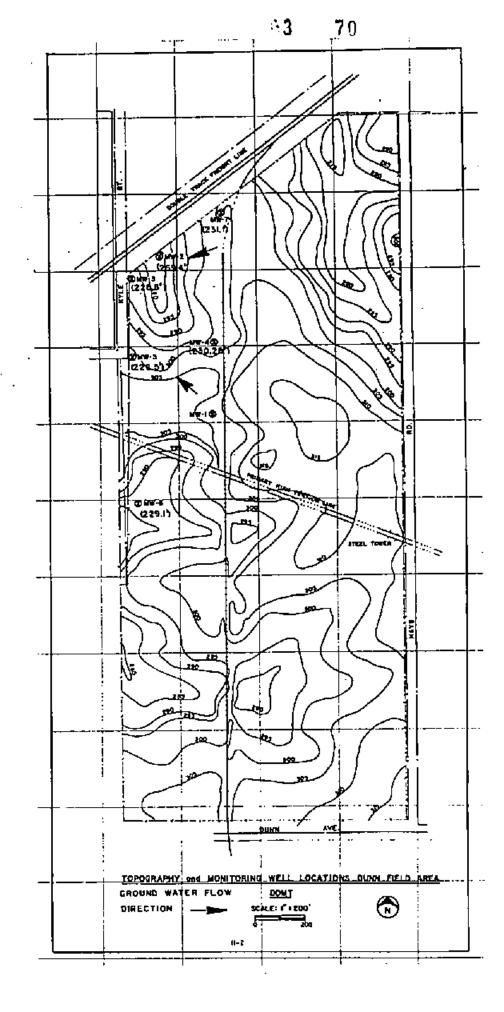
HSE-E\$ Form 78, 1 Jun 80

1

Geohydrologic Study No. 38-26-0195-83, DDM, Memphis, TN, 21 Jun-2 Jul 82

APPENDIX G
LABORATORY ANALYSIS OF SOILS

PO SISVIANA VOOTAGOGA -	27.16.04	10 OF C1	9 100			_	PROJECT NO. 38-26-0195-82	0. 3B-2	6-0195	-82	!		
The proposent of this form is 856-55.	tent of the	ان التوارية فا التوارية	HSE-ES.			<u> </u>	LOCATION -	Defense	6 Depor	DEPOT MEMPHIS	, MEMPHIS.	115, 110.	
BORE HOLE NO		_	-	-	-		_		,	3	2	3	
4PLE	45-6.51	9.0-100	190-210	785-088,018-0.62	390-386	ι –	. A2 - F2	, es-sh	. 09:55	4.5.	, 07-82	154-10	
	57	5.7	5.5	ST	57	Bs	ŞZ	BS	85		. AS	Bs	
GRAIN SIZE ANALYSIS				N,	8.68			30	900				
* PASSING NO. 4 (SIEVE)	/00.0	0.00	/80°C	- 1	79.7	98.6	29.9	0000	848	99.0	99.8	95.5	
% PASSING NO.10 (SIEVE)	0.00/	100.0	99.9	0.00/	75.7	88.0	99.8	98.9	81.3	47.5	38.6	99.0	
" PASSING NO 20 (SIEVE)	100.0	99.9	9.7	99.9	75.1	97.5	97.6	98.8	22.6	93.9	99.7	95.6	
% PASSING NO 40 (SIEVE)	8.66	99.3	49.1	29.7	62.6	7.98	99.1	B.B.B	64.8	60.3	96.3	24.7	
" PASSING NO, IDO (SIEVE)	2.66	0.66	₹ 64	8.52	2.9	95.4	.A3.C	563	2,6	94.8	752	8.8	
% PASSING NO ZOO(SIEVE)	49.7	8.3	<i>ት:</i> Sc	7.72	7.4	1:56	Bala	33.1	6،7	83.3	73.9	9.0	
" PASSING NO OOZ [HYDROMETER]													
7. PASSING NO. 0.002 (HYOROMETER)													
ATTERRES 1 MTS													
LIGHT *L	27.6	25.R	22.0	2.7.5	7,5%	32.0	28.9	27.2	. con	33.0	2.82	Lyon	
PLASTIC LIMIT WP	21.9	21.7	13.7	20.8	Astic	5./2	7.02	16.7	PLASTIC	24.5	21.6	RASTIC	
PLASTIC INDEX 17	5.6	4.1	8.8	6.7.		10.5	8.7	2.75		8.5	4.4		
UNIFIED SOIL CLASSIFICATION	70-010	De-26	00	Sm-82	6×-8C	ac	C	577-80	Aw.em	M.	MC-CC_	GW-6M	
STANDARD PROCTOR DENSITY													
gm/cm³									•				
10/11				•									
OPTIMUM MOISTURE CONTENT (OMC %)	-										-		
NATURAL MOISTURE CONTENT %													, 3
PERMEABILITY CM/sc (k)								.					3
"IN SITU" (SHELBY TUBE/SPLIT SPOOM)													
PROCTOR DENSITY - COMPACTION MOLD			_	_			1	_					
PRICTOR DENSITY - HAND REMOLDED	7.20 2.97	815715	4.71.816-8	%.*IX 5/7	8,19 × 16 ₹		3.577/16"	_			,	_	6
3.7010								6.89365	£23×127		2,00		7
VOID RATIO (N)	0.757	0,727	0.500	0.40	0.605		0.550	0.789	0.620		0875	6790	ı
% SATURATION (K)	/00.37	95.85		131.13	34.48		97.07	94.81	199.11		97.17	80.60	
· POROSITY (N)	43.1	42.1	33.3	23. (37.7		37.1		38		7.87	70,7	
ORY DENSITY (k)	1.53	7.5	7.80	1.03	847		7.70		767		3,51	7,7,7	
MOISTURE CONTENT (K)	28.3 %	_	٠٠٠٧	1/2/2	2/1/2		0/2/2	<u>''L</u>	2		\$\frac{1}{2}\frac{1}{2}	25.30	
SPECIFIC GRAVITY	2.3	2.2	7:7	7.2	2,7		777	7	7.2				
CATION EXCHANGE CAPACITY (CEC)									1				
"BASE SATURATION		1	1		No cook	4 200	<u>ئ</u> ا ا			IDATE	0	20	
COMPLETED BY RELASING MAS		OATE	2.3	-82	A-PRO	Arrenveu TAN	1				7		
AENG Form 92, I Dec 81		I				, .			₹.		•		
					3	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		(are. L	Ž				
						PTCHAP	. 187	D IVALE					
					,	TIT MSC	KICHAKU II, CARNEVALE 11 T. MSC	ווכייה					
						Sanita	Sanitary Engineer	eer.					
						Jaste Disp Olvision	Disposa Sion	Jaste Disposal Englneering Division	erากฐ				
													I


G-2.

LABORATORY The propose	DRATORY ANALYSIS OF SOILS		PROJECT NO. 38-26-0/95-82	78-5	<u>-</u>
	- - \s;		LEFENSE DEPOT D	DEPOT MEMALIS, MEMALIS, TA	
PLE	32:44'				
	85				
					·
	66'				
	97.3				
	35.8				
	89.2				
NO, NO (SIEVE)	35.1				
NO ZOO(SIEVE)	30.1				
A PASSING NO BOZ (HYDROMETER)					
% PASSING NO ODDS (HYDROMETER)					
ATTERBERG LIMITS					
	100				
d*					
	1 9.5				
 	 - 				
្តាយ/៤២	- -				
[b/1]	- -				
OPTIMUM MOISTURE CONTENT (OMC %)					
NATURAL MOISTURE CONTENT %					,
PERMEABILITY CM/IC (K)					, 3
IN SITU JSHELBY TUBE/SPLIT SPOOM)					}
PRUCTOR DENSITY COMPACTION MOLD					
PRICTOR DENSITY - HAND REMOLDED		-			
	4-0,1(5)				6
	0.789				3
(K)	92.29				
	44.1				
	15.7				
CENT (k)	767.12				
	7.2				
PACITY (CEC)	-				
% BASE SATURATION					
COMPLETED BY	DATE	/ VB OZVOBOVE			
AEHA Farm 92, 10rs 8)]	7	12 KA	DATE 75 4/32	
	•		(
			(and \$ 0		
		シ Voews	The man of the		
		N RICHARD M.	RICHARD M. CARNEVALE		
		11. 135. T. 13	41		
		John Lary E Waste Disn	Janitary Englneer Waste Disnosal Fraincamina		
7	·		عدد حاط اللحدا الله		

G-3

Geohydrologic Study No. 38-26-0195-83, DDM, Memphis, TN, 21 Jun-2 Jul 82

APPENDIX H
TOPOGRAPHY AND MONITORING WELL LOCATIONS
DUNN FIELD AREA
SHOWING GROUND WATER FLOW DIRECTION

FINAL PAGE

ADMINISTRATIVE RECORD

FINAL PAGE

FINAL PAGE

ADMINISTRATIVE RECORD

FINAL PAGE