

DEPARTMENT OF THE ARMY

MOBILE DISTRICT, CORPS OF ENGINEERS P.O. BOX 2288 MOBILE, AL 36628-0001

February 7, 2013

REPLY TO ATTENTION OF:

Coastal Branch Regulatory Division

SUBJECT: Department of the Army Application Number SAM-2012-01165-MBM, Plains Southcap L.L.C. – Mississippi, Jackson County, Alabama.

Plains Southcap, L.L.C. C/o SWCA Environmental Consultant Attention: Mr. R. Thomas Sankey 7255 Langtry, Suite 100 Houston, Texas 77040

Dear Mr. Sankey:

This letter is in response to your September 12, 2012, request for a Department of the Army (DA) permit to construct a 41-mile crude oil pipeline starting at the Plains Ten-Mile Crude Oil Facility in Mobile Alabama, located approximately 11 miles northwest of downtown Mobile, and extends southwest to Pascagoula, Mississippi. The Mississippi segment of the pipeline application has been assigned number SAM-2012-01165-MBM which should be referred to in all future correspondence with this office. The Mississippi segment of the project starts at the Eli Dudley Road at the Alabama/Mississippi state line at 30.622880 North, -88.407197 West, follows an existing utility corridor to the west, crosses twice under Section 10 reaches of the Escatawpa River, and ends at the Chevron facility at 30.355411 North, -88.488546 West, Pascagoula, Mississippi.

DA permit authorization is necessary because your pipeline project requires trenching of 11 stream crossings causing temporary impacts to a total of 278 linear feet of stream, and crosses 128 wetland polygons causing temporary impacts to a total of 105.49 acres of wetlands as a result of mechanized land-clearing, temporary trenching and side-casting of fill, and temporary and permanent conversion of bottomland hardwood wetlands to shrub-scrub and emergent wetlands. To minimize impacts to larger navigable waters, horizontal directional drilling will be used to place the pipeline across the Escatawpa River at 2 locations as well as under Little Black Creek and Black Creek, which are all Section 10 waters. All temporary stream impacts are within tributaries to the Escatawpa River, tributaries to Black Creek, tributaries to Little Black creek, tributaries to Bayou Cumbest, and tributaries to Bangs Lake. The wetland impacts are within the larger wetland systems adjacent to these waterbodies. The attached Table 1 identifies the permanent and temporary impacts to waters of the U.S. for the Mississippi segment of the pipeline. The attached Table 2 identifies all permanent habitat conversion impacts to bottomland hardwood wetlands requiring compensatory mitigation in accordance with the Mobile District's mitigation guidance for Converted Wetland Habitat Right-of-way for a Typical Linear Project with

-2-

Typical Recommendation for Compensation due to Vegetation Conversion. The applicant provides that they will purchase the required 56.64 bottomland hardwood compensatory mitigation credits reflected on Table 2 from the Wetland Solutions George County Mitigation Bank in George County, Mississippi.

Based upon the information and plans you provided, we hereby verify that the work described above, which would be performed in accordance with the attached drawings, is authorized by Nationwide Permit (NWP) 12, *Utility Line Activities*, in accordance with 33 CFR Part 330 of our regulations. As detailed in the enclosed Table 1, <u>sixteen</u> separate NWP 12 verifications are provided. All impacts and crossings of a single water of the United States at a specific location is considered a single and complete project. Impacts associated with each waterbody and adjacent wetland was verified as a single and complete project. NWP 12 project verification numbers are identified in column one of Table 1. NWP 12 and its associated regional and general conditions are available at: www.sam.usace.army.mil/rd/reg/.

You must comply with all of the regional and general conditions and any project specific conditions of these verifications or you may be subject to enforcement action. In the event you have not completed construction of your project within the specified time limit, a separate application or re-verifications may be required. These verifications are valid for **two years** from the date of this document and are subject to all terms and conditions associated with NWP 12, as well as with the special conditions. The following special conditions apply to each of the sixteen NWP 12 verifications identified in Table 1:

- a. You shall comply with all the terms and conditions of the Mississippi Department of Environmental Quality Section 401 Water Quality Certification for Nationwide Permit 12. This document can be viewed and downloaded from our website at www.sam.usace.army.mil/RD/reg/nwp.htm for your review and compliance, or at your request a paper copy will be provided to you.
- b. No work may begin until you have obtained a Coastal Use Permit or waiver from the Mississippi Department of Marine Resources.
- c. Prior to any impacts to waters of the United States, the permittee shall submit to this office of the U.S. Army Corps of Engineers proof-of-purchase of the 56.64 bottomland hardwood wetland mitigation credits from an approved wetland mitigation bank in Mississippi. As shown in the attached Table 2, mitigation shall compensate for the following: 1) temporary impacts to 32.118175 acres of bottomland hardwood wetlands allowed to return to bottomland hardwood wetlands at a ratio of 0.25:1, 3) impacts to 17.159058 acres of bottomland hardwood wetlands permanently converted to scrub-shrub wetlands at a ratio of 0.5:1, and 4) impacts to 40.026231 acres of bottomland hardwood wetlands permanently converted to emergent wetlands at a ratio of 1:1.
- d. The project shall avoid impacts to larger Section 10 waterbodies using horizontal directional drilling. These waterbodies include Black Creek, Little Black Creek, and the Escatawpa River at two locations. All entry work pads (200' by 200"), and exit work pads

-3-

(250' by 200') will be removed and the wetlands fully restored unless it is located in the permanently maintained right-of-way and requires wetland conversion mitigation. See condition e.3.regarding temporary impacts in tidal marsh.

- 1) The pipeline shall cross under the upper Escatawpa River at 30° 25'18.30" North, 88° 29'17.26" West. Direction drilling will start at 30° 25'12.61" North, 88° 29'14.06" West, directional bore 25 feet below the river bottom, and resurface at 30° 25'21.84" North, 88° 29'19.26" West.
- 2) The pipeline shall cross under the lower Escatawpa River at 30° 25'18.07" North, 88° 29'13.21" West. Direction drilling will start at 30° 24'58.107" North, 88° 28'58.269" West, directional bore 69.5 feet below the river bottom, and resurface at 30° 25'35.748" North, 88° 29'27.272" West.
- 3) The pipeline shall cross under Little Black Creek at 30° 26'30.15" North, 88° 29'42.71" West. Direction drilling will start at 30° 26'18.34" North, 88° 29'41.67" West, directional bore 25 feet below the river bottom, and resurface at 30° 26'36.37" North, 88° 29'43.26" West.
- 4) The pipeline shall cross under Black Creek at 30° 29'57.69" North, 88° 29'49.05" West. Direction drilling will start at 30° 29'47.06" North, 88° 29'50.86" West, directional bore 31 feet below the river bottom, and resurface at 30° 29'59.52" North, 88° 29'47.43" West.
- 5) The permitee understands and agrees that, if future operations by the United States require the removal, relocation, or other alteration, of the structure or work herein authorized, or if, in the opinion of the Secretary of the Army or his authorized representative, said structure or work shall cause unreasonable obstruction to the free navigation of the navigable waters, the permittee will be required, upon due notice from the Corps of Engineers, to remove, relocate, or alter the structural work or obstructions caused thereby, without expense to the United States. No claim shall be made against the United States on account of any such removal or alteration.
- 6) You must notify the National Ocean Service, in writing, at least two weeks before work begins, and upon completion. You may contact them at Charting and Geodetic Services N/CG222, National Ocean Service NOAA, Rockville, Maryland 20852.
- e. No permanent wetland fill impacts are authorized. All temporary impacts to waters of the United States reflected on Table 1 that are not mitigated for as shown on Table 2, shall be fully restored to pre-impact elevation, contours, and ecological condition.
- 1) For all temporary trenching impacts in wetlands, the top 6 to 12 inches of removed topsoil will be backfilled as topsoil. Wetlands will be restored to pre-impact elevation, contours, and ecological condition. Sites will be allowed to revegetate naturally unless monitoring reflects the site is not returning to pre-impact ecological condition and requires active management. If active management is necessary, the applicant will develop a wetland mitigation plan for restoring these areas. No exotic invasive species shall be present.

-4-

- 2) Each temporarily impacted stream must be restored to pre-impact pattern, profile, and dimension. For each stream crossing, stream banks will be immediately stabilized upon completion of the utility line installation.
- 3) For projects impacts requiring restoration of tidal marsh wetlands, the restoration area will be sprigged with black needle rush (<u>Juncus roemarianus</u>) or other marsh species found in wetlands contiguous to the site. Initial plant spacing will not exceed 4 feet apart. No more than one sprig per square yard shall be taken from adjacent donor marshes. Sprigs will not exceed 4 by 4 inches wide by 6 inches deep. Sharpshooter shovels or bulb planters will be utilized to transplant sprigs. The restored site shall have 95% coverage of tidal marsh plants at the end of 5 years.
- 4) Annual monitoring reports shall be provided for 5 years demonstrating all temporary impacts to wetlands and streams are been returned to pre-impact elevation, contours, and ecological condition. The USACE shall be responsible for making the determination on the success of these areas returning to pre-impact condition. If the temporary impacts to wetlands and streams are not demonstrating achieving this goal, the permittee shall provide an alternative mitigation strategy which may include the purchase of additional mitigation credits from an approved wetland mitigation bank.
- f. Should artifacts or archaeological features be encountered during project activities, work shall cease and the permittee shall immediately contact this office at 251-694-3771. The Mobile District will coordinate any findings with the Mississippi State Historic Preservation Officer. This stipulation shall be placed on the construction plans, and it is the permittee's responsibility to ensure that contractors are aware of this requirement.
- g. All excavation and fill activities shall be performed in a manner that minimizes disturbance and turbidity increases in "waters of the United States" and wetlands; and shall be retained in a manner to preclude its erosion into any adjacent wetlands or waterway. Appropriate erosion and siltation control measures must be used and maintained in effective operating condition during construction and until such time as the disturbed wetlands and stream banks are revegetated with native wetland species either through natural processes or artificial planting.
- h. Material resulting from trench excavation may be temporarily side cast into waters of the United States for no more than three months, and must be placed and stabilized in such a manner that it will not be dispersed by currents or other forces. Onsite soils from the excavated trench should be used as backfill material. After returning the impacted areas to pre-impact elevation and contours, excess soils must be deposited in an upland disposal site.
- i. The disposal of trees, brush and other debris in any stream corridor, wetland or surface water is prohibited. No sewage, oil, refuse, or other pollutants shall be discharged into the watercourse.

- j. The movement of equipment within wetlands shall be limited to the minimum necessary to accomplish the work authorized herein. All equipment required to traverse through wetland areas shall be supported on mats or other appropriate measures shall be implemented to minimize soil compaction, rutting, and other damage to wetlands.
- k. Project construction shall be conducted in such a manner the passage of normal and expected high flows of surface water runoff outside the project boundaries is not restricted or otherwise altered.
- l. It is the responsibility of the permittee to ensure that all contractors working on this project are aware of all regional, general, and project specific conditions of this NWP. A copy of the permit and its general and special conditions shall remain on site at all times during construction.

If you commence or are under contract to commence this activity before the date the relevant NWP is modified or revoked, you will have 12 months from the date of the modification or revocation of the NWP to complete the activity under the present terms and conditions of this NWP permit. The statements contained herein do not convey any property rights, or any exclusive privileges and does not authorize any injury to property or obviate the requirements to obtain other local, State or Federal assent required by law. Nothing in this letter shall be construed as excusing you from compliance with other Federal, State, or local statutes, ordinances, or regulations which may affect this work.

Please note, NWP General Condition 26 (*Compliance Certification*) requires that every permittee who has received NWP verification must submit a signed certification regarding the completed work and any required mitigation within 60 days of having completed the authorized work. The enclosed Compliance Certification card may be utilized for that purpose.

The permittee shall also notify the U.S. Army Corps of Engineers, Mobile District Regulatory Division in writing upon commencement of work authorized by this permit. The enclosed Commencement Certification card may be use for that purpose. Such notification must be provided within 5 days of initiation of the authorized work. The enclosed yellow Notice of Authorization card must be posted at the site during construction of the authorized activity.

A copy of this permit is being provided to the Mississippi Department of Marine Resources, Bureau of Wetlands Permitting and Mitigation, Attention: Mr. Greg Christodoulou, 1141 Bayview Avenue, Biloxi, Mississippi 39530; and Charting and Geodetic Services N/CG222, National Ocean Service NOAA, Rockville, Maryland 20852.

-6-

Please contact me at (251) 694-3771, or by e-mail at Michael.b.moxey@usace.army.mil if you have any questions. For additional information about our Regulatory Program, visit our web site at www.sam.usace.army.mil/Missions/Regulatory.aspx, and please take a moment to complete our customer satisfaction survey while you're there. Your responses are appreciated and will allow us to improve our services.

Sincerely,

Michael B. Moxey

Team Leader, Inland South

Regulatory Division

Enclosures

M. MOXEY/3771/agr

FILE

-7-

When the structures or work authorized by this nationwide permit SAM-2012-01165-MBM are still in existence at the time the property is transferred, the terms and conditions of this nationwide permit, including any special conditions, will continue to be binding on the new owner(s) of the property. To validate the transfer of this nationwide permit and the associated liabilities associated with compliance with its terms and conditions, have the transferee sign and date below.

(TRANSFEREE)	(DATE)	

AS REQUIRED BY THE FREEDOM OF INFORMATION ACT (FOIA) THIS FILE IS BEING MADE AVAILABLE ONLINE BECAUSE THE MOBILE DISTRICT FOIA OFFICE HAS RECEIVED MORE THAN THREE (3) REQUESTS FOR SAME. ANY QUESTIONS ABOUTTHE FOIA PROCESS MUST BE DIRECTED TO OUR FOIA OFFICES. FOIA-SAM@usace.army.mil

ת	Ch	υı	5	ر ن	5	5	Сh	Ch.	თ	Si.	رب ا	4	w	i	ω	w,	w	ω	2	2	2	2	N	N	2	2	2	2	2	2	2	2	2	N	2	2	2	2	N	2	2	2	_	NWP#
WETBOOK ET	WETB004-F0	WETB003-F0	WETC030-E2	WETC030-E1	WETC030-E0	WETC028-E0	WETB009-E0	WETB008-E0	WETB007-E0	WETBOOS-EO	WETB003-E0	WBA007	WETA008-FO	WETA007-FO	WETA009-E0	WETA008-E0	WETA007-E0	WBA004	WETA010-S1	WETA010-SO	WETA021-F0	WETA020-FO	WETA019-FO	WETA017-FO	WETA016-FO	WETA015-F0	WETA013-FO	WETA011-FO	WETA010-FO	WETA020-E0	WETA019-ED	WETA018-E0	WETA017-E0	WETA016-E0	WETA015-E0	WETA013-E0	WETA012-E0	WETA011-E0	WETA010-E1	WETA010-E0	WBA003	WBA002	WBA001	Waters_Name
Escatawna River	Escatawpa River	Trib to Escatawpa	Tributary To Escatawpa River	Little Black Creek	Little Black Creek	Tributary To Black Creek	Little Black Creek	Little Black Creek	Tributary To Black Creek	Little Black Creek	Little Black Creek	Little Black Creek	Little Black Creek	Tributary To Black Creek		Tributary to Bangs Lake	Local_Waterway																											
PFO	PFO	PFO	PEM	E2	PFO	PFO	PEM	PEM	PEM	E2	PSS	PSS	PFO	PFO	PFO	PEM	PEM	PEM	PEM	PEM	E2	R	E2	Cowadin_Code																				
RIVERINE	DEPRESS	RIVERINE	RIVERINE	RIVERINE	RIVERINE	RIVERINE	DEPRESS	MINSOILFLT	ORGSOILFLT	DEPRESS	ORGSOILFLT	RIVERINE	RIVERINE	RIVERINE	RIVERINE	RIVERINE	RIVERINE	RIVERINE	MINSOILFLT	MINSOILFLT	RIVERINE	DEPRESS	RIVERINE	RIVERINE	RIVERINE	LACUSTRINF	RIVERINE	MINSOILFLT	MINSOILFLT	RIVERINE	RIVERINE	DEPRESS	RIVERINE	RIVERINE	RIVERINE	RIVERINE	RIVERINE	HGM_Code						
0.049036	1,265763	1.07348	0.08224	0.006358	1.483488	0.106415	0.025485	0.302254	0.019697	0.007548	0.282325	0.02544	0.114998		0.725599	0.24165	0.474504	0.064011	0.359759	0.0499	0.369242	0.499755	1.436872	0.364629	0.235135	0.161557	0.196485	0.183765	0.037304	0.079487	0.004676	0.250255	0.095255	0.362438	0.216332	0.392974	0.396934	0.011453	0.056191	1.049453	0.011978	0.543211	0.039236	Amount
ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	STILL												
RPWWD	RPWWD	NRPWW	RPWWD	RPWWD	RPWWD	NRPWW	NRPWW	RPWWN	NRPWW	NRPWW	NRPWW	RPW	NRPWW	RPWWN	NRPWW	NRPWW	RPWWN	RPW	RPWWD	RPWWD	RPWWD	NRPWW	NRPWW	NRPWW	NRPWW	NRPWW	NRPWW	NRPWW	RPWWN	NRPWW	NRPWW	NRPWW	RPWWD	RPWWD	RPW	WNT	RPW	Waters_! ypes						
30,578248	30.576724	30.582502	30.599426	30.598805	30.5956	30.588061	30.614783	30.602683	30.570067	30.57315	30.582393	30.541568	30.433225	30.431225	30.435953	30.43346	30.431844	30,480699	30.442305	30.441587	30.481021	30.472718	30.469093	30,462052	30.459863	30.45683	30.447669	30.444467	30.439109	30.473183	30,467774	30.464251	30.46169	30,459757	30,457139	30.447735	30.445744	30.443978	30.442042	30,440285	30.453436	30.441708	30.362182	Latitude
-88.452185	-88.452742	-88,45055	-88.441593	-88.442462	-88.445599	-88.448668	-88.422012	-88.436931	-88.455222	-88.454164	-88.450722	-88.471532	-88.494449	-88.493924	-88.494658	-88.494469	-88.49427	-88.49896	-88.49524	-88.495169	-88.499277	-88.497456	-88.49745	-88.497486	-88.497403	-88,496877	-88,495692	-88.49542	-88.49493	-88.497439	-88.497582	-88.497492	-88.497469	-88,497489	-88.496995	-88,495693	-88.495528	-88.495433	-88.495287	-88.495076	-88.496383	-88.495197	-88.48339	Longitude

Table

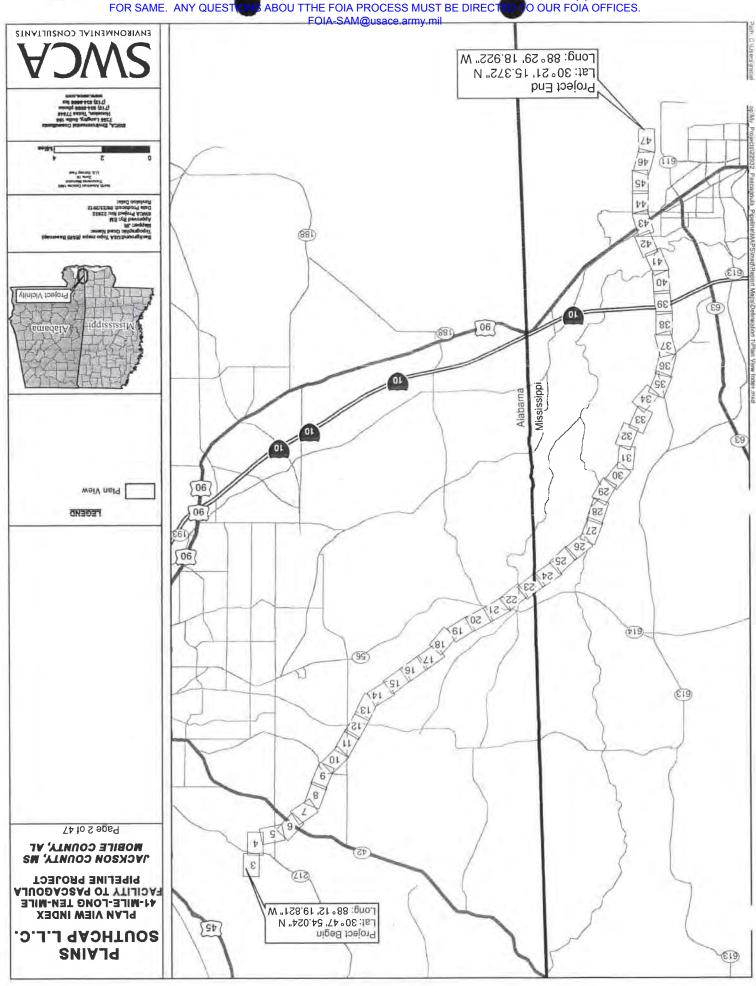
withing US

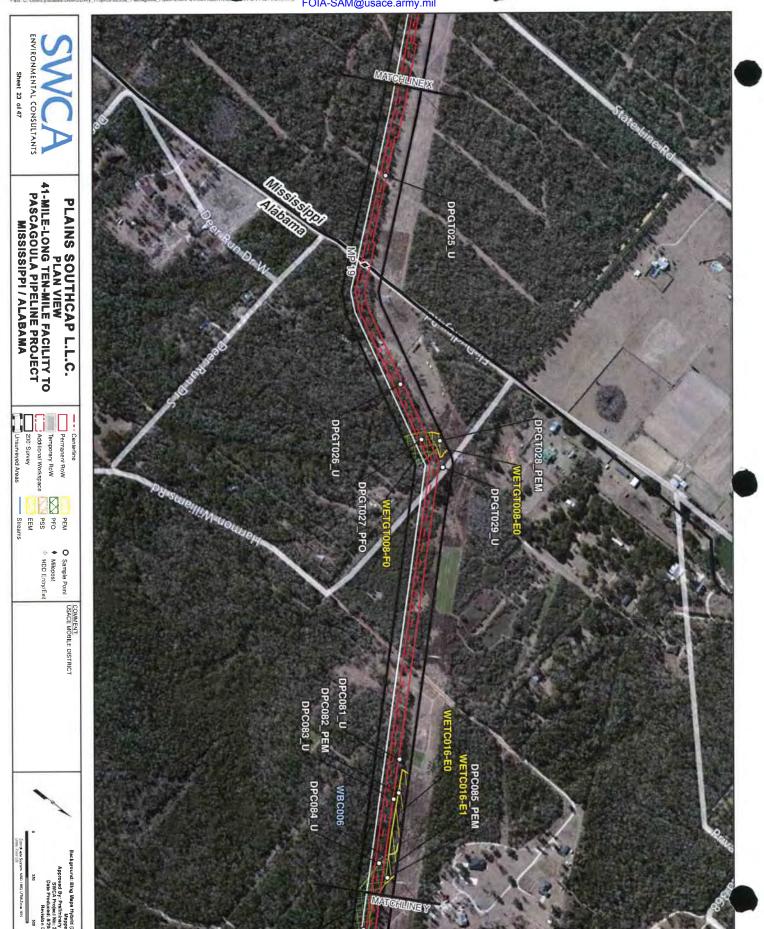
7

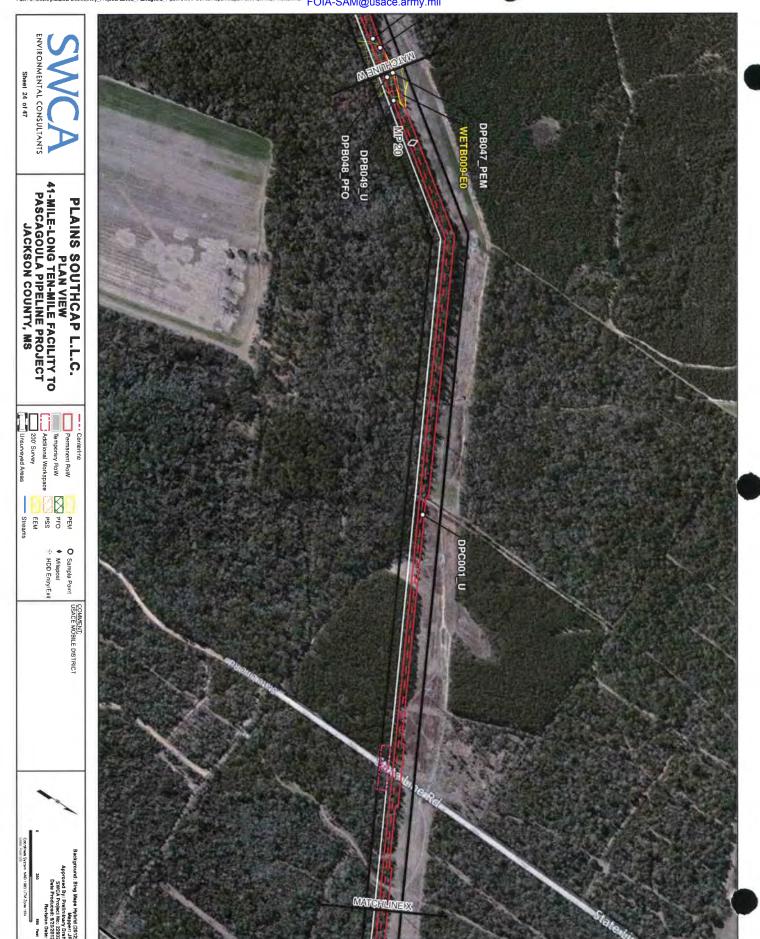
-88.471496	30,539553	RPWWD	ACRE	2.482972	RIVERINE	PFO	Tributary To Escatawpa River	WETA026-FO	7
-88.471446	30.533446	NRPWW	ACRE	3.372373	MINSOILFLT	PFO	Tributary To Escatawpa River	WETA025-F0	7
-88.46224	30.561872	NRPWW	ACRE	0.09838	MINSOILFLT	PEM	Tributary To Escatawpa River	WETD009-E1	7
-88.46759	30,556217	NRPWW	ACRE	0.832893	MINSOILFLT	PEM	To	WETD009-E0	7
-88.471209	30,552386	RPWWN	ACRE	0.131962	MINSOILFLT	PEM	Tributary To Escatawpa River	WETD008-E0	7
-88.473651	30.529658	RPWWD	ACRE	0.103253	DEPRESS	PEM	Tributary To Escatawpa River	WETC015-E1	7
-88.474354	30,529608	RPWWD	ACRE	0.104281	DEPRESS	PEM	Tributary To Escatawpa River	WETC015-E0	7
-88.473622	30,529825	RPW	ACRE	0.18916	RIVERINE	E2	Tributary To Escatawpa River	WBC005	×
-88.48114	30.527758	NRPWW	ACRE	1,934126	MINSOILFLT	PSS	Black Creek	WETC013B-S0	6
-88.48249	30.516843	NRPWW	ACRE	4,113781	MINSOILFLT	PSS	Black Creek	WETC012-S0	0
-88,48887	30.50881	NRPWW	ACRE	1,289703	MINSOILFLT	PSS	Black Creek	WETC011-S2	o
-88.493337	30.505973	NRPWW	ACRE	5.699956	MINSOILFLT	PSS	Black Creek	WETC011-S1	o
-88.495592	30,502156	NRPWW	ACRE	0.000506	MINSOILFLT	PSS	Black Creek	WETC011-S0	O)
-88.499033	30,48846	NRPWW	ACRE	0.154254	DEPRESS	PSS	Black Creek	WETA022-S0	o
-88.482971	30,525218	NRPWW	ACRE	0.123066	DEPRESS	PFO	Black Creek	WETC013A-F0	o
-88,496858	30.498825	RPWWD	ACRE	0.025082	RIVERINE	PFO	Black Creek	WETA024-F3	0
-88.4969	30.498524	RPWWD	ACRE	0,234651	RIVERINE	PFO	Black Creek	WETA024-F2	6
-88.497067	30.49793	RPWWD	ACRE	0.225167	RIVERINE	PFO	Black Creek	WETA024-F1	o
-88,49718	30.497525	RPWWD	ACRE	0.101816	RIVERINE	PFO	Black Creek	WETA024-F0	6
-88.497904	30.495018	RPWWD	ACRE	0.517442	RIVERINE	PFO	Black Creek	WETA023-F1	o
-88.498115	30.494282	RPWWD	ACRE	0.272844	RIVERINE	PFO	Black Creek	WETA023-F0	6
-88.498419	30.490734	NRPWW	ACRE	0.511197	DEPRESS	PFO	Black Creek	WETA022-F1	0
-88.49911	30.48817	NRPWW	ACRE	2 250672	DEPRESS	PFO	Black Creek	WETA022-F0	o
-88.478395	30.529116	NRPWW	ACRE	0.044581	DEPRESS	PEM	Black Creek	WETC014-E0	o
-88.481729	30.526788	NRPWW	ACRE	0.183708	MINSOILFLT	PEM	Black Creek	WETC013B-E1	6
-88.482924	30 525149	NRPWW	ACRE	0.006201	DEPRESS	PEM	Black Creek	WETC013A-E0	6
-88 482751	30.517697	NRPWW	ACRE	1.899604	MINSOILFLT	PEM	Black Creek	WETC012-E0	6
-88,498159	30.491761	NRPWW	ACRE	0.80707	DEPRESS	PEM	Black Creek	WETA022-E1	o
-88,49857	30.490198	NRPWW	ACRE	0.176541	DEPRESS	PEM	Black Creek	WETA022-E0	6
-88.495605	30.502095	RPW	ACRE	0.005642	RIVERINE	E2	Black Creek	WBC004	6
-88.49695	30,49824	WNT	ACRE	0.543211	RIVERINE	R1	Black Creek	WBG006	0)
-88,440052	30.600429	TNW	ACRE	0.273699	RIVERINE	R1	Upper Escatawpa River	WB6001	5
-88.454925	30.569482	NRPWW	ACRE	0.8715	RIVERINE	PSS	Escatawpa River	WETBOOT-SO	Ġ
-88.453955	30.573502	NRPWW	ACRE	0.400504	RIVERINE	PSS	Escatawpa River	WETB005-S0	Ç,
-88.441345	30.599512	RPWWD	ACRE	0.857707	RIVERINE	PFO	Escatawpa River	WETC030-F2	S)
-88.442272	30.598906	RPWWD	ACRE	0.01204	RIVERINE	PFO	Escatawpa River	WETC030-F1	CT
-88.445842	30.594986	RPWWD	ACRE	3.624847	RIVERINE	PFO	Escatawpa River	WETC030-F0	5
-88.448587	30.587937	NRPWW	ACRE	0.336623	RIVERINE	PFO	Escatawpa River	WETC028-F0	ih
-88.42225	30.614325	NRPWW	ACRE	0.526511	DEPRESS	PFO	Escatawpa River	WETB009-F0	CT
-88,435373	30.603653	RPWWD	ACRE	4.442759	RIVERINE	PFO	Escatawpa River	WETBOO8-FO	5
-88.454834	30.571028	NRPWW	ACRE	0.179267	RIVERINE	PFO	Escatawpa River	WETBOOG-FO	CT
-88.452028	30.57868	NRPWW	ACRE	0.086014	RIVERINE	PFO	Escatawpa River	WETB004-F4	Çī
-88.452087	30.578483	NRPWW	ACRE	0.06832	RIVERINE	PFO	Escatawpa River	WETB004-F3	Ch
-88 452137	30.5/8351	RPWWD	ACRE	0.03734	RIVERINE	PFO	Escatawpa River	WETB004-F2	Ü

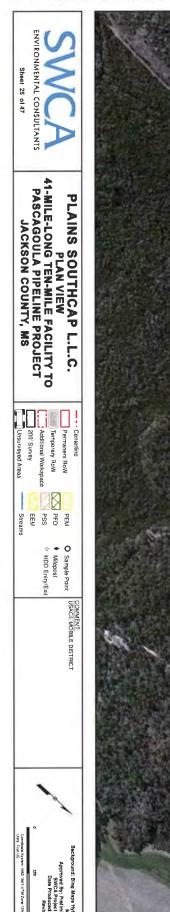
Ī	Ī																		i	1											1		Ī			Ī	I			Ì		Ī	
5	क	6	76	6	6	6	is	4	ಪ	12	12	12	12	=	10	9	00	00	00	00	00	00	00	00	00	œ	7	~1	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
1000000	WETG005-E2	WETG005-E1	WETG005-E0	WETA003-E1	WETA003-E0	WETA002-E0	WBG012	WBG011	WBG008	WBG007	WETD003-F0	WETG002-E0	WETG001-E0	WBD004A	WBD003A	WBD002	WETDOO1-FO	WETA006-FO	WETA005-F3	WETA005-F2	WETA005-F1	WETA005-FO	WETDO01-E0	WETA006-E0	WETA005-E0	WBD001	WETD009-S2	WETD009-S1	WETD009-S0	WETD008-S0	WETD009-F3	WETD009-F2	WETD009-F1	WETD009-F0	WETDOO8-FO	WETD007-F0	WETD006-F2	WETD006-F1	WETDOOG-FO	WETDO05-FO	WETC015-F1	WETC015-F0	WEIAUZD-FI
	Bangs Lake	Tributary to Bangs Lake	Tributary to Bangs Lake	Tributary To Escatawpa River	Lower Escatawpa River	Tributary To Escatawpa River	Escatawpa River	Escatawpa River	Tributary To Escatawpa River	Tributary To Escatawpa River	Tributary To Escatawpa River	Bayou Cumbest	Tributary To Escatawpa River	To	I libriary to Escatawpa inter																												
000	PEM	PEM	PEM	PEM	PEM	PEM	E2	E2	E2	R1	PFO	E2EM	E2EM	E2	E2	E1	PFO	PFO	PFO	PFO	PFO	PFO	PEM	PEM	PEM	E2	PSS	PSS	PSS	PSS	PFO	PFO	-										
MINSOILELT	MINSOILFLT	MINSOILFLT	MINSOILFLT	MINSOILFLT	MINSOILFLT	MINSOILFLT	RIVERINE	RIVERINE	RIVERINE	RIVERINE	ORGSOILFLT	ORGSOILFLT	ORGSOILFLT	RIVERINE	RIVERINE	RIVERINE	RIVERINE	MINSOILFLT	MINSOILFLT	MINSOILFLT	MINSOILFLT	MINSOILFLT	RIVERINE	MINSOILFLT	MINSOILFLT	RIVERINE	MINSOILFLT	RIVERINE	RIVERINE	RIVERINE	RIVERINE	DEPRESS	DEPRESS	The state of the s									
2 971802	0.039566	0.241702	0.062469	3.666266	0.134436	0.020132	0.02058	0.020695	0.03972	0.306914	2.372595	1.480351	2.306704	0.082912	0.012823	0.273201	0.07682	0.073732	1.370994	0.869498	1.039646	0.816381	0.001734	0.000006	0.928868	0.008219	0.489641	2 238561	1.826189	0.127466	0.242171	0.094534	0.693853	1.891344	0.920156	0.000093	0.005804	0.090098	0.50567	1 034792	0.410048	0.136076	
ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE	ACRE								
WWW	RPWWD	RPWWD	RPWWD	RPWWN	WWWT	WWWI	RPW	ZTW	NN	INW	RPWWN	RPWWD	WWNT	RPW	RPW	WNT	NRPWW	RPWWN	RPWWN	RPWWN	RPWWN	RPWWN	NRPWW	RPWWN	RPWWN	RPW	NRPWW	NRPWW	NRPWW	RPWWN	NRPWW	NRPWW	NRPWW	NRPWW	RPWWN	RPWWD	RPWWD	RPWWD	RPWWD	NRPWW	RPWWD	RPWWD	1
30.35954	30.354811	30,355136	30.355411	30.387883	30.369475	30.355914	30.355345	30.355996	30,428796	30,421556	30.415524	30.429894	30.425325	30.54828	30,546504	30.417539	30,409188	30.405726	30.404657	30.402914	30.401163	30.399605	30,409222	30.405758	30.402456	30.408922	30,563761	30.561906	30.557914	30,552008	30.564215	30.563393	30.559647	30.555128	30,551834	30.549/64	30.546699	30.546525	30.5461/3	30.544245	30.529817	30.529738	00000
-88,483321	-88.488548	-88.488547	-88,488546	-88 480184	-88.48335	-88,483728	-88,488546	-88.48/114	-00,492307	-00.400021	-88.4828	-88.493077	-88,490205	-88.4/1461	-88.4/1538	-88.482813	-88.483596	-88.482/42	-88.481776	-88.48038	-88.480189	-88.480215	-88.483729	-88.482866	-88,480487	-88 483665	-88 460295	-88.462055	-88 465834	-88.471431	-88.459867	-88 46065	-88.464199	-88.468466	-88.4/1281	-88 4/1/6/	-88.471424	-88.4/1622	-88.4/1564	-88.4/154	-88.4/4133	-88.4/3585	207070

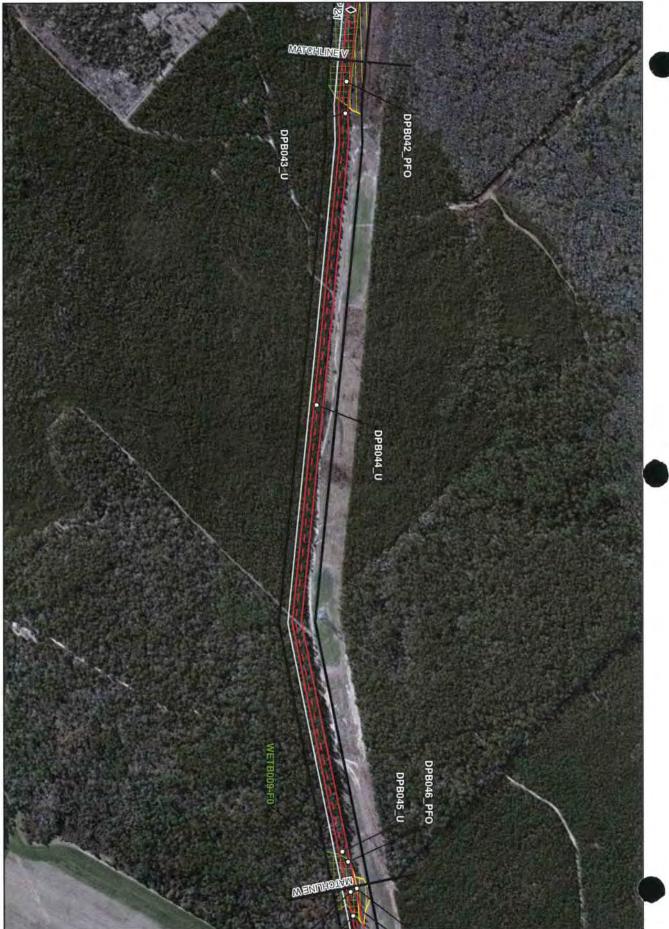
<u> </u>	MINSOILFLT	NSOILFLT 1.218603	
7	MINSOILFLT	MINSOILFLT 0.972171	0.972171
z	MINSOILFLT	IINSOILFLT 0.826683	
₹	MINSOILFLT	IINSOILFLT 3.133356	3.133356
~	MINSOILFLT	IINSOILFLT 0.904027	0.904027
~	MINSOILFLT		1.896313
7	MINSOILFLT		
7	MINSOILFLT		2.025548
7	MINSOILFLT		0.077068
7	MINSOILFLT		2.995657
7	MINSOILFLT		2,61661
7	MINSOILFLT	NINSOILFLT 0.027821	1
2	MINSOILFLT		3.973211



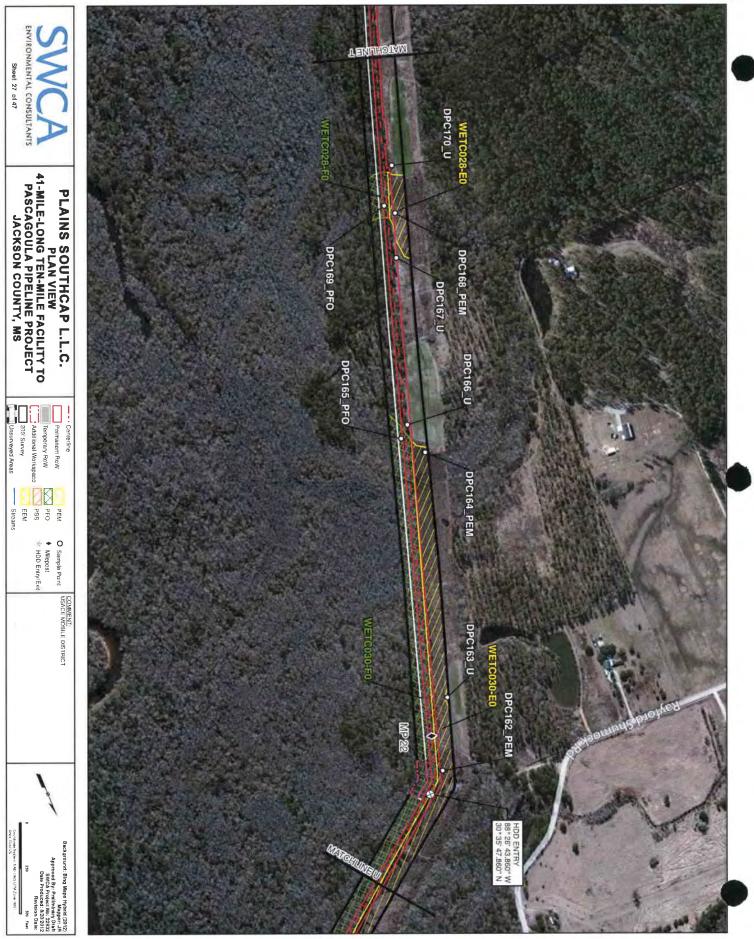

																		FC	ЛA	-S/	AIVI (@ u	sa	ce.	arn	ny.r	mıl																			
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	5	5	5	5	5	5	5	5	5	ر.	5	5	5	5	5	3	ω	2	2	2	2	2	2	2	2	2	2	2	No.	Project	NWP 12	
WETC013B-S0	WETC013A-F0	WETC012-SO	WETC011-S2	WETC011-S1	WETC011-S0	WETA024-F3	WETA024-F2	WETA024-F1	WETA024-F0	WETA023-F1	WETA023-F0	WETA022-S0	WETA022-F1	WETA022-F0	WETC030-F2	WETC030-F1	WETC030-F0	WETC028-F0	WET8009-F0	WETB008-F0	WETB007-S0	WETBOO6-FO	WETB005-S0	WETB004-F4	WETB004-F3	WETB004-F2	WETB004-F1	WETBOO4-FO	WETB003-F0	WETA008-F0	WETA007-F0	WETA021-F0	WETA020-F0	WETA019-F0	WETA017-F0	WETA016-F0	WETA015-F0	WETA013-F0	WETA011-F0	WETA010-S1	WETA010-SO	WETA010-FO	ō	Waterbody	Wetland/	F61
Black Creek	Bayou Cumbest	Bayou Cumbest	Bayou Cumbest	Bayou Cumbest	Escatawpa River	Black Creek	Escatawpa River	Escatawpa River	Escatawpa River	Escatawpa River	Waterway	Local																																		
Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	(Wetland/Stream)	Jurisdictional Type																	
PSS	PFO	PSS	PSS	PSS	PSS	PFO	PFO	PFO	PFO	PFO	PFO	PSS	PFO	PFO	PFO	PFO	PFO	PFO	PFO	PFO	PSS	PFO	PSS	PFO	PFO	PFO	PFO	PFO	PFO	PFO	PFO	PFO	PSS	PSS	PFO	Туре	Stream	Wetland/								
30.527758	30.525218	30.516843	30.50881	30.505973	30.502156	30.498825	30,498524	30.49793	30.497525	30.495018	30.494282	30.48846	30.490734	30.48817	30.599512	30.598906	30.594986	30.587937	30.614325	30.603653	30.569482	30.571028	30.573502	30.57868	30.578483	30.578351	30.578248	30.576724	30.582502	30.433225	30.431225	30.481021	30.472718	30.469093	30.462052	30.459863	30.45683	30.447669	30.444467	30.442305	30.441587	30.439109	NAD83)	(dd	Latitude	
-88.48114	-88,482971	-88.48249	-88.48887	-88.493337	-88.495592	-88.496858	-88.4969	-88.497067	-88.49718	-88.497904	-88.498115	-88.499033	-88.498419	-88.49911	-88.441345	-88.442272	-88.445842	-88.448587	-88.42225	-88.435373	-88.454925	-88.454834	-88.453955	-88.452028	-88.452087	-88.452137	-88.452185	-88.452742	-88.45055	-88.494449	-88.493924	-88.499277	-88.497456	-88.49745	-88.497486	-88.497403	-88.496877	-88.495692	-88.49542	-88.49524	-88.495169	-88,49493	(dd NAD83)	Longitude		
0.704456	0.01038	2.002779	0.434887	1.900726	0.000506	0	0	0	0	0.140745	0.09145	0.049813	0.186715	0.741887	0	0	1.423222	0.1408	0.16864	1.142489	0.290602	0.070375	0	0	0	0	0	0	0.481812	0.021737	0.132514	0.128988	0.181169	0.588815	0.111436	0.120866	0.06991	0.056356	0.044976	0	0	0	(0.25:1)	revert to PFO	PFO Wetlands to	
1.22967	0	2.111002	0.854816	3.799229	0	0	0	0	0	0	0	0.104442	0	0	0	0	0	0	0	0	0.580898	0	0.400504	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.359758	0.0499	0	PSS (0.5:1)		PFO Wetlands	
0	0.112685	0	0	0	0	0.025082	0.234651	0.225167	0.101816	0.376696	0.181394	0	0.324482	1.508787	0.857707	0.01204	2.201625	0.195823	0.357871	3.300276	0	0.108892	0	0.086014	0.068319	0.03734	0.049036	1.265763	0.591668	0.09326	0.260339	0.240254	0.318586	0.848053	0.253192	0.114269	0.091647	0.14013	0.138789	0	0	0.037304	(1:1)	to PEM	converted	Wetlands
0.176114	0.002595	0.500695		0.475182	0.000127	0	0	0	0	0.035186	0.022862	0.012453	0.046679	0.185472	0	0	0.355805	0.0352	0.04216			0.017594	0	0	0	0	0	0	0.120453	0.005434	0.033128	0.032247	0.045292	0.147204	0.027859	0.030217	0.017478	0.014089	0.011244	0	0	0	Credits	0.25:1	Total	
0.614835	0	1.055501	0.427408	1.899615	0	0	0	0	0	0	0	0.052221	0	0	0	0	0	0	0	0	0.290449	0	0.200252	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.179879	0.02495	0	Credits	0.5:1	Total	
0	0.112685	0	0	0	0	0.025082	0.234651	0.225167	0.101816	0.376696	0.181394	0	0,324482	1.508787	0.857707	0.01204	2.201625	0.195823	0.357871	3.300276	0	0.108892	0	0.086014	0.068319	0.03734	0.049036	1,265763	0.591668	0.09326	0.260339	0.240254	0.318586	0.848053	0.253192	0.114269	0.091647	0.14013	0.138789	0	0	0.037304	Credits	11	Total	
0.790949	0.11528	1.556196	0.53613	2.374796	0,000127	0.025082	0.234651	0.225167	0.101816	0.411882	0.204257	0.064674	0.371161	1.694259	0.857707	0.01204	2.557431	0 231023	0.400031	3.585898	0.363099	0.126486	0.200252	0.086014	0.068319	0.03734	0.049036	1.265763	0.712121	0.098695	0.293467	0.272501	0.363878	0.995257	0.281052	0.144485	0.109124	0.154219	0.150033	0.179879	0.02495	0.037304	Credits	Mitigation	Total	
MS	NS	SW	SN	ΝS	SW	SW	SW	SW	SW	SW	MS	SW	ΝS	SN	SM	SM	SM	SM	SM	SM	SM	SM	SM	ΝS	NS	NS	NS	MS	NS	SM	SW	SW	ΔS	SM	SM	SM	S	NS	MS	SW	SW	MS	state			

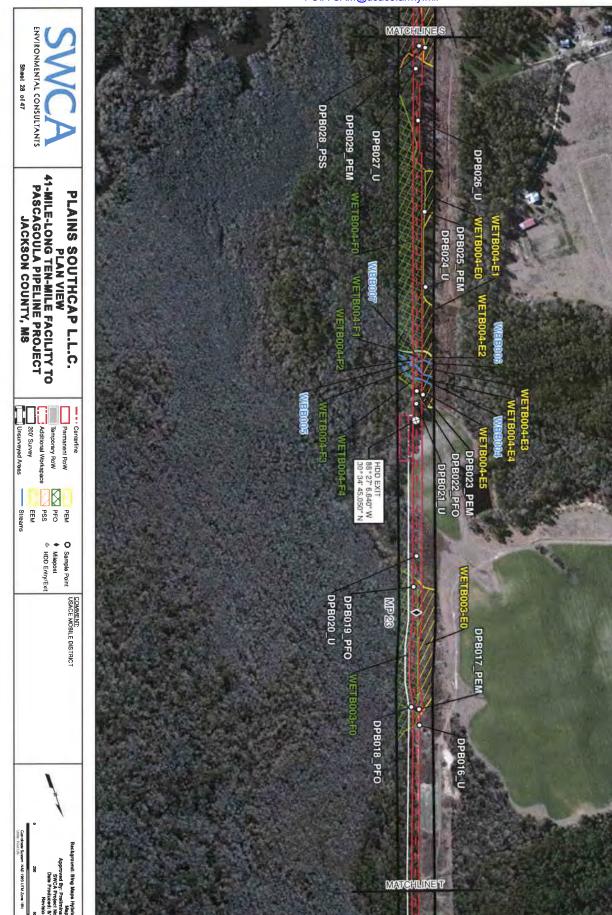

Cosps Mitystio-


					г									
	56.635306	40.026231	8.579529	8.029544	17.159058 40.026231	17.159058	32.118175				GRAND TOTAL			
SW	0.495772	0	0.382242	0.113529	0	0.764485	0.454118	-88.488086	30.35589	PSS	Wetland	Bangs Lake	WETG005-S3	16
S	0.405028	0	0.32397	0.081058	0	0.647941	0.324231	-88.4862	30,355993	PSS	Wetland	Bangs Lake	WETG005-S1	16
SN	0.344382	0	0.275423	0.068959	0	0.550847	0.275836	-88.484306	30.355988	PSS	Wetland	Bangs Lake	WETG005-S0	16
SN	1.306902	0	1.047126	0.259776	0	2.094251	1.039105	-88.481736	30.3717	PSS	Wetland	Bangs Lake	WETA003-S0	16
SN	1.319133	1.126739	0	0.192393	1.126739	0	0.769573	-88.480264	30.397463	PFO	Wetland	Bangs Lake	WETA003-F7	16
S	1.808588	1.47433	0	0.334258	1.47433	0	1.337033	-88.480315	30.391311	PFO	Wetland	Bangs Lake	WETA003-F6	16
SM	1.519005	1.350161	0	0.168845	1.350161	0	0.675378	-88.480261	30.38626	PFO	Wetland	Bangs Lake	WETA003-F5	16
S	0.056184	0.049222	0	0.006961	0.049222	0	0.027846	-88.48026	30.384325	PFO	Wetland	Bangs Lake	WETA003-F4	16
SW	2.090495	1.788776	0	0.301719	1.788776	0	1.206875	-88,480093	30.381341	PFO	Wetland	Bangs Lake	WETA003-F3	16
S	1.789265	1.513484	0	0.275782	1.513484	0	1.103126	-88.480005	30.376162	PFO	Wetland	Bangs Lake	WETA003-F2	16
SN	0.023345	0.021853	0	0.001492	0.021853	0	0.005969	-88.483355	30.369468	PFO	Wetland	Bangs Lake	WETA003-F1	16
S	2.978944	2.647521	0	0.331423	2.647521	0	1.32569	-88.483325	30.366186	PFO	Wetland	Bangs Lake	WETA003-F0	16
SN	0.375484	0	0.298954	0.07653	0	0.597908	0.30612	-88.483245	30.356455	PSS	Wetland	Bangs Lake	WETA002-S0	16
SW	2.161651	1.891601	0	0.27005	1.891601	0	1.080201	-88.483321	30.35954	PFO	Wetland	Bangs Lake	WETA002-FO	16
S	2.880925	2.549677	0	0.331249	2.549677	0	1.324994	-88.48561	30.419177	PFO	Wetland	Escatawpa River	WETDO04-FO	12
SW	1.249252	0.912633	0	0.336619	0.912633	0	1.346475	-88.4828	30.415524	PFO	Wetland	Escatawpa River	WETD003-F0	12
S	0.052725	0.044693	0	0.008032	0.044693	0	0.032127	-88.483596	30.409188	PFO	Wetland	Bayou Cumbest	WETDO01-FO	00
SW	0.073732	0.073732	0	0	0.073732	0	0	-88.482742	30.405726	PFO	Wetland	Bayou Cumbest	WETA006-FO	∞
SW	0.965064	0.829754	0	0.13531	0.829754	0	0.541241	-88.481776	30.404657	PFO	Wetland	Bayou Cumbest	WETA005-F3	œ
SW	0.605595	0.517627	0	0.087968	0.517627	0	0.351871	-88.48038	30.402914	PFO	Wetland	Bayou Cumbest	WETA005-F2	∞
SN	0.669889	0.546637	0	0.123252	0.546637	0	0.493009	-88.480189	30.401163	PFO	Wetland	Bayou Cumbest	WETA005-F1	00
SW	0.538145	0.4454	0	0.092745	0.4454	0	0.370981	-88.480215	30.399605	PFO	Wetland	Bayou Cumbest	WETA005-FO	00
SW	0.202595	0	0.16037	0.042225	0	0.320741	0.168901	-88.460295	30.563761	PSS	Wetland	Escatawpa River	WETD009-S2	7
SW	0.924814	0	0.730347	0.194467	0	1.460693	0.777868	-88.462055	30.561906	PSS	Wetland	Escatawpa River	WETD009-S1	7
S	0.737688	0	0.562281	0.175407	0	1.124561	0.701628	-88.465834	30.557914	PSS	Wetland	Escatawpa River	WETD009-S0	7
SM	0.181503	0.16128	0	0.020223	0.16128	0	0.080891	-88.459867	30.564215	PFO	Wetland	Escatawpa River	WETD009-F3	7
SN	0.073008	0.065833	0	0.007175	0.065833	0	0.028701	-88.46065	30.563393	PFO	Wetland	Escatawpa River	WETD009-F2	7
Ν	0.510817	0.449806	0	0.061012	0.449806	0	0.244048	-88.464199	30.559647	PFO	Wetland	Escatawpa River	WETD009-F1	7
SN	1.293589	1.094337	0	0.199252	1.094337	0	0.797007	-88.468466	30.555128	PFO	Wetland	Escatawpa River	WETD009-F0	7
SM	0.058719	0	0.053706	0.005013	0	0.107412	0.020054	-88.471431	30.552008	PSS	Wetland	Black Creek	WETD008-S0	7
ΝS	0.595326	0.487049	0	0.108277	0.487049	0	0.433107	-88.471281	30.551834	PFO	Wetland	Black Creek	WETD008-F0	7
SN	0.000023	0	0	0.000023	0	0	0.000093	-88.471767	30.549764	PFO	Wetland	Black Creek	WETD007-F0	7
SN	0.005804	0.005804	0	0	0.005804	0	0	-88.471424	30.546699	PFO	Wetland	Black Creek	WETD006-F2	7
SM	0.04799	0.033953	0	0.014036	0.033953	0	0.056145	-88.471622	30.546525	PFO	Wetland	Black Creek	WETD006-F1	7
SN	0.350768	0.299134	0	0.051634	0.299134	0	0.206536	-88.471564	30.546173	PFO	Wetland	Black Creek	WETD006-FO	7
SM	0.768093	0.679193	0	0.0889	0.679193	0	0.355599	-88.47154	30.544245	PFO	Wetland	Black Creek	WETD005-F0	7
SM	0.204233	0.135627	0	0.068605	0.135627	0	0.274421	-88.474133	30.529817	PFO	Wetland	Black Creek	WETC015-F1	7
S	0.101899	0.090507	0	0.011392	0.090507	0	0.045568	-88.473585	30.529738	PFO	Wetland	Black Creek	WETC015-F0	7
SN	0.174845	0.15902	0	0.015824	0.15902	0	0.063298	-88.471514	30.541749	PFO	Wetland	Black Creek	WETA026-F1	7
SM	1.859709	1.651955	0	0.207754	1.651955	0	0.831017	-88.471496	30.539553	PFO	Wetland	Black Creek	WETA026-FO	7
SM	2.470547	2.169936	0	0.300611	2.169936	0	1.202443	-88.471446	30.533446	PFO	Wetland	Black Creek	WETA025-F0	7

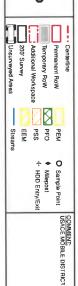

Plains Southcap Pipeline

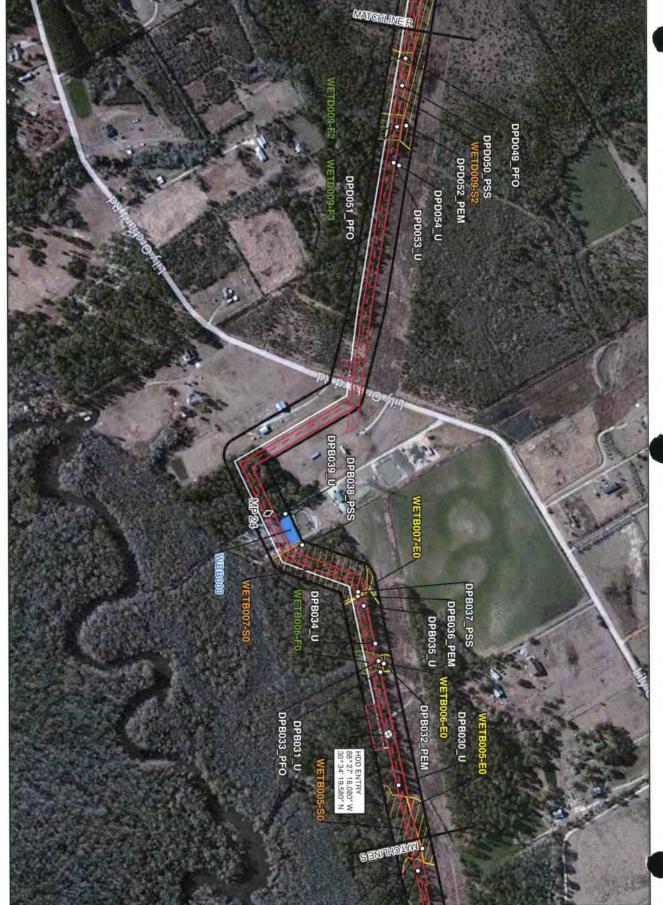






AS REQUIRED BY THE FREEDOM OF INFORMATION ACT (FOIA) THIS FILE IS BEING MADE AVAILABLE ONLINE BECAUSE THE MOBILE DISTRICT FOIA OFFICE HAS RECEIVED MORE THAN THREE (3) REQUESTS FOR SAME. ANY QUESTIONS ABOUTTHE FOIA PROCESS MUST BE DIRECTED TO OUR FOIA OFFICES.

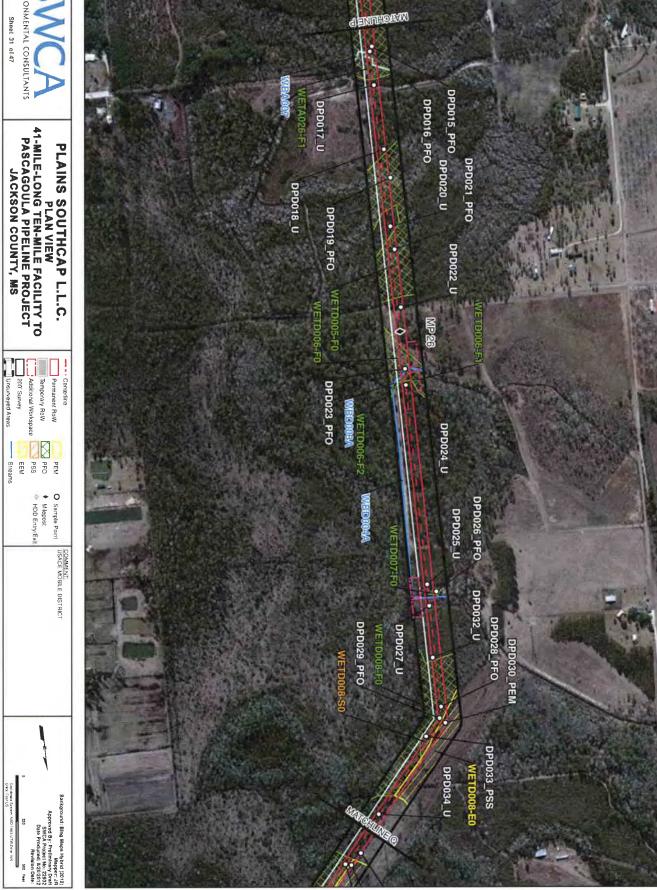

Property 22932, Proceapoula, Product MAPS invell Plant Views and Views and

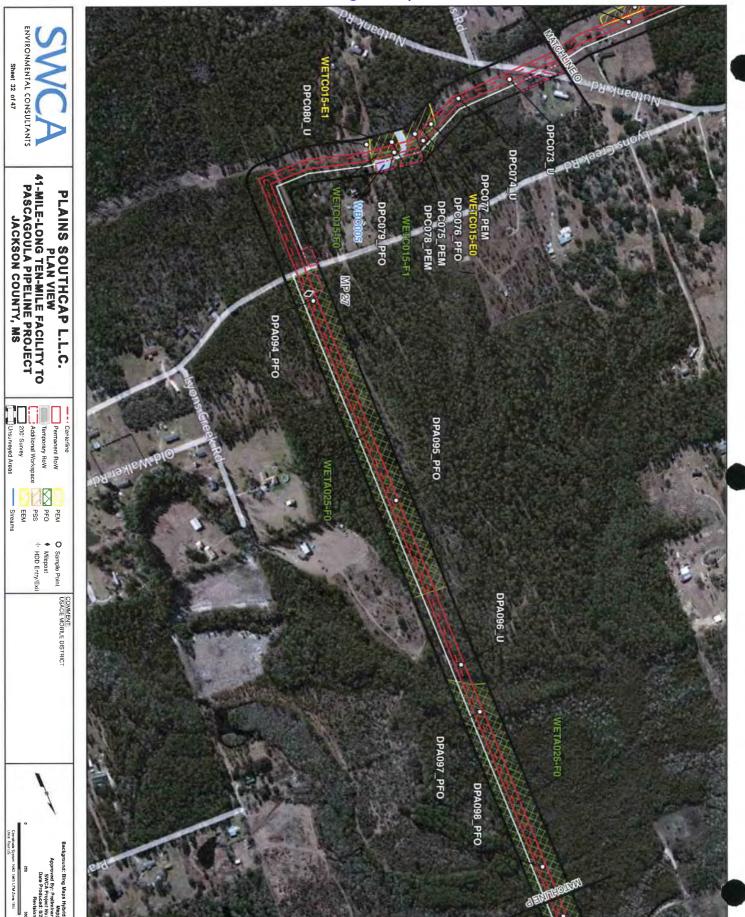


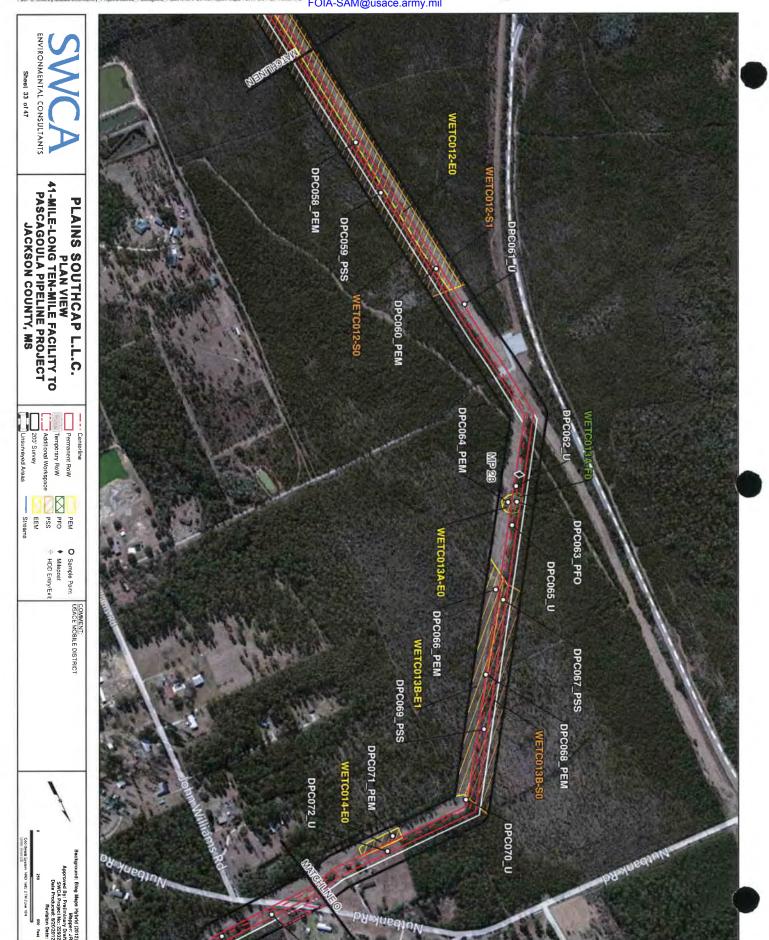
AS REQUIRED BY THE FREEDOM OF INFORMATION ACT (FOIA) THIS FILE IS BEING MADE AVAILABLE ONLINE BECAUSE THE MOBILE DISTRICT FOIA OFFICE HAS RECEIVED MORE THAN THREE (3) REQUESTS FOR SAME. ANY QUESTON'S ABOUTTHE FOIA PROCESS MUST BE DIRECTED TO OUR FOIA OFFICES. FOIA-SAM@usace.army.mil

SAMOAN ENVIRONMENTAL CONSULTANTS

PLAINS SOUTHCAP L.L.C.
PLAN VIEW
41-MILE-LONG TEN-MILE FACILITY TO
PASCAGOULA PIPELINE PROJECT
JACKSON COUNTY, MS

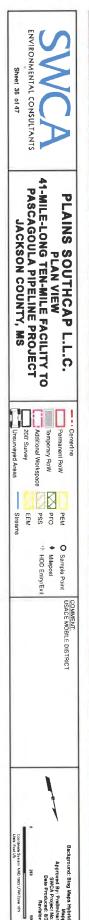

ENVIRONMENTAL CONSULTANTS MAJOHLINE Sheet 30 of 47 DPD035_U DPD036_PEM DPD037_PFO PLAINS SOUTHCAP L.L.C.
PLAN VIEW
41-MILE-LONG TEN-MILE FACILITY TO
PASCAGOULA PIPELINE PROJECT
JACKSON COUNTY, MS DPD041_PFO DPD038_PFO DPD039_PSS Temporary RoW
Additional Workspace
200' Survey Centerline Permanent RoW PEM DPD043_PFO METDOOS Milepost

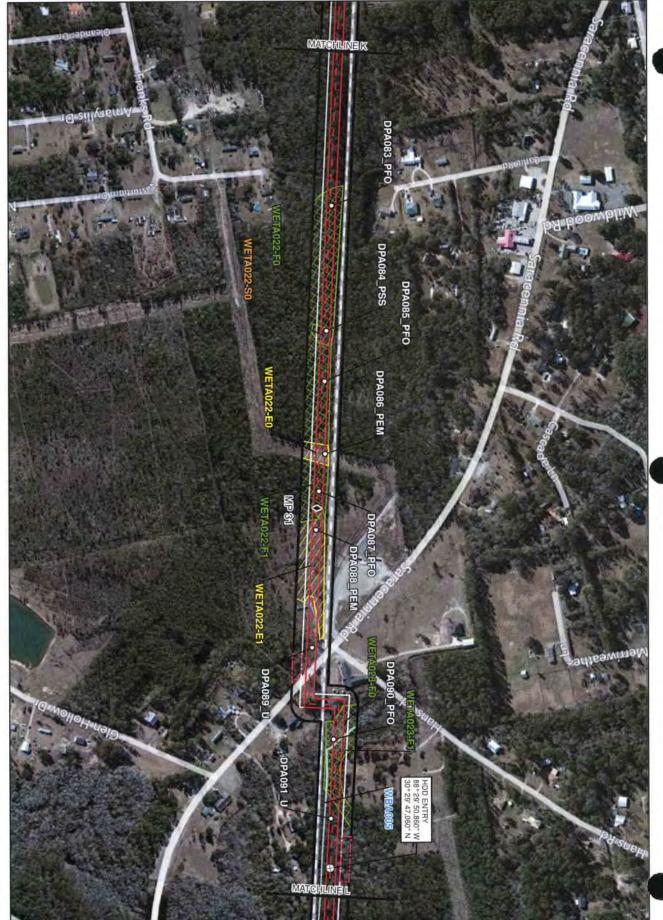

HDD Entry/Exit DPD046 PEM O Sample Point DPD045_U USACE MOBILE DISTRICT DPD047_PEM DPD048_PSS MATCHLINE R


AS REQUIRED BY THE FREEDOM OF INFORMATION ACT (FOIA) THIS FILE IS BEING MADE AVAILABLE ONLINE BECAUSE THE MOBILE DISTRICT FOIA OFFICE HAS RECEIVED MORE THAN THREE (3) REQUESTS FOR SAME. ANY QUESTIONS ABOUT THE FOIA PROCESS MUST BE DIRECTED TO OUR FOIA OFFICES.

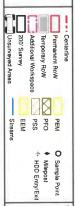
(Projecti 122932, Pascapoula, Projecti MAPS invol Report Major of PCAI Plan Views and FOIA-SAM@usace.army.mil)

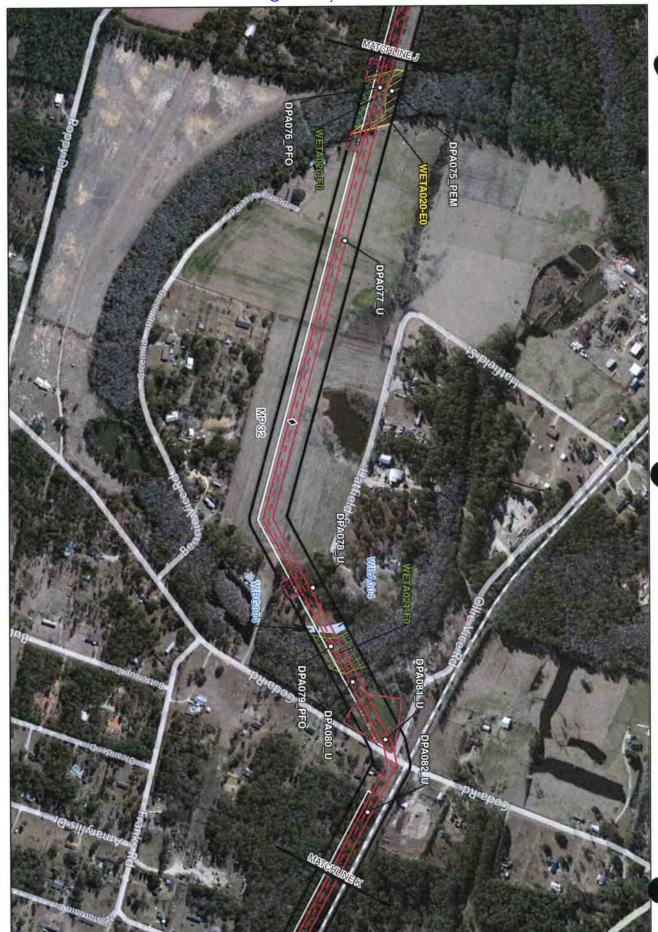
AS REQUIRED BY THE FREEDOM OF INFORMATION ACT (FOIA) THIS FILE IS BEING MADE AVAILABLE ONLINE BECAUSE THE MOSILE DISTRICT FOIA OFFICE HAS RECEIVED MORE THAN THREE (3) REQUESTS FOR SAME. ANY QUEST ABOUTHE FOIA PROCESS MUST BE DIRECTED O OUR FOIA OFFICES.

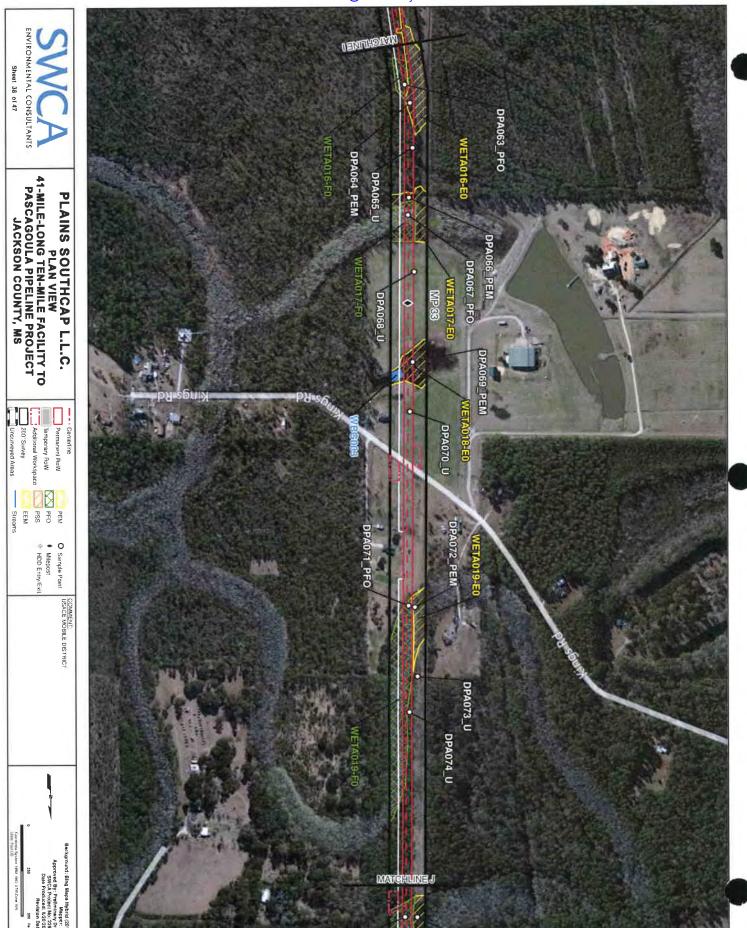

Projects 22932. Pascagouia_PipelineMAPS invul Report Maps FOTA Plan Views mixing


FOIA-SAM@usace.army.mil

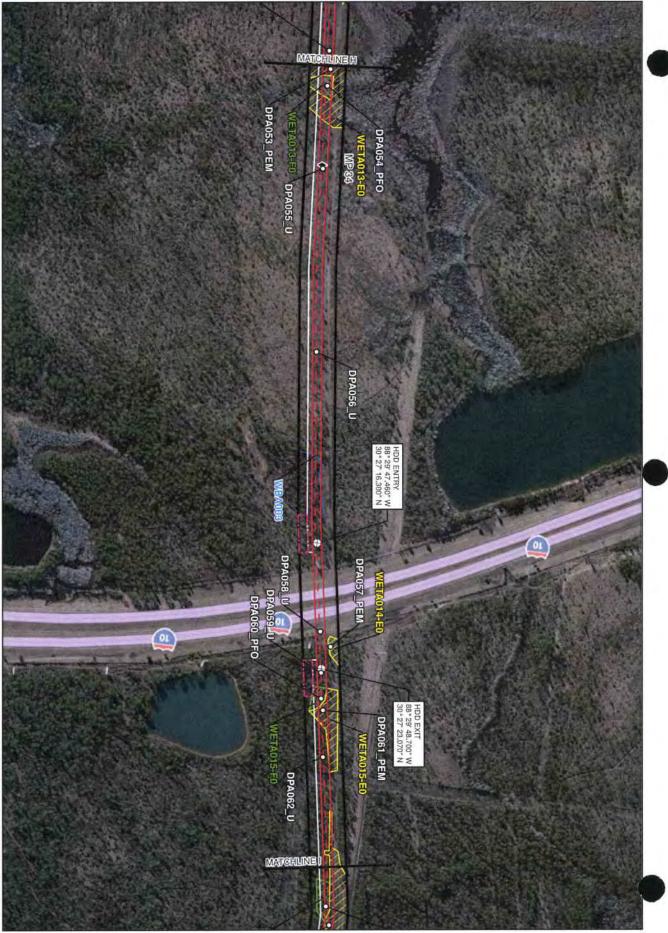
Palh C Users (rabalais Desklop M







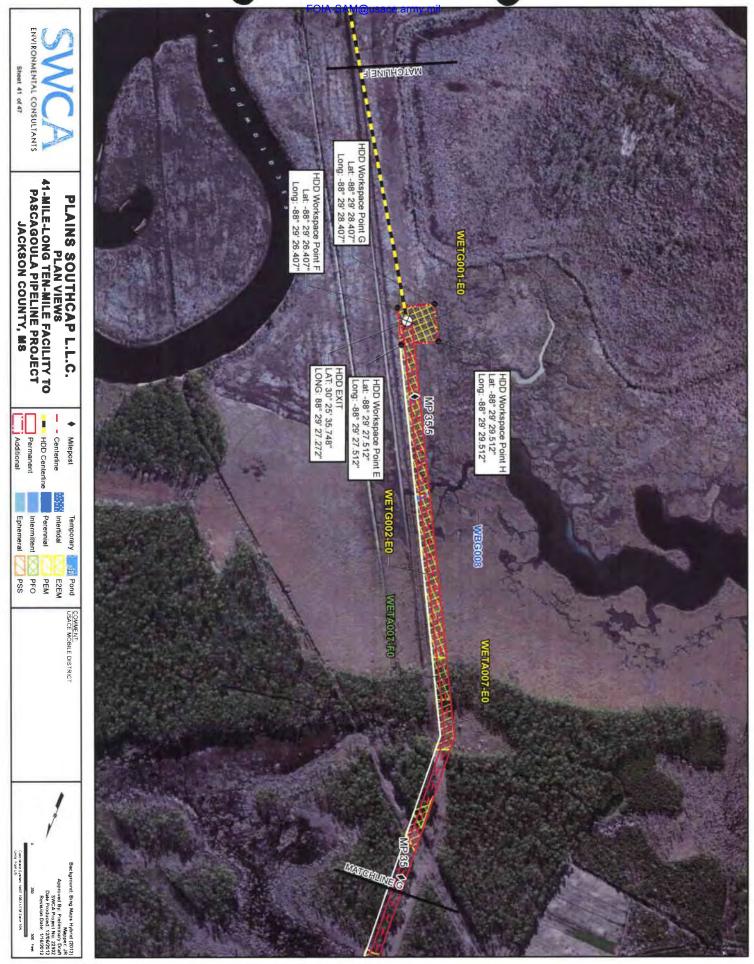
PLAINS SOUTHCAP L.L.C.
PLAN VIEW
41-MILE-LONG TEN-MILE FACILITY TO
PASCAGOULA PIPELINE PROJECT
JACKSON COUNTY, MS

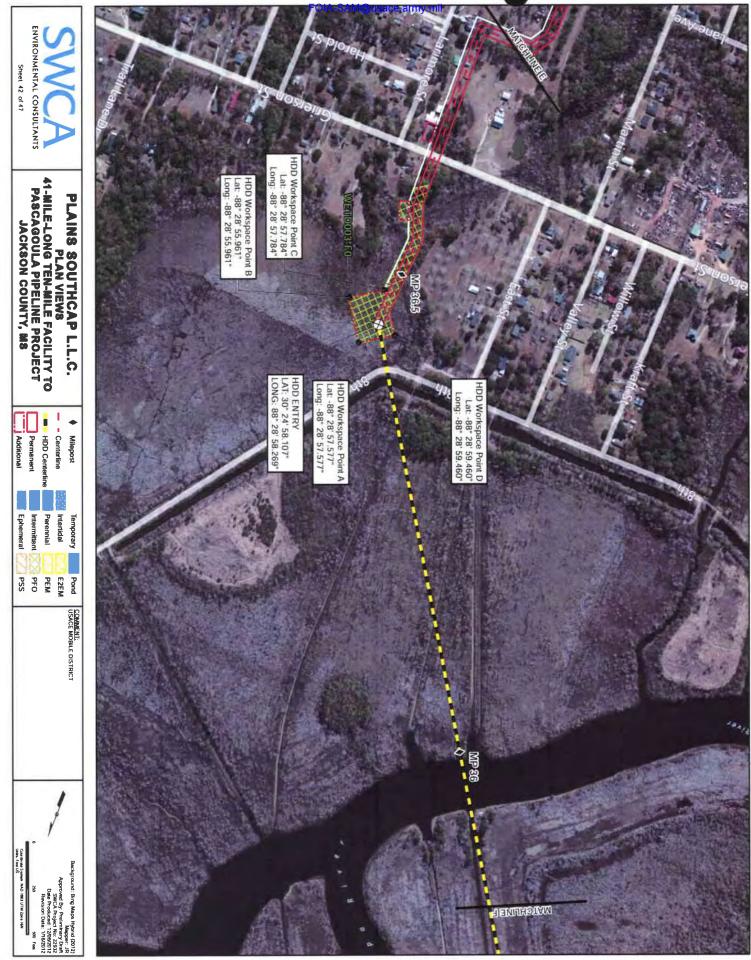


AS REQUIRED BY THE FREEDOM OF INFORMATION ACT (FOIA) THIS FILE IS BEING MADE AVAILABLE ONLINE BECAUSE THE MOBILE DISTRICT FOIA OFFICE HAS RECEIVED MORE THAN THREE (3) REQUESTS FOR SAME. ANY QUESTIONS ABOUTTHE FOIA PROCESS MUST BE DIRECTED TO OUR FOIA OFFICES.

Projects 22932, Pascagoula_Pipchro MAPS and Report Major Staff CV Plan Views and FOIA-SAM@usace.army.mil

Path C Users rabala's Desktop My ENVIRONMENTAL CONSULTANTS Sheet 40 of 47 DPA042 PEM PLAINS SOUTHCAP L.L.C.

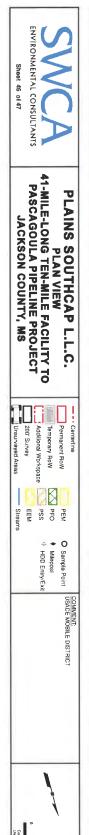

PLAN VIEW


41-MILE-LONG TEN-MILE FACILITY TO

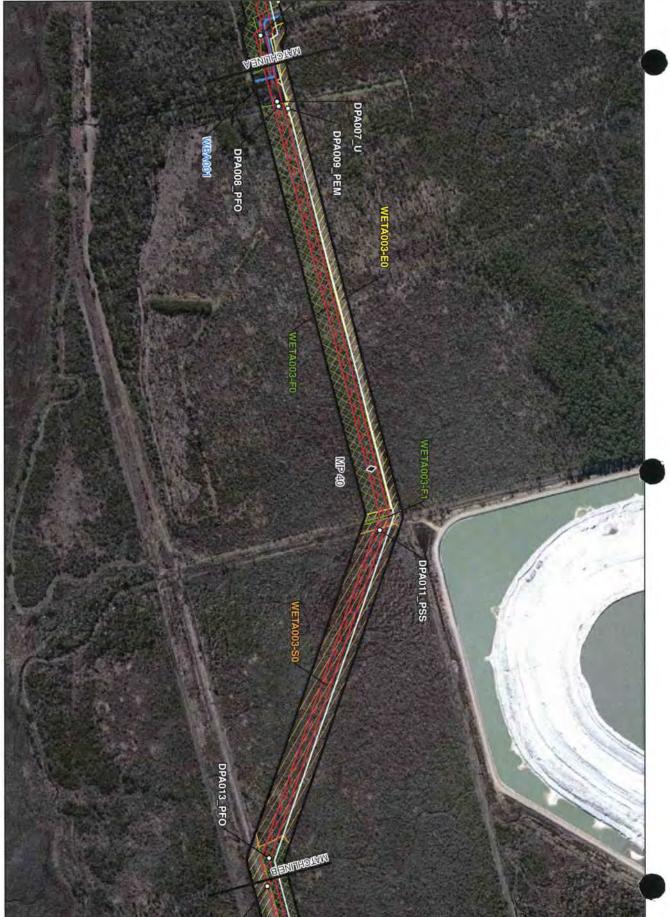
PASCAGOULA PIPELINE PROJECT

JACKSON COUNTY, MS HDD ENTRY 88*29' 41.670" W 30" 26' 18.340" N WETA010-FO DPA044_PFO LIMB Blad WETA010-E0 DPA045 PEM Temporary RoW
Additional Workspace
200' Survey Permanent RoW Centerline Insurveyed Areas PEM PSS MEEM Milepost
 HDD Entry/Exit O Sample Point HDD EXIT 88°29'43.260" W 30°26'36.370" N DPA046_PSS WETA010-E1 DPA047_U DPA048 PEM USACE MOBILE DISTRICT WETA011-FO DPA050_U WETA011-E0 WETA012-E0 DPA049_PFO DPA051 PEM DPA052_U Background: Bing Maps Hybrid Mapr Approved By: Preliminary C SWCA Project No: 25 Date Produced: 8/20/2 Revision Di

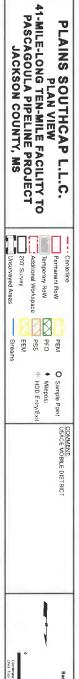
MATCHLINE



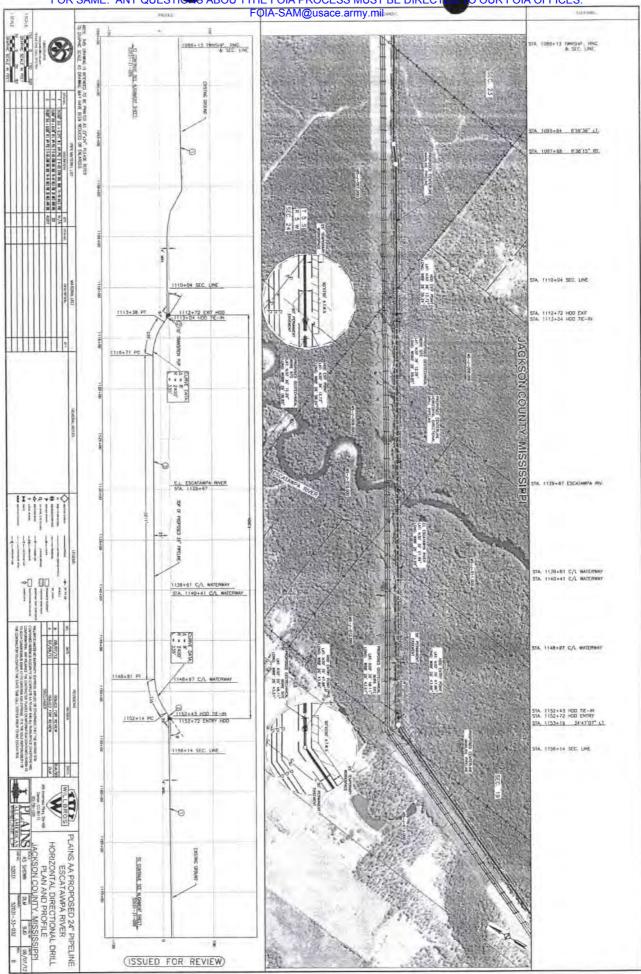
AS REQUIRED BY THE FREEDOM OF INFORMATION ACT (FOIA) THIS FILE IS BEING MADE AVAILABLE ONLINE BECAUSE THE MODILE DISTRICT FOIA OFFICE HAS RECEIVED MORE THAN THREE (3) REQUESTS FOR SAME. ANY QUESTIONS ABOUTTHE FOIA PROCESS MUST BE DIRECTED TO OUR FOIA OFFICES.


Projects 22302. Pascagoula Pipeline MAPS articles PCN PCN Plan Views mind

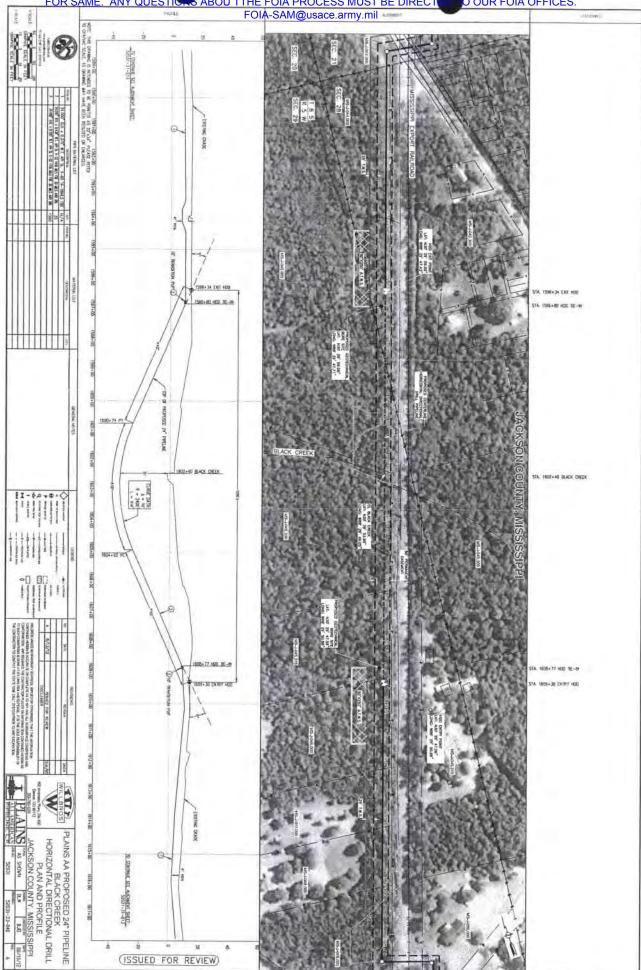
FOIA-SAM@usace.army.mil Path C Users jrabalais Desk

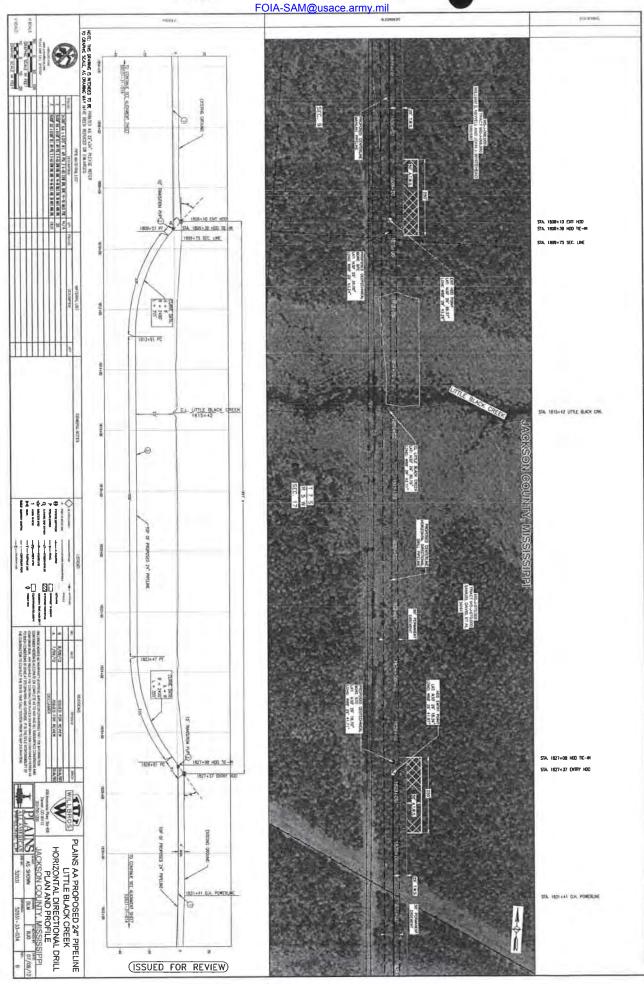


Background: Bing Maps Hybrid (2012)
Mapper: JR
Approved By: Preliminary Oraft
SWCA Project No: 22912
Date Produced: 8/20/2012



Path C Users jrabalais Desktop My_




Spe Escalarpol

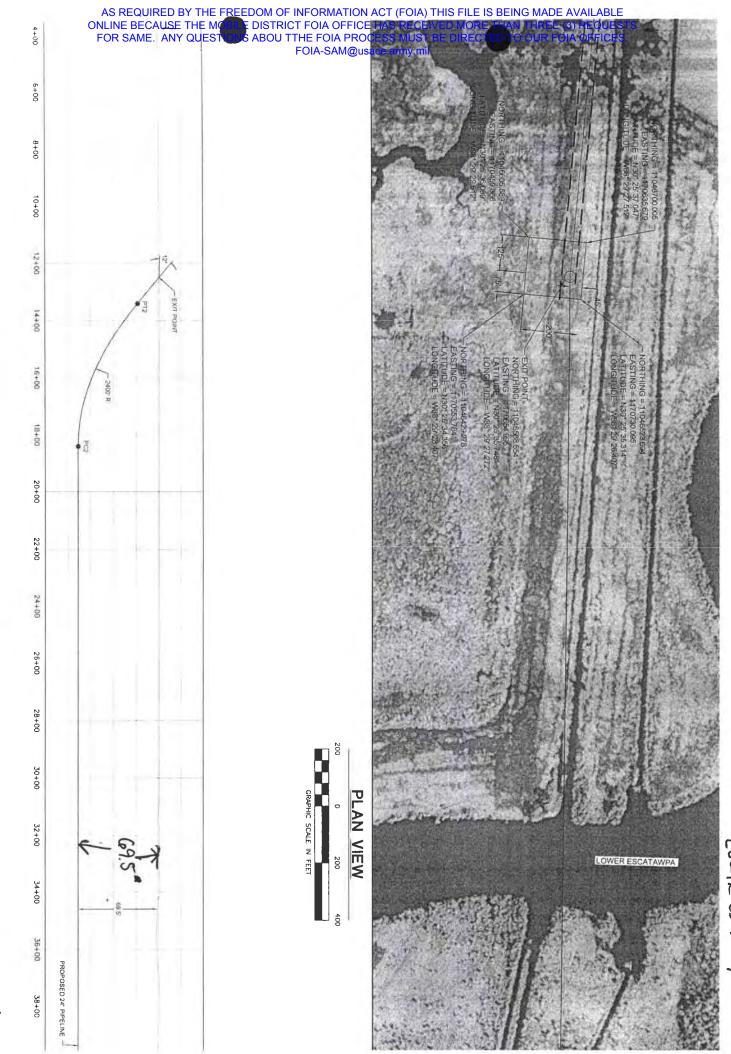
Uppe Escaturpa Kiver



HDD Rule Crock

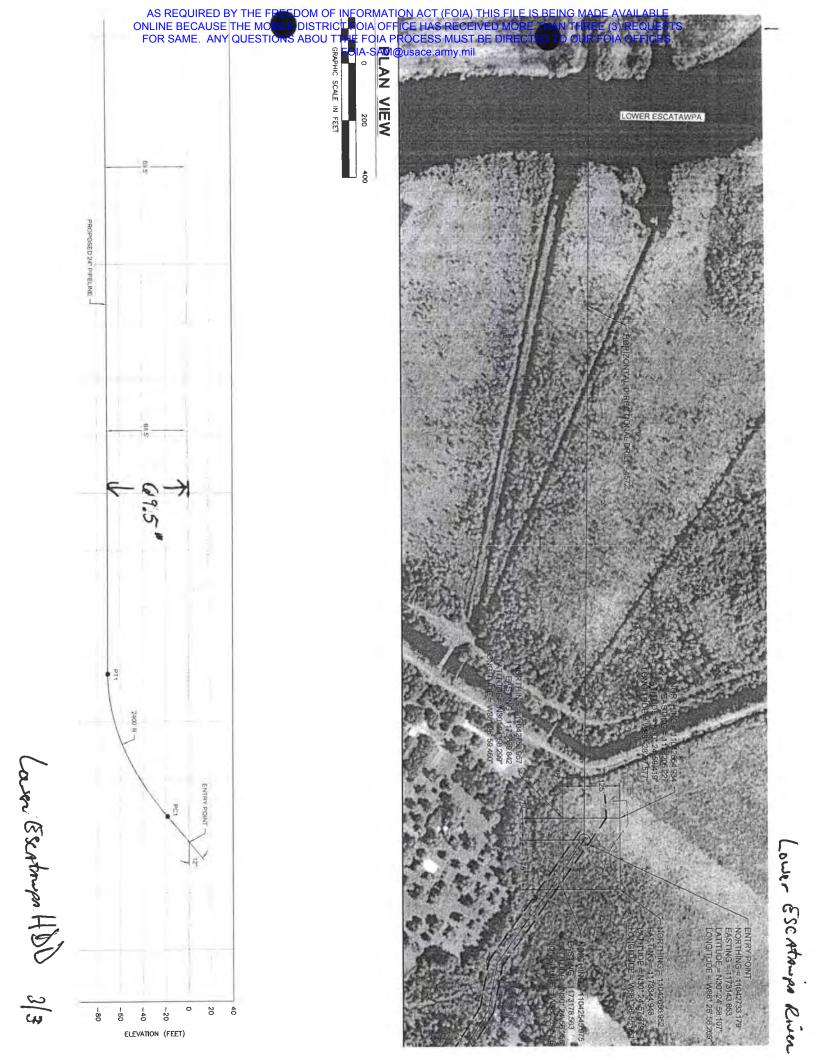
HDD Block Creek

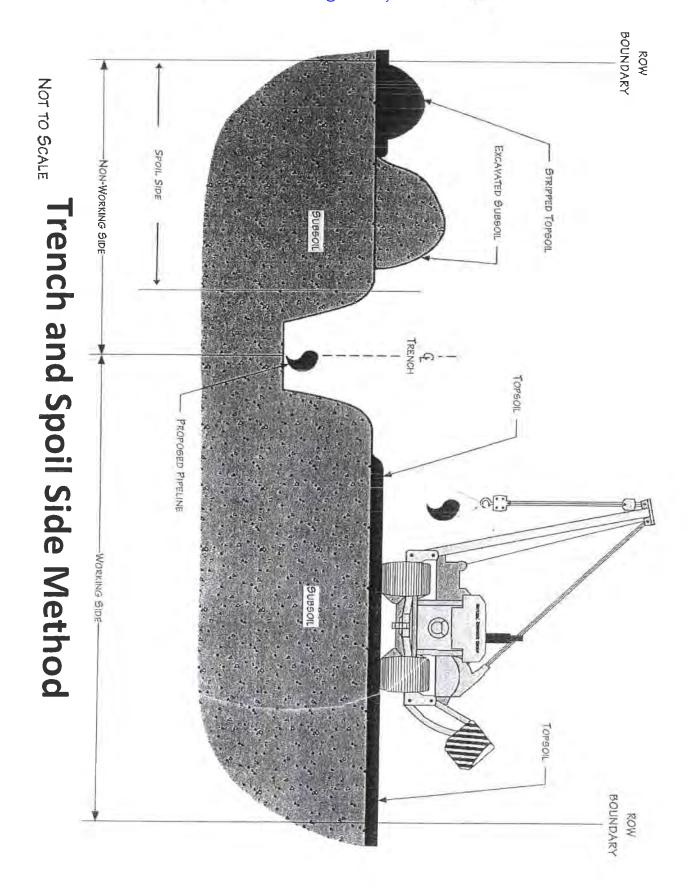
...HI. Rlack Crock HOD 1/2

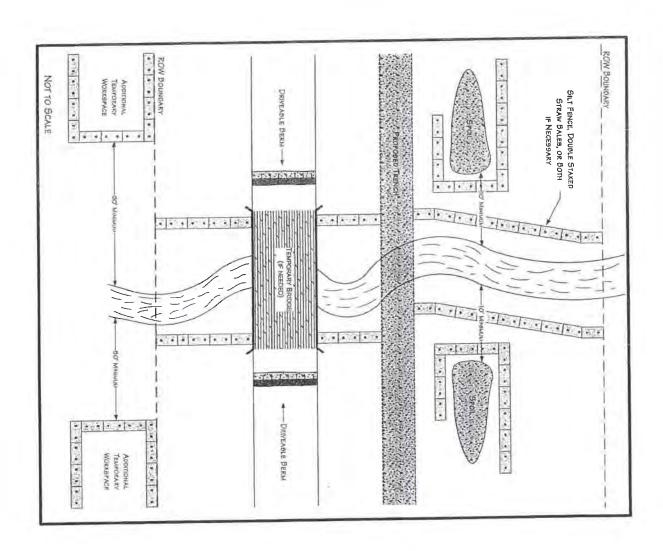

Lithe Black Creek

Little Which Creek HDD 21/2

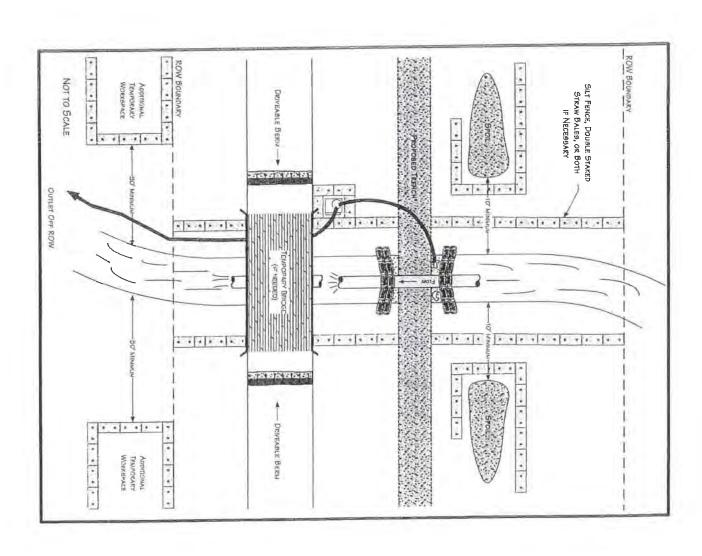
AS REQUIRED BY THE FREEDOM OF INFORMATION ACT (FOIA) THIS FILE IS BEING MADE AVAILABLE ONLINE BECAUSE THE MOBILE DISTRICT FOIA OFFICE HAS RECEIVED MORE THAN THREE (3) REQUESTS FOR SAME. ANY QUESTIONS ABOUTTHE FOIA PROCESS MUST BE DIRECTED TO OUR FOIA OFFICES. AND A TOTAL CONTRACT OF THE PARTY AND ADDRESS OF THE PARTY ADDRESS OF THE PARTY ADDRESS OF THE PARTY AND ADDRESS OF THE P THE RELEASE OF THE PARTY OF THE THE STATE OF THE S ENGINE AVEC DESCRIPTION OF THE CONTRACT OF STREET AND SECURITY OF STREET, SECURITY OF N. TOLK MEMBERS 1988 to 198 JANUAR 4 CONTACT OF MEMBERS TO WELL DIETH.

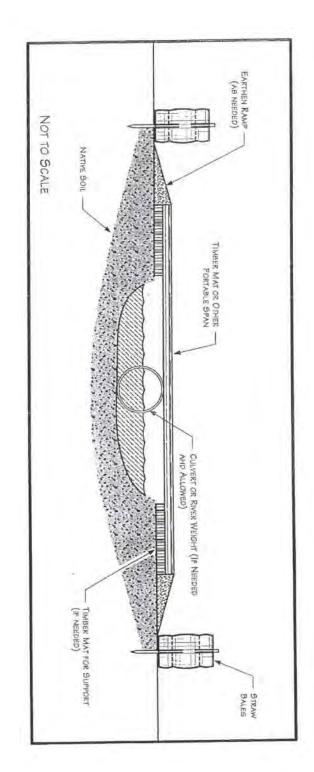

MEMBERS DESCRIPTION FOR STREET THE CONTACT OF MEMBERS DESCRIPTION FOR MEMBERS DESCRIPTION FOR MEMBERS DESCRIPTION FOR MEMBERS.


MEMBERS DESCRIPTION FOR THE THE TRUE DEFINITION OF THE TWO MEMBERS. HONDON SON OF A STANDARD OF A STANDARD OF SOURCE STANDARD SOURCE STANDARD OF SOURCE STANDARD STAND AND THE PARTY CONTINUES THAT STORY OF COMMITTEE AND THE STORY OF COMMITTEE THE TANK OF THE SECURITY OF TH A THE COLUMN CONTROL OF THE COLUMN COLUMN CONTROL OF THE COLUMN CONTROL OF THE COLUMN CONTROL OF THE COLUMN COLUMN CONTROL OF THE COLUMN C 8 JACKSON COUNTY, MISSISSIPPI PLAN VIEW PROFILE VIEW 1 1 PLANS PIPELNE, LP PABCAGOULA PIPELNE Comer Escat areas £


Lower Escatampa 2/3

Louge Escotampa Ruer




Open-Cut Waterbody Crossing Method

Flumed Waterbody Crossing Method

Equipment Bridge

Performance Criteria

- Design, construct, and maintain to Provide unrestricted flow
- Withstand and pass highest expected flows
- Prevent soil from entering waterbody
- Align culverts to prevent bank erosion or streambed scour
- Install energy-dissipating devices downstream of culverts, if necessary

MISSISSIPPI DEPARTMENT OF MARINE RESOURCES

March 15, 2013

Plains South Cap, LLC Attn: Steve Lee 333 Clay Street, Suite 1600 Houston, TX 77210-4648

RE: DMR-130181; SAM-2012-01165-MBM

Dear Mr. Lee:

The Department of Marine Resources (DMR) has reviewed your request to construct a crude oil pipeline from the Ten Mile Crude Oil Terminal approximately 11 miles northwest of Mobile, AL to the Chevron Refinery located in Pascagoula, Jackson County, MS.

In accordance with the provisions of the Mississippi Coastal Wetlands Protection Law and our findings made in compliance with Chapter Eight, Section 2, Part II.D. of the Mississippi Coastal Program, a Certificate of Waiver is issued to you this day. This Waiver does not release you from the responsibility of compliance with other state and federal regulations. These activities shall be conducted in a manner resulting in the least damaging impacts to wetlands and the coastal environment. This Waiver is hereby granted by the Executive Director on this date, provided the following conditions are agreed upon and adhered to in completing the proposed work:

- 1. Approximately 4,600 linear feet of 24-inch diameter crude oil pipeline shall be installed by means of horizontal directional boring beneath the Lower Escatawpa River and adjacent wetlands with entry at 30° 24' 58.107" N, -88° 28' 58.269" W and exit at 30° 25' 35.748" N, -88° 29' 27.272" W as indicated on the attached diagrams;
- Approximately 1,800 linear feet of 24-inch diameter crude oil pipeline shall be installed by means of horizontal directional boring beneath Little Black Creek and adjacent wetlands with entry at 30° 26' 18.340" N, -88° 29' 41.670" W and exit at 30° 26' 36.370" N, -88° 29' 43.260" W as indicated on the attached diagrams;
- Approximately 1,800 linear feet of 24-inch diameter crude oil pipeline shall be installed by means of open trenching of tidal wetlands adjacent to the Escatawpa River commencing at 30° 25' 35.748" N, -88° 29' 27.272" W and ending at approximately 30° 25' 51.87" N, -88° 29' 36.79" W as indicated on the attached diagrams;
- 4. Approximately 2,800 linear feet of 24-inch crude oil pipeline shall be installed by means of open trenching of non-tidal wetlands adjacent to Little Black Creek commencing at 30° 25′ 51.87″ N, -88° 29′ 36.79″ W and ending at 30° 26′ 18.340″ N, -88° 29′ 41.670′ W as indicated on the attached diagrams;
- 5. All excess excavated material should be deposited in an approved upland disposal site, and there will be no change in preconstruction contours, elevation, or grade. In tidal marsh areas adjacent to the Escatawpa River, impacted areas should be restored based on the requirements set forth in the attached document titled: Marsh Restoration Success Guidelines. A written report shall be provided to DMR upon pipe installation documenting pre- and post- installation site conditions with fixed photo stations every 600 feet of the 1,800 feet open-trenched marsh area. Thereafter, marsh restoration monitoring reports

DMR-130181; Certificate of Waiver; Plains South Cap, LLC

March 15, 2013

shall be submitted yearly until all success criteria have been satisfied. These reports shall be received in the DMR offices by October 1 of each year;

- Including the above authorized impacts, approximately 105.49 acres of non-tidal wetlands shall be impacted as a result of mechanized land clearing, temporary trenching and sidecasting of fill, and temporary and permanent conversion of forested wetlands to scrubshrub/herbaceous/emergent wetlands;
- 7. As mitigation for the impacts authorized in condition #6 above, the applicant shall purchase the appropriate number of mitigation credits to offset the above authorized temporary impacts and temporary/permanent conversion of wetlands. The credit purchase must be completed prior to commencement of construction and proof of purchase of mitigation credits from an approved mitigation bank within the service area (as determined by the Mitigation Bank Review Team) must be submitted to this office;
- 8. All temporary work pads, access roads, and mats shall be removed following completion of pipeline installation;
- 9. Impacted areas must be replanted with naturally occurring indigenous species if the area has not re-vegetated to pre-project conditions within 1 year of project completion;
- 10. No additional crude oil pipelines, natural gas pipelines, electrical transmission lines, water/sewer transmission lines, fiber-optic cable, etc. within the crude oil pipeline right-of-way described in the submitted application is authorized by this Waiver;
- 11. Prior to the commencement of construction, permittee must submit to the DMR a copy of the Tidelands Lease as required by the Secretary of State and as filed in the subject County Land Records, or a statement from the Secretary of State that the permitted activity does not require a Tidelands Lease;
- 12. Best Management Practices shall be used at all times during construction;
- 13. No construction debris or unauthorized fill material shall be allowed to enter coastal wetlands or waters; and,
- 14. Vegetated wetlands outside of the pipeline right-of-way and right-of-way access areas shall not be impacted and no permanent wetland impacts are authorized by this Waiver.

This authorization is contingent on Water Quality Certification from the Mississippi Department of Environmental Quality (DEQ) and the Permittee shall maintain all water quality standards, regulations, and restrictions as set forth by the DEQ.

Any deviations beyond the restrictive conditions as set forth in your permit shall be considered a violation and may result in the revocation of the permit. Violations of these conditions may be subject to fines, project modifications and/or site restoration. Both the permittee and the contractor may be held liable for conducting unauthorized work. A modification to these conditions may be requested by submitting a written request along with a revised project diagram to DMR. <u>Proposed modifications to dimensions, project footprint, and/or procedures must be approved in writing prior to commencement of work.</u>

Issuance of this certification by DMR and acceptance by the applicant does not release the applicant from other legal requirements including but not limited to other applicable federal, state or local laws, ordinances, zoning codes or other regulations.

This certification conveys no title to land and water, does not constitute authority for reclamation of coastal wetlands and does not authorize invasion of private property or rights in property.

DMR-130181; Certificate of Waiver; Plains South Cap, LLC

March 15, 2013

Please notify this Department upon completion of the permitted project so that compliance checks may be conducted by DMR staff.

This certification shall become effective upon acceptance by the applicant and receipt of the executed copy by the Director.

Please execute this certification by signing both documents and returning the copy to the Department of Marine Resources.

Work authorized by this certification must be completed on or before March 15, 2018.

Enclosed is a "Notice of Compliance" which must be conspicuously displayed at the site during construction of the permitted work.

The Department of Marine Resources has also coordinated a review of your project through the Coastal Program review procedures and determined that the project referenced above is consistent with the Mississippi Coastal Program, provided that you comply with the noted conditions and reviewing coastal program agencies do not disagree with said plans. By copy of this certification, we are notifying the U.S. Army Corps of Engineers of this determination.

THE PERMITTEE BY ACCEPTANCE OF THIS PERMIT AGREES TO ABIDE BY THE STIPULATIONS AND CONDITIONS CONTAINED HEREIN AND AS DESCRIBED BY THE PLANS AND SPECIFICATIONS SUBMITTED AS PART OF THE COMPLETED APPLICATION.

Willa J. Brantley Bureau Director, Wetlands Permitting	TOF MARINE RESOURCES
Accepted this the day of	, A.D., 20
Ву:	Applicant
WJB/gsc	
Enclosures	
cc: Mr. Mike Moxey, USACE Ms. Florance Watson, OPC	

Mr. Raymond Carter, SOS

1/21/03

Marsh Restoration Success Guidelines

- 1. The site must have access to normal hydrology from regular tidal inundations.
- 2. Marsh grade should be restored to pre-impact level using the least destructive method possible such as hand tools.
- 3. The restoration area should be sprigged with Black Needle Rush (*Juncus roemarianus*) or other appropriate wetlands species as approved by DMR staff. Plant spacing should not exceed 4 feet. No more than 1 sprig per square yard shall be taken from an existing marsh. Sprigs should not exceed 4 by 4 inches wide by 6 inches deep. Bulb planters or sharp shooter shovels can be used to obtain and plant sprigs.
- 4. The herbaceous layer should have a minimum of 95% coverage of Black Needle Rush (*Juncus roemarianus*) or other appropriate wetlands species as approved by DMR staff after a period of 5 years.
- 5. The site should be monitored for 5 years during the spring and fall with reports generated once a year and received at the DMR office by October 1st for the preceding year's monitoring. Permit number and applicant name must be noted on the monitoring report cover. If success criteria are met prior to the 5-year deadline, monitoring and annual reports may be discontinued with written approval of DMR staff.

Marsh Creation Success Guidelines

- 1. The site must have access to normal hydrology from regular tidal inundations.
- 2. Marsh creation area must be graded to the level of adjacent tidal marsh, or approximately 0.21 m from MLW. The elevation should be sufficient to allow inundation of the site at least weekly in most cases. Site should be graded to have a gentle slope from landward edge to water. Work should be done using the least destructive method possible.
- 3. The creation area should be sprigged with Black Needle Rush (*Juncus roemarianus*) or other appropriate wetlands species as approved by DMR staff. Plant spacing should not exceed 4 feet. No more than 1 sprig per square yard shall be taken from an existing marsh. Sprigs should not exceed 4 by 4 inches wide by 6 inches deep. Bulb planters or sharp shooter shovels can be used to obtain and plant sprigs.
- 4. The herbaceous layer should have a minimum of 95% coverage of Black Needle Rush (*Juncus roemarianus*) or other appropriate wetlands species as approved by DMR staff after a period of 5 years.
- 5. The site should be monitored for 5 years during the spring and fall with reports generated once a year and received at the DMR office by October 1st for the preceding year's monitoring. Permit number and applicant name must be noted on the monitoring report cover. If success criteria are met prior to the 5-year deadline, monitoring and annual reports may be discontinued with written approval of DMR staff.

Department of Marine Resources

NOTICE OF COMPLIANCE DMR- 130181 GENERAL PERMIT THIS NOTICE ACKNOWLEDGES THAT:

DATE: March 15, 2013

Plains South Cap, LLC Attn: Steve Lee 333 Clay Street, Suite 1600 Houston, TX 77210-4648

HAS, THROUGH APPLICATION TO THIS DEPARTMENT, DULY COMPLIED WITH THE MISSISSIPPI COASTAL WETLANDS PROTECTION LAW TO:

Approximately 4,600 linear feet of 24-inch diameter crude oil pipeline shall be installed by means of horizontal directional boring beneath the Lower Escatawpa River and adjacent wetlands with entry at 30° 24′ 58.107° N, -88° 28′ 58.269° W and exit at 30° 25′ 35.748° N, -88° 29′ 27.272° W as indicated on the attached diagrams; Approximately 1,800 linear feet of 24-inch diameter crude oil pipeline shall be installed by means of horizontal directional boring beneath Little Black Creek and adjacent wetlands with entry at 30° 26′ 18.340° N, -88° 29′ 41.670° W and exit at 30° 26′ 36.370° N, -88° 29′ 43.260° W as indicated on the attached diagrams; Approximately 1,800 linear feet of 24-inch diameter crude oil pipeline shall be installed by means of open trenching of tidal wetlands adjacent to the Escatawpa River commencing at 30° 25′ 35.748° N, -88° 29′ 27.272° W and ending at approximately 2,800 linear feet of 24-inch crude oil pipeline shall be installed by means of open trenching of non-tidal wetlands adjacent to Little Black Creek commencing at 30° 25′ 51.87° N, -88° 29′ 36.79° W and ending at 30° 25′ 51.87° N, -88° 29′ 36.79° W and ending at 30° 25′ 51.87° N, -88° 29′ 41.670′ W as indicated on the attached diagrams; Approximately 2,800 linear feet of 24-inch crude oil pipeline shall be installed by means of open trenching of non-tidal wetlands adjacent to Little Black Creek commencing at 30° 25′ 51.87° N, -88° 29′ 36.79° W and ending at 30° 26′ 18.340° N, -88° 29′ 41.670′ W as indicated on the attached diagrams; All excess excavated material should be deposited in an approved upland disposal site, and there will be no change in

5. All excess excavated material should be deposited in an approved upland disposal site, and there will be no change in preconstruction contours, elevation, or grade. In tidal marsh areas adjacent to the Escatawpa River, impacted areas should be restored based on the requirements set forth in the attached document titled: Marsh Restoration Success. should be restored based on the requirements set forth in the attached document titled: Marsh Restoration Success Guidelines. A written report shall be provided to DMR upon pipe installation documenting pre- and post- installation site conditions with fixed photo stations every 600 feet of the 1,800 feet open-trenched marsh area. Thereafter, marsh restoration monitoring reports shall be submitted yearly until all success criteria have been satisfied. These reports shall be received in the DMR offices by October 1 of each year; Including the above authorized impacts, approximately 105.49 acres of non-tidal wetlands shall be impacted as a result of mechanized land clearing, temporary trenching and side-casting of fill, and temporary and permanent conversion of forested wetlands to scrub-shrub/herbaceous/emergent wetlands;

As mitigation for the impacts authorized in condition #6 above, the applicant shall purchase the appropriate number of mitigation credits to offset the above authorized temporary impacts and temporary/permanent conversion of wetlands. The credit purchase must be completed prior to commencement of construction and proof of purchase of mitigation credits from an approved mitigation bank within the service area (as determined by the Mitigation Bank Review Team) must be submitted to this office;

All temporary work pads, access roads, and mats shall be removed following completion of pipeline installation;

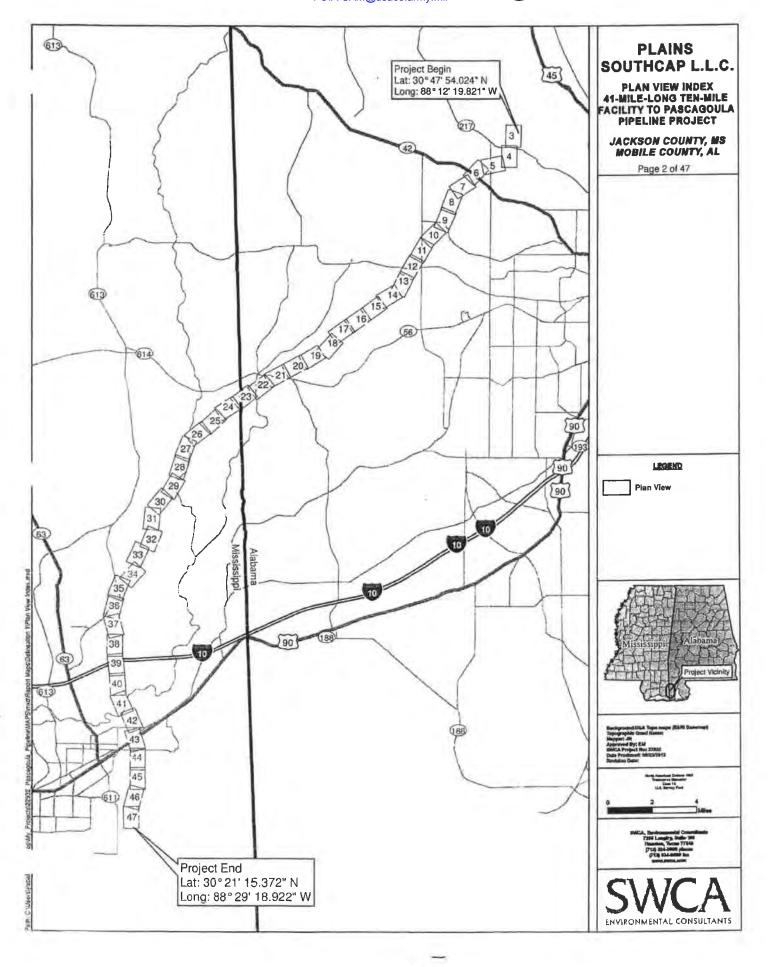
All temporary work pads, access roads, and mats shall be removed following completion of pipeline installation;

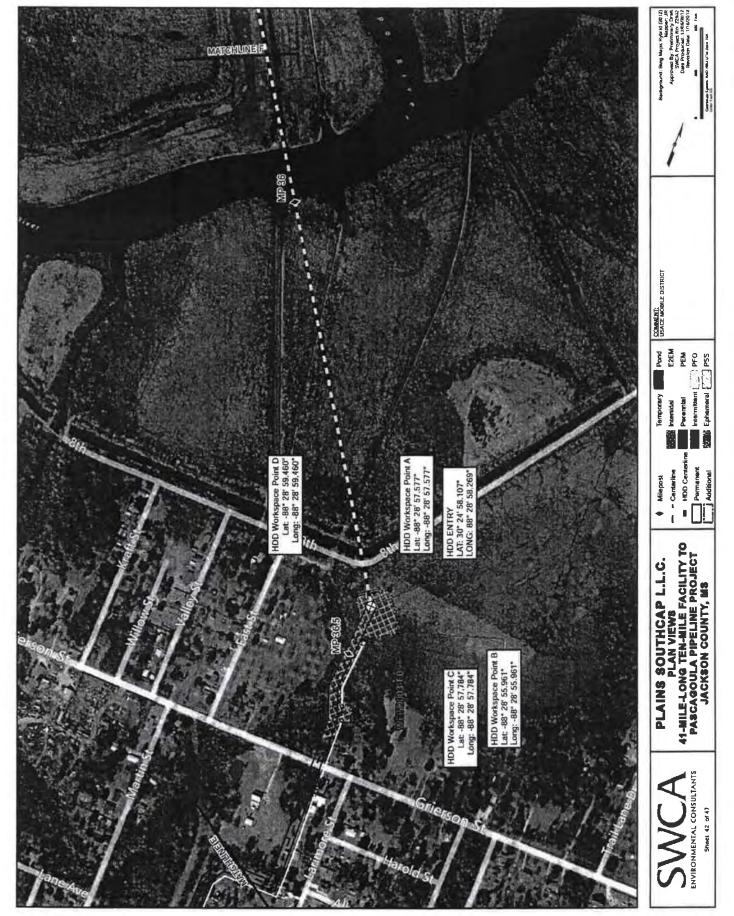
Impacted areas must be replanted with naturally occurring indigenous species if the area has not re-vegetated to preproject conditions within 1 year of project completion;

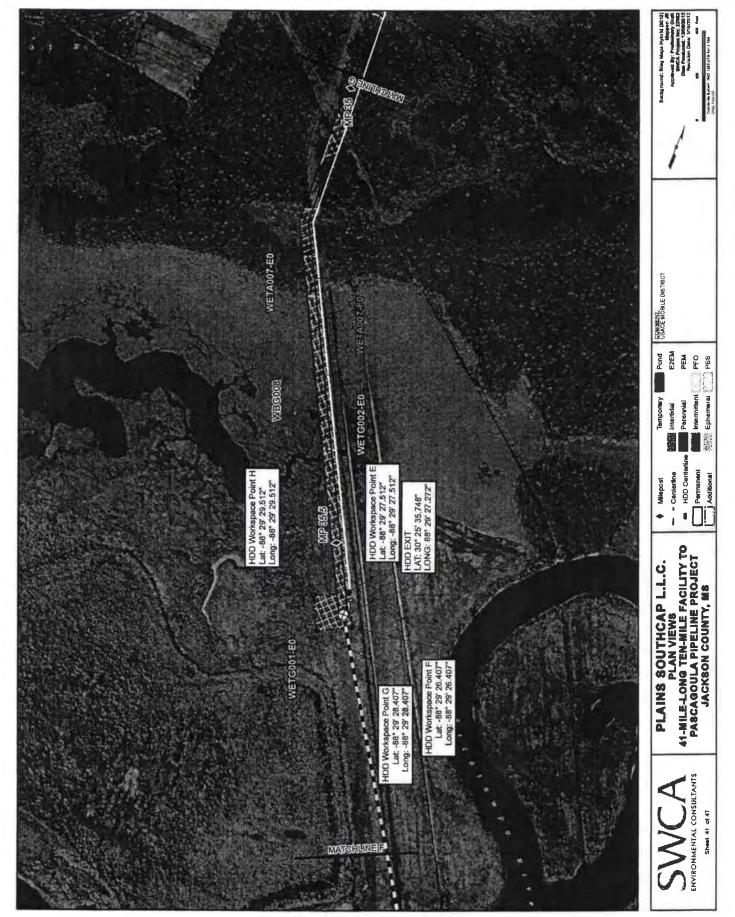
10. No additional crude oil pipelines, natural gas pipelines, electrical transmission lines, water/sewer transmission lines, fiber-optic cable, etc. within the crude oil pipeline right-of-way described in the submitted application is authorized by this Waiver:

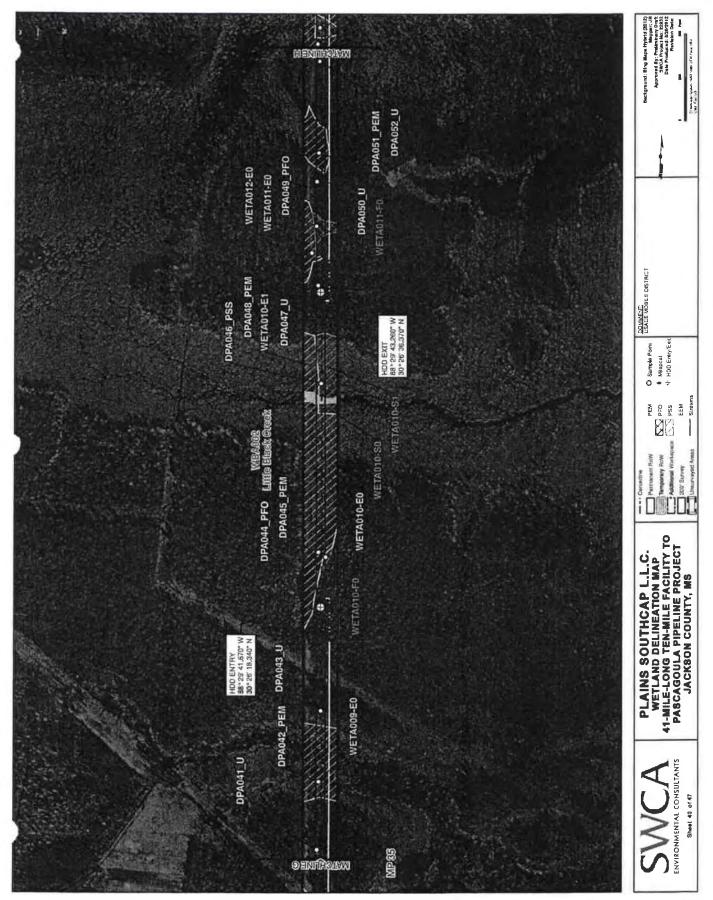
Prior to the commencement of construction, permittee must submit to the DMR a copy of the Tidelands Lease as required by the Secretary of State and as filed in the subject County Land Records, or a statement from the Secretary of State that the permitted activity does not require a Tidelands Lease;
 Best Management Practices shall be used at all times during construction;
 No construction debris or unauthorized fill material shall be allowed to enter coastal wetlands or waters; and,

Vegetated wetlands outside of the pipeline right-of-way and right-of-way access areas shall not be impacted and no permanent wetland impacts are authorized by this Waiver.


Lower Escatawpa River (and adjacent tidal wetlands), Little Black Creek, and non-tidal USACE jurisdictional wetlands and Section 10 waters located in Jackson County, Mississippi.


No construction debris or unauthorized fill material shall be allowed to enter coastal wetlands or waters.


FURTHERMORE, THIS PROJECT AS PROPOSED HAS BEEN FOUND TO BE CONSISTENT WITH ALL GUIDELINES FOR CONDUCT OF REGULATED ACTIVITIES IN COASTAL WETLANDS AS SET FORTH IN THE MISSISSIPPI COASTAL PROGRAM.


> Director, Wetlands Permitting

POST THIS NOTICE CONSPICUOUSLY AT SITE OF WORK

